SLUB: Fix early boot GFP_DMA allocations
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/kmemleak.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31
32 /*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
108 */
109
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115
116 /*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126
127 /*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131 #define MIN_PARTIAL 5
132
133 /*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138 #define MAX_PARTIAL 10
139
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
142
143 /*
144 * Set of flags that will prevent slab merging
145 */
146 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
147 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
148
149 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 SLAB_CACHE_DMA)
151
152 #ifndef ARCH_KMALLOC_MINALIGN
153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
154 #endif
155
156 #ifndef ARCH_SLAB_MINALIGN
157 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
158 #endif
159
160 #define OO_SHIFT 16
161 #define OO_MASK ((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON 0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
167
168 static int kmem_size = sizeof(struct kmem_cache);
169
170 #ifdef CONFIG_SMP
171 static struct notifier_block slab_notifier;
172 #endif
173
174 static enum {
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
177 UP, /* Everything works but does not show up in sysfs */
178 SYSFS /* Sysfs up */
179 } slab_state = DOWN;
180
181 /*
182 * The slab allocator is initialized with interrupts disabled. Therefore, make
183 * sure early boot allocations don't accidentally enable interrupts.
184 */
185 static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
186
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
190
191 /*
192 * Tracking user of a slab.
193 */
194 struct track {
195 unsigned long addr; /* Called from address */
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199 };
200
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
202
203 #ifdef CONFIG_SLUB_DEBUG
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
207
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 {
214 kfree(s);
215 }
216
217 #endif
218
219 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
220 {
221 #ifdef CONFIG_SLUB_STATS
222 c->stat[si]++;
223 #endif
224 }
225
226 /********************************************************************
227 * Core slab cache functions
228 *******************************************************************/
229
230 int slab_is_available(void)
231 {
232 return slab_state >= UP;
233 }
234
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 #ifdef CONFIG_NUMA
238 return s->node[node];
239 #else
240 return &s->local_node;
241 #endif
242 }
243
244 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
245 {
246 #ifdef CONFIG_SMP
247 return s->cpu_slab[cpu];
248 #else
249 return &s->cpu_slab;
250 #endif
251 }
252
253 /* Verify that a pointer has an address that is valid within a slab page */
254 static inline int check_valid_pointer(struct kmem_cache *s,
255 struct page *page, const void *object)
256 {
257 void *base;
258
259 if (!object)
260 return 1;
261
262 base = page_address(page);
263 if (object < base || object >= base + page->objects * s->size ||
264 (object - base) % s->size) {
265 return 0;
266 }
267
268 return 1;
269 }
270
271 /*
272 * Slow version of get and set free pointer.
273 *
274 * This version requires touching the cache lines of kmem_cache which
275 * we avoid to do in the fast alloc free paths. There we obtain the offset
276 * from the page struct.
277 */
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 return *(void **)(object + s->offset);
281 }
282
283 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
284 {
285 *(void **)(object + s->offset) = fp;
286 }
287
288 /* Loop over all objects in a slab */
289 #define for_each_object(__p, __s, __addr, __objects) \
290 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
291 __p += (__s)->size)
292
293 /* Scan freelist */
294 #define for_each_free_object(__p, __s, __free) \
295 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
296
297 /* Determine object index from a given position */
298 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
299 {
300 return (p - addr) / s->size;
301 }
302
303 static inline struct kmem_cache_order_objects oo_make(int order,
304 unsigned long size)
305 {
306 struct kmem_cache_order_objects x = {
307 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
308 };
309
310 return x;
311 }
312
313 static inline int oo_order(struct kmem_cache_order_objects x)
314 {
315 return x.x >> OO_SHIFT;
316 }
317
318 static inline int oo_objects(struct kmem_cache_order_objects x)
319 {
320 return x.x & OO_MASK;
321 }
322
323 #ifdef CONFIG_SLUB_DEBUG
324 /*
325 * Debug settings:
326 */
327 #ifdef CONFIG_SLUB_DEBUG_ON
328 static int slub_debug = DEBUG_DEFAULT_FLAGS;
329 #else
330 static int slub_debug;
331 #endif
332
333 static char *slub_debug_slabs;
334
335 /*
336 * Object debugging
337 */
338 static void print_section(char *text, u8 *addr, unsigned int length)
339 {
340 int i, offset;
341 int newline = 1;
342 char ascii[17];
343
344 ascii[16] = 0;
345
346 for (i = 0; i < length; i++) {
347 if (newline) {
348 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
349 newline = 0;
350 }
351 printk(KERN_CONT " %02x", addr[i]);
352 offset = i % 16;
353 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
354 if (offset == 15) {
355 printk(KERN_CONT " %s\n", ascii);
356 newline = 1;
357 }
358 }
359 if (!newline) {
360 i %= 16;
361 while (i < 16) {
362 printk(KERN_CONT " ");
363 ascii[i] = ' ';
364 i++;
365 }
366 printk(KERN_CONT " %s\n", ascii);
367 }
368 }
369
370 static struct track *get_track(struct kmem_cache *s, void *object,
371 enum track_item alloc)
372 {
373 struct track *p;
374
375 if (s->offset)
376 p = object + s->offset + sizeof(void *);
377 else
378 p = object + s->inuse;
379
380 return p + alloc;
381 }
382
383 static void set_track(struct kmem_cache *s, void *object,
384 enum track_item alloc, unsigned long addr)
385 {
386 struct track *p = get_track(s, object, alloc);
387
388 if (addr) {
389 p->addr = addr;
390 p->cpu = smp_processor_id();
391 p->pid = current->pid;
392 p->when = jiffies;
393 } else
394 memset(p, 0, sizeof(struct track));
395 }
396
397 static void init_tracking(struct kmem_cache *s, void *object)
398 {
399 if (!(s->flags & SLAB_STORE_USER))
400 return;
401
402 set_track(s, object, TRACK_FREE, 0UL);
403 set_track(s, object, TRACK_ALLOC, 0UL);
404 }
405
406 static void print_track(const char *s, struct track *t)
407 {
408 if (!t->addr)
409 return;
410
411 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
412 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
413 }
414
415 static void print_tracking(struct kmem_cache *s, void *object)
416 {
417 if (!(s->flags & SLAB_STORE_USER))
418 return;
419
420 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
421 print_track("Freed", get_track(s, object, TRACK_FREE));
422 }
423
424 static void print_page_info(struct page *page)
425 {
426 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
427 page, page->objects, page->inuse, page->freelist, page->flags);
428
429 }
430
431 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
432 {
433 va_list args;
434 char buf[100];
435
436 va_start(args, fmt);
437 vsnprintf(buf, sizeof(buf), fmt, args);
438 va_end(args);
439 printk(KERN_ERR "========================================"
440 "=====================================\n");
441 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
442 printk(KERN_ERR "----------------------------------------"
443 "-------------------------------------\n\n");
444 }
445
446 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
447 {
448 va_list args;
449 char buf[100];
450
451 va_start(args, fmt);
452 vsnprintf(buf, sizeof(buf), fmt, args);
453 va_end(args);
454 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
455 }
456
457 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
458 {
459 unsigned int off; /* Offset of last byte */
460 u8 *addr = page_address(page);
461
462 print_tracking(s, p);
463
464 print_page_info(page);
465
466 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
467 p, p - addr, get_freepointer(s, p));
468
469 if (p > addr + 16)
470 print_section("Bytes b4", p - 16, 16);
471
472 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
473
474 if (s->flags & SLAB_RED_ZONE)
475 print_section("Redzone", p + s->objsize,
476 s->inuse - s->objsize);
477
478 if (s->offset)
479 off = s->offset + sizeof(void *);
480 else
481 off = s->inuse;
482
483 if (s->flags & SLAB_STORE_USER)
484 off += 2 * sizeof(struct track);
485
486 if (off != s->size)
487 /* Beginning of the filler is the free pointer */
488 print_section("Padding", p + off, s->size - off);
489
490 dump_stack();
491 }
492
493 static void object_err(struct kmem_cache *s, struct page *page,
494 u8 *object, char *reason)
495 {
496 slab_bug(s, "%s", reason);
497 print_trailer(s, page, object);
498 }
499
500 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
501 {
502 va_list args;
503 char buf[100];
504
505 va_start(args, fmt);
506 vsnprintf(buf, sizeof(buf), fmt, args);
507 va_end(args);
508 slab_bug(s, "%s", buf);
509 print_page_info(page);
510 dump_stack();
511 }
512
513 static void init_object(struct kmem_cache *s, void *object, int active)
514 {
515 u8 *p = object;
516
517 if (s->flags & __OBJECT_POISON) {
518 memset(p, POISON_FREE, s->objsize - 1);
519 p[s->objsize - 1] = POISON_END;
520 }
521
522 if (s->flags & SLAB_RED_ZONE)
523 memset(p + s->objsize,
524 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
525 s->inuse - s->objsize);
526 }
527
528 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
529 {
530 while (bytes) {
531 if (*start != (u8)value)
532 return start;
533 start++;
534 bytes--;
535 }
536 return NULL;
537 }
538
539 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
540 void *from, void *to)
541 {
542 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
543 memset(from, data, to - from);
544 }
545
546 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
547 u8 *object, char *what,
548 u8 *start, unsigned int value, unsigned int bytes)
549 {
550 u8 *fault;
551 u8 *end;
552
553 fault = check_bytes(start, value, bytes);
554 if (!fault)
555 return 1;
556
557 end = start + bytes;
558 while (end > fault && end[-1] == value)
559 end--;
560
561 slab_bug(s, "%s overwritten", what);
562 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
563 fault, end - 1, fault[0], value);
564 print_trailer(s, page, object);
565
566 restore_bytes(s, what, value, fault, end);
567 return 0;
568 }
569
570 /*
571 * Object layout:
572 *
573 * object address
574 * Bytes of the object to be managed.
575 * If the freepointer may overlay the object then the free
576 * pointer is the first word of the object.
577 *
578 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
579 * 0xa5 (POISON_END)
580 *
581 * object + s->objsize
582 * Padding to reach word boundary. This is also used for Redzoning.
583 * Padding is extended by another word if Redzoning is enabled and
584 * objsize == inuse.
585 *
586 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
587 * 0xcc (RED_ACTIVE) for objects in use.
588 *
589 * object + s->inuse
590 * Meta data starts here.
591 *
592 * A. Free pointer (if we cannot overwrite object on free)
593 * B. Tracking data for SLAB_STORE_USER
594 * C. Padding to reach required alignment boundary or at mininum
595 * one word if debugging is on to be able to detect writes
596 * before the word boundary.
597 *
598 * Padding is done using 0x5a (POISON_INUSE)
599 *
600 * object + s->size
601 * Nothing is used beyond s->size.
602 *
603 * If slabcaches are merged then the objsize and inuse boundaries are mostly
604 * ignored. And therefore no slab options that rely on these boundaries
605 * may be used with merged slabcaches.
606 */
607
608 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
609 {
610 unsigned long off = s->inuse; /* The end of info */
611
612 if (s->offset)
613 /* Freepointer is placed after the object. */
614 off += sizeof(void *);
615
616 if (s->flags & SLAB_STORE_USER)
617 /* We also have user information there */
618 off += 2 * sizeof(struct track);
619
620 if (s->size == off)
621 return 1;
622
623 return check_bytes_and_report(s, page, p, "Object padding",
624 p + off, POISON_INUSE, s->size - off);
625 }
626
627 /* Check the pad bytes at the end of a slab page */
628 static int slab_pad_check(struct kmem_cache *s, struct page *page)
629 {
630 u8 *start;
631 u8 *fault;
632 u8 *end;
633 int length;
634 int remainder;
635
636 if (!(s->flags & SLAB_POISON))
637 return 1;
638
639 start = page_address(page);
640 length = (PAGE_SIZE << compound_order(page));
641 end = start + length;
642 remainder = length % s->size;
643 if (!remainder)
644 return 1;
645
646 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
647 if (!fault)
648 return 1;
649 while (end > fault && end[-1] == POISON_INUSE)
650 end--;
651
652 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
653 print_section("Padding", end - remainder, remainder);
654
655 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
656 return 0;
657 }
658
659 static int check_object(struct kmem_cache *s, struct page *page,
660 void *object, int active)
661 {
662 u8 *p = object;
663 u8 *endobject = object + s->objsize;
664
665 if (s->flags & SLAB_RED_ZONE) {
666 unsigned int red =
667 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
668
669 if (!check_bytes_and_report(s, page, object, "Redzone",
670 endobject, red, s->inuse - s->objsize))
671 return 0;
672 } else {
673 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
674 check_bytes_and_report(s, page, p, "Alignment padding",
675 endobject, POISON_INUSE, s->inuse - s->objsize);
676 }
677 }
678
679 if (s->flags & SLAB_POISON) {
680 if (!active && (s->flags & __OBJECT_POISON) &&
681 (!check_bytes_and_report(s, page, p, "Poison", p,
682 POISON_FREE, s->objsize - 1) ||
683 !check_bytes_and_report(s, page, p, "Poison",
684 p + s->objsize - 1, POISON_END, 1)))
685 return 0;
686 /*
687 * check_pad_bytes cleans up on its own.
688 */
689 check_pad_bytes(s, page, p);
690 }
691
692 if (!s->offset && active)
693 /*
694 * Object and freepointer overlap. Cannot check
695 * freepointer while object is allocated.
696 */
697 return 1;
698
699 /* Check free pointer validity */
700 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
701 object_err(s, page, p, "Freepointer corrupt");
702 /*
703 * No choice but to zap it and thus lose the remainder
704 * of the free objects in this slab. May cause
705 * another error because the object count is now wrong.
706 */
707 set_freepointer(s, p, NULL);
708 return 0;
709 }
710 return 1;
711 }
712
713 static int check_slab(struct kmem_cache *s, struct page *page)
714 {
715 int maxobj;
716
717 VM_BUG_ON(!irqs_disabled());
718
719 if (!PageSlab(page)) {
720 slab_err(s, page, "Not a valid slab page");
721 return 0;
722 }
723
724 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
725 if (page->objects > maxobj) {
726 slab_err(s, page, "objects %u > max %u",
727 s->name, page->objects, maxobj);
728 return 0;
729 }
730 if (page->inuse > page->objects) {
731 slab_err(s, page, "inuse %u > max %u",
732 s->name, page->inuse, page->objects);
733 return 0;
734 }
735 /* Slab_pad_check fixes things up after itself */
736 slab_pad_check(s, page);
737 return 1;
738 }
739
740 /*
741 * Determine if a certain object on a page is on the freelist. Must hold the
742 * slab lock to guarantee that the chains are in a consistent state.
743 */
744 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
745 {
746 int nr = 0;
747 void *fp = page->freelist;
748 void *object = NULL;
749 unsigned long max_objects;
750
751 while (fp && nr <= page->objects) {
752 if (fp == search)
753 return 1;
754 if (!check_valid_pointer(s, page, fp)) {
755 if (object) {
756 object_err(s, page, object,
757 "Freechain corrupt");
758 set_freepointer(s, object, NULL);
759 break;
760 } else {
761 slab_err(s, page, "Freepointer corrupt");
762 page->freelist = NULL;
763 page->inuse = page->objects;
764 slab_fix(s, "Freelist cleared");
765 return 0;
766 }
767 break;
768 }
769 object = fp;
770 fp = get_freepointer(s, object);
771 nr++;
772 }
773
774 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
775 if (max_objects > MAX_OBJS_PER_PAGE)
776 max_objects = MAX_OBJS_PER_PAGE;
777
778 if (page->objects != max_objects) {
779 slab_err(s, page, "Wrong number of objects. Found %d but "
780 "should be %d", page->objects, max_objects);
781 page->objects = max_objects;
782 slab_fix(s, "Number of objects adjusted.");
783 }
784 if (page->inuse != page->objects - nr) {
785 slab_err(s, page, "Wrong object count. Counter is %d but "
786 "counted were %d", page->inuse, page->objects - nr);
787 page->inuse = page->objects - nr;
788 slab_fix(s, "Object count adjusted.");
789 }
790 return search == NULL;
791 }
792
793 static void trace(struct kmem_cache *s, struct page *page, void *object,
794 int alloc)
795 {
796 if (s->flags & SLAB_TRACE) {
797 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
798 s->name,
799 alloc ? "alloc" : "free",
800 object, page->inuse,
801 page->freelist);
802
803 if (!alloc)
804 print_section("Object", (void *)object, s->objsize);
805
806 dump_stack();
807 }
808 }
809
810 /*
811 * Tracking of fully allocated slabs for debugging purposes.
