slub: Use the objsize from the kmem_cache_cpu structure
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24
25 /*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
101 */
102
103 #define FROZEN (1 << PG_active)
104
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110
111 static inline int SlabFrozen(struct page *page)
112 {
113 return page->flags & FROZEN;
114 }
115
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 page->flags |= FROZEN;
119 }
120
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 page->flags &= ~FROZEN;
124 }
125
126 static inline int SlabDebug(struct page *page)
127 {
128 return page->flags & SLABDEBUG;
129 }
130
131 static inline void SetSlabDebug(struct page *page)
132 {
133 page->flags |= SLABDEBUG;
134 }
135
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 page->flags &= ~SLABDEBUG;
139 }
140
141 /*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151
152 #if PAGE_SHIFT <= 12
153
154 /*
155 * Small page size. Make sure that we do not fragment memory
156 */
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
159
160 #else
161
162 /*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
168
169 #endif
170
171 /*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
175 #define MIN_PARTIAL 5
176
177 /*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182 #define MAX_PARTIAL 10
183
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
186
187 /*
188 * Set of flags that will prevent slab merging
189 */
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
199
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
203
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
209
210 /* Not all arches define cache_line_size */
211 #ifndef cache_line_size
212 #define cache_line_size() L1_CACHE_BYTES
213 #endif
214
215 static int kmem_size = sizeof(struct kmem_cache);
216
217 #ifdef CONFIG_SMP
218 static struct notifier_block slab_notifier;
219 #endif
220
221 static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
224 UP, /* Everything works but does not show up in sysfs */
225 SYSFS /* Sysfs up */
226 } slab_state = DOWN;
227
228 /* A list of all slab caches on the system */
229 static DECLARE_RWSEM(slub_lock);
230 static LIST_HEAD(slab_caches);
231
232 /*
233 * Tracking user of a slab.
234 */
235 struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240 };
241
242 enum track_item { TRACK_ALLOC, TRACK_FREE };
243
244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
245 static int sysfs_slab_add(struct kmem_cache *);
246 static int sysfs_slab_alias(struct kmem_cache *, const char *);
247 static void sysfs_slab_remove(struct kmem_cache *);
248
249 #else
250 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
253 static inline void sysfs_slab_remove(struct kmem_cache *s)
254 {
255 kfree(s);
256 }
257
258 #endif
259
260 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261 {
262 #ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264 #endif
265 }
266
267 /********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271 int slab_is_available(void)
272 {
273 return slab_state >= UP;
274 }
275
276 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277 {
278 #ifdef CONFIG_NUMA
279 return s->node[node];
280 #else
281 return &s->local_node;
282 #endif
283 }
284
285 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286 {
287 #ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289 #else
290 return &s->cpu_slab;
291 #endif
292 }
293
294 static inline int check_valid_pointer(struct kmem_cache *s,
295 struct page *page, const void *object)
296 {
297 void *base;
298
299 if (!object)
300 return 1;
301
302 base = page_address(page);
303 if (object < base || object >= base + s->objects * s->size ||
304 (object - base) % s->size) {
305 return 0;
306 }
307
308 return 1;
309 }
310
311 /*
312 * Slow version of get and set free pointer.
313 *
314 * This version requires touching the cache lines of kmem_cache which
315 * we avoid to do in the fast alloc free paths. There we obtain the offset
316 * from the page struct.
317 */
318 static inline void *get_freepointer(struct kmem_cache *s, void *object)
319 {
320 return *(void **)(object + s->offset);
321 }
322
323 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
324 {
325 *(void **)(object + s->offset) = fp;
326 }
327
328 /* Loop over all objects in a slab */
329 #define for_each_object(__p, __s, __addr) \
330 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
331 __p += (__s)->size)
332
333 /* Scan freelist */
334 #define for_each_free_object(__p, __s, __free) \
335 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
336
337 /* Determine object index from a given position */
338 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
339 {
340 return (p - addr) / s->size;
341 }
342
343 #ifdef CONFIG_SLUB_DEBUG
344 /*
345 * Debug settings:
346 */
347 #ifdef CONFIG_SLUB_DEBUG_ON
348 static int slub_debug = DEBUG_DEFAULT_FLAGS;
349 #else
350 static int slub_debug;
351 #endif
352
353 static char *slub_debug_slabs;
354
355 /*
356 * Object debugging
357 */
358 static void print_section(char *text, u8 *addr, unsigned int length)
359 {
360 int i, offset;
361 int newline = 1;
362 char ascii[17];
363
364 ascii[16] = 0;
365
366 for (i = 0; i < length; i++) {
367 if (newline) {
368 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
369 newline = 0;
370 }
371 printk(KERN_CONT " %02x", addr[i]);
372 offset = i % 16;
373 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
374 if (offset == 15) {
375 printk(KERN_CONT " %s\n", ascii);
376 newline = 1;
377 }
378 }
379 if (!newline) {
380 i %= 16;
381 while (i < 16) {
382 printk(KERN_CONT " ");
383 ascii[i] = ' ';
384 i++;
385 }
386 printk(KERN_CONT " %s\n", ascii);
387 }
388 }
389
390 static struct track *get_track(struct kmem_cache *s, void *object,
391 enum track_item alloc)
392 {
393 struct track *p;
394
395 if (s->offset)
396 p = object + s->offset + sizeof(void *);
397 else
398 p = object + s->inuse;
399
400 return p + alloc;
401 }
402
403 static void set_track(struct kmem_cache *s, void *object,
404 enum track_item alloc, void *addr)
405 {
406 struct track *p;
407
408 if (s->offset)
409 p = object + s->offset + sizeof(void *);
410 else
411 p = object + s->inuse;
412
413 p += alloc;
414 if (addr) {
415 p->addr = addr;
416 p->cpu = smp_processor_id();
417 p->pid = current ? current->pid : -1;
418 p->when = jiffies;
419 } else
420 memset(p, 0, sizeof(struct track));
421 }
422
423 static void init_tracking(struct kmem_cache *s, void *object)
424 {
425 if (!(s->flags & SLAB_STORE_USER))
426 return;
427
428 set_track(s, object, TRACK_FREE, NULL);
429 set_track(s, object, TRACK_ALLOC, NULL);
430 }
431
432 static void print_track(const char *s, struct track *t)
433 {
434 if (!t->addr)
435 return;
436
437 printk(KERN_ERR "INFO: %s in ", s);
438 __print_symbol("%s", (unsigned long)t->addr);
439 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
440 }
441
442 static void print_tracking(struct kmem_cache *s, void *object)
443 {
444 if (!(s->flags & SLAB_STORE_USER))
445 return;
446
447 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
448 print_track("Freed", get_track(s, object, TRACK_FREE));
449 }
450
451 static void print_page_info(struct page *page)
452 {
453 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
454 page, page->inuse, page->freelist, page->flags);
455
456 }
457
458 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
459 {
460 va_list args;
461 char buf[100];
462
463 va_start(args, fmt);
464 vsnprintf(buf, sizeof(buf), fmt, args);
465 va_end(args);
466 printk(KERN_ERR "========================================"
467 "=====================================\n");
468 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
469 printk(KERN_ERR "----------------------------------------"
470 "-------------------------------------\n\n");
471 }
472
473 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
474 {
475 va_list args;
476 char buf[100];
477
478 va_start(args, fmt);
479 vsnprintf(buf, sizeof(buf), fmt, args);
480 va_end(args);
481 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
482 }
483
484 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
485 {
486 unsigned int off; /* Offset of last byte */
487 u8 *addr = page_address(page);
488
489 print_tracking(s, p);
490
491 print_page_info(page);
492
493 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
494 p, p - addr, get_freepointer(s, p));
495
496 if (p > addr + 16)
497 print_section("Bytes b4", p - 16, 16);
498
499 print_section("Object", p, min(s->objsize, 128));
500
501 if (s->flags & SLAB_RED_ZONE)
502 print_section("Redzone", p + s->objsize,
503 s->inuse - s->objsize);
504
505 if (s->offset)
506 off = s->offset + sizeof(void *);
507 else
508 off = s->inuse;
509
510 if (s->flags & SLAB_STORE_USER)
511 off += 2 * sizeof(struct track);
512
513 if (off != s->size)
514 /* Beginning of the filler is the free pointer */
515 print_section("Padding", p + off, s->size - off);
516
517 dump_stack();
518 }
519
520 static void object_err(struct kmem_cache *s, struct page *page,
521 u8 *object, char *reason)
522 {
523 slab_bug(s, reason);
524 print_trailer(s, page, object);
525 }
526
527 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
528 {
529 va_list args;
530 char buf[100];
531
532 va_start(args, fmt);
533 vsnprintf(buf, sizeof(buf), fmt, args);
534 va_end(args);
535 slab_bug(s, fmt);
536 print_page_info(page);
537 dump_stack();
538 }
539
540 static void init_object(struct kmem_cache *s, void *object, int active)
541 {
542 u8 *p = object;
543
544 if (s->flags & __OBJECT_POISON) {
545 memset(p, POISON_FREE, s->objsize - 1);
546 p[s->objsize - 1] = POISON_END;
547 }
548
549 if (s->flags & SLAB_RED_ZONE)
550 memset(p + s->objsize,
551 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
552 s->inuse - s->objsize);
553 }
554
555 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
556 {
557 while (bytes) {
558 if (*start != (u8)value)
559 return start;
560 start++;
561 bytes--;
562 }
563 return NULL;
564 }
565
566 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
567 void *from, void *to)
568 {
569 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
570 memset(from, data, to - from);
571 }
572
573 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
574 u8 *object, char *what,
575 u8 *start, unsigned int value, unsigned int bytes)
576 {
577 u8 *fault;
578 u8 *end;
579
580 fault = check_bytes(start, value, bytes);
581 if (!fault)
582 return 1;
583
584 end = start + bytes;
585 while (end > fault && end[-1] == value)
586 end--;
587
588 slab_bug(s, "%s overwritten", what);
589 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
590 fault, end - 1, fault[0], value);
591 print_trailer(s, page, object);
592
593 restore_bytes(s, what, value, fault, end);
594 return 0;
595 }
596
597 /*
598 * Object layout:
599 *
600 * object address
601 * Bytes of the object to be managed.
