cpuset: mm: reduce large amounts of memory barrier related damage v3
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32
33 #include <trace/events/kmem.h>
34
35 /*
36 * Lock order:
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
40 *
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
121 }
122
123 /*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
136
137 /*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
141 #define MIN_PARTIAL 5
142
143 /*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148 #define MAX_PARTIAL 10
149
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
152
153 /*
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
157 */
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159
160 /*
161 * Set of flags that will prevent slab merging
162 */
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
166
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
169
170 #define OO_SHIFT 16
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
173
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
177
178 static int kmem_size = sizeof(struct kmem_cache);
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 static enum {
185 DOWN, /* No slab functionality available */
186 PARTIAL, /* Kmem_cache_node works */
187 UP, /* Everything works but does not show up in sysfs */
188 SYSFS /* Sysfs up */
189 } slab_state = DOWN;
190
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
194
195 /*
196 * Tracking user of a slab.
197 */
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 unsigned long addr; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203 #endif
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207 };
208
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
210
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
215
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
221 {
222 kfree(s->name);
223 kfree(s);
224 }
225
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239 int slab_is_available(void)
240 {
241 return slab_state >= UP;
242 }
243
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245 {
246 return s->node[node];
247 }
248
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252 {
253 void *base;
254
255 if (!object)
256 return 1;
257
258 base = page_address(page);
259 if (object < base || object >= base + page->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265 }
266
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 return *(void **)(object + s->offset);
270 }
271
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273 {
274 void *p;
275
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 p = get_freepointer(s, object);
280 #endif
281 return p;
282 }
283
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 *(void **)(object + s->offset) = fp;
287 }
288
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
293
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296 {
297 return (p - addr) / s->size;
298 }
299
300 static inline size_t slab_ksize(const struct kmem_cache *s)
301 {
302 #ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310 #endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322 }
323
324 static inline int order_objects(int order, unsigned long size, int reserved)
325 {
326 return ((PAGE_SIZE << order) - reserved) / size;
327 }
328
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 unsigned long size, int reserved)
331 {
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size, reserved)
334 };
335
336 return x;
337 }
338
339 static inline int oo_order(struct kmem_cache_order_objects x)
340 {
341 return x.x >> OO_SHIFT;
342 }
343
344 static inline int oo_objects(struct kmem_cache_order_objects x)
345 {
346 return x.x & OO_MASK;
347 }
348
349 /*
350 * Per slab locking using the pagelock
351 */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 bit_spin_lock(PG_locked, &page->flags);
355 }
356
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 __bit_spin_unlock(PG_locked, &page->flags);
360 }
361
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367 {
368 VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s->flags & __CMPXCHG_DOUBLE) {
372 if (cmpxchg_double(&page->freelist, &page->counters,
373 freelist_old, counters_old,
374 freelist_new, counters_new))
375 return 1;
376 } else
377 #endif
378 {
379 slab_lock(page);
380 if (page->freelist == freelist_old && page->counters == counters_old) {
381 page->freelist = freelist_new;
382 page->counters = counters_new;
383 slab_unlock(page);
384 return 1;
385 }
386 slab_unlock(page);
387 }
388
389 cpu_relax();
390 stat(s, CMPXCHG_DOUBLE_FAIL);
391
392 #ifdef SLUB_DEBUG_CMPXCHG
393 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
394 #endif
395
396 return 0;
397 }
398
399 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
400 void *freelist_old, unsigned long counters_old,
401 void *freelist_new, unsigned long counters_new,
402 const char *n)
403 {
404 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
405 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
406 if (s->flags & __CMPXCHG_DOUBLE) {
407 if (cmpxchg_double(&page->freelist, &page->counters,
408 freelist_old, counters_old,
409 freelist_new, counters_new))
410 return 1;
411 } else
412 #endif
413 {
414 unsigned long flags;
415
416 local_irq_save(flags);
417 slab_lock(page);
418 if (page->freelist == freelist_old && page->counters == counters_old) {
419 page->freelist = freelist_new;
420 page->counters = counters_new;
421 slab_unlock(page);
422 local_irq_restore(flags);
423 return 1;
424 }
425 slab_unlock(page);
426 local_irq_restore(flags);
427 }
428
429 cpu_relax();
430 stat(s, CMPXCHG_DOUBLE_FAIL);
431
432 #ifdef SLUB_DEBUG_CMPXCHG
433 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
434 #endif
435
436 return 0;
437 }
438
439 #ifdef CONFIG_SLUB_DEBUG
440 /*
441 * Determine a map of object in use on a page.
442 *
443 * Node listlock must be held to guarantee that the page does
444 * not vanish from under us.
445 */
446 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
447 {
448 void *p;
449 void *addr = page_address(page);
450
451 for (p = page->freelist; p; p = get_freepointer(s, p))
452 set_bit(slab_index(p, s, addr), map);
453 }
454
455 /*
456 * Debug settings:
457 */
458 #ifdef CONFIG_SLUB_DEBUG_ON
459 static int slub_debug = DEBUG_DEFAULT_FLAGS;
460 #else
461 static int slub_debug;
462 #endif
463
464 static char *slub_debug_slabs;
465 static int disable_higher_order_debug;
466
467 /*
468 * Object debugging
469 */
470 static void print_section(char *text, u8 *addr, unsigned int length)
471 {
472 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
473 length, 1);
474 }
475
476 static struct track *get_track(struct kmem_cache *s, void *object,
477 enum track_item alloc)
478 {
479 struct track *p;
480
481 if (s->offset)
482 p = object + s->offset + sizeof(void *);
483 else
484 p = object + s->inuse;
485
486 return p + alloc;
487 }
488
489 static void set_track(struct kmem_cache *s, void *object,
490 enum track_item alloc, unsigned long addr)
491 {
492 struct track *p = get_track(s, object, alloc);
493
494 if (addr) {
495 #ifdef CONFIG_STACKTRACE
496 struct stack_trace trace;
497 int i;
498
499 trace.nr_entries = 0;
500 trace.max_entries = TRACK_ADDRS_COUNT;
501 trace.entries = p->addrs;
502 trace.skip = 3;
503 save_stack_trace(&trace);
504
505 /* See rant in lockdep.c */
506 if (trace.nr_entries != 0 &&
507 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
508 trace.nr_entries--;
509
510 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
511 p->addrs[i] = 0;
512 #endif
513 p->addr = addr;
514 p->cpu = smp_processor_id();
515 p->pid = current->pid;
516 p->when = jiffies;
517 } else
518 memset(p, 0, sizeof(struct track));
519 }
520
521 static void init_tracking(struct kmem_cache *s, void *object)
522 {
523 if (!(s->flags & SLAB_STORE_USER))
524 return;
525
526 set_track(s, object, TRACK_FREE, 0UL);
527 set_track(s, object, TRACK_ALLOC, 0UL);
528 }
529
530 static void print_track(const char *s, struct track *t)
531 {
532 if (!t->addr)
533 return;
534
535 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
536 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
537 #ifdef CONFIG_STACKTRACE
538 {
539 int i;
540 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
541 if (t->addrs[i])
542 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
543 else
544 break;
545 }
546 #endif
547 }
548
549 static void print_tracking(struct kmem_cache *s, void *object)
550 {
551 if (!(s->flags & SLAB_STORE_USER))
552 return;
553
554 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
555 print_track("Freed", get_track(s, object, TRACK_FREE));
556 }
557
558 static void print_page_info(struct page *page)
559 {
560 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
561 page, page->objects, page->inuse, page->freelist, page->flags);
562
563 }
564
565 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
566 {
567 va_list args;
568 char buf[100];
569
570 va_start(args, fmt);
571 vsnprintf(buf, sizeof(buf), fmt, args);
572 va_end(args);
573 printk(KERN_ERR "========================================"
574 "=====================================\n");
575 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
576 printk(KERN_ERR "----------------------------------------"
577 "-------------------------------------\n\n");
578 }
579
580 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
581 {
582 va_list args;
583 char buf[100];
584
585 va_start(args, fmt);
586 vsnprintf(buf, sizeof(buf), fmt, args);
587 va_end(args);
588 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
589 }
590
591 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
592 {
593 unsigned int off; /* Offset of last byte */
594 u8 *addr = page_address(page);
595
596 print_tracking(s, p);
597
598 print_page_info(page);
599
600 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
601 p, p - addr, get_freepointer(s, p));
602
603 if (p > addr + 16)
604 print_section("Bytes b4 ", p - 16, 16);
605
606 print_section("Object ", p, min_t(unsigned long, s->objsize,
607 PAGE_SIZE));
608 if (s->flags & SLAB_RED_ZONE)
609 print_section("Redzone ", p + s->objsize,
610 s->inuse - s->objsize);
611
612 if (s->offset)
613 off = s->offset + sizeof(void *);
614 else
615 off = s->inuse;
616
617 if (s->flags & SLAB_STORE_USER)
618 off += 2 * sizeof(struct track);
619
620 if (off != s->size)
621 /* Beginning of the filler is the free pointer */
622 print_section("Padding ", p + off, s->size - off);
623
624 dump_stack();
625 }
626
627 static void object_err(struct kmem_cache *s, struct page *page,
628 u8 *object, char *reason)
629 {
630 slab_bug(s, "%s", reason);
631 print_trailer(s, page, object);
632 }
633
634 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
635 {
636 va_list args;
637 char buf[100];
638
639 va_start(args, fmt);
640 vsnprintf(buf, sizeof(buf), fmt, args);
641 va_end(args);
642 slab_bug(s, "%s", buf);
643 print_page_info(page);
644 dump_stack();
645 }
646
647 static void init_object(struct kmem_cache *s, void *object, u8 val)
648 {
649 u8 *p = object;
650
651 if (s->flags & __OBJECT_POISON) {
652 memset(p, POISON_FREE, s->objsize - 1);
653 p[s->objsize - 1] = POISON_END;
654 }
655
656 if (s->flags & SLAB_RED_ZONE)
657 memset(p + s->objsize, val, s->inuse - s->objsize);
658 }
659
660 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
661 void *from, void *to)
662 {
663 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
664 memset(from, data, to - from);
665 }
666
667 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
668 u8 *object, char *what,
669 u8 *start, unsigned int value, unsigned int bytes)
670 {
671 u8 *fault;
672 u8 *end;
673
674 fault = memchr_inv(start, value, bytes);
675 if (!fault)
676 return 1;
677
678 end = start + bytes;
679 while (end > fault && end[-1] == value)
680 end--;
681
682 slab_bug(s, "%s overwritten", what);
683 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
684 fault, end - 1, fault[0], value);
685 print_trailer(s, page, object);
686
687 restore_bytes(s, what, value, fault, end);
688 return 0;
689 }
690
691 /*
692 * Object layout:
693 *
694 * object address
695 * Bytes of the object to be managed.
696 * If the freepointer may overlay the object then the free
697 * pointer is the first word of the object.
698 *
699 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
700 * 0xa5 (POISON_END)
701 *
702 * object + s->objsize
703 * Padding to reach word boundary. This is also used for Redzoning.
704 * Padding is extended by another word if Redzoning is enabled and
705 * objsize == inuse.
706 *
707 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
708 * 0xcc (RED_ACTIVE) for objects in use.
709 *
710 * object + s->inuse
711 * Meta data starts here.
712 *
713 * A. Free pointer (if we cannot overwrite object on free)
714 * B. Tracking data for SLAB_STORE_USER
715 * C. Padding to reach required alignment boundary or at mininum
716 * one word if debugging is on to be able to detect writes
717 * before the word boundary.
718 *
719 * Padding is done using 0x5a (POISON_INUSE)
720 *
721 * object + s->size
722 * Nothing is used beyond s->size.
723 *
724 * If slabcaches are merged then the objsize and inuse boundaries are mostly
725 * ignored. And therefore no slab options that rely on these boundaries
726 * may be used with merged slabcaches.
727 */
728
729 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
730 {
731 unsigned long off = s->inuse; /* The end of info */
732
733 if (s->offset)
734 /* Freepointer is placed after the object. */
735 off += sizeof(void *);
736
737 if (s->flags & SLAB_STORE_USER)
738 /* We also have user information there */
739 off += 2 * sizeof(struct track);
740
741 if (s->size == off)
742 return 1;
743
744 return check_bytes_and_report(s, page, p, "Object padding",
745 p + off, POISON_INUSE, s->size - off);
746 }
747
748 /* Check the pad bytes at the end of a slab page */
749 static int slab_pad_check(struct kmem_cache *s, struct page *page)
750 {
751 u8 *start;
752 u8 *fault;
753 u8 *end;
754 int length;
755 int remainder;
756
757 if (!(s->flags & SLAB_POISON))
758 return 1;
759
760 start = page_address(page);
761 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
762 end = start + length;
763 remainder = length % s->size;
764 if (!remainder)
765 return 1;
766
767 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
768 if (!fault)
769 return 1;
770 while (end > fault && end[-1] == POISON_INUSE)
771 end--;
772
773 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
774 print_section("Padding ", end - remainder, remainder);
775
776 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
777 return 0;
778 }
779
780 static int check_object(struct kmem_cache *s, struct page *page,
781 void *object, u8 val)
782 {
783 u8 *p = object;
784 u8 *endobject = object + s->objsize;
785
786 if (s->flags & SLAB_RED_ZONE) {
787 if (!check_bytes_and_report(s, page, object, "Redzone",
788 endobject, val, s->inuse - s->objsize))
789 return 0;
790 } else {
791 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
792 check_bytes_and_report(s, page, p, "Alignment padding",
793 endobject, POISON_INUSE, s->inuse - s->objsize);
794 }
795 }
796
797 if (s->flags & SLAB_POISON) {
798 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
799 (!check_bytes_and_report(s, page, p, "Poison", p,
800 POISON_FREE, s->objsize - 1) ||
801 !check_bytes_and_report(s, page, p, "Poison",
802 p + s->objsize - 1, POISON_END, 1)))
803 return 0;
804 /*
805 * check_pad_bytes cleans up on its own.
806 */
807 check_pad_bytes(s, page, p);
808 }
809
810 if (!s->offset && val == SLUB_RED_ACTIVE)
811 /*
812 * Object and freepointer overlap. Cannot check
813 * freepointer while object is allocated.
814 */
815 return 1;
816
817 /* Check free pointer validity */
818 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
819 object_err(s, page, p, "Freepointer corrupt");
820 /*
821 * No choice but to zap it and thus lose the remainder
822 * of the free objects in this slab. May cause
823 * another error because the object count is now wrong.
824 */
825 set_freepointer(s, p, NULL);
826 return 0;
827 }
828 return 1;
829 }
830
831 static int check_slab(struct kmem_cache *s, struct page *page)
832 {
833 int maxobj;
834
835 VM_BUG_ON(!irqs_disabled());
836
837 if (!PageSlab(page)) {
838 slab_err(s, page, "Not a valid slab page");
839 return 0;
840 }
841
842 maxobj = order_objects(compound_order(page), s->size, s->reserved);
843 if (page->objects > maxobj) {
844 slab_err(s, page, "objects %u > max %u",
845 s->name, page->objects, maxobj);
846 return 0;
847 }
848 if (page->inuse > page->objects) {
849 slab_err(s, page, "inuse %u > max %u",
850 s->name, page->inuse, page->objects);
851 return 0;
852 }
853 /* Slab_pad_check fixes things up after itself */
854 slab_pad_check(s, page);
855 return 1;
856 }
857
858 /*
859 * Determine if a certain object on a page is on the freelist. Must hold the
860 * slab lock to guarantee that the chains are in a consistent state.
861 */
862 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
863 {
864 int nr = 0;
865 void *fp;
866 void *object = NULL;
867 unsigned long max_objects;
868
869 fp = page->freelist;
870 while (fp && nr <= page->objects) {
871 if (fp == search)
872 return 1;
873 if (!check_valid_pointer(s, page, fp)) {
874 if (object) {
875 object_err(s, page, object,
876 "Freechain corrupt");
877 set_freepointer(s, object, NULL);
878 break;
879 } else {
880 slab_err(s, page, "Freepointer corrupt");
881 page->freelist = NULL;
882 page->inuse = page->objects;
883 slab_fix(s, "Freelist cleared");
884 return 0;
885 }
886 break;
887 }
888 object = fp;
889 fp = get_freepointer(s, object);
890 nr++;
891 }
892
893 max_objects = order_objects(compound_order(page), s->size, s->reserved);
894 if (max_objects > MAX_OBJS_PER_PAGE)
895 max_objects = MAX_OBJS_PER_PAGE;
896
897 if (page->objects != max_objects) {
898 slab_err(s, page, "Wrong number of objects. Found %d but "
899 "should be %d", page->objects, max_objects);
900 page->objects = max_objects;
901 slab_fix(s, "Number of objects adjusted.");
902 }
903 if (page->inuse != page->objects - nr) {
904 slab_err(s, page, "Wrong object count. Counter is %d but "
905 "counted were %d", page->inuse, page->objects - nr);
906 page->inuse = page->objects - nr;
907 slab_fix(s, "Object count adjusted.");
908 }
909 return search == NULL;
910 }
911
912 static void trace(struct kmem_cache *s, struct page *page, void *object,
913 int alloc)
914 {
915 if (s->flags & SLAB_TRACE) {
916 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
917 s->name,
918 alloc ? "alloc" : "free",
919 object, page->inuse,
920 page->freelist);
921
922 if (!alloc)
923 print_section("Object ", (void *)object, s->objsize);
924
925 dump_stack();
926 }
927 }
928
929 /*
930 * Hooks for other subsystems that check memory allocations. In a typical
931 * production configuration these hooks all should produce no code at all.
932 */
933 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
934 {
935 flags &= gfp_allowed_mask;
936 lockdep_trace_alloc(flags);
937 might_sleep_if(flags & __GFP_WAIT);
938
939 return should_failslab(s->objsize, flags, s->flags);
940 }
941
942 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
943 {
944 flags &= gfp_allowed_mask;
945 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
946 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
947 }
948
949 static inline void slab_free_hook(struct kmem_cache *s, void *x)
950 {
951 kmemleak_free_recursive(x, s->flags);
952
953 /*
954 * Trouble is that we may no longer disable interupts in the fast path
955 * So in order to make the debug calls that expect irqs to be
956 * disabled we need to disable interrupts temporarily.
