mm: Extend gfp masking to the page allocator
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/kmemleak.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32
33 /*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #ifdef CONFIG_SLUB_DEBUG
112 #define SLABDEBUG 1
113 #else
114 #define SLABDEBUG 0
115 #endif
116
117 /*
118 * Issues still to be resolved:
119 *
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 *
122 * - Variable sizing of the per node arrays
123 */
124
125 /* Enable to test recovery from slab corruption on boot */
126 #undef SLUB_RESILIENCY_TEST
127
128 /*
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 */
132 #define MIN_PARTIAL 5
133
134 /*
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
138 */
139 #define MAX_PARTIAL 10
140
141 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
143
144 /*
145 * Set of flags that will prevent slab merging
146 */
147 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
148 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
149
150 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
151 SLAB_CACHE_DMA | SLAB_NOTRACK)
152
153 #ifndef ARCH_KMALLOC_MINALIGN
154 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
155 #endif
156
157 #ifndef ARCH_SLAB_MINALIGN
158 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
159 #endif
160
161 #define OO_SHIFT 16
162 #define OO_MASK ((1 << OO_SHIFT) - 1)
163 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164
165 /* Internal SLUB flags */
166 #define __OBJECT_POISON 0x80000000 /* Poison object */
167 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
168
169 static int kmem_size = sizeof(struct kmem_cache);
170
171 #ifdef CONFIG_SMP
172 static struct notifier_block slab_notifier;
173 #endif
174
175 static enum {
176 DOWN, /* No slab functionality available */
177 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
178 UP, /* Everything works but does not show up in sysfs */
179 SYSFS /* Sysfs up */
180 } slab_state = DOWN;
181
182 /* A list of all slab caches on the system */
183 static DECLARE_RWSEM(slub_lock);
184 static LIST_HEAD(slab_caches);
185
186 /*
187 * Tracking user of a slab.
188 */
189 struct track {
190 unsigned long addr; /* Called from address */
191 int cpu; /* Was running on cpu */
192 int pid; /* Pid context */
193 unsigned long when; /* When did the operation occur */
194 };
195
196 enum track_item { TRACK_ALLOC, TRACK_FREE };
197
198 #ifdef CONFIG_SLUB_DEBUG
199 static int sysfs_slab_add(struct kmem_cache *);
200 static int sysfs_slab_alias(struct kmem_cache *, const char *);
201 static void sysfs_slab_remove(struct kmem_cache *);
202
203 #else
204 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
205 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
206 { return 0; }
207 static inline void sysfs_slab_remove(struct kmem_cache *s)
208 {
209 kfree(s);
210 }
211
212 #endif
213
214 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
215 {
216 #ifdef CONFIG_SLUB_STATS
217 c->stat[si]++;
218 #endif
219 }
220
221 /********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
225 int slab_is_available(void)
226 {
227 return slab_state >= UP;
228 }
229
230 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
231 {
232 #ifdef CONFIG_NUMA
233 return s->node[node];
234 #else
235 return &s->local_node;
236 #endif
237 }
238
239 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
240 {
241 #ifdef CONFIG_SMP
242 return s->cpu_slab[cpu];
243 #else
244 return &s->cpu_slab;
245 #endif
246 }
247
248 /* Verify that a pointer has an address that is valid within a slab page */
249 static inline int check_valid_pointer(struct kmem_cache *s,
250 struct page *page, const void *object)
251 {
252 void *base;
253
254 if (!object)
255 return 1;
256
257 base = page_address(page);
258 if (object < base || object >= base + page->objects * s->size ||
259 (object - base) % s->size) {
260 return 0;
261 }
262
263 return 1;
264 }
265
266 /*
267 * Slow version of get and set free pointer.
268 *
269 * This version requires touching the cache lines of kmem_cache which
270 * we avoid to do in the fast alloc free paths. There we obtain the offset
271 * from the page struct.
272 */
273 static inline void *get_freepointer(struct kmem_cache *s, void *object)
274 {
275 return *(void **)(object + s->offset);
276 }
277
278 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
279 {
280 *(void **)(object + s->offset) = fp;
281 }
282
283 /* Loop over all objects in a slab */
284 #define for_each_object(__p, __s, __addr, __objects) \
285 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
286 __p += (__s)->size)
287
288 /* Scan freelist */
289 #define for_each_free_object(__p, __s, __free) \
290 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
291
292 /* Determine object index from a given position */
293 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
294 {
295 return (p - addr) / s->size;
296 }
297
298 static inline struct kmem_cache_order_objects oo_make(int order,
299 unsigned long size)
300 {
301 struct kmem_cache_order_objects x = {
302 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
303 };
304
305 return x;
306 }
307
308 static inline int oo_order(struct kmem_cache_order_objects x)
309 {
310 return x.x >> OO_SHIFT;
311 }
312
313 static inline int oo_objects(struct kmem_cache_order_objects x)
314 {
315 return x.x & OO_MASK;
316 }
317
318 #ifdef CONFIG_SLUB_DEBUG
319 /*
320 * Debug settings:
321 */
322 #ifdef CONFIG_SLUB_DEBUG_ON
323 static int slub_debug = DEBUG_DEFAULT_FLAGS;
324 #else
325 static int slub_debug;
326 #endif
327
328 static char *slub_debug_slabs;
329
330 /*
331 * Object debugging
332 */
333 static void print_section(char *text, u8 *addr, unsigned int length)
334 {
335 int i, offset;
336 int newline = 1;
337 char ascii[17];
338
339 ascii[16] = 0;
340
341 for (i = 0; i < length; i++) {
342 if (newline) {
343 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
344 newline = 0;
345 }
346 printk(KERN_CONT " %02x", addr[i]);
347 offset = i % 16;
348 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
349 if (offset == 15) {
350 printk(KERN_CONT " %s\n", ascii);
351 newline = 1;
352 }
353 }
354 if (!newline) {
355 i %= 16;
356 while (i < 16) {
357 printk(KERN_CONT " ");
358 ascii[i] = ' ';
359 i++;
360 }
361 printk(KERN_CONT " %s\n", ascii);
362 }
363 }
364
365 static struct track *get_track(struct kmem_cache *s, void *object,
366 enum track_item alloc)
367 {
368 struct track *p;
369
370 if (s->offset)
371 p = object + s->offset + sizeof(void *);
372 else
373 p = object + s->inuse;
374
375 return p + alloc;
376 }
377
378 static void set_track(struct kmem_cache *s, void *object,
379 enum track_item alloc, unsigned long addr)
380 {
381 struct track *p = get_track(s, object, alloc);
382
383 if (addr) {
384 p->addr = addr;
385 p->cpu = smp_processor_id();
386 p->pid = current->pid;
387 p->when = jiffies;
388 } else
389 memset(p, 0, sizeof(struct track));
390 }
391
392 static void init_tracking(struct kmem_cache *s, void *object)
393 {
394 if (!(s->flags & SLAB_STORE_USER))
395 return;
396
397 set_track(s, object, TRACK_FREE, 0UL);
398 set_track(s, object, TRACK_ALLOC, 0UL);
399 }
400
401 static void print_track(const char *s, struct track *t)
402 {
403 if (!t->addr)
404 return;
405
406 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
407 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
408 }
409
410 static void print_tracking(struct kmem_cache *s, void *object)
411 {
412 if (!(s->flags & SLAB_STORE_USER))
413 return;
414
415 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
416 print_track("Freed", get_track(s, object, TRACK_FREE));
417 }
418
419 static void print_page_info(struct page *page)
420 {
421 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
422 page, page->objects, page->inuse, page->freelist, page->flags);
423
424 }
425
426 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
427 {
428 va_list args;
429 char buf[100];
430
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "========================================"
435 "=====================================\n");
436 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
437 printk(KERN_ERR "----------------------------------------"
438 "-------------------------------------\n\n");
439 }
440
441 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
442 {
443 va_list args;
444 char buf[100];
445
446 va_start(args, fmt);
447 vsnprintf(buf, sizeof(buf), fmt, args);
448 va_end(args);
449 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
450 }
451
452 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
453 {
454 unsigned int off; /* Offset of last byte */
455 u8 *addr = page_address(page);
456
457 print_tracking(s, p);
458
459 print_page_info(page);
460
461 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
462 p, p - addr, get_freepointer(s, p));
463
464 if (p > addr + 16)
465 print_section("Bytes b4", p - 16, 16);
466
467 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
468
469 if (s->flags & SLAB_RED_ZONE)
470 print_section("Redzone", p + s->objsize,
471 s->inuse - s->objsize);
472
473 if (s->offset)
474 off = s->offset + sizeof(void *);
475 else
476 off = s->inuse;
477
478 if (s->flags & SLAB_STORE_USER)
479 off += 2 * sizeof(struct track);
480
481 if (off != s->size)
482 /* Beginning of the filler is the free pointer */
483 print_section("Padding", p + off, s->size - off);
484
485 dump_stack();
486 }
487
488 static void object_err(struct kmem_cache *s, struct page *page,
489 u8 *object, char *reason)
490 {
491 slab_bug(s, "%s", reason);
492 print_trailer(s, page, object);
493 }
494
495 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
496 {
497 va_list args;
498 char buf[100];
499
500 va_start(args, fmt);
501 vsnprintf(buf, sizeof(buf), fmt, args);
502 va_end(args);
503 slab_bug(s, "%s", buf);
504 print_page_info(page);
505 dump_stack();
506 }
507
508 static void init_object(struct kmem_cache *s, void *object, int active)
509 {
510 u8 *p = object;
511
512 if (s->flags & __OBJECT_POISON) {
513 memset(p, POISON_FREE, s->objsize - 1);
514 p[s->objsize - 1] = POISON_END;
515 }
516
517 if (s->flags & SLAB_RED_ZONE)
518 memset(p + s->objsize,
519 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
520 s->inuse - s->objsize);
521 }
522
523 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
524 {
525 while (bytes) {
526 if (*start != (u8)value)
527 return start;
528 start++;
529 bytes--;
530 }
531 return NULL;
532 }
533
534 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
535 void *from, void *to)
536 {
537 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
538 memset(from, data, to - from);
539 }
540
541 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
542 u8 *object, char *what,
543 u8 *start, unsigned int value, unsigned int bytes)
544 {
545 u8 *fault;
546 u8 *end;
547
548 fault = check_bytes(start, value, bytes);
549 if (!fault)
550 return 1;
551
552 end = start + bytes;
553 while (end > fault && end[-1] == value)
554 end--;
555
556 slab_bug(s, "%s overwritten", what);
557 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
558 fault, end - 1, fault[0], value);
559 print_trailer(s, page, object);
560
561 restore_bytes(s, what, value, fault, end);
562 return 0;
563 }
564
565 /*
566 * Object layout:
567 *
568 * object address
569 * Bytes of the object to be managed.
570 * If the freepointer may overlay the object then the free
571 * pointer is the first word of the object.
572 *
573 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
574 * 0xa5 (POISON_END)
575 *
576 * object + s->objsize
577 * Padding to reach word boundary. This is also used for Redzoning.
578 * Padding is extended by another word if Redzoning is enabled and
579 * objsize == inuse.
580 *
581 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
582 * 0xcc (RED_ACTIVE) for objects in use.
583 *
584 * object + s->inuse
585 * Meta data starts here.
586 *
587 * A. Free pointer (if we cannot overwrite object on free)
588 * B. Tracking data for SLAB_STORE_USER
589 * C. Padding to reach required alignment boundary or at mininum
590 * one word if debugging is on to be able to detect writes
591 * before the word boundary.
592 *
593 * Padding is done using 0x5a (POISON_INUSE)
594 *
595 * object + s->size
596 * Nothing is used beyond s->size.
597 *
598 * If slabcaches are merged then the objsize and inuse boundaries are mostly
599 * ignored. And therefore no slab options that rely on these boundaries
600 * may be used with merged slabcaches.
601 */
602
603 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
604 {
605 unsigned long off = s->inuse; /* The end of info */
606
607 if (s->offset)
608 /* Freepointer is placed after the object. */
609 off += sizeof(void *);
610
611 if (s->flags & SLAB_STORE_USER)
612 /* We also have user information there */
613 off += 2 * sizeof(struct track);
614
615 if (s->size == off)
616 return 1;
617
618 return check_bytes_and_report(s, page, p, "Object padding",
619 p + off, POISON_INUSE, s->size - off);
620 }
621
622 /* Check the pad bytes at the end of a slab page */
623 static int slab_pad_check(struct kmem_cache *s, struct page *page)
624 {
625 u8 *start;
626 u8 *fault;
627 u8 *end;
628 int length;
629 int remainder;
630
631 if (!(s->flags & SLAB_POISON))
632 return 1;
633
634 start = page_address(page);
635 length = (PAGE_SIZE << compound_order(page));
636 end = start + length;
637 remainder = length % s->size;
638 if (!remainder)
639 return 1;
640
641 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
642 if (!fault)
643 return 1;
644 while (end > fault && end[-1] == POISON_INUSE)
645 end--;
646
647 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
648 print_section("Padding", end - remainder, remainder);
649
650 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
651 return 0;
652 }
653
654 static int check_object(struct kmem_cache *s, struct page *page,
655 void *object, int active)
656 {
657 u8 *p = object;
658 u8 *endobject = object + s->objsize;
659
660 if (s->flags & SLAB_RED_ZONE) {
661 unsigned int red =
662 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
663
664 if (!check_bytes_and_report(s, page, object, "Redzone",
665 endobject, red, s->inuse - s->objsize))
666 return 0;
667 } else {
668 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
669 check_bytes_and_report(s, page, p, "Alignment padding",
670 endobject, POISON_INUSE, s->inuse - s->objsize);
671 }
672 }
673
674 if (s->flags & SLAB_POISON) {
675 if (!active && (s->flags & __OBJECT_POISON) &&
676 (!check_bytes_and_report(s, page, p, "Poison", p,
677 POISON_FREE, s->objsize - 1) ||
678 !check_bytes_and_report(s, page, p, "Poison",
679 p + s->objsize - 1, POISON_END, 1)))
680 return 0;
681 /*
682 * check_pad_bytes cleans up on its own.
683 */
684 check_pad_bytes(s, page, p);
685 }
686
687 if (!s->offset && active)
688 /*
689 * Object and freepointer overlap. Cannot check
690 * freepointer while object is allocated.
691 */
692 return 1;
693
694 /* Check free pointer validity */
695 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
696 object_err(s, page, p, "Freepointer corrupt");
697 /*
698 * No choice but to zap it and thus lose the remainder
699 * of the free objects in this slab. May cause
700 * another error because the object count is now wrong.
701 */
702 set_freepointer(s, p, NULL);
703 return 0;
704 }
705 return 1;
706 }
707
708 static int check_slab(struct kmem_cache *s, struct page *page)
709 {
710 int maxobj;
711
712 VM_BUG_ON(!irqs_disabled());
713
714 if (!PageSlab(page)) {
715 slab_err(s, page, "Not a valid slab page");
716 return 0;
717 }
718
719 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
720 if (page->objects > maxobj) {
721 slab_err(s, page, "objects %u > max %u",
722 s->name, page->objects, maxobj);
723 return 0;
724 }
725 if (page->inuse > page->objects) {
726 slab_err(s, page, "inuse %u > max %u",
727 s->name, page->inuse, page->objects);
728 return 0;
729 }
730 /* Slab_pad_check fixes things up after itself */
731 slab_pad_check(s, page);
732 return 1;
733 }
734
735 /*
736 * Determine if a certain object on a page is on the freelist. Must hold the
737 * slab lock to guarantee that the chains are in a consistent state.