602 * If the freepointer may overlay the object then the free
603 * pointer is the first word of the object.
604 *
605 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
606 * 0xa5 (POISON_END)
607 *
608 * object + s->objsize
609 * Padding to reach word boundary. This is also used for Redzoning.
610 * Padding is extended by another word if Redzoning is enabled and
611 * objsize == inuse.
612 *
613 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
614 * 0xcc (RED_ACTIVE) for objects in use.
615 *
616 * object + s->inuse
617 * Meta data starts here.
618 *
619 * A. Free pointer (if we cannot overwrite object on free)
620 * B. Tracking data for SLAB_STORE_USER
621 * C. Padding to reach required alignment boundary or at mininum
622 * one word if debuggin is on to be able to detect writes
623 * before the word boundary.
624 *
625 * Padding is done using 0x5a (POISON_INUSE)
626 *
627 * object + s->size
628 * Nothing is used beyond s->size.
629 *
630 * If slabcaches are merged then the objsize and inuse boundaries are mostly
631 * ignored. And therefore no slab options that rely on these boundaries
632 * may be used with merged slabcaches.
633 */
634
635 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
636 {
637 unsigned long off = s->inuse; /* The end of info */
638
639 if (s->offset)
640 /* Freepointer is placed after the object. */
641 off += sizeof(void *);
642
643 if (s->flags & SLAB_STORE_USER)
644 /* We also have user information there */
645 off += 2 * sizeof(struct track);
646
647 if (s->size == off)
648 return 1;
649
650 return check_bytes_and_report(s, page, p, "Object padding",
651 p + off, POISON_INUSE, s->size - off);
652 }
653
654 static int slab_pad_check(struct kmem_cache *s, struct page *page)
655 {
656 u8 *start;
657 u8 *fault;
658 u8 *end;
659 int length;
660 int remainder;
661
662 if (!(s->flags & SLAB_POISON))
663 return 1;
664
665 start = page_address(page);
666 end = start + (PAGE_SIZE << s->order);
667 length = s->objects * s->size;
668 remainder = end - (start + length);
669 if (!remainder)
670 return 1;
671
672 fault = check_bytes(start + length, POISON_INUSE, remainder);
673 if (!fault)
674 return 1;
675 while (end > fault && end[-1] == POISON_INUSE)
676 end--;
677
678 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
679 print_section("Padding", start, length);
680
681 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
682 return 0;
683 }
684
685 static int check_object(struct kmem_cache *s, struct page *page,
686 void *object, int active)
687 {
688 u8 *p = object;
689 u8 *endobject = object + s->objsize;
690
691 if (s->flags & SLAB_RED_ZONE) {
692 unsigned int red =
693 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
694
695 if (!check_bytes_and_report(s, page, object, "Redzone",
696 endobject, red, s->inuse - s->objsize))
697 return 0;
698 } else {
699 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
700 check_bytes_and_report(s, page, p, "Alignment padding",
701 endobject, POISON_INUSE, s->inuse - s->objsize);
702 }
703 }
704
705 if (s->flags & SLAB_POISON) {
706 if (!active && (s->flags & __OBJECT_POISON) &&
707 (!check_bytes_and_report(s, page, p, "Poison", p,
708 POISON_FREE, s->objsize - 1) ||
709 !check_bytes_and_report(s, page, p, "Poison",
710 p + s->objsize - 1, POISON_END, 1)))
711 return 0;
712 /*
713 * check_pad_bytes cleans up on its own.
714 */
715 check_pad_bytes(s, page, p);
716 }
717
718 if (!s->offset && active)
719 /*
720 * Object and freepointer overlap. Cannot check
721 * freepointer while object is allocated.
722 */
723 return 1;
724
725 /* Check free pointer validity */
726 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
727 object_err(s, page, p, "Freepointer corrupt");
728 /*
729 * No choice but to zap it and thus loose the remainder
730 * of the free objects in this slab. May cause
731 * another error because the object count is now wrong.
732 */
733 set_freepointer(s, p, NULL);
734 return 0;
735 }
736 return 1;
737 }
738
739 static int check_slab(struct kmem_cache *s, struct page *page)
740 {
741 VM_BUG_ON(!irqs_disabled());
742
743 if (!PageSlab(page)) {
744 slab_err(s, page, "Not a valid slab page");
745 return 0;
746 }
747 if (page->inuse > s->objects) {
748 slab_err(s, page, "inuse %u > max %u",
749 s->name, page->inuse, s->objects);
750 return 0;
751 }
752 /* Slab_pad_check fixes things up after itself */
753 slab_pad_check(s, page);
754 return 1;
755 }
756
757 /*
758 * Determine if a certain object on a page is on the freelist. Must hold the
759 * slab lock to guarantee that the chains are in a consistent state.
760 */
761 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
762 {
763 int nr = 0;
764 void *fp = page->freelist;
765 void *object = NULL;
766
767 while (fp && nr <= s->objects) {
768 if (fp == search)
769 return 1;
770 if (!check_valid_pointer(s, page, fp)) {
771 if (object) {
772 object_err(s, page, object,
773 "Freechain corrupt");
774 set_freepointer(s, object, NULL);
775 break;
776 } else {
777 slab_err(s, page, "Freepointer corrupt");
778 page->freelist = NULL;
779 page->inuse = s->objects;
780 slab_fix(s, "Freelist cleared");
781 return 0;
782 }
783 break;
784 }
785 object = fp;
786 fp = get_freepointer(s, object);
787 nr++;
788 }
789
790 if (page->inuse != s->objects - nr) {
791 slab_err(s, page, "Wrong object count. Counter is %d but "
792 "counted were %d", page->inuse, s->objects - nr);
793 page->inuse = s->objects - nr;
794 slab_fix(s, "Object count adjusted.");
795 }
796 return search == NULL;
797 }
798
799 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
800 {
801 if (s->flags & SLAB_TRACE) {
802 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
803 s->name,
804 alloc ? "alloc" : "free",
805 object, page->inuse,
806 page->freelist);
807
808 if (!alloc)
809 print_section("Object", (void *)object, s->objsize);
810
811 dump_stack();
812 }
813 }
814
815 /*
816 * Tracking of fully allocated slabs for debugging purposes.
817 */
818 static void add_full(struct kmem_cache_node *n, struct page *page)
819 {
820 spin_lock(&n->list_lock);
821 list_add(&page->lru, &n->full);
822 spin_unlock(&n->list_lock);
823 }
824
825 static void remove_full(struct kmem_cache *s, struct page *page)
826 {
827 struct kmem_cache_node *n;
828
829 if (!(s->flags & SLAB_STORE_USER))
830 return;
831
832 n = get_node(s, page_to_nid(page));
833
834 spin_lock(&n->list_lock);
835 list_del(&page->lru);
836 spin_unlock(&n->list_lock);
837 }
838
839 static void setup_object_debug(struct kmem_cache *s, struct page *page,
840 void *object)
841 {
842 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
843 return;
844
845 init_object(s, object, 0);
846 init_tracking(s, object);
847 }
848
849 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
850 void *object, void *addr)
851 {
852 if (!check_slab(s, page))
853 goto bad;
854
855 if (!on_freelist(s, page, object)) {
856 object_err(s, page, object, "Object already allocated");
857 goto bad;
858 }
859
860 if (!check_valid_pointer(s, page, object)) {
861 object_err(s, page, object, "Freelist Pointer check fails");
862 goto bad;
863 }
864
865 if (!check_object(s, page, object, 0))
866 goto bad;
867
868 /* Success perform special debug activities for allocs */
869 if (s->flags & SLAB_STORE_USER)
870 set_track(s, object, TRACK_ALLOC, addr);
871 trace(s, page, object, 1);
872 init_object(s, object, 1);
873 return 1;
874
875 bad:
876 if (PageSlab(page)) {
877 /*
878 * If this is a slab page then lets do the best we can
879 * to avoid issues in the future. Marking all objects
880 * as used avoids touching the remaining objects.