812 */
813 static void add_full(struct kmem_cache_node *n, struct page *page)
814 {
815 spin_lock(&n->list_lock);
816 list_add(&page->lru, &n->full);
817 spin_unlock(&n->list_lock);
818 }
819
820 static void remove_full(struct kmem_cache *s, struct page *page)
821 {
822 struct kmem_cache_node *n;
823
824 if (!(s->flags & SLAB_STORE_USER))
825 return;
826
827 n = get_node(s, page_to_nid(page));
828
829 spin_lock(&n->list_lock);
830 list_del(&page->lru);
831 spin_unlock(&n->list_lock);
832 }
833
834 /* Tracking of the number of slabs for debugging purposes */
835 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
836 {
837 struct kmem_cache_node *n = get_node(s, node);
838
839 return atomic_long_read(&n->nr_slabs);
840 }
841
842 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
843 {
844 struct kmem_cache_node *n = get_node(s, node);
845
846 /*
847 * May be called early in order to allocate a slab for the
848 * kmem_cache_node structure. Solve the chicken-egg
849 * dilemma by deferring the increment of the count during
850 * bootstrap (see early_kmem_cache_node_alloc).
851 */
852 if (!NUMA_BUILD || n) {
853 atomic_long_inc(&n->nr_slabs);
854 atomic_long_add(objects, &n->total_objects);
855 }
856 }
857 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
858 {
859 struct kmem_cache_node *n = get_node(s, node);
860
861 atomic_long_dec(&n->nr_slabs);
862 atomic_long_sub(objects, &n->total_objects);
863 }
864
865 /* Object debug checks for alloc/free paths */
866 static void setup_object_debug(struct kmem_cache *s, struct page *page,
867 void *object)
868 {
869 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
870 return;
871
872 init_object(s, object, 0);
873 init_tracking(s, object);
874 }
875
876 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
877 void *object, unsigned long addr)
878 {
879 if (!check_slab(s, page))
880 goto bad;
881
882 if (!on_freelist(s, page, object)) {
883 object_err(s, page, object, "Object already allocated");
884 goto bad;
885 }
886
887 if (!check_valid_pointer(s, page, object)) {
888 object_err(s, page, object, "Freelist Pointer check fails");
889 goto bad;
890 }
891
892 if (!check_object(s, page, object, 0))
893 goto bad;
894
895 /* Success perform special debug activities for allocs */
896 if (s->flags & SLAB_STORE_USER)
897 set_track(s, object, TRACK_ALLOC, addr);
898 trace(s, page, object, 1);
899 init_object(s, object, 1);
900 return 1;
901
902 bad:
903 if (PageSlab(page)) {
904 /*
905 * If this is a slab page then lets do the best we can
906 * to avoid issues in the future. Marking all objects
907 * as used avoids touching the remaining objects.
908 */
909 slab_fix(s, "Marking all objects used");
910 page->inuse = page->objects;
911 page->freelist = NULL;
912 }
913 return 0;
914 }
915
916 static int free_debug_processing(struct kmem_cache *s, struct page *page,
917 void *object, unsigned long addr)
918 {
919 if (!check_slab(s, page))
920 goto fail;
921
922 if (!check_valid_pointer(s, page, object)) {
923 slab_err(s, page, "Invalid object pointer 0x%p", object);
924 goto fail;
925 }
926
927 if (on_freelist(s, page, object)) {
928 object_err(s, page, object, "Object already free");
929 goto fail;
930 }
931
932 if (!check_object(s, page, object, 1))
933 return 0;
934
935 if (unlikely(s != page->slab)) {
936 if (!PageSlab(page)) {
937 slab_err(s, page, "Attempt to free object(0x%p) "
938 "outside of slab", object);
939 } else if (!page->slab) {
940 printk(KERN_ERR
941 "SLUB <none>: no slab for object 0x%p.\n",
942 object);
943 dump_stack();
944 } else
945 object_err(s, page, object,
946 "page slab pointer corrupt.");
947 goto fail;
948 }
949
950 /* Special debug activities for freeing objects */
951 if (!PageSlubFrozen(page) && !page->freelist)
952 remove_full(s, page);
953 if (s->flags & SLAB_STORE_USER)
954 set_track(s, object, TRACK_FREE, addr);
955 trace(s, page, object, 0);
956 init_object(s, object, 0);
957 return 1;
958
959 fail:
960 slab_fix(s, "Object at 0x%p not freed", object);
961 return 0;
962 }
963
964 static int __init setup_slub_debug(char *str)
965 {
966 slub_debug = DEBUG_DEFAULT_FLAGS;
967 if (*str++ != '=' || !*str)
968 /*
969 * No options specified. Switch on full debugging.
970 */
971 goto out;
972
973 if (*str == ',')
974 /*
975 * No options but restriction on slabs. This means full
976 * debugging for slabs matching a pattern.
977 */
978 goto check_slabs;
979
980 slub_debug = 0;
981 if (*str == '-')
982 /*
983 * Switch off all debugging measures.
984 */
985 goto out;
986
987 /*
988 * Determine which debug features should be switched on
989 */
990 for (; *str && *str != ','; str++) {
991 switch (tolower(*str)) {
992 case 'f':
993 slub_debug |= SLAB_DEBUG_FREE;
994 break;
995 case 'z':
996 slub_debug |= SLAB_RED_ZONE;
997 break;
998 case 'p':
999 slub_debug |= SLAB_POISON;
1000 break;
1001 case 'u':
1002 slub_debug |= SLAB_STORE_USER;
1003 break;
1004 case 't':
1005 slub_debug |= SLAB_TRACE;
1006 break;
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
1009 "unknown. skipped\n", *str);
1010 }
1011 }
1012
1013 check_slabs:
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
1016 out:
1017 return 1;
1018 }
1019
1020 __setup("slub_debug", setup_slub_debug);
1021
1022 static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
1024 void (*ctor)(void *))
1025 {
1026 /*
1027 * Enable debugging if selected on the kernel commandline.
1028 */
1029 if (slub_debug && (!slub_debug_slabs ||
1030 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1031 flags |= slub_debug;
1032
1033 return flags;
1034 }
1035 #else
1036 static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
1038
1039 static inline int alloc_debug_processing(struct kmem_cache *s,
1040 struct page *page, void *object, unsigned long addr) { return 0; }
1041
1042 static inline int free_debug_processing(struct kmem_cache *s,
1043 struct page *page, void *object, unsigned long addr) { return 0; }
1044
1045 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047 static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
1049 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1050 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
1052 void (*ctor)(void *))
1053 {
1054 return flags;
1055 }
1056 #define slub_debug 0
1057
1058 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1059 { return 0; }
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
1064 #endif
1065
1066 /*
1067 * Slab allocation and freeing
1068 */
1069 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1071 {
1072 int order = oo_order(oo);
1073
1074 if (node == -1)
1075 return alloc_pages(flags, order);
1076 else
1077 return alloc_pages_node(node, flags, order);
1078 }
1079
1080 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1081 {
1082 struct page *page;
1083 struct kmem_cache_order_objects oo = s->oo;
1084
1085 flags |= s->allocflags;
1086
1087 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1088 oo);
1089 if (unlikely(!page)) {
1090 oo = s->min;
1091 /*
1092 * Allocation may have failed due to fragmentation.
1093 * Try a lower order alloc if possible
1094 */
1095 page = alloc_slab_page(flags, node, oo);
1096 if (!page)
1097 return NULL;
1098
1099 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1100 }
1101 page->objects = oo_objects(oo);
1102 mod_zone_page_state(page_zone(page),
1103 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1104 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1105 1 << oo_order(oo));
1106
1107 return page;
1108 }
1109
1110 static void setup_object(struct kmem_cache *s, struct page *page,
1111 void *object)
1112 {
1113 setup_object_debug(s, page, object);
1114 if (unlikely(s->ctor))
1115 s->ctor(object);
1116 }
1117
1118 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1119 {
1120 struct page *page;
1121 void *start;
1122 void *last;
1123 void *p;
1124
1125 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1126
1127 page = allocate_slab(s,
1128 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1129 if (!page)
1130 goto out;
1131
1132 inc_slabs_node(s, page_to_nid(page), page->objects);
1133 page->slab = s;
1134 page->flags |= 1 << PG_slab;
1135 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1136 SLAB_STORE_USER | SLAB_TRACE))
1137 __SetPageSlubDebug(page);
1138
1139 start = page_address(page);
1140
1141 if (unlikely(s->flags & SLAB_POISON))
1142 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1143
1144 last = start;
1145 for_each_object(p, s, start, page->objects) {
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, p);
1148 last = p;
1149 }
1150 setup_object(s, page, last);
1151 set_freepointer(s, last, NULL);
1152
1153 page->freelist = start;
1154 page->inuse = 0;
1155 out:
1156 return page;
1157 }
1158
1159 static void __free_slab(struct kmem_cache *s, struct page *page)
1160 {
1161 int order = compound_order(page);
1162 int pages = 1 << order;
1163
1164 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1165 void *p;
1166
1167 slab_pad_check(s, page);
1168 for_each_object(p, s, page_address(page),
1169 page->objects)
1170 check_object(s, page, p, 0);
1171 __ClearPageSlubDebug(page);
1172 }
1173
1174 mod_zone_page_state(page_zone(page),
1175 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1176 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1177 -pages);
1178
1179 __ClearPageSlab(page);
1180 reset_page_mapcount(page);
1181 if (current->reclaim_state)
1182 current->reclaim_state->reclaimed_slab += pages;
1183 __free_pages(page, order);
1184 }
1185
1186 static void rcu_free_slab(struct rcu_head *h)
1187 {
1188 struct page *page;
1189
1190 page = container_of((struct list_head *)h, struct page, lru);
1191 __free_slab(page->slab, page);
1192 }
1193
1194 static void free_slab(struct kmem_cache *s, struct page *page)
1195 {
1196 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1197 /*
1198 * RCU free overloads the RCU head over the LRU
1199 */
1200 struct rcu_head *head = (void *)&page->lru;
1201
1202 call_rcu(head, rcu_free_slab);
1203 } else
1204 __free_slab(s, page);
1205 }
1206
1207 static void discard_slab(struct kmem_cache *s, struct page *page)
1208 {
1209 dec_slabs_node(s, page_to_nid(page), page->objects);
1210 free_slab(s, page);
1211 }
1212
1213 /*
1214 * Per slab locking using the pagelock
1215 */
1216 static __always_inline void slab_lock(struct page *page)
1217 {
1218 bit_spin_lock(PG_locked, &page->flags);
1219 }
1220
1221 static __always_inline void slab_unlock(struct page *page)
1222 {
1223 __bit_spin_unlock(PG_locked, &page->flags);
1224 }
1225
1226 static __always_inline int slab_trylock(struct page *page)
1227 {
1228 int rc = 1;
1229
1230 rc = bit_spin_trylock(PG_locked, &page->flags);
1231 return rc;
1232 }
1233
1234 /*
1235 * Management of partially allocated slabs
1236 */
1237 static void add_partial(struct kmem_cache_node *n,
1238 struct page *page, int tail)
1239 {
1240 spin_lock(&n->list_lock);
1241 n->nr_partial++;
1242 if (tail)
1243 list_add_tail(&page->lru, &n->partial);
1244 else
1245 list_add(&page->lru, &n->partial);
1246 spin_unlock(&n->list_lock);
1247 }
1248
1249 static void remove_partial(struct kmem_cache *s, struct page *page)
1250 {
1251 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1252
1253 spin_lock(&n->list_lock);
1254 list_del(&page->lru);
1255 n->nr_partial--;
1256 spin_unlock(&n->list_lock);
1257 }
1258
1259 /*
1260 * Lock slab and remove from the partial list.
1261 *
1262 * Must hold list_lock.
1263 */
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1265 struct page *page)
1266 {
1267 if (slab_trylock(page)) {
1268 list_del(&page->lru);
1269 n->nr_partial--;
1270 __SetPageSlubFrozen(page);
1271 return 1;
1272 }
1273 return 0;
1274 }
1275
1276 /*
1277 * Try to allocate a partial slab from a specific node.
1278 */
1279 static struct page *get_partial_node(struct kmem_cache_node *n)
1280 {
1281 struct page *page;
1282
1283 /*
1284 * Racy check. If we mistakenly see no partial slabs then we
1285 * just allocate an empty slab. If we mistakenly try to get a
1286 * partial slab and there is none available then get_partials()
1287 * will return NULL.
1288 */
1289 if (!n || !n->nr_partial)
1290 return NULL;
1291
1292 spin_lock(&n->list_lock);
1293 list_for_each_entry(page, &n->partial, lru)
1294 if (lock_and_freeze_slab(n, page))
1295 goto out;
1296 page = NULL;
1297 out:
1298 spin_unlock(&n->list_lock);
1299 return page;
1300 }
1301
1302 /*
1303 * Get a page from somewhere. Search in increasing NUMA distances.
1304 */
1305 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1306 {
1307 #ifdef CONFIG_NUMA
1308 struct zonelist *zonelist;
1309 struct zoneref *z;
1310 struct zone *zone;
1311 enum zone_type high_zoneidx = gfp_zone(flags);
1312 struct page *page;
1313
1314 /*
1315 * The defrag ratio allows a configuration of the tradeoffs between
1316 * inter node defragmentation and node local allocations. A lower
1317 * defrag_ratio increases the tendency to do local allocations
1318 * instead of attempting to obtain partial slabs from other nodes.
1319 *
1320 * If the defrag_ratio is set to 0 then kmalloc() always
1321 * returns node local objects. If the ratio is higher then kmalloc()
1322 * may return off node objects because partial slabs are obtained
1323 * from other nodes and filled up.
1324 *
1325 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1326 * defrag_ratio = 1000) then every (well almost) allocation will
1327 * first attempt to defrag slab caches on other nodes. This means
1328 * scanning over all nodes to look for partial slabs which may be
1329 * expensive if we do it every time we are trying to find a slab
1330 * with available objects.
1331 */
1332 if (!s->remote_node_defrag_ratio ||
1333 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1334 return NULL;
1335
1336 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1337 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1338 struct kmem_cache_node *n;
1339
1340 n = get_node(s, zone_to_nid(zone));
1341
1342 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1343 n->nr_partial > s->min_partial) {
1344 page = get_partial_node(n);
1345 if (page)
1346 return page;
1347 }
1348 }
1349 #endif
1350 return NULL;
1351 }
1352
1353 /*
1354 * Get a partial page, lock it and return it.
1355 */
1356 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1357 {
1358 struct page *page;
1359 int searchnode = (node == -1) ? numa_node_id() : node;
1360
1361 page = get_partial_node(get_node(s, searchnode));
1362 if (page || (flags & __GFP_THISNODE))
1363 return page;
1364
1365 return get_any_partial(s, flags);
1366 }
1367
1368 /*
1369 * Move a page back to the lists.
1370 *
1371 * Must be called with the slab lock held.
1372 *
1373 * On exit the slab lock will have been dropped.