738 */
739 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
740 {
741 int nr = 0;
742 void *fp = page->freelist;
743 void *object = NULL;
744 unsigned long max_objects;
745
746 while (fp && nr <= page->objects) {
747 if (fp == search)
748 return 1;
749 if (!check_valid_pointer(s, page, fp)) {
750 if (object) {
751 object_err(s, page, object,
752 "Freechain corrupt");
753 set_freepointer(s, object, NULL);
754 break;
755 } else {
756 slab_err(s, page, "Freepointer corrupt");
757 page->freelist = NULL;
758 page->inuse = page->objects;
759 slab_fix(s, "Freelist cleared");
760 return 0;
761 }
762 break;
763 }
764 object = fp;
765 fp = get_freepointer(s, object);
766 nr++;
767 }
768
769 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
770 if (max_objects > MAX_OBJS_PER_PAGE)
771 max_objects = MAX_OBJS_PER_PAGE;
772
773 if (page->objects != max_objects) {
774 slab_err(s, page, "Wrong number of objects. Found %d but "
775 "should be %d", page->objects, max_objects);
776 page->objects = max_objects;
777 slab_fix(s, "Number of objects adjusted.");
778 }
779 if (page->inuse != page->objects - nr) {
780 slab_err(s, page, "Wrong object count. Counter is %d but "
781 "counted were %d", page->inuse, page->objects - nr);
782 page->inuse = page->objects - nr;
783 slab_fix(s, "Object count adjusted.");
784 }
785 return search == NULL;
786 }
787
788 static void trace(struct kmem_cache *s, struct page *page, void *object,
789 int alloc)
790 {
791 if (s->flags & SLAB_TRACE) {
792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 s->name,
794 alloc ? "alloc" : "free",
795 object, page->inuse,
796 page->freelist);
797
798 if (!alloc)
799 print_section("Object", (void *)object, s->objsize);
800
801 dump_stack();
802 }
803 }
804
805 /*
806 * Tracking of fully allocated slabs for debugging purposes.
807 */
808 static void add_full(struct kmem_cache_node *n, struct page *page)
809 {
810 spin_lock(&n->list_lock);
811 list_add(&page->lru, &n->full);
812 spin_unlock(&n->list_lock);
813 }
814
815 static void remove_full(struct kmem_cache *s, struct page *page)
816 {
817 struct kmem_cache_node *n;
818
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
822 n = get_node(s, page_to_nid(page));
823
824 spin_lock(&n->list_lock);
825 list_del(&page->lru);
826 spin_unlock(&n->list_lock);
827 }
828
829 /* Tracking of the number of slabs for debugging purposes */
830 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
831 {
832 struct kmem_cache_node *n = get_node(s, node);
833
834 return atomic_long_read(&n->nr_slabs);
835 }
836
837 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
838 {
839 return atomic_long_read(&n->nr_slabs);
840 }
841
842 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
843 {
844 struct kmem_cache_node *n = get_node(s, node);
845
846 /*
847 * May be called early in order to allocate a slab for the
848 * kmem_cache_node structure. Solve the chicken-egg
849 * dilemma by deferring the increment of the count during
850 * bootstrap (see early_kmem_cache_node_alloc).
851 */
852 if (!NUMA_BUILD || n) {
853 atomic_long_inc(&n->nr_slabs);
854 atomic_long_add(objects, &n->total_objects);
855 }
856 }
857 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
858 {
859 struct kmem_cache_node *n = get_node(s, node);
860
861 atomic_long_dec(&n->nr_slabs);
862 atomic_long_sub(objects, &n->total_objects);
863 }
864
865 /* Object debug checks for alloc/free paths */
866 static void setup_object_debug(struct kmem_cache *s, struct page *page,
867 void *object)
868 {
869 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
870 return;
871
872 init_object(s, object, 0);
873 init_tracking(s, object);
874 }
875
876 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
877 void *object, unsigned long addr)
878 {
879 if (!check_slab(s, page))
880 goto bad;
881
882 if (!on_freelist(s, page, object)) {
883 object_err(s, page, object, "Object already allocated");
884 goto bad;
885 }
886
887 if (!check_valid_pointer(s, page, object)) {
888 object_err(s, page, object, "Freelist Pointer check fails");
889 goto bad;
890 }
891
892 if (!check_object(s, page, object, 0))
893 goto bad;
894
895 /* Success perform special debug activities for allocs */
896 if (s->flags & SLAB_STORE_USER)
897 set_track(s, object, TRACK_ALLOC, addr);
898 trace(s, page, object, 1);
899 init_object(s, object, 1);
900 return 1;
901
902 bad:
903 if (PageSlab(page)) {
904 /*
905 * If this is a slab page then lets do the best we can
906 * to avoid issues in the future. Marking all objects
907 * as used avoids touching the remaining objects.
908 */
909 slab_fix(s, "Marking all objects used");
910 page->inuse = page->objects;
911 page->freelist = NULL;
912 }
913 return 0;
914 }
915
916 static int free_debug_processing(struct kmem_cache *s, struct page *page,
917 void *object, unsigned long addr)
918 {
919 if (!check_slab(s, page))
920 goto fail;
921
922 if (!check_valid_pointer(s, page, object)) {
923 slab_err(s, page, "Invalid object pointer 0x%p", object);
924 goto fail;
925 }
926
927 if (on_freelist(s, page, object)) {
928 object_err(s, page, object, "Object already free");
929 goto fail;
930 }
931
932 if (!check_object(s, page, object, 1))
933 return 0;
934
935 if (unlikely(s != page->slab)) {
936 if (!PageSlab(page)) {
937 slab_err(s, page, "Attempt to free object(0x%p) "
938 "outside of slab", object);
939 } else if (!page->slab) {
940 printk(KERN_ERR
941 "SLUB <none>: no slab for object 0x%p.\n",
942 object);
943 dump_stack();
944 } else
945 object_err(s, page, object,
946 "page slab pointer corrupt.");
947 goto fail;
948 }
949
950 /* Special debug activities for freeing objects */
951 if (!PageSlubFrozen(page) && !page->freelist)
952 remove_full(s, page);
953 if (s->flags & SLAB_STORE_USER)
954 set_track(s, object, TRACK_FREE, addr);
955 trace(s, page, object, 0);
956 init_object(s, object, 0);
957 return 1;
958
959 fail:
960 slab_fix(s, "Object at 0x%p not freed", object);
961 return 0;
962 }
963
964 static int __init setup_slub_debug(char *str)
965 {
966 slub_debug = DEBUG_DEFAULT_FLAGS;
967 if (*str++ != '=' || !*str)
968 /*
969 * No options specified. Switch on full debugging.
970 */
971 goto out;
972
973 if (*str == ',')
974 /*
975 * No options but restriction on slabs. This means full
976 * debugging for slabs matching a pattern.
977 */
978 goto check_slabs;
979
980 slub_debug = 0;
981 if (*str == '-')
982 /*
983 * Switch off all debugging measures.
984 */
985 goto out;
986
987 /*
988 * Determine which debug features should be switched on
989 */
990 for (; *str && *str != ','; str++) {
991 switch (tolower(*str)) {
992 case 'f':
993 slub_debug |= SLAB_DEBUG_FREE;
994 break;
995 case 'z':
996 slub_debug |= SLAB_RED_ZONE;
997 break;
998 case 'p':
999 slub_debug |= SLAB_POISON;
1000 break;
1001 case 'u':
1002 slub_debug |= SLAB_STORE_USER;
1003 break;
1004 case 't':
1005 slub_debug |= SLAB_TRACE;
1006 break;
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
1009 "unknown. skipped\n", *str);
1010 }
1011 }
1012
1013 check_slabs:
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
1016 out:
1017 return 1;
1018 }
1019
1020 __setup("slub_debug", setup_slub_debug);
1021
1022 static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
1024 void (*ctor)(void *))
1025 {
1026 /*
1027 * Enable debugging if selected on the kernel commandline.
1028 */
1029 if (slub_debug && (!slub_debug_slabs ||
1030 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1031 flags |= slub_debug;
1032
1033 return flags;
1034 }
1035 #else
1036 static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
1038
1039 static inline int alloc_debug_processing(struct kmem_cache *s,
1040 struct page *page, void *object, unsigned long addr) { return 0; }
1041
1042 static inline int free_debug_processing(struct kmem_cache *s,
1043 struct page *page, void *object, unsigned long addr) { return 0; }
1044
1045 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047 static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
1049 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1050 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
1052 void (*ctor)(void *))
1053 {
1054 return flags;
1055 }
1056 #define slub_debug 0
1057
1058 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1059 { return 0; }
1060 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1061 { return 0; }
1062 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
1064 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1065 int objects) {}
1066 #endif
1067
1068 /*
1069 * Slab allocation and freeing
1070 */
1071 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1072 struct kmem_cache_order_objects oo)
1073 {
1074 int order = oo_order(oo);
1075
1076 flags |= __GFP_NOTRACK;
1077
1078 if (node == -1)
1079 return alloc_pages(flags, order);
1080 else
1081 return alloc_pages_node(node, flags, order);
1082 }
1083
1084 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1085 {
1086 struct page *page;
1087 struct kmem_cache_order_objects oo = s->oo;
1088
1089 flags |= s->allocflags;
1090
1091 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1092 oo);
1093 if (unlikely(!page)) {
1094 oo = s->min;
1095 /*
1096 * Allocation may have failed due to fragmentation.
1097 * Try a lower order alloc if possible
1098 */
1099 page = alloc_slab_page(flags, node, oo);
1100 if (!page)
1101 return NULL;
1102
1103 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1104 }
1105
1106 if (kmemcheck_enabled
1107 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1108 {
1109 int pages = 1 << oo_order(oo);
1110
1111 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1112
1113 /*
1114 * Objects from caches that have a constructor don't get
1115 * cleared when they're allocated, so we need to do it here.
1116 */
1117 if (s->ctor)
1118 kmemcheck_mark_uninitialized_pages(page, pages);
1119 else
1120 kmemcheck_mark_unallocated_pages(page, pages);
1121 }
1122
1123 page->objects = oo_objects(oo);
1124 mod_zone_page_state(page_zone(page),
1125 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1126 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1127 1 << oo_order(oo));
1128
1129 return page;
1130 }
1131
1132 static void setup_object(struct kmem_cache *s, struct page *page,
1133 void *object)
1134 {
1135 setup_object_debug(s, page, object);
1136 if (unlikely(s->ctor))
1137 s->ctor(object);
1138 }
1139
1140 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1141 {
1142 struct page *page;
1143 void *start;
1144 void *last;
1145 void *p;
1146
1147 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1148
1149 page = allocate_slab(s,
1150 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1151 if (!page)
1152 goto out;
1153
1154 inc_slabs_node(s, page_to_nid(page), page->objects);
1155 page->slab = s;
1156 page->flags |= 1 << PG_slab;
1157 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1158 SLAB_STORE_USER | SLAB_TRACE))
1159 __SetPageSlubDebug(page);
1160
1161 start = page_address(page);
1162
1163 if (unlikely(s->flags & SLAB_POISON))
1164 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1165
1166 last = start;
1167 for_each_object(p, s, start, page->objects) {
1168 setup_object(s, page, last);
1169 set_freepointer(s, last, p);
1170 last = p;
1171 }
1172 setup_object(s, page, last);
1173 set_freepointer(s, last, NULL);
1174
1175 page->freelist = start;
1176 page->inuse = 0;
1177 out:
1178 return page;
1179 }
1180
1181 static void __free_slab(struct kmem_cache *s, struct page *page)
1182 {
1183 int order = compound_order(page);
1184 int pages = 1 << order;
1185
1186 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1187 void *p;
1188
1189 slab_pad_check(s, page);
1190 for_each_object(p, s, page_address(page),
1191 page->objects)
1192 check_object(s, page, p, 0);
1193 __ClearPageSlubDebug(page);
1194 }
1195
1196 kmemcheck_free_shadow(page, compound_order(page));
1197
1198 mod_zone_page_state(page_zone(page),
1199 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1200 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1201 -pages);
1202
1203 __ClearPageSlab(page);
1204 reset_page_mapcount(page);
1205 if (current->reclaim_state)
1206 current->reclaim_state->reclaimed_slab += pages;
1207 __free_pages(page, order);
1208 }
1209
1210 static void rcu_free_slab(struct rcu_head *h)
1211 {
1212 struct page *page;
1213
1214 page = container_of((struct list_head *)h, struct page, lru);
1215 __free_slab(page->slab, page);
1216 }
1217
1218 static void free_slab(struct kmem_cache *s, struct page *page)
1219 {
1220 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1221 /*
1222 * RCU free overloads the RCU head over the LRU
1223 */
1224 struct rcu_head *head = (void *)&page->lru;
1225
1226 call_rcu(head, rcu_free_slab);
1227 } else
1228 __free_slab(s, page);
1229 }
1230
1231 static void discard_slab(struct kmem_cache *s, struct page *page)
1232 {
1233 dec_slabs_node(s, page_to_nid(page), page->objects);
1234 free_slab(s, page);
1235 }
1236
1237 /*
1238 * Per slab locking using the pagelock
1239 */
1240 static __always_inline void slab_lock(struct page *page)
1241 {
1242 bit_spin_lock(PG_locked, &page->flags);
1243 }
1244
1245 static __always_inline void slab_unlock(struct page *page)
1246 {
1247 __bit_spin_unlock(PG_locked, &page->flags);
1248 }
1249
1250 static __always_inline int slab_trylock(struct page *page)
1251 {
1252 int rc = 1;
1253
1254 rc = bit_spin_trylock(PG_locked, &page->flags);
1255 return rc;
1256 }
1257
1258 /*
1259 * Management of partially allocated slabs
1260 */
1261 static void add_partial(struct kmem_cache_node *n,
1262 struct page *page, int tail)
1263 {
1264 spin_lock(&n->list_lock);
1265 n->nr_partial++;
1266 if (tail)
1267 list_add_tail(&page->lru, &n->partial);
1268 else
1269 list_add(&page->lru, &n->partial);
1270 spin_unlock(&n->list_lock);
1271 }
1272
1273 static void remove_partial(struct kmem_cache *s, struct page *page)
1274 {
1275 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1276
1277 spin_lock(&n->list_lock);
1278 list_del(&page->lru);
1279 n->nr_partial--;
1280 spin_unlock(&n->list_lock);
1281 }
1282
1283 /*
1284 * Lock slab and remove from the partial list.
1285 *
1286 * Must hold list_lock.
1287 */
1288 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1289 struct page *page)
1290 {
1291 if (slab_trylock(page)) {
1292 list_del(&page->lru);
1293 n->nr_partial--;
1294 __SetPageSlubFrozen(page);
1295 return 1;
1296 }
1297 return 0;
1298 }
1299
1300 /*
1301 * Try to allocate a partial slab from a specific node.
1302 */
1303 static struct page *get_partial_node(struct kmem_cache_node *n)
1304 {
1305 struct page *page;
1306
1307 /*
1308 * Racy check. If we mistakenly see no partial slabs then we
1309 * just allocate an empty slab. If we mistakenly try to get a
1310 * partial slab and there is none available then get_partials()
1311 * will return NULL.
1312 */
1313 if (!n || !n->nr_partial)
1314 return NULL;
1315
1316 spin_lock(&n->list_lock);
1317 list_for_each_entry(page, &n->partial, lru)
1318 if (lock_and_freeze_slab(n, page))
1319 goto out;
1320 page = NULL;
1321 out:
1322 spin_unlock(&n->list_lock);
1323 return page;
1324 }
1325
1326 /*
1327 * Get a page from somewhere. Search in increasing NUMA distances.
1328 */
1329 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1330 {
1331 #ifdef CONFIG_NUMA
1332 struct zonelist *zonelist;
1333 struct zoneref *z;
1334 struct zone *zone;
1335 enum zone_type high_zoneidx = gfp_zone(flags);
1336 struct page *page;
1337
1338 /*
1339 * The defrag ratio allows a configuration of the tradeoffs between
1340 * inter node defragmentation and node local allocations. A lower
1341 * defrag_ratio increases the tendency to do local allocations
1342 * instead of attempting to obtain partial slabs from other nodes.
1343 *
1344 * If the defrag_ratio is set to 0 then kmalloc() always
1345 * returns node local objects. If the ratio is higher then kmalloc()
1346 * may return off node objects because partial slabs are obtained
1347 * from other nodes and filled up.
1348 *
1349 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1350 * defrag_ratio = 1000) then every (well almost) allocation will
1351 * first attempt to defrag slab caches on other nodes. This means
1352 * scanning over all nodes to look for partial slabs which may be
1353 * expensive if we do it every time we are trying to find a slab
1354 * with available objects.