881 */
882 slab_fix(s, "Marking all objects used");
883 page->inuse = s->objects;
884 page->freelist = NULL;
885 }
886 return 0;
887 }
888
889 static int free_debug_processing(struct kmem_cache *s, struct page *page,
890 void *object, void *addr)
891 {
892 if (!check_slab(s, page))
893 goto fail;
894
895 if (!check_valid_pointer(s, page, object)) {
896 slab_err(s, page, "Invalid object pointer 0x%p", object);
897 goto fail;
898 }
899
900 if (on_freelist(s, page, object)) {
901 object_err(s, page, object, "Object already free");
902 goto fail;
903 }
904
905 if (!check_object(s, page, object, 1))
906 return 0;
907
908 if (unlikely(s != page->slab)) {
909 if (!PageSlab(page)) {
910 slab_err(s, page, "Attempt to free object(0x%p) "
911 "outside of slab", object);
912 } else if (!page->slab) {
913 printk(KERN_ERR
914 "SLUB <none>: no slab for object 0x%p.\n",
915 object);
916 dump_stack();
917 } else
918 object_err(s, page, object,
919 "page slab pointer corrupt.");
920 goto fail;
921 }
922
923 /* Special debug activities for freeing objects */
924 if (!SlabFrozen(page) && !page->freelist)
925 remove_full(s, page);
926 if (s->flags & SLAB_STORE_USER)
927 set_track(s, object, TRACK_FREE, addr);
928 trace(s, page, object, 0);
929 init_object(s, object, 0);
930 return 1;
931
932 fail:
933 slab_fix(s, "Object at 0x%p not freed", object);
934 return 0;
935 }
936
937 static int __init setup_slub_debug(char *str)
938 {
939 slub_debug = DEBUG_DEFAULT_FLAGS;
940 if (*str++ != '=' || !*str)
941 /*
942 * No options specified. Switch on full debugging.
943 */
944 goto out;
945
946 if (*str == ',')
947 /*
948 * No options but restriction on slabs. This means full
949 * debugging for slabs matching a pattern.
950 */
951 goto check_slabs;
952
953 slub_debug = 0;
954 if (*str == '-')
955 /*
956 * Switch off all debugging measures.
957 */
958 goto out;
959
960 /*
961 * Determine which debug features should be switched on
962 */
963 for (; *str && *str != ','; str++) {
964 switch (tolower(*str)) {
965 case 'f':
966 slub_debug |= SLAB_DEBUG_FREE;
967 break;
968 case 'z':
969 slub_debug |= SLAB_RED_ZONE;
970 break;
971 case 'p':
972 slub_debug |= SLAB_POISON;
973 break;
974 case 'u':
975 slub_debug |= SLAB_STORE_USER;
976 break;
977 case 't':
978 slub_debug |= SLAB_TRACE;
979 break;
980 default:
981 printk(KERN_ERR "slub_debug option '%c' "
982 "unknown. skipped\n", *str);
983 }
984 }
985
986 check_slabs:
987 if (*str == ',')
988 slub_debug_slabs = str + 1;
989 out:
990 return 1;
991 }
992
993 __setup("slub_debug", setup_slub_debug);
994
995 static unsigned long kmem_cache_flags(unsigned long objsize,
996 unsigned long flags, const char *name,
997 void (*ctor)(struct kmem_cache *, void *))
998 {
999 /*
1000 * Enable debugging if selected on the kernel commandline.
1001 */
1002 if (slub_debug && (!slub_debug_slabs ||
1003 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1004 flags |= slub_debug;
1005
1006 return flags;
1007 }
1008 #else
1009 static inline void setup_object_debug(struct kmem_cache *s,
1010 struct page *page, void *object) {}
1011
1012 static inline int alloc_debug_processing(struct kmem_cache *s,
1013 struct page *page, void *object, void *addr) { return 0; }
1014
1015 static inline int free_debug_processing(struct kmem_cache *s,
1016 struct page *page, void *object, void *addr) { return 0; }
1017
1018 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1019 { return 1; }
1020 static inline int check_object(struct kmem_cache *s, struct page *page,
1021 void *object, int active) { return 1; }
1022 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1023 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1024 unsigned long flags, const char *name,
1025 void (*ctor)(struct kmem_cache *, void *))
1026 {
1027 return flags;
1028 }
1029 #define slub_debug 0
1030 #endif
1031 /*
1032 * Slab allocation and freeing
1033 */
1034 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1035 {
1036 struct page *page;
1037 int pages = 1 << s->order;
1038
1039 flags |= s->allocflags;
1040
1041 if (node == -1)
1042 page = alloc_pages(flags, s->order);
1043 else
1044 page = alloc_pages_node(node, flags, s->order);
1045
1046 if (!page)
1047 return NULL;
1048
1049 mod_zone_page_state(page_zone(page),
1050 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1051 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1052 pages);
1053
1054 return page;
1055 }
1056
1057 static void setup_object(struct kmem_cache *s, struct page *page,
1058 void *object)
1059 {
1060 setup_object_debug(s, page, object);
1061 if (unlikely(s->ctor))
1062 s->ctor(s, object);
1063 }
1064
1065 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1066 {
1067 struct page *page;
1068 struct kmem_cache_node *n;
1069 void *start;
1070 void *last;
1071 void *p;
1072
1073 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1074
1075 page = allocate_slab(s,
1076 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1077 if (!page)
1078 goto out;
1079
1080 n = get_node(s, page_to_nid(page));
1081 if (n)
1082 atomic_long_inc(&n->nr_slabs);
1083 page->slab = s;
1084 page->flags |= 1 << PG_slab;
1085 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1086 SLAB_STORE_USER | SLAB_TRACE))
1087 SetSlabDebug(page);
1088
1089 start = page_address(page);
1090
1091 if (unlikely(s->flags & SLAB_POISON))
1092 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1093
1094 last = start;
1095 for_each_object(p, s, start) {
1096 setup_object(s, page, last);
1097 set_freepointer(s, last, p);
1098 last = p;
1099 }
1100 setup_object(s, page, last);
1101 set_freepointer(s, last, NULL);
1102
1103 page->freelist = start;
1104 page->inuse = 0;
1105 out:
1106 return page;
1107 }
1108
1109 static void __free_slab(struct kmem_cache *s, struct page *page)
1110 {
1111 int pages = 1 << s->order;
1112
1113 if (unlikely(SlabDebug(page))) {
1114 void *p;
1115
1116 slab_pad_check(s, page);
1117 for_each_object(p, s, page_address(page))
1118 check_object(s, page, p, 0);
1119 ClearSlabDebug(page);
1120 }
1121
1122 mod_zone_page_state(page_zone(page),
1123 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1124 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1125 -pages);
1126
1127 __free_pages(page, s->order);
1128 }
1129
1130 static void rcu_free_slab(struct rcu_head *h)
1131 {
1132 struct page *page;
1133
1134 page = container_of((struct list_head *)h, struct page, lru);
1135 __free_slab(page->slab, page);
1136 }
1137
1138 static void free_slab(struct kmem_cache *s, struct page *page)
1139 {
1140 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1141 /*
1142 * RCU free overloads the RCU head over the LRU
1143 */
1144 struct rcu_head *head = (void *)&page->lru;
1145
1146 call_rcu(head, rcu_free_slab);
1147 } else
1148 __free_slab(s, page);
1149 }
1150
1151 static void discard_slab(struct kmem_cache *s, struct page *page)
1152 {
1153 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1154
1155 atomic_long_dec(&n->nr_slabs);
1156 reset_page_mapcount(page);
1157 __ClearPageSlab(page);
1158 free_slab(s, page);
1159 }
1160
1161 /*
1162 * Per slab locking using the pagelock
1163 */
1164 static __always_inline void slab_lock(struct page *page)
1165 {
1166 bit_spin_lock(PG_locked, &page->flags);
1167 }
1168
1169 static __always_inline void slab_unlock(struct page *page)
1170 {
1171 __bit_spin_unlock(PG_locked, &page->flags);
1172 }
1173
1174 static __always_inline int slab_trylock(struct page *page)
1175 {
1176 int rc = 1;
1177
1178 rc = bit_spin_trylock(PG_locked, &page->flags);
1179 return rc;
1180 }
1181
1182 /*
1183 * Management of partially allocated slabs
1184 */
1185 static void add_partial(struct kmem_cache_node *n,
1186 struct page *page, int tail)
1187 {
1188 spin_lock(&n->list_lock);
1189 n->nr_partial++;
1190 if (tail)
1191 list_add_tail(&page->lru, &n->partial);
1192 else
1193 list_add(&page->lru, &n->partial);
1194 spin_unlock(&n->list_lock);
1195 }
1196
1197 static void remove_partial(struct kmem_cache *s,
1198 struct page *page)
1199 {
1200 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1201
1202 spin_lock(&n->list_lock);
1203 list_del(&page->lru);
1204 n->nr_partial--;
1205 spin_unlock(&n->list_lock);
1206 }
1207
1208 /*
1209 * Lock slab and remove from the partial list.
1210 *
1211 * Must hold list_lock.
1212 */
1213 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1214 {
1215 if (slab_trylock(page)) {
1216 list_del(&page->lru);
1217 n->nr_partial--;
1218 SetSlabFrozen(page);
1219 return 1;
1220 }
1221 return 0;
1222 }
1223
1224 /*
1225 * Try to allocate a partial slab from a specific node.
1226 */
1227 static struct page *get_partial_node(struct kmem_cache_node *n)
1228 {
1229 struct page *page;
1230
1231 /*
1232 * Racy check. If we mistakenly see no partial slabs then we
1233 * just allocate an empty slab. If we mistakenly try to get a
1234 * partial slab and there is none available then get_partials()
1235 * will return NULL.
1236 */
1237 if (!n || !n->nr_partial)
1238 return NULL;
1239
1240 spin_lock(&n->list_lock);
1241 list_for_each_entry(page, &n->partial, lru)
1242 if (lock_and_freeze_slab(n, page))
1243 goto out;
1244 page = NULL;
1245 out:
1246 spin_unlock(&n->list_lock);
1247 return page;
1248 }
1249
1250 /*
1251 * Get a page from somewhere. Search in increasing NUMA distances.
