slub: rename slab_objects to show_slab_objects
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24
25 /*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
101 */
102
103 #define FROZEN (1 << PG_active)
104
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110
111 static inline int SlabFrozen(struct page *page)
112 {
113 return page->flags & FROZEN;
114 }
115
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 page->flags |= FROZEN;
119 }
120
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 page->flags &= ~FROZEN;
124 }
125
126 static inline int SlabDebug(struct page *page)
127 {
128 return page->flags & SLABDEBUG;
129 }
130
131 static inline void SetSlabDebug(struct page *page)
132 {
133 page->flags |= SLABDEBUG;
134 }
135
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 page->flags &= ~SLABDEBUG;
139 }
140
141 /*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151
152 #if PAGE_SHIFT <= 12
153
154 /*
155 * Small page size. Make sure that we do not fragment memory
156 */
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
159
160 #else
161
162 /*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
168
169 #endif
170
171 /*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
175 #define MIN_PARTIAL 5
176
177 /*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182 #define MAX_PARTIAL 10
183
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
186
187 /*
188 * Set of flags that will prevent slab merging
189 */
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
199
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
203
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
209
210 /* Not all arches define cache_line_size */
211 #ifndef cache_line_size
212 #define cache_line_size() L1_CACHE_BYTES
213 #endif
214
215 static int kmem_size = sizeof(struct kmem_cache);
216
217 #ifdef CONFIG_SMP
218 static struct notifier_block slab_notifier;
219 #endif
220
221 static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
224 UP, /* Everything works but does not show up in sysfs */
225 SYSFS /* Sysfs up */
226 } slab_state = DOWN;
227
228 /* A list of all slab caches on the system */
229 static DECLARE_RWSEM(slub_lock);
230 static LIST_HEAD(slab_caches);
231
232 /*
233 * Tracking user of a slab.
234 */
235 struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240 };
241
242 enum track_item { TRACK_ALLOC, TRACK_FREE };
243
244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
245 static int sysfs_slab_add(struct kmem_cache *);
246 static int sysfs_slab_alias(struct kmem_cache *, const char *);
247 static void sysfs_slab_remove(struct kmem_cache *);
248
249 #else
250 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
253 static inline void sysfs_slab_remove(struct kmem_cache *s)
254 {
255 kfree(s);
256 }
257
258 #endif
259
260 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261 {
262 #ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264 #endif
265 }
266
267 /********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271 int slab_is_available(void)
272 {
273 return slab_state >= UP;
274 }
275
276 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277 {
278 #ifdef CONFIG_NUMA
279 return s->node[node];
280 #else
281 return &s->local_node;
282 #endif
283 }
284
285 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286 {
287 #ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289 #else
290 return &s->cpu_slab;
291 #endif
292 }
293
294 static inline int check_valid_pointer(struct kmem_cache *s,
295 struct page *page, const void *object)
296 {
297 void *base;
298
299 if (!object)
300 return 1;
301
302 base = page_address(page);
303 if (object < base || object >= base + s->objects * s->size ||
304 (object - base) % s->size) {
305 return 0;
306 }
307
308 return 1;
309 }
310
311 /*
312 * Slow version of get and set free pointer.
313 *
314 * This version requires touching the cache lines of kmem_cache which
315 * we avoid to do in the fast alloc free paths. There we obtain the offset
316 * from the page struct.
317 */
318 static inline void *get_freepointer(struct kmem_cache *s, void *object)
319 {
320 return *(void **)(object + s->offset);
321 }
322
323 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
324 {
325 *(void **)(object + s->offset) = fp;
326 }
327
328 /* Loop over all objects in a slab */
329 #define for_each_object(__p, __s, __addr) \
330 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
331 __p += (__s)->size)
332
333 /* Scan freelist */
334 #define for_each_free_object(__p, __s, __free) \
335 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
336
337 /* Determine object index from a given position */
338 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
339 {
340 return (p - addr) / s->size;
341 }
342
343 #ifdef CONFIG_SLUB_DEBUG
344 /*
345 * Debug settings:
346 */
347 #ifdef CONFIG_SLUB_DEBUG_ON
348 static int slub_debug = DEBUG_DEFAULT_FLAGS;
349 #else
350 static int slub_debug;
351 #endif
352
353 static char *slub_debug_slabs;
354
355 /*
356 * Object debugging
357 */
358 static void print_section(char *text, u8 *addr, unsigned int length)
359 {
360 int i, offset;
361 int newline = 1;
362 char ascii[17];
363
364 ascii[16] = 0;
365
366 for (i = 0; i < length; i++) {
367 if (newline) {
368 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
369 newline = 0;
370 }
371 printk(KERN_CONT " %02x", addr[i]);
372 offset = i % 16;
373 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
374 if (offset == 15) {
375 printk(KERN_CONT " %s\n", ascii);
376 newline = 1;
377 }
378 }
379 if (!newline) {
380 i %= 16;
381 while (i < 16) {
382 printk(KERN_CONT " ");
383 ascii[i] = ' ';
384 i++;
385 }
386 printk(KERN_CONT " %s\n", ascii);
387 }
388 }
389
390 static struct track *get_track(struct kmem_cache *s, void *object,
391 enum track_item alloc)
392 {
393 struct track *p;
394
395 if (s->offset)
396 p = object + s->offset + sizeof(void *);
397 else
398 p = object + s->inuse;
399
400 return p + alloc;
401 }
402
403 static void set_track(struct kmem_cache *s, void *object,
404 enum track_item alloc, void *addr)
405 {
406 struct track *p;
407
408 if (s->offset)
409 p = object + s->offset + sizeof(void *);
410 else
411 p = object + s->inuse;
412
413 p += alloc;
414 if (addr) {
415 p->addr = addr;
416 p->cpu = smp_processor_id();
417 p->pid = current ? current->pid : -1;
418 p->when = jiffies;
419 } else
420 memset(p, 0, sizeof(struct track));
421 }
422
423 static void init_tracking(struct kmem_cache *s, void *object)
424 {
425 if (!(s->flags & SLAB_STORE_USER))
426 return;
427
428 set_track(s, object, TRACK_FREE, NULL);
429 set_track(s, object, TRACK_ALLOC, NULL);
430 }
431
432 static void print_track(const char *s, struct track *t)
433 {
434 if (!t->addr)
435 return;
436
437 printk(KERN_ERR "INFO: %s in ", s);
438 __print_symbol("%s", (unsigned long)t->addr);
439 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
440 }
441
442 static void print_tracking(struct kmem_cache *s, void *object)
443 {
444 if (!(s->flags & SLAB_STORE_USER))
445 return;
446
447 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
448 print_track("Freed", get_track(s, object, TRACK_FREE));
449 }
450
451 static void print_page_info(struct page *page)
452 {
453 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
454 page, page->inuse, page->freelist, page->flags);
455
456 }
457
458 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
459 {
460 va_list args;
461 char buf[100];
462
463 va_start(args, fmt);
464 vsnprintf(buf, sizeof(buf), fmt, args);
465 va_end(args);
466 printk(KERN_ERR "========================================"
467 "=====================================\n");
468 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
469 printk(KERN_ERR "----------------------------------------"
470 "-------------------------------------\n\n");
471 }
472
473 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
474 {
475 va_list args;
476 char buf[100];
477
478 va_start(args, fmt);
479 vsnprintf(buf, sizeof(buf), fmt, args);
480 va_end(args);
481 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
482 }
483
484 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
485 {
486 unsigned int off; /* Offset of last byte */
487 u8 *addr = page_address(page);
488
489 print_tracking(s, p);
490
491 print_page_info(page);
492
493 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
494 p, p - addr, get_freepointer(s, p));
495
496 if (p > addr + 16)
497 print_section("Bytes b4", p - 16, 16);
498
499 print_section("Object", p, min(s->objsize, 128));
500
501 if (s->flags & SLAB_RED_ZONE)
502 print_section("Redzone", p + s->objsize,
503 s->inuse - s->objsize);
504
505 if (s->offset)
506 off = s->offset + sizeof(void *);
507 else
508 off = s->inuse;
509
510 if (s->flags & SLAB_STORE_USER)
511 off += 2 * sizeof(struct track);
512
513 if (off != s->size)
514 /* Beginning of the filler is the free pointer */
515 print_section("Padding", p + off, s->size - off);
516
517 dump_stack();
518 }
519
520 static void object_err(struct kmem_cache *s, struct page *page,
521 u8 *object, char *reason)
522 {
523 slab_bug(s, reason);
524 print_trailer(s, page, object);
525 }
526
527 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
528 {
529 va_list args;
530 char buf[100];
531
532 va_start(args, fmt);
533 vsnprintf(buf, sizeof(buf), fmt, args);
534 va_end(args);
535 slab_bug(s, fmt);
536 print_page_info(page);
537 dump_stack();
538 }
539
540 static void init_object(struct kmem_cache *s, void *object, int active)
541 {
542 u8 *p = object;
543
544 if (s->flags & __OBJECT_POISON) {
545 memset(p, POISON_FREE, s->objsize - 1);
546 p[s->objsize - 1] = POISON_END;
547 }
548
549 if (s->flags & SLAB_RED_ZONE)
550 memset(p + s->objsize,
551 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
552 s->inuse - s->objsize);
553 }
554
555 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
556 {
557 while (bytes) {
558 if (*start != (u8)value)
559 return start;
560 start++;
561 bytes--;
562 }
563 return NULL;
564 }
565
566 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
567 void *from, void *to)
568 {
569 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
570 memset(from, data, to - from);
571 }
572
573 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
574 u8 *object, char *what,
575 u8 *start, unsigned int value, unsigned int bytes)
576 {
577 u8 *fault;
578 u8 *end;
579
580 fault = check_bytes(start, value, bytes);
581 if (!fault)
582 return 1;
583
584 end = start + bytes;
585 while (end > fault && end[-1] == value)
586 end--;
587
588 slab_bug(s, "%s overwritten", what);
589 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
590 fault, end - 1, fault[0], value);
591 print_trailer(s, page, object);
592
593 restore_bytes(s, what, value, fault, end);
594 return 0;
595 }
596
597 /*
598 * Object layout:
599 *
600 * object address
601 * Bytes of the object to be managed.
602 * If the freepointer may overlay the object then the free
603 * pointer is the first word of the object.
604 *
605 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
606 * 0xa5 (POISON_END)
607 *
608 * object + s->objsize
609 * Padding to reach word boundary. This is also used for Redzoning.
610 * Padding is extended by another word if Redzoning is enabled and
611 * objsize == inuse.
612 *
613 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
614 * 0xcc (RED_ACTIVE) for objects in use.
615 *
616 * object + s->inuse
617 * Meta data starts here.
618 *
619 * A. Free pointer (if we cannot overwrite object on free)
620 * B. Tracking data for SLAB_STORE_USER
621 * C. Padding to reach required alignment boundary or at mininum
622 * one word if debuggin is on to be able to detect writes
623 * before the word boundary.
624 *
625 * Padding is done using 0x5a (POISON_INUSE)
626 *
627 * object + s->size
628 * Nothing is used beyond s->size.
629 *
630 * If slabcaches are merged then the objsize and inuse boundaries are mostly
631 * ignored. And therefore no slab options that rely on these boundaries
632 * may be used with merged slabcaches.
633 */
634
635 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
636 {
637 unsigned long off = s->inuse; /* The end of info */
638
639 if (s->offset)
640 /* Freepointer is placed after the object. */
641 off += sizeof(void *);
642
643 if (s->flags & SLAB_STORE_USER)
644 /* We also have user information there */
645 off += 2 * sizeof(struct track);
646
647 if (s->size == off)
648 return 1;
649
650 return check_bytes_and_report(s, page, p, "Object padding",
651 p + off, POISON_INUSE, s->size - off);
652 }
653
654 static int slab_pad_check(struct kmem_cache *s, struct page *page)
655 {
656 u8 *start;
657 u8 *fault;
658 u8 *end;
659 int length;
660 int remainder;
661
662 if (!(s->flags & SLAB_POISON))
663 return 1;
664
665 start = page_address(page);
666 end = start + (PAGE_SIZE << s->order);
667 length = s->objects * s->size;
668 remainder = end - (start + length);
669 if (!remainder)
670 return 1;
671
672 fault = check_bytes(start + length, POISON_INUSE, remainder);
673 if (!fault)
674 return 1;
675 while (end > fault && end[-1] == POISON_INUSE)
676 end--;
677
678 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
679 print_section("Padding", start, length);
680
681 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
682 return 0;
683 }
684
685 static int check_object(struct kmem_cache *s, struct page *page,
686 void *object, int active)
687 {
688 u8 *p = object;
689 u8 *endobject = object + s->objsize;
690
691 if (s->flags & SLAB_RED_ZONE) {
692 unsigned int red =
693 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
694
695 if (!check_bytes_and_report(s, page, object, "Redzone",
696 endobject, red, s->inuse - s->objsize))
697 return 0;
698 } else {
699 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
700 check_bytes_and_report(s, page, p, "Alignment padding",
701 endobject, POISON_INUSE, s->inuse - s->objsize);
702 }
703 }
704
705 if (s->flags & SLAB_POISON) {
706 if (!active && (s->flags & __OBJECT_POISON) &&
707 (!check_bytes_and_report(s, page, p, "Poison", p,
708 POISON_FREE, s->objsize - 1) ||
709 !check_bytes_and_report(s, page, p, "Poison",
710 p + s->objsize - 1, POISON_END, 1)))
711 return 0;
712 /*
713 * check_pad_bytes cleans up on its own.
714 */
715 check_pad_bytes(s, page, p);
716 }
717
718 if (!s->offset && active)
719 /*
720 * Object and freepointer overlap. Cannot check
721 * freepointer while object is allocated.
722 */
723 return 1;
724
725 /* Check free pointer validity */
726 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
727 object_err(s, page, p, "Freepointer corrupt");
728 /*
729 * No choice but to zap it and thus loose the remainder
730 * of the free objects in this slab. May cause
731 * another error because the object count is now wrong.
732 */
733 set_freepointer(s, p, NULL);
734 return 0;
735 }
736 return 1;
737 }
738
739 static int check_slab(struct kmem_cache *s, struct page *page)
740 {
741 VM_BUG_ON(!irqs_disabled());
742
743 if (!PageSlab(page)) {
744 slab_err(s, page, "Not a valid slab page");
745 return 0;
746 }
747 if (page->inuse > s->objects) {
748 slab_err(s, page, "inuse %u > max %u",
749 s->name, page->inuse, s->objects);
750 return 0;
751 }
752 /* Slab_pad_check fixes things up after itself */
753 slab_pad_check(s, page);
754 return 1;
755 }
756
757 /*
758 * Determine if a certain object on a page is on the freelist. Must hold the
759 * slab lock to guarantee that the chains are in a consistent state.