1355 */
1356 if (!s->remote_node_defrag_ratio ||
1357 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1358 return NULL;
1359
1360 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1361 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1362 struct kmem_cache_node *n;
1363
1364 n = get_node(s, zone_to_nid(zone));
1365
1366 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1367 n->nr_partial > s->min_partial) {
1368 page = get_partial_node(n);
1369 if (page)
1370 return page;
1371 }
1372 }
1373 #endif
1374 return NULL;
1375 }
1376
1377 /*
1378 * Get a partial page, lock it and return it.
1379 */
1380 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1381 {
1382 struct page *page;
1383 int searchnode = (node == -1) ? numa_node_id() : node;
1384
1385 page = get_partial_node(get_node(s, searchnode));
1386 if (page || (flags & __GFP_THISNODE))
1387 return page;
1388
1389 return get_any_partial(s, flags);
1390 }
1391
1392 /*
1393 * Move a page back to the lists.
1394 *
1395 * Must be called with the slab lock held.
1396 *
1397 * On exit the slab lock will have been dropped.
1398 */
1399 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1400 {
1401 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1402 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1403
1404 __ClearPageSlubFrozen(page);
1405 if (page->inuse) {
1406
1407 if (page->freelist) {
1408 add_partial(n, page, tail);
1409 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1410 } else {
1411 stat(c, DEACTIVATE_FULL);
1412 if (SLABDEBUG && PageSlubDebug(page) &&
1413 (s->flags & SLAB_STORE_USER))
1414 add_full(n, page);
1415 }
1416 slab_unlock(page);
1417 } else {
1418 stat(c, DEACTIVATE_EMPTY);
1419 if (n->nr_partial < s->min_partial) {
1420 /*
1421 * Adding an empty slab to the partial slabs in order
1422 * to avoid page allocator overhead. This slab needs
1423 * to come after the other slabs with objects in
1424 * so that the others get filled first. That way the
1425 * size of the partial list stays small.
1426 *
1427 * kmem_cache_shrink can reclaim any empty slabs from
1428 * the partial list.
1429 */
1430 add_partial(n, page, 1);
1431 slab_unlock(page);
1432 } else {
1433 slab_unlock(page);
1434 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1435 discard_slab(s, page);
1436 }
1437 }
1438 }
1439
1440 /*
1441 * Remove the cpu slab
1442 */
1443 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1444 {
1445 struct page *page = c->page;
1446 int tail = 1;
1447
1448 if (page->freelist)
1449 stat(c, DEACTIVATE_REMOTE_FREES);
1450 /*
1451 * Merge cpu freelist into slab freelist. Typically we get here
1452 * because both freelists are empty. So this is unlikely
1453 * to occur.
1454 */
1455 while (unlikely(c->freelist)) {
1456 void **object;
1457
1458 tail = 0; /* Hot objects. Put the slab first */
1459
1460 /* Retrieve object from cpu_freelist */
1461 object = c->freelist;
1462 c->freelist = c->freelist[c->offset];
1463
1464 /* And put onto the regular freelist */
1465 object[c->offset] = page->freelist;
1466 page->freelist = object;
1467 page->inuse--;
1468 }
1469 c->page = NULL;
1470 unfreeze_slab(s, page, tail);
1471 }
1472
1473 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1474 {
1475 stat(c, CPUSLAB_FLUSH);
1476 slab_lock(c->page);
1477 deactivate_slab(s, c);
1478 }
1479
1480 /*
1481 * Flush cpu slab.
1482 *
1483 * Called from IPI handler with interrupts disabled.
1484 */
1485 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1486 {
1487 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1488
1489 if (likely(c && c->page))
1490 flush_slab(s, c);
1491 }
1492
1493 static void flush_cpu_slab(void *d)
1494 {
1495 struct kmem_cache *s = d;
1496
1497 __flush_cpu_slab(s, smp_processor_id());
1498 }
1499
1500 static void flush_all(struct kmem_cache *s)
1501 {
1502 on_each_cpu(flush_cpu_slab, s, 1);
1503 }
1504
1505 /*
1506 * Check if the objects in a per cpu structure fit numa
1507 * locality expectations.
1508 */
1509 static inline int node_match(struct kmem_cache_cpu *c, int node)
1510 {
1511 #ifdef CONFIG_NUMA
1512 if (node != -1 && c->node != node)
1513 return 0;
1514 #endif
1515 return 1;
1516 }
1517
1518 static int count_free(struct page *page)
1519 {
1520 return page->objects - page->inuse;
1521 }
1522
1523 static unsigned long count_partial(struct kmem_cache_node *n,
1524 int (*get_count)(struct page *))
1525 {
1526 unsigned long flags;
1527 unsigned long x = 0;
1528 struct page *page;
1529
1530 spin_lock_irqsave(&n->list_lock, flags);
1531 list_for_each_entry(page, &n->partial, lru)
1532 x += get_count(page);
1533 spin_unlock_irqrestore(&n->list_lock, flags);
1534 return x;
1535 }
1536
1537 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1538 {
1539 #ifdef CONFIG_SLUB_DEBUG
1540 return atomic_long_read(&n->total_objects);
1541 #else
1542 return 0;
1543 #endif
1544 }
1545
1546 static noinline void
1547 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1548 {
1549 int node;
1550
1551 printk(KERN_WARNING
1552 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1553 nid, gfpflags);
1554 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1555 "default order: %d, min order: %d\n", s->name, s->objsize,
1556 s->size, oo_order(s->oo), oo_order(s->min));
1557
1558 for_each_online_node(node) {
1559 struct kmem_cache_node *n = get_node(s, node);
1560 unsigned long nr_slabs;
1561 unsigned long nr_objs;
1562 unsigned long nr_free;
1563
1564 if (!n)
1565 continue;
1566
1567 nr_free = count_partial(n, count_free);
1568 nr_slabs = node_nr_slabs(n);
1569 nr_objs = node_nr_objs(n);
1570
1571 printk(KERN_WARNING
1572 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1573 node, nr_slabs, nr_objs, nr_free);
1574 }
1575 }
1576
1577 /*
1578 * Slow path. The lockless freelist is empty or we need to perform
1579 * debugging duties.
1580 *
1581 * Interrupts are disabled.
1582 *
1583 * Processing is still very fast if new objects have been freed to the
1584 * regular freelist. In that case we simply take over the regular freelist
1585 * as the lockless freelist and zap the regular freelist.
1586 *
1587 * If that is not working then we fall back to the partial lists. We take the
1588 * first element of the freelist as the object to allocate now and move the
1589 * rest of the freelist to the lockless freelist.
1590 *
1591 * And if we were unable to get a new slab from the partial slab lists then
1592 * we need to allocate a new slab. This is the slowest path since it involves
1593 * a call to the page allocator and the setup of a new slab.
1594 */
1595 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1596 unsigned long addr, struct kmem_cache_cpu *c)
1597 {
1598 void **object;
1599 struct page *new;
1600
1601 /* We handle __GFP_ZERO in the caller */
1602 gfpflags &= ~__GFP_ZERO;
1603
1604 if (!c->page)
1605 goto new_slab;
1606
1607 slab_lock(c->page);
1608 if (unlikely(!node_match(c, node)))
1609 goto another_slab;
1610
1611 stat(c, ALLOC_REFILL);
1612
1613 load_freelist:
1614 object = c->page->freelist;
1615 if (unlikely(!object))
1616 goto another_slab;
1617 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1618 goto debug;
1619
1620 c->freelist = object[c->offset];
1621 c->page->inuse = c->page->objects;
1622 c->page->freelist = NULL;
1623 c->node = page_to_nid(c->page);
1624 unlock_out:
1625 slab_unlock(c->page);
1626 stat(c, ALLOC_SLOWPATH);
1627 return object;
1628
1629 another_slab:
1630 deactivate_slab(s, c);
1631
1632 new_slab:
1633 new = get_partial(s, gfpflags, node);
1634 if (new) {
1635 c->page = new;
1636 stat(c, ALLOC_FROM_PARTIAL);
1637 goto load_freelist;
1638 }
1639
1640 if (gfpflags & __GFP_WAIT)
1641 local_irq_enable();
1642
1643 new = new_slab(s, gfpflags, node);
1644
1645 if (gfpflags & __GFP_WAIT)
1646 local_irq_disable();
1647
1648 if (new) {
1649 c = get_cpu_slab(s, smp_processor_id());
1650 stat(c, ALLOC_SLAB);
1651 if (c->page)
1652 flush_slab(s, c);
1653 slab_lock(new);
1654 __SetPageSlubFrozen(new);
1655 c->page = new;
1656 goto load_freelist;
1657 }
1658 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1659 slab_out_of_memory(s, gfpflags, node);
1660 return NULL;
1661 debug:
1662 if (!alloc_debug_processing(s, c->page, object, addr))
1663 goto another_slab;
1664
1665 c->page->inuse++;
1666 c->page->freelist = object[c->offset];
1667 c->node = -1;
1668 goto unlock_out;
1669 }
1670
1671 /*
1672 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1673 * have the fastpath folded into their functions. So no function call
1674 * overhead for requests that can be satisfied on the fastpath.
1675 *
1676 * The fastpath works by first checking if the lockless freelist can be used.
1677 * If not then __slab_alloc is called for slow processing.
1678 *
1679 * Otherwise we can simply pick the next object from the lockless free list.
1680 */
1681 static __always_inline void *slab_alloc(struct kmem_cache *s,
1682 gfp_t gfpflags, int node, unsigned long addr)
1683 {
1684 void **object;
1685 struct kmem_cache_cpu *c;
1686 unsigned long flags;
1687 unsigned int objsize;
1688
1689 gfpflags &= gfp_allowed_mask;
1690
1691 lockdep_trace_alloc(gfpflags);
1692 might_sleep_if(gfpflags & __GFP_WAIT);
1693
1694 if (should_failslab(s->objsize, gfpflags))
1695 return NULL;
1696
1697 local_irq_save(flags);
1698 c = get_cpu_slab(s, smp_processor_id());
1699 objsize = c->objsize;
1700 if (unlikely(!c->freelist || !node_match(c, node)))
1701
1702 object = __slab_alloc(s, gfpflags, node, addr, c);
1703
1704 else {
1705 object = c->freelist;
1706 c->freelist = object[c->offset];
1707 stat(c, ALLOC_FASTPATH);
1708 }
1709 local_irq_restore(flags);
1710
1711 if (unlikely((gfpflags & __GFP_ZERO) && object))
1712 memset(object, 0, objsize);
1713
1714 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1715 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1716
1717 return object;
1718 }
1719
1720 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1721 {
1722 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1723
1724 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1725
1726 return ret;
1727 }
1728 EXPORT_SYMBOL(kmem_cache_alloc);
1729
1730 #ifdef CONFIG_KMEMTRACE
1731 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1732 {
1733 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1734 }
1735 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1736 #endif
1737
1738 #ifdef CONFIG_NUMA
1739 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1740 {
1741 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1742
1743 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1744 s->objsize, s->size, gfpflags, node);
1745
1746 return ret;
1747 }
1748 EXPORT_SYMBOL(kmem_cache_alloc_node);
1749 #endif
1750
1751 #ifdef CONFIG_KMEMTRACE
1752 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1753 gfp_t gfpflags,
1754 int node)
1755 {
1756 return slab_alloc(s, gfpflags, node, _RET_IP_);
1757 }
1758 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1759 #endif
1760
1761 /*
1762 * Slow patch handling. This may still be called frequently since objects
1763 * have a longer lifetime than the cpu slabs in most processing loads.
1764 *
1765 * So we still attempt to reduce cache line usage. Just take the slab
1766 * lock and free the item. If there is no additional partial page
1767 * handling required then we can return immediately.
1768 */
1769 static void __slab_free(struct kmem_cache *s, struct page *page,
1770 void *x, unsigned long addr, unsigned int offset)
1771 {
1772 void *prior;
1773 void **object = (void *)x;
1774 struct kmem_cache_cpu *c;
1775
1776 c = get_cpu_slab(s, raw_smp_processor_id());
1777 stat(c, FREE_SLOWPATH);
1778 slab_lock(page);
1779
1780 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1781 goto debug;
1782
1783 checks_ok:
1784 prior = object[offset] = page->freelist;
1785 page->freelist = object;
1786 page->inuse--;
1787
1788 if (unlikely(PageSlubFrozen(page))) {
1789 stat(c, FREE_FROZEN);
1790 goto out_unlock;
1791 }
1792
1793 if (unlikely(!page->inuse))
1794 goto slab_empty;
1795
1796 /*
1797 * Objects left in the slab. If it was not on the partial list before
1798 * then add it.
1799 */
1800 if (unlikely(!prior)) {
1801 add_partial(get_node(s, page_to_nid(page)), page, 1);
1802 stat(c, FREE_ADD_PARTIAL);
1803 }
1804
1805 out_unlock:
1806 slab_unlock(page);
1807 return;
1808
1809 slab_empty:
1810 if (prior) {
1811 /*
1812 * Slab still on the partial list.
1813 */
1814 remove_partial(s, page);
1815 stat(c, FREE_REMOVE_PARTIAL);
1816 }
1817 slab_unlock(page);
1818 stat(c, FREE_SLAB);
1819 discard_slab(s, page);
1820 return;
1821
1822 debug:
1823 if (!free_debug_processing(s, page, x, addr))
1824 goto out_unlock;
1825 goto checks_ok;
1826 }
1827
1828 /*
1829 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1830 * can perform fastpath freeing without additional function calls.
1831 *
1832 * The fastpath is only possible if we are freeing to the current cpu slab
1833 * of this processor. This typically the case if we have just allocated
1834 * the item before.
1835 *
1836 * If fastpath is not possible then fall back to __slab_free where we deal
1837 * with all sorts of special processing.
1838 */
1839 static __always_inline void slab_free(struct kmem_cache *s,
1840 struct page *page, void *x, unsigned long addr)
1841 {
1842 void **object = (void *)x;
1843 struct kmem_cache_cpu *c;
1844 unsigned long flags;
1845
1846 kmemleak_free_recursive(x, s->flags);
1847 local_irq_save(flags);
1848 c = get_cpu_slab(s, smp_processor_id());
1849 kmemcheck_slab_free(s, object, c->objsize);
1850 debug_check_no_locks_freed(object, c->objsize);
1851 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1852 debug_check_no_obj_freed(object, c->objsize);
1853 if (likely(page == c->page && c->node >= 0)) {
1854 object[c->offset] = c->freelist;
1855 c->freelist = object;
1856 stat(c, FREE_FASTPATH);
1857 } else
1858 __slab_free(s, page, x, addr, c->offset);
1859
1860 local_irq_restore(flags);
1861 }
1862
1863 void kmem_cache_free(struct kmem_cache *s, void *x)
1864 {
1865 struct page *page;
1866
1867 page = virt_to_head_page(x);
1868
1869 slab_free(s, page, x, _RET_IP_);
1870
1871 trace_kmem_cache_free(_RET_IP_, x);
1872 }
1873 EXPORT_SYMBOL(kmem_cache_free);
1874
1875 /* Figure out on which slab page the object resides */
1876 static struct page *get_object_page(const void *x)
1877 {
1878 struct page *page = virt_to_head_page(x);
1879
1880 if (!PageSlab(page))
1881 return NULL;
1882
1883 return page;
1884 }
1885
1886 /*
1887 * Object placement in a slab is made very easy because we always start at
1888 * offset 0. If we tune the size of the object to the alignment then we can
1889 * get the required alignment by putting one properly sized object after
1890 * another.
1891 *
1892 * Notice that the allocation order determines the sizes of the per cpu
1893 * caches. Each processor has always one slab available for allocations.
1894 * Increasing the allocation order reduces the number of times that slabs
1895 * must be moved on and off the partial lists and is therefore a factor in
1896 * locking overhead.
1897 */
1898
1899 /*
1900 * Mininum / Maximum order of slab pages. This influences locking overhead
1901 * and slab fragmentation. A higher order reduces the number of partial slabs
1902 * and increases the number of allocations possible without having to
1903 * take the list_lock.