1374 */
1375 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1376 {
1377 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1378 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1379
1380 __ClearPageSlubFrozen(page);
1381 if (page->inuse) {
1382
1383 if (page->freelist) {
1384 add_partial(n, page, tail);
1385 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1386 } else {
1387 stat(c, DEACTIVATE_FULL);
1388 if (SLABDEBUG && PageSlubDebug(page) &&
1389 (s->flags & SLAB_STORE_USER))
1390 add_full(n, page);
1391 }
1392 slab_unlock(page);
1393 } else {
1394 stat(c, DEACTIVATE_EMPTY);
1395 if (n->nr_partial < s->min_partial) {
1396 /*
1397 * Adding an empty slab to the partial slabs in order
1398 * to avoid page allocator overhead. This slab needs
1399 * to come after the other slabs with objects in
1400 * so that the others get filled first. That way the
1401 * size of the partial list stays small.
1402 *
1403 * kmem_cache_shrink can reclaim any empty slabs from
1404 * the partial list.
1405 */
1406 add_partial(n, page, 1);
1407 slab_unlock(page);
1408 } else {
1409 slab_unlock(page);
1410 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1411 discard_slab(s, page);
1412 }
1413 }
1414 }
1415
1416 /*
1417 * Remove the cpu slab
1418 */
1419 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1420 {
1421 struct page *page = c->page;
1422 int tail = 1;
1423
1424 if (page->freelist)
1425 stat(c, DEACTIVATE_REMOTE_FREES);
1426 /*
1427 * Merge cpu freelist into slab freelist. Typically we get here
1428 * because both freelists are empty. So this is unlikely
1429 * to occur.
1430 */
1431 while (unlikely(c->freelist)) {
1432 void **object;
1433
1434 tail = 0; /* Hot objects. Put the slab first */
1435
1436 /* Retrieve object from cpu_freelist */
1437 object = c->freelist;
1438 c->freelist = c->freelist[c->offset];
1439
1440 /* And put onto the regular freelist */
1441 object[c->offset] = page->freelist;
1442 page->freelist = object;
1443 page->inuse--;
1444 }
1445 c->page = NULL;
1446 unfreeze_slab(s, page, tail);
1447 }
1448
1449 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 {
1451 stat(c, CPUSLAB_FLUSH);
1452 slab_lock(c->page);
1453 deactivate_slab(s, c);
1454 }
1455
1456 /*
1457 * Flush cpu slab.
1458 *
1459 * Called from IPI handler with interrupts disabled.
1460 */
1461 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1462 {
1463 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1464
1465 if (likely(c && c->page))
1466 flush_slab(s, c);
1467 }
1468
1469 static void flush_cpu_slab(void *d)
1470 {
1471 struct kmem_cache *s = d;
1472
1473 __flush_cpu_slab(s, smp_processor_id());
1474 }
1475
1476 static void flush_all(struct kmem_cache *s)
1477 {
1478 on_each_cpu(flush_cpu_slab, s, 1);
1479 }
1480
1481 /*
1482 * Check if the objects in a per cpu structure fit numa
1483 * locality expectations.
1484 */
1485 static inline int node_match(struct kmem_cache_cpu *c, int node)
1486 {
1487 #ifdef CONFIG_NUMA
1488 if (node != -1 && c->node != node)
1489 return 0;
1490 #endif
1491 return 1;
1492 }
1493
1494 /*
1495 * Slow path. The lockless freelist is empty or we need to perform
1496 * debugging duties.
1497 *
1498 * Interrupts are disabled.
1499 *
1500 * Processing is still very fast if new objects have been freed to the
1501 * regular freelist. In that case we simply take over the regular freelist
1502 * as the lockless freelist and zap the regular freelist.
1503 *
1504 * If that is not working then we fall back to the partial lists. We take the
1505 * first element of the freelist as the object to allocate now and move the
1506 * rest of the freelist to the lockless freelist.
1507 *
1508 * And if we were unable to get a new slab from the partial slab lists then
1509 * we need to allocate a new slab. This is the slowest path since it involves
1510 * a call to the page allocator and the setup of a new slab.
1511 */
1512 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1513 unsigned long addr, struct kmem_cache_cpu *c)
1514 {
1515 void **object;
1516 struct page *new;
1517
1518 /* We handle __GFP_ZERO in the caller */
1519 gfpflags &= ~__GFP_ZERO;
1520
1521 if (!c->page)
1522 goto new_slab;
1523
1524 slab_lock(c->page);
1525 if (unlikely(!node_match(c, node)))
1526 goto another_slab;
1527
1528 stat(c, ALLOC_REFILL);
1529
1530 load_freelist:
1531 object = c->page->freelist;
1532 if (unlikely(!object))
1533 goto another_slab;
1534 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1535 goto debug;
1536
1537 c->freelist = object[c->offset];
1538 c->page->inuse = c->page->objects;
1539 c->page->freelist = NULL;
1540 c->node = page_to_nid(c->page);
1541 unlock_out:
1542 slab_unlock(c->page);
1543 stat(c, ALLOC_SLOWPATH);
1544 return object;
1545
1546 another_slab:
1547 deactivate_slab(s, c);
1548
1549 new_slab:
1550 new = get_partial(s, gfpflags, node);
1551 if (new) {
1552 c->page = new;
1553 stat(c, ALLOC_FROM_PARTIAL);
1554 goto load_freelist;
1555 }
1556
1557 if (gfpflags & __GFP_WAIT)
1558 local_irq_enable();
1559
1560 new = new_slab(s, gfpflags, node);
1561
1562 if (gfpflags & __GFP_WAIT)
1563 local_irq_disable();
1564
1565 if (new) {
1566 c = get_cpu_slab(s, smp_processor_id());
1567 stat(c, ALLOC_SLAB);
1568 if (c->page)
1569 flush_slab(s, c);
1570 slab_lock(new);
1571 __SetPageSlubFrozen(new);
1572 c->page = new;
1573 goto load_freelist;
1574 }
1575 return NULL;
1576 debug:
1577 if (!alloc_debug_processing(s, c->page, object, addr))
1578 goto another_slab;
1579
1580 c->page->inuse++;
1581 c->page->freelist = object[c->offset];
1582 c->node = -1;
1583 goto unlock_out;
1584 }
1585
1586 /*
1587 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1588 * have the fastpath folded into their functions. So no function call
1589 * overhead for requests that can be satisfied on the fastpath.
1590 *
1591 * The fastpath works by first checking if the lockless freelist can be used.
1592 * If not then __slab_alloc is called for slow processing.
1593 *
1594 * Otherwise we can simply pick the next object from the lockless free list.
1595 */
1596 static __always_inline void *slab_alloc(struct kmem_cache *s,
1597 gfp_t gfpflags, int node, unsigned long addr)
1598 {
1599 void **object;
1600 struct kmem_cache_cpu *c;
1601 unsigned long flags;
1602 unsigned int objsize;
1603
1604 gfpflags &= slab_gfp_mask;
1605
1606 lockdep_trace_alloc(gfpflags);
1607 might_sleep_if(gfpflags & __GFP_WAIT);
1608
1609 if (should_failslab(s->objsize, gfpflags))
1610 return NULL;
1611
1612 local_irq_save(flags);
1613 c = get_cpu_slab(s, smp_processor_id());
1614 objsize = c->objsize;
1615 if (unlikely(!c->freelist || !node_match(c, node)))
1616
1617 object = __slab_alloc(s, gfpflags, node, addr, c);
1618
1619 else {
1620 object = c->freelist;
1621 c->freelist = object[c->offset];
1622 stat(c, ALLOC_FASTPATH);
1623 }
1624 local_irq_restore(flags);
1625
1626 if (unlikely((gfpflags & __GFP_ZERO) && object))
1627 memset(object, 0, objsize);
1628
1629 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1630 return object;
1631 }
1632
1633 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1634 {
1635 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1636
1637 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1638
1639 return ret;
1640 }
1641 EXPORT_SYMBOL(kmem_cache_alloc);
1642
1643 #ifdef CONFIG_KMEMTRACE
1644 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1645 {
1646 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1647 }
1648 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1649 #endif
1650
1651 #ifdef CONFIG_NUMA
1652 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1653 {
1654 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1655
1656 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1657 s->objsize, s->size, gfpflags, node);
1658
1659 return ret;
1660 }
1661 EXPORT_SYMBOL(kmem_cache_alloc_node);
1662 #endif
1663
1664 #ifdef CONFIG_KMEMTRACE
1665 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1666 gfp_t gfpflags,
1667 int node)
1668 {
1669 return slab_alloc(s, gfpflags, node, _RET_IP_);
1670 }
1671 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1672 #endif
1673
1674 /*
1675 * Slow patch handling. This may still be called frequently since objects
1676 * have a longer lifetime than the cpu slabs in most processing loads.
1677 *
1678 * So we still attempt to reduce cache line usage. Just take the slab
1679 * lock and free the item. If there is no additional partial page
1680 * handling required then we can return immediately.
1681 */
1682 static void __slab_free(struct kmem_cache *s, struct page *page,
1683 void *x, unsigned long addr, unsigned int offset)
1684 {
1685 void *prior;
1686 void **object = (void *)x;
1687 struct kmem_cache_cpu *c;
1688
1689 c = get_cpu_slab(s, raw_smp_processor_id());
1690 stat(c, FREE_SLOWPATH);
1691 slab_lock(page);
1692
1693 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1694 goto debug;
1695
1696 checks_ok:
1697 prior = object[offset] = page->freelist;
1698 page->freelist = object;
1699 page->inuse--;
1700
1701 if (unlikely(PageSlubFrozen(page))) {
1702 stat(c, FREE_FROZEN);
1703 goto out_unlock;
1704 }
1705
1706 if (unlikely(!page->inuse))
1707 goto slab_empty;
1708
1709 /*
1710 * Objects left in the slab. If it was not on the partial list before
1711 * then add it.
1712 */
1713 if (unlikely(!prior)) {
1714 add_partial(get_node(s, page_to_nid(page)), page, 1);
1715 stat(c, FREE_ADD_PARTIAL);
1716 }
1717
1718 out_unlock:
1719 slab_unlock(page);
1720 return;
1721
1722 slab_empty:
1723 if (prior) {
1724 /*
1725 * Slab still on the partial list.
1726 */
1727 remove_partial(s, page);
1728 stat(c, FREE_REMOVE_PARTIAL);
1729 }
1730 slab_unlock(page);
1731 stat(c, FREE_SLAB);
1732 discard_slab(s, page);
1733 return;
1734
1735 debug:
1736 if (!free_debug_processing(s, page, x, addr))
1737 goto out_unlock;
1738 goto checks_ok;
1739 }
1740
1741 /*
1742 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1743 * can perform fastpath freeing without additional function calls.
1744 *
1745 * The fastpath is only possible if we are freeing to the current cpu slab
1746 * of this processor. This typically the case if we have just allocated
1747 * the item before.
1748 *
1749 * If fastpath is not possible then fall back to __slab_free where we deal
1750 * with all sorts of special processing.
1751 */
1752 static __always_inline void slab_free(struct kmem_cache *s,
1753 struct page *page, void *x, unsigned long addr)
1754 {
1755 void **object = (void *)x;
1756 struct kmem_cache_cpu *c;
1757 unsigned long flags;
1758
1759 kmemleak_free_recursive(x, s->flags);
1760 local_irq_save(flags);
1761 c = get_cpu_slab(s, smp_processor_id());
1762 debug_check_no_locks_freed(object, c->objsize);
1763 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1764 debug_check_no_obj_freed(object, c->objsize);
1765 if (likely(page == c->page && c->node >= 0)) {
1766 object[c->offset] = c->freelist;
1767 c->freelist = object;
1768 stat(c, FREE_FASTPATH);
1769 } else
1770 __slab_free(s, page, x, addr, c->offset);
1771
1772 local_irq_restore(flags);
1773 }
1774
1775 void kmem_cache_free(struct kmem_cache *s, void *x)
1776 {
1777 struct page *page;
1778
1779 page = virt_to_head_page(x);
1780
1781 slab_free(s, page, x, _RET_IP_);
1782
1783 trace_kmem_cache_free(_RET_IP_, x);
1784 }
1785 EXPORT_SYMBOL(kmem_cache_free);
1786
1787 /* Figure out on which slab page the object resides */
1788 static struct page *get_object_page(const void *x)
1789 {
1790 struct page *page = virt_to_head_page(x);
1791
1792 if (!PageSlab(page))
1793 return NULL;
1794
1795 return page;
1796 }
1797
1798 /*
1799 * Object placement in a slab is made very easy because we always start at
1800 * offset 0. If we tune the size of the object to the alignment then we can
1801 * get the required alignment by putting one properly sized object after
1802 * another.
1803 *
1804 * Notice that the allocation order determines the sizes of the per cpu
1805 * caches. Each processor has always one slab available for allocations.
1806 * Increasing the allocation order reduces the number of times that slabs
1807 * must be moved on and off the partial lists and is therefore a factor in
1808 * locking overhead.
1809 */
1810
1811 /*
1812 * Mininum / Maximum order of slab pages. This influences locking overhead
1813 * and slab fragmentation. A higher order reduces the number of partial slabs
1814 * and increases the number of allocations possible without having to
1815 * take the list_lock.
1816 */
1817 static int slub_min_order;
1818 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1819 static int slub_min_objects;
1820
1821 /*
1822 * Merge control. If this is set then no merging of slab caches will occur.
1823 * (Could be removed. This was introduced to pacify the merge skeptics.)
1824 */
1825 static int slub_nomerge;
1826
1827 /*
1828 * Calculate the order of allocation given an slab object size.
1829 *
1830 * The order of allocation has significant impact on performance and other
1831 * system components. Generally order 0 allocations should be preferred since
1832 * order 0 does not cause fragmentation in the page allocator. Larger objects
1833 * be problematic to put into order 0 slabs because there may be too much
1834 * unused space left. We go to a higher order if more than 1/16th of the slab
1835 * would be wasted.
1836 *
1837 * In order to reach satisfactory performance we must ensure that a minimum
1838 * number of objects is in one slab. Otherwise we may generate too much
1839 * activity on the partial lists which requires taking the list_lock. This is
1840 * less a concern for large slabs though which are rarely used.
1841 *
1842 * slub_max_order specifies the order where we begin to stop considering the
1843 * number of objects in a slab as critical. If we reach slub_max_order then
1844 * we try to keep the page order as low as possible. So we accept more waste
1845 * of space in favor of a small page order.
1846 *
1847 * Higher order allocations also allow the placement of more objects in a
1848 * slab and thereby reduce object handling overhead. If the user has
1849 * requested a higher mininum order then we start with that one instead of
1850 * the smallest order which will fit the object.
1851 */
1852 static inline int slab_order(int size, int min_objects,
1853 int max_order, int fract_leftover)
1854 {
1855 int order;
1856 int rem;
1857 int min_order = slub_min_order;
1858
1859 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1860 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1861
1862 for (order = max(min_order,
1863 fls(min_objects * size - 1) - PAGE_SHIFT);
1864 order <= max_order; order++) {
1865
1866 unsigned long slab_size = PAGE_SIZE << order;
1867
1868 if (slab_size < min_objects * size)
1869 continue;
1870
1871 rem = slab_size % size;
1872
1873 if (rem <= slab_size / fract_leftover)
1874 break;
1875
1876 }
1877
1878 return order;
1879 }
1880
1881 static inline int calculate_order(int size)
1882 {
1883 int order;
1884 int min_objects;
1885 int fraction;
1886 int max_objects;
1887
1888 /*
1889 * Attempt to find best configuration for a slab. This
1890 * works by first attempting to generate a layout with
1891 * the best configuration and backing off gradually.