760 */
761 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
762 {
763 int nr = 0;
764 void *fp = page->freelist;
765 void *object = NULL;
766
767 while (fp && nr <= s->objects) {
768 if (fp == search)
769 return 1;
770 if (!check_valid_pointer(s, page, fp)) {
771 if (object) {
772 object_err(s, page, object,
773 "Freechain corrupt");
774 set_freepointer(s, object, NULL);
775 break;
776 } else {
777 slab_err(s, page, "Freepointer corrupt");
778 page->freelist = NULL;
779 page->inuse = s->objects;
780 slab_fix(s, "Freelist cleared");
781 return 0;
782 }
783 break;
784 }
785 object = fp;
786 fp = get_freepointer(s, object);
787 nr++;
788 }
789
790 if (page->inuse != s->objects - nr) {
791 slab_err(s, page, "Wrong object count. Counter is %d but "
792 "counted were %d", page->inuse, s->objects - nr);
793 page->inuse = s->objects - nr;
794 slab_fix(s, "Object count adjusted.");
795 }
796 return search == NULL;
797 }
798
799 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
800 {
801 if (s->flags & SLAB_TRACE) {
802 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
803 s->name,
804 alloc ? "alloc" : "free",
805 object, page->inuse,
806 page->freelist);
807
808 if (!alloc)
809 print_section("Object", (void *)object, s->objsize);
810
811 dump_stack();
812 }
813 }
814
815 /*
816 * Tracking of fully allocated slabs for debugging purposes.
817 */
818 static void add_full(struct kmem_cache_node *n, struct page *page)
819 {
820 spin_lock(&n->list_lock);
821 list_add(&page->lru, &n->full);
822 spin_unlock(&n->list_lock);
823 }
824
825 static void remove_full(struct kmem_cache *s, struct page *page)
826 {
827 struct kmem_cache_node *n;
828
829 if (!(s->flags & SLAB_STORE_USER))
830 return;
831
832 n = get_node(s, page_to_nid(page));
833
834 spin_lock(&n->list_lock);
835 list_del(&page->lru);
836 spin_unlock(&n->list_lock);
837 }
838
839 static void setup_object_debug(struct kmem_cache *s, struct page *page,
840 void *object)
841 {
842 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
843 return;
844
845 init_object(s, object, 0);
846 init_tracking(s, object);
847 }
848
849 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
850 void *object, void *addr)
851 {
852 if (!check_slab(s, page))
853 goto bad;
854
855 if (object && !on_freelist(s, page, object)) {
856 object_err(s, page, object, "Object already allocated");
857 goto bad;
858 }
859
860 if (!check_valid_pointer(s, page, object)) {
861 object_err(s, page, object, "Freelist Pointer check fails");
862 goto bad;
863 }
864
865 if (object && !check_object(s, page, object, 0))
866 goto bad;
867
868 /* Success perform special debug activities for allocs */
869 if (s->flags & SLAB_STORE_USER)
870 set_track(s, object, TRACK_ALLOC, addr);
871 trace(s, page, object, 1);
872 init_object(s, object, 1);
873 return 1;
874
875 bad:
876 if (PageSlab(page)) {
877 /*
878 * If this is a slab page then lets do the best we can
879 * to avoid issues in the future. Marking all objects
880 * as used avoids touching the remaining objects.
881 */
882 slab_fix(s, "Marking all objects used");
883 page->inuse = s->objects;
884 page->freelist = NULL;
885 }
886 return 0;
887 }
888
889 static int free_debug_processing(struct kmem_cache *s, struct page *page,
890 void *object, void *addr)
891 {
892 if (!check_slab(s, page))
893 goto fail;
894
895 if (!check_valid_pointer(s, page, object)) {
896 slab_err(s, page, "Invalid object pointer 0x%p", object);
897 goto fail;
898 }
899
900 if (on_freelist(s, page, object)) {
901 object_err(s, page, object, "Object already free");
902 goto fail;
903 }
904
905 if (!check_object(s, page, object, 1))
906 return 0;
907
908 if (unlikely(s != page->slab)) {
909 if (!PageSlab(page)) {
910 slab_err(s, page, "Attempt to free object(0x%p) "
911 "outside of slab", object);
912 } else if (!page->slab) {
913 printk(KERN_ERR
914 "SLUB <none>: no slab for object 0x%p.\n",
915 object);
916 dump_stack();
917 } else
918 object_err(s, page, object,
919 "page slab pointer corrupt.");
920 goto fail;
921 }
922
923 /* Special debug activities for freeing objects */
924 if (!SlabFrozen(page) && !page->freelist)
925 remove_full(s, page);
926 if (s->flags & SLAB_STORE_USER)
927 set_track(s, object, TRACK_FREE, addr);
928 trace(s, page, object, 0);
929 init_object(s, object, 0);
930 return 1;
931
932 fail:
933 slab_fix(s, "Object at 0x%p not freed", object);
934 return 0;
935 }
936
937 static int __init setup_slub_debug(char *str)
938 {
939 slub_debug = DEBUG_DEFAULT_FLAGS;
940 if (*str++ != '=' || !*str)
941 /*
942 * No options specified. Switch on full debugging.
943 */
944 goto out;
945
946 if (*str == ',')
947 /*
948 * No options but restriction on slabs. This means full
949 * debugging for slabs matching a pattern.
950 */
951 goto check_slabs;
952
953 slub_debug = 0;
954 if (*str == '-')
955 /*
956 * Switch off all debugging measures.
957 */
958 goto out;
959
960 /*
961 * Determine which debug features should be switched on
962 */
963 for (; *str && *str != ','; str++) {
964 switch (tolower(*str)) {
965 case 'f':
966 slub_debug |= SLAB_DEBUG_FREE;
967 break;
968 case 'z':
969 slub_debug |= SLAB_RED_ZONE;
970 break;
971 case 'p':
972 slub_debug |= SLAB_POISON;
973 break;
974 case 'u':
975 slub_debug |= SLAB_STORE_USER;
976 break;
977 case 't':
978 slub_debug |= SLAB_TRACE;
979 break;
980 default:
981 printk(KERN_ERR "slub_debug option '%c' "
982 "unknown. skipped\n", *str);
983 }
984 }
985
986 check_slabs:
987 if (*str == ',')
988 slub_debug_slabs = str + 1;
989 out:
990 return 1;
991 }
992
993 __setup("slub_debug", setup_slub_debug);
994
995 static unsigned long kmem_cache_flags(unsigned long objsize,
996 unsigned long flags, const char *name,
997 void (*ctor)(struct kmem_cache *, void *))
998 {
999 /*
1000 * The page->offset field is only 16 bit wide. This is an offset
1001 * in units of words from the beginning of an object. If the slab
1002 * size is bigger then we cannot move the free pointer behind the
1003 * object anymore.
1004 *
1005 * On 32 bit platforms the limit is 256k. On 64bit platforms
1006 * the limit is 512k.
1007 *
1008 * Debugging or ctor may create a need to move the free
1009 * pointer. Fail if this happens.
1010 */
1011 if (objsize >= 65535 * sizeof(void *)) {
1012 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1013 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1014 BUG_ON(ctor);
1015 } else {
1016 /*
1017 * Enable debugging if selected on the kernel commandline.
1018 */
1019 if (slub_debug && (!slub_debug_slabs ||
1020 strncmp(slub_debug_slabs, name,
1021 strlen(slub_debug_slabs)) == 0))
1022 flags |= slub_debug;
1023 }
1024
1025 return flags;
1026 }
1027 #else
1028 static inline void setup_object_debug(struct kmem_cache *s,
1029 struct page *page, void *object) {}
1030
1031 static inline int alloc_debug_processing(struct kmem_cache *s,
1032 struct page *page, void *object, void *addr) { return 0; }
1033
1034 static inline int free_debug_processing(struct kmem_cache *s,
1035 struct page *page, void *object, void *addr) { return 0; }
1036
1037 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1038 { return 1; }
1039 static inline int check_object(struct kmem_cache *s, struct page *page,
1040 void *object, int active) { return 1; }
1041 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1042 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1043 unsigned long flags, const char *name,
1044 void (*ctor)(struct kmem_cache *, void *))
1045 {
1046 return flags;
1047 }
1048 #define slub_debug 0
1049 #endif
1050 /*
1051 * Slab allocation and freeing
1052 */
1053 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1054 {
1055 struct page *page;
1056 int pages = 1 << s->order;
1057
1058 flags |= s->allocflags;
1059
1060 if (node == -1)
1061 page = alloc_pages(flags, s->order);
1062 else
1063 page = alloc_pages_node(node, flags, s->order);
1064
1065 if (!page)
1066 return NULL;
1067
1068 mod_zone_page_state(page_zone(page),
1069 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1070 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1071 pages);
1072
1073 return page;
1074 }
1075
1076 static void setup_object(struct kmem_cache *s, struct page *page,
1077 void *object)
1078 {
1079 setup_object_debug(s, page, object);
1080 if (unlikely(s->ctor))
1081 s->ctor(s, object);
1082 }
1083
1084 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1085 {
1086 struct page *page;
1087 struct kmem_cache_node *n;
1088 void *start;
1089 void *last;
1090 void *p;
1091
1092 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1093
1094 page = allocate_slab(s,
1095 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1096 if (!page)
1097 goto out;
1098
1099 n = get_node(s, page_to_nid(page));
1100 if (n)
1101 atomic_long_inc(&n->nr_slabs);
1102 page->slab = s;
1103 page->flags |= 1 << PG_slab;
1104 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1105 SLAB_STORE_USER | SLAB_TRACE))
1106 SetSlabDebug(page);
1107
1108 start = page_address(page);
1109
1110 if (unlikely(s->flags & SLAB_POISON))
1111 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1112
1113 last = start;
1114 for_each_object(p, s, start) {
1115 setup_object(s, page, last);
1116 set_freepointer(s, last, p);
1117 last = p;
1118 }
1119 setup_object(s, page, last);
1120 set_freepointer(s, last, NULL);
1121
1122 page->freelist = start;
1123 page->inuse = 0;
1124 out:
1125 return page;
1126 }
1127
1128 static void __free_slab(struct kmem_cache *s, struct page *page)
1129 {
1130 int pages = 1 << s->order;
1131
1132 if (unlikely(SlabDebug(page))) {
1133 void *p;
1134
1135 slab_pad_check(s, page);
1136 for_each_object(p, s, page_address(page))
1137 check_object(s, page, p, 0);
1138 ClearSlabDebug(page);
1139 }
1140
1141 mod_zone_page_state(page_zone(page),
1142 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1143 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1144 -pages);
1145
1146 __free_pages(page, s->order);
1147 }
1148
1149 static void rcu_free_slab(struct rcu_head *h)
1150 {
1151 struct page *page;
1152
1153 page = container_of((struct list_head *)h, struct page, lru);
1154 __free_slab(page->slab, page);
1155 }
1156
1157 static void free_slab(struct kmem_cache *s, struct page *page)
1158 {
1159 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1160 /*
1161 * RCU free overloads the RCU head over the LRU
1162 */
1163 struct rcu_head *head = (void *)&page->lru;
1164
1165 call_rcu(head, rcu_free_slab);
1166 } else
1167 __free_slab(s, page);
1168 }
1169
1170 static void discard_slab(struct kmem_cache *s, struct page *page)
1171 {
1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173
1174 atomic_long_dec(&n->nr_slabs);
1175 reset_page_mapcount(page);
1176 __ClearPageSlab(page);
1177 free_slab(s, page);
1178 }
1179
1180 /*
1181 * Per slab locking using the pagelock
1182 */
1183 static __always_inline void slab_lock(struct page *page)
1184 {
1185 bit_spin_lock(PG_locked, &page->flags);
1186 }
1187
1188 static __always_inline void slab_unlock(struct page *page)
1189 {
1190 __bit_spin_unlock(PG_locked, &page->flags);
1191 }
1192
1193 static __always_inline int slab_trylock(struct page *page)
1194 {
1195 int rc = 1;
1196
1197 rc = bit_spin_trylock(PG_locked, &page->flags);
1198 return rc;
1199 }
1200
1201 /*
1202 * Management of partially allocated slabs
1203 */
1204 static void add_partial(struct kmem_cache_node *n,
1205 struct page *page, int tail)
1206 {
1207 spin_lock(&n->list_lock);
1208 n->nr_partial++;
1209 if (tail)
1210 list_add_tail(&page->lru, &n->partial);
1211 else
1212 list_add(&page->lru, &n->partial);
1213 spin_unlock(&n->list_lock);
1214 }
1215
1216 static void remove_partial(struct kmem_cache *s,
1217 struct page *page)
1218 {
1219 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1220
1221 spin_lock(&n->list_lock);
1222 list_del(&page->lru);
1223 n->nr_partial--;
1224 spin_unlock(&n->list_lock);
1225 }
1226
1227 /*
1228 * Lock slab and remove from the partial list.
1229 *
1230 * Must hold list_lock.
1231 */
1232 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1233 {
1234 if (slab_trylock(page)) {
1235 list_del(&page->lru);
1236 n->nr_partial--;
1237 SetSlabFrozen(page);
1238 return 1;
1239 }
1240 return 0;
1241 }
1242
1243 /*
1244 * Try to allocate a partial slab from a specific node.
1245 */
1246 static struct page *get_partial_node(struct kmem_cache_node *n)
1247 {
1248 struct page *page;
1249
1250 /*
1251 * Racy check. If we mistakenly see no partial slabs then we
1252 * just allocate an empty slab. If we mistakenly try to get a
1253 * partial slab and there is none available then get_partials()
1254 * will return NULL.
1255 */
1256 if (!n || !n->nr_partial)
1257 return NULL;
1258
1259 spin_lock(&n->list_lock);
1260 list_for_each_entry(page, &n->partial, lru)
1261 if (lock_and_freeze_slab(n, page))
1262 goto out;
1263 page = NULL;
1264 out:
1265 spin_unlock(&n->list_lock);
1266 return page;
1267 }
1268
1269 /*
1270 * Get a page from somewhere. Search in increasing NUMA distances.
1271 */
1272 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1273 {
1274 #ifdef CONFIG_NUMA
1275 struct zonelist *zonelist;
1276 struct zone **z;
1277 struct page *page;
1278
1279 /*
1280 * The defrag ratio allows a configuration of the tradeoffs between
1281 * inter node defragmentation and node local allocations. A lower
1282 * defrag_ratio increases the tendency to do local allocations
1283 * instead of attempting to obtain partial slabs from other nodes.
1284 *
1285 * If the defrag_ratio is set to 0 then kmalloc() always
1286 * returns node local objects. If the ratio is higher then kmalloc()
1287 * may return off node objects because partial slabs are obtained
1288 * from other nodes and filled up.
1289 *
1290 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1291 * defrag_ratio = 1000) then every (well almost) allocation will
1292 * first attempt to defrag slab caches on other nodes. This means
1293 * scanning over all nodes to look for partial slabs which may be
1294 * expensive if we do it every time we are trying to find a slab
1295 * with available objects.