1904 */
1905 static int slub_min_order;
1906 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1907 static int slub_min_objects;
1908
1909 /*
1910 * Merge control. If this is set then no merging of slab caches will occur.
1911 * (Could be removed. This was introduced to pacify the merge skeptics.)
1912 */
1913 static int slub_nomerge;
1914
1915 /*
1916 * Calculate the order of allocation given an slab object size.
1917 *
1918 * The order of allocation has significant impact on performance and other
1919 * system components. Generally order 0 allocations should be preferred since
1920 * order 0 does not cause fragmentation in the page allocator. Larger objects
1921 * be problematic to put into order 0 slabs because there may be too much
1922 * unused space left. We go to a higher order if more than 1/16th of the slab
1923 * would be wasted.
1924 *
1925 * In order to reach satisfactory performance we must ensure that a minimum
1926 * number of objects is in one slab. Otherwise we may generate too much
1927 * activity on the partial lists which requires taking the list_lock. This is
1928 * less a concern for large slabs though which are rarely used.
1929 *
1930 * slub_max_order specifies the order where we begin to stop considering the
1931 * number of objects in a slab as critical. If we reach slub_max_order then
1932 * we try to keep the page order as low as possible. So we accept more waste
1933 * of space in favor of a small page order.
1934 *
1935 * Higher order allocations also allow the placement of more objects in a
1936 * slab and thereby reduce object handling overhead. If the user has
1937 * requested a higher mininum order then we start with that one instead of
1938 * the smallest order which will fit the object.
1939 */
1940 static inline int slab_order(int size, int min_objects,
1941 int max_order, int fract_leftover)
1942 {
1943 int order;
1944 int rem;
1945 int min_order = slub_min_order;
1946
1947 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1948 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1949
1950 for (order = max(min_order,
1951 fls(min_objects * size - 1) - PAGE_SHIFT);
1952 order <= max_order; order++) {
1953
1954 unsigned long slab_size = PAGE_SIZE << order;
1955
1956 if (slab_size < min_objects * size)
1957 continue;
1958
1959 rem = slab_size % size;
1960
1961 if (rem <= slab_size / fract_leftover)
1962 break;
1963
1964 }
1965
1966 return order;
1967 }
1968
1969 static inline int calculate_order(int size)
1970 {
1971 int order;
1972 int min_objects;
1973 int fraction;
1974 int max_objects;
1975
1976 /*
1977 * Attempt to find best configuration for a slab. This
1978 * works by first attempting to generate a layout with
1979 * the best configuration and backing off gradually.
1980 *
1981 * First we reduce the acceptable waste in a slab. Then
1982 * we reduce the minimum objects required in a slab.
1983 */
1984 min_objects = slub_min_objects;
1985 if (!min_objects)
1986 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1987 max_objects = (PAGE_SIZE << slub_max_order)/size;
1988 min_objects = min(min_objects, max_objects);
1989
1990 while (min_objects > 1) {
1991 fraction = 16;
1992 while (fraction >= 4) {
1993 order = slab_order(size, min_objects,
1994 slub_max_order, fraction);
1995 if (order <= slub_max_order)
1996 return order;
1997 fraction /= 2;
1998 }
1999 min_objects --;
2000 }
2001
2002 /*
2003 * We were unable to place multiple objects in a slab. Now
2004 * lets see if we can place a single object there.
2005 */
2006 order = slab_order(size, 1, slub_max_order, 1);
2007 if (order <= slub_max_order)
2008 return order;
2009
2010 /*
2011 * Doh this slab cannot be placed using slub_max_order.
2012 */
2013 order = slab_order(size, 1, MAX_ORDER, 1);
2014 if (order < MAX_ORDER)
2015 return order;
2016 return -ENOSYS;
2017 }
2018
2019 /*
2020 * Figure out what the alignment of the objects will be.
2021 */
2022 static unsigned long calculate_alignment(unsigned long flags,
2023 unsigned long align, unsigned long size)
2024 {
2025 /*
2026 * If the user wants hardware cache aligned objects then follow that
2027 * suggestion if the object is sufficiently large.
2028 *
2029 * The hardware cache alignment cannot override the specified
2030 * alignment though. If that is greater then use it.
2031 */
2032 if (flags & SLAB_HWCACHE_ALIGN) {
2033 unsigned long ralign = cache_line_size();
2034 while (size <= ralign / 2)
2035 ralign /= 2;
2036 align = max(align, ralign);
2037 }
2038
2039 if (align < ARCH_SLAB_MINALIGN)
2040 align = ARCH_SLAB_MINALIGN;
2041
2042 return ALIGN(align, sizeof(void *));
2043 }
2044
2045 static void init_kmem_cache_cpu(struct kmem_cache *s,
2046 struct kmem_cache_cpu *c)
2047 {
2048 c->page = NULL;
2049 c->freelist = NULL;
2050 c->node = 0;
2051 c->offset = s->offset / sizeof(void *);
2052 c->objsize = s->objsize;
2053 #ifdef CONFIG_SLUB_STATS
2054 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2055 #endif
2056 }
2057
2058 static void
2059 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2060 {
2061 n->nr_partial = 0;
2062 spin_lock_init(&n->list_lock);
2063 INIT_LIST_HEAD(&n->partial);
2064 #ifdef CONFIG_SLUB_DEBUG
2065 atomic_long_set(&n->nr_slabs, 0);
2066 atomic_long_set(&n->total_objects, 0);
2067 INIT_LIST_HEAD(&n->full);
2068 #endif
2069 }
2070
2071 #ifdef CONFIG_SMP
2072 /*
2073 * Per cpu array for per cpu structures.
2074 *
2075 * The per cpu array places all kmem_cache_cpu structures from one processor
2076 * close together meaning that it becomes possible that multiple per cpu
2077 * structures are contained in one cacheline. This may be particularly
2078 * beneficial for the kmalloc caches.
2079 *
2080 * A desktop system typically has around 60-80 slabs. With 100 here we are
2081 * likely able to get per cpu structures for all caches from the array defined
2082 * here. We must be able to cover all kmalloc caches during bootstrap.
2083 *
2084 * If the per cpu array is exhausted then fall back to kmalloc
2085 * of individual cachelines. No sharing is possible then.
2086 */
2087 #define NR_KMEM_CACHE_CPU 100
2088
2089 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2090 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2091
2092 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2093 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2094
2095 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2096 int cpu, gfp_t flags)
2097 {
2098 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2099
2100 if (c)
2101 per_cpu(kmem_cache_cpu_free, cpu) =
2102 (void *)c->freelist;
2103 else {
2104 /* Table overflow: So allocate ourselves */
2105 c = kmalloc_node(
2106 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2107 flags, cpu_to_node(cpu));
2108 if (!c)
2109 return NULL;
2110 }
2111
2112 init_kmem_cache_cpu(s, c);
2113 return c;
2114 }
2115
2116 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2117 {
2118 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2119 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2120 kfree(c);
2121 return;
2122 }
2123 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2124 per_cpu(kmem_cache_cpu_free, cpu) = c;
2125 }
2126
2127 static void free_kmem_cache_cpus(struct kmem_cache *s)
2128 {
2129 int cpu;
2130
2131 for_each_online_cpu(cpu) {
2132 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2133
2134 if (c) {
2135 s->cpu_slab[cpu] = NULL;
2136 free_kmem_cache_cpu(c, cpu);
2137 }
2138 }
2139 }
2140
2141 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2142 {
2143 int cpu;
2144
2145 for_each_online_cpu(cpu) {
2146 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2147
2148 if (c)
2149 continue;
2150
2151 c = alloc_kmem_cache_cpu(s, cpu, flags);
2152 if (!c) {
2153 free_kmem_cache_cpus(s);
2154 return 0;
2155 }
2156 s->cpu_slab[cpu] = c;
2157 }
2158 return 1;
2159 }
2160
2161 /*
2162 * Initialize the per cpu array.
2163 */
2164 static void init_alloc_cpu_cpu(int cpu)
2165 {
2166 int i;
2167
2168 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2169 return;
2170
2171 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2172 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2173
2174 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2175 }
2176
2177 static void __init init_alloc_cpu(void)
2178 {
2179 int cpu;
2180
2181 for_each_online_cpu(cpu)
2182 init_alloc_cpu_cpu(cpu);
2183 }
2184
2185 #else
2186 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2187 static inline void init_alloc_cpu(void) {}
2188
2189 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2190 {
2191 init_kmem_cache_cpu(s, &s->cpu_slab);
2192 return 1;
2193 }
2194 #endif
2195
2196 #ifdef CONFIG_NUMA
2197 /*
2198 * No kmalloc_node yet so do it by hand. We know that this is the first
2199 * slab on the node for this slabcache. There are no concurrent accesses
2200 * possible.
2201 *
2202 * Note that this function only works on the kmalloc_node_cache
2203 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2204 * memory on a fresh node that has no slab structures yet.
2205 */
2206 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2207 {
2208 struct page *page;
2209 struct kmem_cache_node *n;
2210 unsigned long flags;
2211
2212 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2213
2214 page = new_slab(kmalloc_caches, gfpflags, node);
2215
2216 BUG_ON(!page);
2217 if (page_to_nid(page) != node) {
2218 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2219 "node %d\n", node);
2220 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2221 "in order to be able to continue\n");
2222 }
2223
2224 n = page->freelist;
2225 BUG_ON(!n);
2226 page->freelist = get_freepointer(kmalloc_caches, n);
2227 page->inuse++;
2228 kmalloc_caches->node[node] = n;
2229 #ifdef CONFIG_SLUB_DEBUG
2230 init_object(kmalloc_caches, n, 1);
2231 init_tracking(kmalloc_caches, n);
2232 #endif
2233 init_kmem_cache_node(n, kmalloc_caches);
2234 inc_slabs_node(kmalloc_caches, node, page->objects);
2235
2236 /*
2237 * lockdep requires consistent irq usage for each lock
2238 * so even though there cannot be a race this early in
2239 * the boot sequence, we still disable irqs.
2240 */
2241 local_irq_save(flags);
2242 add_partial(n, page, 0);
2243 local_irq_restore(flags);
2244 }
2245
2246 static void free_kmem_cache_nodes(struct kmem_cache *s)
2247 {
2248 int node;
2249
2250 for_each_node_state(node, N_NORMAL_MEMORY) {
2251 struct kmem_cache_node *n = s->node[node];
2252 if (n && n != &s->local_node)
2253 kmem_cache_free(kmalloc_caches, n);
2254 s->node[node] = NULL;
2255 }
2256 }
2257
2258 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2259 {
2260 int node;
2261 int local_node;
2262
2263 if (slab_state >= UP)
2264 local_node = page_to_nid(virt_to_page(s));
2265 else
2266 local_node = 0;
2267
2268 for_each_node_state(node, N_NORMAL_MEMORY) {
2269 struct kmem_cache_node *n;
2270
2271 if (local_node == node)
2272 n = &s->local_node;
2273 else {
2274 if (slab_state == DOWN) {
2275 early_kmem_cache_node_alloc(gfpflags, node);
2276 continue;
2277 }
2278 n = kmem_cache_alloc_node(kmalloc_caches,
2279 gfpflags, node);
2280
2281 if (!n) {
2282 free_kmem_cache_nodes(s);
2283 return 0;
2284 }
2285
2286 }
2287 s->node[node] = n;
2288 init_kmem_cache_node(n, s);
2289 }
2290 return 1;
2291 }
2292 #else
2293 static void free_kmem_cache_nodes(struct kmem_cache *s)
2294 {
2295 }
2296
2297 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2298 {
2299 init_kmem_cache_node(&s->local_node, s);
2300 return 1;
2301 }
2302 #endif
2303
2304 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2305 {
2306 if (min < MIN_PARTIAL)
2307 min = MIN_PARTIAL;
2308 else if (min > MAX_PARTIAL)
2309 min = MAX_PARTIAL;
2310 s->min_partial = min;
2311 }
2312
2313 /*
2314 * calculate_sizes() determines the order and the distribution of data within
2315 * a slab object.
2316 */
2317 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2318 {
2319 unsigned long flags = s->flags;
2320 unsigned long size = s->objsize;
2321 unsigned long align = s->align;
2322 int order;
2323
2324 /*
2325 * Round up object size to the next word boundary. We can only
2326 * place the free pointer at word boundaries and this determines
2327 * the possible location of the free pointer.
2328 */
2329 size = ALIGN(size, sizeof(void *));
2330
2331 #ifdef CONFIG_SLUB_DEBUG
2332 /*
2333 * Determine if we can poison the object itself. If the user of
2334 * the slab may touch the object after free or before allocation
2335 * then we should never poison the object itself.
2336 */
2337 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2338 !s->ctor)
2339 s->flags |= __OBJECT_POISON;
2340 else
2341 s->flags &= ~__OBJECT_POISON;
2342
2343
2344 /*
2345 * If we are Redzoning then check if there is some space between the
2346 * end of the object and the free pointer. If not then add an
2347 * additional word to have some bytes to store Redzone information.
2348 */
2349 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2350 size += sizeof(void *);
2351 #endif
2352
2353 /*
2354 * With that we have determined the number of bytes in actual use
2355 * by the object. This is the potential offset to the free pointer.
2356 */
2357 s->inuse = size;
2358
2359 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2360 s->ctor)) {
2361 /*
2362 * Relocate free pointer after the object if it is not
2363 * permitted to overwrite the first word of the object on
2364 * kmem_cache_free.
2365 *
2366 * This is the case if we do RCU, have a constructor or
2367 * destructor or are poisoning the objects.
2368 */
2369 s->offset = size;
2370 size += sizeof(void *);
2371 }
2372
2373 #ifdef CONFIG_SLUB_DEBUG
2374 if (flags & SLAB_STORE_USER)
2375 /*
2376 * Need to store information about allocs and frees after
2377 * the object.
2378 */
2379 size += 2 * sizeof(struct track);
2380
2381 if (flags & SLAB_RED_ZONE)
2382 /*
2383 * Add some empty padding so that we can catch
2384 * overwrites from earlier objects rather than let
2385 * tracking information or the free pointer be
2386 * corrupted if a user writes before the start
2387 * of the object.
2388 */
2389 size += sizeof(void *);
2390 #endif
2391
2392 /*
2393 * Determine the alignment based on various parameters that the
2394 * user specified and the dynamic determination of cache line size
2395 * on bootup.
2396 */
2397 align = calculate_alignment(flags, align, s->objsize);
2398
2399 /*
2400 * SLUB stores one object immediately after another beginning from
2401 * offset 0. In order to align the objects we have to simply size
2402 * each object to conform to the alignment.
2403 */
2404 size = ALIGN(size, align);
2405 s->size = size;
2406 if (forced_order >= 0)
2407 order = forced_order;
2408 else
2409 order = calculate_order(size);
2410
2411 if (order < 0)
2412 return 0;
2413
2414 s->allocflags = 0;
2415 if (order)
2416 s->allocflags |= __GFP_COMP;
2417
2418 if (s->flags & SLAB_CACHE_DMA)
2419 s->allocflags |= SLUB_DMA;
2420
2421 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2422 s->allocflags |= __GFP_RECLAIMABLE;
2423
2424 /*
2425 * Determine the number of objects per slab
2426 */
2427 s->oo = oo_make(order, size);
2428 s->min = oo_make(get_order(size), size);
2429 if (oo_objects(s->oo) > oo_objects(s->max))
2430 s->max = s->oo;
2431
2432 return !!oo_objects(s->oo);
2433
2434 }
2435
2436 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2437 const char *name, size_t size,
2438 size_t align, unsigned long flags,
2439 void (*ctor)(void *))
2440 {
2441 memset(s, 0, kmem_size);
2442 s->name = name;
2443 s->ctor = ctor;
2444 s->objsize = size;
2445 s->align = align;
2446 s->flags = kmem_cache_flags(size, flags, name, ctor);
2447
2448 if (!calculate_sizes(s, -1))
2449 goto error;
2450
2451 /*
2452 * The larger the object size is, the more pages we want on the partial
2453 * list to avoid pounding the page allocator excessively.