1892 *
1893 * First we reduce the acceptable waste in a slab. Then
1894 * we reduce the minimum objects required in a slab.
1895 */
1896 min_objects = slub_min_objects;
1897 if (!min_objects)
1898 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1899 max_objects = (PAGE_SIZE << slub_max_order)/size;
1900 min_objects = min(min_objects, max_objects);
1901
1902 while (min_objects > 1) {
1903 fraction = 16;
1904 while (fraction >= 4) {
1905 order = slab_order(size, min_objects,
1906 slub_max_order, fraction);
1907 if (order <= slub_max_order)
1908 return order;
1909 fraction /= 2;
1910 }
1911 min_objects --;
1912 }
1913
1914 /*
1915 * We were unable to place multiple objects in a slab. Now
1916 * lets see if we can place a single object there.
1917 */
1918 order = slab_order(size, 1, slub_max_order, 1);
1919 if (order <= slub_max_order)
1920 return order;
1921
1922 /*
1923 * Doh this slab cannot be placed using slub_max_order.
1924 */
1925 order = slab_order(size, 1, MAX_ORDER, 1);
1926 if (order < MAX_ORDER)
1927 return order;
1928 return -ENOSYS;
1929 }
1930
1931 /*
1932 * Figure out what the alignment of the objects will be.
1933 */
1934 static unsigned long calculate_alignment(unsigned long flags,
1935 unsigned long align, unsigned long size)
1936 {
1937 /*
1938 * If the user wants hardware cache aligned objects then follow that
1939 * suggestion if the object is sufficiently large.
1940 *
1941 * The hardware cache alignment cannot override the specified
1942 * alignment though. If that is greater then use it.
1943 */
1944 if (flags & SLAB_HWCACHE_ALIGN) {
1945 unsigned long ralign = cache_line_size();
1946 while (size <= ralign / 2)
1947 ralign /= 2;
1948 align = max(align, ralign);
1949 }
1950
1951 if (align < ARCH_SLAB_MINALIGN)
1952 align = ARCH_SLAB_MINALIGN;
1953
1954 return ALIGN(align, sizeof(void *));
1955 }
1956
1957 static void init_kmem_cache_cpu(struct kmem_cache *s,
1958 struct kmem_cache_cpu *c)
1959 {
1960 c->page = NULL;
1961 c->freelist = NULL;
1962 c->node = 0;
1963 c->offset = s->offset / sizeof(void *);
1964 c->objsize = s->objsize;
1965 #ifdef CONFIG_SLUB_STATS
1966 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1967 #endif
1968 }
1969
1970 static void
1971 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1972 {
1973 n->nr_partial = 0;
1974 spin_lock_init(&n->list_lock);
1975 INIT_LIST_HEAD(&n->partial);
1976 #ifdef CONFIG_SLUB_DEBUG
1977 atomic_long_set(&n->nr_slabs, 0);
1978 atomic_long_set(&n->total_objects, 0);
1979 INIT_LIST_HEAD(&n->full);
1980 #endif
1981 }
1982
1983 #ifdef CONFIG_SMP
1984 /*
1985 * Per cpu array for per cpu structures.
1986 *
1987 * The per cpu array places all kmem_cache_cpu structures from one processor
1988 * close together meaning that it becomes possible that multiple per cpu
1989 * structures are contained in one cacheline. This may be particularly
1990 * beneficial for the kmalloc caches.
1991 *
1992 * A desktop system typically has around 60-80 slabs. With 100 here we are
1993 * likely able to get per cpu structures for all caches from the array defined
1994 * here. We must be able to cover all kmalloc caches during bootstrap.
1995 *
1996 * If the per cpu array is exhausted then fall back to kmalloc
1997 * of individual cachelines. No sharing is possible then.
1998 */
1999 #define NR_KMEM_CACHE_CPU 100
2000
2001 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2002 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2003
2004 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2005 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2006
2007 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2008 int cpu, gfp_t flags)
2009 {
2010 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2011
2012 if (c)
2013 per_cpu(kmem_cache_cpu_free, cpu) =
2014 (void *)c->freelist;
2015 else {
2016 /* Table overflow: So allocate ourselves */
2017 c = kmalloc_node(
2018 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2019 flags, cpu_to_node(cpu));
2020 if (!c)
2021 return NULL;
2022 }
2023
2024 init_kmem_cache_cpu(s, c);
2025 return c;
2026 }
2027
2028 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2029 {
2030 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2031 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2032 kfree(c);
2033 return;
2034 }
2035 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2036 per_cpu(kmem_cache_cpu_free, cpu) = c;
2037 }
2038
2039 static void free_kmem_cache_cpus(struct kmem_cache *s)
2040 {
2041 int cpu;
2042
2043 for_each_online_cpu(cpu) {
2044 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2045
2046 if (c) {
2047 s->cpu_slab[cpu] = NULL;
2048 free_kmem_cache_cpu(c, cpu);
2049 }
2050 }
2051 }
2052
2053 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2054 {
2055 int cpu;
2056
2057 for_each_online_cpu(cpu) {
2058 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2059
2060 if (c)
2061 continue;
2062
2063 c = alloc_kmem_cache_cpu(s, cpu, flags);
2064 if (!c) {
2065 free_kmem_cache_cpus(s);
2066 return 0;
2067 }
2068 s->cpu_slab[cpu] = c;
2069 }
2070 return 1;
2071 }
2072
2073 /*
2074 * Initialize the per cpu array.
2075 */
2076 static void init_alloc_cpu_cpu(int cpu)
2077 {
2078 int i;
2079
2080 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2081 return;
2082
2083 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2084 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2085
2086 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2087 }
2088
2089 static void __init init_alloc_cpu(void)
2090 {
2091 int cpu;
2092
2093 for_each_online_cpu(cpu)
2094 init_alloc_cpu_cpu(cpu);
2095 }
2096
2097 #else
2098 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2099 static inline void init_alloc_cpu(void) {}
2100
2101 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2102 {
2103 init_kmem_cache_cpu(s, &s->cpu_slab);
2104 return 1;
2105 }
2106 #endif
2107
2108 #ifdef CONFIG_NUMA
2109 /*
2110 * No kmalloc_node yet so do it by hand. We know that this is the first
2111 * slab on the node for this slabcache. There are no concurrent accesses
2112 * possible.
2113 *
2114 * Note that this function only works on the kmalloc_node_cache
2115 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2116 * memory on a fresh node that has no slab structures yet.
2117 */
2118 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2119 {
2120 struct page *page;
2121 struct kmem_cache_node *n;
2122 unsigned long flags;
2123
2124 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2125
2126 page = new_slab(kmalloc_caches, gfpflags, node);
2127
2128 BUG_ON(!page);
2129 if (page_to_nid(page) != node) {
2130 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2131 "node %d\n", node);
2132 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2133 "in order to be able to continue\n");
2134 }
2135
2136 n = page->freelist;
2137 BUG_ON(!n);
2138 page->freelist = get_freepointer(kmalloc_caches, n);
2139 page->inuse++;
2140 kmalloc_caches->node[node] = n;
2141 #ifdef CONFIG_SLUB_DEBUG
2142 init_object(kmalloc_caches, n, 1);
2143 init_tracking(kmalloc_caches, n);
2144 #endif
2145 init_kmem_cache_node(n, kmalloc_caches);
2146 inc_slabs_node(kmalloc_caches, node, page->objects);
2147
2148 /*
2149 * lockdep requires consistent irq usage for each lock
2150 * so even though there cannot be a race this early in
2151 * the boot sequence, we still disable irqs.
2152 */
2153 local_irq_save(flags);
2154 add_partial(n, page, 0);
2155 local_irq_restore(flags);
2156 }
2157
2158 static void free_kmem_cache_nodes(struct kmem_cache *s)
2159 {
2160 int node;
2161
2162 for_each_node_state(node, N_NORMAL_MEMORY) {
2163 struct kmem_cache_node *n = s->node[node];
2164 if (n && n != &s->local_node)
2165 kmem_cache_free(kmalloc_caches, n);
2166 s->node[node] = NULL;
2167 }
2168 }
2169
2170 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2171 {
2172 int node;
2173 int local_node;
2174
2175 if (slab_state >= UP)
2176 local_node = page_to_nid(virt_to_page(s));
2177 else
2178 local_node = 0;
2179
2180 for_each_node_state(node, N_NORMAL_MEMORY) {
2181 struct kmem_cache_node *n;
2182
2183 if (local_node == node)
2184 n = &s->local_node;
2185 else {
2186 if (slab_state == DOWN) {
2187 early_kmem_cache_node_alloc(gfpflags, node);
2188 continue;
2189 }
2190 n = kmem_cache_alloc_node(kmalloc_caches,
2191 gfpflags, node);
2192
2193 if (!n) {
2194 free_kmem_cache_nodes(s);
2195 return 0;
2196 }
2197
2198 }
2199 s->node[node] = n;
2200 init_kmem_cache_node(n, s);
2201 }
2202 return 1;
2203 }
2204 #else
2205 static void free_kmem_cache_nodes(struct kmem_cache *s)
2206 {
2207 }
2208
2209 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2210 {
2211 init_kmem_cache_node(&s->local_node, s);
2212 return 1;
2213 }
2214 #endif
2215
2216 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2217 {
2218 if (min < MIN_PARTIAL)
2219 min = MIN_PARTIAL;
2220 else if (min > MAX_PARTIAL)
2221 min = MAX_PARTIAL;
2222 s->min_partial = min;
2223 }
2224
2225 /*
2226 * calculate_sizes() determines the order and the distribution of data within
2227 * a slab object.
2228 */
2229 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2230 {
2231 unsigned long flags = s->flags;
2232 unsigned long size = s->objsize;
2233 unsigned long align = s->align;
2234 int order;
2235
2236 /*
2237 * Round up object size to the next word boundary. We can only
2238 * place the free pointer at word boundaries and this determines
2239 * the possible location of the free pointer.
2240 */
2241 size = ALIGN(size, sizeof(void *));
2242
2243 #ifdef CONFIG_SLUB_DEBUG
2244 /*
2245 * Determine if we can poison the object itself. If the user of
2246 * the slab may touch the object after free or before allocation
2247 * then we should never poison the object itself.
2248 */
2249 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2250 !s->ctor)
2251 s->flags |= __OBJECT_POISON;
2252 else
2253 s->flags &= ~__OBJECT_POISON;
2254
2255
2256 /*
2257 * If we are Redzoning then check if there is some space between the
2258 * end of the object and the free pointer. If not then add an
2259 * additional word to have some bytes to store Redzone information.
2260 */
2261 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2262 size += sizeof(void *);
2263 #endif
2264
2265 /*
2266 * With that we have determined the number of bytes in actual use
2267 * by the object. This is the potential offset to the free pointer.
2268 */
2269 s->inuse = size;
2270
2271 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2272 s->ctor)) {
2273 /*
2274 * Relocate free pointer after the object if it is not
2275 * permitted to overwrite the first word of the object on
2276 * kmem_cache_free.
2277 *
2278 * This is the case if we do RCU, have a constructor or
2279 * destructor or are poisoning the objects.
2280 */
2281 s->offset = size;
2282 size += sizeof(void *);
2283 }
2284
2285 #ifdef CONFIG_SLUB_DEBUG
2286 if (flags & SLAB_STORE_USER)
2287 /*
2288 * Need to store information about allocs and frees after
2289 * the object.
2290 */
2291 size += 2 * sizeof(struct track);
2292
2293 if (flags & SLAB_RED_ZONE)
2294 /*
2295 * Add some empty padding so that we can catch
2296 * overwrites from earlier objects rather than let
2297 * tracking information or the free pointer be
2298 * corrupted if a user writes before the start
2299 * of the object.
2300 */
2301 size += sizeof(void *);
2302 #endif
2303
2304 /*
2305 * Determine the alignment based on various parameters that the
2306 * user specified and the dynamic determination of cache line size
2307 * on bootup.
2308 */
2309 align = calculate_alignment(flags, align, s->objsize);
2310
2311 /*
2312 * SLUB stores one object immediately after another beginning from
2313 * offset 0. In order to align the objects we have to simply size
2314 * each object to conform to the alignment.
2315 */
2316 size = ALIGN(size, align);
2317 s->size = size;
2318 if (forced_order >= 0)
2319 order = forced_order;
2320 else
2321 order = calculate_order(size);
2322
2323 if (order < 0)
2324 return 0;
2325
2326 s->allocflags = 0;
2327 if (order)
2328 s->allocflags |= __GFP_COMP;
2329
2330 if (s->flags & SLAB_CACHE_DMA)
2331 s->allocflags |= SLUB_DMA;
2332
2333 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2334 s->allocflags |= __GFP_RECLAIMABLE;
2335
2336 /*
2337 * Determine the number of objects per slab
2338 */
2339 s->oo = oo_make(order, size);
2340 s->min = oo_make(get_order(size), size);
2341 if (oo_objects(s->oo) > oo_objects(s->max))
2342 s->max = s->oo;
2343
2344 return !!oo_objects(s->oo);
2345
2346 }
2347
2348 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2349 const char *name, size_t size,
2350 size_t align, unsigned long flags,
2351 void (*ctor)(void *))
2352 {
2353 memset(s, 0, kmem_size);
2354 s->name = name;
2355 s->ctor = ctor;
2356 s->objsize = size;
2357 s->align = align;
2358 s->flags = kmem_cache_flags(size, flags, name, ctor);
2359
2360 if (!calculate_sizes(s, -1))
2361 goto error;
2362
2363 /*
2364 * The larger the object size is, the more pages we want on the partial
2365 * list to avoid pounding the page allocator excessively.
2366 */
2367 set_min_partial(s, ilog2(s->size));
2368 s->refcount = 1;
2369 #ifdef CONFIG_NUMA
2370 s->remote_node_defrag_ratio = 1000;
2371 #endif
2372 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2373 goto error;
2374
2375 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2376 return 1;
2377 free_kmem_cache_nodes(s);
2378 error:
2379 if (flags & SLAB_PANIC)
2380 panic("Cannot create slab %s size=%lu realsize=%u "
2381 "order=%u offset=%u flags=%lx\n",
2382 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2383 s->offset, flags);
2384 return 0;
2385 }
2386
2387 /*
2388 * Check if a given pointer is valid
2389 */
2390 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2391 {
2392 struct page *page;
2393
2394 page = get_object_page(object);
2395
2396 if (!page || s != page->slab)
2397 /* No slab or wrong slab */
2398 return 0;
2399
2400 if (!check_valid_pointer(s, page, object))
2401 return 0;
2402
2403 /*
2404 * We could also check if the object is on the slabs freelist.
2405 * But this would be too expensive and it seems that the main
2406 * purpose of kmem_ptr_valid() is to check if the object belongs
2407 * to a certain slab.
2408 */
2409 return 1;
2410 }
2411 EXPORT_SYMBOL(kmem_ptr_validate);
2412
2413 /*
2414 * Determine the size of a slab object
2415 */
2416 unsigned int kmem_cache_size(struct kmem_cache *s)
2417 {
2418 return s->objsize;
2419 }
2420 EXPORT_SYMBOL(kmem_cache_size);
2421
2422 const char *kmem_cache_name(struct kmem_cache *s)
2423 {
2424 return s->name;
2425 }
2426 EXPORT_SYMBOL(kmem_cache_name);
2427
2428 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2429 const char *text)
2430 {
2431 #ifdef CONFIG_SLUB_DEBUG
2432 void *addr = page_address(page);
2433 void *p;
2434 DECLARE_BITMAP(map, page->objects);
2435
2436 bitmap_zero(map, page->objects);
2437 slab_err(s, page, "%s", text);
2438 slab_lock(page);
2439 for_each_free_object(p, s, page->freelist)
2440 set_bit(slab_index(p, s, addr), map);
2441
2442 for_each_object(p, s, addr, page->objects) {
2443
2444 if (!test_bit(slab_index(p, s, addr), map)) {
2445 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2446 p, p - addr);
2447 print_tracking(s, p);
2448 }
2449 }
2450 slab_unlock(page);
2451 #endif
2452 }
2453
2454 /*
2455 * Attempt to free all partial slabs on a node.