1296 */
1297 if (!s->remote_node_defrag_ratio ||
1298 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1299 return NULL;
1300
1301 zonelist = &NODE_DATA(
1302 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1303 for (z = zonelist->zones; *z; z++) {
1304 struct kmem_cache_node *n;
1305
1306 n = get_node(s, zone_to_nid(*z));
1307
1308 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1309 n->nr_partial > MIN_PARTIAL) {
1310 page = get_partial_node(n);
1311 if (page)
1312 return page;
1313 }
1314 }
1315 #endif
1316 return NULL;
1317 }
1318
1319 /*
1320 * Get a partial page, lock it and return it.
1321 */
1322 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1323 {
1324 struct page *page;
1325 int searchnode = (node == -1) ? numa_node_id() : node;
1326
1327 page = get_partial_node(get_node(s, searchnode));
1328 if (page || (flags & __GFP_THISNODE))
1329 return page;
1330
1331 return get_any_partial(s, flags);
1332 }
1333
1334 /*
1335 * Move a page back to the lists.
1336 *
1337 * Must be called with the slab lock held.
1338 *
1339 * On exit the slab lock will have been dropped.
1340 */
1341 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1342 {
1343 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1344 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1345
1346 ClearSlabFrozen(page);
1347 if (page->inuse) {
1348
1349 if (page->freelist) {
1350 add_partial(n, page, tail);
1351 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1352 } else {
1353 stat(c, DEACTIVATE_FULL);
1354 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1355 add_full(n, page);
1356 }
1357 slab_unlock(page);
1358 } else {
1359 stat(c, DEACTIVATE_EMPTY);
1360 if (n->nr_partial < MIN_PARTIAL) {
1361 /*
1362 * Adding an empty slab to the partial slabs in order
1363 * to avoid page allocator overhead. This slab needs
1364 * to come after the other slabs with objects in
1365 * order to fill them up. That way the size of the
1366 * partial list stays small. kmem_cache_shrink can
1367 * reclaim empty slabs from the partial list.
1368 */
1369 add_partial(n, page, 1);
1370 slab_unlock(page);
1371 } else {
1372 slab_unlock(page);
1373 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1374 discard_slab(s, page);
1375 }
1376 }
1377 }
1378
1379 /*
1380 * Remove the cpu slab
1381 */
1382 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1383 {
1384 struct page *page = c->page;
1385 int tail = 1;
1386
1387 if (c->freelist)
1388 stat(c, DEACTIVATE_REMOTE_FREES);
1389 /*
1390 * Merge cpu freelist into freelist. Typically we get here
1391 * because both freelists are empty. So this is unlikely
1392 * to occur.
1393 */
1394 while (unlikely(c->freelist)) {
1395 void **object;
1396
1397 tail = 0; /* Hot objects. Put the slab first */
1398
1399 /* Retrieve object from cpu_freelist */
1400 object = c->freelist;
1401 c->freelist = c->freelist[c->offset];
1402
1403 /* And put onto the regular freelist */
1404 object[c->offset] = page->freelist;
1405 page->freelist = object;
1406 page->inuse--;
1407 }
1408 c->page = NULL;
1409 unfreeze_slab(s, page, tail);
1410 }
1411
1412 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1413 {
1414 stat(c, CPUSLAB_FLUSH);
1415 slab_lock(c->page);
1416 deactivate_slab(s, c);
1417 }
1418
1419 /*
1420 * Flush cpu slab.
1421 * Called from IPI handler with interrupts disabled.
1422 */
1423 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1424 {
1425 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1426
1427 if (likely(c && c->page))
1428 flush_slab(s, c);
1429 }
1430
1431 static void flush_cpu_slab(void *d)
1432 {
1433 struct kmem_cache *s = d;
1434
1435 __flush_cpu_slab(s, smp_processor_id());
1436 }
1437
1438 static void flush_all(struct kmem_cache *s)
1439 {
1440 #ifdef CONFIG_SMP
1441 on_each_cpu(flush_cpu_slab, s, 1, 1);
1442 #else
1443 unsigned long flags;
1444
1445 local_irq_save(flags);
1446 flush_cpu_slab(s);
1447 local_irq_restore(flags);
1448 #endif
1449 }
1450
1451 /*
1452 * Check if the objects in a per cpu structure fit numa
1453 * locality expectations.
1454 */
1455 static inline int node_match(struct kmem_cache_cpu *c, int node)
1456 {
1457 #ifdef CONFIG_NUMA
1458 if (node != -1 && c->node != node)
1459 return 0;
1460 #endif
1461 return 1;
1462 }
1463
1464 /*
1465 * Slow path. The lockless freelist is empty or we need to perform
1466 * debugging duties.
1467 *
1468 * Interrupts are disabled.
1469 *
1470 * Processing is still very fast if new objects have been freed to the
1471 * regular freelist. In that case we simply take over the regular freelist
1472 * as the lockless freelist and zap the regular freelist.
1473 *
1474 * If that is not working then we fall back to the partial lists. We take the
1475 * first element of the freelist as the object to allocate now and move the
1476 * rest of the freelist to the lockless freelist.
1477 *
1478 * And if we were unable to get a new slab from the partial slab lists then
1479 * we need to allocate a new slab. This is slowest path since we may sleep.
1480 */
1481 static void *__slab_alloc(struct kmem_cache *s,
1482 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1483 {
1484 void **object;
1485 struct page *new;
1486
1487 if (!c->page)
1488 goto new_slab;
1489
1490 slab_lock(c->page);
1491 if (unlikely(!node_match(c, node)))
1492 goto another_slab;
1493 stat(c, ALLOC_REFILL);
1494 load_freelist:
1495 object = c->page->freelist;
1496 if (unlikely(!object))
1497 goto another_slab;
1498 if (unlikely(SlabDebug(c->page)))
1499 goto debug;
1500
1501 object = c->page->freelist;
1502 c->freelist = object[c->offset];
1503 c->page->inuse = s->objects;
1504 c->page->freelist = NULL;
1505 c->node = page_to_nid(c->page);
1506 unlock_out:
1507 slab_unlock(c->page);
1508 stat(c, ALLOC_SLOWPATH);
1509 return object;
1510
1511 another_slab:
1512 deactivate_slab(s, c);
1513
1514 new_slab:
1515 new = get_partial(s, gfpflags, node);
1516 if (new) {
1517 c->page = new;
1518 stat(c, ALLOC_FROM_PARTIAL);
1519 goto load_freelist;
1520 }
1521
1522 if (gfpflags & __GFP_WAIT)
1523 local_irq_enable();
1524
1525 new = new_slab(s, gfpflags, node);
1526
1527 if (gfpflags & __GFP_WAIT)
1528 local_irq_disable();
1529
1530 if (new) {
1531 c = get_cpu_slab(s, smp_processor_id());
1532 stat(c, ALLOC_SLAB);
1533 if (c->page)
1534 flush_slab(s, c);
1535 slab_lock(new);
1536 SetSlabFrozen(new);
1537 c->page = new;
1538 goto load_freelist;
1539 }
1540
1541 /*
1542 * No memory available.
1543 *
1544 * If the slab uses higher order allocs but the object is
1545 * smaller than a page size then we can fallback in emergencies
1546 * to the page allocator via kmalloc_large. The page allocator may
1547 * have failed to obtain a higher order page and we can try to
1548 * allocate a single page if the object fits into a single page.
1549 * That is only possible if certain conditions are met that are being
1550 * checked when a slab is created.
1551 */
1552 if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
1553 return kmalloc_large(s->objsize, gfpflags);
1554
1555 return NULL;
1556 debug:
1557 object = c->page->freelist;
1558 if (!alloc_debug_processing(s, c->page, object, addr))
1559 goto another_slab;
1560
1561 c->page->inuse++;
1562 c->page->freelist = object[c->offset];
1563 c->node = -1;
1564 goto unlock_out;
1565 }
1566
1567 /*
1568 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1569 * have the fastpath folded into their functions. So no function call
1570 * overhead for requests that can be satisfied on the fastpath.
1571 *
1572 * The fastpath works by first checking if the lockless freelist can be used.
1573 * If not then __slab_alloc is called for slow processing.
1574 *
1575 * Otherwise we can simply pick the next object from the lockless free list.
1576 */
1577 static __always_inline void *slab_alloc(struct kmem_cache *s,
1578 gfp_t gfpflags, int node, void *addr)
1579 {
1580 void **object;
1581 struct kmem_cache_cpu *c;
1582 unsigned long flags;
1583
1584 local_irq_save(flags);
1585 c = get_cpu_slab(s, smp_processor_id());
1586 if (unlikely(!c->freelist || !node_match(c, node)))
1587
1588 object = __slab_alloc(s, gfpflags, node, addr, c);
1589
1590 else {
1591 object = c->freelist;
1592 c->freelist = object[c->offset];
1593 stat(c, ALLOC_FASTPATH);
1594 }
1595 local_irq_restore(flags);
1596
1597 if (unlikely((gfpflags & __GFP_ZERO) && object))
1598 memset(object, 0, c->objsize);
1599
1600 return object;
1601 }
1602
1603 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1604 {
1605 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1606 }
1607 EXPORT_SYMBOL(kmem_cache_alloc);
1608
1609 #ifdef CONFIG_NUMA
1610 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1611 {
1612 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1613 }
1614 EXPORT_SYMBOL(kmem_cache_alloc_node);
1615 #endif
1616
1617 /*
1618 * Slow patch handling. This may still be called frequently since objects
1619 * have a longer lifetime than the cpu slabs in most processing loads.
1620 *
1621 * So we still attempt to reduce cache line usage. Just take the slab
1622 * lock and free the item. If there is no additional partial page
1623 * handling required then we can return immediately.
1624 */
1625 static void __slab_free(struct kmem_cache *s, struct page *page,
1626 void *x, void *addr, unsigned int offset)
1627 {
1628 void *prior;
1629 void **object = (void *)x;
1630 struct kmem_cache_cpu *c;
1631
1632 c = get_cpu_slab(s, raw_smp_processor_id());
1633 stat(c, FREE_SLOWPATH);
1634 slab_lock(page);
1635
1636 if (unlikely(SlabDebug(page)))
1637 goto debug;
1638 checks_ok:
1639 prior = object[offset] = page->freelist;
1640 page->freelist = object;
1641 page->inuse--;
1642
1643 if (unlikely(SlabFrozen(page))) {
1644 stat(c, FREE_FROZEN);
1645 goto out_unlock;
1646 }
1647
1648 if (unlikely(!page->inuse))
1649 goto slab_empty;
1650
1651 /*
1652 * Objects left in the slab. If it
1653 * was not on the partial list before
1654 * then add it.
1655 */
1656 if (unlikely(!prior)) {
1657 add_partial(get_node(s, page_to_nid(page)), page, 1);
1658 stat(c, FREE_ADD_PARTIAL);
1659 }
1660
1661 out_unlock:
1662 slab_unlock(page);
1663 return;
1664
1665 slab_empty:
1666 if (prior) {
1667 /*
1668 * Slab still on the partial list.
1669 */
1670 remove_partial(s, page);
1671 stat(c, FREE_REMOVE_PARTIAL);
1672 }
1673 slab_unlock(page);
1674 stat(c, FREE_SLAB);
1675 discard_slab(s, page);
1676 return;
1677
1678 debug:
1679 if (!free_debug_processing(s, page, x, addr))
1680 goto out_unlock;
1681 goto checks_ok;
1682 }
1683
1684 /*
1685 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1686 * can perform fastpath freeing without additional function calls.
1687 *
1688 * The fastpath is only possible if we are freeing to the current cpu slab
1689 * of this processor. This typically the case if we have just allocated
1690 * the item before.
1691 *
1692 * If fastpath is not possible then fall back to __slab_free where we deal
1693 * with all sorts of special processing.
1694 */
1695 static __always_inline void slab_free(struct kmem_cache *s,
1696 struct page *page, void *x, void *addr)
1697 {
1698 void **object = (void *)x;
1699 struct kmem_cache_cpu *c;
1700 unsigned long flags;
1701
1702 local_irq_save(flags);
1703 debug_check_no_locks_freed(object, s->objsize);
1704 c = get_cpu_slab(s, smp_processor_id());
1705 if (likely(page == c->page && c->node >= 0)) {
1706 object[c->offset] = c->freelist;
1707 c->freelist = object;
1708 stat(c, FREE_FASTPATH);
1709 } else
1710 __slab_free(s, page, x, addr, c->offset);
1711
1712 local_irq_restore(flags);
1713 }
1714
1715 void kmem_cache_free(struct kmem_cache *s, void *x)
1716 {
1717 struct page *page;
1718
1719 page = virt_to_head_page(x);
1720
1721 slab_free(s, page, x, __builtin_return_address(0));
1722 }
1723 EXPORT_SYMBOL(kmem_cache_free);
1724
1725 /* Figure out on which slab object the object resides */
1726 static struct page *get_object_page(const void *x)
1727 {
1728 struct page *page = virt_to_head_page(x);
1729
1730 if (!PageSlab(page))
1731 return NULL;
1732
1733 return page;
1734 }
1735
1736 /*
1737 * Object placement in a slab is made very easy because we always start at
1738 * offset 0. If we tune the size of the object to the alignment then we can
1739 * get the required alignment by putting one properly sized object after
1740 * another.
1741 *
1742 * Notice that the allocation order determines the sizes of the per cpu
1743 * caches. Each processor has always one slab available for allocations.
1744 * Increasing the allocation order reduces the number of times that slabs
1745 * must be moved on and off the partial lists and is therefore a factor in
1746 * locking overhead.
1747 */
1748
1749 /*
1750 * Mininum / Maximum order of slab pages. This influences locking overhead
1751 * and slab fragmentation. A higher order reduces the number of partial slabs
1752 * and increases the number of allocations possible without having to
1753 * take the list_lock.
1754 */
1755 static int slub_min_order;
1756 static int slub_max_order = DEFAULT_MAX_ORDER;
1757 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1758
1759 /*
1760 * Merge control. If this is set then no merging of slab caches will occur.
1761 * (Could be removed. This was introduced to pacify the merge skeptics.)
1762 */
1763 static int slub_nomerge;
1764
1765 /*
1766 * Calculate the order of allocation given an slab object size.
1767 *
1768 * The order of allocation has significant impact on performance and other
1769 * system components. Generally order 0 allocations should be preferred since
1770 * order 0 does not cause fragmentation in the page allocator. Larger objects
1771 * be problematic to put into order 0 slabs because there may be too much
1772 * unused space left. We go to a higher order if more than 1/8th of the slab
1773 * would be wasted.
1774 *
1775 * In order to reach satisfactory performance we must ensure that a minimum
1776 * number of objects is in one slab. Otherwise we may generate too much
1777 * activity on the partial lists which requires taking the list_lock. This is
1778 * less a concern for large slabs though which are rarely used.