1252 */
1253 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1254 {
1255 #ifdef CONFIG_NUMA
1256 struct zonelist *zonelist;
1257 struct zone **z;
1258 struct page *page;
1259
1260 /*
1261 * The defrag ratio allows a configuration of the tradeoffs between
1262 * inter node defragmentation and node local allocations. A lower
1263 * defrag_ratio increases the tendency to do local allocations
1264 * instead of attempting to obtain partial slabs from other nodes.
1265 *
1266 * If the defrag_ratio is set to 0 then kmalloc() always
1267 * returns node local objects. If the ratio is higher then kmalloc()
1268 * may return off node objects because partial slabs are obtained
1269 * from other nodes and filled up.
1270 *
1271 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1272 * defrag_ratio = 1000) then every (well almost) allocation will
1273 * first attempt to defrag slab caches on other nodes. This means
1274 * scanning over all nodes to look for partial slabs which may be
1275 * expensive if we do it every time we are trying to find a slab
1276 * with available objects.
1277 */
1278 if (!s->remote_node_defrag_ratio ||
1279 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1280 return NULL;
1281
1282 zonelist = &NODE_DATA(
1283 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1284 for (z = zonelist->zones; *z; z++) {
1285 struct kmem_cache_node *n;
1286
1287 n = get_node(s, zone_to_nid(*z));
1288
1289 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1290 n->nr_partial > MIN_PARTIAL) {
1291 page = get_partial_node(n);
1292 if (page)
1293 return page;
1294 }
1295 }
1296 #endif
1297 return NULL;
1298 }
1299
1300 /*
1301 * Get a partial page, lock it and return it.
1302 */
1303 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1304 {
1305 struct page *page;
1306 int searchnode = (node == -1) ? numa_node_id() : node;
1307
1308 page = get_partial_node(get_node(s, searchnode));
1309 if (page || (flags & __GFP_THISNODE))
1310 return page;
1311
1312 return get_any_partial(s, flags);
1313 }
1314
1315 /*
1316 * Move a page back to the lists.
1317 *
1318 * Must be called with the slab lock held.
1319 *
1320 * On exit the slab lock will have been dropped.
1321 */
1322 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1323 {
1324 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1325 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1326
1327 ClearSlabFrozen(page);
1328 if (page->inuse) {
1329
1330 if (page->freelist) {
1331 add_partial(n, page, tail);
1332 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1333 } else {
1334 stat(c, DEACTIVATE_FULL);
1335 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1336 add_full(n, page);
1337 }
1338 slab_unlock(page);
1339 } else {
1340 stat(c, DEACTIVATE_EMPTY);
1341 if (n->nr_partial < MIN_PARTIAL) {
1342 /*
1343 * Adding an empty slab to the partial slabs in order
1344 * to avoid page allocator overhead. This slab needs
1345 * to come after the other slabs with objects in
1346 * order to fill them up. That way the size of the
1347 * partial list stays small. kmem_cache_shrink can
1348 * reclaim empty slabs from the partial list.
1349 */
1350 add_partial(n, page, 1);
1351 slab_unlock(page);
1352 } else {
1353 slab_unlock(page);
1354 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1355 discard_slab(s, page);
1356 }
1357 }
1358 }
1359
1360 /*
1361 * Remove the cpu slab
1362 */
1363 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1364 {
1365 struct page *page = c->page;
1366 int tail = 1;
1367
1368 if (c->freelist)
1369 stat(c, DEACTIVATE_REMOTE_FREES);
1370 /*
1371 * Merge cpu freelist into freelist. Typically we get here
1372 * because both freelists are empty. So this is unlikely
1373 * to occur.
1374 */
1375 while (unlikely(c->freelist)) {
1376 void **object;
1377
1378 tail = 0; /* Hot objects. Put the slab first */
1379
1380 /* Retrieve object from cpu_freelist */
1381 object = c->freelist;
1382 c->freelist = c->freelist[c->offset];
1383
1384 /* And put onto the regular freelist */
1385 object[c->offset] = page->freelist;
1386 page->freelist = object;
1387 page->inuse--;
1388 }
1389 c->page = NULL;
1390 unfreeze_slab(s, page, tail);
1391 }
1392
1393 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1394 {
1395 stat(c, CPUSLAB_FLUSH);
1396 slab_lock(c->page);
1397 deactivate_slab(s, c);
1398 }
1399
1400 /*
1401 * Flush cpu slab.
1402 * Called from IPI handler with interrupts disabled.
1403 */
1404 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1405 {
1406 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1407
1408 if (likely(c && c->page))
1409 flush_slab(s, c);
1410 }
1411
1412 static void flush_cpu_slab(void *d)
1413 {
1414 struct kmem_cache *s = d;
1415
1416 __flush_cpu_slab(s, smp_processor_id());
1417 }
1418
1419 static void flush_all(struct kmem_cache *s)
1420 {
1421 #ifdef CONFIG_SMP
1422 on_each_cpu(flush_cpu_slab, s, 1, 1);
1423 #else
1424 unsigned long flags;
1425
1426 local_irq_save(flags);
1427 flush_cpu_slab(s);
1428 local_irq_restore(flags);
1429 #endif
1430 }
1431
1432 /*
1433 * Check if the objects in a per cpu structure fit numa
1434 * locality expectations.
1435 */
1436 static inline int node_match(struct kmem_cache_cpu *c, int node)
1437 {
1438 #ifdef CONFIG_NUMA
1439 if (node != -1 && c->node != node)
1440 return 0;
1441 #endif
1442 return 1;
1443 }
1444
1445 /*
1446 * Slow path. The lockless freelist is empty or we need to perform
1447 * debugging duties.
1448 *
1449 * Interrupts are disabled.
1450 *
1451 * Processing is still very fast if new objects have been freed to the
1452 * regular freelist. In that case we simply take over the regular freelist
1453 * as the lockless freelist and zap the regular freelist.
1454 *
1455 * If that is not working then we fall back to the partial lists. We take the
1456 * first element of the freelist as the object to allocate now and move the
1457 * rest of the freelist to the lockless freelist.
1458 *
1459 * And if we were unable to get a new slab from the partial slab lists then
1460 * we need to allocate a new slab. This is slowest path since we may sleep.
1461 */
1462 static void *__slab_alloc(struct kmem_cache *s,
1463 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1464 {
1465 void **object;
1466 struct page *new;
1467
1468 if (!c->page)
1469 goto new_slab;
1470
1471 slab_lock(c->page);
1472 if (unlikely(!node_match(c, node)))
1473 goto another_slab;
1474 stat(c, ALLOC_REFILL);
1475 load_freelist:
1476 object = c->page->freelist;
1477 if (unlikely(!object))
1478 goto another_slab;
1479 if (unlikely(SlabDebug(c->page)))
1480 goto debug;
1481
1482 object = c->page->freelist;
1483 c->freelist = object[c->offset];
1484 c->page->inuse = s->objects;
1485 c->page->freelist = NULL;
1486 c->node = page_to_nid(c->page);
1487 unlock_out:
1488 slab_unlock(c->page);
1489 stat(c, ALLOC_SLOWPATH);
1490 return object;
1491
1492 another_slab:
1493 deactivate_slab(s, c);
1494
1495 new_slab:
1496 new = get_partial(s, gfpflags, node);
1497 if (new) {
1498 c->page = new;
1499 stat(c, ALLOC_FROM_PARTIAL);
1500 goto load_freelist;
1501 }
1502
1503 if (gfpflags & __GFP_WAIT)
1504 local_irq_enable();
1505
1506 new = new_slab(s, gfpflags, node);
1507
1508 if (gfpflags & __GFP_WAIT)
1509 local_irq_disable();
1510
1511 if (new) {
1512 c = get_cpu_slab(s, smp_processor_id());
1513 stat(c, ALLOC_SLAB);
1514 if (c->page)
1515 flush_slab(s, c);
1516 slab_lock(new);
1517 SetSlabFrozen(new);
1518 c->page = new;
1519 goto load_freelist;
1520 }
1521
1522 /*
1523 * No memory available.
1524 *
1525 * If the slab uses higher order allocs but the object is
1526 * smaller than a page size then we can fallback in emergencies
1527 * to the page allocator via kmalloc_large. The page allocator may
1528 * have failed to obtain a higher order page and we can try to
1529 * allocate a single page if the object fits into a single page.
1530 * That is only possible if certain conditions are met that are being
1531 * checked when a slab is created.
1532 */
1533 if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
1534 return kmalloc_large(s->objsize, gfpflags);
1535
1536 return NULL;
1537 debug:
1538 object = c->page->freelist;
1539 if (!alloc_debug_processing(s, c->page, object, addr))
1540 goto another_slab;
1541
1542 c->page->inuse++;
1543 c->page->freelist = object[c->offset];
1544 c->node = -1;
1545 goto unlock_out;
1546 }
1547
1548 /*
1549 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1550 * have the fastpath folded into their functions. So no function call
1551 * overhead for requests that can be satisfied on the fastpath.
1552 *
1553 * The fastpath works by first checking if the lockless freelist can be used.
1554 * If not then __slab_alloc is called for slow processing.
1555 *
1556 * Otherwise we can simply pick the next object from the lockless free list.