2456 */
2457 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2458 {
2459 unsigned long flags;
2460 struct page *page, *h;
2461
2462 spin_lock_irqsave(&n->list_lock, flags);
2463 list_for_each_entry_safe(page, h, &n->partial, lru) {
2464 if (!page->inuse) {
2465 list_del(&page->lru);
2466 discard_slab(s, page);
2467 n->nr_partial--;
2468 } else {
2469 list_slab_objects(s, page,
2470 "Objects remaining on kmem_cache_close()");
2471 }
2472 }
2473 spin_unlock_irqrestore(&n->list_lock, flags);
2474 }
2475
2476 /*
2477 * Release all resources used by a slab cache.
2478 */
2479 static inline int kmem_cache_close(struct kmem_cache *s)
2480 {
2481 int node;
2482
2483 flush_all(s);
2484
2485 /* Attempt to free all objects */
2486 free_kmem_cache_cpus(s);
2487 for_each_node_state(node, N_NORMAL_MEMORY) {
2488 struct kmem_cache_node *n = get_node(s, node);
2489
2490 free_partial(s, n);
2491 if (n->nr_partial || slabs_node(s, node))
2492 return 1;
2493 }
2494 free_kmem_cache_nodes(s);
2495 return 0;
2496 }
2497
2498 /*
2499 * Close a cache and release the kmem_cache structure
2500 * (must be used for caches created using kmem_cache_create)
2501 */
2502 void kmem_cache_destroy(struct kmem_cache *s)
2503 {
2504 down_write(&slub_lock);
2505 s->refcount--;
2506 if (!s->refcount) {
2507 list_del(&s->list);
2508 up_write(&slub_lock);
2509 if (kmem_cache_close(s)) {
2510 printk(KERN_ERR "SLUB %s: %s called for cache that "
2511 "still has objects.\n", s->name, __func__);
2512 dump_stack();
2513 }
2514 sysfs_slab_remove(s);
2515 } else
2516 up_write(&slub_lock);
2517 }
2518 EXPORT_SYMBOL(kmem_cache_destroy);
2519
2520 /********************************************************************
2521 * Kmalloc subsystem
2522 *******************************************************************/
2523
2524 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2525 EXPORT_SYMBOL(kmalloc_caches);
2526
2527 static int __init setup_slub_min_order(char *str)
2528 {
2529 get_option(&str, &slub_min_order);
2530
2531 return 1;
2532 }
2533
2534 __setup("slub_min_order=", setup_slub_min_order);
2535
2536 static int __init setup_slub_max_order(char *str)
2537 {
2538 get_option(&str, &slub_max_order);
2539 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2540
2541 return 1;
2542 }
2543
2544 __setup("slub_max_order=", setup_slub_max_order);
2545
2546 static int __init setup_slub_min_objects(char *str)
2547 {
2548 get_option(&str, &slub_min_objects);
2549
2550 return 1;
2551 }
2552
2553 __setup("slub_min_objects=", setup_slub_min_objects);
2554
2555 static int __init setup_slub_nomerge(char *str)
2556 {
2557 slub_nomerge = 1;
2558 return 1;
2559 }
2560
2561 __setup("slub_nomerge", setup_slub_nomerge);
2562
2563 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2564 const char *name, int size, gfp_t gfp_flags)
2565 {
2566 unsigned int flags = 0;
2567
2568 if (gfp_flags & SLUB_DMA)
2569 flags = SLAB_CACHE_DMA;
2570
2571 /*
2572 * This function is called with IRQs disabled during early-boot on
2573 * single CPU so there's no need to take slub_lock here.
2574 */
2575 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2576 flags, NULL))
2577 goto panic;
2578
2579 list_add(&s->list, &slab_caches);
2580
2581 if (sysfs_slab_add(s))
2582 goto panic;
2583 return s;
2584
2585 panic:
2586 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2587 }
2588
2589 #ifdef CONFIG_ZONE_DMA
2590 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2591
2592 static void sysfs_add_func(struct work_struct *w)
2593 {
2594 struct kmem_cache *s;
2595
2596 down_write(&slub_lock);
2597 list_for_each_entry(s, &slab_caches, list) {
2598 if (s->flags & __SYSFS_ADD_DEFERRED) {
2599 s->flags &= ~__SYSFS_ADD_DEFERRED;
2600 sysfs_slab_add(s);
2601 }
2602 }
2603 up_write(&slub_lock);
2604 }
2605
2606 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2607
2608 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2609 {
2610 struct kmem_cache *s;
2611 char *text;
2612 size_t realsize;
2613 unsigned long slabflags;
2614
2615 s = kmalloc_caches_dma[index];
2616 if (s)
2617 return s;
2618
2619 /* Dynamically create dma cache */
2620 if (flags & __GFP_WAIT)
2621 down_write(&slub_lock);
2622 else {
2623 if (!down_write_trylock(&slub_lock))
2624 goto out;
2625 }
2626
2627 if (kmalloc_caches_dma[index])
2628 goto unlock_out;
2629
2630 realsize = kmalloc_caches[index].objsize;
2631 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2632 (unsigned int)realsize);
2633 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2634
2635 /*
2636 * Must defer sysfs creation to a workqueue because we don't know
2637 * what context we are called from. Before sysfs comes up, we don't
2638 * need to do anything because our sysfs initcall will start by
2639 * adding all existing slabs to sysfs.
2640 */
2641 slabflags = SLAB_CACHE_DMA;
2642 if (slab_state >= SYSFS)
2643 slabflags |= __SYSFS_ADD_DEFERRED;
2644
2645 if (!s || !text || !kmem_cache_open(s, flags, text,
2646 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2647 kfree(s);
2648 kfree(text);
2649 goto unlock_out;
2650 }
2651
2652 list_add(&s->list, &slab_caches);
2653 kmalloc_caches_dma[index] = s;
2654
2655 if (slab_state >= SYSFS)
2656 schedule_work(&sysfs_add_work);
2657
2658 unlock_out:
2659 up_write(&slub_lock);
2660 out:
2661 return kmalloc_caches_dma[index];
2662 }
2663 #endif
2664
2665 /*
2666 * Conversion table for small slabs sizes / 8 to the index in the
2667 * kmalloc array. This is necessary for slabs < 192 since we have non power
2668 * of two cache sizes there. The size of larger slabs can be determined using
2669 * fls.
2670 */
2671 static s8 size_index[24] = {
2672 3, /* 8 */
2673 4, /* 16 */
2674 5, /* 24 */
2675 5, /* 32 */
2676 6, /* 40 */
2677 6, /* 48 */
2678 6, /* 56 */
2679 6, /* 64 */
2680 1, /* 72 */
2681 1, /* 80 */
2682 1, /* 88 */
2683 1, /* 96 */
2684 7, /* 104 */
2685 7, /* 112 */
2686 7, /* 120 */
2687 7, /* 128 */
2688 2, /* 136 */
2689 2, /* 144 */
2690 2, /* 152 */
2691 2, /* 160 */
2692 2, /* 168 */
2693 2, /* 176 */
2694 2, /* 184 */
2695 2 /* 192 */
2696 };
2697
2698 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2699 {
2700 int index;
2701
2702 if (size <= 192) {
2703 if (!size)
2704 return ZERO_SIZE_PTR;
2705
2706 index = size_index[(size - 1) / 8];
2707 } else
2708 index = fls(size - 1);
2709
2710 #ifdef CONFIG_ZONE_DMA
2711 if (unlikely((flags & SLUB_DMA)))
2712 return dma_kmalloc_cache(index, flags);
2713
2714 #endif
2715 return &kmalloc_caches[index];
2716 }
2717
2718 void *__kmalloc(size_t size, gfp_t flags)
2719 {
2720 struct kmem_cache *s;
2721 void *ret;
2722
2723 if (unlikely(size > SLUB_MAX_SIZE))
2724 return kmalloc_large(size, flags);
2725
2726 s = get_slab(size, flags);
2727
2728 if (unlikely(ZERO_OR_NULL_PTR(s)))
2729 return s;
2730
2731 ret = slab_alloc(s, flags, -1, _RET_IP_);
2732
2733 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2734
2735 return ret;
2736 }
2737 EXPORT_SYMBOL(__kmalloc);
2738
2739 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2740 {
2741 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2742 get_order(size));
2743
2744 if (page)
2745 return page_address(page);
2746 else
2747 return NULL;
2748 }
2749
2750 #ifdef CONFIG_NUMA
2751 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2752 {
2753 struct kmem_cache *s;
2754 void *ret;
2755
2756 if (unlikely(size > SLUB_MAX_SIZE)) {
2757 ret = kmalloc_large_node(size, flags, node);
2758
2759 trace_kmalloc_node(_RET_IP_, ret,
2760 size, PAGE_SIZE << get_order(size),
2761 flags, node);
2762
2763 return ret;
2764 }
2765
2766 s = get_slab(size, flags);
2767
2768 if (unlikely(ZERO_OR_NULL_PTR(s)))
2769 return s;
2770
2771 ret = slab_alloc(s, flags, node, _RET_IP_);
2772
2773 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2774
2775 return ret;
2776 }
2777 EXPORT_SYMBOL(__kmalloc_node);
2778 #endif
2779
2780 size_t ksize(const void *object)
2781 {
2782 struct page *page;
2783 struct kmem_cache *s;
2784
2785 if (unlikely(object == ZERO_SIZE_PTR))
2786 return 0;
2787
2788 page = virt_to_head_page(object);
2789
2790 if (unlikely(!PageSlab(page))) {
2791 WARN_ON(!PageCompound(page));
2792 return PAGE_SIZE << compound_order(page);
2793 }
2794 s = page->slab;
2795
2796 #ifdef CONFIG_SLUB_DEBUG
2797 /*
2798 * Debugging requires use of the padding between object
2799 * and whatever may come after it.
2800 */
2801 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2802 return s->objsize;
2803
2804 #endif
2805 /*
2806 * If we have the need to store the freelist pointer
2807 * back there or track user information then we can
2808 * only use the space before that information.
2809 */
2810 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2811 return s->inuse;
2812 /*
2813 * Else we can use all the padding etc for the allocation
2814 */
2815 return s->size;
2816 }
2817 EXPORT_SYMBOL(ksize);
2818
2819 void kfree(const void *x)
2820 {
2821 struct page *page;
2822 void *object = (void *)x;
2823
2824 trace_kfree(_RET_IP_, x);
2825
2826 if (unlikely(ZERO_OR_NULL_PTR(x)))
2827 return;
2828
2829 page = virt_to_head_page(x);
2830 if (unlikely(!PageSlab(page))) {
2831 BUG_ON(!PageCompound(page));
2832 put_page(page);
2833 return;
2834 }
2835 slab_free(page->slab, page, object, _RET_IP_);
2836 }
2837 EXPORT_SYMBOL(kfree);
2838
2839 /*
2840 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2841 * the remaining slabs by the number of items in use. The slabs with the
2842 * most items in use come first. New allocations will then fill those up
2843 * and thus they can be removed from the partial lists.
2844 *
2845 * The slabs with the least items are placed last. This results in them
2846 * being allocated from last increasing the chance that the last objects
2847 * are freed in them.
2848 */
2849 int kmem_cache_shrink(struct kmem_cache *s)
2850 {
2851 int node;
2852 int i;
2853 struct kmem_cache_node *n;
2854 struct page *page;
2855 struct page *t;
2856 int objects = oo_objects(s->max);
2857 struct list_head *slabs_by_inuse =
2858 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2859 unsigned long flags;
2860
2861 if (!slabs_by_inuse)
2862 return -ENOMEM;
2863
2864 flush_all(s);
2865 for_each_node_state(node, N_NORMAL_MEMORY) {
2866 n = get_node(s, node);
2867
2868 if (!n->nr_partial)
2869 continue;
2870
2871 for (i = 0; i < objects; i++)
2872 INIT_LIST_HEAD(slabs_by_inuse + i);
2873
2874 spin_lock_irqsave(&n->list_lock, flags);
2875
2876 /*
2877 * Build lists indexed by the items in use in each slab.
2878 *
2879 * Note that concurrent frees may occur while we hold the
2880 * list_lock. page->inuse here is the upper limit.
2881 */
2882 list_for_each_entry_safe(page, t, &n->partial, lru) {
2883 if (!page->inuse && slab_trylock(page)) {
2884 /*
2885 * Must hold slab lock here because slab_free
2886 * may have freed the last object and be
2887 * waiting to release the slab.
2888 */
2889 list_del(&page->lru);
2890 n->nr_partial--;
2891 slab_unlock(page);
2892 discard_slab(s, page);
2893 } else {
2894 list_move(&page->lru,
2895 slabs_by_inuse + page->inuse);
2896 }
2897 }
2898
2899 /*
2900 * Rebuild the partial list with the slabs filled up most
2901 * first and the least used slabs at the end.
2902 */
2903 for (i = objects - 1; i >= 0; i--)
2904 list_splice(slabs_by_inuse + i, n->partial.prev);
2905
2906 spin_unlock_irqrestore(&n->list_lock, flags);
2907 }
2908
2909 kfree(slabs_by_inuse);
2910 return 0;
2911 }
2912 EXPORT_SYMBOL(kmem_cache_shrink);
2913
2914 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2915 static int slab_mem_going_offline_callback(void *arg)
2916 {
2917 struct kmem_cache *s;
2918
2919 down_read(&slub_lock);
2920 list_for_each_entry(s, &slab_caches, list)
2921 kmem_cache_shrink(s);
2922 up_read(&slub_lock);
2923
2924 return 0;
2925 }
2926
2927 static void slab_mem_offline_callback(void *arg)
2928 {
2929 struct kmem_cache_node *n;
2930 struct kmem_cache *s;
2931 struct memory_notify *marg = arg;
2932 int offline_node;
2933
2934 offline_node = marg->status_change_nid;
2935
2936 /*
2937 * If the node still has available memory. we need kmem_cache_node
2938 * for it yet.
2939 */
2940 if (offline_node < 0)
2941 return;
2942
2943 down_read(&slub_lock);
2944 list_for_each_entry(s, &slab_caches, list) {
2945 n = get_node(s, offline_node);
2946 if (n) {
2947 /*
2948 * if n->nr_slabs > 0, slabs still exist on the node
2949 * that is going down. We were unable to free them,
2950 * and offline_pages() function shoudn't call this
2951 * callback. So, we must fail.
2952 */
2953 BUG_ON(slabs_node(s, offline_node));
2954
2955 s->node[offline_node] = NULL;
2956 kmem_cache_free(kmalloc_caches, n);
2957 }
2958 }
2959 up_read(&slub_lock);
2960 }
2961
2962 static int slab_mem_going_online_callback(void *arg)
2963 {
2964 struct kmem_cache_node *n;
2965 struct kmem_cache *s;
2966 struct memory_notify *marg = arg;
2967 int nid = marg->status_change_nid;
2968 int ret = 0;
2969
2970 /*
2971 * If the node's memory is already available, then kmem_cache_node is
2972 * already created. Nothing to do.
2973 */
2974 if (nid < 0)
2975 return 0;
2976
2977 /*
2978 * We are bringing a node online. No memory is available yet. We must
2979 * allocate a kmem_cache_node structure in order to bring the node
2980 * online.
2981 */
2982 down_read(&slub_lock);
2983 list_for_each_entry(s, &slab_caches, list) {
2984 /*
2985 * XXX: kmem_cache_alloc_node will fallback to other nodes
2986 * since memory is not yet available from the node that
2987 * is brought up.