957 */
958 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
959 {
960 unsigned long flags;
961
962 local_irq_save(flags);
963 kmemcheck_slab_free(s, x, s->objsize);
964 debug_check_no_locks_freed(x, s->objsize);
965 local_irq_restore(flags);
966 }
967 #endif
968 if (!(s->flags & SLAB_DEBUG_OBJECTS))
969 debug_check_no_obj_freed(x, s->objsize);
970 }
971
972 /*
973 * Tracking of fully allocated slabs for debugging purposes.
974 *
975 * list_lock must be held.
976 */
977 static void add_full(struct kmem_cache *s,
978 struct kmem_cache_node *n, struct page *page)
979 {
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
982
983 list_add(&page->lru, &n->full);
984 }
985
986 /*
987 * list_lock must be held.
988 */
989 static void remove_full(struct kmem_cache *s, struct page *page)
990 {
991 if (!(s->flags & SLAB_STORE_USER))
992 return;
993
994 list_del(&page->lru);
995 }
996
997 /* Tracking of the number of slabs for debugging purposes */
998 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
999 {
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 return atomic_long_read(&n->nr_slabs);
1003 }
1004
1005 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1006 {
1007 return atomic_long_read(&n->nr_slabs);
1008 }
1009
1010 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1011 {
1012 struct kmem_cache_node *n = get_node(s, node);
1013
1014 /*
1015 * May be called early in order to allocate a slab for the
1016 * kmem_cache_node structure. Solve the chicken-egg
1017 * dilemma by deferring the increment of the count during
1018 * bootstrap (see early_kmem_cache_node_alloc).
1019 */
1020 if (n) {
1021 atomic_long_inc(&n->nr_slabs);
1022 atomic_long_add(objects, &n->total_objects);
1023 }
1024 }
1025 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1026 {
1027 struct kmem_cache_node *n = get_node(s, node);
1028
1029 atomic_long_dec(&n->nr_slabs);
1030 atomic_long_sub(objects, &n->total_objects);
1031 }
1032
1033 /* Object debug checks for alloc/free paths */
1034 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1035 void *object)
1036 {
1037 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1038 return;
1039
1040 init_object(s, object, SLUB_RED_INACTIVE);
1041 init_tracking(s, object);
1042 }
1043
1044 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1045 void *object, unsigned long addr)
1046 {
1047 if (!check_slab(s, page))
1048 goto bad;
1049
1050 if (!check_valid_pointer(s, page, object)) {
1051 object_err(s, page, object, "Freelist Pointer check fails");
1052 goto bad;
1053 }
1054
1055 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1056 goto bad;
1057
1058 /* Success perform special debug activities for allocs */
1059 if (s->flags & SLAB_STORE_USER)
1060 set_track(s, object, TRACK_ALLOC, addr);
1061 trace(s, page, object, 1);
1062 init_object(s, object, SLUB_RED_ACTIVE);
1063 return 1;
1064
1065 bad:
1066 if (PageSlab(page)) {
1067 /*
1068 * If this is a slab page then lets do the best we can
1069 * to avoid issues in the future. Marking all objects
1070 * as used avoids touching the remaining objects.
1071 */
1072 slab_fix(s, "Marking all objects used");
1073 page->inuse = page->objects;
1074 page->freelist = NULL;
1075 }
1076 return 0;
1077 }
1078
1079 static noinline int free_debug_processing(struct kmem_cache *s,
1080 struct page *page, void *object, unsigned long addr)
1081 {
1082 unsigned long flags;
1083 int rc = 0;
1084
1085 local_irq_save(flags);
1086 slab_lock(page);
1087
1088 if (!check_slab(s, page))
1089 goto fail;
1090
1091 if (!check_valid_pointer(s, page, object)) {
1092 slab_err(s, page, "Invalid object pointer 0x%p", object);
1093 goto fail;
1094 }
1095
1096 if (on_freelist(s, page, object)) {
1097 object_err(s, page, object, "Object already free");
1098 goto fail;
1099 }
1100
1101 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1102 goto out;
1103
1104 if (unlikely(s != page->slab)) {
1105 if (!PageSlab(page)) {
1106 slab_err(s, page, "Attempt to free object(0x%p) "
1107 "outside of slab", object);
1108 } else if (!page->slab) {
1109 printk(KERN_ERR
1110 "SLUB <none>: no slab for object 0x%p.\n",
1111 object);
1112 dump_stack();
1113 } else
1114 object_err(s, page, object,
1115 "page slab pointer corrupt.");
1116 goto fail;
1117 }
1118
1119 if (s->flags & SLAB_STORE_USER)
1120 set_track(s, object, TRACK_FREE, addr);
1121 trace(s, page, object, 0);
1122 init_object(s, object, SLUB_RED_INACTIVE);
1123 rc = 1;
1124 out:
1125 slab_unlock(page);
1126 local_irq_restore(flags);
1127 return rc;
1128
1129 fail:
1130 slab_fix(s, "Object at 0x%p not freed", object);
1131 goto out;
1132 }
1133
1134 static int __init setup_slub_debug(char *str)
1135 {
1136 slub_debug = DEBUG_DEFAULT_FLAGS;
1137 if (*str++ != '=' || !*str)
1138 /*
1139 * No options specified. Switch on full debugging.
1140 */
1141 goto out;
1142
1143 if (*str == ',')
1144 /*
1145 * No options but restriction on slabs. This means full
1146 * debugging for slabs matching a pattern.
1147 */
1148 goto check_slabs;
1149
1150 if (tolower(*str) == 'o') {
1151 /*
1152 * Avoid enabling debugging on caches if its minimum order
1153 * would increase as a result.
1154 */
1155 disable_higher_order_debug = 1;
1156 goto out;
1157 }
1158
1159 slub_debug = 0;
1160 if (*str == '-')
1161 /*
1162 * Switch off all debugging measures.
1163 */
1164 goto out;
1165
1166 /*
1167 * Determine which debug features should be switched on
1168 */
1169 for (; *str && *str != ','; str++) {
1170 switch (tolower(*str)) {
1171 case 'f':
1172 slub_debug |= SLAB_DEBUG_FREE;
1173 break;
1174 case 'z':
1175 slub_debug |= SLAB_RED_ZONE;
1176 break;
1177 case 'p':
1178 slub_debug |= SLAB_POISON;
1179 break;
1180 case 'u':
1181 slub_debug |= SLAB_STORE_USER;
1182 break;
1183 case 't':
1184 slub_debug |= SLAB_TRACE;
1185 break;
1186 case 'a':
1187 slub_debug |= SLAB_FAILSLAB;
1188 break;
1189 default:
1190 printk(KERN_ERR "slub_debug option '%c' "
1191 "unknown. skipped\n", *str);
1192 }
1193 }
1194
1195 check_slabs:
1196 if (*str == ',')
1197 slub_debug_slabs = str + 1;
1198 out:
1199 return 1;
1200 }
1201
1202 __setup("slub_debug", setup_slub_debug);
1203
1204 static unsigned long kmem_cache_flags(unsigned long objsize,
1205 unsigned long flags, const char *name,
1206 void (*ctor)(void *))
1207 {
1208 /*
1209 * Enable debugging if selected on the kernel commandline.
1210 */
1211 if (slub_debug && (!slub_debug_slabs ||
1212 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1213 flags |= slub_debug;
1214
1215 return flags;
1216 }
1217 #else
1218 static inline void setup_object_debug(struct kmem_cache *s,
1219 struct page *page, void *object) {}
1220
1221 static inline int alloc_debug_processing(struct kmem_cache *s,
1222 struct page *page, void *object, unsigned long addr) { return 0; }
1223
1224 static inline int free_debug_processing(struct kmem_cache *s,
1225 struct page *page, void *object, unsigned long addr) { return 0; }
1226
1227 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1228 { return 1; }
1229 static inline int check_object(struct kmem_cache *s, struct page *page,
1230 void *object, u8 val) { return 1; }
1231 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1232 struct page *page) {}
1233 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1234 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1235 unsigned long flags, const char *name,
1236 void (*ctor)(void *))
1237 {
1238 return flags;
1239 }
1240 #define slub_debug 0
1241
1242 #define disable_higher_order_debug 0
1243
1244 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1245 { return 0; }
1246 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1247 { return 0; }
1248 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
1250 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1251 int objects) {}
1252
1253 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1254 { return 0; }
1255
1256 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1257 void *object) {}
1258
1259 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1260
1261 #endif /* CONFIG_SLUB_DEBUG */
1262
1263 /*
1264 * Slab allocation and freeing
1265 */
1266 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1267 struct kmem_cache_order_objects oo)
1268 {
1269 int order = oo_order(oo);
1270
1271 flags |= __GFP_NOTRACK;
1272
1273 if (node == NUMA_NO_NODE)
1274 return alloc_pages(flags, order);
1275 else
1276 return alloc_pages_exact_node(node, flags, order);
1277 }
1278
1279 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1280 {
1281 struct page *page;
1282 struct kmem_cache_order_objects oo = s->oo;
1283 gfp_t alloc_gfp;
1284
1285 flags &= gfp_allowed_mask;
1286
1287 if (flags & __GFP_WAIT)
1288 local_irq_enable();
1289
1290 flags |= s->allocflags;
1291
1292 /*
1293 * Let the initial higher-order allocation fail under memory pressure
1294 * so we fall-back to the minimum order allocation.
1295 */
1296 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1297
1298 page = alloc_slab_page(alloc_gfp, node, oo);
1299 if (unlikely(!page)) {
1300 oo = s->min;
1301 /*
1302 * Allocation may have failed due to fragmentation.
1303 * Try a lower order alloc if possible
1304 */
1305 page = alloc_slab_page(flags, node, oo);
1306
1307 if (page)
1308 stat(s, ORDER_FALLBACK);
1309 }
1310
1311 if (flags & __GFP_WAIT)
1312 local_irq_disable();
1313
1314 if (!page)
1315 return NULL;
1316
1317 if (kmemcheck_enabled
1318 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1319 int pages = 1 << oo_order(oo);
1320
1321 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1322
1323 /*
1324 * Objects from caches that have a constructor don't get
1325 * cleared when they're allocated, so we need to do it here.
1326 */
1327 if (s->ctor)
1328 kmemcheck_mark_uninitialized_pages(page, pages);
1329 else
1330 kmemcheck_mark_unallocated_pages(page, pages);
1331 }
1332
1333 page->objects = oo_objects(oo);
1334 mod_zone_page_state(page_zone(page),
1335 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1336 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1337 1 << oo_order(oo));
1338
1339 return page;
1340 }
1341
1342 static void setup_object(struct kmem_cache *s, struct page *page,
1343 void *object)
1344 {
1345 setup_object_debug(s, page, object);
1346 if (unlikely(s->ctor))
1347 s->ctor(object);
1348 }
1349
1350 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1351 {
1352 struct page *page;
1353 void *start;
1354 void *last;
1355 void *p;
1356
1357 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1358
1359 page = allocate_slab(s,
1360 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1361 if (!page)
1362 goto out;
1363
1364 inc_slabs_node(s, page_to_nid(page), page->objects);
1365 page->slab = s;
1366 page->flags |= 1 << PG_slab;
1367
1368 start = page_address(page);
1369
1370 if (unlikely(s->flags & SLAB_POISON))
1371 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1372
1373 last = start;
1374 for_each_object(p, s, start, page->objects) {
1375 setup_object(s, page, last);
1376 set_freepointer(s, last, p);
1377 last = p;
1378 }
1379 setup_object(s, page, last);
1380 set_freepointer(s, last, NULL);
1381
1382 page->freelist = start;
1383 page->inuse = page->objects;
1384 page->frozen = 1;
1385 out:
1386 return page;
1387 }
1388
1389 static void __free_slab(struct kmem_cache *s, struct page *page)
1390 {
1391 int order = compound_order(page);
1392 int pages = 1 << order;
1393
1394 if (kmem_cache_debug(s)) {
1395 void *p;
1396
1397 slab_pad_check(s, page);
1398 for_each_object(p, s, page_address(page),
1399 page->objects)
1400 check_object(s, page, p, SLUB_RED_INACTIVE);
1401 }
1402
1403 kmemcheck_free_shadow(page, compound_order(page));
1404
1405 mod_zone_page_state(page_zone(page),
1406 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1407 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1408 -pages);
1409
1410 __ClearPageSlab(page);
1411 reset_page_mapcount(page);
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
1414 __free_pages(page, order);
1415 }
1416
1417 #define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
1420 static void rcu_free_slab(struct rcu_head *h)
1421 {
1422 struct page *page;
1423
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
1429 __free_slab(page->slab, page);
1430 }
1431
1432 static void free_slab(struct kmem_cache *s, struct page *page)
1433 {
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453 }
1454
1455 static void discard_slab(struct kmem_cache *s, struct page *page)
1456 {
1457 dec_slabs_node(s, page_to_nid(page), page->objects);
1458 free_slab(s, page);
1459 }
1460
1461 /*
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
1465 */
1466 static inline void add_partial(struct kmem_cache_node *n,
1467 struct page *page, int tail)
1468 {
1469 n->nr_partial++;
1470 if (tail == DEACTIVATE_TO_TAIL)
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
1474 }
1475
1476 /*
1477 * list_lock must be held.
1478 */
1479 static inline void remove_partial(struct kmem_cache_node *n,
1480 struct page *page)
1481 {
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484 }
1485
1486 /*
1487 * Lock slab, remove from the partial list and put the object into the
1488 * per cpu freelist.
1489 *
1490 * Returns a list of objects or NULL if it fails.
1491 *
1492 * Must hold list_lock.
1493 */
1494 static inline void *acquire_slab(struct kmem_cache *s,
1495 struct kmem_cache_node *n, struct page *page,
1496 int mode)
1497 {
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
1507 do {
1508 freelist = page->freelist;
1509 counters = page->counters;
1510 new.counters = counters;
1511 if (mode)
1512 new.inuse = page->objects;
1513
1514 VM_BUG_ON(new.frozen);
1515 new.frozen = 1;
1516
1517 } while (!__cmpxchg_double_slab(s, page,
1518 freelist, counters,
1519 NULL, new.counters,
1520 "lock and freeze"));
1521
1522 remove_partial(n, page);
1523 return freelist;
1524 }
1525
1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527
1528 /*
1529 * Try to allocate a partial slab from a specific node.
1530 */
1531 static void *get_partial_node(struct kmem_cache *s,
1532 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1533 {
1534 struct page *page, *page2;
1535 void *object = NULL;
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1548 void *t = acquire_slab(s, n, page, object == NULL);
1549 int available;
1550
1551 if (!t)
1552 break;
1553
1554 if (!object) {
1555 c->page = page;
1556 c->node = page_to_nid(page);
1557 stat(s, ALLOC_FROM_PARTIAL);
1558 object = t;
1559 available = page->objects - page->inuse;
1560 } else {
1561 page->freelist = t;
1562 available = put_cpu_partial(s, page, 0);
1563 }
1564 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1565 break;
1566
1567 }
1568 spin_unlock(&n->list_lock);
1569 return object;
1570 }
1571
1572 /*
1573 * Get a page from somewhere. Search in increasing NUMA distances.
1574 */
1575 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1576 struct kmem_cache_cpu *c)
1577 {
1578 #ifdef CONFIG_NUMA
1579 struct zonelist *zonelist;
1580 struct zoneref *z;
1581 struct zone *zone;
1582 enum zone_type high_zoneidx = gfp_zone(flags);
1583 void *object;
1584 unsigned int cpuset_mems_cookie;
1585
1586 /*
1587 * The defrag ratio allows a configuration of the tradeoffs between
1588 * inter node defragmentation and node local allocations. A lower
1589 * defrag_ratio increases the tendency to do local allocations
1590 * instead of attempting to obtain partial slabs from other nodes.
1591 *
1592 * If the defrag_ratio is set to 0 then kmalloc() always
1593 * returns node local objects. If the ratio is higher then kmalloc()
1594 * may return off node objects because partial slabs are obtained
1595 * from other nodes and filled up.
1596 *
1597 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1598 * defrag_ratio = 1000) then every (well almost) allocation will
1599 * first attempt to defrag slab caches on other nodes. This means
1600 * scanning over all nodes to look for partial slabs which may be
1601 * expensive if we do it every time we are trying to find a slab
1602 * with available objects.
1603 */
1604 if (!s->remote_node_defrag_ratio ||
1605 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1606 return NULL;
1607
1608 do {
1609 cpuset_mems_cookie = get_mems_allowed();
1610 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1611 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1612 struct kmem_cache_node *n;
1613
1614 n = get_node(s, zone_to_nid(zone));
1615
1616 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1617 n->nr_partial > s->min_partial) {
1618 object = get_partial_node(s, n, c);
1619 if (object) {
1620 /*
1621 * Return the object even if
1622 * put_mems_allowed indicated that
1623 * the cpuset mems_allowed was
1624 * updated in parallel. It's a
1625 * harmless race between the alloc
1626 * and the cpuset update.
1627 */
1628 put_mems_allowed(cpuset_mems_cookie);
1629 return object;
1630 }
1631 }
1632 }
1633 } while (!put_mems_allowed(cpuset_mems_cookie));
1634 #endif
1635 return NULL;
1636 }
1637
1638 /*
1639 * Get a partial page, lock it and return it.
1640 */
1641 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1642 struct kmem_cache_cpu *c)
1643 {
1644 void *object;
1645 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1646
1647 object = get_partial_node(s, get_node(s, searchnode), c);
1648 if (object || node != NUMA_NO_NODE)
1649 return object;
1650
1651 return get_any_partial(s, flags, c);
1652 }
1653
1654 #ifdef CONFIG_PREEMPT
1655 /*
1656 * Calculate the next globally unique transaction for disambiguiation
1657 * during cmpxchg. The transactions start with the cpu number and are then
1658 * incremented by CONFIG_NR_CPUS.
1659 */
1660 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1661 #else
1662 /*
1663 * No preemption supported therefore also no need to check for
1664 * different cpus.