1779 *
1780 * slub_max_order specifies the order where we begin to stop considering the
1781 * number of objects in a slab as critical. If we reach slub_max_order then
1782 * we try to keep the page order as low as possible. So we accept more waste
1783 * of space in favor of a small page order.
1784 *
1785 * Higher order allocations also allow the placement of more objects in a
1786 * slab and thereby reduce object handling overhead. If the user has
1787 * requested a higher mininum order then we start with that one instead of
1788 * the smallest order which will fit the object.
1789 */
1790 static inline int slab_order(int size, int min_objects,
1791 int max_order, int fract_leftover)
1792 {
1793 int order;
1794 int rem;
1795 int min_order = slub_min_order;
1796
1797 for (order = max(min_order,
1798 fls(min_objects * size - 1) - PAGE_SHIFT);
1799 order <= max_order; order++) {
1800
1801 unsigned long slab_size = PAGE_SIZE << order;
1802
1803 if (slab_size < min_objects * size)
1804 continue;
1805
1806 rem = slab_size % size;
1807
1808 if (rem <= slab_size / fract_leftover)
1809 break;
1810
1811 }
1812
1813 return order;
1814 }
1815
1816 static inline int calculate_order(int size)
1817 {
1818 int order;
1819 int min_objects;
1820 int fraction;
1821
1822 /*
1823 * Attempt to find best configuration for a slab. This
1824 * works by first attempting to generate a layout with
1825 * the best configuration and backing off gradually.
1826 *
1827 * First we reduce the acceptable waste in a slab. Then
1828 * we reduce the minimum objects required in a slab.
1829 */
1830 min_objects = slub_min_objects;
1831 while (min_objects > 1) {
1832 fraction = 8;
1833 while (fraction >= 4) {
1834 order = slab_order(size, min_objects,
1835 slub_max_order, fraction);
1836 if (order <= slub_max_order)
1837 return order;
1838 fraction /= 2;
1839 }
1840 min_objects /= 2;
1841 }
1842
1843 /*
1844 * We were unable to place multiple objects in a slab. Now
1845 * lets see if we can place a single object there.
1846 */
1847 order = slab_order(size, 1, slub_max_order, 1);
1848 if (order <= slub_max_order)
1849 return order;
1850
1851 /*
1852 * Doh this slab cannot be placed using slub_max_order.
1853 */
1854 order = slab_order(size, 1, MAX_ORDER, 1);
1855 if (order <= MAX_ORDER)
1856 return order;
1857 return -ENOSYS;
1858 }
1859
1860 /*
1861 * Figure out what the alignment of the objects will be.
1862 */
1863 static unsigned long calculate_alignment(unsigned long flags,
1864 unsigned long align, unsigned long size)
1865 {
1866 /*
1867 * If the user wants hardware cache aligned objects then
1868 * follow that suggestion if the object is sufficiently
1869 * large.
1870 *
1871 * The hardware cache alignment cannot override the
1872 * specified alignment though. If that is greater
1873 * then use it.
1874 */
1875 if ((flags & SLAB_HWCACHE_ALIGN) &&
1876 size > cache_line_size() / 2)
1877 return max_t(unsigned long, align, cache_line_size());
1878
1879 if (align < ARCH_SLAB_MINALIGN)
1880 return ARCH_SLAB_MINALIGN;
1881
1882 return ALIGN(align, sizeof(void *));
1883 }
1884
1885 static void init_kmem_cache_cpu(struct kmem_cache *s,
1886 struct kmem_cache_cpu *c)
1887 {
1888 c->page = NULL;
1889 c->freelist = NULL;
1890 c->node = 0;
1891 c->offset = s->offset / sizeof(void *);
1892 c->objsize = s->objsize;
1893 }
1894
1895 static void init_kmem_cache_node(struct kmem_cache_node *n)
1896 {
1897 n->nr_partial = 0;
1898 atomic_long_set(&n->nr_slabs, 0);
1899 spin_lock_init(&n->list_lock);
1900 INIT_LIST_HEAD(&n->partial);
1901 #ifdef CONFIG_SLUB_DEBUG
1902 INIT_LIST_HEAD(&n->full);
1903 #endif
1904 }
1905
1906 #ifdef CONFIG_SMP
1907 /*
1908 * Per cpu array for per cpu structures.
1909 *
1910 * The per cpu array places all kmem_cache_cpu structures from one processor
1911 * close together meaning that it becomes possible that multiple per cpu
1912 * structures are contained in one cacheline. This may be particularly
1913 * beneficial for the kmalloc caches.
1914 *
1915 * A desktop system typically has around 60-80 slabs. With 100 here we are
1916 * likely able to get per cpu structures for all caches from the array defined
1917 * here. We must be able to cover all kmalloc caches during bootstrap.
1918 *
1919 * If the per cpu array is exhausted then fall back to kmalloc
1920 * of individual cachelines. No sharing is possible then.
1921 */
1922 #define NR_KMEM_CACHE_CPU 100
1923
1924 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1925 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1926
1927 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1928 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1929
1930 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1931 int cpu, gfp_t flags)
1932 {
1933 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1934
1935 if (c)
1936 per_cpu(kmem_cache_cpu_free, cpu) =
1937 (void *)c->freelist;
1938 else {
1939 /* Table overflow: So allocate ourselves */
1940 c = kmalloc_node(
1941 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1942 flags, cpu_to_node(cpu));
1943 if (!c)
1944 return NULL;
1945 }
1946
1947 init_kmem_cache_cpu(s, c);
1948 return c;
1949 }
1950
1951 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1952 {
1953 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1954 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1955 kfree(c);
1956 return;
1957 }
1958 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1959 per_cpu(kmem_cache_cpu_free, cpu) = c;
1960 }
1961
1962 static void free_kmem_cache_cpus(struct kmem_cache *s)
1963 {
1964 int cpu;
1965
1966 for_each_online_cpu(cpu) {
1967 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1968
1969 if (c) {
1970 s->cpu_slab[cpu] = NULL;
1971 free_kmem_cache_cpu(c, cpu);
1972 }
1973 }
1974 }
1975
1976 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1977 {
1978 int cpu;
1979
1980 for_each_online_cpu(cpu) {
1981 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1982
1983 if (c)
1984 continue;
1985
1986 c = alloc_kmem_cache_cpu(s, cpu, flags);
1987 if (!c) {
1988 free_kmem_cache_cpus(s);
1989 return 0;
1990 }
1991 s->cpu_slab[cpu] = c;
1992 }
1993 return 1;
1994 }
1995
1996 /*
1997 * Initialize the per cpu array.
1998 */
1999 static void init_alloc_cpu_cpu(int cpu)
2000 {
2001 int i;
2002
2003 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2004 return;
2005
2006 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2007 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2008
2009 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2010 }
2011
2012 static void __init init_alloc_cpu(void)
2013 {
2014 int cpu;
2015
2016 for_each_online_cpu(cpu)
2017 init_alloc_cpu_cpu(cpu);
2018 }
2019
2020 #else
2021 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2022 static inline void init_alloc_cpu(void) {}
2023
2024 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2025 {
2026 init_kmem_cache_cpu(s, &s->cpu_slab);
2027 return 1;
2028 }
2029 #endif
2030
2031 #ifdef CONFIG_NUMA
2032 /*
2033 * No kmalloc_node yet so do it by hand. We know that this is the first
2034 * slab on the node for this slabcache. There are no concurrent accesses
2035 * possible.
2036 *
2037 * Note that this function only works on the kmalloc_node_cache
2038 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2039 * memory on a fresh node that has no slab structures yet.
2040 */
2041 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2042 int node)
2043 {
2044 struct page *page;
2045 struct kmem_cache_node *n;
2046 unsigned long flags;
2047
2048 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2049
2050 page = new_slab(kmalloc_caches, gfpflags, node);
2051
2052 BUG_ON(!page);
2053 if (page_to_nid(page) != node) {
2054 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2055 "node %d\n", node);
2056 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2057 "in order to be able to continue\n");
2058 }
2059
2060 n = page->freelist;
2061 BUG_ON(!n);
2062 page->freelist = get_freepointer(kmalloc_caches, n);
2063 page->inuse++;
2064 kmalloc_caches->node[node] = n;
2065 #ifdef CONFIG_SLUB_DEBUG
2066 init_object(kmalloc_caches, n, 1);
2067 init_tracking(kmalloc_caches, n);
2068 #endif
2069 init_kmem_cache_node(n);
2070 atomic_long_inc(&n->nr_slabs);
2071 /*
2072 * lockdep requires consistent irq usage for each lock
2073 * so even though there cannot be a race this early in
2074 * the boot sequence, we still disable irqs.
2075 */
2076 local_irq_save(flags);
2077 add_partial(n, page, 0);
2078 local_irq_restore(flags);
2079 return n;
2080 }
2081
2082 static void free_kmem_cache_nodes(struct kmem_cache *s)
2083 {
2084 int node;
2085
2086 for_each_node_state(node, N_NORMAL_MEMORY) {
2087 struct kmem_cache_node *n = s->node[node];
2088 if (n && n != &s->local_node)
2089 kmem_cache_free(kmalloc_caches, n);
2090 s->node[node] = NULL;
2091 }
2092 }
2093
2094 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2095 {
2096 int node;
2097 int local_node;
2098
2099 if (slab_state >= UP)
2100 local_node = page_to_nid(virt_to_page(s));
2101 else
2102 local_node = 0;
2103
2104 for_each_node_state(node, N_NORMAL_MEMORY) {
2105 struct kmem_cache_node *n;
2106
2107 if (local_node == node)
2108 n = &s->local_node;
2109 else {
2110 if (slab_state == DOWN) {
2111 n = early_kmem_cache_node_alloc(gfpflags,
2112 node);
2113 continue;
2114 }
2115 n = kmem_cache_alloc_node(kmalloc_caches,
2116 gfpflags, node);
2117
2118 if (!n) {
2119 free_kmem_cache_nodes(s);
2120 return 0;
2121 }
2122
2123 }
2124 s->node[node] = n;
2125 init_kmem_cache_node(n);
2126 }
2127 return 1;
2128 }
2129 #else
2130 static void free_kmem_cache_nodes(struct kmem_cache *s)
2131 {
2132 }
2133
2134 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2135 {
2136 init_kmem_cache_node(&s->local_node);
2137 return 1;
2138 }
2139 #endif
2140
2141 /*
2142 * calculate_sizes() determines the order and the distribution of data within
2143 * a slab object.
2144 */
2145 static int calculate_sizes(struct kmem_cache *s)
2146 {
2147 unsigned long flags = s->flags;
2148 unsigned long size = s->objsize;
2149 unsigned long align = s->align;
2150
2151 /*
2152 * Determine if we can poison the object itself. If the user of
2153 * the slab may touch the object after free or before allocation
2154 * then we should never poison the object itself.
2155 */
2156 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2157 !s->ctor)
2158 s->flags |= __OBJECT_POISON;
2159 else
2160 s->flags &= ~__OBJECT_POISON;
2161
2162 /*
2163 * Round up object size to the next word boundary. We can only
2164 * place the free pointer at word boundaries and this determines
2165 * the possible location of the free pointer.
2166 */
2167 size = ALIGN(size, sizeof(void *));
2168
2169 #ifdef CONFIG_SLUB_DEBUG
2170 /*
2171 * If we are Redzoning then check if there is some space between the
2172 * end of the object and the free pointer. If not then add an
2173 * additional word to have some bytes to store Redzone information.
2174 */
2175 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2176 size += sizeof(void *);
2177 #endif
2178
2179 /*
2180 * With that we have determined the number of bytes in actual use
2181 * by the object. This is the potential offset to the free pointer.
2182 */
2183 s->inuse = size;
2184
2185 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2186 s->ctor)) {
2187 /*
2188 * Relocate free pointer after the object if it is not
2189 * permitted to overwrite the first word of the object on
2190 * kmem_cache_free.
2191 *
2192 * This is the case if we do RCU, have a constructor or
2193 * destructor or are poisoning the objects.
2194 */
2195 s->offset = size;
2196 size += sizeof(void *);
2197 }
2198
2199 #ifdef CONFIG_SLUB_DEBUG
2200 if (flags & SLAB_STORE_USER)
2201 /*
2202 * Need to store information about allocs and frees after
2203 * the object.
2204 */
2205 size += 2 * sizeof(struct track);
2206
2207 if (flags & SLAB_RED_ZONE)
2208 /*
2209 * Add some empty padding so that we can catch
2210 * overwrites from earlier objects rather than let
2211 * tracking information or the free pointer be
2212 * corrupted if an user writes before the start
2213 * of the object.
2214 */
2215 size += sizeof(void *);
2216 #endif
2217
2218 /*
2219 * Determine the alignment based on various parameters that the
2220 * user specified and the dynamic determination of cache line size
2221 * on bootup.
2222 */
2223 align = calculate_alignment(flags, align, s->objsize);
2224
2225 /*
2226 * SLUB stores one object immediately after another beginning from
2227 * offset 0. In order to align the objects we have to simply size
2228 * each object to conform to the alignment.
2229 */
2230 size = ALIGN(size, align);
2231 s->size = size;
2232
2233 if ((flags & __KMALLOC_CACHE) &&
2234 PAGE_SIZE / size < slub_min_objects) {
2235 /*
2236 * Kmalloc cache that would not have enough objects in
2237 * an order 0 page. Kmalloc slabs can fallback to
2238 * page allocator order 0 allocs so take a reasonably large
2239 * order that will allows us a good number of objects.
2240 */
2241 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2242 s->flags |= __PAGE_ALLOC_FALLBACK;
2243 s->allocflags |= __GFP_NOWARN;
2244 } else
2245 s->order = calculate_order(size);
2246
2247 if (s->order < 0)
2248 return 0;
2249
2250 s->allocflags = 0;
2251 if (s->order)
2252 s->allocflags |= __GFP_COMP;
2253
2254 if (s->flags & SLAB_CACHE_DMA)
2255 s->allocflags |= SLUB_DMA;
2256
2257 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2258 s->allocflags |= __GFP_RECLAIMABLE;
2259
2260 /*
2261 * Determine the number of objects per slab
2262 */
2263 s->objects = (PAGE_SIZE << s->order) / size;
2264
2265 return !!s->objects;
2266
2267 }
2268
2269 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2270 const char *name, size_t size,
2271 size_t align, unsigned long flags,
2272 void (*ctor)(struct kmem_cache *, void *))
2273 {
2274 memset(s, 0, kmem_size);
2275 s->name = name;
2276 s->ctor = ctor;
2277 s->objsize = size;
2278 s->align = align;
2279 s->flags = kmem_cache_flags(size, flags, name, ctor);
2280
2281 if (!calculate_sizes(s))
2282 goto error;
2283
2284 s->refcount = 1;
2285 #ifdef CONFIG_NUMA
2286 s->remote_node_defrag_ratio = 100;
2287 #endif
2288 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2289 goto error;
2290
2291 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2292 return 1;
2293 free_kmem_cache_nodes(s);
2294 error:
2295 if (flags & SLAB_PANIC)
2296 panic("Cannot create slab %s size=%lu realsize=%u "
2297 "order=%u offset=%u flags=%lx\n",
2298 s->name, (unsigned long)size, s->size, s->order,
2299 s->offset, flags);
2300 return 0;
2301 }
2302
2303 /*
2304 * Check if a given pointer is valid
2305 */
2306 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2307 {
2308 struct page *page;
2309
2310 page = get_object_page(object);
2311
2312 if (!page || s != page->slab)
2313 /* No slab or wrong slab */
2314 return 0;
2315
2316 if (!check_valid_pointer(s, page, object))
2317 return 0;
2318
2319 /*
2320 * We could also check if the object is on the slabs freelist.