2988 */
2989 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2990 if (!n) {
2991 ret = -ENOMEM;
2992 goto out;
2993 }
2994 init_kmem_cache_node(n, s);
2995 s->node[nid] = n;
2996 }
2997 out:
2998 up_read(&slub_lock);
2999 return ret;
3000 }
3001
3002 static int slab_memory_callback(struct notifier_block *self,
3003 unsigned long action, void *arg)
3004 {
3005 int ret = 0;
3006
3007 switch (action) {
3008 case MEM_GOING_ONLINE:
3009 ret = slab_mem_going_online_callback(arg);
3010 break;
3011 case MEM_GOING_OFFLINE:
3012 ret = slab_mem_going_offline_callback(arg);
3013 break;
3014 case MEM_OFFLINE:
3015 case MEM_CANCEL_ONLINE:
3016 slab_mem_offline_callback(arg);
3017 break;
3018 case MEM_ONLINE:
3019 case MEM_CANCEL_OFFLINE:
3020 break;
3021 }
3022 if (ret)
3023 ret = notifier_from_errno(ret);
3024 else
3025 ret = NOTIFY_OK;
3026 return ret;
3027 }
3028
3029 #endif /* CONFIG_MEMORY_HOTPLUG */
3030
3031 /********************************************************************
3032 * Basic setup of slabs
3033 *******************************************************************/
3034
3035 void __init kmem_cache_init(void)
3036 {
3037 int i;
3038 int caches = 0;
3039
3040 init_alloc_cpu();
3041
3042 #ifdef CONFIG_NUMA
3043 /*
3044 * Must first have the slab cache available for the allocations of the
3045 * struct kmem_cache_node's. There is special bootstrap code in
3046 * kmem_cache_open for slab_state == DOWN.
3047 */
3048 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3049 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3050 kmalloc_caches[0].refcount = -1;
3051 caches++;
3052
3053 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3054 #endif
3055
3056 /* Able to allocate the per node structures */
3057 slab_state = PARTIAL;
3058
3059 /* Caches that are not of the two-to-the-power-of size */
3060 if (KMALLOC_MIN_SIZE <= 64) {
3061 create_kmalloc_cache(&kmalloc_caches[1],
3062 "kmalloc-96", 96, GFP_NOWAIT);
3063 caches++;
3064 create_kmalloc_cache(&kmalloc_caches[2],
3065 "kmalloc-192", 192, GFP_NOWAIT);
3066 caches++;
3067 }
3068
3069 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3070 create_kmalloc_cache(&kmalloc_caches[i],
3071 "kmalloc", 1 << i, GFP_NOWAIT);
3072 caches++;
3073 }
3074
3075
3076 /*
3077 * Patch up the size_index table if we have strange large alignment
3078 * requirements for the kmalloc array. This is only the case for
3079 * MIPS it seems. The standard arches will not generate any code here.
3080 *
3081 * Largest permitted alignment is 256 bytes due to the way we
3082 * handle the index determination for the smaller caches.
3083 *
3084 * Make sure that nothing crazy happens if someone starts tinkering
3085 * around with ARCH_KMALLOC_MINALIGN
3086 */
3087 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3088 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3089
3090 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3091 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3092
3093 if (KMALLOC_MIN_SIZE == 128) {
3094 /*
3095 * The 192 byte sized cache is not used if the alignment
3096 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3097 * instead.
3098 */
3099 for (i = 128 + 8; i <= 192; i += 8)
3100 size_index[(i - 1) / 8] = 8;
3101 }
3102
3103 slab_state = UP;
3104
3105 /* Provide the correct kmalloc names now that the caches are up */
3106 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3107 kmalloc_caches[i]. name =
3108 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3109
3110 #ifdef CONFIG_SMP
3111 register_cpu_notifier(&slab_notifier);
3112 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3113 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3114 #else
3115 kmem_size = sizeof(struct kmem_cache);
3116 #endif
3117
3118 printk(KERN_INFO
3119 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3120 " CPUs=%d, Nodes=%d\n",
3121 caches, cache_line_size(),
3122 slub_min_order, slub_max_order, slub_min_objects,
3123 nr_cpu_ids, nr_node_ids);
3124 }
3125
3126 void __init kmem_cache_init_late(void)
3127 {
3128 /*
3129 * Interrupts are enabled now so all GFP allocations are safe.
3130 */
3131 slab_gfp_mask = __GFP_BITS_MASK;
3132 }
3133
3134 /*
3135 * Find a mergeable slab cache
3136 */
3137 static int slab_unmergeable(struct kmem_cache *s)
3138 {
3139 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3140 return 1;
3141
3142 if (s->ctor)
3143 return 1;
3144
3145 /*
3146 * We may have set a slab to be unmergeable during bootstrap.
3147 */
3148 if (s->refcount < 0)
3149 return 1;
3150
3151 return 0;
3152 }
3153
3154 static struct kmem_cache *find_mergeable(size_t size,
3155 size_t align, unsigned long flags, const char *name,
3156 void (*ctor)(void *))
3157 {
3158 struct kmem_cache *s;
3159
3160 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3161 return NULL;
3162
3163 if (ctor)
3164 return NULL;
3165
3166 size = ALIGN(size, sizeof(void *));
3167 align = calculate_alignment(flags, align, size);
3168 size = ALIGN(size, align);
3169 flags = kmem_cache_flags(size, flags, name, NULL);
3170
3171 list_for_each_entry(s, &slab_caches, list) {
3172 if (slab_unmergeable(s))
3173 continue;
3174
3175 if (size > s->size)
3176 continue;
3177
3178 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3179 continue;
3180 /*
3181 * Check if alignment is compatible.
3182 * Courtesy of Adrian Drzewiecki
3183 */
3184 if ((s->size & ~(align - 1)) != s->size)
3185 continue;
3186
3187 if (s->size - size >= sizeof(void *))
3188 continue;
3189
3190 return s;
3191 }
3192 return NULL;
3193 }
3194
3195 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3196 size_t align, unsigned long flags, void (*ctor)(void *))
3197 {
3198 struct kmem_cache *s;
3199
3200 down_write(&slub_lock);
3201 s = find_mergeable(size, align, flags, name, ctor);
3202 if (s) {
3203 int cpu;
3204
3205 s->refcount++;
3206 /*
3207 * Adjust the object sizes so that we clear
3208 * the complete object on kzalloc.
3209 */
3210 s->objsize = max(s->objsize, (int)size);
3211
3212 /*
3213 * And then we need to update the object size in the
3214 * per cpu structures
3215 */
3216 for_each_online_cpu(cpu)
3217 get_cpu_slab(s, cpu)->objsize = s->objsize;
3218
3219 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3220 up_write(&slub_lock);
3221
3222 if (sysfs_slab_alias(s, name)) {
3223 down_write(&slub_lock);
3224 s->refcount--;
3225 up_write(&slub_lock);
3226 goto err;
3227 }
3228 return s;
3229 }
3230
3231 s = kmalloc(kmem_size, GFP_KERNEL);
3232 if (s) {
3233 if (kmem_cache_open(s, GFP_KERNEL, name,
3234 size, align, flags, ctor)) {
3235 list_add(&s->list, &slab_caches);
3236 up_write(&slub_lock);
3237 if (sysfs_slab_add(s)) {
3238 down_write(&slub_lock);
3239 list_del(&s->list);
3240 up_write(&slub_lock);
3241 kfree(s);
3242 goto err;
3243 }
3244 return s;
3245 }
3246 kfree(s);
3247 }
3248 up_write(&slub_lock);
3249
3250 err:
3251 if (flags & SLAB_PANIC)
3252 panic("Cannot create slabcache %s\n", name);
3253 else
3254 s = NULL;
3255 return s;
3256 }
3257 EXPORT_SYMBOL(kmem_cache_create);
3258
3259 #ifdef CONFIG_SMP
3260 /*
3261 * Use the cpu notifier to insure that the cpu slabs are flushed when
3262 * necessary.
3263 */
3264 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3265 unsigned long action, void *hcpu)
3266 {
3267 long cpu = (long)hcpu;
3268 struct kmem_cache *s;
3269 unsigned long flags;
3270
3271 switch (action) {
3272 case CPU_UP_PREPARE:
3273 case CPU_UP_PREPARE_FROZEN:
3274 init_alloc_cpu_cpu(cpu);
3275 down_read(&slub_lock);
3276 list_for_each_entry(s, &slab_caches, list)
3277 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3278 GFP_KERNEL);
3279 up_read(&slub_lock);
3280 break;
3281
3282 case CPU_UP_CANCELED:
3283 case CPU_UP_CANCELED_FROZEN:
3284 case CPU_DEAD:
3285 case CPU_DEAD_FROZEN:
3286 down_read(&slub_lock);
3287 list_for_each_entry(s, &slab_caches, list) {
3288 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3289
3290 local_irq_save(flags);
3291 __flush_cpu_slab(s, cpu);
3292 local_irq_restore(flags);
3293 free_kmem_cache_cpu(c, cpu);
3294 s->cpu_slab[cpu] = NULL;
3295 }
3296 up_read(&slub_lock);
3297 break;
3298 default:
3299 break;
3300 }
3301 return NOTIFY_OK;
3302 }
3303
3304 static struct notifier_block __cpuinitdata slab_notifier = {
3305 .notifier_call = slab_cpuup_callback
3306 };
3307
3308 #endif
3309
3310 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3311 {
3312 struct kmem_cache *s;
3313 void *ret;
3314
3315 if (unlikely(size > SLUB_MAX_SIZE))
3316 return kmalloc_large(size, gfpflags);
3317
3318 s = get_slab(size, gfpflags);
3319
3320 if (unlikely(ZERO_OR_NULL_PTR(s)))
3321 return s;
3322
3323 ret = slab_alloc(s, gfpflags, -1, caller);
3324
3325 /* Honor the call site pointer we recieved. */
3326 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3327
3328 return ret;
3329 }
3330
3331 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3332 int node, unsigned long caller)
3333 {
3334 struct kmem_cache *s;
3335 void *ret;
3336
3337 if (unlikely(size > SLUB_MAX_SIZE))
3338 return kmalloc_large_node(size, gfpflags, node);
3339
3340 s = get_slab(size, gfpflags);
3341
3342 if (unlikely(ZERO_OR_NULL_PTR(s)))
3343 return s;
3344
3345 ret = slab_alloc(s, gfpflags, node, caller);
3346
3347 /* Honor the call site pointer we recieved. */
3348 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3349
3350 return ret;
3351 }
3352
3353 #ifdef CONFIG_SLUB_DEBUG
3354 static unsigned long count_partial(struct kmem_cache_node *n,
3355 int (*get_count)(struct page *))
3356 {
3357 unsigned long flags;
3358 unsigned long x = 0;
3359 struct page *page;
3360
3361 spin_lock_irqsave(&n->list_lock, flags);
3362 list_for_each_entry(page, &n->partial, lru)
3363 x += get_count(page);
3364 spin_unlock_irqrestore(&n->list_lock, flags);
3365 return x;
3366 }
3367
3368 static int count_inuse(struct page *page)
3369 {
3370 return page->inuse;
3371 }
3372
3373 static int count_total(struct page *page)
3374 {
3375 return page->objects;
3376 }
3377
3378 static int count_free(struct page *page)
3379 {
3380 return page->objects - page->inuse;
3381 }
3382
3383 static int validate_slab(struct kmem_cache *s, struct page *page,
3384 unsigned long *map)
3385 {
3386 void *p;
3387 void *addr = page_address(page);
3388
3389 if (!check_slab(s, page) ||
3390 !on_freelist(s, page, NULL))
3391 return 0;
3392
3393 /* Now we know that a valid freelist exists */
3394 bitmap_zero(map, page->objects);
3395
3396 for_each_free_object(p, s, page->freelist) {
3397 set_bit(slab_index(p, s, addr), map);
3398 if (!check_object(s, page, p, 0))
3399 return 0;
3400 }
3401
3402 for_each_object(p, s, addr, page->objects)
3403 if (!test_bit(slab_index(p, s, addr), map))
3404 if (!check_object(s, page, p, 1))
3405 return 0;
3406 return 1;
3407 }
3408
3409 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3410 unsigned long *map)
3411 {
3412 if (slab_trylock(page)) {
3413 validate_slab(s, page, map);
3414 slab_unlock(page);
3415 } else
3416 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3417 s->name, page);
3418
3419 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3420 if (!PageSlubDebug(page))
3421 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3422 "on slab 0x%p\n", s->name, page);
3423 } else {
3424 if (PageSlubDebug(page))
3425 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3426 "slab 0x%p\n", s->name, page);
3427 }
3428 }
3429
3430 static int validate_slab_node(struct kmem_cache *s,
3431 struct kmem_cache_node *n, unsigned long *map)
3432 {
3433 unsigned long count = 0;
3434 struct page *page;
3435 unsigned long flags;
3436
3437 spin_lock_irqsave(&n->list_lock, flags);
3438
3439 list_for_each_entry(page, &n->partial, lru) {
3440 validate_slab_slab(s, page, map);
3441 count++;
3442 }
3443 if (count != n->nr_partial)
3444 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3445 "counter=%ld\n", s->name, count, n->nr_partial);
3446
3447 if (!(s->flags & SLAB_STORE_USER))
3448 goto out;
3449
3450 list_for_each_entry(page, &n->full, lru) {
3451 validate_slab_slab(s, page, map);
3452 count++;
3453 }
3454 if (count != atomic_long_read(&n->nr_slabs))
3455 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3456 "counter=%ld\n", s->name, count,
3457 atomic_long_read(&n->nr_slabs));
3458
3459 out:
3460 spin_unlock_irqrestore(&n->list_lock, flags);
3461 return count;
3462 }
3463
3464 static long validate_slab_cache(struct kmem_cache *s)
3465 {
3466 int node;
3467 unsigned long count = 0;
3468 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3469 sizeof(unsigned long), GFP_KERNEL);
3470
3471 if (!map)
3472 return -ENOMEM;
3473
3474 flush_all(s);
3475 for_each_node_state(node, N_NORMAL_MEMORY) {
3476 struct kmem_cache_node *n = get_node(s, node);
3477
3478 count += validate_slab_node(s, n, map);
3479 }
3480 kfree(map);
3481 return count;
3482 }
3483
3484 #ifdef SLUB_RESILIENCY_TEST
3485 static void resiliency_test(void)
3486 {
3487 u8 *p;
3488
3489 printk(KERN_ERR "SLUB resiliency testing\n");
3490 printk(KERN_ERR "-----------------------\n");
3491 printk(KERN_ERR "A. Corruption after allocation\n");
3492
3493 p = kzalloc(16, GFP_KERNEL);
3494 p[16] = 0x12;
3495 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3496 " 0x12->0x%p\n\n", p + 16);
3497
3498 validate_slab_cache(kmalloc_caches + 4);
3499
3500 /* Hmmm... The next two are dangerous */
3501 p = kzalloc(32, GFP_KERNEL);
3502 p[32 + sizeof(void *)] = 0x34;
3503 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3504 " 0x34 -> -0x%p\n", p);
3505 printk(KERN_ERR
3506 "If allocated object is overwritten then not detectable\n\n");
3507
3508 validate_slab_cache(kmalloc_caches + 5);
3509 p = kzalloc(64, GFP_KERNEL);
3510 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3511 *p = 0x56;
3512 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3513 p);
3514 printk(KERN_ERR
3515 "If allocated object is overwritten then not detectable\n\n");
3516 validate_slab_cache(kmalloc_caches + 6);
3517
3518 printk(KERN_ERR "\nB. Corruption after free\n");
3519 p = kzalloc(128, GFP_KERNEL);
3520 kfree(p);
3521 *p = 0x78;
3522 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3523 validate_slab_cache(kmalloc_caches + 7);
3524
3525 p = kzalloc(256, GFP_KERNEL);
3526 kfree(p);
3527 p[50] = 0x9a;
3528 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3529 p);
3530 validate_slab_cache(kmalloc_caches + 8);
3531
3532 p = kzalloc(512, GFP_KERNEL);
3533 kfree(p);
3534 p[512] = 0xab;
3535 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3536 validate_slab_cache(kmalloc_caches + 9);
3537 }
3538 #else
3539 static void resiliency_test(void) {};
3540 #endif
3541
3542 /*
3543 * Generate lists of code addresses where slabcache objects are allocated
3544 * and freed.