2454 */
2455 set_min_partial(s, ilog2(s->size));
2456 s->refcount = 1;
2457 #ifdef CONFIG_NUMA
2458 s->remote_node_defrag_ratio = 1000;
2459 #endif
2460 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2461 goto error;
2462
2463 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2464 return 1;
2465 free_kmem_cache_nodes(s);
2466 error:
2467 if (flags & SLAB_PANIC)
2468 panic("Cannot create slab %s size=%lu realsize=%u "
2469 "order=%u offset=%u flags=%lx\n",
2470 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2471 s->offset, flags);
2472 return 0;
2473 }
2474
2475 /*
2476 * Check if a given pointer is valid
2477 */
2478 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2479 {
2480 struct page *page;
2481
2482 page = get_object_page(object);
2483
2484 if (!page || s != page->slab)
2485 /* No slab or wrong slab */
2486 return 0;
2487
2488 if (!check_valid_pointer(s, page, object))
2489 return 0;
2490
2491 /*
2492 * We could also check if the object is on the slabs freelist.
2493 * But this would be too expensive and it seems that the main
2494 * purpose of kmem_ptr_valid() is to check if the object belongs
2495 * to a certain slab.
2496 */
2497 return 1;
2498 }
2499 EXPORT_SYMBOL(kmem_ptr_validate);
2500
2501 /*
2502 * Determine the size of a slab object
2503 */
2504 unsigned int kmem_cache_size(struct kmem_cache *s)
2505 {
2506 return s->objsize;
2507 }
2508 EXPORT_SYMBOL(kmem_cache_size);
2509
2510 const char *kmem_cache_name(struct kmem_cache *s)
2511 {
2512 return s->name;
2513 }
2514 EXPORT_SYMBOL(kmem_cache_name);
2515
2516 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2517 const char *text)
2518 {
2519 #ifdef CONFIG_SLUB_DEBUG
2520 void *addr = page_address(page);
2521 void *p;
2522 DECLARE_BITMAP(map, page->objects);
2523
2524 bitmap_zero(map, page->objects);
2525 slab_err(s, page, "%s", text);
2526 slab_lock(page);
2527 for_each_free_object(p, s, page->freelist)
2528 set_bit(slab_index(p, s, addr), map);
2529
2530 for_each_object(p, s, addr, page->objects) {
2531
2532 if (!test_bit(slab_index(p, s, addr), map)) {
2533 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2534 p, p - addr);
2535 print_tracking(s, p);
2536 }
2537 }
2538 slab_unlock(page);
2539 #endif
2540 }
2541
2542 /*
2543 * Attempt to free all partial slabs on a node.
2544 */
2545 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2546 {
2547 unsigned long flags;
2548 struct page *page, *h;
2549
2550 spin_lock_irqsave(&n->list_lock, flags);
2551 list_for_each_entry_safe(page, h, &n->partial, lru) {
2552 if (!page->inuse) {
2553 list_del(&page->lru);
2554 discard_slab(s, page);
2555 n->nr_partial--;
2556 } else {
2557 list_slab_objects(s, page,
2558 "Objects remaining on kmem_cache_close()");
2559 }
2560 }
2561 spin_unlock_irqrestore(&n->list_lock, flags);
2562 }
2563
2564 /*
2565 * Release all resources used by a slab cache.
2566 */
2567 static inline int kmem_cache_close(struct kmem_cache *s)
2568 {
2569 int node;
2570
2571 flush_all(s);
2572
2573 /* Attempt to free all objects */
2574 free_kmem_cache_cpus(s);
2575 for_each_node_state(node, N_NORMAL_MEMORY) {
2576 struct kmem_cache_node *n = get_node(s, node);
2577
2578 free_partial(s, n);
2579 if (n->nr_partial || slabs_node(s, node))
2580 return 1;
2581 }
2582 free_kmem_cache_nodes(s);
2583 return 0;
2584 }
2585
2586 /*
2587 * Close a cache and release the kmem_cache structure
2588 * (must be used for caches created using kmem_cache_create)
2589 */
2590 void kmem_cache_destroy(struct kmem_cache *s)
2591 {
2592 down_write(&slub_lock);
2593 s->refcount--;
2594 if (!s->refcount) {
2595 list_del(&s->list);
2596 up_write(&slub_lock);
2597 if (kmem_cache_close(s)) {
2598 printk(KERN_ERR "SLUB %s: %s called for cache that "
2599 "still has objects.\n", s->name, __func__);
2600 dump_stack();
2601 }
2602 sysfs_slab_remove(s);
2603 } else
2604 up_write(&slub_lock);
2605 }
2606 EXPORT_SYMBOL(kmem_cache_destroy);
2607
2608 /********************************************************************
2609 * Kmalloc subsystem
2610 *******************************************************************/
2611
2612 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2613 EXPORT_SYMBOL(kmalloc_caches);
2614
2615 static int __init setup_slub_min_order(char *str)
2616 {
2617 get_option(&str, &slub_min_order);
2618
2619 return 1;
2620 }
2621
2622 __setup("slub_min_order=", setup_slub_min_order);
2623
2624 static int __init setup_slub_max_order(char *str)
2625 {
2626 get_option(&str, &slub_max_order);
2627 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2628
2629 return 1;
2630 }
2631
2632 __setup("slub_max_order=", setup_slub_max_order);
2633
2634 static int __init setup_slub_min_objects(char *str)
2635 {
2636 get_option(&str, &slub_min_objects);
2637
2638 return 1;
2639 }
2640
2641 __setup("slub_min_objects=", setup_slub_min_objects);
2642
2643 static int __init setup_slub_nomerge(char *str)
2644 {
2645 slub_nomerge = 1;
2646 return 1;
2647 }
2648
2649 __setup("slub_nomerge", setup_slub_nomerge);
2650
2651 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2652 const char *name, int size, gfp_t gfp_flags)
2653 {
2654 unsigned int flags = 0;
2655
2656 if (gfp_flags & SLUB_DMA)
2657 flags = SLAB_CACHE_DMA;
2658
2659 /*
2660 * This function is called with IRQs disabled during early-boot on
2661 * single CPU so there's no need to take slub_lock here.
2662 */
2663 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2664 flags, NULL))
2665 goto panic;
2666
2667 list_add(&s->list, &slab_caches);
2668
2669 if (sysfs_slab_add(s))
2670 goto panic;
2671 return s;
2672
2673 panic:
2674 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2675 }
2676
2677 #ifdef CONFIG_ZONE_DMA
2678 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2679
2680 static void sysfs_add_func(struct work_struct *w)
2681 {
2682 struct kmem_cache *s;
2683
2684 down_write(&slub_lock);
2685 list_for_each_entry(s, &slab_caches, list) {
2686 if (s->flags & __SYSFS_ADD_DEFERRED) {
2687 s->flags &= ~__SYSFS_ADD_DEFERRED;
2688 sysfs_slab_add(s);
2689 }
2690 }
2691 up_write(&slub_lock);
2692 }
2693
2694 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2695
2696 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2697 {
2698 struct kmem_cache *s;
2699 char *text;
2700 size_t realsize;
2701 unsigned long slabflags;
2702
2703 s = kmalloc_caches_dma[index];
2704 if (s)
2705 return s;
2706
2707 /* Dynamically create dma cache */
2708 if (flags & __GFP_WAIT)
2709 down_write(&slub_lock);
2710 else {
2711 if (!down_write_trylock(&slub_lock))
2712 goto out;
2713 }
2714
2715 if (kmalloc_caches_dma[index])
2716 goto unlock_out;
2717
2718 realsize = kmalloc_caches[index].objsize;
2719 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2720 (unsigned int)realsize);
2721 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2722
2723 /*
2724 * Must defer sysfs creation to a workqueue because we don't know
2725 * what context we are called from. Before sysfs comes up, we don't
2726 * need to do anything because our sysfs initcall will start by
2727 * adding all existing slabs to sysfs.
2728 */
2729 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2730 if (slab_state >= SYSFS)
2731 slabflags |= __SYSFS_ADD_DEFERRED;
2732
2733 if (!s || !text || !kmem_cache_open(s, flags, text,
2734 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2735 kfree(s);
2736 kfree(text);
2737 goto unlock_out;
2738 }
2739
2740 list_add(&s->list, &slab_caches);
2741 kmalloc_caches_dma[index] = s;
2742
2743 if (slab_state >= SYSFS)
2744 schedule_work(&sysfs_add_work);
2745
2746 unlock_out:
2747 up_write(&slub_lock);
2748 out:
2749 return kmalloc_caches_dma[index];
2750 }
2751 #endif
2752
2753 /*
2754 * Conversion table for small slabs sizes / 8 to the index in the
2755 * kmalloc array. This is necessary for slabs < 192 since we have non power
2756 * of two cache sizes there. The size of larger slabs can be determined using
2757 * fls.
2758 */
2759 static s8 size_index[24] = {
2760 3, /* 8 */
2761 4, /* 16 */
2762 5, /* 24 */
2763 5, /* 32 */
2764 6, /* 40 */
2765 6, /* 48 */
2766 6, /* 56 */
2767 6, /* 64 */
2768 1, /* 72 */
2769 1, /* 80 */
2770 1, /* 88 */
2771 1, /* 96 */
2772 7, /* 104 */
2773 7, /* 112 */
2774 7, /* 120 */
2775 7, /* 128 */
2776 2, /* 136 */
2777 2, /* 144 */
2778 2, /* 152 */
2779 2, /* 160 */
2780 2, /* 168 */
2781 2, /* 176 */
2782 2, /* 184 */
2783 2 /* 192 */
2784 };
2785
2786 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2787 {
2788 int index;
2789
2790 if (size <= 192) {
2791 if (!size)
2792 return ZERO_SIZE_PTR;
2793
2794 index = size_index[(size - 1) / 8];
2795 } else
2796 index = fls(size - 1);
2797
2798 #ifdef CONFIG_ZONE_DMA
2799 if (unlikely((flags & SLUB_DMA)))
2800 return dma_kmalloc_cache(index, flags);
2801
2802 #endif
2803 return &kmalloc_caches[index];
2804 }
2805
2806 void *__kmalloc(size_t size, gfp_t flags)
2807 {
2808 struct kmem_cache *s;
2809 void *ret;
2810
2811 if (unlikely(size > SLUB_MAX_SIZE))
2812 return kmalloc_large(size, flags);
2813
2814 s = get_slab(size, flags);
2815
2816 if (unlikely(ZERO_OR_NULL_PTR(s)))
2817 return s;
2818
2819 ret = slab_alloc(s, flags, -1, _RET_IP_);
2820
2821 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2822
2823 return ret;
2824 }
2825 EXPORT_SYMBOL(__kmalloc);
2826
2827 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2828 {
2829 struct page *page;
2830
2831 flags |= __GFP_COMP | __GFP_NOTRACK;
2832 page = alloc_pages_node(node, flags, get_order(size));
2833 if (page)
2834 return page_address(page);
2835 else
2836 return NULL;
2837 }
2838
2839 #ifdef CONFIG_NUMA
2840 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2841 {
2842 struct kmem_cache *s;
2843 void *ret;
2844
2845 if (unlikely(size > SLUB_MAX_SIZE)) {
2846 ret = kmalloc_large_node(size, flags, node);
2847
2848 trace_kmalloc_node(_RET_IP_, ret,
2849 size, PAGE_SIZE << get_order(size),
2850 flags, node);
2851
2852 return ret;
2853 }
2854
2855 s = get_slab(size, flags);
2856
2857 if (unlikely(ZERO_OR_NULL_PTR(s)))
2858 return s;
2859
2860 ret = slab_alloc(s, flags, node, _RET_IP_);
2861
2862 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2863
2864 return ret;
2865 }
2866 EXPORT_SYMBOL(__kmalloc_node);
2867 #endif
2868
2869 size_t ksize(const void *object)
2870 {
2871 struct page *page;
2872 struct kmem_cache *s;
2873
2874 if (unlikely(object == ZERO_SIZE_PTR))
2875 return 0;
2876
2877 page = virt_to_head_page(object);
2878
2879 if (unlikely(!PageSlab(page))) {
2880 WARN_ON(!PageCompound(page));
2881 return PAGE_SIZE << compound_order(page);
2882 }
2883 s = page->slab;
2884
2885 #ifdef CONFIG_SLUB_DEBUG
2886 /*
2887 * Debugging requires use of the padding between object
2888 * and whatever may come after it.
2889 */
2890 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2891 return s->objsize;
2892
2893 #endif
2894 /*
2895 * If we have the need to store the freelist pointer
2896 * back there or track user information then we can
2897 * only use the space before that information.
2898 */
2899 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2900 return s->inuse;
2901 /*
2902 * Else we can use all the padding etc for the allocation
2903 */
2904 return s->size;
2905 }
2906 EXPORT_SYMBOL(ksize);
2907
2908 void kfree(const void *x)
2909 {
2910 struct page *page;
2911 void *object = (void *)x;
2912
2913 trace_kfree(_RET_IP_, x);
2914
2915 if (unlikely(ZERO_OR_NULL_PTR(x)))
2916 return;
2917
2918 page = virt_to_head_page(x);
2919 if (unlikely(!PageSlab(page))) {
2920 BUG_ON(!PageCompound(page));
2921 put_page(page);
2922 return;
2923 }
2924 slab_free(page->slab, page, object, _RET_IP_);
2925 }
2926 EXPORT_SYMBOL(kfree);
2927
2928 /*
2929 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2930 * the remaining slabs by the number of items in use. The slabs with the
2931 * most items in use come first. New allocations will then fill those up
2932 * and thus they can be removed from the partial lists.
2933 *
2934 * The slabs with the least items are placed last. This results in them
2935 * being allocated from last increasing the chance that the last objects
2936 * are freed in them.
2937 */
2938 int kmem_cache_shrink(struct kmem_cache *s)
2939 {
2940 int node;
2941 int i;
2942 struct kmem_cache_node *n;
2943 struct page *page;
2944 struct page *t;
2945 int objects = oo_objects(s->max);
2946 struct list_head *slabs_by_inuse =
2947 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2948 unsigned long flags;
2949
2950 if (!slabs_by_inuse)
2951 return -ENOMEM;
2952
2953 flush_all(s);
2954 for_each_node_state(node, N_NORMAL_MEMORY) {
2955 n = get_node(s, node);
2956
2957 if (!n->nr_partial)
2958 continue;
2959
2960 for (i = 0; i < objects; i++)
2961 INIT_LIST_HEAD(slabs_by_inuse + i);
2962
2963 spin_lock_irqsave(&n->list_lock, flags);
2964
2965 /*
2966 * Build lists indexed by the items in use in each slab.
2967 *
2968 * Note that concurrent frees may occur while we hold the
2969 * list_lock. page->inuse here is the upper limit.
2970 */
2971 list_for_each_entry_safe(page, t, &n->partial, lru) {
2972 if (!page->inuse && slab_trylock(page)) {
2973 /*
2974 * Must hold slab lock here because slab_free
2975 * may have freed the last object and be
2976 * waiting to release the slab.
2977 */
2978 list_del(&page->lru);
2979 n->nr_partial--;
2980 slab_unlock(page);
2981 discard_slab(s, page);
2982 } else {
2983 list_move(&page->lru,
2984 slabs_by_inuse + page->inuse);
2985 }
2986 }
2987
2988 /*
2989 * Rebuild the partial list with the slabs filled up most
2990 * first and the least used slabs at the end.
2991 */
2992 for (i = objects - 1; i >= 0; i--)
2993 list_splice(slabs_by_inuse + i, n->partial.prev);
2994
2995 spin_unlock_irqrestore(&n->list_lock, flags);
2996 }
2997
2998 kfree(slabs_by_inuse);
2999 return 0;
3000 }
3001 EXPORT_SYMBOL(kmem_cache_shrink);
3002
3003 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3004 static int slab_mem_going_offline_callback(void *arg)
3005 {
3006 struct kmem_cache *s;
3007
3008 down_read(&slub_lock);
3009 list_for_each_entry(s, &slab_caches, list)
3010 kmem_cache_shrink(s);
3011 up_read(&slub_lock);
3012
3013 return 0;
3014 }
3015
3016 static void slab_mem_offline_callback(void *arg)
3017 {
3018 struct kmem_cache_node *n;
3019 struct kmem_cache *s;
3020 struct memory_notify *marg = arg;
3021 int offline_node;
3022
3023 offline_node = marg->status_change_nid;
3024
3025 /*
3026 * If the node still has available memory. we need kmem_cache_node
3027 * for it yet.