1557 */
1558 static __always_inline void *slab_alloc(struct kmem_cache *s,
1559 gfp_t gfpflags, int node, void *addr)
1560 {
1561 void **object;
1562 struct kmem_cache_cpu *c;
1563 unsigned long flags;
1564
1565 local_irq_save(flags);
1566 c = get_cpu_slab(s, smp_processor_id());
1567 if (unlikely(!c->freelist || !node_match(c, node)))
1568
1569 object = __slab_alloc(s, gfpflags, node, addr, c);
1570
1571 else {
1572 object = c->freelist;
1573 c->freelist = object[c->offset];
1574 stat(c, ALLOC_FASTPATH);
1575 }
1576 local_irq_restore(flags);
1577
1578 if (unlikely((gfpflags & __GFP_ZERO) && object))
1579 memset(object, 0, c->objsize);
1580
1581 return object;
1582 }
1583
1584 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1585 {
1586 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1587 }
1588 EXPORT_SYMBOL(kmem_cache_alloc);
1589
1590 #ifdef CONFIG_NUMA
1591 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1592 {
1593 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1594 }
1595 EXPORT_SYMBOL(kmem_cache_alloc_node);
1596 #endif
1597
1598 /*
1599 * Slow patch handling. This may still be called frequently since objects
1600 * have a longer lifetime than the cpu slabs in most processing loads.
1601 *
1602 * So we still attempt to reduce cache line usage. Just take the slab
1603 * lock and free the item. If there is no additional partial page
1604 * handling required then we can return immediately.
1605 */
1606 static void __slab_free(struct kmem_cache *s, struct page *page,
1607 void *x, void *addr, unsigned int offset)
1608 {
1609 void *prior;
1610 void **object = (void *)x;
1611 struct kmem_cache_cpu *c;
1612
1613 c = get_cpu_slab(s, raw_smp_processor_id());
1614 stat(c, FREE_SLOWPATH);
1615 slab_lock(page);
1616
1617 if (unlikely(SlabDebug(page)))
1618 goto debug;
1619 checks_ok:
1620 prior = object[offset] = page->freelist;
1621 page->freelist = object;
1622 page->inuse--;
1623
1624 if (unlikely(SlabFrozen(page))) {
1625 stat(c, FREE_FROZEN);
1626 goto out_unlock;
1627 }
1628
1629 if (unlikely(!page->inuse))
1630 goto slab_empty;
1631
1632 /*
1633 * Objects left in the slab. If it
1634 * was not on the partial list before
1635 * then add it.
1636 */
1637 if (unlikely(!prior)) {
1638 add_partial(get_node(s, page_to_nid(page)), page, 1);
1639 stat(c, FREE_ADD_PARTIAL);
1640 }
1641
1642 out_unlock:
1643 slab_unlock(page);
1644 return;
1645
1646 slab_empty:
1647 if (prior) {
1648 /*
1649 * Slab still on the partial list.
1650 */
1651 remove_partial(s, page);
1652 stat(c, FREE_REMOVE_PARTIAL);
1653 }
1654 slab_unlock(page);
1655 stat(c, FREE_SLAB);
1656 discard_slab(s, page);
1657 return;
1658
1659 debug:
1660 if (!free_debug_processing(s, page, x, addr))
1661 goto out_unlock;
1662 goto checks_ok;
1663 }
1664
1665 /*
1666 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1667 * can perform fastpath freeing without additional function calls.
1668 *
1669 * The fastpath is only possible if we are freeing to the current cpu slab
1670 * of this processor. This typically the case if we have just allocated
1671 * the item before.
1672 *
1673 * If fastpath is not possible then fall back to __slab_free where we deal
1674 * with all sorts of special processing.
1675 */
1676 static __always_inline void slab_free(struct kmem_cache *s,
1677 struct page *page, void *x, void *addr)
1678 {
1679 void **object = (void *)x;
1680 struct kmem_cache_cpu *c;
1681 unsigned long flags;
1682
1683 local_irq_save(flags);
1684 c = get_cpu_slab(s, smp_processor_id());
1685 debug_check_no_locks_freed(object, c->objsize);
1686 if (likely(page == c->page && c->node >= 0)) {
1687 object[c->offset] = c->freelist;
1688 c->freelist = object;
1689 stat(c, FREE_FASTPATH);
1690 } else
1691 __slab_free(s, page, x, addr, c->offset);
1692
1693 local_irq_restore(flags);
1694 }
1695
1696 void kmem_cache_free(struct kmem_cache *s, void *x)
1697 {
1698 struct page *page;
1699
1700 page = virt_to_head_page(x);
1701
1702 slab_free(s, page, x, __builtin_return_address(0));
1703 }
1704 EXPORT_SYMBOL(kmem_cache_free);
1705
1706 /* Figure out on which slab object the object resides */
1707 static struct page *get_object_page(const void *x)
1708 {
1709 struct page *page = virt_to_head_page(x);
1710
1711 if (!PageSlab(page))
1712 return NULL;
1713
1714 return page;
1715 }
1716
1717 /*
1718 * Object placement in a slab is made very easy because we always start at
1719 * offset 0. If we tune the size of the object to the alignment then we can
1720 * get the required alignment by putting one properly sized object after
1721 * another.
1722 *
1723 * Notice that the allocation order determines the sizes of the per cpu
1724 * caches. Each processor has always one slab available for allocations.
1725 * Increasing the allocation order reduces the number of times that slabs
1726 * must be moved on and off the partial lists and is therefore a factor in
1727 * locking overhead.
1728 */
1729
1730 /*
1731 * Mininum / Maximum order of slab pages. This influences locking overhead
1732 * and slab fragmentation. A higher order reduces the number of partial slabs
1733 * and increases the number of allocations possible without having to
1734 * take the list_lock.
1735 */
1736 static int slub_min_order;
1737 static int slub_max_order = DEFAULT_MAX_ORDER;
1738 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1739
1740 /*
1741 * Merge control. If this is set then no merging of slab caches will occur.
1742 * (Could be removed. This was introduced to pacify the merge skeptics.)
1743 */
1744 static int slub_nomerge;
1745
1746 /*
1747 * Calculate the order of allocation given an slab object size.
1748 *
1749 * The order of allocation has significant impact on performance and other
1750 * system components. Generally order 0 allocations should be preferred since
1751 * order 0 does not cause fragmentation in the page allocator. Larger objects
1752 * be problematic to put into order 0 slabs because there may be too much
1753 * unused space left. We go to a higher order if more than 1/8th of the slab
1754 * would be wasted.
1755 *
1756 * In order to reach satisfactory performance we must ensure that a minimum
1757 * number of objects is in one slab. Otherwise we may generate too much
1758 * activity on the partial lists which requires taking the list_lock. This is
1759 * less a concern for large slabs though which are rarely used.
1760 *
1761 * slub_max_order specifies the order where we begin to stop considering the
1762 * number of objects in a slab as critical. If we reach slub_max_order then
1763 * we try to keep the page order as low as possible. So we accept more waste
1764 * of space in favor of a small page order.
1765 *
1766 * Higher order allocations also allow the placement of more objects in a
1767 * slab and thereby reduce object handling overhead. If the user has
1768 * requested a higher mininum order then we start with that one instead of
1769 * the smallest order which will fit the object.
1770 */
1771 static inline int slab_order(int size, int min_objects,
1772 int max_order, int fract_leftover)
1773 {
1774 int order;
1775 int rem;
1776 int min_order = slub_min_order;
1777
1778 for (order = max(min_order,
1779 fls(min_objects * size - 1) - PAGE_SHIFT);
1780 order <= max_order; order++) {
1781
1782 unsigned long slab_size = PAGE_SIZE << order;
1783
1784 if (slab_size < min_objects * size)
1785 continue;
1786
1787 rem = slab_size % size;
1788
1789 if (rem <= slab_size / fract_leftover)
1790 break;
1791
1792 }
1793
1794 return order;
1795 }
1796
1797 static inline int calculate_order(int size)
1798 {
1799 int order;
1800 int min_objects;
1801 int fraction;
1802
1803 /*
1804 * Attempt to find best configuration for a slab. This
1805 * works by first attempting to generate a layout with
1806 * the best configuration and backing off gradually.
1807 *
1808 * First we reduce the acceptable waste in a slab. Then
1809 * we reduce the minimum objects required in a slab.
1810 */
1811 min_objects = slub_min_objects;
1812 while (min_objects > 1) {
1813 fraction = 8;
1814 while (fraction >= 4) {
1815 order = slab_order(size, min_objects,
1816 slub_max_order, fraction);
1817 if (order <= slub_max_order)
1818 return order;
1819 fraction /= 2;
1820 }
1821 min_objects /= 2;
1822 }
1823
1824 /*
1825 * We were unable to place multiple objects in a slab. Now
1826 * lets see if we can place a single object there.
1827 */
1828 order = slab_order(size, 1, slub_max_order, 1);
1829 if (order <= slub_max_order)
1830 return order;
1831
1832 /*
1833 * Doh this slab cannot be placed using slub_max_order.
1834 */
1835 order = slab_order(size, 1, MAX_ORDER, 1);
1836 if (order <= MAX_ORDER)
1837 return order;
1838 return -ENOSYS;
1839 }
1840
1841 /*
1842 * Figure out what the alignment of the objects will be.
1843 */
1844 static unsigned long calculate_alignment(unsigned long flags,
1845 unsigned long align, unsigned long size)
1846 {
1847 /*
1848 * If the user wants hardware cache aligned objects then
1849 * follow that suggestion if the object is sufficiently
1850 * large.
1851 *
1852 * The hardware cache alignment cannot override the
1853 * specified alignment though. If that is greater
1854 * then use it.