3545 */
3546
3547 struct location {
3548 unsigned long count;
3549 unsigned long addr;
3550 long long sum_time;
3551 long min_time;
3552 long max_time;
3553 long min_pid;
3554 long max_pid;
3555 DECLARE_BITMAP(cpus, NR_CPUS);
3556 nodemask_t nodes;
3557 };
3558
3559 struct loc_track {
3560 unsigned long max;
3561 unsigned long count;
3562 struct location *loc;
3563 };
3564
3565 static void free_loc_track(struct loc_track *t)
3566 {
3567 if (t->max)
3568 free_pages((unsigned long)t->loc,
3569 get_order(sizeof(struct location) * t->max));
3570 }
3571
3572 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3573 {
3574 struct location *l;
3575 int order;
3576
3577 order = get_order(sizeof(struct location) * max);
3578
3579 l = (void *)__get_free_pages(flags, order);
3580 if (!l)
3581 return 0;
3582
3583 if (t->count) {
3584 memcpy(l, t->loc, sizeof(struct location) * t->count);
3585 free_loc_track(t);
3586 }
3587 t->max = max;
3588 t->loc = l;
3589 return 1;
3590 }
3591
3592 static int add_location(struct loc_track *t, struct kmem_cache *s,
3593 const struct track *track)
3594 {
3595 long start, end, pos;
3596 struct location *l;
3597 unsigned long caddr;
3598 unsigned long age = jiffies - track->when;
3599
3600 start = -1;
3601 end = t->count;
3602
3603 for ( ; ; ) {
3604 pos = start + (end - start + 1) / 2;
3605
3606 /*
3607 * There is nothing at "end". If we end up there
3608 * we need to add something to before end.
3609 */
3610 if (pos == end)
3611 break;
3612
3613 caddr = t->loc[pos].addr;
3614 if (track->addr == caddr) {
3615
3616 l = &t->loc[pos];
3617 l->count++;
3618 if (track->when) {
3619 l->sum_time += age;
3620 if (age < l->min_time)
3621 l->min_time = age;
3622 if (age > l->max_time)
3623 l->max_time = age;
3624
3625 if (track->pid < l->min_pid)
3626 l->min_pid = track->pid;
3627 if (track->pid > l->max_pid)
3628 l->max_pid = track->pid;
3629
3630 cpumask_set_cpu(track->cpu,
3631 to_cpumask(l->cpus));
3632 }
3633 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3634 return 1;
3635 }
3636
3637 if (track->addr < caddr)
3638 end = pos;
3639 else
3640 start = pos;
3641 }
3642
3643 /*
3644 * Not found. Insert new tracking element.
3645 */
3646 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3647 return 0;
3648
3649 l = t->loc + pos;
3650 if (pos < t->count)
3651 memmove(l + 1, l,
3652 (t->count - pos) * sizeof(struct location));
3653 t->count++;
3654 l->count = 1;
3655 l->addr = track->addr;
3656 l->sum_time = age;
3657 l->min_time = age;
3658 l->max_time = age;
3659 l->min_pid = track->pid;
3660 l->max_pid = track->pid;
3661 cpumask_clear(to_cpumask(l->cpus));
3662 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3663 nodes_clear(l->nodes);
3664 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3665 return 1;
3666 }
3667
3668 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3669 struct page *page, enum track_item alloc)
3670 {
3671 void *addr = page_address(page);
3672 DECLARE_BITMAP(map, page->objects);
3673 void *p;
3674
3675 bitmap_zero(map, page->objects);
3676 for_each_free_object(p, s, page->freelist)
3677 set_bit(slab_index(p, s, addr), map);
3678
3679 for_each_object(p, s, addr, page->objects)
3680 if (!test_bit(slab_index(p, s, addr), map))
3681 add_location(t, s, get_track(s, p, alloc));
3682 }
3683
3684 static int list_locations(struct kmem_cache *s, char *buf,
3685 enum track_item alloc)
3686 {
3687 int len = 0;
3688 unsigned long i;
3689 struct loc_track t = { 0, 0, NULL };
3690 int node;
3691
3692 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3693 GFP_TEMPORARY))
3694 return sprintf(buf, "Out of memory\n");
3695
3696 /* Push back cpu slabs */
3697 flush_all(s);
3698
3699 for_each_node_state(node, N_NORMAL_MEMORY) {
3700 struct kmem_cache_node *n = get_node(s, node);
3701 unsigned long flags;
3702 struct page *page;
3703
3704 if (!atomic_long_read(&n->nr_slabs))
3705 continue;
3706
3707 spin_lock_irqsave(&n->list_lock, flags);
3708 list_for_each_entry(page, &n->partial, lru)
3709 process_slab(&t, s, page, alloc);
3710 list_for_each_entry(page, &n->full, lru)
3711 process_slab(&t, s, page, alloc);
3712 spin_unlock_irqrestore(&n->list_lock, flags);
3713 }
3714
3715 for (i = 0; i < t.count; i++) {
3716 struct location *l = &t.loc[i];
3717
3718 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3719 break;
3720 len += sprintf(buf + len, "%7ld ", l->count);
3721
3722 if (l->addr)
3723 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3724 else
3725 len += sprintf(buf + len, "<not-available>");
3726
3727 if (l->sum_time != l->min_time) {
3728 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3729 l->min_time,
3730 (long)div_u64(l->sum_time, l->count),
3731 l->max_time);
3732 } else
3733 len += sprintf(buf + len, " age=%ld",
3734 l->min_time);
3735
3736 if (l->min_pid != l->max_pid)
3737 len += sprintf(buf + len, " pid=%ld-%ld",
3738 l->min_pid, l->max_pid);
3739 else
3740 len += sprintf(buf + len, " pid=%ld",
3741 l->min_pid);
3742
3743 if (num_online_cpus() > 1 &&
3744 !cpumask_empty(to_cpumask(l->cpus)) &&
3745 len < PAGE_SIZE - 60) {
3746 len += sprintf(buf + len, " cpus=");
3747 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3748 to_cpumask(l->cpus));
3749 }
3750
3751 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3752 len < PAGE_SIZE - 60) {
3753 len += sprintf(buf + len, " nodes=");
3754 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3755 l->nodes);
3756 }
3757
3758 len += sprintf(buf + len, "\n");
3759 }
3760
3761 free_loc_track(&t);
3762 if (!t.count)
3763 len += sprintf(buf, "No data\n");
3764 return len;
3765 }
3766
3767 enum slab_stat_type {
3768 SL_ALL, /* All slabs */
3769 SL_PARTIAL, /* Only partially allocated slabs */
3770 SL_CPU, /* Only slabs used for cpu caches */
3771 SL_OBJECTS, /* Determine allocated objects not slabs */
3772 SL_TOTAL /* Determine object capacity not slabs */
3773 };
3774
3775 #define SO_ALL (1 << SL_ALL)
3776 #define SO_PARTIAL (1 << SL_PARTIAL)
3777 #define SO_CPU (1 << SL_CPU)
3778 #define SO_OBJECTS (1 << SL_OBJECTS)
3779 #define SO_TOTAL (1 << SL_TOTAL)
3780
3781 static ssize_t show_slab_objects(struct kmem_cache *s,
3782 char *buf, unsigned long flags)
3783 {
3784 unsigned long total = 0;
3785 int node;
3786 int x;
3787 unsigned long *nodes;
3788 unsigned long *per_cpu;
3789
3790 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3791 if (!nodes)
3792 return -ENOMEM;
3793 per_cpu = nodes + nr_node_ids;
3794
3795 if (flags & SO_CPU) {
3796 int cpu;
3797
3798 for_each_possible_cpu(cpu) {
3799 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3800
3801 if (!c || c->node < 0)
3802 continue;
3803
3804 if (c->page) {
3805 if (flags & SO_TOTAL)
3806 x = c->page->objects;
3807 else if (flags & SO_OBJECTS)
3808 x = c->page->inuse;
3809 else
3810 x = 1;
3811
3812 total += x;
3813 nodes[c->node] += x;
3814 }
3815 per_cpu[c->node]++;
3816 }
3817 }
3818
3819 if (flags & SO_ALL) {
3820 for_each_node_state(node, N_NORMAL_MEMORY) {
3821 struct kmem_cache_node *n = get_node(s, node);
3822
3823 if (flags & SO_TOTAL)
3824 x = atomic_long_read(&n->total_objects);
3825 else if (flags & SO_OBJECTS)
3826 x = atomic_long_read(&n->total_objects) -
3827 count_partial(n, count_free);
3828
3829 else
3830 x = atomic_long_read(&n->nr_slabs);
3831 total += x;
3832 nodes[node] += x;
3833 }
3834
3835 } else if (flags & SO_PARTIAL) {
3836 for_each_node_state(node, N_NORMAL_MEMORY) {
3837 struct kmem_cache_node *n = get_node(s, node);
3838
3839 if (flags & SO_TOTAL)
3840 x = count_partial(n, count_total);
3841 else if (flags & SO_OBJECTS)
3842 x = count_partial(n, count_inuse);
3843 else
3844 x = n->nr_partial;
3845 total += x;
3846 nodes[node] += x;
3847 }
3848 }
3849 x = sprintf(buf, "%lu", total);
3850 #ifdef CONFIG_NUMA
3851 for_each_node_state(node, N_NORMAL_MEMORY)
3852 if (nodes[node])
3853 x += sprintf(buf + x, " N%d=%lu",
3854 node, nodes[node]);
3855 #endif
3856 kfree(nodes);
3857 return x + sprintf(buf + x, "\n");
3858 }
3859
3860 static int any_slab_objects(struct kmem_cache *s)
3861 {
3862 int node;
3863
3864 for_each_online_node(node) {
3865 struct kmem_cache_node *n = get_node(s, node);
3866
3867 if (!n)
3868 continue;
3869
3870 if (atomic_long_read(&n->total_objects))
3871 return 1;
3872 }
3873 return 0;
3874 }
3875
3876 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3877 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3878
3879 struct slab_attribute {
3880 struct attribute attr;
3881 ssize_t (*show)(struct kmem_cache *s, char *buf);
3882 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3883 };
3884
3885 #define SLAB_ATTR_RO(_name) \
3886 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3887
3888 #define SLAB_ATTR(_name) \
3889 static struct slab_attribute _name##_attr = \
3890 __ATTR(_name, 0644, _name##_show, _name##_store)
3891
3892 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3893 {
3894 return sprintf(buf, "%d\n", s->size);
3895 }
3896 SLAB_ATTR_RO(slab_size);
3897
3898 static ssize_t align_show(struct kmem_cache *s, char *buf)
3899 {
3900 return sprintf(buf, "%d\n", s->align);
3901 }
3902 SLAB_ATTR_RO(align);
3903
3904 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3905 {
3906 return sprintf(buf, "%d\n", s->objsize);
3907 }
3908 SLAB_ATTR_RO(object_size);
3909
3910 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3911 {
3912 return sprintf(buf, "%d\n", oo_objects(s->oo));
3913 }
3914 SLAB_ATTR_RO(objs_per_slab);
3915
3916 static ssize_t order_store(struct kmem_cache *s,
3917 const char *buf, size_t length)
3918 {
3919 unsigned long order;
3920 int err;
3921
3922 err = strict_strtoul(buf, 10, &order);
3923 if (err)
3924 return err;
3925
3926 if (order > slub_max_order || order < slub_min_order)
3927 return -EINVAL;
3928
3929 calculate_sizes(s, order);
3930 return length;
3931 }
3932
3933 static ssize_t order_show(struct kmem_cache *s, char *buf)
3934 {
3935 return sprintf(buf, "%d\n", oo_order(s->oo));
3936 }
3937 SLAB_ATTR(order);
3938
3939 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3940 {
3941 return sprintf(buf, "%lu\n", s->min_partial);
3942 }
3943
3944 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3945 size_t length)
3946 {
3947 unsigned long min;
3948 int err;
3949
3950 err = strict_strtoul(buf, 10, &min);
3951 if (err)
3952 return err;
3953
3954 set_min_partial(s, min);
3955 return length;
3956 }
3957 SLAB_ATTR(min_partial);
3958
3959 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3960 {
3961 if (s->ctor) {
3962 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3963
3964 return n + sprintf(buf + n, "\n");
3965 }
3966 return 0;
3967 }
3968 SLAB_ATTR_RO(ctor);
3969
3970 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3971 {
3972 return sprintf(buf, "%d\n", s->refcount - 1);
3973 }
3974 SLAB_ATTR_RO(aliases);
3975
3976 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3977 {
3978 return show_slab_objects(s, buf, SO_ALL);
3979 }
3980 SLAB_ATTR_RO(slabs);
3981
3982 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3983 {
3984 return show_slab_objects(s, buf, SO_PARTIAL);
3985 }
3986 SLAB_ATTR_RO(partial);
3987
3988 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3989 {
3990 return show_slab_objects(s, buf, SO_CPU);
3991 }
3992 SLAB_ATTR_RO(cpu_slabs);
3993
3994 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3995 {
3996 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3997 }
3998 SLAB_ATTR_RO(objects);
3999
4000 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4001 {
4002 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4003 }
4004 SLAB_ATTR_RO(objects_partial);
4005
4006 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4007 {
4008 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4009 }
4010 SLAB_ATTR_RO(total_objects);
4011
4012 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4013 {
4014 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4015 }
4016
4017 static ssize_t sanity_checks_store(struct kmem_cache *s,
4018 const char *buf, size_t length)
4019 {
4020 s->flags &= ~SLAB_DEBUG_FREE;
4021 if (buf[0] == '1')
4022 s->flags |= SLAB_DEBUG_FREE;
4023 return length;
4024 }
4025 SLAB_ATTR(sanity_checks);
4026
4027 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4028 {
4029 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4030 }
4031
4032 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4033 size_t length)
4034 {
4035 s->flags &= ~SLAB_TRACE;
4036 if (buf[0] == '1')
4037 s->flags |= SLAB_TRACE;
4038 return length;
4039 }
4040 SLAB_ATTR(trace);
4041
4042 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4043 {
4044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4045 }
4046
4047 static ssize_t reclaim_account_store(struct kmem_cache *s,
4048 const char *buf, size_t length)
4049 {
4050 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4051 if (buf[0] == '1')
4052 s->flags |= SLAB_RECLAIM_ACCOUNT;
4053 return length;
4054 }
4055 SLAB_ATTR(reclaim_account);
4056
4057 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4058 {
4059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4060 }
4061 SLAB_ATTR_RO(hwcache_align);
4062
4063 #ifdef CONFIG_ZONE_DMA
4064 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4065 {
4066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4067 }
4068 SLAB_ATTR_RO(cache_dma);
4069 #endif
4070
4071 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4072 {
4073 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4074 }
4075 SLAB_ATTR_RO(destroy_by_rcu);
4076
4077 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4078 {
4079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4080 }
4081
4082 static ssize_t red_zone_store(struct kmem_cache *s,
4083 const char *buf, size_t length)
4084 {
4085 if (any_slab_objects(s))
4086 return -EBUSY;
4087
4088 s->flags &= ~SLAB_RED_ZONE;
4089 if (buf[0] == '1')
4090 s->flags |= SLAB_RED_ZONE;
4091 calculate_sizes(s, -1);
4092 return length;
4093 }
4094 SLAB_ATTR(red_zone);
4095
4096 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4097 {
4098 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4099 }
4100
4101 static ssize_t poison_store(struct kmem_cache *s,