2321 * But this would be too expensive and it seems that the main
2322 * purpose of kmem_ptr_valid is to check if the object belongs
2323 * to a certain slab.
2324 */
2325 return 1;
2326 }
2327 EXPORT_SYMBOL(kmem_ptr_validate);
2328
2329 /*
2330 * Determine the size of a slab object
2331 */
2332 unsigned int kmem_cache_size(struct kmem_cache *s)
2333 {
2334 return s->objsize;
2335 }
2336 EXPORT_SYMBOL(kmem_cache_size);
2337
2338 const char *kmem_cache_name(struct kmem_cache *s)
2339 {
2340 return s->name;
2341 }
2342 EXPORT_SYMBOL(kmem_cache_name);
2343
2344 /*
2345 * Attempt to free all slabs on a node. Return the number of slabs we
2346 * were unable to free.
2347 */
2348 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2349 struct list_head *list)
2350 {
2351 int slabs_inuse = 0;
2352 unsigned long flags;
2353 struct page *page, *h;
2354
2355 spin_lock_irqsave(&n->list_lock, flags);
2356 list_for_each_entry_safe(page, h, list, lru)
2357 if (!page->inuse) {
2358 list_del(&page->lru);
2359 discard_slab(s, page);
2360 } else
2361 slabs_inuse++;
2362 spin_unlock_irqrestore(&n->list_lock, flags);
2363 return slabs_inuse;
2364 }
2365
2366 /*
2367 * Release all resources used by a slab cache.
2368 */
2369 static inline int kmem_cache_close(struct kmem_cache *s)
2370 {
2371 int node;
2372
2373 flush_all(s);
2374
2375 /* Attempt to free all objects */
2376 free_kmem_cache_cpus(s);
2377 for_each_node_state(node, N_NORMAL_MEMORY) {
2378 struct kmem_cache_node *n = get_node(s, node);
2379
2380 n->nr_partial -= free_list(s, n, &n->partial);
2381 if (atomic_long_read(&n->nr_slabs))
2382 return 1;
2383 }
2384 free_kmem_cache_nodes(s);
2385 return 0;
2386 }
2387
2388 /*
2389 * Close a cache and release the kmem_cache structure
2390 * (must be used for caches created using kmem_cache_create)
2391 */
2392 void kmem_cache_destroy(struct kmem_cache *s)
2393 {
2394 down_write(&slub_lock);
2395 s->refcount--;
2396 if (!s->refcount) {
2397 list_del(&s->list);
2398 up_write(&slub_lock);
2399 if (kmem_cache_close(s))
2400 WARN_ON(1);
2401 sysfs_slab_remove(s);
2402 } else
2403 up_write(&slub_lock);
2404 }
2405 EXPORT_SYMBOL(kmem_cache_destroy);
2406
2407 /********************************************************************
2408 * Kmalloc subsystem
2409 *******************************************************************/
2410
2411 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2412 EXPORT_SYMBOL(kmalloc_caches);
2413
2414 #ifdef CONFIG_ZONE_DMA
2415 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2416 #endif
2417
2418 static int __init setup_slub_min_order(char *str)
2419 {
2420 get_option(&str, &slub_min_order);
2421
2422 return 1;
2423 }
2424
2425 __setup("slub_min_order=", setup_slub_min_order);
2426
2427 static int __init setup_slub_max_order(char *str)
2428 {
2429 get_option(&str, &slub_max_order);
2430
2431 return 1;
2432 }
2433
2434 __setup("slub_max_order=", setup_slub_max_order);
2435
2436 static int __init setup_slub_min_objects(char *str)
2437 {
2438 get_option(&str, &slub_min_objects);
2439
2440 return 1;
2441 }
2442
2443 __setup("slub_min_objects=", setup_slub_min_objects);
2444
2445 static int __init setup_slub_nomerge(char *str)
2446 {
2447 slub_nomerge = 1;
2448 return 1;
2449 }
2450
2451 __setup("slub_nomerge", setup_slub_nomerge);
2452
2453 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2454 const char *name, int size, gfp_t gfp_flags)
2455 {
2456 unsigned int flags = 0;
2457
2458 if (gfp_flags & SLUB_DMA)
2459 flags = SLAB_CACHE_DMA;
2460
2461 down_write(&slub_lock);
2462 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2463 flags | __KMALLOC_CACHE, NULL))
2464 goto panic;
2465
2466 list_add(&s->list, &slab_caches);
2467 up_write(&slub_lock);
2468 if (sysfs_slab_add(s))
2469 goto panic;
2470 return s;
2471
2472 panic:
2473 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2474 }
2475
2476 #ifdef CONFIG_ZONE_DMA
2477
2478 static void sysfs_add_func(struct work_struct *w)
2479 {
2480 struct kmem_cache *s;
2481
2482 down_write(&slub_lock);
2483 list_for_each_entry(s, &slab_caches, list) {
2484 if (s->flags & __SYSFS_ADD_DEFERRED) {
2485 s->flags &= ~__SYSFS_ADD_DEFERRED;
2486 sysfs_slab_add(s);
2487 }
2488 }
2489 up_write(&slub_lock);
2490 }
2491
2492 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2493
2494 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2495 {
2496 struct kmem_cache *s;
2497 char *text;
2498 size_t realsize;
2499
2500 s = kmalloc_caches_dma[index];
2501 if (s)
2502 return s;
2503
2504 /* Dynamically create dma cache */
2505 if (flags & __GFP_WAIT)
2506 down_write(&slub_lock);
2507 else {
2508 if (!down_write_trylock(&slub_lock))
2509 goto out;
2510 }
2511
2512 if (kmalloc_caches_dma[index])
2513 goto unlock_out;
2514
2515 realsize = kmalloc_caches[index].objsize;
2516 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2517 (unsigned int)realsize);
2518 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2519
2520 if (!s || !text || !kmem_cache_open(s, flags, text,
2521 realsize, ARCH_KMALLOC_MINALIGN,
2522 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2523 kfree(s);
2524 kfree(text);
2525 goto unlock_out;
2526 }
2527
2528 list_add(&s->list, &slab_caches);
2529 kmalloc_caches_dma[index] = s;
2530
2531 schedule_work(&sysfs_add_work);
2532
2533 unlock_out:
2534 up_write(&slub_lock);
2535 out:
2536 return kmalloc_caches_dma[index];
2537 }
2538 #endif
2539
2540 /*
2541 * Conversion table for small slabs sizes / 8 to the index in the
2542 * kmalloc array. This is necessary for slabs < 192 since we have non power
2543 * of two cache sizes there. The size of larger slabs can be determined using
2544 * fls.
2545 */
2546 static s8 size_index[24] = {
2547 3, /* 8 */
2548 4, /* 16 */
2549 5, /* 24 */
2550 5, /* 32 */
2551 6, /* 40 */
2552 6, /* 48 */
2553 6, /* 56 */
2554 6, /* 64 */
2555 1, /* 72 */
2556 1, /* 80 */
2557 1, /* 88 */
2558 1, /* 96 */
2559 7, /* 104 */
2560 7, /* 112 */
2561 7, /* 120 */
2562 7, /* 128 */
2563 2, /* 136 */
2564 2, /* 144 */
2565 2, /* 152 */
2566 2, /* 160 */
2567 2, /* 168 */
2568 2, /* 176 */
2569 2, /* 184 */
2570 2 /* 192 */
2571 };
2572
2573 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2574 {
2575 int index;
2576
2577 if (size <= 192) {
2578 if (!size)
2579 return ZERO_SIZE_PTR;
2580
2581 index = size_index[(size - 1) / 8];
2582 } else
2583 index = fls(size - 1);
2584
2585 #ifdef CONFIG_ZONE_DMA
2586 if (unlikely((flags & SLUB_DMA)))
2587 return dma_kmalloc_cache(index, flags);
2588
2589 #endif
2590 return &kmalloc_caches[index];
2591 }
2592
2593 void *__kmalloc(size_t size, gfp_t flags)
2594 {
2595 struct kmem_cache *s;
2596
2597 if (unlikely(size > PAGE_SIZE))
2598 return kmalloc_large(size, flags);
2599
2600 s = get_slab(size, flags);
2601
2602 if (unlikely(ZERO_OR_NULL_PTR(s)))
2603 return s;
2604
2605 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2606 }
2607 EXPORT_SYMBOL(__kmalloc);
2608
2609 #ifdef CONFIG_NUMA
2610 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2611 {
2612 struct kmem_cache *s;
2613
2614 if (unlikely(size > PAGE_SIZE))
2615 return kmalloc_large(size, flags);
2616
2617 s = get_slab(size, flags);
2618
2619 if (unlikely(ZERO_OR_NULL_PTR(s)))
2620 return s;
2621
2622 return slab_alloc(s, flags, node, __builtin_return_address(0));
2623 }
2624 EXPORT_SYMBOL(__kmalloc_node);
2625 #endif
2626
2627 size_t ksize(const void *object)
2628 {
2629 struct page *page;
2630 struct kmem_cache *s;
2631
2632 BUG_ON(!object);
2633 if (unlikely(object == ZERO_SIZE_PTR))
2634 return 0;
2635
2636 page = virt_to_head_page(object);
2637 BUG_ON(!page);
2638
2639 if (unlikely(!PageSlab(page)))
2640 return PAGE_SIZE << compound_order(page);
2641
2642 s = page->slab;
2643 BUG_ON(!s);
2644
2645 /*
2646 * Debugging requires use of the padding between object
2647 * and whatever may come after it.
2648 */
2649 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2650 return s->objsize;
2651
2652 /*
2653 * If we have the need to store the freelist pointer
2654 * back there or track user information then we can
2655 * only use the space before that information.
2656 */
2657 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2658 return s->inuse;
2659
2660 /*
2661 * Else we can use all the padding etc for the allocation
2662 */
2663 return s->size;
2664 }
2665 EXPORT_SYMBOL(ksize);
2666
2667 void kfree(const void *x)
2668 {
2669 struct page *page;
2670 void *object = (void *)x;
2671
2672 if (unlikely(ZERO_OR_NULL_PTR(x)))
2673 return;
2674
2675 page = virt_to_head_page(x);
2676 if (unlikely(!PageSlab(page))) {
2677 put_page(page);
2678 return;
2679 }
2680 slab_free(page->slab, page, object, __builtin_return_address(0));
2681 }
2682 EXPORT_SYMBOL(kfree);
2683
2684 static unsigned long count_partial(struct kmem_cache_node *n)
2685 {
2686 unsigned long flags;
2687 unsigned long x = 0;
2688 struct page *page;
2689
2690 spin_lock_irqsave(&n->list_lock, flags);
2691 list_for_each_entry(page, &n->partial, lru)
2692 x += page->inuse;
2693 spin_unlock_irqrestore(&n->list_lock, flags);
2694 return x;
2695 }
2696
2697 /*
2698 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2699 * the remaining slabs by the number of items in use. The slabs with the
2700 * most items in use come first. New allocations will then fill those up
2701 * and thus they can be removed from the partial lists.
2702 *
2703 * The slabs with the least items are placed last. This results in them
2704 * being allocated from last increasing the chance that the last objects
2705 * are freed in them.
2706 */
2707 int kmem_cache_shrink(struct kmem_cache *s)
2708 {
2709 int node;
2710 int i;
2711 struct kmem_cache_node *n;
2712 struct page *page;
2713 struct page *t;
2714 struct list_head *slabs_by_inuse =
2715 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2716 unsigned long flags;
2717
2718 if (!slabs_by_inuse)
2719 return -ENOMEM;
2720
2721 flush_all(s);
2722 for_each_node_state(node, N_NORMAL_MEMORY) {
2723 n = get_node(s, node);
2724
2725 if (!n->nr_partial)
2726 continue;
2727
2728 for (i = 0; i < s->objects; i++)
2729 INIT_LIST_HEAD(slabs_by_inuse + i);
2730
2731 spin_lock_irqsave(&n->list_lock, flags);
2732
2733 /*
2734 * Build lists indexed by the items in use in each slab.
2735 *
2736 * Note that concurrent frees may occur while we hold the
2737 * list_lock. page->inuse here is the upper limit.
2738 */
2739 list_for_each_entry_safe(page, t, &n->partial, lru) {
2740 if (!page->inuse && slab_trylock(page)) {
2741 /*
2742 * Must hold slab lock here because slab_free
2743 * may have freed the last object and be
2744 * waiting to release the slab.
2745 */
2746 list_del(&page->lru);
2747 n->nr_partial--;
2748 slab_unlock(page);
2749 discard_slab(s, page);
2750 } else {
2751 list_move(&page->lru,
2752 slabs_by_inuse + page->inuse);
2753 }
2754 }
2755
2756 /*
2757 * Rebuild the partial list with the slabs filled up most
2758 * first and the least used slabs at the end.
2759 */
2760 for (i = s->objects - 1; i >= 0; i--)
2761 list_splice(slabs_by_inuse + i, n->partial.prev);
2762
2763 spin_unlock_irqrestore(&n->list_lock, flags);
2764 }
2765
2766 kfree(slabs_by_inuse);
2767 return 0;
2768 }
2769 EXPORT_SYMBOL(kmem_cache_shrink);
2770
2771 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2772 static int slab_mem_going_offline_callback(void *arg)
2773 {
2774 struct kmem_cache *s;
2775
2776 down_read(&slub_lock);
2777 list_for_each_entry(s, &slab_caches, list)
2778 kmem_cache_shrink(s);
2779 up_read(&slub_lock);
2780
2781 return 0;
2782 }
2783
2784 static void slab_mem_offline_callback(void *arg)
2785 {
2786 struct kmem_cache_node *n;
2787 struct kmem_cache *s;
2788 struct memory_notify *marg = arg;
2789 int offline_node;
2790
2791 offline_node = marg->status_change_nid;
2792
2793 /*
2794 * If the node still has available memory. we need kmem_cache_node
2795 * for it yet.