1855 */
1856 if ((flags & SLAB_HWCACHE_ALIGN) &&
1857 size > cache_line_size() / 2)
1858 return max_t(unsigned long, align, cache_line_size());
1859
1860 if (align < ARCH_SLAB_MINALIGN)
1861 return ARCH_SLAB_MINALIGN;
1862
1863 return ALIGN(align, sizeof(void *));
1864 }
1865
1866 static void init_kmem_cache_cpu(struct kmem_cache *s,
1867 struct kmem_cache_cpu *c)
1868 {
1869 c->page = NULL;
1870 c->freelist = NULL;
1871 c->node = 0;
1872 c->offset = s->offset / sizeof(void *);
1873 c->objsize = s->objsize;
1874 }
1875
1876 static void init_kmem_cache_node(struct kmem_cache_node *n)
1877 {
1878 n->nr_partial = 0;
1879 atomic_long_set(&n->nr_slabs, 0);
1880 spin_lock_init(&n->list_lock);
1881 INIT_LIST_HEAD(&n->partial);
1882 #ifdef CONFIG_SLUB_DEBUG
1883 INIT_LIST_HEAD(&n->full);
1884 #endif
1885 }
1886
1887 #ifdef CONFIG_SMP
1888 /*
1889 * Per cpu array for per cpu structures.
1890 *
1891 * The per cpu array places all kmem_cache_cpu structures from one processor
1892 * close together meaning that it becomes possible that multiple per cpu
1893 * structures are contained in one cacheline. This may be particularly
1894 * beneficial for the kmalloc caches.
1895 *
1896 * A desktop system typically has around 60-80 slabs. With 100 here we are
1897 * likely able to get per cpu structures for all caches from the array defined
1898 * here. We must be able to cover all kmalloc caches during bootstrap.
1899 *
1900 * If the per cpu array is exhausted then fall back to kmalloc
1901 * of individual cachelines. No sharing is possible then.
1902 */
1903 #define NR_KMEM_CACHE_CPU 100
1904
1905 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1906 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1907
1908 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1909 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1910
1911 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1912 int cpu, gfp_t flags)
1913 {
1914 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1915
1916 if (c)
1917 per_cpu(kmem_cache_cpu_free, cpu) =
1918 (void *)c->freelist;
1919 else {
1920 /* Table overflow: So allocate ourselves */
1921 c = kmalloc_node(
1922 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1923 flags, cpu_to_node(cpu));
1924 if (!c)
1925 return NULL;
1926 }
1927
1928 init_kmem_cache_cpu(s, c);
1929 return c;
1930 }
1931
1932 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1933 {
1934 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1935 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1936 kfree(c);
1937 return;
1938 }
1939 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1940 per_cpu(kmem_cache_cpu_free, cpu) = c;
1941 }
1942
1943 static void free_kmem_cache_cpus(struct kmem_cache *s)
1944 {
1945 int cpu;
1946
1947 for_each_online_cpu(cpu) {
1948 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1949
1950 if (c) {
1951 s->cpu_slab[cpu] = NULL;
1952 free_kmem_cache_cpu(c, cpu);
1953 }
1954 }
1955 }
1956
1957 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1958 {
1959 int cpu;
1960
1961 for_each_online_cpu(cpu) {
1962 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1963
1964 if (c)
1965 continue;
1966
1967 c = alloc_kmem_cache_cpu(s, cpu, flags);
1968 if (!c) {
1969 free_kmem_cache_cpus(s);
1970 return 0;
1971 }
1972 s->cpu_slab[cpu] = c;
1973 }
1974 return 1;
1975 }
1976
1977 /*
1978 * Initialize the per cpu array.
1979 */
1980 static void init_alloc_cpu_cpu(int cpu)
1981 {
1982 int i;
1983
1984 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1985 return;
1986
1987 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1988 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1989
1990 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1991 }
1992
1993 static void __init init_alloc_cpu(void)
1994 {
1995 int cpu;
1996
1997 for_each_online_cpu(cpu)
1998 init_alloc_cpu_cpu(cpu);
1999 }
2000
2001 #else
2002 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2003 static inline void init_alloc_cpu(void) {}
2004
2005 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2006 {
2007 init_kmem_cache_cpu(s, &s->cpu_slab);
2008 return 1;
2009 }
2010 #endif
2011
2012 #ifdef CONFIG_NUMA
2013 /*
2014 * No kmalloc_node yet so do it by hand. We know that this is the first
2015 * slab on the node for this slabcache. There are no concurrent accesses
2016 * possible.
2017 *
2018 * Note that this function only works on the kmalloc_node_cache
2019 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2020 * memory on a fresh node that has no slab structures yet.
2021 */
2022 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2023 int node)
2024 {
2025 struct page *page;
2026 struct kmem_cache_node *n;
2027 unsigned long flags;
2028
2029 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2030
2031 page = new_slab(kmalloc_caches, gfpflags, node);
2032
2033 BUG_ON(!page);
2034 if (page_to_nid(page) != node) {
2035 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2036 "node %d\n", node);
2037 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2038 "in order to be able to continue\n");
2039 }
2040
2041 n = page->freelist;
2042 BUG_ON(!n);
2043 page->freelist = get_freepointer(kmalloc_caches, n);
2044 page->inuse++;
2045 kmalloc_caches->node[node] = n;
2046 #ifdef CONFIG_SLUB_DEBUG
2047 init_object(kmalloc_caches, n, 1);
2048 init_tracking(kmalloc_caches, n);
2049 #endif
2050 init_kmem_cache_node(n);
2051 atomic_long_inc(&n->nr_slabs);
2052 /*
2053 * lockdep requires consistent irq usage for each lock
2054 * so even though there cannot be a race this early in
2055 * the boot sequence, we still disable irqs.
2056 */
2057 local_irq_save(flags);
2058 add_partial(n, page, 0);
2059 local_irq_restore(flags);
2060 return n;
2061 }
2062
2063 static void free_kmem_cache_nodes(struct kmem_cache *s)
2064 {
2065 int node;
2066
2067 for_each_node_state(node, N_NORMAL_MEMORY) {
2068 struct kmem_cache_node *n = s->node[node];
2069 if (n && n != &s->local_node)
2070 kmem_cache_free(kmalloc_caches, n);
2071 s->node[node] = NULL;
2072 }
2073 }
2074
2075 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2076 {
2077 int node;
2078 int local_node;
2079
2080 if (slab_state >= UP)
2081 local_node = page_to_nid(virt_to_page(s));
2082 else
2083 local_node = 0;
2084
2085 for_each_node_state(node, N_NORMAL_MEMORY) {
2086 struct kmem_cache_node *n;
2087
2088 if (local_node == node)
2089 n = &s->local_node;
2090 else {
2091 if (slab_state == DOWN) {
2092 n = early_kmem_cache_node_alloc(gfpflags,
2093 node);
2094 continue;
2095 }
2096 n = kmem_cache_alloc_node(kmalloc_caches,
2097 gfpflags, node);
2098
2099 if (!n) {
2100 free_kmem_cache_nodes(s);
2101 return 0;
2102 }
2103
2104 }
2105 s->node[node] = n;
2106 init_kmem_cache_node(n);
2107 }
2108 return 1;
2109 }
2110 #else
2111 static void free_kmem_cache_nodes(struct kmem_cache *s)
2112 {
2113 }
2114
2115 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2116 {
2117 init_kmem_cache_node(&s->local_node);
2118 return 1;
2119 }
2120 #endif
2121
2122 /*
2123 * calculate_sizes() determines the order and the distribution of data within
2124 * a slab object.
2125 */
2126 static int calculate_sizes(struct kmem_cache *s)
2127 {
2128 unsigned long flags = s->flags;
2129 unsigned long size = s->objsize;
2130 unsigned long align = s->align;
2131
2132 /*
2133 * Determine if we can poison the object itself. If the user of
2134 * the slab may touch the object after free or before allocation
2135 * then we should never poison the object itself.
2136 */
2137 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2138 !s->ctor)
2139 s->flags |= __OBJECT_POISON;
2140 else
2141 s->flags &= ~__OBJECT_POISON;
2142
2143 /*
2144 * Round up object size to the next word boundary. We can only
2145 * place the free pointer at word boundaries and this determines
2146 * the possible location of the free pointer.
2147 */
2148 size = ALIGN(size, sizeof(void *));
2149
2150 #ifdef CONFIG_SLUB_DEBUG
2151 /*
2152 * If we are Redzoning then check if there is some space between the
2153 * end of the object and the free pointer. If not then add an
2154 * additional word to have some bytes to store Redzone information.
2155 */
2156 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2157 size += sizeof(void *);
2158 #endif
2159
2160 /*
2161 * With that we have determined the number of bytes in actual use
2162 * by the object. This is the potential offset to the free pointer.
2163 */
2164 s->inuse = size;
2165
2166 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2167 s->ctor)) {
2168 /*
2169 * Relocate free pointer after the object if it is not
2170 * permitted to overwrite the first word of the object on
2171 * kmem_cache_free.
2172 *
2173 * This is the case if we do RCU, have a constructor or
2174 * destructor or are poisoning the objects.
2175 */
2176 s->offset = size;
2177 size += sizeof(void *);
2178 }
2179
2180 #ifdef CONFIG_SLUB_DEBUG
2181 if (flags & SLAB_STORE_USER)
2182 /*
2183 * Need to store information about allocs and frees after
2184 * the object.