1665 */
1666 #define TID_STEP 1
1667 #endif
1668
1669 static inline unsigned long next_tid(unsigned long tid)
1670 {
1671 return tid + TID_STEP;
1672 }
1673
1674 static inline unsigned int tid_to_cpu(unsigned long tid)
1675 {
1676 return tid % TID_STEP;
1677 }
1678
1679 static inline unsigned long tid_to_event(unsigned long tid)
1680 {
1681 return tid / TID_STEP;
1682 }
1683
1684 static inline unsigned int init_tid(int cpu)
1685 {
1686 return cpu;
1687 }
1688
1689 static inline void note_cmpxchg_failure(const char *n,
1690 const struct kmem_cache *s, unsigned long tid)
1691 {
1692 #ifdef SLUB_DEBUG_CMPXCHG
1693 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1694
1695 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1696
1697 #ifdef CONFIG_PREEMPT
1698 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1699 printk("due to cpu change %d -> %d\n",
1700 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1701 else
1702 #endif
1703 if (tid_to_event(tid) != tid_to_event(actual_tid))
1704 printk("due to cpu running other code. Event %ld->%ld\n",
1705 tid_to_event(tid), tid_to_event(actual_tid));
1706 else
1707 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1708 actual_tid, tid, next_tid(tid));
1709 #endif
1710 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1711 }
1712
1713 void init_kmem_cache_cpus(struct kmem_cache *s)
1714 {
1715 int cpu;
1716
1717 for_each_possible_cpu(cpu)
1718 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1719 }
1720
1721 /*
1722 * Remove the cpu slab
1723 */
1724 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1725 {
1726 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1727 struct page *page = c->page;
1728 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1729 int lock = 0;
1730 enum slab_modes l = M_NONE, m = M_NONE;
1731 void *freelist;
1732 void *nextfree;
1733 int tail = DEACTIVATE_TO_HEAD;
1734 struct page new;
1735 struct page old;
1736
1737 if (page->freelist) {
1738 stat(s, DEACTIVATE_REMOTE_FREES);
1739 tail = DEACTIVATE_TO_TAIL;
1740 }
1741
1742 c->tid = next_tid(c->tid);
1743 c->page = NULL;
1744 freelist = c->freelist;
1745 c->freelist = NULL;
1746
1747 /*
1748 * Stage one: Free all available per cpu objects back
1749 * to the page freelist while it is still frozen. Leave the
1750 * last one.
1751 *
1752 * There is no need to take the list->lock because the page
1753 * is still frozen.
1754 */
1755 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1756 void *prior;
1757 unsigned long counters;
1758
1759 do {
1760 prior = page->freelist;
1761 counters = page->counters;
1762 set_freepointer(s, freelist, prior);
1763 new.counters = counters;
1764 new.inuse--;
1765 VM_BUG_ON(!new.frozen);
1766
1767 } while (!__cmpxchg_double_slab(s, page,
1768 prior, counters,
1769 freelist, new.counters,
1770 "drain percpu freelist"));
1771
1772 freelist = nextfree;
1773 }
1774
1775 /*
1776 * Stage two: Ensure that the page is unfrozen while the
1777 * list presence reflects the actual number of objects
1778 * during unfreeze.
1779 *
1780 * We setup the list membership and then perform a cmpxchg
1781 * with the count. If there is a mismatch then the page
1782 * is not unfrozen but the page is on the wrong list.
1783 *
1784 * Then we restart the process which may have to remove
1785 * the page from the list that we just put it on again
1786 * because the number of objects in the slab may have
1787 * changed.
1788 */
1789 redo:
1790
1791 old.freelist = page->freelist;
1792 old.counters = page->counters;
1793 VM_BUG_ON(!old.frozen);
1794
1795 /* Determine target state of the slab */
1796 new.counters = old.counters;
1797 if (freelist) {
1798 new.inuse--;
1799 set_freepointer(s, freelist, old.freelist);
1800 new.freelist = freelist;
1801 } else
1802 new.freelist = old.freelist;
1803
1804 new.frozen = 0;
1805
1806 if (!new.inuse && n->nr_partial > s->min_partial)
1807 m = M_FREE;
1808 else if (new.freelist) {
1809 m = M_PARTIAL;
1810 if (!lock) {
1811 lock = 1;
1812 /*
1813 * Taking the spinlock removes the possiblity
1814 * that acquire_slab() will see a slab page that
1815 * is frozen
1816 */
1817 spin_lock(&n->list_lock);
1818 }
1819 } else {
1820 m = M_FULL;
1821 if (kmem_cache_debug(s) && !lock) {
1822 lock = 1;
1823 /*
1824 * This also ensures that the scanning of full
1825 * slabs from diagnostic functions will not see
1826 * any frozen slabs.
1827 */
1828 spin_lock(&n->list_lock);
1829 }
1830 }
1831
1832 if (l != m) {
1833
1834 if (l == M_PARTIAL)
1835
1836 remove_partial(n, page);
1837
1838 else if (l == M_FULL)
1839
1840 remove_full(s, page);
1841
1842 if (m == M_PARTIAL) {
1843
1844 add_partial(n, page, tail);
1845 stat(s, tail);
1846
1847 } else if (m == M_FULL) {
1848
1849 stat(s, DEACTIVATE_FULL);
1850 add_full(s, n, page);
1851
1852 }
1853 }
1854
1855 l = m;
1856 if (!__cmpxchg_double_slab(s, page,
1857 old.freelist, old.counters,
1858 new.freelist, new.counters,
1859 "unfreezing slab"))
1860 goto redo;
1861
1862 if (lock)
1863 spin_unlock(&n->list_lock);
1864
1865 if (m == M_FREE) {
1866 stat(s, DEACTIVATE_EMPTY);
1867 discard_slab(s, page);
1868 stat(s, FREE_SLAB);
1869 }
1870 }
1871
1872 /* Unfreeze all the cpu partial slabs */
1873 static void unfreeze_partials(struct kmem_cache *s)
1874 {
1875 struct kmem_cache_node *n = NULL;
1876 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1877 struct page *page, *discard_page = NULL;
1878
1879 while ((page = c->partial)) {
1880 enum slab_modes { M_PARTIAL, M_FREE };
1881 enum slab_modes l, m;
1882 struct page new;
1883 struct page old;
1884
1885 c->partial = page->next;
1886 l = M_FREE;
1887
1888 do {
1889
1890 old.freelist = page->freelist;
1891 old.counters = page->counters;
1892 VM_BUG_ON(!old.frozen);
1893
1894 new.counters = old.counters;
1895 new.freelist = old.freelist;
1896
1897 new.frozen = 0;
1898
1899 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1900 m = M_FREE;
1901 else {
1902 struct kmem_cache_node *n2 = get_node(s,
1903 page_to_nid(page));
1904
1905 m = M_PARTIAL;
1906 if (n != n2) {
1907 if (n)
1908 spin_unlock(&n->list_lock);
1909
1910 n = n2;
1911 spin_lock(&n->list_lock);
1912 }
1913 }
1914
1915 if (l != m) {
1916 if (l == M_PARTIAL) {
1917 remove_partial(n, page);
1918 stat(s, FREE_REMOVE_PARTIAL);
1919 } else {
1920 add_partial(n, page,
1921 DEACTIVATE_TO_TAIL);
1922 stat(s, FREE_ADD_PARTIAL);
1923 }
1924
1925 l = m;
1926 }
1927
1928 } while (!cmpxchg_double_slab(s, page,
1929 old.freelist, old.counters,
1930 new.freelist, new.counters,
1931 "unfreezing slab"));
1932
1933 if (m == M_FREE) {
1934 page->next = discard_page;
1935 discard_page = page;
1936 }
1937 }
1938
1939 if (n)
1940 spin_unlock(&n->list_lock);
1941
1942 while (discard_page) {
1943 page = discard_page;
1944 discard_page = discard_page->next;
1945
1946 stat(s, DEACTIVATE_EMPTY);
1947 discard_slab(s, page);
1948 stat(s, FREE_SLAB);
1949 }
1950 }
1951
1952 /*
1953 * Put a page that was just frozen (in __slab_free) into a partial page
1954 * slot if available. This is done without interrupts disabled and without
1955 * preemption disabled. The cmpxchg is racy and may put the partial page
1956 * onto a random cpus partial slot.
1957 *
1958 * If we did not find a slot then simply move all the partials to the
1959 * per node partial list.
1960 */
1961 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1962 {
1963 struct page *oldpage;
1964 int pages;
1965 int pobjects;
1966
1967 do {
1968 pages = 0;
1969 pobjects = 0;
1970 oldpage = this_cpu_read(s->cpu_slab->partial);
1971
1972 if (oldpage) {
1973 pobjects = oldpage->pobjects;
1974 pages = oldpage->pages;
1975 if (drain && pobjects > s->cpu_partial) {
1976 unsigned long flags;
1977 /*
1978 * partial array is full. Move the existing
1979 * set to the per node partial list.
1980 */
1981 local_irq_save(flags);
1982 unfreeze_partials(s);
1983 local_irq_restore(flags);
1984 pobjects = 0;
1985 pages = 0;
1986 }
1987 }
1988
1989 pages++;
1990 pobjects += page->objects - page->inuse;
1991
1992 page->pages = pages;
1993 page->pobjects = pobjects;
1994 page->next = oldpage;
1995
1996 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1997 stat(s, CPU_PARTIAL_FREE);
1998 return pobjects;
1999 }
2000
2001 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2002 {
2003 stat(s, CPUSLAB_FLUSH);
2004 deactivate_slab(s, c);
2005 }
2006
2007 /*
2008 * Flush cpu slab.
2009 *
2010 * Called from IPI handler with interrupts disabled.
2011 */
2012 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2013 {
2014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2015
2016 if (likely(c)) {
2017 if (c->page)
2018 flush_slab(s, c);
2019
2020 unfreeze_partials(s);
2021 }
2022 }
2023
2024 static void flush_cpu_slab(void *d)
2025 {
2026 struct kmem_cache *s = d;
2027
2028 __flush_cpu_slab(s, smp_processor_id());
2029 }
2030
2031 static void flush_all(struct kmem_cache *s)
2032 {
2033 on_each_cpu(flush_cpu_slab, s, 1);
2034 }
2035
2036 /*
2037 * Check if the objects in a per cpu structure fit numa
2038 * locality expectations.
2039 */
2040 static inline int node_match(struct kmem_cache_cpu *c, int node)
2041 {
2042 #ifdef CONFIG_NUMA
2043 if (node != NUMA_NO_NODE && c->node != node)
2044 return 0;
2045 #endif
2046 return 1;
2047 }
2048
2049 static int count_free(struct page *page)
2050 {
2051 return page->objects - page->inuse;
2052 }
2053
2054 static unsigned long count_partial(struct kmem_cache_node *n,
2055 int (*get_count)(struct page *))
2056 {
2057 unsigned long flags;
2058 unsigned long x = 0;
2059 struct page *page;
2060
2061 spin_lock_irqsave(&n->list_lock, flags);
2062 list_for_each_entry(page, &n->partial, lru)
2063 x += get_count(page);
2064 spin_unlock_irqrestore(&n->list_lock, flags);
2065 return x;
2066 }
2067
2068 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2069 {
2070 #ifdef CONFIG_SLUB_DEBUG
2071 return atomic_long_read(&n->total_objects);
2072 #else
2073 return 0;
2074 #endif
2075 }
2076
2077 static noinline void
2078 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2079 {
2080 int node;
2081
2082 printk(KERN_WARNING
2083 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2084 nid, gfpflags);
2085 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2086 "default order: %d, min order: %d\n", s->name, s->objsize,
2087 s->size, oo_order(s->oo), oo_order(s->min));
2088
2089 if (oo_order(s->min) > get_order(s->objsize))
2090 printk(KERN_WARNING " %s debugging increased min order, use "
2091 "slub_debug=O to disable.\n", s->name);
2092
2093 for_each_online_node(node) {
2094 struct kmem_cache_node *n = get_node(s, node);
2095 unsigned long nr_slabs;
2096 unsigned long nr_objs;
2097 unsigned long nr_free;
2098
2099 if (!n)
2100 continue;
2101
2102 nr_free = count_partial(n, count_free);
2103 nr_slabs = node_nr_slabs(n);
2104 nr_objs = node_nr_objs(n);
2105
2106 printk(KERN_WARNING
2107 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2108 node, nr_slabs, nr_objs, nr_free);
2109 }
2110 }
2111
2112 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2113 int node, struct kmem_cache_cpu **pc)
2114 {
2115 void *object;
2116 struct kmem_cache_cpu *c;
2117 struct page *page = new_slab(s, flags, node);
2118
2119 if (page) {
2120 c = __this_cpu_ptr(s->cpu_slab);
2121 if (c->page)
2122 flush_slab(s, c);
2123
2124 /*
2125 * No other reference to the page yet so we can
2126 * muck around with it freely without cmpxchg
2127 */
2128 object = page->freelist;
2129 page->freelist = NULL;
2130
2131 stat(s, ALLOC_SLAB);
2132 c->node = page_to_nid(page);
2133 c->page = page;
2134 *pc = c;
2135 } else
2136 object = NULL;
2137
2138 return object;
2139 }
2140
2141 /*
2142 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2143 * or deactivate the page.
2144 *
2145 * The page is still frozen if the return value is not NULL.
2146 *
2147 * If this function returns NULL then the page has been unfrozen.
2148 */
2149 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2150 {
2151 struct page new;
2152 unsigned long counters;
2153 void *freelist;
2154
2155 do {
2156 freelist = page->freelist;
2157 counters = page->counters;
2158 new.counters = counters;
2159 VM_BUG_ON(!new.frozen);
2160
2161 new.inuse = page->objects;
2162 new.frozen = freelist != NULL;
2163
2164 } while (!cmpxchg_double_slab(s, page,
2165 freelist, counters,
2166 NULL, new.counters,
2167 "get_freelist"));
2168
2169 return freelist;
2170 }
2171
2172 /*
2173 * Slow path. The lockless freelist is empty or we need to perform
2174 * debugging duties.
2175 *
2176 * Processing is still very fast if new objects have been freed to the
2177 * regular freelist. In that case we simply take over the regular freelist
2178 * as the lockless freelist and zap the regular freelist.
2179 *
2180 * If that is not working then we fall back to the partial lists. We take the
2181 * first element of the freelist as the object to allocate now and move the
2182 * rest of the freelist to the lockless freelist.
2183 *
2184 * And if we were unable to get a new slab from the partial slab lists then
2185 * we need to allocate a new slab. This is the slowest path since it involves
2186 * a call to the page allocator and the setup of a new slab.
2187 */
2188 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2189 unsigned long addr, struct kmem_cache_cpu *c)
2190 {
2191 void **object;
2192 unsigned long flags;
2193
2194 local_irq_save(flags);
2195 #ifdef CONFIG_PREEMPT
2196 /*
2197 * We may have been preempted and rescheduled on a different
2198 * cpu before disabling interrupts. Need to reload cpu area
2199 * pointer.
2200 */
2201 c = this_cpu_ptr(s->cpu_slab);
2202 #endif
2203
2204 if (!c->page)
2205 goto new_slab;
2206 redo:
2207 if (unlikely(!node_match(c, node))) {
2208 stat(s, ALLOC_NODE_MISMATCH);
2209 deactivate_slab(s, c);
2210 goto new_slab;
2211 }
2212
2213 /* must check again c->freelist in case of cpu migration or IRQ */
2214 object = c->freelist;
2215 if (object)
2216 goto load_freelist;
2217
2218 stat(s, ALLOC_SLOWPATH);
2219
2220 object = get_freelist(s, c->page);
2221
2222 if (!object) {
2223 c->page = NULL;
2224 stat(s, DEACTIVATE_BYPASS);
2225 goto new_slab;
2226 }
2227
2228 stat(s, ALLOC_REFILL);
2229
2230 load_freelist:
2231 c->freelist = get_freepointer(s, object);
2232 c->tid = next_tid(c->tid);
2233 local_irq_restore(flags);
2234 return object;
2235
2236 new_slab:
2237
2238 if (c->partial) {
2239 c->page = c->partial;
2240 c->partial = c->page->next;
2241 c->node = page_to_nid(c->page);
2242 stat(s, CPU_PARTIAL_ALLOC);
2243 c->freelist = NULL;
2244 goto redo;
2245 }
2246
2247 /* Then do expensive stuff like retrieving pages from the partial lists */
2248 object = get_partial(s, gfpflags, node, c);
2249
2250 if (unlikely(!object)) {
2251
2252 object = new_slab_objects(s, gfpflags, node, &c);
2253
2254 if (unlikely(!object)) {
2255 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2256 slab_out_of_memory(s, gfpflags, node);
2257
2258 local_irq_restore(flags);
2259 return NULL;
2260 }
2261 }
2262
2263 if (likely(!kmem_cache_debug(s)))
2264 goto load_freelist;
2265
2266 /* Only entered in the debug case */
2267 if (!alloc_debug_processing(s, c->page, object, addr))
2268 goto new_slab; /* Slab failed checks. Next slab needed */
2269
2270 c->freelist = get_freepointer(s, object);
2271 deactivate_slab(s, c);
2272 c->node = NUMA_NO_NODE;
2273 local_irq_restore(flags);
2274 return object;
2275 }
2276
2277 /*
2278 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2279 * have the fastpath folded into their functions. So no function call
2280 * overhead for requests that can be satisfied on the fastpath.
2281 *
2282 * The fastpath works by first checking if the lockless freelist can be used.
2283 * If not then __slab_alloc is called for slow processing.
2284 *
2285 * Otherwise we can simply pick the next object from the lockless free list.
2286 */
2287 static __always_inline void *slab_alloc(struct kmem_cache *s,
2288 gfp_t gfpflags, int node, unsigned long addr)
2289 {
2290 void **object;
2291 struct kmem_cache_cpu *c;
2292 unsigned long tid;
2293
2294 if (slab_pre_alloc_hook(s, gfpflags))
2295 return NULL;
2296
2297 redo:
2298
2299 /*
2300 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2301 * enabled. We may switch back and forth between cpus while
2302 * reading from one cpu area. That does not matter as long
2303 * as we end up on the original cpu again when doing the cmpxchg.
2304 */
2305 c = __this_cpu_ptr(s->cpu_slab);
2306
2307 /*
2308 * The transaction ids are globally unique per cpu and per operation on
2309 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2310 * occurs on the right processor and that there was no operation on the
2311 * linked list in between.
2312 */
2313 tid = c->tid;
2314 barrier();
2315
2316 object = c->freelist;
2317 if (unlikely(!object || !node_match(c, node)))
2318
2319 object = __slab_alloc(s, gfpflags, node, addr, c);
2320
2321 else {
2322 /*
2323 * The cmpxchg will only match if there was no additional
2324 * operation and if we are on the right processor.