2796 */
2797 if (offline_node < 0)
2798 return;
2799
2800 down_read(&slub_lock);
2801 list_for_each_entry(s, &slab_caches, list) {
2802 n = get_node(s, offline_node);
2803 if (n) {
2804 /*
2805 * if n->nr_slabs > 0, slabs still exist on the node
2806 * that is going down. We were unable to free them,
2807 * and offline_pages() function shoudn't call this
2808 * callback. So, we must fail.
2809 */
2810 BUG_ON(atomic_long_read(&n->nr_slabs));
2811
2812 s->node[offline_node] = NULL;
2813 kmem_cache_free(kmalloc_caches, n);
2814 }
2815 }
2816 up_read(&slub_lock);
2817 }
2818
2819 static int slab_mem_going_online_callback(void *arg)
2820 {
2821 struct kmem_cache_node *n;
2822 struct kmem_cache *s;
2823 struct memory_notify *marg = arg;
2824 int nid = marg->status_change_nid;
2825 int ret = 0;
2826
2827 /*
2828 * If the node's memory is already available, then kmem_cache_node is
2829 * already created. Nothing to do.
2830 */
2831 if (nid < 0)
2832 return 0;
2833
2834 /*
2835 * We are bringing a node online. No memory is availabe yet. We must
2836 * allocate a kmem_cache_node structure in order to bring the node
2837 * online.
2838 */
2839 down_read(&slub_lock);
2840 list_for_each_entry(s, &slab_caches, list) {
2841 /*
2842 * XXX: kmem_cache_alloc_node will fallback to other nodes
2843 * since memory is not yet available from the node that
2844 * is brought up.
2845 */
2846 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2847 if (!n) {
2848 ret = -ENOMEM;
2849 goto out;
2850 }
2851 init_kmem_cache_node(n);
2852 s->node[nid] = n;
2853 }
2854 out:
2855 up_read(&slub_lock);
2856 return ret;
2857 }
2858
2859 static int slab_memory_callback(struct notifier_block *self,
2860 unsigned long action, void *arg)
2861 {
2862 int ret = 0;
2863
2864 switch (action) {
2865 case MEM_GOING_ONLINE:
2866 ret = slab_mem_going_online_callback(arg);
2867 break;
2868 case MEM_GOING_OFFLINE:
2869 ret = slab_mem_going_offline_callback(arg);
2870 break;
2871 case MEM_OFFLINE:
2872 case MEM_CANCEL_ONLINE:
2873 slab_mem_offline_callback(arg);
2874 break;
2875 case MEM_ONLINE:
2876 case MEM_CANCEL_OFFLINE:
2877 break;
2878 }
2879
2880 ret = notifier_from_errno(ret);
2881 return ret;
2882 }
2883
2884 #endif /* CONFIG_MEMORY_HOTPLUG */
2885
2886 /********************************************************************
2887 * Basic setup of slabs
2888 *******************************************************************/
2889
2890 void __init kmem_cache_init(void)
2891 {
2892 int i;
2893 int caches = 0;
2894
2895 init_alloc_cpu();
2896
2897 #ifdef CONFIG_NUMA
2898 /*
2899 * Must first have the slab cache available for the allocations of the
2900 * struct kmem_cache_node's. There is special bootstrap code in
2901 * kmem_cache_open for slab_state == DOWN.
2902 */
2903 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2904 sizeof(struct kmem_cache_node), GFP_KERNEL);
2905 kmalloc_caches[0].refcount = -1;
2906 caches++;
2907
2908 hotplug_memory_notifier(slab_memory_callback, 1);
2909 #endif
2910
2911 /* Able to allocate the per node structures */
2912 slab_state = PARTIAL;
2913
2914 /* Caches that are not of the two-to-the-power-of size */
2915 if (KMALLOC_MIN_SIZE <= 64) {
2916 create_kmalloc_cache(&kmalloc_caches[1],
2917 "kmalloc-96", 96, GFP_KERNEL);
2918 caches++;
2919 }
2920 if (KMALLOC_MIN_SIZE <= 128) {
2921 create_kmalloc_cache(&kmalloc_caches[2],
2922 "kmalloc-192", 192, GFP_KERNEL);
2923 caches++;
2924 }
2925
2926 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2927 create_kmalloc_cache(&kmalloc_caches[i],
2928 "kmalloc", 1 << i, GFP_KERNEL);
2929 caches++;
2930 }
2931
2932
2933 /*
2934 * Patch up the size_index table if we have strange large alignment
2935 * requirements for the kmalloc array. This is only the case for
2936 * mips it seems. The standard arches will not generate any code here.
2937 *
2938 * Largest permitted alignment is 256 bytes due to the way we
2939 * handle the index determination for the smaller caches.
2940 *
2941 * Make sure that nothing crazy happens if someone starts tinkering
2942 * around with ARCH_KMALLOC_MINALIGN
2943 */
2944 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2945 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2946
2947 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2948 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2949
2950 slab_state = UP;
2951
2952 /* Provide the correct kmalloc names now that the caches are up */
2953 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
2954 kmalloc_caches[i]. name =
2955 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2956
2957 #ifdef CONFIG_SMP
2958 register_cpu_notifier(&slab_notifier);
2959 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2960 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2961 #else
2962 kmem_size = sizeof(struct kmem_cache);
2963 #endif
2964
2965
2966 printk(KERN_INFO
2967 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2968 " CPUs=%d, Nodes=%d\n",
2969 caches, cache_line_size(),
2970 slub_min_order, slub_max_order, slub_min_objects,
2971 nr_cpu_ids, nr_node_ids);
2972 }
2973
2974 /*
2975 * Find a mergeable slab cache
2976 */
2977 static int slab_unmergeable(struct kmem_cache *s)
2978 {
2979 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2980 return 1;
2981
2982 if ((s->flags & __PAGE_ALLOC_FALLBACK))
2983 return 1;
2984
2985 if (s->ctor)
2986 return 1;
2987
2988 /*
2989 * We may have set a slab to be unmergeable during bootstrap.
2990 */
2991 if (s->refcount < 0)
2992 return 1;
2993
2994 return 0;
2995 }
2996
2997 static struct kmem_cache *find_mergeable(size_t size,
2998 size_t align, unsigned long flags, const char *name,
2999 void (*ctor)(struct kmem_cache *, void *))
3000 {
3001 struct kmem_cache *s;
3002
3003 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3004 return NULL;
3005
3006 if (ctor)
3007 return NULL;
3008
3009 size = ALIGN(size, sizeof(void *));
3010 align = calculate_alignment(flags, align, size);
3011 size = ALIGN(size, align);
3012 flags = kmem_cache_flags(size, flags, name, NULL);
3013
3014 list_for_each_entry(s, &slab_caches, list) {
3015 if (slab_unmergeable(s))
3016 continue;
3017
3018 if (size > s->size)
3019 continue;
3020
3021 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3022 continue;
3023 /*
3024 * Check if alignment is compatible.
3025 * Courtesy of Adrian Drzewiecki
3026 */
3027 if ((s->size & ~(align - 1)) != s->size)
3028 continue;
3029
3030 if (s->size - size >= sizeof(void *))
3031 continue;
3032
3033 return s;
3034 }
3035 return NULL;
3036 }
3037
3038 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3039 size_t align, unsigned long flags,
3040 void (*ctor)(struct kmem_cache *, void *))
3041 {
3042 struct kmem_cache *s;
3043
3044 down_write(&slub_lock);
3045 s = find_mergeable(size, align, flags, name, ctor);
3046 if (s) {
3047 int cpu;
3048
3049 s->refcount++;
3050 /*
3051 * Adjust the object sizes so that we clear
3052 * the complete object on kzalloc.
3053 */
3054 s->objsize = max(s->objsize, (int)size);
3055
3056 /*
3057 * And then we need to update the object size in the
3058 * per cpu structures
3059 */
3060 for_each_online_cpu(cpu)
3061 get_cpu_slab(s, cpu)->objsize = s->objsize;
3062 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3063 up_write(&slub_lock);
3064 if (sysfs_slab_alias(s, name))
3065 goto err;
3066 return s;
3067 }
3068 s = kmalloc(kmem_size, GFP_KERNEL);
3069 if (s) {
3070 if (kmem_cache_open(s, GFP_KERNEL, name,
3071 size, align, flags, ctor)) {
3072 list_add(&s->list, &slab_caches);
3073 up_write(&slub_lock);
3074 if (sysfs_slab_add(s))
3075 goto err;
3076 return s;
3077 }
3078 kfree(s);
3079 }
3080 up_write(&slub_lock);
3081
3082 err:
3083 if (flags & SLAB_PANIC)
3084 panic("Cannot create slabcache %s\n", name);
3085 else
3086 s = NULL;
3087 return s;
3088 }
3089 EXPORT_SYMBOL(kmem_cache_create);
3090
3091 #ifdef CONFIG_SMP
3092 /*
3093 * Use the cpu notifier to insure that the cpu slabs are flushed when
3094 * necessary.
3095 */
3096 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3097 unsigned long action, void *hcpu)
3098 {
3099 long cpu = (long)hcpu;
3100 struct kmem_cache *s;
3101 unsigned long flags;
3102
3103 switch (action) {
3104 case CPU_UP_PREPARE:
3105 case CPU_UP_PREPARE_FROZEN:
3106 init_alloc_cpu_cpu(cpu);
3107 down_read(&slub_lock);
3108 list_for_each_entry(s, &slab_caches, list)
3109 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3110 GFP_KERNEL);
3111 up_read(&slub_lock);
3112 break;
3113
3114 case CPU_UP_CANCELED:
3115 case CPU_UP_CANCELED_FROZEN:
3116 case CPU_DEAD:
3117 case CPU_DEAD_FROZEN:
3118 down_read(&slub_lock);
3119 list_for_each_entry(s, &slab_caches, list) {
3120 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3121
3122 local_irq_save(flags);
3123 __flush_cpu_slab(s, cpu);
3124 local_irq_restore(flags);
3125 free_kmem_cache_cpu(c, cpu);
3126 s->cpu_slab[cpu] = NULL;
3127 }
3128 up_read(&slub_lock);
3129 break;
3130 default:
3131 break;
3132 }
3133 return NOTIFY_OK;
3134 }
3135
3136 static struct notifier_block __cpuinitdata slab_notifier = {
3137 .notifier_call = slab_cpuup_callback
3138 };
3139
3140 #endif
3141
3142 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3143 {
3144 struct kmem_cache *s;
3145
3146 if (unlikely(size > PAGE_SIZE))
3147 return kmalloc_large(size, gfpflags);
3148
3149 s = get_slab(size, gfpflags);
3150
3151 if (unlikely(ZERO_OR_NULL_PTR(s)))
3152 return s;
3153
3154 return slab_alloc(s, gfpflags, -1, caller);
3155 }
3156
3157 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3158 int node, void *caller)
3159 {
3160 struct kmem_cache *s;
3161
3162 if (unlikely(size > PAGE_SIZE))
3163 return kmalloc_large(size, gfpflags);
3164
3165 s = get_slab(size, gfpflags);
3166
3167 if (unlikely(ZERO_OR_NULL_PTR(s)))
3168 return s;
3169
3170 return slab_alloc(s, gfpflags, node, caller);
3171 }
3172
3173 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3174 static int validate_slab(struct kmem_cache *s, struct page *page,
3175 unsigned long *map)
3176 {
3177 void *p;
3178 void *addr = page_address(page);
3179
3180 if (!check_slab(s, page) ||
3181 !on_freelist(s, page, NULL))
3182 return 0;
3183
3184 /* Now we know that a valid freelist exists */
3185 bitmap_zero(map, s->objects);
3186
3187 for_each_free_object(p, s, page->freelist) {
3188 set_bit(slab_index(p, s, addr), map);
3189 if (!check_object(s, page, p, 0))
3190 return 0;
3191 }
3192
3193 for_each_object(p, s, addr)
3194 if (!test_bit(slab_index(p, s, addr), map))
3195 if (!check_object(s, page, p, 1))
3196 return 0;
3197 return 1;
3198 }
3199
3200 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3201 unsigned long *map)
3202 {
3203 if (slab_trylock(page)) {
3204 validate_slab(s, page, map);
3205 slab_unlock(page);
3206 } else
3207 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3208 s->name, page);
3209
3210 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3211 if (!SlabDebug(page))
3212 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3213 "on slab 0x%p\n", s->name, page);
3214 } else {
3215 if (SlabDebug(page))
3216 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3217 "slab 0x%p\n", s->name, page);
3218 }
3219 }
3220
3221 static int validate_slab_node(struct kmem_cache *s,
3222 struct kmem_cache_node *n, unsigned long *map)
3223 {
3224 unsigned long count = 0;
3225 struct page *page;
3226 unsigned long flags;
3227
3228 spin_lock_irqsave(&n->list_lock, flags);
3229
3230 list_for_each_entry(page, &n->partial, lru) {
3231 validate_slab_slab(s, page, map);
3232 count++;
3233 }
3234 if (count != n->nr_partial)
3235 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3236 "counter=%ld\n", s->name, count, n->nr_partial);
3237
3238 if (!(s->flags & SLAB_STORE_USER))
3239 goto out;
3240
3241 list_for_each_entry(page, &n->full, lru) {
3242 validate_slab_slab(s, page, map);
3243 count++;
3244 }
3245 if (count != atomic_long_read(&n->nr_slabs))
3246 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3247 "counter=%ld\n", s->name, count,
3248 atomic_long_read(&n->nr_slabs));
3249
3250 out:
3251 spin_unlock_irqrestore(&n->list_lock, flags);
3252 return count;
3253 }
3254
3255 static long validate_slab_cache(struct kmem_cache *s)
3256 {
3257 int node;
3258 unsigned long count = 0;
3259 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3260 sizeof(unsigned long), GFP_KERNEL);
3261
3262 if (!map)
3263 return -ENOMEM;
3264
3265 flush_all(s);
3266 for_each_node_state(node, N_NORMAL_MEMORY) {
3267 struct kmem_cache_node *n = get_node(s, node);
3268
3269 count += validate_slab_node(s, n, map);
3270 }
3271 kfree(map);
3272 return count;
3273 }
3274
3275 #ifdef SLUB_RESILIENCY_TEST
3276 static void resiliency_test(void)
3277 {
3278 u8 *p;
3279
3280 printk(KERN_ERR "SLUB resiliency testing\n");
3281 printk(KERN_ERR "-----------------------\n");
3282 printk(KERN_ERR "A. Corruption after allocation\n");
3283
3284 p = kzalloc(16, GFP_KERNEL);
3285 p[16] = 0x12;
3286 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3287 " 0x12->0x%p\n\n", p + 16);
3288
3289 validate_slab_cache(kmalloc_caches + 4);
3290
3291 /* Hmmm... The next two are dangerous */
3292 p = kzalloc(32, GFP_KERNEL);
3293 p[32 + sizeof(void *)] = 0x34;
3294 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3295 " 0x34 -> -0x%p\n", p);
3296 printk(KERN_ERR
3297 "If allocated object is overwritten then not detectable\n\n");
3298
3299 validate_slab_cache(kmalloc_caches + 5);
3300 p = kzalloc(64, GFP_KERNEL);
3301 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3302 *p = 0x56;
3303 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3304 p);
3305 printk(KERN_ERR
3306 "If allocated object is overwritten then not detectable\n\n");
3307 validate_slab_cache(kmalloc_caches + 6);
3308
3309 printk(KERN_ERR "\nB. Corruption after free\n");
3310 p = kzalloc(128, GFP_KERNEL);
3311 kfree(p);
3312 *p = 0x78;
3313 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3314 validate_slab_cache(kmalloc_caches + 7);
3315
3316 p = kzalloc(256, GFP_KERNEL);
3317 kfree(p);
3318 p[50] = 0x9a;
3319 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3320 p);
3321 validate_slab_cache(kmalloc_caches + 8);
3322
3323 p = kzalloc(512, GFP_KERNEL);
3324 kfree(p);
3325 p[512] = 0xab;
3326 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3327 validate_slab_cache(kmalloc_caches + 9);
3328 }
3329 #else
3330 static void resiliency_test(void) {};
3331 #endif
3332
3333 /*
3334 * Generate lists of code addresses where slabcache objects are allocated
3335 * and freed.