2185 */
2186 size += 2 * sizeof(struct track);
2187
2188 if (flags & SLAB_RED_ZONE)
2189 /*
2190 * Add some empty padding so that we can catch
2191 * overwrites from earlier objects rather than let
2192 * tracking information or the free pointer be
2193 * corrupted if an user writes before the start
2194 * of the object.
2195 */
2196 size += sizeof(void *);
2197 #endif
2198
2199 /*
2200 * Determine the alignment based on various parameters that the
2201 * user specified and the dynamic determination of cache line size
2202 * on bootup.
2203 */
2204 align = calculate_alignment(flags, align, s->objsize);
2205
2206 /*
2207 * SLUB stores one object immediately after another beginning from
2208 * offset 0. In order to align the objects we have to simply size
2209 * each object to conform to the alignment.
2210 */
2211 size = ALIGN(size, align);
2212 s->size = size;
2213
2214 if ((flags & __KMALLOC_CACHE) &&
2215 PAGE_SIZE / size < slub_min_objects) {
2216 /*
2217 * Kmalloc cache that would not have enough objects in
2218 * an order 0 page. Kmalloc slabs can fallback to
2219 * page allocator order 0 allocs so take a reasonably large
2220 * order that will allows us a good number of objects.
2221 */
2222 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2223 s->flags |= __PAGE_ALLOC_FALLBACK;
2224 s->allocflags |= __GFP_NOWARN;
2225 } else
2226 s->order = calculate_order(size);
2227
2228 if (s->order < 0)
2229 return 0;
2230
2231 s->allocflags = 0;
2232 if (s->order)
2233 s->allocflags |= __GFP_COMP;
2234
2235 if (s->flags & SLAB_CACHE_DMA)
2236 s->allocflags |= SLUB_DMA;
2237
2238 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2239 s->allocflags |= __GFP_RECLAIMABLE;
2240
2241 /*
2242 * Determine the number of objects per slab
2243 */
2244 s->objects = (PAGE_SIZE << s->order) / size;
2245
2246 return !!s->objects;
2247
2248 }
2249
2250 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2251 const char *name, size_t size,
2252 size_t align, unsigned long flags,
2253 void (*ctor)(struct kmem_cache *, void *))
2254 {
2255 memset(s, 0, kmem_size);
2256 s->name = name;
2257 s->ctor = ctor;
2258 s->objsize = size;
2259 s->align = align;
2260 s->flags = kmem_cache_flags(size, flags, name, ctor);
2261
2262 if (!calculate_sizes(s))
2263 goto error;
2264
2265 s->refcount = 1;
2266 #ifdef CONFIG_NUMA
2267 s->remote_node_defrag_ratio = 100;
2268 #endif
2269 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2270 goto error;
2271
2272 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2273 return 1;
2274 free_kmem_cache_nodes(s);
2275 error:
2276 if (flags & SLAB_PANIC)
2277 panic("Cannot create slab %s size=%lu realsize=%u "
2278 "order=%u offset=%u flags=%lx\n",
2279 s->name, (unsigned long)size, s->size, s->order,
2280 s->offset, flags);
2281 return 0;
2282 }
2283
2284 /*
2285 * Check if a given pointer is valid
2286 */
2287 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2288 {
2289 struct page *page;
2290
2291 page = get_object_page(object);
2292
2293 if (!page || s != page->slab)
2294 /* No slab or wrong slab */
2295 return 0;
2296
2297 if (!check_valid_pointer(s, page, object))
2298 return 0;
2299
2300 /*
2301 * We could also check if the object is on the slabs freelist.
2302 * But this would be too expensive and it seems that the main
2303 * purpose of kmem_ptr_valid is to check if the object belongs
2304 * to a certain slab.
2305 */
2306 return 1;
2307 }
2308 EXPORT_SYMBOL(kmem_ptr_validate);
2309
2310 /*
2311 * Determine the size of a slab object
2312 */
2313 unsigned int kmem_cache_size(struct kmem_cache *s)
2314 {
2315 return s->objsize;
2316 }
2317 EXPORT_SYMBOL(kmem_cache_size);
2318
2319 const char *kmem_cache_name(struct kmem_cache *s)
2320 {
2321 return s->name;
2322 }
2323 EXPORT_SYMBOL(kmem_cache_name);
2324
2325 /*
2326 * Attempt to free all slabs on a node. Return the number of slabs we
2327 * were unable to free.
2328 */
2329 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2330 struct list_head *list)
2331 {
2332 int slabs_inuse = 0;
2333 unsigned long flags;
2334 struct page *page, *h;
2335
2336 spin_lock_irqsave(&n->list_lock, flags);
2337 list_for_each_entry_safe(page, h, list, lru)
2338 if (!page->inuse) {
2339 list_del(&page->lru);
2340 discard_slab(s, page);
2341 } else
2342 slabs_inuse++;
2343 spin_unlock_irqrestore(&n->list_lock, flags);
2344 return slabs_inuse;
2345 }
2346
2347 /*
2348 * Release all resources used by a slab cache.
2349 */
2350 static inline int kmem_cache_close(struct kmem_cache *s)
2351 {
2352 int node;
2353
2354 flush_all(s);
2355
2356 /* Attempt to free all objects */
2357 free_kmem_cache_cpus(s);
2358 for_each_node_state(node, N_NORMAL_MEMORY) {
2359 struct kmem_cache_node *n = get_node(s, node);
2360
2361 n->nr_partial -= free_list(s, n, &n->partial);
2362 if (atomic_long_read(&n->nr_slabs))
2363 return 1;
2364 }
2365 free_kmem_cache_nodes(s);
2366 return 0;
2367 }
2368
2369 /*
2370 * Close a cache and release the kmem_cache structure
2371 * (must be used for caches created using kmem_cache_create)
2372 */
2373 void kmem_cache_destroy(struct kmem_cache *s)
2374 {
2375 down_write(&slub_lock);
2376 s->refcount--;
2377 if (!s->refcount) {
2378 list_del(&s->list);
2379 up_write(&slub_lock);
2380 if (kmem_cache_close(s))
2381 WARN_ON(1);
2382 sysfs_slab_remove(s);
2383 } else
2384 up_write(&slub_lock);
2385 }
2386 EXPORT_SYMBOL(kmem_cache_destroy);
2387
2388 /********************************************************************
2389 * Kmalloc subsystem
2390 *******************************************************************/
2391
2392 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2393 EXPORT_SYMBOL(kmalloc_caches);
2394
2395 #ifdef CONFIG_ZONE_DMA
2396 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2397 #endif
2398
2399 static int __init setup_slub_min_order(char *str)
2400 {
2401 get_option(&str, &slub_min_order);
2402
2403 return 1;
2404 }
2405
2406 __setup("slub_min_order=", setup_slub_min_order);
2407
2408 static int __init setup_slub_max_order(char *str)
2409 {
2410 get_option(&str, &slub_max_order);
2411
2412 return 1;
2413 }
2414
2415 __setup("slub_max_order=", setup_slub_max_order);
2416
2417 static int __init setup_slub_min_objects(char *str)
2418 {
2419 get_option(&str, &slub_min_objects);
2420
2421 return 1;
2422 }
2423
2424 __setup("slub_min_objects=", setup_slub_min_objects);
2425
2426 static int __init setup_slub_nomerge(char *str)
2427 {
2428 slub_nomerge = 1;
2429 return 1;
2430 }
2431
2432 __setup("slub_nomerge", setup_slub_nomerge);
2433
2434 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2435 const char *name, int size, gfp_t gfp_flags)
2436 {
2437 unsigned int flags = 0;
2438
2439 if (gfp_flags & SLUB_DMA)
2440 flags = SLAB_CACHE_DMA;
2441
2442 down_write(&slub_lock);
2443 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2444 flags | __KMALLOC_CACHE, NULL))
2445 goto panic;
2446
2447 list_add(&s->list, &slab_caches);
2448 up_write(&slub_lock);
2449 if (sysfs_slab_add(s))
2450 goto panic;
2451 return s;
2452
2453 panic:
2454 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2455 }
2456
2457 #ifdef CONFIG_ZONE_DMA
2458
2459 static void sysfs_add_func(struct work_struct *w)
2460 {
2461 struct kmem_cache *s;
2462
2463 down_write(&slub_lock);
2464 list_for_each_entry(s, &slab_caches, list) {
2465 if (s->flags & __SYSFS_ADD_DEFERRED) {
2466 s->flags &= ~__SYSFS_ADD_DEFERRED;
2467 sysfs_slab_add(s);
2468 }
2469 }
2470 up_write(&slub_lock);
2471 }
2472
2473 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2474
2475 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2476 {
2477 struct kmem_cache *s;
2478 char *text;
2479 size_t realsize;
2480
2481 s = kmalloc_caches_dma[index];
2482 if (s)
2483 return s;
2484
2485 /* Dynamically create dma cache */
2486 if (flags & __GFP_WAIT)
2487 down_write(&slub_lock);
2488 else {
2489 if (!down_write_trylock(&slub_lock))
2490 goto out;
2491 }
2492
2493 if (kmalloc_caches_dma[index])
2494 goto unlock_out;
2495
2496 realsize = kmalloc_caches[index].objsize;
2497 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2498 (unsigned int)realsize);
2499 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2500
2501 if (!s || !text || !kmem_cache_open(s, flags, text,
2502 realsize, ARCH_KMALLOC_MINALIGN,
2503 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2504 kfree(s);
2505 kfree(text);
2506 goto unlock_out;
2507 }
2508
2509 list_add(&s->list, &slab_caches);
2510 kmalloc_caches_dma[index] = s;
2511
2512 schedule_work(&sysfs_add_work);
2513
2514 unlock_out:
2515 up_write(&slub_lock);
2516 out:
2517 return kmalloc_caches_dma[index];
2518 }
2519 #endif
2520
2521 /*
2522 * Conversion table for small slabs sizes / 8 to the index in the
2523 * kmalloc array. This is necessary for slabs < 192 since we have non power
2524 * of two cache sizes there. The size of larger slabs can be determined using
2525 * fls.