2325 *
2326 * The cmpxchg does the following atomically (without lock semantics!)
2327 * 1. Relocate first pointer to the current per cpu area.
2328 * 2. Verify that tid and freelist have not been changed
2329 * 3. If they were not changed replace tid and freelist
2330 *
2331 * Since this is without lock semantics the protection is only against
2332 * code executing on this cpu *not* from access by other cpus.
2333 */
2334 if (unlikely(!this_cpu_cmpxchg_double(
2335 s->cpu_slab->freelist, s->cpu_slab->tid,
2336 object, tid,
2337 get_freepointer_safe(s, object), next_tid(tid)))) {
2338
2339 note_cmpxchg_failure("slab_alloc", s, tid);
2340 goto redo;
2341 }
2342 stat(s, ALLOC_FASTPATH);
2343 }
2344
2345 if (unlikely(gfpflags & __GFP_ZERO) && object)
2346 memset(object, 0, s->objsize);
2347
2348 slab_post_alloc_hook(s, gfpflags, object);
2349
2350 return object;
2351 }
2352
2353 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2354 {
2355 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2356
2357 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2358
2359 return ret;
2360 }
2361 EXPORT_SYMBOL(kmem_cache_alloc);
2362
2363 #ifdef CONFIG_TRACING
2364 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2365 {
2366 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2367 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2368 return ret;
2369 }
2370 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2371
2372 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2373 {
2374 void *ret = kmalloc_order(size, flags, order);
2375 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2376 return ret;
2377 }
2378 EXPORT_SYMBOL(kmalloc_order_trace);
2379 #endif
2380
2381 #ifdef CONFIG_NUMA
2382 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2383 {
2384 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2385
2386 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2387 s->objsize, s->size, gfpflags, node);
2388
2389 return ret;
2390 }
2391 EXPORT_SYMBOL(kmem_cache_alloc_node);
2392
2393 #ifdef CONFIG_TRACING
2394 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2395 gfp_t gfpflags,
2396 int node, size_t size)
2397 {
2398 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2399
2400 trace_kmalloc_node(_RET_IP_, ret,
2401 size, s->size, gfpflags, node);
2402 return ret;
2403 }
2404 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2405 #endif
2406 #endif
2407
2408 /*
2409 * Slow patch handling. This may still be called frequently since objects
2410 * have a longer lifetime than the cpu slabs in most processing loads.
2411 *
2412 * So we still attempt to reduce cache line usage. Just take the slab
2413 * lock and free the item. If there is no additional partial page
2414 * handling required then we can return immediately.
2415 */
2416 static void __slab_free(struct kmem_cache *s, struct page *page,
2417 void *x, unsigned long addr)
2418 {
2419 void *prior;
2420 void **object = (void *)x;
2421 int was_frozen;
2422 int inuse;
2423 struct page new;
2424 unsigned long counters;
2425 struct kmem_cache_node *n = NULL;
2426 unsigned long uninitialized_var(flags);
2427
2428 stat(s, FREE_SLOWPATH);
2429
2430 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2431 return;
2432
2433 do {
2434 prior = page->freelist;
2435 counters = page->counters;
2436 set_freepointer(s, object, prior);
2437 new.counters = counters;
2438 was_frozen = new.frozen;
2439 new.inuse--;
2440 if ((!new.inuse || !prior) && !was_frozen && !n) {
2441
2442 if (!kmem_cache_debug(s) && !prior)
2443
2444 /*
2445 * Slab was on no list before and will be partially empty
2446 * We can defer the list move and instead freeze it.
2447 */
2448 new.frozen = 1;
2449
2450 else { /* Needs to be taken off a list */
2451
2452 n = get_node(s, page_to_nid(page));
2453 /*
2454 * Speculatively acquire the list_lock.
2455 * If the cmpxchg does not succeed then we may
2456 * drop the list_lock without any processing.
2457 *
2458 * Otherwise the list_lock will synchronize with
2459 * other processors updating the list of slabs.
2460 */
2461 spin_lock_irqsave(&n->list_lock, flags);
2462
2463 }
2464 }
2465 inuse = new.inuse;
2466
2467 } while (!cmpxchg_double_slab(s, page,
2468 prior, counters,
2469 object, new.counters,
2470 "__slab_free"));
2471
2472 if (likely(!n)) {
2473
2474 /*
2475 * If we just froze the page then put it onto the
2476 * per cpu partial list.
2477 */
2478 if (new.frozen && !was_frozen)
2479 put_cpu_partial(s, page, 1);
2480
2481 /*
2482 * The list lock was not taken therefore no list
2483 * activity can be necessary.
2484 */
2485 if (was_frozen)
2486 stat(s, FREE_FROZEN);
2487 return;
2488 }
2489
2490 /*
2491 * was_frozen may have been set after we acquired the list_lock in
2492 * an earlier loop. So we need to check it here again.
2493 */
2494 if (was_frozen)
2495 stat(s, FREE_FROZEN);
2496 else {
2497 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2498 goto slab_empty;
2499
2500 /*
2501 * Objects left in the slab. If it was not on the partial list before
2502 * then add it.
2503 */
2504 if (unlikely(!prior)) {
2505 remove_full(s, page);
2506 add_partial(n, page, DEACTIVATE_TO_TAIL);
2507 stat(s, FREE_ADD_PARTIAL);
2508 }
2509 }
2510 spin_unlock_irqrestore(&n->list_lock, flags);
2511 return;
2512
2513 slab_empty:
2514 if (prior) {
2515 /*
2516 * Slab on the partial list.
2517 */
2518 remove_partial(n, page);
2519 stat(s, FREE_REMOVE_PARTIAL);
2520 } else
2521 /* Slab must be on the full list */
2522 remove_full(s, page);
2523
2524 spin_unlock_irqrestore(&n->list_lock, flags);
2525 stat(s, FREE_SLAB);
2526 discard_slab(s, page);
2527 }
2528
2529 /*
2530 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2531 * can perform fastpath freeing without additional function calls.
2532 *
2533 * The fastpath is only possible if we are freeing to the current cpu slab
2534 * of this processor. This typically the case if we have just allocated
2535 * the item before.
2536 *
2537 * If fastpath is not possible then fall back to __slab_free where we deal
2538 * with all sorts of special processing.
2539 */
2540 static __always_inline void slab_free(struct kmem_cache *s,
2541 struct page *page, void *x, unsigned long addr)
2542 {
2543 void **object = (void *)x;
2544 struct kmem_cache_cpu *c;
2545 unsigned long tid;
2546
2547 slab_free_hook(s, x);
2548
2549 redo:
2550 /*
2551 * Determine the currently cpus per cpu slab.
2552 * The cpu may change afterward. However that does not matter since
2553 * data is retrieved via this pointer. If we are on the same cpu
2554 * during the cmpxchg then the free will succedd.
2555 */
2556 c = __this_cpu_ptr(s->cpu_slab);
2557
2558 tid = c->tid;
2559 barrier();
2560
2561 if (likely(page == c->page)) {
2562 set_freepointer(s, object, c->freelist);
2563
2564 if (unlikely(!this_cpu_cmpxchg_double(
2565 s->cpu_slab->freelist, s->cpu_slab->tid,
2566 c->freelist, tid,
2567 object, next_tid(tid)))) {
2568
2569 note_cmpxchg_failure("slab_free", s, tid);
2570 goto redo;
2571 }
2572 stat(s, FREE_FASTPATH);
2573 } else
2574 __slab_free(s, page, x, addr);
2575
2576 }
2577
2578 void kmem_cache_free(struct kmem_cache *s, void *x)
2579 {
2580 struct page *page;
2581
2582 page = virt_to_head_page(x);
2583
2584 slab_free(s, page, x, _RET_IP_);
2585
2586 trace_kmem_cache_free(_RET_IP_, x);
2587 }
2588 EXPORT_SYMBOL(kmem_cache_free);
2589
2590 /*
2591 * Object placement in a slab is made very easy because we always start at
2592 * offset 0. If we tune the size of the object to the alignment then we can
2593 * get the required alignment by putting one properly sized object after
2594 * another.
2595 *
2596 * Notice that the allocation order determines the sizes of the per cpu
2597 * caches. Each processor has always one slab available for allocations.
2598 * Increasing the allocation order reduces the number of times that slabs
2599 * must be moved on and off the partial lists and is therefore a factor in
2600 * locking overhead.
2601 */
2602
2603 /*
2604 * Mininum / Maximum order of slab pages. This influences locking overhead
2605 * and slab fragmentation. A higher order reduces the number of partial slabs
2606 * and increases the number of allocations possible without having to
2607 * take the list_lock.
2608 */
2609 static int slub_min_order;
2610 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2611 static int slub_min_objects;
2612
2613 /*
2614 * Merge control. If this is set then no merging of slab caches will occur.
2615 * (Could be removed. This was introduced to pacify the merge skeptics.)
2616 */
2617 static int slub_nomerge;
2618
2619 /*
2620 * Calculate the order of allocation given an slab object size.
2621 *
2622 * The order of allocation has significant impact on performance and other
2623 * system components. Generally order 0 allocations should be preferred since
2624 * order 0 does not cause fragmentation in the page allocator. Larger objects
2625 * be problematic to put into order 0 slabs because there may be too much
2626 * unused space left. We go to a higher order if more than 1/16th of the slab
2627 * would be wasted.
2628 *
2629 * In order to reach satisfactory performance we must ensure that a minimum
2630 * number of objects is in one slab. Otherwise we may generate too much
2631 * activity on the partial lists which requires taking the list_lock. This is
2632 * less a concern for large slabs though which are rarely used.
2633 *
2634 * slub_max_order specifies the order where we begin to stop considering the
2635 * number of objects in a slab as critical. If we reach slub_max_order then
2636 * we try to keep the page order as low as possible. So we accept more waste
2637 * of space in favor of a small page order.
2638 *
2639 * Higher order allocations also allow the placement of more objects in a
2640 * slab and thereby reduce object handling overhead. If the user has
2641 * requested a higher mininum order then we start with that one instead of
2642 * the smallest order which will fit the object.
2643 */
2644 static inline int slab_order(int size, int min_objects,
2645 int max_order, int fract_leftover, int reserved)
2646 {
2647 int order;
2648 int rem;
2649 int min_order = slub_min_order;
2650
2651 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2652 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2653
2654 for (order = max(min_order,
2655 fls(min_objects * size - 1) - PAGE_SHIFT);
2656 order <= max_order; order++) {
2657
2658 unsigned long slab_size = PAGE_SIZE << order;
2659
2660 if (slab_size < min_objects * size + reserved)
2661 continue;
2662
2663 rem = (slab_size - reserved) % size;
2664
2665 if (rem <= slab_size / fract_leftover)
2666 break;
2667
2668 }
2669
2670 return order;
2671 }
2672
2673 static inline int calculate_order(int size, int reserved)
2674 {
2675 int order;
2676 int min_objects;
2677 int fraction;
2678 int max_objects;
2679
2680 /*
2681 * Attempt to find best configuration for a slab. This
2682 * works by first attempting to generate a layout with
2683 * the best configuration and backing off gradually.
2684 *
2685 * First we reduce the acceptable waste in a slab. Then
2686 * we reduce the minimum objects required in a slab.
2687 */
2688 min_objects = slub_min_objects;
2689 if (!min_objects)
2690 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2691 max_objects = order_objects(slub_max_order, size, reserved);
2692 min_objects = min(min_objects, max_objects);
2693
2694 while (min_objects > 1) {
2695 fraction = 16;
2696 while (fraction >= 4) {
2697 order = slab_order(size, min_objects,
2698 slub_max_order, fraction, reserved);
2699 if (order <= slub_max_order)
2700 return order;
2701 fraction /= 2;
2702 }
2703 min_objects--;
2704 }
2705
2706 /*
2707 * We were unable to place multiple objects in a slab. Now
2708 * lets see if we can place a single object there.
2709 */
2710 order = slab_order(size, 1, slub_max_order, 1, reserved);
2711 if (order <= slub_max_order)
2712 return order;
2713
2714 /*
2715 * Doh this slab cannot be placed using slub_max_order.
2716 */
2717 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2718 if (order < MAX_ORDER)
2719 return order;
2720 return -ENOSYS;
2721 }
2722
2723 /*
2724 * Figure out what the alignment of the objects will be.
2725 */
2726 static unsigned long calculate_alignment(unsigned long flags,
2727 unsigned long align, unsigned long size)
2728 {
2729 /*
2730 * If the user wants hardware cache aligned objects then follow that
2731 * suggestion if the object is sufficiently large.
2732 *
2733 * The hardware cache alignment cannot override the specified
2734 * alignment though. If that is greater then use it.
2735 */
2736 if (flags & SLAB_HWCACHE_ALIGN) {
2737 unsigned long ralign = cache_line_size();
2738 while (size <= ralign / 2)
2739 ralign /= 2;
2740 align = max(align, ralign);
2741 }
2742
2743 if (align < ARCH_SLAB_MINALIGN)
2744 align = ARCH_SLAB_MINALIGN;
2745
2746 return ALIGN(align, sizeof(void *));
2747 }
2748
2749 static void
2750 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2751 {
2752 n->nr_partial = 0;
2753 spin_lock_init(&n->list_lock);
2754 INIT_LIST_HEAD(&n->partial);
2755 #ifdef CONFIG_SLUB_DEBUG
2756 atomic_long_set(&n->nr_slabs, 0);
2757 atomic_long_set(&n->total_objects, 0);
2758 INIT_LIST_HEAD(&n->full);
2759 #endif
2760 }
2761
2762 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2763 {
2764 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2765 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2766
2767 /*
2768 * Must align to double word boundary for the double cmpxchg
2769 * instructions to work; see __pcpu_double_call_return_bool().
2770 */
2771 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2772 2 * sizeof(void *));
2773
2774 if (!s->cpu_slab)
2775 return 0;
2776
2777 init_kmem_cache_cpus(s);
2778
2779 return 1;
2780 }
2781
2782 static struct kmem_cache *kmem_cache_node;
2783
2784 /*
2785 * No kmalloc_node yet so do it by hand. We know that this is the first
2786 * slab on the node for this slabcache. There are no concurrent accesses
2787 * possible.
2788 *
2789 * Note that this function only works on the kmalloc_node_cache
2790 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2791 * memory on a fresh node that has no slab structures yet.
2792 */
2793 static void early_kmem_cache_node_alloc(int node)
2794 {
2795 struct page *page;
2796 struct kmem_cache_node *n;
2797
2798 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2799
2800 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2801
2802 BUG_ON(!page);
2803 if (page_to_nid(page) != node) {
2804 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2805 "node %d\n", node);
2806 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2807 "in order to be able to continue\n");
2808 }
2809
2810 n = page->freelist;
2811 BUG_ON(!n);
2812 page->freelist = get_freepointer(kmem_cache_node, n);
2813 page->inuse = 1;
2814 page->frozen = 0;
2815 kmem_cache_node->node[node] = n;
2816 #ifdef CONFIG_SLUB_DEBUG
2817 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2818 init_tracking(kmem_cache_node, n);
2819 #endif
2820 init_kmem_cache_node(n, kmem_cache_node);
2821 inc_slabs_node(kmem_cache_node, node, page->objects);
2822
2823 add_partial(n, page, DEACTIVATE_TO_HEAD);
2824 }
2825
2826 static void free_kmem_cache_nodes(struct kmem_cache *s)
2827 {
2828 int node;
2829
2830 for_each_node_state(node, N_NORMAL_MEMORY) {
2831 struct kmem_cache_node *n = s->node[node];
2832
2833 if (n)
2834 kmem_cache_free(kmem_cache_node, n);
2835
2836 s->node[node] = NULL;
2837 }
2838 }
2839
2840 static int init_kmem_cache_nodes(struct kmem_cache *s)
2841 {
2842 int node;
2843
2844 for_each_node_state(node, N_NORMAL_MEMORY) {
2845 struct kmem_cache_node *n;
2846
2847 if (slab_state == DOWN) {
2848 early_kmem_cache_node_alloc(node);
2849 continue;
2850 }
2851 n = kmem_cache_alloc_node(kmem_cache_node,
2852 GFP_KERNEL, node);
2853
2854 if (!n) {
2855 free_kmem_cache_nodes(s);
2856 return 0;
2857 }
2858
2859 s->node[node] = n;
2860 init_kmem_cache_node(n, s);
2861 }
2862 return 1;
2863 }
2864
2865 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2866 {
2867 if (min < MIN_PARTIAL)
2868 min = MIN_PARTIAL;
2869 else if (min > MAX_PARTIAL)
2870 min = MAX_PARTIAL;
2871 s->min_partial = min;
2872 }
2873
2874 /*
2875 * calculate_sizes() determines the order and the distribution of data within
2876 * a slab object.
2877 */
2878 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2879 {
2880 unsigned long flags = s->flags;
2881 unsigned long size = s->objsize;
2882 unsigned long align = s->align;
2883 int order;
2884
2885 /*
2886 * Round up object size to the next word boundary. We can only
2887 * place the free pointer at word boundaries and this determines
2888 * the possible location of the free pointer.
2889 */
2890 size = ALIGN(size, sizeof(void *));
2891
2892 #ifdef CONFIG_SLUB_DEBUG
2893 /*
2894 * Determine if we can poison the object itself. If the user of
2895 * the slab may touch the object after free or before allocation
2896 * then we should never poison the object itself.
2897 */
2898 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2899 !s->ctor)
2900 s->flags |= __OBJECT_POISON;
2901 else
2902 s->flags &= ~__OBJECT_POISON;
2903
2904
2905 /*
2906 * If we are Redzoning then check if there is some space between the
2907 * end of the object and the free pointer. If not then add an
2908 * additional word to have some bytes to store Redzone information.
2909 */
2910 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2911 size += sizeof(void *);
2912 #endif
2913
2914 /*
2915 * With that we have determined the number of bytes in actual use
2916 * by the object. This is the potential offset to the free pointer.
2917 */
2918 s->inuse = size;
2919
2920 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2921 s->ctor)) {
2922 /*
2923 * Relocate free pointer after the object if it is not
2924 * permitted to overwrite the first word of the object on
2925 * kmem_cache_free.
2926 *
2927 * This is the case if we do RCU, have a constructor or
2928 * destructor or are poisoning the objects.