3028 */
3029 if (offline_node < 0)
3030 return;
3031
3032 down_read(&slub_lock);
3033 list_for_each_entry(s, &slab_caches, list) {
3034 n = get_node(s, offline_node);
3035 if (n) {
3036 /*
3037 * if n->nr_slabs > 0, slabs still exist on the node
3038 * that is going down. We were unable to free them,
3039 * and offline_pages() function shoudn't call this
3040 * callback. So, we must fail.
3041 */
3042 BUG_ON(slabs_node(s, offline_node));
3043
3044 s->node[offline_node] = NULL;
3045 kmem_cache_free(kmalloc_caches, n);
3046 }
3047 }
3048 up_read(&slub_lock);
3049 }
3050
3051 static int slab_mem_going_online_callback(void *arg)
3052 {
3053 struct kmem_cache_node *n;
3054 struct kmem_cache *s;
3055 struct memory_notify *marg = arg;
3056 int nid = marg->status_change_nid;
3057 int ret = 0;
3058
3059 /*
3060 * If the node's memory is already available, then kmem_cache_node is
3061 * already created. Nothing to do.
3062 */
3063 if (nid < 0)
3064 return 0;
3065
3066 /*
3067 * We are bringing a node online. No memory is available yet. We must
3068 * allocate a kmem_cache_node structure in order to bring the node
3069 * online.
3070 */
3071 down_read(&slub_lock);
3072 list_for_each_entry(s, &slab_caches, list) {
3073 /*
3074 * XXX: kmem_cache_alloc_node will fallback to other nodes
3075 * since memory is not yet available from the node that
3076 * is brought up.
3077 */
3078 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3079 if (!n) {
3080 ret = -ENOMEM;
3081 goto out;
3082 }
3083 init_kmem_cache_node(n, s);
3084 s->node[nid] = n;
3085 }
3086 out:
3087 up_read(&slub_lock);
3088 return ret;
3089 }
3090
3091 static int slab_memory_callback(struct notifier_block *self,
3092 unsigned long action, void *arg)
3093 {
3094 int ret = 0;
3095
3096 switch (action) {
3097 case MEM_GOING_ONLINE:
3098 ret = slab_mem_going_online_callback(arg);
3099 break;
3100 case MEM_GOING_OFFLINE:
3101 ret = slab_mem_going_offline_callback(arg);
3102 break;
3103 case MEM_OFFLINE:
3104 case MEM_CANCEL_ONLINE:
3105 slab_mem_offline_callback(arg);
3106 break;
3107 case MEM_ONLINE:
3108 case MEM_CANCEL_OFFLINE:
3109 break;
3110 }
3111 if (ret)
3112 ret = notifier_from_errno(ret);
3113 else
3114 ret = NOTIFY_OK;
3115 return ret;
3116 }
3117
3118 #endif /* CONFIG_MEMORY_HOTPLUG */
3119
3120 /********************************************************************
3121 * Basic setup of slabs
3122 *******************************************************************/
3123
3124 void __init kmem_cache_init(void)
3125 {
3126 int i;
3127 int caches = 0;
3128
3129 init_alloc_cpu();
3130
3131 #ifdef CONFIG_NUMA
3132 /*
3133 * Must first have the slab cache available for the allocations of the
3134 * struct kmem_cache_node's. There is special bootstrap code in
3135 * kmem_cache_open for slab_state == DOWN.
3136 */
3137 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3138 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3139 kmalloc_caches[0].refcount = -1;
3140 caches++;
3141
3142 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3143 #endif
3144
3145 /* Able to allocate the per node structures */
3146 slab_state = PARTIAL;
3147
3148 /* Caches that are not of the two-to-the-power-of size */
3149 if (KMALLOC_MIN_SIZE <= 64) {
3150 create_kmalloc_cache(&kmalloc_caches[1],
3151 "kmalloc-96", 96, GFP_NOWAIT);
3152 caches++;
3153 create_kmalloc_cache(&kmalloc_caches[2],
3154 "kmalloc-192", 192, GFP_NOWAIT);
3155 caches++;
3156 }
3157
3158 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3159 create_kmalloc_cache(&kmalloc_caches[i],
3160 "kmalloc", 1 << i, GFP_NOWAIT);
3161 caches++;
3162 }
3163
3164
3165 /*
3166 * Patch up the size_index table if we have strange large alignment
3167 * requirements for the kmalloc array. This is only the case for
3168 * MIPS it seems. The standard arches will not generate any code here.
3169 *
3170 * Largest permitted alignment is 256 bytes due to the way we
3171 * handle the index determination for the smaller caches.
3172 *
3173 * Make sure that nothing crazy happens if someone starts tinkering
3174 * around with ARCH_KMALLOC_MINALIGN
3175 */
3176 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3177 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3178
3179 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3180 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3181
3182 if (KMALLOC_MIN_SIZE == 128) {
3183 /*
3184 * The 192 byte sized cache is not used if the alignment
3185 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3186 * instead.
3187 */
3188 for (i = 128 + 8; i <= 192; i += 8)
3189 size_index[(i - 1) / 8] = 8;
3190 }
3191
3192 slab_state = UP;
3193
3194 /* Provide the correct kmalloc names now that the caches are up */
3195 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3196 kmalloc_caches[i]. name =
3197 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3198
3199 #ifdef CONFIG_SMP
3200 register_cpu_notifier(&slab_notifier);
3201 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3202 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3203 #else
3204 kmem_size = sizeof(struct kmem_cache);
3205 #endif
3206
3207 printk(KERN_INFO
3208 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3209 " CPUs=%d, Nodes=%d\n",
3210 caches, cache_line_size(),
3211 slub_min_order, slub_max_order, slub_min_objects,
3212 nr_cpu_ids, nr_node_ids);
3213 }
3214
3215 void __init kmem_cache_init_late(void)
3216 {
3217 }
3218
3219 /*
3220 * Find a mergeable slab cache
3221 */
3222 static int slab_unmergeable(struct kmem_cache *s)
3223 {
3224 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3225 return 1;
3226
3227 if (s->ctor)
3228 return 1;
3229
3230 /*
3231 * We may have set a slab to be unmergeable during bootstrap.
3232 */
3233 if (s->refcount < 0)
3234 return 1;
3235
3236 return 0;
3237 }
3238
3239 static struct kmem_cache *find_mergeable(size_t size,
3240 size_t align, unsigned long flags, const char *name,
3241 void (*ctor)(void *))
3242 {
3243 struct kmem_cache *s;
3244
3245 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3246 return NULL;
3247
3248 if (ctor)
3249 return NULL;
3250
3251 size = ALIGN(size, sizeof(void *));
3252 align = calculate_alignment(flags, align, size);
3253 size = ALIGN(size, align);
3254 flags = kmem_cache_flags(size, flags, name, NULL);
3255
3256 list_for_each_entry(s, &slab_caches, list) {
3257 if (slab_unmergeable(s))
3258 continue;
3259
3260 if (size > s->size)
3261 continue;
3262
3263 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3264 continue;
3265 /*
3266 * Check if alignment is compatible.
3267 * Courtesy of Adrian Drzewiecki
3268 */
3269 if ((s->size & ~(align - 1)) != s->size)
3270 continue;
3271
3272 if (s->size - size >= sizeof(void *))
3273 continue;
3274
3275 return s;
3276 }
3277 return NULL;
3278 }
3279
3280 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3281 size_t align, unsigned long flags, void (*ctor)(void *))
3282 {
3283 struct kmem_cache *s;
3284
3285 down_write(&slub_lock);
3286 s = find_mergeable(size, align, flags, name, ctor);
3287 if (s) {
3288 int cpu;
3289
3290 s->refcount++;
3291 /*
3292 * Adjust the object sizes so that we clear
3293 * the complete object on kzalloc.
3294 */
3295 s->objsize = max(s->objsize, (int)size);
3296
3297 /*
3298 * And then we need to update the object size in the
3299 * per cpu structures
3300 */
3301 for_each_online_cpu(cpu)
3302 get_cpu_slab(s, cpu)->objsize = s->objsize;
3303
3304 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3305 up_write(&slub_lock);
3306
3307 if (sysfs_slab_alias(s, name)) {
3308 down_write(&slub_lock);
3309 s->refcount--;
3310 up_write(&slub_lock);
3311 goto err;
3312 }
3313 return s;
3314 }
3315
3316 s = kmalloc(kmem_size, GFP_KERNEL);
3317 if (s) {
3318 if (kmem_cache_open(s, GFP_KERNEL, name,
3319 size, align, flags, ctor)) {
3320 list_add(&s->list, &slab_caches);
3321 up_write(&slub_lock);
3322 if (sysfs_slab_add(s)) {
3323 down_write(&slub_lock);
3324 list_del(&s->list);
3325 up_write(&slub_lock);
3326 kfree(s);
3327 goto err;
3328 }
3329 return s;
3330 }
3331 kfree(s);
3332 }
3333 up_write(&slub_lock);
3334
3335 err:
3336 if (flags & SLAB_PANIC)
3337 panic("Cannot create slabcache %s\n", name);
3338 else
3339 s = NULL;
3340 return s;
3341 }
3342 EXPORT_SYMBOL(kmem_cache_create);
3343
3344 #ifdef CONFIG_SMP
3345 /*
3346 * Use the cpu notifier to insure that the cpu slabs are flushed when
3347 * necessary.
3348 */
3349 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3350 unsigned long action, void *hcpu)
3351 {
3352 long cpu = (long)hcpu;
3353 struct kmem_cache *s;
3354 unsigned long flags;
3355
3356 switch (action) {
3357 case CPU_UP_PREPARE:
3358 case CPU_UP_PREPARE_FROZEN:
3359 init_alloc_cpu_cpu(cpu);
3360 down_read(&slub_lock);
3361 list_for_each_entry(s, &slab_caches, list)
3362 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3363 GFP_KERNEL);
3364 up_read(&slub_lock);
3365 break;
3366
3367 case CPU_UP_CANCELED:
3368 case CPU_UP_CANCELED_FROZEN:
3369 case CPU_DEAD:
3370 case CPU_DEAD_FROZEN:
3371 down_read(&slub_lock);
3372 list_for_each_entry(s, &slab_caches, list) {
3373 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3374
3375 local_irq_save(flags);
3376 __flush_cpu_slab(s, cpu);
3377 local_irq_restore(flags);
3378 free_kmem_cache_cpu(c, cpu);
3379 s->cpu_slab[cpu] = NULL;
3380 }
3381 up_read(&slub_lock);
3382 break;
3383 default:
3384 break;
3385 }
3386 return NOTIFY_OK;
3387 }
3388
3389 static struct notifier_block __cpuinitdata slab_notifier = {
3390 .notifier_call = slab_cpuup_callback
3391 };
3392
3393 #endif
3394
3395 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3396 {
3397 struct kmem_cache *s;
3398 void *ret;
3399
3400 if (unlikely(size > SLUB_MAX_SIZE))
3401 return kmalloc_large(size, gfpflags);
3402
3403 s = get_slab(size, gfpflags);
3404
3405 if (unlikely(ZERO_OR_NULL_PTR(s)))
3406 return s;
3407
3408 ret = slab_alloc(s, gfpflags, -1, caller);
3409
3410 /* Honor the call site pointer we recieved. */
3411 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3412
3413 return ret;
3414 }
3415
3416 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3417 int node, unsigned long caller)
3418 {
3419 struct kmem_cache *s;
3420 void *ret;
3421
3422 if (unlikely(size > SLUB_MAX_SIZE))
3423 return kmalloc_large_node(size, gfpflags, node);
3424
3425 s = get_slab(size, gfpflags);
3426
3427 if (unlikely(ZERO_OR_NULL_PTR(s)))
3428 return s;
3429
3430 ret = slab_alloc(s, gfpflags, node, caller);
3431
3432 /* Honor the call site pointer we recieved. */
3433 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3434
3435 return ret;
3436 }
3437
3438 #ifdef CONFIG_SLUB_DEBUG
3439 static int count_inuse(struct page *page)
3440 {
3441 return page->inuse;
3442 }
3443
3444 static int count_total(struct page *page)
3445 {
3446 return page->objects;
3447 }
3448
3449 static int validate_slab(struct kmem_cache *s, struct page *page,
3450 unsigned long *map)
3451 {
3452 void *p;
3453 void *addr = page_address(page);
3454
3455 if (!check_slab(s, page) ||
3456 !on_freelist(s, page, NULL))
3457 return 0;
3458
3459 /* Now we know that a valid freelist exists */
3460 bitmap_zero(map, page->objects);
3461
3462 for_each_free_object(p, s, page->freelist) {
3463 set_bit(slab_index(p, s, addr), map);
3464 if (!check_object(s, page, p, 0))
3465 return 0;
3466 }
3467
3468 for_each_object(p, s, addr, page->objects)
3469 if (!test_bit(slab_index(p, s, addr), map))
3470 if (!check_object(s, page, p, 1))
3471 return 0;
3472 return 1;
3473 }
3474
3475 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3476 unsigned long *map)
3477 {
3478 if (slab_trylock(page)) {
3479 validate_slab(s, page, map);
3480 slab_unlock(page);
3481 } else
3482 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3483 s->name, page);
3484
3485 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3486 if (!PageSlubDebug(page))
3487 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3488 "on slab 0x%p\n", s->name, page);
3489 } else {
3490 if (PageSlubDebug(page))
3491 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3492 "slab 0x%p\n", s->name, page);
3493 }
3494 }
3495
3496 static int validate_slab_node(struct kmem_cache *s,
3497 struct kmem_cache_node *n, unsigned long *map)
3498 {
3499 unsigned long count = 0;
3500 struct page *page;
3501 unsigned long flags;
3502
3503 spin_lock_irqsave(&n->list_lock, flags);
3504
3505 list_for_each_entry(page, &n->partial, lru) {
3506 validate_slab_slab(s, page, map);
3507 count++;
3508 }
3509 if (count != n->nr_partial)
3510 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3511 "counter=%ld\n", s->name, count, n->nr_partial);
3512
3513 if (!(s->flags & SLAB_STORE_USER))
3514 goto out;
3515
3516 list_for_each_entry(page, &n->full, lru) {
3517 validate_slab_slab(s, page, map);
3518 count++;
3519 }
3520 if (count != atomic_long_read(&n->nr_slabs))
3521 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3522 "counter=%ld\n", s->name, count,
3523 atomic_long_read(&n->nr_slabs));
3524
3525 out:
3526 spin_unlock_irqrestore(&n->list_lock, flags);
3527 return count;
3528 }
3529
3530 static long validate_slab_cache(struct kmem_cache *s)
3531 {
3532 int node;
3533 unsigned long count = 0;
3534 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3535 sizeof(unsigned long), GFP_KERNEL);
3536
3537 if (!map)
3538 return -ENOMEM;
3539
3540 flush_all(s);
3541 for_each_node_state(node, N_NORMAL_MEMORY) {
3542 struct kmem_cache_node *n = get_node(s, node);
3543
3544 count += validate_slab_node(s, n, map);
3545 }
3546 kfree(map);
3547 return count;
3548 }
3549
3550 #ifdef SLUB_RESILIENCY_TEST
3551 static void resiliency_test(void)
3552 {
3553 u8 *p;
3554
3555 printk(KERN_ERR "SLUB resiliency testing\n");
3556 printk(KERN_ERR "-----------------------\n");
3557 printk(KERN_ERR "A. Corruption after allocation\n");
3558
3559 p = kzalloc(16, GFP_KERNEL);
3560 p[16] = 0x12;
3561 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3562 " 0x12->0x%p\n\n", p + 16);
3563
3564 validate_slab_cache(kmalloc_caches + 4);
3565
3566 /* Hmmm... The next two are dangerous */
3567 p = kzalloc(32, GFP_KERNEL);
3568 p[32 + sizeof(void *)] = 0x34;
3569 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3570 " 0x34 -> -0x%p\n", p);
3571 printk(KERN_ERR
3572 "If allocated object is overwritten then not detectable\n\n");
3573
3574 validate_slab_cache(kmalloc_caches + 5);
3575 p = kzalloc(64, GFP_KERNEL);
3576 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3577 *p = 0x56;
3578 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3579 p);
3580 printk(KERN_ERR
3581 "If allocated object is overwritten then not detectable\n\n");
3582 validate_slab_cache(kmalloc_caches + 6);
3583
3584 printk(KERN_ERR "\nB. Corruption after free\n");
3585 p = kzalloc(128, GFP_KERNEL);
3586 kfree(p);
3587 *p = 0x78;
3588 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3589 validate_slab_cache(kmalloc_caches + 7);
3590
3591 p = kzalloc(256, GFP_KERNEL);
3592 kfree(p);
3593 p[50] = 0x9a;
3594 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3595 p);
3596 validate_slab_cache(kmalloc_caches + 8);
3597
3598 p = kzalloc(512, GFP_KERNEL);
3599 kfree(p);
3600 p[512] = 0xab;
3601 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3602 validate_slab_cache(kmalloc_caches + 9);
3603 }
3604 #else
3605 static void resiliency_test(void) {};
3606 #endif
3607
3608 /*
3609 * Generate lists of code addresses where slabcache objects are allocated
3610 * and freed.