4102 const char *buf, size_t length)
4103 {
4104 if (any_slab_objects(s))
4105 return -EBUSY;
4106
4107 s->flags &= ~SLAB_POISON;
4108 if (buf[0] == '1')
4109 s->flags |= SLAB_POISON;
4110 calculate_sizes(s, -1);
4111 return length;
4112 }
4113 SLAB_ATTR(poison);
4114
4115 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4116 {
4117 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4118 }
4119
4120 static ssize_t store_user_store(struct kmem_cache *s,
4121 const char *buf, size_t length)
4122 {
4123 if (any_slab_objects(s))
4124 return -EBUSY;
4125
4126 s->flags &= ~SLAB_STORE_USER;
4127 if (buf[0] == '1')
4128 s->flags |= SLAB_STORE_USER;
4129 calculate_sizes(s, -1);
4130 return length;
4131 }
4132 SLAB_ATTR(store_user);
4133
4134 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4135 {
4136 return 0;
4137 }
4138
4139 static ssize_t validate_store(struct kmem_cache *s,
4140 const char *buf, size_t length)
4141 {
4142 int ret = -EINVAL;
4143
4144 if (buf[0] == '1') {
4145 ret = validate_slab_cache(s);
4146 if (ret >= 0)
4147 ret = length;
4148 }
4149 return ret;
4150 }
4151 SLAB_ATTR(validate);
4152
4153 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4154 {
4155 return 0;
4156 }
4157
4158 static ssize_t shrink_store(struct kmem_cache *s,
4159 const char *buf, size_t length)
4160 {
4161 if (buf[0] == '1') {
4162 int rc = kmem_cache_shrink(s);
4163
4164 if (rc)
4165 return rc;
4166 } else
4167 return -EINVAL;
4168 return length;
4169 }
4170 SLAB_ATTR(shrink);
4171
4172 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4173 {
4174 if (!(s->flags & SLAB_STORE_USER))
4175 return -ENOSYS;
4176 return list_locations(s, buf, TRACK_ALLOC);
4177 }
4178 SLAB_ATTR_RO(alloc_calls);
4179
4180 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4181 {
4182 if (!(s->flags & SLAB_STORE_USER))
4183 return -ENOSYS;
4184 return list_locations(s, buf, TRACK_FREE);
4185 }
4186 SLAB_ATTR_RO(free_calls);
4187
4188 #ifdef CONFIG_NUMA
4189 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4190 {
4191 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4192 }
4193
4194 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4195 const char *buf, size_t length)
4196 {
4197 unsigned long ratio;
4198 int err;
4199
4200 err = strict_strtoul(buf, 10, &ratio);
4201 if (err)
4202 return err;
4203
4204 if (ratio <= 100)
4205 s->remote_node_defrag_ratio = ratio * 10;
4206
4207 return length;
4208 }
4209 SLAB_ATTR(remote_node_defrag_ratio);
4210 #endif
4211
4212 #ifdef CONFIG_SLUB_STATS
4213 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4214 {
4215 unsigned long sum = 0;
4216 int cpu;
4217 int len;
4218 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4219
4220 if (!data)
4221 return -ENOMEM;
4222
4223 for_each_online_cpu(cpu) {
4224 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4225
4226 data[cpu] = x;
4227 sum += x;
4228 }
4229
4230 len = sprintf(buf, "%lu", sum);
4231
4232 #ifdef CONFIG_SMP
4233 for_each_online_cpu(cpu) {
4234 if (data[cpu] && len < PAGE_SIZE - 20)
4235 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4236 }
4237 #endif
4238 kfree(data);
4239 return len + sprintf(buf + len, "\n");
4240 }
4241
4242 #define STAT_ATTR(si, text) \
4243 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4244 { \
4245 return show_stat(s, buf, si); \
4246 } \
4247 SLAB_ATTR_RO(text); \
4248
4249 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4250 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4251 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4252 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4253 STAT_ATTR(FREE_FROZEN, free_frozen);
4254 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4255 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4256 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4257 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4258 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4259 STAT_ATTR(FREE_SLAB, free_slab);
4260 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4261 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4262 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4263 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4264 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4265 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4266 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4267 #endif
4268
4269 static struct attribute *slab_attrs[] = {
4270 &slab_size_attr.attr,
4271 &object_size_attr.attr,
4272 &objs_per_slab_attr.attr,
4273 &order_attr.attr,
4274 &min_partial_attr.attr,
4275 &objects_attr.attr,
4276 &objects_partial_attr.attr,
4277 &total_objects_attr.attr,
4278 &slabs_attr.attr,
4279 &partial_attr.attr,
4280 &cpu_slabs_attr.attr,
4281 &ctor_attr.attr,
4282 &aliases_attr.attr,
4283 &align_attr.attr,
4284 &sanity_checks_attr.attr,
4285 &trace_attr.attr,
4286 &hwcache_align_attr.attr,
4287 &reclaim_account_attr.attr,
4288 &destroy_by_rcu_attr.attr,
4289 &red_zone_attr.attr,
4290 &poison_attr.attr,
4291 &store_user_attr.attr,
4292 &validate_attr.attr,
4293 &shrink_attr.attr,
4294 &alloc_calls_attr.attr,
4295 &free_calls_attr.attr,
4296 #ifdef CONFIG_ZONE_DMA
4297 &cache_dma_attr.attr,
4298 #endif
4299 #ifdef CONFIG_NUMA
4300 &remote_node_defrag_ratio_attr.attr,
4301 #endif
4302 #ifdef CONFIG_SLUB_STATS
4303 &alloc_fastpath_attr.attr,
4304 &alloc_slowpath_attr.attr,
4305 &free_fastpath_attr.attr,
4306 &free_slowpath_attr.attr,
4307 &free_frozen_attr.attr,
4308 &free_add_partial_attr.attr,
4309 &free_remove_partial_attr.attr,
4310 &alloc_from_partial_attr.attr,
4311 &alloc_slab_attr.attr,
4312 &alloc_refill_attr.attr,
4313 &free_slab_attr.attr,
4314 &cpuslab_flush_attr.attr,
4315 &deactivate_full_attr.attr,
4316 &deactivate_empty_attr.attr,
4317 &deactivate_to_head_attr.attr,
4318 &deactivate_to_tail_attr.attr,
4319 &deactivate_remote_frees_attr.attr,
4320 &order_fallback_attr.attr,
4321 #endif
4322 NULL
4323 };
4324
4325 static struct attribute_group slab_attr_group = {
4326 .attrs = slab_attrs,
4327 };
4328
4329 static ssize_t slab_attr_show(struct kobject *kobj,
4330 struct attribute *attr,
4331 char *buf)
4332 {
4333 struct slab_attribute *attribute;
4334 struct kmem_cache *s;
4335 int err;
4336
4337 attribute = to_slab_attr(attr);
4338 s = to_slab(kobj);
4339
4340 if (!attribute->show)
4341 return -EIO;
4342
4343 err = attribute->show(s, buf);
4344
4345 return err;
4346 }
4347
4348 static ssize_t slab_attr_store(struct kobject *kobj,
4349 struct attribute *attr,
4350 const char *buf, size_t len)
4351 {
4352 struct slab_attribute *attribute;
4353 struct kmem_cache *s;
4354 int err;
4355
4356 attribute = to_slab_attr(attr);
4357 s = to_slab(kobj);
4358
4359 if (!attribute->store)
4360 return -EIO;
4361
4362 err = attribute->store(s, buf, len);
4363
4364 return err;
4365 }
4366
4367 static void kmem_cache_release(struct kobject *kobj)
4368 {
4369 struct kmem_cache *s = to_slab(kobj);
4370
4371 kfree(s);
4372 }
4373
4374 static struct sysfs_ops slab_sysfs_ops = {
4375 .show = slab_attr_show,
4376 .store = slab_attr_store,
4377 };
4378
4379 static struct kobj_type slab_ktype = {
4380 .sysfs_ops = &slab_sysfs_ops,
4381 .release = kmem_cache_release
4382 };
4383
4384 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4385 {
4386 struct kobj_type *ktype = get_ktype(kobj);
4387
4388 if (ktype == &slab_ktype)
4389 return 1;
4390 return 0;
4391 }
4392
4393 static struct kset_uevent_ops slab_uevent_ops = {
4394 .filter = uevent_filter,
4395 };
4396
4397 static struct kset *slab_kset;
4398
4399 #define ID_STR_LENGTH 64
4400
4401 /* Create a unique string id for a slab cache:
4402 *
4403 * Format :[flags-]size
4404 */
4405 static char *create_unique_id(struct kmem_cache *s)
4406 {
4407 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4408 char *p = name;
4409
4410 BUG_ON(!name);
4411
4412 *p++ = ':';
4413 /*
4414 * First flags affecting slabcache operations. We will only
4415 * get here for aliasable slabs so we do not need to support
4416 * too many flags. The flags here must cover all flags that
4417 * are matched during merging to guarantee that the id is
4418 * unique.
4419 */
4420 if (s->flags & SLAB_CACHE_DMA)
4421 *p++ = 'd';
4422 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4423 *p++ = 'a';
4424 if (s->flags & SLAB_DEBUG_FREE)
4425 *p++ = 'F';
4426 if (p != name + 1)
4427 *p++ = '-';
4428 p += sprintf(p, "%07d", s->size);
4429 BUG_ON(p > name + ID_STR_LENGTH - 1);
4430 return name;
4431 }
4432
4433 static int sysfs_slab_add(struct kmem_cache *s)
4434 {
4435 int err;
4436 const char *name;
4437 int unmergeable;
4438
4439 if (slab_state < SYSFS)
4440 /* Defer until later */
4441 return 0;
4442
4443 unmergeable = slab_unmergeable(s);
4444 if (unmergeable) {
4445 /*
4446 * Slabcache can never be merged so we can use the name proper.
4447 * This is typically the case for debug situations. In that
4448 * case we can catch duplicate names easily.
4449 */
4450 sysfs_remove_link(&slab_kset->kobj, s->name);
4451 name = s->name;
4452 } else {
4453 /*
4454 * Create a unique name for the slab as a target
4455 * for the symlinks.
4456 */
4457 name = create_unique_id(s);
4458 }
4459
4460 s->kobj.kset = slab_kset;
4461 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4462 if (err) {
4463 kobject_put(&s->kobj);
4464 return err;
4465 }
4466
4467 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4468 if (err)
4469 return err;
4470 kobject_uevent(&s->kobj, KOBJ_ADD);
4471 if (!unmergeable) {
4472 /* Setup first alias */
4473 sysfs_slab_alias(s, s->name);
4474 kfree(name);
4475 }
4476 return 0;
4477 }
4478
4479 static void sysfs_slab_remove(struct kmem_cache *s)
4480 {
4481 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4482 kobject_del(&s->kobj);
4483 kobject_put(&s->kobj);
4484 }
4485
4486 /*
4487 * Need to buffer aliases during bootup until sysfs becomes
4488 * available lest we lose that information.
4489 */
4490 struct saved_alias {
4491 struct kmem_cache *s;
4492 const char *name;
4493 struct saved_alias *next;
4494 };
4495
4496 static struct saved_alias *alias_list;
4497
4498 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4499 {
4500 struct saved_alias *al;
4501
4502 if (slab_state == SYSFS) {
4503 /*
4504 * If we have a leftover link then remove it.
4505 */
4506 sysfs_remove_link(&slab_kset->kobj, name);
4507 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4508 }
4509
4510 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4511 if (!al)
4512 return -ENOMEM;
4513
4514 al->s = s;
4515 al->name = name;
4516 al->next = alias_list;
4517 alias_list = al;
4518 return 0;
4519 }
4520
4521 static int __init slab_sysfs_init(void)
4522 {
4523 struct kmem_cache *s;
4524 int err;
4525
4526 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4527 if (!slab_kset) {
4528 printk(KERN_ERR "Cannot register slab subsystem.\n");
4529 return -ENOSYS;
4530 }
4531
4532 slab_state = SYSFS;
4533
4534 list_for_each_entry(s, &slab_caches, list) {
4535 err = sysfs_slab_add(s);
4536 if (err)
4537 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4538 " to sysfs\n", s->name);
4539 }
4540
4541 while (alias_list) {
4542 struct saved_alias *al = alias_list;
4543
4544 alias_list = alias_list->next;
4545 err = sysfs_slab_alias(al->s, al->name);
4546 if (err)
4547 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4548 " %s to sysfs\n", s->name);
4549 kfree(al);
4550 }
4551
4552 resiliency_test();
4553 return 0;
4554 }
4555
4556 __initcall(slab_sysfs_init);
4557 #endif
4558
4559 /*
4560 * The /proc/slabinfo ABI
4561 */
4562 #ifdef CONFIG_SLABINFO
4563 static void print_slabinfo_header(struct seq_file *m)
4564 {
4565 seq_puts(m, "slabinfo - version: 2.1\n");
4566 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4567 "<objperslab> <pagesperslab>");
4568 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4569 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4570 seq_putc(m, '\n');
4571 }
4572
4573 static void *s_start(struct seq_file *m, loff_t *pos)
4574 {
4575 loff_t n = *pos;
4576
4577 down_read(&slub_lock);
4578 if (!n)
4579 print_slabinfo_header(m);
4580
4581 return seq_list_start(&slab_caches, *pos);
4582 }
4583
4584 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4585 {
4586 return seq_list_next(p, &slab_caches, pos);
4587 }
4588
4589 static void s_stop(struct seq_file *m, void *p)
4590 {
4591 up_read(&slub_lock);
4592 }
4593
4594 static int s_show(struct seq_file *m, void *p)
4595 {
4596 unsigned long nr_partials = 0;
4597 unsigned long nr_slabs = 0;
4598 unsigned long nr_inuse = 0;
4599 unsigned long nr_objs = 0;
4600 unsigned long nr_free = 0;
4601 struct kmem_cache *s;
4602 int node;
4603
4604 s = list_entry(p, struct kmem_cache, list);
4605
4606 for_each_online_node(node) {
4607 struct kmem_cache_node *n = get_node(s, node);
4608
4609 if (!n)
4610 continue;
4611
4612 nr_partials += n->nr_partial;
4613 nr_slabs += atomic_long_read(&n->nr_slabs);
4614 nr_objs += atomic_long_read(&n->total_objects);
4615 nr_free += count_partial(n, count_free);
4616 }
4617
4618 nr_inuse = nr_objs - nr_free;
4619
4620 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4621 nr_objs, s->size, oo_objects(s->oo),
4622 (1 << oo_order(s->oo)));
4623 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4624 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4625 0UL);
4626 seq_putc(m, '\n');
4627 return 0;
4628 }
4629
4630 static const struct seq_operations slabinfo_op = {
4631 .start = s_start,
4632 .next = s_next,
4633 .stop = s_stop,
4634 .show = s_show,
4635 };
4636
4637 static int slabinfo_open(struct inode *inode, struct file *file)
4638 {
4639 return seq_open(file, &slabinfo_op);
4640 }
4641
4642 static const struct file_operations proc_slabinfo_operations = {
4643 .open = slabinfo_open,
4644 .read = seq_read,
4645 .llseek = seq_lseek,
4646 .release = seq_release,
4647 };
4648
4649 static int __init slab_proc_init(void)
4650 {
4651 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4652 return 0;
4653 }
4654 module_init(slab_proc_init);
4655 #endif /* CONFIG_SLABINFO */
This page took 0.246211 seconds and 5 git commands to generate.