2929 */
2930 s->offset = size;
2931 size += sizeof(void *);
2932 }
2933
2934 #ifdef CONFIG_SLUB_DEBUG
2935 if (flags & SLAB_STORE_USER)
2936 /*
2937 * Need to store information about allocs and frees after
2938 * the object.
2939 */
2940 size += 2 * sizeof(struct track);
2941
2942 if (flags & SLAB_RED_ZONE)
2943 /*
2944 * Add some empty padding so that we can catch
2945 * overwrites from earlier objects rather than let
2946 * tracking information or the free pointer be
2947 * corrupted if a user writes before the start
2948 * of the object.
2949 */
2950 size += sizeof(void *);
2951 #endif
2952
2953 /*
2954 * Determine the alignment based on various parameters that the
2955 * user specified and the dynamic determination of cache line size
2956 * on bootup.
2957 */
2958 align = calculate_alignment(flags, align, s->objsize);
2959 s->align = align;
2960
2961 /*
2962 * SLUB stores one object immediately after another beginning from
2963 * offset 0. In order to align the objects we have to simply size
2964 * each object to conform to the alignment.
2965 */
2966 size = ALIGN(size, align);
2967 s->size = size;
2968 if (forced_order >= 0)
2969 order = forced_order;
2970 else
2971 order = calculate_order(size, s->reserved);
2972
2973 if (order < 0)
2974 return 0;
2975
2976 s->allocflags = 0;
2977 if (order)
2978 s->allocflags |= __GFP_COMP;
2979
2980 if (s->flags & SLAB_CACHE_DMA)
2981 s->allocflags |= SLUB_DMA;
2982
2983 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2984 s->allocflags |= __GFP_RECLAIMABLE;
2985
2986 /*
2987 * Determine the number of objects per slab
2988 */
2989 s->oo = oo_make(order, size, s->reserved);
2990 s->min = oo_make(get_order(size), size, s->reserved);
2991 if (oo_objects(s->oo) > oo_objects(s->max))
2992 s->max = s->oo;
2993
2994 return !!oo_objects(s->oo);
2995
2996 }
2997
2998 static int kmem_cache_open(struct kmem_cache *s,
2999 const char *name, size_t size,
3000 size_t align, unsigned long flags,
3001 void (*ctor)(void *))
3002 {
3003 memset(s, 0, kmem_size);
3004 s->name = name;
3005 s->ctor = ctor;
3006 s->objsize = size;
3007 s->align = align;
3008 s->flags = kmem_cache_flags(size, flags, name, ctor);
3009 s->reserved = 0;
3010
3011 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3012 s->reserved = sizeof(struct rcu_head);
3013
3014 if (!calculate_sizes(s, -1))
3015 goto error;
3016 if (disable_higher_order_debug) {
3017 /*
3018 * Disable debugging flags that store metadata if the min slab
3019 * order increased.
3020 */
3021 if (get_order(s->size) > get_order(s->objsize)) {
3022 s->flags &= ~DEBUG_METADATA_FLAGS;
3023 s->offset = 0;
3024 if (!calculate_sizes(s, -1))
3025 goto error;
3026 }
3027 }
3028
3029 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3030 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3031 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3032 /* Enable fast mode */
3033 s->flags |= __CMPXCHG_DOUBLE;
3034 #endif
3035
3036 /*
3037 * The larger the object size is, the more pages we want on the partial
3038 * list to avoid pounding the page allocator excessively.
3039 */
3040 set_min_partial(s, ilog2(s->size) / 2);
3041
3042 /*
3043 * cpu_partial determined the maximum number of objects kept in the
3044 * per cpu partial lists of a processor.
3045 *
3046 * Per cpu partial lists mainly contain slabs that just have one
3047 * object freed. If they are used for allocation then they can be
3048 * filled up again with minimal effort. The slab will never hit the
3049 * per node partial lists and therefore no locking will be required.
3050 *
3051 * This setting also determines
3052 *
3053 * A) The number of objects from per cpu partial slabs dumped to the
3054 * per node list when we reach the limit.
3055 * B) The number of objects in cpu partial slabs to extract from the
3056 * per node list when we run out of per cpu objects. We only fetch 50%
3057 * to keep some capacity around for frees.
3058 */
3059 if (kmem_cache_debug(s))
3060 s->cpu_partial = 0;
3061 else if (s->size >= PAGE_SIZE)
3062 s->cpu_partial = 2;
3063 else if (s->size >= 1024)
3064 s->cpu_partial = 6;
3065 else if (s->size >= 256)
3066 s->cpu_partial = 13;
3067 else
3068 s->cpu_partial = 30;
3069
3070 s->refcount = 1;
3071 #ifdef CONFIG_NUMA
3072 s->remote_node_defrag_ratio = 1000;
3073 #endif
3074 if (!init_kmem_cache_nodes(s))
3075 goto error;
3076
3077 if (alloc_kmem_cache_cpus(s))
3078 return 1;
3079
3080 free_kmem_cache_nodes(s);
3081 error:
3082 if (flags & SLAB_PANIC)
3083 panic("Cannot create slab %s size=%lu realsize=%u "
3084 "order=%u offset=%u flags=%lx\n",
3085 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3086 s->offset, flags);
3087 return 0;
3088 }
3089
3090 /*
3091 * Determine the size of a slab object
3092 */
3093 unsigned int kmem_cache_size(struct kmem_cache *s)
3094 {
3095 return s->objsize;
3096 }
3097 EXPORT_SYMBOL(kmem_cache_size);
3098
3099 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3100 const char *text)
3101 {
3102 #ifdef CONFIG_SLUB_DEBUG
3103 void *addr = page_address(page);
3104 void *p;
3105 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3106 sizeof(long), GFP_ATOMIC);
3107 if (!map)
3108 return;
3109 slab_err(s, page, "%s", text);
3110 slab_lock(page);
3111
3112 get_map(s, page, map);
3113 for_each_object(p, s, addr, page->objects) {
3114
3115 if (!test_bit(slab_index(p, s, addr), map)) {
3116 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3117 p, p - addr);
3118 print_tracking(s, p);
3119 }
3120 }
3121 slab_unlock(page);
3122 kfree(map);
3123 #endif
3124 }
3125
3126 /*
3127 * Attempt to free all partial slabs on a node.
3128 * This is called from kmem_cache_close(). We must be the last thread
3129 * using the cache and therefore we do not need to lock anymore.
3130 */
3131 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3132 {
3133 struct page *page, *h;
3134
3135 list_for_each_entry_safe(page, h, &n->partial, lru) {
3136 if (!page->inuse) {
3137 remove_partial(n, page);
3138 discard_slab(s, page);
3139 } else {
3140 list_slab_objects(s, page,
3141 "Objects remaining on kmem_cache_close()");
3142 }
3143 }
3144 }
3145
3146 /*
3147 * Release all resources used by a slab cache.
3148 */
3149 static inline int kmem_cache_close(struct kmem_cache *s)
3150 {
3151 int node;
3152
3153 flush_all(s);
3154 free_percpu(s->cpu_slab);
3155 /* Attempt to free all objects */
3156 for_each_node_state(node, N_NORMAL_MEMORY) {
3157 struct kmem_cache_node *n = get_node(s, node);
3158
3159 free_partial(s, n);
3160 if (n->nr_partial || slabs_node(s, node))
3161 return 1;
3162 }
3163 free_kmem_cache_nodes(s);
3164 return 0;
3165 }
3166
3167 /*
3168 * Close a cache and release the kmem_cache structure
3169 * (must be used for caches created using kmem_cache_create)
3170 */
3171 void kmem_cache_destroy(struct kmem_cache *s)
3172 {
3173 down_write(&slub_lock);
3174 s->refcount--;
3175 if (!s->refcount) {
3176 list_del(&s->list);
3177 up_write(&slub_lock);
3178 if (kmem_cache_close(s)) {
3179 printk(KERN_ERR "SLUB %s: %s called for cache that "
3180 "still has objects.\n", s->name, __func__);
3181 dump_stack();
3182 }
3183 if (s->flags & SLAB_DESTROY_BY_RCU)
3184 rcu_barrier();
3185 sysfs_slab_remove(s);
3186 } else
3187 up_write(&slub_lock);
3188 }
3189 EXPORT_SYMBOL(kmem_cache_destroy);
3190
3191 /********************************************************************
3192 * Kmalloc subsystem
3193 *******************************************************************/
3194
3195 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3196 EXPORT_SYMBOL(kmalloc_caches);
3197
3198 static struct kmem_cache *kmem_cache;
3199
3200 #ifdef CONFIG_ZONE_DMA
3201 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3202 #endif
3203
3204 static int __init setup_slub_min_order(char *str)
3205 {
3206 get_option(&str, &slub_min_order);
3207
3208 return 1;
3209 }
3210
3211 __setup("slub_min_order=", setup_slub_min_order);
3212
3213 static int __init setup_slub_max_order(char *str)
3214 {
3215 get_option(&str, &slub_max_order);
3216 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3217
3218 return 1;
3219 }
3220
3221 __setup("slub_max_order=", setup_slub_max_order);
3222
3223 static int __init setup_slub_min_objects(char *str)
3224 {
3225 get_option(&str, &slub_min_objects);
3226
3227 return 1;
3228 }
3229
3230 __setup("slub_min_objects=", setup_slub_min_objects);
3231
3232 static int __init setup_slub_nomerge(char *str)
3233 {
3234 slub_nomerge = 1;
3235 return 1;
3236 }
3237
3238 __setup("slub_nomerge", setup_slub_nomerge);
3239
3240 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3241 int size, unsigned int flags)
3242 {
3243 struct kmem_cache *s;
3244
3245 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3246
3247 /*
3248 * This function is called with IRQs disabled during early-boot on
3249 * single CPU so there's no need to take slub_lock here.
3250 */
3251 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3252 flags, NULL))
3253 goto panic;
3254
3255 list_add(&s->list, &slab_caches);
3256 return s;
3257
3258 panic:
3259 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3260 return NULL;
3261 }
3262
3263 /*
3264 * Conversion table for small slabs sizes / 8 to the index in the
3265 * kmalloc array. This is necessary for slabs < 192 since we have non power
3266 * of two cache sizes there. The size of larger slabs can be determined using
3267 * fls.
3268 */
3269 static s8 size_index[24] = {
3270 3, /* 8 */
3271 4, /* 16 */
3272 5, /* 24 */
3273 5, /* 32 */
3274 6, /* 40 */
3275 6, /* 48 */
3276 6, /* 56 */
3277 6, /* 64 */
3278 1, /* 72 */
3279 1, /* 80 */
3280 1, /* 88 */
3281 1, /* 96 */
3282 7, /* 104 */
3283 7, /* 112 */
3284 7, /* 120 */
3285 7, /* 128 */
3286 2, /* 136 */
3287 2, /* 144 */
3288 2, /* 152 */
3289 2, /* 160 */
3290 2, /* 168 */
3291 2, /* 176 */
3292 2, /* 184 */
3293 2 /* 192 */
3294 };
3295
3296 static inline int size_index_elem(size_t bytes)
3297 {
3298 return (bytes - 1) / 8;
3299 }
3300
3301 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3302 {
3303 int index;
3304
3305 if (size <= 192) {
3306 if (!size)
3307 return ZERO_SIZE_PTR;
3308
3309 index = size_index[size_index_elem(size)];
3310 } else
3311 index = fls(size - 1);
3312
3313 #ifdef CONFIG_ZONE_DMA
3314 if (unlikely((flags & SLUB_DMA)))
3315 return kmalloc_dma_caches[index];
3316
3317 #endif
3318 return kmalloc_caches[index];
3319 }
3320
3321 void *__kmalloc(size_t size, gfp_t flags)
3322 {
3323 struct kmem_cache *s;
3324 void *ret;
3325
3326 if (unlikely(size > SLUB_MAX_SIZE))
3327 return kmalloc_large(size, flags);
3328
3329 s = get_slab(size, flags);
3330
3331 if (unlikely(ZERO_OR_NULL_PTR(s)))
3332 return s;
3333
3334 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3335
3336 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3337
3338 return ret;
3339 }
3340 EXPORT_SYMBOL(__kmalloc);
3341
3342 #ifdef CONFIG_NUMA
3343 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3344 {
3345 struct page *page;
3346 void *ptr = NULL;
3347
3348 flags |= __GFP_COMP | __GFP_NOTRACK;
3349 page = alloc_pages_node(node, flags, get_order(size));
3350 if (page)
3351 ptr = page_address(page);
3352
3353 kmemleak_alloc(ptr, size, 1, flags);
3354 return ptr;
3355 }
3356
3357 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3358 {
3359 struct kmem_cache *s;
3360 void *ret;
3361
3362 if (unlikely(size > SLUB_MAX_SIZE)) {
3363 ret = kmalloc_large_node(size, flags, node);
3364
3365 trace_kmalloc_node(_RET_IP_, ret,
3366 size, PAGE_SIZE << get_order(size),
3367 flags, node);
3368
3369 return ret;
3370 }
3371
3372 s = get_slab(size, flags);
3373
3374 if (unlikely(ZERO_OR_NULL_PTR(s)))
3375 return s;
3376
3377 ret = slab_alloc(s, flags, node, _RET_IP_);
3378
3379 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3380
3381 return ret;
3382 }
3383 EXPORT_SYMBOL(__kmalloc_node);
3384 #endif
3385
3386 size_t ksize(const void *object)
3387 {
3388 struct page *page;
3389
3390 if (unlikely(object == ZERO_SIZE_PTR))
3391 return 0;
3392
3393 page = virt_to_head_page(object);
3394
3395 if (unlikely(!PageSlab(page))) {
3396 WARN_ON(!PageCompound(page));
3397 return PAGE_SIZE << compound_order(page);
3398 }
3399
3400 return slab_ksize(page->slab);
3401 }
3402 EXPORT_SYMBOL(ksize);
3403
3404 #ifdef CONFIG_SLUB_DEBUG
3405 bool verify_mem_not_deleted(const void *x)
3406 {
3407 struct page *page;
3408 void *object = (void *)x;
3409 unsigned long flags;
3410 bool rv;
3411
3412 if (unlikely(ZERO_OR_NULL_PTR(x)))
3413 return false;
3414
3415 local_irq_save(flags);
3416
3417 page = virt_to_head_page(x);
3418 if (unlikely(!PageSlab(page))) {
3419 /* maybe it was from stack? */
3420 rv = true;
3421 goto out_unlock;
3422 }
3423
3424 slab_lock(page);
3425 if (on_freelist(page->slab, page, object)) {
3426 object_err(page->slab, page, object, "Object is on free-list");
3427 rv = false;
3428 } else {
3429 rv = true;
3430 }
3431 slab_unlock(page);
3432
3433 out_unlock:
3434 local_irq_restore(flags);
3435 return rv;
3436 }
3437 EXPORT_SYMBOL(verify_mem_not_deleted);
3438 #endif
3439
3440 void kfree(const void *x)
3441 {
3442 struct page *page;
3443 void *object = (void *)x;
3444
3445 trace_kfree(_RET_IP_, x);
3446
3447 if (unlikely(ZERO_OR_NULL_PTR(x)))
3448 return;
3449
3450 page = virt_to_head_page(x);
3451 if (unlikely(!PageSlab(page))) {
3452 BUG_ON(!PageCompound(page));
3453 kmemleak_free(x);
3454 put_page(page);
3455 return;
3456 }
3457 slab_free(page->slab, page, object, _RET_IP_);
3458 }
3459 EXPORT_SYMBOL(kfree);
3460
3461 /*
3462 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3463 * the remaining slabs by the number of items in use. The slabs with the
3464 * most items in use come first. New allocations will then fill those up
3465 * and thus they can be removed from the partial lists.
3466 *
3467 * The slabs with the least items are placed last. This results in them
3468 * being allocated from last increasing the chance that the last objects
3469 * are freed in them.
3470 */
3471 int kmem_cache_shrink(struct kmem_cache *s)
3472 {
3473 int node;
3474 int i;
3475 struct kmem_cache_node *n;
3476 struct page *page;
3477 struct page *t;
3478 int objects = oo_objects(s->max);
3479 struct list_head *slabs_by_inuse =
3480 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3481 unsigned long flags;
3482
3483 if (!slabs_by_inuse)
3484 return -ENOMEM;
3485
3486 flush_all(s);
3487 for_each_node_state(node, N_NORMAL_MEMORY) {
3488 n = get_node(s, node);
3489
3490 if (!n->nr_partial)
3491 continue;
3492
3493 for (i = 0; i < objects; i++)
3494 INIT_LIST_HEAD(slabs_by_inuse + i);
3495
3496 spin_lock_irqsave(&n->list_lock, flags);
3497
3498 /*
3499 * Build lists indexed by the items in use in each slab.
3500 *
3501 * Note that concurrent frees may occur while we hold the
3502 * list_lock. page->inuse here is the upper limit.
3503 */
3504 list_for_each_entry_safe(page, t, &n->partial, lru) {
3505 list_move(&page->lru, slabs_by_inuse + page->inuse);
3506 if (!page->inuse)
3507 n->nr_partial--;
3508 }
3509
3510 /*
3511 * Rebuild the partial list with the slabs filled up most
3512 * first and the least used slabs at the end.
3513 */
3514 for (i = objects - 1; i > 0; i--)
3515 list_splice(slabs_by_inuse + i, n->partial.prev);
3516
3517 spin_unlock_irqrestore(&n->list_lock, flags);
3518
3519 /* Release empty slabs */
3520 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3521 discard_slab(s, page);
3522 }
3523
3524 kfree(slabs_by_inuse);
3525 return 0;
3526 }
3527 EXPORT_SYMBOL(kmem_cache_shrink);
3528
3529 #if defined(CONFIG_MEMORY_HOTPLUG)
3530 static int slab_mem_going_offline_callback(void *arg)
3531 {
3532 struct kmem_cache *s;
3533
3534 down_read(&slub_lock);
3535 list_for_each_entry(s, &slab_caches, list)
3536 kmem_cache_shrink(s);
3537 up_read(&slub_lock);
3538
3539 return 0;
3540 }
3541
3542 static void slab_mem_offline_callback(void *arg)
3543 {
3544 struct kmem_cache_node *n;
3545 struct kmem_cache *s;
3546 struct memory_notify *marg = arg;
3547 int offline_node;
3548
3549 offline_node = marg->status_change_nid;
3550
3551 /*
3552 * If the node still has available memory. we need kmem_cache_node
3553 * for it yet.