3336 */
3337
3338 struct location {
3339 unsigned long count;
3340 void *addr;
3341 long long sum_time;
3342 long min_time;
3343 long max_time;
3344 long min_pid;
3345 long max_pid;
3346 cpumask_t cpus;
3347 nodemask_t nodes;
3348 };
3349
3350 struct loc_track {
3351 unsigned long max;
3352 unsigned long count;
3353 struct location *loc;
3354 };
3355
3356 static void free_loc_track(struct loc_track *t)
3357 {
3358 if (t->max)
3359 free_pages((unsigned long)t->loc,
3360 get_order(sizeof(struct location) * t->max));
3361 }
3362
3363 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3364 {
3365 struct location *l;
3366 int order;
3367
3368 order = get_order(sizeof(struct location) * max);
3369
3370 l = (void *)__get_free_pages(flags, order);
3371 if (!l)
3372 return 0;
3373
3374 if (t->count) {
3375 memcpy(l, t->loc, sizeof(struct location) * t->count);
3376 free_loc_track(t);
3377 }
3378 t->max = max;
3379 t->loc = l;
3380 return 1;
3381 }
3382
3383 static int add_location(struct loc_track *t, struct kmem_cache *s,
3384 const struct track *track)
3385 {
3386 long start, end, pos;
3387 struct location *l;
3388 void *caddr;
3389 unsigned long age = jiffies - track->when;
3390
3391 start = -1;
3392 end = t->count;
3393
3394 for ( ; ; ) {
3395 pos = start + (end - start + 1) / 2;
3396
3397 /*
3398 * There is nothing at "end". If we end up there
3399 * we need to add something to before end.
3400 */
3401 if (pos == end)
3402 break;
3403
3404 caddr = t->loc[pos].addr;
3405 if (track->addr == caddr) {
3406
3407 l = &t->loc[pos];
3408 l->count++;
3409 if (track->when) {
3410 l->sum_time += age;
3411 if (age < l->min_time)
3412 l->min_time = age;
3413 if (age > l->max_time)
3414 l->max_time = age;
3415
3416 if (track->pid < l->min_pid)
3417 l->min_pid = track->pid;
3418 if (track->pid > l->max_pid)
3419 l->max_pid = track->pid;
3420
3421 cpu_set(track->cpu, l->cpus);
3422 }
3423 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3424 return 1;
3425 }
3426
3427 if (track->addr < caddr)
3428 end = pos;
3429 else
3430 start = pos;
3431 }
3432
3433 /*
3434 * Not found. Insert new tracking element.
3435 */
3436 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3437 return 0;
3438
3439 l = t->loc + pos;
3440 if (pos < t->count)
3441 memmove(l + 1, l,
3442 (t->count - pos) * sizeof(struct location));
3443 t->count++;
3444 l->count = 1;
3445 l->addr = track->addr;
3446 l->sum_time = age;
3447 l->min_time = age;
3448 l->max_time = age;
3449 l->min_pid = track->pid;
3450 l->max_pid = track->pid;
3451 cpus_clear(l->cpus);
3452 cpu_set(track->cpu, l->cpus);
3453 nodes_clear(l->nodes);
3454 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3455 return 1;
3456 }
3457
3458 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3459 struct page *page, enum track_item alloc)
3460 {
3461 void *addr = page_address(page);
3462 DECLARE_BITMAP(map, s->objects);
3463 void *p;
3464
3465 bitmap_zero(map, s->objects);
3466 for_each_free_object(p, s, page->freelist)
3467 set_bit(slab_index(p, s, addr), map);
3468
3469 for_each_object(p, s, addr)
3470 if (!test_bit(slab_index(p, s, addr), map))
3471 add_location(t, s, get_track(s, p, alloc));
3472 }
3473
3474 static int list_locations(struct kmem_cache *s, char *buf,
3475 enum track_item alloc)
3476 {
3477 int len = 0;
3478 unsigned long i;
3479 struct loc_track t = { 0, 0, NULL };
3480 int node;
3481
3482 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3483 GFP_TEMPORARY))
3484 return sprintf(buf, "Out of memory\n");
3485
3486 /* Push back cpu slabs */
3487 flush_all(s);
3488
3489 for_each_node_state(node, N_NORMAL_MEMORY) {
3490 struct kmem_cache_node *n = get_node(s, node);
3491 unsigned long flags;
3492 struct page *page;
3493
3494 if (!atomic_long_read(&n->nr_slabs))
3495 continue;
3496
3497 spin_lock_irqsave(&n->list_lock, flags);
3498 list_for_each_entry(page, &n->partial, lru)
3499 process_slab(&t, s, page, alloc);
3500 list_for_each_entry(page, &n->full, lru)
3501 process_slab(&t, s, page, alloc);
3502 spin_unlock_irqrestore(&n->list_lock, flags);
3503 }
3504
3505 for (i = 0; i < t.count; i++) {
3506 struct location *l = &t.loc[i];
3507
3508 if (len > PAGE_SIZE - 100)
3509 break;
3510 len += sprintf(buf + len, "%7ld ", l->count);
3511
3512 if (l->addr)
3513 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3514 else
3515 len += sprintf(buf + len, "<not-available>");
3516
3517 if (l->sum_time != l->min_time) {
3518 unsigned long remainder;
3519
3520 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3521 l->min_time,
3522 div_long_long_rem(l->sum_time, l->count, &remainder),
3523 l->max_time);
3524 } else
3525 len += sprintf(buf + len, " age=%ld",
3526 l->min_time);
3527
3528 if (l->min_pid != l->max_pid)
3529 len += sprintf(buf + len, " pid=%ld-%ld",
3530 l->min_pid, l->max_pid);
3531 else
3532 len += sprintf(buf + len, " pid=%ld",
3533 l->min_pid);
3534
3535 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3536 len < PAGE_SIZE - 60) {
3537 len += sprintf(buf + len, " cpus=");
3538 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3539 l->cpus);
3540 }
3541
3542 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3543 len < PAGE_SIZE - 60) {
3544 len += sprintf(buf + len, " nodes=");
3545 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3546 l->nodes);
3547 }
3548
3549 len += sprintf(buf + len, "\n");
3550 }
3551
3552 free_loc_track(&t);
3553 if (!t.count)
3554 len += sprintf(buf, "No data\n");
3555 return len;
3556 }
3557
3558 enum slab_stat_type {
3559 SL_FULL,
3560 SL_PARTIAL,
3561 SL_CPU,
3562 SL_OBJECTS
3563 };
3564
3565 #define SO_FULL (1 << SL_FULL)
3566 #define SO_PARTIAL (1 << SL_PARTIAL)
3567 #define SO_CPU (1 << SL_CPU)
3568 #define SO_OBJECTS (1 << SL_OBJECTS)
3569
3570 static unsigned long show_slab_objects(struct kmem_cache *s,
3571 char *buf, unsigned long flags)
3572 {
3573 unsigned long total = 0;
3574 int cpu;
3575 int node;
3576 int x;
3577 unsigned long *nodes;
3578 unsigned long *per_cpu;
3579
3580 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3581 per_cpu = nodes + nr_node_ids;
3582
3583 for_each_possible_cpu(cpu) {
3584 struct page *page;
3585 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3586
3587 if (!c)
3588 continue;
3589
3590 page = c->page;
3591 node = c->node;
3592 if (node < 0)
3593 continue;
3594 if (page) {
3595 if (flags & SO_CPU) {
3596 if (flags & SO_OBJECTS)
3597 x = page->inuse;
3598 else
3599 x = 1;
3600 total += x;
3601 nodes[node] += x;
3602 }
3603 per_cpu[node]++;
3604 }
3605 }
3606
3607 for_each_node_state(node, N_NORMAL_MEMORY) {
3608 struct kmem_cache_node *n = get_node(s, node);
3609
3610 if (flags & SO_PARTIAL) {
3611 if (flags & SO_OBJECTS)
3612 x = count_partial(n);
3613 else
3614 x = n->nr_partial;
3615 total += x;
3616 nodes[node] += x;
3617 }
3618
3619 if (flags & SO_FULL) {
3620 int full_slabs = atomic_long_read(&n->nr_slabs)
3621 - per_cpu[node]
3622 - n->nr_partial;
3623
3624 if (flags & SO_OBJECTS)
3625 x = full_slabs * s->objects;
3626 else
3627 x = full_slabs;
3628 total += x;
3629 nodes[node] += x;
3630 }
3631 }
3632
3633 x = sprintf(buf, "%lu", total);
3634 #ifdef CONFIG_NUMA
3635 for_each_node_state(node, N_NORMAL_MEMORY)
3636 if (nodes[node])
3637 x += sprintf(buf + x, " N%d=%lu",
3638 node, nodes[node]);
3639 #endif
3640 kfree(nodes);
3641 return x + sprintf(buf + x, "\n");
3642 }
3643
3644 static int any_slab_objects(struct kmem_cache *s)
3645 {
3646 int node;
3647 int cpu;
3648
3649 for_each_possible_cpu(cpu) {
3650 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3651
3652 if (c && c->page)
3653 return 1;
3654 }
3655
3656 for_each_online_node(node) {
3657 struct kmem_cache_node *n = get_node(s, node);
3658
3659 if (!n)
3660 continue;
3661
3662 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3663 return 1;
3664 }
3665 return 0;
3666 }
3667
3668 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3669 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3670
3671 struct slab_attribute {
3672 struct attribute attr;
3673 ssize_t (*show)(struct kmem_cache *s, char *buf);
3674 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3675 };
3676
3677 #define SLAB_ATTR_RO(_name) \
3678 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3679
3680 #define SLAB_ATTR(_name) \
3681 static struct slab_attribute _name##_attr = \
3682 __ATTR(_name, 0644, _name##_show, _name##_store)
3683
3684 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3685 {
3686 return sprintf(buf, "%d\n", s->size);
3687 }
3688 SLAB_ATTR_RO(slab_size);
3689
3690 static ssize_t align_show(struct kmem_cache *s, char *buf)
3691 {
3692 return sprintf(buf, "%d\n", s->align);
3693 }
3694 SLAB_ATTR_RO(align);
3695
3696 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3697 {
3698 return sprintf(buf, "%d\n", s->objsize);
3699 }
3700 SLAB_ATTR_RO(object_size);
3701
3702 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3703 {
3704 return sprintf(buf, "%d\n", s->objects);
3705 }
3706 SLAB_ATTR_RO(objs_per_slab);
3707
3708 static ssize_t order_show(struct kmem_cache *s, char *buf)
3709 {
3710 return sprintf(buf, "%d\n", s->order);
3711 }
3712 SLAB_ATTR_RO(order);
3713
3714 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3715 {
3716 if (s->ctor) {
3717 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3718
3719 return n + sprintf(buf + n, "\n");
3720 }
3721 return 0;
3722 }
3723 SLAB_ATTR_RO(ctor);
3724
3725 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3726 {
3727 return sprintf(buf, "%d\n", s->refcount - 1);
3728 }
3729 SLAB_ATTR_RO(aliases);
3730
3731 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3732 {
3733 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3734 }
3735 SLAB_ATTR_RO(slabs);
3736
3737 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3738 {
3739 return show_slab_objects(s, buf, SO_PARTIAL);
3740 }
3741 SLAB_ATTR_RO(partial);
3742
3743 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3744 {
3745 return show_slab_objects(s, buf, SO_CPU);
3746 }
3747 SLAB_ATTR_RO(cpu_slabs);
3748
3749 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3750 {
3751 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3752 }
3753 SLAB_ATTR_RO(objects);
3754
3755 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3756 {
3757 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3758 }
3759
3760 static ssize_t sanity_checks_store(struct kmem_cache *s,
3761 const char *buf, size_t length)
3762 {
3763 s->flags &= ~SLAB_DEBUG_FREE;
3764 if (buf[0] == '1')
3765 s->flags |= SLAB_DEBUG_FREE;
3766 return length;
3767 }
3768 SLAB_ATTR(sanity_checks);
3769
3770 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3771 {
3772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3773 }
3774
3775 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3776 size_t length)
3777 {
3778 s->flags &= ~SLAB_TRACE;
3779 if (buf[0] == '1')
3780 s->flags |= SLAB_TRACE;
3781 return length;
3782 }
3783 SLAB_ATTR(trace);
3784
3785 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3786 {
3787 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3788 }
3789
3790 static ssize_t reclaim_account_store(struct kmem_cache *s,
3791 const char *buf, size_t length)
3792 {
3793 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3794 if (buf[0] == '1')
3795 s->flags |= SLAB_RECLAIM_ACCOUNT;
3796 return length;
3797 }
3798 SLAB_ATTR(reclaim_account);
3799
3800 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3801 {
3802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3803 }
3804 SLAB_ATTR_RO(hwcache_align);
3805
3806 #ifdef CONFIG_ZONE_DMA
3807 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3808 {
3809 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3810 }
3811 SLAB_ATTR_RO(cache_dma);
3812 #endif
3813
3814 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3815 {
3816 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3817 }
3818 SLAB_ATTR_RO(destroy_by_rcu);
3819
3820 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3821 {
3822 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3823 }
3824
3825 static ssize_t red_zone_store(struct kmem_cache *s,
3826 const char *buf, size_t length)
3827 {
3828 if (any_slab_objects(s))
3829 return -EBUSY;
3830
3831 s->flags &= ~SLAB_RED_ZONE;
3832 if (buf[0] == '1')
3833 s->flags |= SLAB_RED_ZONE;
3834 calculate_sizes(s);
3835 return length;
3836 }
3837 SLAB_ATTR(red_zone);
3838
3839 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3840 {
3841 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3842 }
3843
3844 static ssize_t poison_store(struct kmem_cache *s,
3845 const char *buf, size_t length)
3846 {
3847 if (any_slab_objects(s))
3848 return -EBUSY;
3849
3850 s->flags &= ~SLAB_POISON;
3851 if (buf[0] == '1')
3852 s->flags |= SLAB_POISON;
3853 calculate_sizes(s);
3854 return length;
3855 }
3856 SLAB_ATTR(poison);
3857
3858 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3859 {
3860 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3861 }
3862