3611 */
3612
3613 struct location {
3614 unsigned long count;
3615 unsigned long addr;
3616 long long sum_time;
3617 long min_time;
3618 long max_time;
3619 long min_pid;
3620 long max_pid;
3621 DECLARE_BITMAP(cpus, NR_CPUS);
3622 nodemask_t nodes;
3623 };
3624
3625 struct loc_track {
3626 unsigned long max;
3627 unsigned long count;
3628 struct location *loc;
3629 };
3630
3631 static void free_loc_track(struct loc_track *t)
3632 {
3633 if (t->max)
3634 free_pages((unsigned long)t->loc,
3635 get_order(sizeof(struct location) * t->max));
3636 }
3637
3638 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3639 {
3640 struct location *l;
3641 int order;
3642
3643 order = get_order(sizeof(struct location) * max);
3644
3645 l = (void *)__get_free_pages(flags, order);
3646 if (!l)
3647 return 0;
3648
3649 if (t->count) {
3650 memcpy(l, t->loc, sizeof(struct location) * t->count);
3651 free_loc_track(t);
3652 }
3653 t->max = max;
3654 t->loc = l;
3655 return 1;
3656 }
3657
3658 static int add_location(struct loc_track *t, struct kmem_cache *s,
3659 const struct track *track)
3660 {
3661 long start, end, pos;
3662 struct location *l;
3663 unsigned long caddr;
3664 unsigned long age = jiffies - track->when;
3665
3666 start = -1;
3667 end = t->count;
3668
3669 for ( ; ; ) {
3670 pos = start + (end - start + 1) / 2;
3671
3672 /*
3673 * There is nothing at "end". If we end up there
3674 * we need to add something to before end.
3675 */
3676 if (pos == end)
3677 break;
3678
3679 caddr = t->loc[pos].addr;
3680 if (track->addr == caddr) {
3681
3682 l = &t->loc[pos];
3683 l->count++;
3684 if (track->when) {
3685 l->sum_time += age;
3686 if (age < l->min_time)
3687 l->min_time = age;
3688 if (age > l->max_time)
3689 l->max_time = age;
3690
3691 if (track->pid < l->min_pid)
3692 l->min_pid = track->pid;
3693 if (track->pid > l->max_pid)
3694 l->max_pid = track->pid;
3695
3696 cpumask_set_cpu(track->cpu,
3697 to_cpumask(l->cpus));
3698 }
3699 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3700 return 1;
3701 }
3702
3703 if (track->addr < caddr)
3704 end = pos;
3705 else
3706 start = pos;
3707 }
3708
3709 /*
3710 * Not found. Insert new tracking element.
3711 */
3712 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3713 return 0;
3714
3715 l = t->loc + pos;
3716 if (pos < t->count)
3717 memmove(l + 1, l,
3718 (t->count - pos) * sizeof(struct location));
3719 t->count++;
3720 l->count = 1;
3721 l->addr = track->addr;
3722 l->sum_time = age;
3723 l->min_time = age;
3724 l->max_time = age;
3725 l->min_pid = track->pid;
3726 l->max_pid = track->pid;
3727 cpumask_clear(to_cpumask(l->cpus));
3728 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3729 nodes_clear(l->nodes);
3730 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3731 return 1;
3732 }
3733
3734 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3735 struct page *page, enum track_item alloc)
3736 {
3737 void *addr = page_address(page);
3738 DECLARE_BITMAP(map, page->objects);
3739 void *p;
3740
3741 bitmap_zero(map, page->objects);
3742 for_each_free_object(p, s, page->freelist)
3743 set_bit(slab_index(p, s, addr), map);
3744
3745 for_each_object(p, s, addr, page->objects)
3746 if (!test_bit(slab_index(p, s, addr), map))
3747 add_location(t, s, get_track(s, p, alloc));
3748 }
3749
3750 static int list_locations(struct kmem_cache *s, char *buf,
3751 enum track_item alloc)
3752 {
3753 int len = 0;
3754 unsigned long i;
3755 struct loc_track t = { 0, 0, NULL };
3756 int node;
3757
3758 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3759 GFP_TEMPORARY))
3760 return sprintf(buf, "Out of memory\n");
3761
3762 /* Push back cpu slabs */
3763 flush_all(s);
3764
3765 for_each_node_state(node, N_NORMAL_MEMORY) {
3766 struct kmem_cache_node *n = get_node(s, node);
3767 unsigned long flags;
3768 struct page *page;
3769
3770 if (!atomic_long_read(&n->nr_slabs))
3771 continue;
3772
3773 spin_lock_irqsave(&n->list_lock, flags);
3774 list_for_each_entry(page, &n->partial, lru)
3775 process_slab(&t, s, page, alloc);
3776 list_for_each_entry(page, &n->full, lru)
3777 process_slab(&t, s, page, alloc);
3778 spin_unlock_irqrestore(&n->list_lock, flags);
3779 }
3780
3781 for (i = 0; i < t.count; i++) {
3782 struct location *l = &t.loc[i];
3783
3784 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3785 break;
3786 len += sprintf(buf + len, "%7ld ", l->count);
3787
3788 if (l->addr)
3789 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3790 else
3791 len += sprintf(buf + len, "<not-available>");
3792
3793 if (l->sum_time != l->min_time) {
3794 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3795 l->min_time,
3796 (long)div_u64(l->sum_time, l->count),
3797 l->max_time);
3798 } else
3799 len += sprintf(buf + len, " age=%ld",
3800 l->min_time);
3801
3802 if (l->min_pid != l->max_pid)
3803 len += sprintf(buf + len, " pid=%ld-%ld",
3804 l->min_pid, l->max_pid);
3805 else
3806 len += sprintf(buf + len, " pid=%ld",
3807 l->min_pid);
3808
3809 if (num_online_cpus() > 1 &&
3810 !cpumask_empty(to_cpumask(l->cpus)) &&
3811 len < PAGE_SIZE - 60) {
3812 len += sprintf(buf + len, " cpus=");
3813 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3814 to_cpumask(l->cpus));
3815 }
3816
3817 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3818 len < PAGE_SIZE - 60) {
3819 len += sprintf(buf + len, " nodes=");
3820 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3821 l->nodes);
3822 }
3823
3824 len += sprintf(buf + len, "\n");
3825 }
3826
3827 free_loc_track(&t);
3828 if (!t.count)
3829 len += sprintf(buf, "No data\n");
3830 return len;
3831 }
3832
3833 enum slab_stat_type {
3834 SL_ALL, /* All slabs */
3835 SL_PARTIAL, /* Only partially allocated slabs */
3836 SL_CPU, /* Only slabs used for cpu caches */
3837 SL_OBJECTS, /* Determine allocated objects not slabs */
3838 SL_TOTAL /* Determine object capacity not slabs */
3839 };
3840
3841 #define SO_ALL (1 << SL_ALL)
3842 #define SO_PARTIAL (1 << SL_PARTIAL)
3843 #define SO_CPU (1 << SL_CPU)
3844 #define SO_OBJECTS (1 << SL_OBJECTS)
3845 #define SO_TOTAL (1 << SL_TOTAL)
3846
3847 static ssize_t show_slab_objects(struct kmem_cache *s,
3848 char *buf, unsigned long flags)
3849 {
3850 unsigned long total = 0;
3851 int node;
3852 int x;
3853 unsigned long *nodes;
3854 unsigned long *per_cpu;
3855
3856 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3857 if (!nodes)
3858 return -ENOMEM;
3859 per_cpu = nodes + nr_node_ids;
3860
3861 if (flags & SO_CPU) {
3862 int cpu;
3863
3864 for_each_possible_cpu(cpu) {
3865 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3866
3867 if (!c || c->node < 0)
3868 continue;
3869
3870 if (c->page) {
3871 if (flags & SO_TOTAL)
3872 x = c->page->objects;
3873 else if (flags & SO_OBJECTS)
3874 x = c->page->inuse;
3875 else
3876 x = 1;
3877
3878 total += x;
3879 nodes[c->node] += x;
3880 }
3881 per_cpu[c->node]++;
3882 }
3883 }
3884
3885 if (flags & SO_ALL) {
3886 for_each_node_state(node, N_NORMAL_MEMORY) {
3887 struct kmem_cache_node *n = get_node(s, node);
3888
3889 if (flags & SO_TOTAL)
3890 x = atomic_long_read(&n->total_objects);
3891 else if (flags & SO_OBJECTS)
3892 x = atomic_long_read(&n->total_objects) -
3893 count_partial(n, count_free);
3894
3895 else
3896 x = atomic_long_read(&n->nr_slabs);
3897 total += x;
3898 nodes[node] += x;
3899 }
3900
3901 } else if (flags & SO_PARTIAL) {
3902 for_each_node_state(node, N_NORMAL_MEMORY) {
3903 struct kmem_cache_node *n = get_node(s, node);
3904
3905 if (flags & SO_TOTAL)
3906 x = count_partial(n, count_total);
3907 else if (flags & SO_OBJECTS)
3908 x = count_partial(n, count_inuse);
3909 else
3910 x = n->nr_partial;
3911 total += x;
3912 nodes[node] += x;
3913 }
3914 }
3915 x = sprintf(buf, "%lu", total);
3916 #ifdef CONFIG_NUMA
3917 for_each_node_state(node, N_NORMAL_MEMORY)
3918 if (nodes[node])
3919 x += sprintf(buf + x, " N%d=%lu",
3920 node, nodes[node]);
3921 #endif
3922 kfree(nodes);
3923 return x + sprintf(buf + x, "\n");
3924 }
3925
3926 static int any_slab_objects(struct kmem_cache *s)
3927 {
3928 int node;
3929
3930 for_each_online_node(node) {
3931 struct kmem_cache_node *n = get_node(s, node);
3932
3933 if (!n)
3934 continue;
3935
3936 if (atomic_long_read(&n->total_objects))
3937 return 1;
3938 }
3939 return 0;
3940 }
3941
3942 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3943 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3944
3945 struct slab_attribute {
3946 struct attribute attr;
3947 ssize_t (*show)(struct kmem_cache *s, char *buf);
3948 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3949 };
3950
3951 #define SLAB_ATTR_RO(_name) \
3952 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3953
3954 #define SLAB_ATTR(_name) \
3955 static struct slab_attribute _name##_attr = \
3956 __ATTR(_name, 0644, _name##_show, _name##_store)
3957
3958 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3959 {
3960 return sprintf(buf, "%d\n", s->size);
3961 }
3962 SLAB_ATTR_RO(slab_size);
3963
3964 static ssize_t align_show(struct kmem_cache *s, char *buf)
3965 {
3966 return sprintf(buf, "%d\n", s->align);
3967 }
3968 SLAB_ATTR_RO(align);
3969
3970 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3971 {
3972 return sprintf(buf, "%d\n", s->objsize);
3973 }
3974 SLAB_ATTR_RO(object_size);
3975
3976 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3977 {
3978 return sprintf(buf, "%d\n", oo_objects(s->oo));
3979 }
3980 SLAB_ATTR_RO(objs_per_slab);
3981
3982 static ssize_t order_store(struct kmem_cache *s,
3983 const char *buf, size_t length)
3984 {
3985 unsigned long order;
3986 int err;
3987
3988 err = strict_strtoul(buf, 10, &order);
3989 if (err)
3990 return err;
3991
3992 if (order > slub_max_order || order < slub_min_order)
3993 return -EINVAL;
3994
3995 calculate_sizes(s, order);
3996 return length;
3997 }
3998
3999 static ssize_t order_show(struct kmem_cache *s, char *buf)
4000 {
4001 return sprintf(buf, "%d\n", oo_order(s->oo));
4002 }
4003 SLAB_ATTR(order);
4004
4005 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4006 {
4007 return sprintf(buf, "%lu\n", s->min_partial);
4008 }
4009
4010 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4011 size_t length)
4012 {
4013 unsigned long min;
4014 int err;
4015
4016 err = strict_strtoul(buf, 10, &min);
4017 if (err)
4018 return err;
4019
4020 set_min_partial(s, min);
4021 return length;
4022 }
4023 SLAB_ATTR(min_partial);
4024
4025 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4026 {
4027 if (s->ctor) {
4028 int n = sprint_symbol(buf, (unsigned long)s->ctor);
4029
4030 return n + sprintf(buf + n, "\n");
4031 }
4032 return 0;
4033 }
4034 SLAB_ATTR_RO(ctor);
4035
4036 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4037 {
4038 return sprintf(buf, "%d\n", s->refcount - 1);
4039 }
4040 SLAB_ATTR_RO(aliases);
4041
4042 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4043 {
4044 return show_slab_objects(s, buf, SO_ALL);
4045 }
4046 SLAB_ATTR_RO(slabs);
4047
4048 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4049 {
4050 return show_slab_objects(s, buf, SO_PARTIAL);
4051 }
4052 SLAB_ATTR_RO(partial);
4053
4054 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4055 {
4056 return show_slab_objects(s, buf, SO_CPU);
4057 }
4058 SLAB_ATTR_RO(cpu_slabs);
4059
4060 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4061 {
4062 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4063 }
4064 SLAB_ATTR_RO(objects);
4065
4066 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4067 {
4068 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4069 }
4070 SLAB_ATTR_RO(objects_partial);
4071
4072 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4073 {
4074 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4075 }
4076 SLAB_ATTR_RO(total_objects);
4077
4078 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4079 {
4080 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4081 }
4082
4083 static ssize_t sanity_checks_store(struct kmem_cache *s,
4084 const char *buf, size_t length)
4085 {
4086 s->flags &= ~SLAB_DEBUG_FREE;
4087 if (buf[0] == '1')
4088 s->flags |= SLAB_DEBUG_FREE;
4089 return length;
4090 }
4091 SLAB_ATTR(sanity_checks);
4092
4093 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4094 {
4095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4096 }
4097
4098 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4099 size_t length)
4100 {
4101 s->flags &= ~SLAB_TRACE;
4102 if (buf[0] == '1')
4103 s->flags |= SLAB_TRACE;
4104 return length;
4105 }
4106 SLAB_ATTR(trace);
4107
4108 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4109 {
4110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4111 }
4112
4113 static ssize_t reclaim_account_store(struct kmem_cache *s,
4114 const char *buf, size_t length)
4115 {
4116 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4117 if (buf[0] == '1')
4118 s->flags |= SLAB_RECLAIM_ACCOUNT;
4119 return length;
4120 }
4121 SLAB_ATTR(reclaim_account);
4122
4123 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4124 {
4125 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4126 }
4127 SLAB_ATTR_RO(hwcache_align);
4128
4129 #ifdef CONFIG_ZONE_DMA
4130 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4131 {
4132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4133 }
4134 SLAB_ATTR_RO(cache_dma);
4135 #endif
4136
4137 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4138 {
4139 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4140 }
4141 SLAB_ATTR_RO(destroy_by_rcu);
4142
4143 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4144 {
4145 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4146 }
4147
4148 static ssize_t red_zone_store(struct kmem_cache *s,
4149 const char *buf, size_t length)
4150 {
4151 if (any_slab_objects(s))
4152 return -EBUSY;
4153
4154 s->flags &= ~SLAB_RED_ZONE;
4155 if (buf[0] == '1')
4156 s->flags |= SLAB_RED_ZONE;
4157 calculate_sizes(s, -1);
4158 return length;
4159 }
4160 SLAB_ATTR(red_zone);
4161
4162 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4163 {
4164 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4165 }
4166
4167 static ssize_t poison_store(struct kmem_cache *s,