3554 */
3555 if (offline_node < 0)
3556 return;
3557
3558 down_read(&slub_lock);
3559 list_for_each_entry(s, &slab_caches, list) {
3560 n = get_node(s, offline_node);
3561 if (n) {
3562 /*
3563 * if n->nr_slabs > 0, slabs still exist on the node
3564 * that is going down. We were unable to free them,
3565 * and offline_pages() function shouldn't call this
3566 * callback. So, we must fail.
3567 */
3568 BUG_ON(slabs_node(s, offline_node));
3569
3570 s->node[offline_node] = NULL;
3571 kmem_cache_free(kmem_cache_node, n);
3572 }
3573 }
3574 up_read(&slub_lock);
3575 }
3576
3577 static int slab_mem_going_online_callback(void *arg)
3578 {
3579 struct kmem_cache_node *n;
3580 struct kmem_cache *s;
3581 struct memory_notify *marg = arg;
3582 int nid = marg->status_change_nid;
3583 int ret = 0;
3584
3585 /*
3586 * If the node's memory is already available, then kmem_cache_node is
3587 * already created. Nothing to do.
3588 */
3589 if (nid < 0)
3590 return 0;
3591
3592 /*
3593 * We are bringing a node online. No memory is available yet. We must
3594 * allocate a kmem_cache_node structure in order to bring the node
3595 * online.
3596 */
3597 down_read(&slub_lock);
3598 list_for_each_entry(s, &slab_caches, list) {
3599 /*
3600 * XXX: kmem_cache_alloc_node will fallback to other nodes
3601 * since memory is not yet available from the node that
3602 * is brought up.
3603 */
3604 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3605 if (!n) {
3606 ret = -ENOMEM;
3607 goto out;
3608 }
3609 init_kmem_cache_node(n, s);
3610 s->node[nid] = n;
3611 }
3612 out:
3613 up_read(&slub_lock);
3614 return ret;
3615 }
3616
3617 static int slab_memory_callback(struct notifier_block *self,
3618 unsigned long action, void *arg)
3619 {
3620 int ret = 0;
3621
3622 switch (action) {
3623 case MEM_GOING_ONLINE:
3624 ret = slab_mem_going_online_callback(arg);
3625 break;
3626 case MEM_GOING_OFFLINE:
3627 ret = slab_mem_going_offline_callback(arg);
3628 break;
3629 case MEM_OFFLINE:
3630 case MEM_CANCEL_ONLINE:
3631 slab_mem_offline_callback(arg);
3632 break;
3633 case MEM_ONLINE:
3634 case MEM_CANCEL_OFFLINE:
3635 break;
3636 }
3637 if (ret)
3638 ret = notifier_from_errno(ret);
3639 else
3640 ret = NOTIFY_OK;
3641 return ret;
3642 }
3643
3644 #endif /* CONFIG_MEMORY_HOTPLUG */
3645
3646 /********************************************************************
3647 * Basic setup of slabs
3648 *******************************************************************/
3649
3650 /*
3651 * Used for early kmem_cache structures that were allocated using
3652 * the page allocator
3653 */
3654
3655 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3656 {
3657 int node;
3658
3659 list_add(&s->list, &slab_caches);
3660 s->refcount = -1;
3661
3662 for_each_node_state(node, N_NORMAL_MEMORY) {
3663 struct kmem_cache_node *n = get_node(s, node);
3664 struct page *p;
3665
3666 if (n) {
3667 list_for_each_entry(p, &n->partial, lru)
3668 p->slab = s;
3669
3670 #ifdef CONFIG_SLUB_DEBUG
3671 list_for_each_entry(p, &n->full, lru)
3672 p->slab = s;
3673 #endif
3674 }
3675 }
3676 }
3677
3678 void __init kmem_cache_init(void)
3679 {
3680 int i;
3681 int caches = 0;
3682 struct kmem_cache *temp_kmem_cache;
3683 int order;
3684 struct kmem_cache *temp_kmem_cache_node;
3685 unsigned long kmalloc_size;
3686
3687 if (debug_guardpage_minorder())
3688 slub_max_order = 0;
3689
3690 kmem_size = offsetof(struct kmem_cache, node) +
3691 nr_node_ids * sizeof(struct kmem_cache_node *);
3692
3693 /* Allocate two kmem_caches from the page allocator */
3694 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3695 order = get_order(2 * kmalloc_size);
3696 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3697
3698 /*
3699 * Must first have the slab cache available for the allocations of the
3700 * struct kmem_cache_node's. There is special bootstrap code in
3701 * kmem_cache_open for slab_state == DOWN.
3702 */
3703 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3704
3705 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3706 sizeof(struct kmem_cache_node),
3707 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3708
3709 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3710
3711 /* Able to allocate the per node structures */
3712 slab_state = PARTIAL;
3713
3714 temp_kmem_cache = kmem_cache;
3715 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3716 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3717 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3718 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3719
3720 /*
3721 * Allocate kmem_cache_node properly from the kmem_cache slab.
3722 * kmem_cache_node is separately allocated so no need to
3723 * update any list pointers.
3724 */
3725 temp_kmem_cache_node = kmem_cache_node;
3726
3727 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3728 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3729
3730 kmem_cache_bootstrap_fixup(kmem_cache_node);
3731
3732 caches++;
3733 kmem_cache_bootstrap_fixup(kmem_cache);
3734 caches++;
3735 /* Free temporary boot structure */
3736 free_pages((unsigned long)temp_kmem_cache, order);
3737
3738 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3739
3740 /*
3741 * Patch up the size_index table if we have strange large alignment
3742 * requirements for the kmalloc array. This is only the case for
3743 * MIPS it seems. The standard arches will not generate any code here.
3744 *
3745 * Largest permitted alignment is 256 bytes due to the way we
3746 * handle the index determination for the smaller caches.
3747 *
3748 * Make sure that nothing crazy happens if someone starts tinkering
3749 * around with ARCH_KMALLOC_MINALIGN
3750 */
3751 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3752 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3753
3754 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3755 int elem = size_index_elem(i);
3756 if (elem >= ARRAY_SIZE(size_index))
3757 break;
3758 size_index[elem] = KMALLOC_SHIFT_LOW;
3759 }
3760
3761 if (KMALLOC_MIN_SIZE == 64) {
3762 /*
3763 * The 96 byte size cache is not used if the alignment
3764 * is 64 byte.
3765 */
3766 for (i = 64 + 8; i <= 96; i += 8)
3767 size_index[size_index_elem(i)] = 7;
3768 } else if (KMALLOC_MIN_SIZE == 128) {
3769 /*
3770 * The 192 byte sized cache is not used if the alignment
3771 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3772 * instead.
3773 */
3774 for (i = 128 + 8; i <= 192; i += 8)
3775 size_index[size_index_elem(i)] = 8;
3776 }
3777
3778 /* Caches that are not of the two-to-the-power-of size */
3779 if (KMALLOC_MIN_SIZE <= 32) {
3780 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3781 caches++;
3782 }
3783
3784 if (KMALLOC_MIN_SIZE <= 64) {
3785 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3786 caches++;
3787 }
3788
3789 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3790 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3791 caches++;
3792 }
3793
3794 slab_state = UP;
3795
3796 /* Provide the correct kmalloc names now that the caches are up */
3797 if (KMALLOC_MIN_SIZE <= 32) {
3798 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3799 BUG_ON(!kmalloc_caches[1]->name);
3800 }
3801
3802 if (KMALLOC_MIN_SIZE <= 64) {
3803 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3804 BUG_ON(!kmalloc_caches[2]->name);
3805 }
3806
3807 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3808 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3809
3810 BUG_ON(!s);
3811 kmalloc_caches[i]->name = s;
3812 }
3813
3814 #ifdef CONFIG_SMP
3815 register_cpu_notifier(&slab_notifier);
3816 #endif
3817
3818 #ifdef CONFIG_ZONE_DMA
3819 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3820 struct kmem_cache *s = kmalloc_caches[i];
3821
3822 if (s && s->size) {
3823 char *name = kasprintf(GFP_NOWAIT,
3824 "dma-kmalloc-%d", s->objsize);
3825
3826 BUG_ON(!name);
3827 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3828 s->objsize, SLAB_CACHE_DMA);
3829 }
3830 }
3831 #endif
3832 printk(KERN_INFO
3833 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3834 " CPUs=%d, Nodes=%d\n",
3835 caches, cache_line_size(),
3836 slub_min_order, slub_max_order, slub_min_objects,
3837 nr_cpu_ids, nr_node_ids);
3838 }
3839
3840 void __init kmem_cache_init_late(void)
3841 {
3842 }
3843
3844 /*
3845 * Find a mergeable slab cache
3846 */
3847 static int slab_unmergeable(struct kmem_cache *s)
3848 {
3849 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3850 return 1;
3851
3852 if (s->ctor)
3853 return 1;
3854
3855 /*
3856 * We may have set a slab to be unmergeable during bootstrap.
3857 */
3858 if (s->refcount < 0)
3859 return 1;
3860
3861 return 0;
3862 }
3863
3864 static struct kmem_cache *find_mergeable(size_t size,
3865 size_t align, unsigned long flags, const char *name,
3866 void (*ctor)(void *))
3867 {
3868 struct kmem_cache *s;
3869
3870 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3871 return NULL;
3872
3873 if (ctor)
3874 return NULL;
3875
3876 size = ALIGN(size, sizeof(void *));
3877 align = calculate_alignment(flags, align, size);
3878 size = ALIGN(size, align);
3879 flags = kmem_cache_flags(size, flags, name, NULL);
3880
3881 list_for_each_entry(s, &slab_caches, list) {
3882 if (slab_unmergeable(s))
3883 continue;
3884
3885 if (size > s->size)
3886 continue;
3887
3888 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3889 continue;
3890 /*
3891 * Check if alignment is compatible.
3892 * Courtesy of Adrian Drzewiecki
3893 */
3894 if ((s->size & ~(align - 1)) != s->size)
3895 continue;
3896
3897 if (s->size - size >= sizeof(void *))
3898 continue;
3899
3900 return s;
3901 }
3902 return NULL;
3903 }
3904
3905 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3906 size_t align, unsigned long flags, void (*ctor)(void *))
3907 {
3908 struct kmem_cache *s;
3909 char *n;
3910
3911 if (WARN_ON(!name))
3912 return NULL;
3913
3914 down_write(&slub_lock);
3915 s = find_mergeable(size, align, flags, name, ctor);
3916 if (s) {
3917 s->refcount++;
3918 /*
3919 * Adjust the object sizes so that we clear
3920 * the complete object on kzalloc.
3921 */
3922 s->objsize = max(s->objsize, (int)size);
3923 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3924
3925 if (sysfs_slab_alias(s, name)) {
3926 s->refcount--;
3927 goto err;
3928 }
3929 up_write(&slub_lock);
3930 return s;
3931 }
3932
3933 n = kstrdup(name, GFP_KERNEL);
3934 if (!n)
3935 goto err;
3936
3937 s = kmalloc(kmem_size, GFP_KERNEL);
3938 if (s) {
3939 if (kmem_cache_open(s, n,
3940 size, align, flags, ctor)) {
3941 list_add(&s->list, &slab_caches);
3942 if (sysfs_slab_add(s)) {
3943 list_del(&s->list);
3944 kfree(n);
3945 kfree(s);
3946 goto err;
3947 }
3948 up_write(&slub_lock);
3949 return s;
3950 }
3951 kfree(n);
3952 kfree(s);
3953 }
3954 err:
3955 up_write(&slub_lock);
3956
3957 if (flags & SLAB_PANIC)
3958 panic("Cannot create slabcache %s\n", name);
3959 else
3960 s = NULL;
3961 return s;
3962 }
3963 EXPORT_SYMBOL(kmem_cache_create);
3964
3965 #ifdef CONFIG_SMP
3966 /*
3967 * Use the cpu notifier to insure that the cpu slabs are flushed when
3968 * necessary.
3969 */
3970 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3971 unsigned long action, void *hcpu)
3972 {
3973 long cpu = (long)hcpu;
3974 struct kmem_cache *s;
3975 unsigned long flags;
3976
3977 switch (action) {
3978 case CPU_UP_CANCELED:
3979 case CPU_UP_CANCELED_FROZEN:
3980 case CPU_DEAD:
3981 case CPU_DEAD_FROZEN:
3982 down_read(&slub_lock);
3983 list_for_each_entry(s, &slab_caches, list) {
3984 local_irq_save(flags);
3985 __flush_cpu_slab(s, cpu);
3986 local_irq_restore(flags);
3987 }
3988 up_read(&slub_lock);
3989 break;
3990 default:
3991 break;
3992 }
3993 return NOTIFY_OK;
3994 }
3995
3996 static struct notifier_block __cpuinitdata slab_notifier = {
3997 .notifier_call = slab_cpuup_callback
3998 };
3999
4000 #endif
4001
4002 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4003 {
4004 struct kmem_cache *s;
4005 void *ret;
4006
4007 if (unlikely(size > SLUB_MAX_SIZE))
4008 return kmalloc_large(size, gfpflags);
4009
4010 s = get_slab(size, gfpflags);
4011
4012 if (unlikely(ZERO_OR_NULL_PTR(s)))
4013 return s;
4014
4015 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4016
4017 /* Honor the call site pointer we received. */
4018 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4019
4020 return ret;
4021 }
4022
4023 #ifdef CONFIG_NUMA
4024 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4025 int node, unsigned long caller)
4026 {
4027 struct kmem_cache *s;
4028 void *ret;
4029
4030 if (unlikely(size > SLUB_MAX_SIZE)) {
4031 ret = kmalloc_large_node(size, gfpflags, node);
4032
4033 trace_kmalloc_node(caller, ret,
4034 size, PAGE_SIZE << get_order(size),
4035 gfpflags, node);
4036
4037 return ret;
4038 }
4039
4040 s = get_slab(size, gfpflags);
4041
4042 if (unlikely(ZERO_OR_NULL_PTR(s)))
4043 return s;
4044
4045 ret = slab_alloc(s, gfpflags, node, caller);
4046
4047 /* Honor the call site pointer we received. */
4048 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4049
4050 return ret;
4051 }
4052 #endif
4053
4054 #ifdef CONFIG_SYSFS
4055 static int count_inuse(struct page *page)
4056 {
4057 return page->inuse;
4058 }
4059
4060 static int count_total(struct page *page)
4061 {
4062 return page->objects;
4063 }
4064 #endif
4065
4066 #ifdef CONFIG_SLUB_DEBUG
4067 static int validate_slab(struct kmem_cache *s, struct page *page,
4068 unsigned long *map)
4069 {
4070 void *p;
4071 void *addr = page_address(page);
4072
4073 if (!check_slab(s, page) ||
4074 !on_freelist(s, page, NULL))
4075 return 0;
4076
4077 /* Now we know that a valid freelist exists */
4078 bitmap_zero(map, page->objects);
4079
4080 get_map(s, page, map);
4081 for_each_object(p, s, addr, page->objects) {
4082 if (test_bit(slab_index(p, s, addr), map))
4083 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4084 return 0;
4085 }
4086
4087 for_each_object(p, s, addr, page->objects)
4088 if (!test_bit(slab_index(p, s, addr), map))
4089 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4090 return 0;
4091 return 1;
4092 }
4093
4094 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4095 unsigned long *map)
4096 {
4097 slab_lock(page);
4098 validate_slab(s, page, map);
4099 slab_unlock(page);
4100 }
4101
4102 static int validate_slab_node(struct kmem_cache *s,
4103 struct kmem_cache_node *n, unsigned long *map)
4104 {
4105 unsigned long count = 0;
4106 struct page *page;
4107 unsigned long flags;
4108
4109 spin_lock_irqsave(&n->list_lock, flags);
4110
4111 list_for_each_entry(page, &n->partial, lru) {
4112 validate_slab_slab(s, page, map);
4113 count++;
4114 }
4115 if (count != n->nr_partial)
4116 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4117 "counter=%ld\n", s->name, count, n->nr_partial);
4118
4119 if (!(s->flags & SLAB_STORE_USER))
4120 goto out;
4121
4122 list_for_each_entry(page, &n->full, lru) {
4123 validate_slab_slab(s, page, map);
4124 count++;
4125 }
4126 if (count != atomic_long_read(&n->nr_slabs))
4127 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4128 "counter=%ld\n", s->name, count,
4129 atomic_long_read(&n->nr_slabs));
4130
4131 out:
4132 spin_unlock_irqrestore(&n->list_lock, flags);
4133 return count;
4134 }
4135
4136 static long validate_slab_cache(struct kmem_cache *s)
4137 {
4138 int node;
4139 unsigned long count = 0;
4140 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4141 sizeof(unsigned long), GFP_KERNEL);
4142
4143 if (!map)
4144 return -ENOMEM;
4145
4146 flush_all(s);
4147 for_each_node_state(node, N_NORMAL_MEMORY) {
4148 struct kmem_cache_node *n = get_node(s, node);
4149
4150 count += validate_slab_node(s, n, map);
4151 }
4152 kfree(map);
4153 return count;
4154 }
4155 /*
4156 * Generate lists of code addresses where slabcache objects are allocated
4157 * and freed.
4158 */
4159
4160 struct location {
4161 unsigned long count;
4162 unsigned long addr;
4163 long long sum_time;
4164 long min_time;
4165 long max_time;
4166 long min_pid;
4167 long max_pid;
4168 DECLARE_BITMAP(cpus, NR_CPUS);
4169 nodemask_t nodes;
4170 };
4171
4172 struct loc_track {
4173 unsigned long max;
4174 unsigned long count;
4175 struct location *loc;
4176 };
4177
4178 static void free_loc_track(struct loc_track *t)
4179 {
4180 if (t->max)
4181 free_pages((unsigned long)t->loc,
4182 get_order(sizeof(struct location) * t->max));
4183 }
4184
4185 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4186 {
4187 struct location *l;
4188 int order;
4189
4190 order = get_order(sizeof(struct location) * max);
4191
4192 l = (void *)__get_free_pages(flags, order);
4193 if (!l)
4194 return 0;
4195
4196 if (t->count) {
4197 memcpy(l, t->loc, sizeof(struct location) * t->count);
4198 free_loc_track(t);
4199 }
4200 t->max = max;
4201 t->loc = l;
4202 return 1;
4203 }
4204
4205 static int add_location(struct loc_track *t, struct kmem_cache *s,
4206 const struct track *track)
4207 {
4208 long start, end, pos;
4209 struct location *l;
4210 unsigned long caddr;
4211 unsigned long age = jiffies - track->when;
4212
4213 start = -1;
4214 end = t->count;
4215
4216 for ( ; ; ) {
4217 pos = start + (end - start + 1) / 2;
4218
4219 /*
4220 * There is nothing at "end". If we end up there
4221 * we need to add something to before end.