3863 static ssize_t store_user_store(struct kmem_cache *s,
3864 const char *buf, size_t length)
3865 {
3866 if (any_slab_objects(s))
3867 return -EBUSY;
3868
3869 s->flags &= ~SLAB_STORE_USER;
3870 if (buf[0] == '1')
3871 s->flags |= SLAB_STORE_USER;
3872 calculate_sizes(s);
3873 return length;
3874 }
3875 SLAB_ATTR(store_user);
3876
3877 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3878 {
3879 return 0;
3880 }
3881
3882 static ssize_t validate_store(struct kmem_cache *s,
3883 const char *buf, size_t length)
3884 {
3885 int ret = -EINVAL;
3886
3887 if (buf[0] == '1') {
3888 ret = validate_slab_cache(s);
3889 if (ret >= 0)
3890 ret = length;
3891 }
3892 return ret;
3893 }
3894 SLAB_ATTR(validate);
3895
3896 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3897 {
3898 return 0;
3899 }
3900
3901 static ssize_t shrink_store(struct kmem_cache *s,
3902 const char *buf, size_t length)
3903 {
3904 if (buf[0] == '1') {
3905 int rc = kmem_cache_shrink(s);
3906
3907 if (rc)
3908 return rc;
3909 } else
3910 return -EINVAL;
3911 return length;
3912 }
3913 SLAB_ATTR(shrink);
3914
3915 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3916 {
3917 if (!(s->flags & SLAB_STORE_USER))
3918 return -ENOSYS;
3919 return list_locations(s, buf, TRACK_ALLOC);
3920 }
3921 SLAB_ATTR_RO(alloc_calls);
3922
3923 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3924 {
3925 if (!(s->flags & SLAB_STORE_USER))
3926 return -ENOSYS;
3927 return list_locations(s, buf, TRACK_FREE);
3928 }
3929 SLAB_ATTR_RO(free_calls);
3930
3931 #ifdef CONFIG_NUMA
3932 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
3933 {
3934 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
3935 }
3936
3937 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
3938 const char *buf, size_t length)
3939 {
3940 int n = simple_strtoul(buf, NULL, 10);
3941
3942 if (n < 100)
3943 s->remote_node_defrag_ratio = n * 10;
3944 return length;
3945 }
3946 SLAB_ATTR(remote_node_defrag_ratio);
3947 #endif
3948
3949 #ifdef CONFIG_SLUB_STATS
3950
3951 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3952 {
3953 unsigned long sum = 0;
3954 int cpu;
3955 int len;
3956 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3957
3958 if (!data)
3959 return -ENOMEM;
3960
3961 for_each_online_cpu(cpu) {
3962 unsigned x = get_cpu_slab(s, cpu)->stat[si];
3963
3964 data[cpu] = x;
3965 sum += x;
3966 }
3967
3968 len = sprintf(buf, "%lu", sum);
3969
3970 for_each_online_cpu(cpu) {
3971 if (data[cpu] && len < PAGE_SIZE - 20)
3972 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
3973 }
3974 kfree(data);
3975 return len + sprintf(buf + len, "\n");
3976 }
3977
3978 #define STAT_ATTR(si, text) \
3979 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
3980 { \
3981 return show_stat(s, buf, si); \
3982 } \
3983 SLAB_ATTR_RO(text); \
3984
3985 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
3986 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
3987 STAT_ATTR(FREE_FASTPATH, free_fastpath);
3988 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
3989 STAT_ATTR(FREE_FROZEN, free_frozen);
3990 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
3991 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
3992 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
3993 STAT_ATTR(ALLOC_SLAB, alloc_slab);
3994 STAT_ATTR(ALLOC_REFILL, alloc_refill);
3995 STAT_ATTR(FREE_SLAB, free_slab);
3996 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
3997 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
3998 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
3999 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4000 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4001 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4002
4003 #endif
4004
4005 static struct attribute *slab_attrs[] = {
4006 &slab_size_attr.attr,
4007 &object_size_attr.attr,
4008 &objs_per_slab_attr.attr,
4009 &order_attr.attr,
4010 &objects_attr.attr,
4011 &slabs_attr.attr,
4012 &partial_attr.attr,
4013 &cpu_slabs_attr.attr,
4014 &ctor_attr.attr,
4015 &aliases_attr.attr,
4016 &align_attr.attr,
4017 &sanity_checks_attr.attr,
4018 &trace_attr.attr,
4019 &hwcache_align_attr.attr,
4020 &reclaim_account_attr.attr,
4021 &destroy_by_rcu_attr.attr,
4022 &red_zone_attr.attr,
4023 &poison_attr.attr,
4024 &store_user_attr.attr,
4025 &validate_attr.attr,
4026 &shrink_attr.attr,
4027 &alloc_calls_attr.attr,
4028 &free_calls_attr.attr,
4029 #ifdef CONFIG_ZONE_DMA
4030 &cache_dma_attr.attr,
4031 #endif
4032 #ifdef CONFIG_NUMA
4033 &remote_node_defrag_ratio_attr.attr,
4034 #endif
4035 #ifdef CONFIG_SLUB_STATS
4036 &alloc_fastpath_attr.attr,
4037 &alloc_slowpath_attr.attr,
4038 &free_fastpath_attr.attr,
4039 &free_slowpath_attr.attr,
4040 &free_frozen_attr.attr,
4041 &free_add_partial_attr.attr,
4042 &free_remove_partial_attr.attr,
4043 &alloc_from_partial_attr.attr,
4044 &alloc_slab_attr.attr,
4045 &alloc_refill_attr.attr,
4046 &free_slab_attr.attr,
4047 &cpuslab_flush_attr.attr,
4048 &deactivate_full_attr.attr,
4049 &deactivate_empty_attr.attr,
4050 &deactivate_to_head_attr.attr,
4051 &deactivate_to_tail_attr.attr,
4052 &deactivate_remote_frees_attr.attr,
4053 #endif
4054 NULL
4055 };
4056
4057 static struct attribute_group slab_attr_group = {
4058 .attrs = slab_attrs,
4059 };
4060
4061 static ssize_t slab_attr_show(struct kobject *kobj,
4062 struct attribute *attr,
4063 char *buf)
4064 {
4065 struct slab_attribute *attribute;
4066 struct kmem_cache *s;
4067 int err;
4068
4069 attribute = to_slab_attr(attr);
4070 s = to_slab(kobj);
4071
4072 if (!attribute->show)
4073 return -EIO;
4074
4075 err = attribute->show(s, buf);
4076
4077 return err;
4078 }
4079
4080 static ssize_t slab_attr_store(struct kobject *kobj,
4081 struct attribute *attr,
4082 const char *buf, size_t len)
4083 {
4084 struct slab_attribute *attribute;
4085 struct kmem_cache *s;
4086 int err;
4087
4088 attribute = to_slab_attr(attr);
4089 s = to_slab(kobj);
4090
4091 if (!attribute->store)
4092 return -EIO;
4093
4094 err = attribute->store(s, buf, len);
4095
4096 return err;
4097 }
4098
4099 static void kmem_cache_release(struct kobject *kobj)
4100 {
4101 struct kmem_cache *s = to_slab(kobj);
4102
4103 kfree(s);
4104 }
4105
4106 static struct sysfs_ops slab_sysfs_ops = {
4107 .show = slab_attr_show,
4108 .store = slab_attr_store,
4109 };
4110
4111 static struct kobj_type slab_ktype = {
4112 .sysfs_ops = &slab_sysfs_ops,
4113 .release = kmem_cache_release
4114 };
4115
4116 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4117 {
4118 struct kobj_type *ktype = get_ktype(kobj);
4119
4120 if (ktype == &slab_ktype)
4121 return 1;
4122 return 0;
4123 }
4124
4125 static struct kset_uevent_ops slab_uevent_ops = {
4126 .filter = uevent_filter,
4127 };
4128
4129 static struct kset *slab_kset;
4130
4131 #define ID_STR_LENGTH 64
4132
4133 /* Create a unique string id for a slab cache:
4134 * format
4135 * :[flags-]size:[memory address of kmemcache]
4136 */
4137 static char *create_unique_id(struct kmem_cache *s)
4138 {
4139 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4140 char *p = name;
4141
4142 BUG_ON(!name);
4143
4144 *p++ = ':';
4145 /*
4146 * First flags affecting slabcache operations. We will only
4147 * get here for aliasable slabs so we do not need to support
4148 * too many flags. The flags here must cover all flags that
4149 * are matched during merging to guarantee that the id is
4150 * unique.
4151 */
4152 if (s->flags & SLAB_CACHE_DMA)
4153 *p++ = 'd';
4154 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4155 *p++ = 'a';
4156 if (s->flags & SLAB_DEBUG_FREE)
4157 *p++ = 'F';
4158 if (p != name + 1)
4159 *p++ = '-';
4160 p += sprintf(p, "%07d", s->size);
4161 BUG_ON(p > name + ID_STR_LENGTH - 1);
4162 return name;
4163 }
4164
4165 static int sysfs_slab_add(struct kmem_cache *s)
4166 {
4167 int err;
4168 const char *name;
4169 int unmergeable;
4170
4171 if (slab_state < SYSFS)
4172 /* Defer until later */
4173 return 0;
4174
4175 unmergeable = slab_unmergeable(s);
4176 if (unmergeable) {
4177 /*
4178 * Slabcache can never be merged so we can use the name proper.
4179 * This is typically the case for debug situations. In that
4180 * case we can catch duplicate names easily.
4181 */
4182 sysfs_remove_link(&slab_kset->kobj, s->name);
4183 name = s->name;
4184 } else {
4185 /*
4186 * Create a unique name for the slab as a target
4187 * for the symlinks.
4188 */
4189 name = create_unique_id(s);
4190 }
4191
4192 s->kobj.kset = slab_kset;
4193 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4194 if (err) {
4195 kobject_put(&s->kobj);
4196 return err;
4197 }
4198
4199 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4200 if (err)
4201 return err;
4202 kobject_uevent(&s->kobj, KOBJ_ADD);
4203 if (!unmergeable) {
4204 /* Setup first alias */
4205 sysfs_slab_alias(s, s->name);
4206 kfree(name);
4207 }
4208 return 0;
4209 }
4210
4211 static void sysfs_slab_remove(struct kmem_cache *s)
4212 {
4213 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4214 kobject_del(&s->kobj);
4215 kobject_put(&s->kobj);
4216 }
4217
4218 /*
4219 * Need to buffer aliases during bootup until sysfs becomes
4220 * available lest we loose that information.
4221 */
4222 struct saved_alias {
4223 struct kmem_cache *s;
4224 const char *name;
4225 struct saved_alias *next;
4226 };
4227
4228 static struct saved_alias *alias_list;
4229
4230 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4231 {
4232 struct saved_alias *al;
4233
4234 if (slab_state == SYSFS) {
4235 /*
4236 * If we have a leftover link then remove it.
4237 */
4238 sysfs_remove_link(&slab_kset->kobj, name);
4239 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4240 }
4241
4242 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4243 if (!al)
4244 return -ENOMEM;
4245
4246 al->s = s;
4247 al->name = name;
4248 al->next = alias_list;
4249 alias_list = al;
4250 return 0;
4251 }
4252
4253 static int __init slab_sysfs_init(void)
4254 {
4255 struct kmem_cache *s;
4256 int err;
4257
4258 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4259 if (!slab_kset) {
4260 printk(KERN_ERR "Cannot register slab subsystem.\n");
4261 return -ENOSYS;
4262 }
4263
4264 slab_state = SYSFS;
4265
4266 list_for_each_entry(s, &slab_caches, list) {
4267 err = sysfs_slab_add(s);
4268 if (err)
4269 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4270 " to sysfs\n", s->name);
4271 }
4272
4273 while (alias_list) {
4274 struct saved_alias *al = alias_list;
4275
4276 alias_list = alias_list->next;
4277 err = sysfs_slab_alias(al->s, al->name);
4278 if (err)
4279 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4280 " %s to sysfs\n", s->name);
4281 kfree(al);
4282 }
4283
4284 resiliency_test();
4285 return 0;
4286 }
4287
4288 __initcall(slab_sysfs_init);
4289 #endif
4290
4291 /*
4292 * The /proc/slabinfo ABI
4293 */
4294 #ifdef CONFIG_SLABINFO
4295
4296 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4297 size_t count, loff_t *ppos)
4298 {
4299 return -EINVAL;
4300 }
4301
4302
4303 static void print_slabinfo_header(struct seq_file *m)
4304 {
4305 seq_puts(m, "slabinfo - version: 2.1\n");
4306 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4307 "<objperslab> <pagesperslab>");
4308 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4309 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4310 seq_putc(m, '\n');
4311 }
4312
4313 static void *s_start(struct seq_file *m, loff_t *pos)
4314 {
4315 loff_t n = *pos;
4316
4317 down_read(&slub_lock);
4318 if (!n)
4319 print_slabinfo_header(m);
4320
4321 return seq_list_start(&slab_caches, *pos);
4322 }
4323
4324 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4325 {
4326 return seq_list_next(p, &slab_caches, pos);
4327 }
4328
4329 static void s_stop(struct seq_file *m, void *p)
4330 {
4331 up_read(&slub_lock);
4332 }
4333
4334 static int s_show(struct seq_file *m, void *p)
4335 {
4336 unsigned long nr_partials = 0;
4337 unsigned long nr_slabs = 0;
4338 unsigned long nr_inuse = 0;
4339 unsigned long nr_objs;
4340 struct kmem_cache *s;
4341 int node;
4342
4343 s = list_entry(p, struct kmem_cache, list);
4344
4345 for_each_online_node(node) {
4346 struct kmem_cache_node *n = get_node(s, node);
4347
4348 if (!n)
4349 continue;
4350
4351 nr_partials += n->nr_partial;
4352 nr_slabs += atomic_long_read(&n->nr_slabs);
4353 nr_inuse += count_partial(n);
4354 }
4355
4356 nr_objs = nr_slabs * s->objects;
4357 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4358
4359 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4360 nr_objs, s->size, s->objects, (1 << s->order));
4361 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4362 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4363 0UL);
4364 seq_putc(m, '\n');
4365 return 0;
4366 }
4367
4368 const struct seq_operations slabinfo_op = {
4369 .start = s_start,
4370 .next = s_next,
4371 .stop = s_stop,
4372 .show = s_show,
4373 };
4374
4375 #endif /* CONFIG_SLABINFO */
This page took 0.125386 seconds and 5 git commands to generate.