4168 const char *buf, size_t length)
4169 {
4170 if (any_slab_objects(s))
4171 return -EBUSY;
4172
4173 s->flags &= ~SLAB_POISON;
4174 if (buf[0] == '1')
4175 s->flags |= SLAB_POISON;
4176 calculate_sizes(s, -1);
4177 return length;
4178 }
4179 SLAB_ATTR(poison);
4180
4181 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4182 {
4183 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4184 }
4185
4186 static ssize_t store_user_store(struct kmem_cache *s,
4187 const char *buf, size_t length)
4188 {
4189 if (any_slab_objects(s))
4190 return -EBUSY;
4191
4192 s->flags &= ~SLAB_STORE_USER;
4193 if (buf[0] == '1')
4194 s->flags |= SLAB_STORE_USER;
4195 calculate_sizes(s, -1);
4196 return length;
4197 }
4198 SLAB_ATTR(store_user);
4199
4200 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4201 {
4202 return 0;
4203 }
4204
4205 static ssize_t validate_store(struct kmem_cache *s,
4206 const char *buf, size_t length)
4207 {
4208 int ret = -EINVAL;
4209
4210 if (buf[0] == '1') {
4211 ret = validate_slab_cache(s);
4212 if (ret >= 0)
4213 ret = length;
4214 }
4215 return ret;
4216 }
4217 SLAB_ATTR(validate);
4218
4219 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4220 {
4221 return 0;
4222 }
4223
4224 static ssize_t shrink_store(struct kmem_cache *s,
4225 const char *buf, size_t length)
4226 {
4227 if (buf[0] == '1') {
4228 int rc = kmem_cache_shrink(s);
4229
4230 if (rc)
4231 return rc;
4232 } else
4233 return -EINVAL;
4234 return length;
4235 }
4236 SLAB_ATTR(shrink);
4237
4238 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4239 {
4240 if (!(s->flags & SLAB_STORE_USER))
4241 return -ENOSYS;
4242 return list_locations(s, buf, TRACK_ALLOC);
4243 }
4244 SLAB_ATTR_RO(alloc_calls);
4245
4246 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4247 {
4248 if (!(s->flags & SLAB_STORE_USER))
4249 return -ENOSYS;
4250 return list_locations(s, buf, TRACK_FREE);
4251 }
4252 SLAB_ATTR_RO(free_calls);
4253
4254 #ifdef CONFIG_NUMA
4255 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4256 {
4257 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4258 }
4259
4260 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4261 const char *buf, size_t length)
4262 {
4263 unsigned long ratio;
4264 int err;
4265
4266 err = strict_strtoul(buf, 10, &ratio);
4267 if (err)
4268 return err;
4269
4270 if (ratio <= 100)
4271 s->remote_node_defrag_ratio = ratio * 10;
4272
4273 return length;
4274 }
4275 SLAB_ATTR(remote_node_defrag_ratio);
4276 #endif
4277
4278 #ifdef CONFIG_SLUB_STATS
4279 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4280 {
4281 unsigned long sum = 0;
4282 int cpu;
4283 int len;
4284 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4285
4286 if (!data)
4287 return -ENOMEM;
4288
4289 for_each_online_cpu(cpu) {
4290 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4291
4292 data[cpu] = x;
4293 sum += x;
4294 }
4295
4296 len = sprintf(buf, "%lu", sum);
4297
4298 #ifdef CONFIG_SMP
4299 for_each_online_cpu(cpu) {
4300 if (data[cpu] && len < PAGE_SIZE - 20)
4301 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4302 }
4303 #endif
4304 kfree(data);
4305 return len + sprintf(buf + len, "\n");
4306 }
4307
4308 #define STAT_ATTR(si, text) \
4309 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4310 { \
4311 return show_stat(s, buf, si); \
4312 } \
4313 SLAB_ATTR_RO(text); \
4314
4315 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4316 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4317 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4318 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4319 STAT_ATTR(FREE_FROZEN, free_frozen);
4320 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4321 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4322 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4323 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4324 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4325 STAT_ATTR(FREE_SLAB, free_slab);
4326 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4327 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4328 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4329 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4330 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4331 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4332 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4333 #endif
4334
4335 static struct attribute *slab_attrs[] = {
4336 &slab_size_attr.attr,
4337 &object_size_attr.attr,
4338 &objs_per_slab_attr.attr,
4339 &order_attr.attr,
4340 &min_partial_attr.attr,
4341 &objects_attr.attr,
4342 &objects_partial_attr.attr,
4343 &total_objects_attr.attr,
4344 &slabs_attr.attr,
4345 &partial_attr.attr,
4346 &cpu_slabs_attr.attr,
4347 &ctor_attr.attr,
4348 &aliases_attr.attr,
4349 &align_attr.attr,
4350 &sanity_checks_attr.attr,
4351 &trace_attr.attr,
4352 &hwcache_align_attr.attr,
4353 &reclaim_account_attr.attr,
4354 &destroy_by_rcu_attr.attr,
4355 &red_zone_attr.attr,
4356 &poison_attr.attr,
4357 &store_user_attr.attr,
4358 &validate_attr.attr,
4359 &shrink_attr.attr,
4360 &alloc_calls_attr.attr,
4361 &free_calls_attr.attr,
4362 #ifdef CONFIG_ZONE_DMA
4363 &cache_dma_attr.attr,
4364 #endif
4365 #ifdef CONFIG_NUMA
4366 &remote_node_defrag_ratio_attr.attr,
4367 #endif
4368 #ifdef CONFIG_SLUB_STATS
4369 &alloc_fastpath_attr.attr,
4370 &alloc_slowpath_attr.attr,
4371 &free_fastpath_attr.attr,
4372 &free_slowpath_attr.attr,
4373 &free_frozen_attr.attr,
4374 &free_add_partial_attr.attr,
4375 &free_remove_partial_attr.attr,
4376 &alloc_from_partial_attr.attr,
4377 &alloc_slab_attr.attr,
4378 &alloc_refill_attr.attr,
4379 &free_slab_attr.attr,
4380 &cpuslab_flush_attr.attr,
4381 &deactivate_full_attr.attr,
4382 &deactivate_empty_attr.attr,
4383 &deactivate_to_head_attr.attr,
4384 &deactivate_to_tail_attr.attr,
4385 &deactivate_remote_frees_attr.attr,
4386 &order_fallback_attr.attr,
4387 #endif
4388 NULL
4389 };
4390
4391 static struct attribute_group slab_attr_group = {
4392 .attrs = slab_attrs,
4393 };
4394
4395 static ssize_t slab_attr_show(struct kobject *kobj,
4396 struct attribute *attr,
4397 char *buf)
4398 {
4399 struct slab_attribute *attribute;
4400 struct kmem_cache *s;
4401 int err;
4402
4403 attribute = to_slab_attr(attr);
4404 s = to_slab(kobj);
4405
4406 if (!attribute->show)
4407 return -EIO;
4408
4409 err = attribute->show(s, buf);
4410
4411 return err;
4412 }
4413
4414 static ssize_t slab_attr_store(struct kobject *kobj,
4415 struct attribute *attr,
4416 const char *buf, size_t len)
4417 {
4418 struct slab_attribute *attribute;
4419 struct kmem_cache *s;
4420 int err;
4421
4422 attribute = to_slab_attr(attr);
4423 s = to_slab(kobj);
4424
4425 if (!attribute->store)
4426 return -EIO;
4427
4428 err = attribute->store(s, buf, len);
4429
4430 return err;
4431 }
4432
4433 static void kmem_cache_release(struct kobject *kobj)
4434 {
4435 struct kmem_cache *s = to_slab(kobj);
4436
4437 kfree(s);
4438 }
4439
4440 static struct sysfs_ops slab_sysfs_ops = {
4441 .show = slab_attr_show,
4442 .store = slab_attr_store,
4443 };
4444
4445 static struct kobj_type slab_ktype = {
4446 .sysfs_ops = &slab_sysfs_ops,
4447 .release = kmem_cache_release
4448 };
4449
4450 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4451 {
4452 struct kobj_type *ktype = get_ktype(kobj);
4453
4454 if (ktype == &slab_ktype)
4455 return 1;
4456 return 0;
4457 }
4458
4459 static struct kset_uevent_ops slab_uevent_ops = {
4460 .filter = uevent_filter,
4461 };
4462
4463 static struct kset *slab_kset;
4464
4465 #define ID_STR_LENGTH 64
4466
4467 /* Create a unique string id for a slab cache:
4468 *
4469 * Format :[flags-]size
4470 */
4471 static char *create_unique_id(struct kmem_cache *s)
4472 {
4473 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4474 char *p = name;
4475
4476 BUG_ON(!name);
4477
4478 *p++ = ':';
4479 /*
4480 * First flags affecting slabcache operations. We will only
4481 * get here for aliasable slabs so we do not need to support
4482 * too many flags. The flags here must cover all flags that
4483 * are matched during merging to guarantee that the id is
4484 * unique.
4485 */
4486 if (s->flags & SLAB_CACHE_DMA)
4487 *p++ = 'd';
4488 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4489 *p++ = 'a';
4490 if (s->flags & SLAB_DEBUG_FREE)
4491 *p++ = 'F';
4492 if (!(s->flags & SLAB_NOTRACK))
4493 *p++ = 't';
4494 if (p != name + 1)
4495 *p++ = '-';
4496 p += sprintf(p, "%07d", s->size);
4497 BUG_ON(p > name + ID_STR_LENGTH - 1);
4498 return name;
4499 }
4500
4501 static int sysfs_slab_add(struct kmem_cache *s)
4502 {
4503 int err;
4504 const char *name;
4505 int unmergeable;
4506
4507 if (slab_state < SYSFS)
4508 /* Defer until later */
4509 return 0;
4510
4511 unmergeable = slab_unmergeable(s);
4512 if (unmergeable) {
4513 /*
4514 * Slabcache can never be merged so we can use the name proper.
4515 * This is typically the case for debug situations. In that
4516 * case we can catch duplicate names easily.
4517 */
4518 sysfs_remove_link(&slab_kset->kobj, s->name);
4519 name = s->name;
4520 } else {
4521 /*
4522 * Create a unique name for the slab as a target
4523 * for the symlinks.
4524 */
4525 name = create_unique_id(s);
4526 }
4527
4528 s->kobj.kset = slab_kset;
4529 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4530 if (err) {
4531 kobject_put(&s->kobj);
4532 return err;
4533 }
4534
4535 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4536 if (err)
4537 return err;
4538 kobject_uevent(&s->kobj, KOBJ_ADD);
4539 if (!unmergeable) {
4540 /* Setup first alias */
4541 sysfs_slab_alias(s, s->name);
4542 kfree(name);
4543 }
4544 return 0;
4545 }
4546
4547 static void sysfs_slab_remove(struct kmem_cache *s)
4548 {
4549 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4550 kobject_del(&s->kobj);
4551 kobject_put(&s->kobj);
4552 }
4553
4554 /*
4555 * Need to buffer aliases during bootup until sysfs becomes
4556 * available lest we lose that information.
4557 */
4558 struct saved_alias {
4559 struct kmem_cache *s;
4560 const char *name;
4561 struct saved_alias *next;
4562 };
4563
4564 static struct saved_alias *alias_list;
4565
4566 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4567 {
4568 struct saved_alias *al;
4569
4570 if (slab_state == SYSFS) {
4571 /*
4572 * If we have a leftover link then remove it.
4573 */
4574 sysfs_remove_link(&slab_kset->kobj, name);
4575 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4576 }
4577
4578 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4579 if (!al)
4580 return -ENOMEM;
4581
4582 al->s = s;
4583 al->name = name;
4584 al->next = alias_list;
4585 alias_list = al;
4586 return 0;
4587 }
4588
4589 static int __init slab_sysfs_init(void)
4590 {
4591 struct kmem_cache *s;
4592 int err;
4593
4594 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4595 if (!slab_kset) {
4596 printk(KERN_ERR "Cannot register slab subsystem.\n");
4597 return -ENOSYS;
4598 }
4599
4600 slab_state = SYSFS;
4601
4602 list_for_each_entry(s, &slab_caches, list) {
4603 err = sysfs_slab_add(s);
4604 if (err)
4605 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4606 " to sysfs\n", s->name);
4607 }
4608
4609 while (alias_list) {
4610 struct saved_alias *al = alias_list;
4611
4612 alias_list = alias_list->next;
4613 err = sysfs_slab_alias(al->s, al->name);
4614 if (err)
4615 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4616 " %s to sysfs\n", s->name);
4617 kfree(al);
4618 }
4619
4620 resiliency_test();
4621 return 0;
4622 }
4623
4624 __initcall(slab_sysfs_init);
4625 #endif
4626
4627 /*
4628 * The /proc/slabinfo ABI
4629 */
4630 #ifdef CONFIG_SLABINFO
4631 static void print_slabinfo_header(struct seq_file *m)
4632 {
4633 seq_puts(m, "slabinfo - version: 2.1\n");
4634 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4635 "<objperslab> <pagesperslab>");
4636 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4637 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4638 seq_putc(m, '\n');
4639 }
4640
4641 static void *s_start(struct seq_file *m, loff_t *pos)
4642 {
4643 loff_t n = *pos;
4644
4645 down_read(&slub_lock);
4646 if (!n)
4647 print_slabinfo_header(m);
4648
4649 return seq_list_start(&slab_caches, *pos);
4650 }
4651
4652 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4653 {
4654 return seq_list_next(p, &slab_caches, pos);
4655 }
4656
4657 static void s_stop(struct seq_file *m, void *p)
4658 {
4659 up_read(&slub_lock);
4660 }
4661
4662 static int s_show(struct seq_file *m, void *p)
4663 {
4664 unsigned long nr_partials = 0;
4665 unsigned long nr_slabs = 0;
4666 unsigned long nr_inuse = 0;
4667 unsigned long nr_objs = 0;
4668 unsigned long nr_free = 0;
4669 struct kmem_cache *s;
4670 int node;
4671
4672 s = list_entry(p, struct kmem_cache, list);
4673
4674 for_each_online_node(node) {
4675 struct kmem_cache_node *n = get_node(s, node);
4676
4677 if (!n)
4678 continue;
4679
4680 nr_partials += n->nr_partial;
4681 nr_slabs += atomic_long_read(&n->nr_slabs);
4682 nr_objs += atomic_long_read(&n->total_objects);
4683 nr_free += count_partial(n, count_free);
4684 }
4685
4686 nr_inuse = nr_objs - nr_free;
4687
4688 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4689 nr_objs, s->size, oo_objects(s->oo),
4690 (1 << oo_order(s->oo)));
4691 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4692 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4693 0UL);
4694 seq_putc(m, '\n');
4695 return 0;
4696 }
4697
4698 static const struct seq_operations slabinfo_op = {
4699 .start = s_start,
4700 .next = s_next,
4701 .stop = s_stop,
4702 .show = s_show,
4703 };
4704
4705 static int slabinfo_open(struct inode *inode, struct file *file)
4706 {
4707 return seq_open(file, &slabinfo_op);
4708 }
4709
4710 static const struct file_operations proc_slabinfo_operations = {
4711 .open = slabinfo_open,
4712 .read = seq_read,
4713 .llseek = seq_lseek,
4714 .release = seq_release,
4715 };
4716
4717 static int __init slab_proc_init(void)
4718 {
4719 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4720 return 0;
4721 }
4722 module_init(slab_proc_init);
4723 #endif /* CONFIG_SLABINFO */
This page took 0.129496 seconds and 5 git commands to generate.