4222 */
4223 if (pos == end)
4224 break;
4225
4226 caddr = t->loc[pos].addr;
4227 if (track->addr == caddr) {
4228
4229 l = &t->loc[pos];
4230 l->count++;
4231 if (track->when) {
4232 l->sum_time += age;
4233 if (age < l->min_time)
4234 l->min_time = age;
4235 if (age > l->max_time)
4236 l->max_time = age;
4237
4238 if (track->pid < l->min_pid)
4239 l->min_pid = track->pid;
4240 if (track->pid > l->max_pid)
4241 l->max_pid = track->pid;
4242
4243 cpumask_set_cpu(track->cpu,
4244 to_cpumask(l->cpus));
4245 }
4246 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4247 return 1;
4248 }
4249
4250 if (track->addr < caddr)
4251 end = pos;
4252 else
4253 start = pos;
4254 }
4255
4256 /*
4257 * Not found. Insert new tracking element.
4258 */
4259 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4260 return 0;
4261
4262 l = t->loc + pos;
4263 if (pos < t->count)
4264 memmove(l + 1, l,
4265 (t->count - pos) * sizeof(struct location));
4266 t->count++;
4267 l->count = 1;
4268 l->addr = track->addr;
4269 l->sum_time = age;
4270 l->min_time = age;
4271 l->max_time = age;
4272 l->min_pid = track->pid;
4273 l->max_pid = track->pid;
4274 cpumask_clear(to_cpumask(l->cpus));
4275 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4276 nodes_clear(l->nodes);
4277 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4278 return 1;
4279 }
4280
4281 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4282 struct page *page, enum track_item alloc,
4283 unsigned long *map)
4284 {
4285 void *addr = page_address(page);
4286 void *p;
4287
4288 bitmap_zero(map, page->objects);
4289 get_map(s, page, map);
4290
4291 for_each_object(p, s, addr, page->objects)
4292 if (!test_bit(slab_index(p, s, addr), map))
4293 add_location(t, s, get_track(s, p, alloc));
4294 }
4295
4296 static int list_locations(struct kmem_cache *s, char *buf,
4297 enum track_item alloc)
4298 {
4299 int len = 0;
4300 unsigned long i;
4301 struct loc_track t = { 0, 0, NULL };
4302 int node;
4303 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4304 sizeof(unsigned long), GFP_KERNEL);
4305
4306 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4307 GFP_TEMPORARY)) {
4308 kfree(map);
4309 return sprintf(buf, "Out of memory\n");
4310 }
4311 /* Push back cpu slabs */
4312 flush_all(s);
4313
4314 for_each_node_state(node, N_NORMAL_MEMORY) {
4315 struct kmem_cache_node *n = get_node(s, node);
4316 unsigned long flags;
4317 struct page *page;
4318
4319 if (!atomic_long_read(&n->nr_slabs))
4320 continue;
4321
4322 spin_lock_irqsave(&n->list_lock, flags);
4323 list_for_each_entry(page, &n->partial, lru)
4324 process_slab(&t, s, page, alloc, map);
4325 list_for_each_entry(page, &n->full, lru)
4326 process_slab(&t, s, page, alloc, map);
4327 spin_unlock_irqrestore(&n->list_lock, flags);
4328 }
4329
4330 for (i = 0; i < t.count; i++) {
4331 struct location *l = &t.loc[i];
4332
4333 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4334 break;
4335 len += sprintf(buf + len, "%7ld ", l->count);
4336
4337 if (l->addr)
4338 len += sprintf(buf + len, "%pS", (void *)l->addr);
4339 else
4340 len += sprintf(buf + len, "<not-available>");
4341
4342 if (l->sum_time != l->min_time) {
4343 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4344 l->min_time,
4345 (long)div_u64(l->sum_time, l->count),
4346 l->max_time);
4347 } else
4348 len += sprintf(buf + len, " age=%ld",
4349 l->min_time);
4350
4351 if (l->min_pid != l->max_pid)
4352 len += sprintf(buf + len, " pid=%ld-%ld",
4353 l->min_pid, l->max_pid);
4354 else
4355 len += sprintf(buf + len, " pid=%ld",
4356 l->min_pid);
4357
4358 if (num_online_cpus() > 1 &&
4359 !cpumask_empty(to_cpumask(l->cpus)) &&
4360 len < PAGE_SIZE - 60) {
4361 len += sprintf(buf + len, " cpus=");
4362 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4363 to_cpumask(l->cpus));
4364 }
4365
4366 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4367 len < PAGE_SIZE - 60) {
4368 len += sprintf(buf + len, " nodes=");
4369 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4370 l->nodes);
4371 }
4372
4373 len += sprintf(buf + len, "\n");
4374 }
4375
4376 free_loc_track(&t);
4377 kfree(map);
4378 if (!t.count)
4379 len += sprintf(buf, "No data\n");
4380 return len;
4381 }
4382 #endif
4383
4384 #ifdef SLUB_RESILIENCY_TEST
4385 static void resiliency_test(void)
4386 {
4387 u8 *p;
4388
4389 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4390
4391 printk(KERN_ERR "SLUB resiliency testing\n");
4392 printk(KERN_ERR "-----------------------\n");
4393 printk(KERN_ERR "A. Corruption after allocation\n");
4394
4395 p = kzalloc(16, GFP_KERNEL);
4396 p[16] = 0x12;
4397 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4398 " 0x12->0x%p\n\n", p + 16);
4399
4400 validate_slab_cache(kmalloc_caches[4]);
4401
4402 /* Hmmm... The next two are dangerous */
4403 p = kzalloc(32, GFP_KERNEL);
4404 p[32 + sizeof(void *)] = 0x34;
4405 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4406 " 0x34 -> -0x%p\n", p);
4407 printk(KERN_ERR
4408 "If allocated object is overwritten then not detectable\n\n");
4409
4410 validate_slab_cache(kmalloc_caches[5]);
4411 p = kzalloc(64, GFP_KERNEL);
4412 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4413 *p = 0x56;
4414 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4415 p);
4416 printk(KERN_ERR
4417 "If allocated object is overwritten then not detectable\n\n");
4418 validate_slab_cache(kmalloc_caches[6]);
4419
4420 printk(KERN_ERR "\nB. Corruption after free\n");
4421 p = kzalloc(128, GFP_KERNEL);
4422 kfree(p);
4423 *p = 0x78;
4424 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4425 validate_slab_cache(kmalloc_caches[7]);
4426
4427 p = kzalloc(256, GFP_KERNEL);
4428 kfree(p);
4429 p[50] = 0x9a;
4430 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4431 p);
4432 validate_slab_cache(kmalloc_caches[8]);
4433
4434 p = kzalloc(512, GFP_KERNEL);
4435 kfree(p);
4436 p[512] = 0xab;
4437 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4438 validate_slab_cache(kmalloc_caches[9]);
4439 }
4440 #else
4441 #ifdef CONFIG_SYSFS
4442 static void resiliency_test(void) {};
4443 #endif
4444 #endif
4445
4446 #ifdef CONFIG_SYSFS
4447 enum slab_stat_type {
4448 SL_ALL, /* All slabs */
4449 SL_PARTIAL, /* Only partially allocated slabs */
4450 SL_CPU, /* Only slabs used for cpu caches */
4451 SL_OBJECTS, /* Determine allocated objects not slabs */
4452 SL_TOTAL /* Determine object capacity not slabs */
4453 };
4454
4455 #define SO_ALL (1 << SL_ALL)
4456 #define SO_PARTIAL (1 << SL_PARTIAL)
4457 #define SO_CPU (1 << SL_CPU)
4458 #define SO_OBJECTS (1 << SL_OBJECTS)
4459 #define SO_TOTAL (1 << SL_TOTAL)
4460
4461 static ssize_t show_slab_objects(struct kmem_cache *s,
4462 char *buf, unsigned long flags)
4463 {
4464 unsigned long total = 0;
4465 int node;
4466 int x;
4467 unsigned long *nodes;
4468 unsigned long *per_cpu;
4469
4470 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4471 if (!nodes)
4472 return -ENOMEM;
4473 per_cpu = nodes + nr_node_ids;
4474
4475 if (flags & SO_CPU) {
4476 int cpu;
4477
4478 for_each_possible_cpu(cpu) {
4479 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4480 int node = ACCESS_ONCE(c->node);
4481 struct page *page;
4482
4483 if (node < 0)
4484 continue;
4485 page = ACCESS_ONCE(c->page);
4486 if (page) {
4487 if (flags & SO_TOTAL)
4488 x = page->objects;
4489 else if (flags & SO_OBJECTS)
4490 x = page->inuse;
4491 else
4492 x = 1;
4493
4494 total += x;
4495 nodes[node] += x;
4496 }
4497 page = c->partial;
4498
4499 if (page) {
4500 x = page->pobjects;
4501 total += x;
4502 nodes[node] += x;
4503 }
4504 per_cpu[node]++;
4505 }
4506 }
4507
4508 lock_memory_hotplug();
4509 #ifdef CONFIG_SLUB_DEBUG
4510 if (flags & SO_ALL) {
4511 for_each_node_state(node, N_NORMAL_MEMORY) {
4512 struct kmem_cache_node *n = get_node(s, node);
4513
4514 if (flags & SO_TOTAL)
4515 x = atomic_long_read(&n->total_objects);
4516 else if (flags & SO_OBJECTS)
4517 x = atomic_long_read(&n->total_objects) -
4518 count_partial(n, count_free);
4519
4520 else
4521 x = atomic_long_read(&n->nr_slabs);
4522 total += x;
4523 nodes[node] += x;
4524 }
4525
4526 } else
4527 #endif
4528 if (flags & SO_PARTIAL) {
4529 for_each_node_state(node, N_NORMAL_MEMORY) {
4530 struct kmem_cache_node *n = get_node(s, node);
4531
4532 if (flags & SO_TOTAL)
4533 x = count_partial(n, count_total);
4534 else if (flags & SO_OBJECTS)
4535 x = count_partial(n, count_inuse);
4536 else
4537 x = n->nr_partial;
4538 total += x;
4539 nodes[node] += x;
4540 }
4541 }
4542 x = sprintf(buf, "%lu", total);
4543 #ifdef CONFIG_NUMA
4544 for_each_node_state(node, N_NORMAL_MEMORY)
4545 if (nodes[node])
4546 x += sprintf(buf + x, " N%d=%lu",
4547 node, nodes[node]);
4548 #endif
4549 unlock_memory_hotplug();
4550 kfree(nodes);
4551 return x + sprintf(buf + x, "\n");
4552 }
4553
4554 #ifdef CONFIG_SLUB_DEBUG
4555 static int any_slab_objects(struct kmem_cache *s)
4556 {
4557 int node;
4558
4559 for_each_online_node(node) {
4560 struct kmem_cache_node *n = get_node(s, node);
4561
4562 if (!n)
4563 continue;
4564
4565 if (atomic_long_read(&n->total_objects))
4566 return 1;
4567 }
4568 return 0;
4569 }
4570 #endif
4571
4572 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4573 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4574
4575 struct slab_attribute {
4576 struct attribute attr;
4577 ssize_t (*show)(struct kmem_cache *s, char *buf);
4578 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4579 };
4580
4581 #define SLAB_ATTR_RO(_name) \
4582 static struct slab_attribute _name##_attr = \
4583 __ATTR(_name, 0400, _name##_show, NULL)
4584
4585 #define SLAB_ATTR(_name) \
4586 static struct slab_attribute _name##_attr = \
4587 __ATTR(_name, 0600, _name##_show, _name##_store)
4588
4589 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4590 {
4591 return sprintf(buf, "%d\n", s->size);
4592 }
4593 SLAB_ATTR_RO(slab_size);
4594
4595 static ssize_t align_show(struct kmem_cache *s, char *buf)
4596 {
4597 return sprintf(buf, "%d\n", s->align);
4598 }
4599 SLAB_ATTR_RO(align);
4600
4601 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4602 {
4603 return sprintf(buf, "%d\n", s->objsize);
4604 }
4605 SLAB_ATTR_RO(object_size);
4606
4607 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4608 {
4609 return sprintf(buf, "%d\n", oo_objects(s->oo));
4610 }
4611 SLAB_ATTR_RO(objs_per_slab);
4612
4613 static ssize_t order_store(struct kmem_cache *s,
4614 const char *buf, size_t length)
4615 {
4616 unsigned long order;
4617 int err;
4618
4619 err = strict_strtoul(buf, 10, &order);
4620 if (err)
4621 return err;
4622
4623 if (order > slub_max_order || order < slub_min_order)
4624 return -EINVAL;
4625
4626 calculate_sizes(s, order);
4627 return length;
4628 }
4629
4630 static ssize_t order_show(struct kmem_cache *s, char *buf)
4631 {
4632 return sprintf(buf, "%d\n", oo_order(s->oo));
4633 }
4634 SLAB_ATTR(order);
4635
4636 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4637 {
4638 return sprintf(buf, "%lu\n", s->min_partial);
4639 }
4640
4641 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4642 size_t length)
4643 {
4644 unsigned long min;
4645 int err;
4646
4647 err = strict_strtoul(buf, 10, &min);
4648 if (err)
4649 return err;
4650
4651 set_min_partial(s, min);
4652 return length;
4653 }
4654 SLAB_ATTR(min_partial);
4655
4656 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4657 {
4658 return sprintf(buf, "%u\n", s->cpu_partial);
4659 }
4660
4661 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4663 {
4664 unsigned long objects;
4665 int err;
4666
4667 err = strict_strtoul(buf, 10, &objects);
4668 if (err)
4669 return err;
4670 if (objects && kmem_cache_debug(s))
4671 return -EINVAL;
4672
4673 s->cpu_partial = objects;
4674 flush_all(s);
4675 return length;
4676 }
4677 SLAB_ATTR(cpu_partial);
4678
4679 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4680 {
4681 if (!s->ctor)
4682 return 0;
4683 return sprintf(buf, "%pS\n", s->ctor);
4684 }
4685 SLAB_ATTR_RO(ctor);
4686
4687 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4688 {
4689 return sprintf(buf, "%d\n", s->refcount - 1);
4690 }
4691 SLAB_ATTR_RO(aliases);
4692
4693 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4694 {
4695 return show_slab_objects(s, buf, SO_PARTIAL);
4696 }
4697 SLAB_ATTR_RO(partial);
4698
4699 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4700 {
4701 return show_slab_objects(s, buf, SO_CPU);
4702 }
4703 SLAB_ATTR_RO(cpu_slabs);
4704
4705 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4706 {
4707 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4708 }
4709 SLAB_ATTR_RO(objects);
4710
4711 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4712 {
4713 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4714 }
4715 SLAB_ATTR_RO(objects_partial);
4716
4717 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4718 {
4719 int objects = 0;
4720 int pages = 0;
4721 int cpu;
4722 int len;
4723
4724 for_each_online_cpu(cpu) {
4725 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4726
4727 if (page) {
4728 pages += page->pages;
4729 objects += page->pobjects;
4730 }
4731 }
4732
4733 len = sprintf(buf, "%d(%d)", objects, pages);
4734
4735 #ifdef CONFIG_SMP
4736 for_each_online_cpu(cpu) {
4737 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4738
4739 if (page && len < PAGE_SIZE - 20)
4740 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4741 page->pobjects, page->pages);
4742 }
4743 #endif
4744 return len + sprintf(buf + len, "\n");
4745 }
4746 SLAB_ATTR_RO(slabs_cpu_partial);
4747
4748 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4749 {
4750 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4751 }
4752
4753 static ssize_t reclaim_account_store(struct kmem_cache *s,
4754 const char *buf, size_t length)
4755 {
4756 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4757 if (buf[0] == '1')
4758 s->flags |= SLAB_RECLAIM_ACCOUNT;
4759 return length;
4760 }
4761 SLAB_ATTR(reclaim_account);
4762
4763 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4764 {
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4766 }
4767 SLAB_ATTR_RO(hwcache_align);
4768
4769 #ifdef CONFIG_ZONE_DMA
4770 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4771 {
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4773 }
4774 SLAB_ATTR_RO(cache_dma);
4775 #endif
4776
4777 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4778 {
4779 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4780 }
4781 SLAB_ATTR_RO(destroy_by_rcu);
4782
4783 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4784 {
4785 return sprintf(buf, "%d\n", s->reserved);
4786 }
4787 SLAB_ATTR_RO(reserved);
4788
4789 #ifdef CONFIG_SLUB_DEBUG
4790 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4791 {
4792 return show_slab_objects(s, buf, SO_ALL);
4793 }
4794 SLAB_ATTR_RO(slabs);
4795
4796 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4797 {
4798 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4799 }
4800 SLAB_ATTR_RO(total_objects);
4801
4802 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4803 {
4804 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4805 }
4806
4807 static ssize_t sanity_checks_store(struct kmem_cache *s,
4808 const char *buf, size_t length)
4809 {
4810 s->flags &= ~SLAB_DEBUG_FREE;
4811 if (buf[0] == '1') {
4812 s->flags &= ~__CMPXCHG_DOUBLE;
4813 s->flags |= SLAB_DEBUG_FREE;
4814 }
4815 return length;
4816 }
4817 SLAB_ATTR(sanity_checks);
4818
4819 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4820 {
4821 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4822 }
4823
4824 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4825 size_t length)
4826 {
4827 s->flags &= ~SLAB_TRACE;
4828 if (buf[0] == '1') {
4829 s->flags &= ~__CMPXCHG_DOUBLE;
4830 s->flags |= SLAB_TRACE;
4831 }
4832 return length;
4833 }
4834 SLAB_ATTR(trace);
4835
4836 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4837 {
4838 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4839 }
4840
4841 static ssize_t red_zone_store(struct kmem_cache *s,
4842 const char *buf, size_t length)
4843 {
4844 if (any_slab_objects(s))
4845 return -EBUSY;
4846
4847 s->flags &= ~SLAB_RED_ZONE;
4848 if (buf[0] == '1') {
4849 s->flags &= ~__CMPXCHG_DOUBLE;
4850 s->flags |= SLAB_RED_ZONE;
4851 }
4852 calculate_sizes(s, -1);
4853 return length;
4854 }
4855 SLAB_ATTR(red_zone);
4856
4857 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4858 {
4859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4860 }
4861
4862 static ssize_t poison_store(struct kmem_cache *s,
4863 const char *buf, size_t length)
4864 {
4865 if (any_slab_objects(s))
4866 return -EBUSY;
4867
4868 s->flags &= ~SLAB_POISON;
4869 if (buf[0] == '1') {
4870 s->flags &= ~__CMPXCHG_DOUBLE;
4871 s->flags |= SLAB_POISON;
4872 }
4873 calculate_sizes(s, -1);
4874 return length;
4875 }
4876 SLAB_ATTR(poison);
4877
4878 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4879 {
4880 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4881 }
4882
4883 static ssize_t store_user_store(struct kmem_cache *s,
4884 const char *buf, size_t length)
4885 {
4886 if (any_slab_objects(s))
4887 return -EBUSY;
4888
4889 s->flags &= ~SLAB_STORE_USER;
4890 if (buf[0] == '1') {
4891 s->flags &= ~__CMPXCHG_DOUBLE;
4892 s->flags |= SLAB_STORE_USER;
4893 }
4894 calculate_sizes(s, -1);
4895 return length;
4896 }
4897 SLAB_ATTR(store_user);
4898
4899 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4900 {
4901 return 0;
4902 }
4903
4904 static ssize_t validate_store(struct kmem_cache *s,
4905 const char *buf, size_t length)
4906 {
4907 int ret = -EINVAL;
4908
4909 if (buf[0] == '1') {
4910 ret = validate_slab_cache(s);
4911 if (ret >= 0)
4912 ret = length;
4913 }
4914 return ret;
4915 }
4916 SLAB_ATTR(validate);
4917
4918 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4919 {
4920 if (!(s->flags & SLAB_STORE_USER))
4921 return -ENOSYS;
4922 return list_locations(s, buf, TRACK_ALLOC);
4923 }
4924 SLAB_ATTR_RO(alloc_calls);
4925
4926 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4927 {
4928 if (!(s->flags & SLAB_STORE_USER))
4929 return -ENOSYS;
4930 return list_locations(s, buf, TRACK_FREE);
4931 }
4932 SLAB_ATTR_RO(free_calls);
4933 #endif /* CONFIG_SLUB_DEBUG */
4934
4935 #ifdef CONFIG_FAILSLAB
4936 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4937 {
4938 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4939 }
4940
4941 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4942 size_t length)
4943 {
4944 s->flags &= ~SLAB_FAILSLAB;
4945 if (buf[0] == '1')
4946 s->flags |= SLAB_FAILSLAB;
4947 return length;
4948 }
4949 SLAB_ATTR(failslab);
4950 #endif
4951
4952 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4953 {
4954 return 0;
4955 }
4956
4957 static ssize_t shrink_store(struct kmem_cache *s,
4958 const char *buf, size_t length)
4959 {
4960 if (buf[0] == '1') {
4961 int rc = kmem_cache_shrink(s);
4962
4963 if (rc)
4964 return rc;
4965 } else
4966 return -EINVAL;
4967 return length;
4968 }
4969 SLAB_ATTR(shrink);
4970
4971 #ifdef CONFIG_NUMA
4972 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4973 {
4974 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4975 }
4976
4977 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4978 const char *buf, size_t length)
4979 {
4980 unsigned long ratio;
4981 int err;
4982
4983 err = strict_strtoul(buf, 10, &ratio);
4984 if (err)
4985 return err;
4986
4987 if (ratio <= 100)
4988 s->remote_node_defrag_ratio = ratio * 10;
4989
4990 return length;
4991 }
4992 SLAB_ATTR(remote_node_defrag_ratio);
4993 #endif
4994
4995 #ifdef CONFIG_SLUB_STATS
4996 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4997 {
4998 unsigned long sum = 0;
4999 int cpu;
5000 int len;
5001 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5002
5003 if (!data)
5004 return -ENOMEM;
5005
5006 for_each_online_cpu(cpu) {
5007 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5008
5009 data[cpu] = x;
5010 sum += x;
5011 }
5012
5013 len = sprintf(buf, "%lu", sum);
5014
5015 #ifdef CONFIG_SMP
5016 for_each_online_cpu(cpu) {
5017 if (data[cpu] && len < PAGE_SIZE - 20)
5018 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5019 }
5020 #endif
5021 kfree(data);
5022 return len + sprintf(buf + len, "\n");
5023 }
5024
5025 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5026 {
5027 int cpu;
5028
5029 for_each_online_cpu(cpu)
5030 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5031 }
5032
5033 #define STAT_ATTR(si, text) \
5034 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5035 { \
5036 return show_stat(s, buf, si); \
5037 } \
5038 static ssize_t text##_store(struct kmem_cache *s, \
5039 const char *buf, size_t length) \
5040 { \
5041 if (buf[0] != '0') \
5042 return -EINVAL; \
5043 clear_stat(s, si); \
5044 return length; \
5045 } \
5046 SLAB_ATTR(text); \
5047
5048 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5049 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5050 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5051 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5052 STAT_ATTR(FREE_FROZEN, free_frozen);
5053 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5054 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5055 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5056 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5057 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5058 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5059 STAT_ATTR(FREE_SLAB, free_slab);
5060 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5061 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5062 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5063 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5064 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5065 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5066 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5067 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5068 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5069 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5070 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5071 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5072 #endif
5073
5074 static struct attribute *slab_attrs[] = {
5075 &slab_size_attr.attr,
5076 &object_size_attr.attr,
5077 &objs_per_slab_attr.attr,
5078 &order_attr.attr,
5079 &min_partial_attr.attr,
5080 &cpu_partial_attr.attr,
5081 &objects_attr.attr,
5082 &objects_partial_attr.attr,
5083 &partial_attr.attr,
5084 &cpu_slabs_attr.attr,
5085 &ctor_attr.attr,
5086 &aliases_attr.attr,
5087 &align_attr.attr,
5088 &hwcache_align_attr.attr,
5089 &reclaim_account_attr.attr,
5090 &destroy_by_rcu_attr.attr,
5091 &shrink_attr.attr,
5092 &reserved_attr.attr,
5093 &slabs_cpu_partial_attr.attr,
5094 #ifdef CONFIG_SLUB_DEBUG
5095 &total_objects_attr.attr,
5096 &slabs_attr.attr,
5097 &sanity_checks_attr.attr,
5098 &trace_attr.attr,
5099 &red_zone_attr.attr,
5100 &poison_attr.attr,
5101 &store_user_attr.attr,
5102 &validate_attr.attr,
5103 &alloc_calls_attr.attr,
5104 &free_calls_attr.attr,
5105 #endif
5106 #ifdef CONFIG_ZONE_DMA
5107 &cache_dma_attr.attr,
5108 #endif
5109 #ifdef CONFIG_NUMA
5110 &remote_node_defrag_ratio_attr.attr,
5111 #endif
5112 #ifdef CONFIG_SLUB_STATS
5113 &alloc_fastpath_attr.attr,
5114 &alloc_slowpath_attr.attr,
5115 &free_fastpath_attr.attr,
5116 &free_slowpath_attr.attr,
5117 &free_frozen_attr.attr,
5118 &free_add_partial_attr.attr,
5119 &free_remove_partial_attr.attr,
5120 &alloc_from_partial_attr.attr,
5121 &alloc_slab_attr.attr,
5122 &alloc_refill_attr.attr,
5123 &alloc_node_mismatch_attr.attr,
5124 &free_slab_attr.attr,
5125 &cpuslab_flush_attr.attr,
5126 &deactivate_full_attr.attr,
5127 &deactivate_empty_attr.attr,
5128 &deactivate_to_head_attr.attr,
5129 &deactivate_to_tail_attr.attr,
5130 &deactivate_remote_frees_attr.attr,
5131 &deactivate_bypass_attr.attr,
5132 &order_fallback_attr.attr,
5133 &cmpxchg_double_fail_attr.attr,
5134 &cmpxchg_double_cpu_fail_attr.attr,
5135 &cpu_partial_alloc_attr.attr,
5136 &cpu_partial_free_attr.attr,
5137 #endif
5138 #ifdef CONFIG_FAILSLAB
5139 &failslab_attr.attr,
5140 #endif
5141
5142 NULL
5143 };
5144
5145 static struct attribute_group slab_attr_group = {
5146 .attrs = slab_attrs,
5147 };
5148
5149 static ssize_t slab_attr_show(struct kobject *kobj,
5150 struct attribute *attr,
5151 char *buf)
5152 {
5153 struct slab_attribute *attribute;
5154 struct kmem_cache *s;
5155 int err;
5156
5157 attribute = to_slab_attr(attr);
5158 s = to_slab(kobj);
5159
5160 if (!attribute->show)
5161 return -EIO;
5162
5163 err = attribute->show(s, buf);
5164
5165 return err;
5166 }
5167
5168 static ssize_t slab_attr_store(struct kobject *kobj,
5169 struct attribute *attr,
5170 const char *buf, size_t len)
5171 {
5172 struct slab_attribute *attribute;
5173 struct kmem_cache *s;
5174 int err;
5175
5176 attribute = to_slab_attr(attr);
5177 s = to_slab(kobj);
5178
5179 if (!attribute->store)
5180 return -EIO;
5181
5182 err = attribute->store(s, buf, len);
5183
5184 return err;
5185 }
5186
5187 static void kmem_cache_release(struct kobject *kobj)
5188 {
5189 struct kmem_cache *s = to_slab(kobj);
5190
5191 kfree(s->name);
5192 kfree(s);
5193 }
5194
5195 static const struct sysfs_ops slab_sysfs_ops = {
5196 .show = slab_attr_show,
5197 .store = slab_attr_store,
5198 };
5199
5200 static struct kobj_type slab_ktype = {
5201 .sysfs_ops = &slab_sysfs_ops,
5202 .release = kmem_cache_release
5203 };
5204
5205 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5206 {
5207 struct kobj_type *ktype = get_ktype(kobj);
5208
5209 if (ktype == &slab_ktype)
5210 return 1;
5211 return 0;
5212 }
5213
5214 static const struct kset_uevent_ops slab_uevent_ops = {
5215 .filter = uevent_filter,
5216 };
5217
5218 static struct kset *slab_kset;
5219
5220 #define ID_STR_LENGTH 64
5221
5222 /* Create a unique string id for a slab cache:
5223 *
5224 * Format :[flags-]size
5225 */
5226 static char *create_unique_id(struct kmem_cache *s)
5227 {
5228 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5229 char *p = name;
5230
5231 BUG_ON(!name);
5232
5233 *p++ = ':';
5234 /*
5235 * First flags affecting slabcache operations. We will only
5236 * get here for aliasable slabs so we do not need to support
5237 * too many flags. The flags here must cover all flags that
5238 * are matched during merging to guarantee that the id is
5239 * unique.
5240 */
5241 if (s->flags & SLAB_CACHE_DMA)
5242 *p++ = 'd';
5243 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5244 *p++ = 'a';
5245 if (s->flags & SLAB_DEBUG_FREE)
5246 *p++ = 'F';
5247 if (!(s->flags & SLAB_NOTRACK))
5248 *p++ = 't';
5249 if (p != name + 1)
5250 *p++ = '-';
5251 p += sprintf(p, "%07d", s->size);
5252 BUG_ON(p > name + ID_STR_LENGTH - 1);
5253 return name;
5254 }
5255
5256 static int sysfs_slab_add(struct kmem_cache *s)
5257 {
5258 int err;
5259 const char *name;
5260 int unmergeable;
5261
5262 if (slab_state < SYSFS)
5263 /* Defer until later */
5264 return 0;
5265
5266 unmergeable = slab_unmergeable(s);
5267 if (unmergeable) {
5268 /*
5269 * Slabcache can never be merged so we can use the name proper.
5270 * This is typically the case for debug situations. In that
5271 * case we can catch duplicate names easily.
5272 */
5273 sysfs_remove_link(&slab_kset->kobj, s->name);
5274 name = s->name;
5275 } else {
5276 /*
5277 * Create a unique name for the slab as a target
5278 * for the symlinks.
5279 */
5280 name = create_unique_id(s);
5281 }
5282
5283 s->kobj.kset = slab_kset;
5284 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5285 if (err) {
5286 kobject_put(&s->kobj);
5287 return err;
5288 }
5289
5290 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5291 if (err) {
5292 kobject_del(&s->kobj);
5293 kobject_put(&s->kobj);
5294 return err;
5295 }
5296 kobject_uevent(&s->kobj, KOBJ_ADD);
5297 if (!unmergeable) {
5298 /* Setup first alias */
5299 sysfs_slab_alias(s, s->name);
5300 kfree(name);
5301 }
5302 return 0;
5303 }
5304
5305 static void sysfs_slab_remove(struct kmem_cache *s)
5306 {
5307 if (slab_state < SYSFS)
5308 /*
5309 * Sysfs has not been setup yet so no need to remove the
5310 * cache from sysfs.
5311 */
5312 return;
5313
5314 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5315 kobject_del(&s->kobj);
5316 kobject_put(&s->kobj);
5317 }
5318
5319 /*
5320 * Need to buffer aliases during bootup until sysfs becomes
5321 * available lest we lose that information.
5322 */
5323 struct saved_alias {
5324 struct kmem_cache *s;
5325 const char *name;
5326 struct saved_alias *next;
5327 };
5328
5329 static struct saved_alias *alias_list;
5330
5331 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5332 {
5333 struct saved_alias *al;
5334
5335 if (slab_state == SYSFS) {
5336 /*
5337 * If we have a leftover link then remove it.
5338 */
5339 sysfs_remove_link(&slab_kset->kobj, name);
5340 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5341 }
5342
5343 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5344 if (!al)
5345 return -ENOMEM;
5346
5347 al->s = s;
5348 al->name = name;
5349 al->next = alias_list;
5350 alias_list = al;
5351 return 0;
5352 }
5353
5354 static int __init slab_sysfs_init(void)
5355 {
5356 struct kmem_cache *s;
5357 int err;
5358
5359 down_write(&slub_lock);
5360
5361 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5362 if (!slab_kset) {
5363 up_write(&slub_lock);
5364 printk(KERN_ERR "Cannot register slab subsystem.\n");
5365 return -ENOSYS;
5366 }
5367
5368 slab_state = SYSFS;
5369
5370 list_for_each_entry(s, &slab_caches, list) {
5371 err = sysfs_slab_add(s);
5372 if (err)
5373 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5374 " to sysfs\n", s->name);
5375 }
5376
5377 while (alias_list) {
5378 struct saved_alias *al = alias_list;
5379
5380 alias_list = alias_list->next;
5381 err = sysfs_slab_alias(al->s, al->name);
5382 if (err)
5383 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5384 " %s to sysfs\n", s->name);
5385 kfree(al);
5386 }
5387
5388 up_write(&slub_lock);
5389 resiliency_test();
5390 return 0;
5391 }
5392
5393 __initcall(slab_sysfs_init);
5394 #endif /* CONFIG_SYSFS */
5395
5396 /*
5397 * The /proc/slabinfo ABI
5398 */
5399 #ifdef CONFIG_SLABINFO
5400 static void print_slabinfo_header(struct seq_file *m)
5401 {
5402 seq_puts(m, "slabinfo - version: 2.1\n");
5403 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5404 "<objperslab> <pagesperslab>");
5405 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5406 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5407 seq_putc(m, '\n');
5408 }
5409
5410 static void *s_start(struct seq_file *m, loff_t *pos)
5411 {
5412 loff_t n = *pos;
5413
5414 down_read(&slub_lock);
5415 if (!n)
5416 print_slabinfo_header(m);
5417
5418 return seq_list_start(&slab_caches, *pos);
5419 }
5420
5421 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5422 {
5423 return seq_list_next(p, &slab_caches, pos);
5424 }
5425
5426 static void s_stop(struct seq_file *m, void *p)
5427 {
5428 up_read(&slub_lock);
5429 }
5430
5431 static int s_show(struct seq_file *m, void *p)
5432 {
5433 unsigned long nr_partials = 0;
5434 unsigned long nr_slabs = 0;
5435 unsigned long nr_inuse = 0;
5436 unsigned long nr_objs = 0;
5437 unsigned long nr_free = 0;
5438 struct kmem_cache *s;
5439 int node;
5440
5441 s = list_entry(p, struct kmem_cache, list);
5442
5443 for_each_online_node(node) {
5444 struct kmem_cache_node *n = get_node(s, node);
5445
5446 if (!n)
5447 continue;
5448
5449 nr_partials += n->nr_partial;
5450 nr_slabs += atomic_long_read(&n->nr_slabs);
5451 nr_objs += atomic_long_read(&n->total_objects);
5452 nr_free += count_partial(n, count_free);
5453 }
5454
5455 nr_inuse = nr_objs - nr_free;
5456
5457 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5458 nr_objs, s->size, oo_objects(s->oo),
5459 (1 << oo_order(s->oo)));
5460 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5461 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5462 0UL);
5463 seq_putc(m, '\n');
5464 return 0;
5465 }
5466
5467 static const struct seq_operations slabinfo_op = {
5468 .start = s_start,
5469 .next = s_next,
5470 .stop = s_stop,
5471 .show = s_show,
5472 };
5473
5474 static int slabinfo_open(struct inode *inode, struct file *file)
5475 {
5476 return seq_open(file, &slabinfo_op);
5477 }
5478
5479 static const struct file_operations proc_slabinfo_operations = {
5480 .open = slabinfo_open,
5481 .read = seq_read,
5482 .llseek = seq_lseek,
5483 .release = seq_release,
5484 };
5485
5486 static int __init slab_proc_init(void)
5487 {
5488 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5489 return 0;
5490 }
5491 module_init(slab_proc_init);
5492 #endif /* CONFIG_SLABINFO */
This page took 0.188721 seconds and 5 git commands to generate.