2526 */
2527 static s8 size_index[24] = {
2528 3, /* 8 */
2529 4, /* 16 */
2530 5, /* 24 */
2531 5, /* 32 */
2532 6, /* 40 */
2533 6, /* 48 */
2534 6, /* 56 */
2535 6, /* 64 */
2536 1, /* 72 */
2537 1, /* 80 */
2538 1, /* 88 */
2539 1, /* 96 */
2540 7, /* 104 */
2541 7, /* 112 */
2542 7, /* 120 */
2543 7, /* 128 */
2544 2, /* 136 */
2545 2, /* 144 */
2546 2, /* 152 */
2547 2, /* 160 */
2548 2, /* 168 */
2549 2, /* 176 */
2550 2, /* 184 */
2551 2 /* 192 */
2552 };
2553
2554 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2555 {
2556 int index;
2557
2558 if (size <= 192) {
2559 if (!size)
2560 return ZERO_SIZE_PTR;
2561
2562 index = size_index[(size - 1) / 8];
2563 } else
2564 index = fls(size - 1);
2565
2566 #ifdef CONFIG_ZONE_DMA
2567 if (unlikely((flags & SLUB_DMA)))
2568 return dma_kmalloc_cache(index, flags);
2569
2570 #endif
2571 return &kmalloc_caches[index];
2572 }
2573
2574 void *__kmalloc(size_t size, gfp_t flags)
2575 {
2576 struct kmem_cache *s;
2577
2578 if (unlikely(size > PAGE_SIZE))
2579 return kmalloc_large(size, flags);
2580
2581 s = get_slab(size, flags);
2582
2583 if (unlikely(ZERO_OR_NULL_PTR(s)))
2584 return s;
2585
2586 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2587 }
2588 EXPORT_SYMBOL(__kmalloc);
2589
2590 #ifdef CONFIG_NUMA
2591 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2592 {
2593 struct kmem_cache *s;
2594
2595 if (unlikely(size > PAGE_SIZE))
2596 return kmalloc_large(size, flags);
2597
2598 s = get_slab(size, flags);
2599
2600 if (unlikely(ZERO_OR_NULL_PTR(s)))
2601 return s;
2602
2603 return slab_alloc(s, flags, node, __builtin_return_address(0));
2604 }
2605 EXPORT_SYMBOL(__kmalloc_node);
2606 #endif
2607
2608 size_t ksize(const void *object)
2609 {
2610 struct page *page;
2611 struct kmem_cache *s;
2612
2613 BUG_ON(!object);
2614 if (unlikely(object == ZERO_SIZE_PTR))
2615 return 0;
2616
2617 page = virt_to_head_page(object);
2618 BUG_ON(!page);
2619
2620 if (unlikely(!PageSlab(page)))
2621 return PAGE_SIZE << compound_order(page);
2622
2623 s = page->slab;
2624 BUG_ON(!s);
2625
2626 /*
2627 * Debugging requires use of the padding between object
2628 * and whatever may come after it.
2629 */
2630 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2631 return s->objsize;
2632
2633 /*
2634 * If we have the need to store the freelist pointer
2635 * back there or track user information then we can
2636 * only use the space before that information.
2637 */
2638 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2639 return s->inuse;
2640
2641 /*
2642 * Else we can use all the padding etc for the allocation
2643 */
2644 return s->size;
2645 }
2646 EXPORT_SYMBOL(ksize);
2647
2648 void kfree(const void *x)
2649 {
2650 struct page *page;
2651 void *object = (void *)x;
2652
2653 if (unlikely(ZERO_OR_NULL_PTR(x)))
2654 return;
2655
2656 page = virt_to_head_page(x);
2657 if (unlikely(!PageSlab(page))) {
2658 put_page(page);
2659 return;
2660 }
2661 slab_free(page->slab, page, object, __builtin_return_address(0));
2662 }
2663 EXPORT_SYMBOL(kfree);
2664
2665 static unsigned long count_partial(struct kmem_cache_node *n)
2666 {
2667 unsigned long flags;
2668 unsigned long x = 0;
2669 struct page *page;
2670
2671 spin_lock_irqsave(&n->list_lock, flags);
2672 list_for_each_entry(page, &n->partial, lru)
2673 x += page->inuse;
2674 spin_unlock_irqrestore(&n->list_lock, flags);
2675 return x;
2676 }
2677
2678 /*
2679 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2680 * the remaining slabs by the number of items in use. The slabs with the
2681 * most items in use come first. New allocations will then fill those up
2682 * and thus they can be removed from the partial lists.
2683 *
2684 * The slabs with the least items are placed last. This results in them
2685 * being allocated from last increasing the chance that the last objects
2686 * are freed in them.
2687 */
2688 int kmem_cache_shrink(struct kmem_cache *s)
2689 {
2690 int node;
2691 int i;
2692 struct kmem_cache_node *n;
2693 struct page *page;
2694 struct page *t;
2695 struct list_head *slabs_by_inuse =
2696 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2697 unsigned long flags;
2698
2699 if (!slabs_by_inuse)
2700 return -ENOMEM;
2701
2702 flush_all(s);
2703 for_each_node_state(node, N_NORMAL_MEMORY) {
2704 n = get_node(s, node);
2705
2706 if (!n->nr_partial)
2707 continue;
2708
2709 for (i = 0; i < s->objects; i++)
2710 INIT_LIST_HEAD(slabs_by_inuse + i);
2711
2712 spin_lock_irqsave(&n->list_lock, flags);
2713
2714 /*
2715 * Build lists indexed by the items in use in each slab.
2716 *
2717 * Note that concurrent frees may occur while we hold the
2718 * list_lock. page->inuse here is the upper limit.
2719 */
2720 list_for_each_entry_safe(page, t, &n->partial, lru) {
2721 if (!page->inuse && slab_trylock(page)) {
2722 /*
2723 * Must hold slab lock here because slab_free
2724 * may have freed the last object and be
2725 * waiting to release the slab.
2726 */
2727 list_del(&page->lru);
2728 n->nr_partial--;
2729 slab_unlock(page);
2730 discard_slab(s, page);
2731 } else {
2732 list_move(&page->lru,
2733 slabs_by_inuse + page->inuse);
2734 }
2735 }
2736
2737 /*
2738 * Rebuild the partial list with the slabs filled up most
2739 * first and the least used slabs at the end.
2740 */
2741 for (i = s->objects - 1; i >= 0; i--)
2742 list_splice(slabs_by_inuse + i, n->partial.prev);
2743
2744 spin_unlock_irqrestore(&n->list_lock, flags);
2745 }
2746
2747 kfree(slabs_by_inuse);
2748 return 0;
2749 }
2750 EXPORT_SYMBOL(kmem_cache_shrink);
2751
2752 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2753 static int slab_mem_going_offline_callback(void *arg)
2754 {
2755 struct kmem_cache *s;
2756
2757 down_read(&slub_lock);
2758 list_for_each_entry(s, &slab_caches, list)
2759 kmem_cache_shrink(s);
2760 up_read(&slub_lock);
2761
2762 return 0;
2763 }
2764
2765 static void slab_mem_offline_callback(void *arg)
2766 {
2767 struct kmem_cache_node *n;
2768 struct kmem_cache *s;
2769 struct memory_notify *marg = arg;
2770 int offline_node;
2771
2772 offline_node = marg->status_change_nid;
2773
2774 /*
2775 * If the node still has available memory. we need kmem_cache_node
2776 * for it yet.
2777 */
2778 if (offline_node < 0)
2779 return;
2780
2781 down_read(&slub_lock);
2782 list_for_each_entry(s, &slab_caches, list) {
2783 n = get_node(s, offline_node);
2784 if (n) {
2785 /*
2786 * if n->nr_slabs > 0, slabs still exist on the node
2787 * that is going down. We were unable to free them,
2788 * and offline_pages() function shoudn't call this
2789 * callback. So, we must fail.
2790 */
2791 BUG_ON(atomic_long_read(&n->nr_slabs));
2792
2793 s->node[offline_node] = NULL;
2794 kmem_cache_free(kmalloc_caches, n);
2795 }
2796 }
2797 up_read(&slub_lock);
2798 }
2799
2800 static int slab_mem_going_online_callback(void *arg)
2801 {
2802 struct kmem_cache_node *n;
2803 struct kmem_cache *s;
2804 struct memory_notify *marg = arg;
2805 int nid = marg->status_change_nid;
2806 int ret = 0;
2807
2808 /*
2809 * If the node's memory is already available, then kmem_cache_node is
2810 * already created. Nothing to do.
2811 */
2812 if (nid < 0)
2813 return 0;
2814
2815 /*
2816 * We are bringing a node online. No memory is availabe yet. We must
2817 * allocate a kmem_cache_node structure in order to bring the node
2818 * online.
2819 */
2820 down_read(&slub_lock);
2821 list_for_each_entry(s, &slab_caches, list) {
2822 /*
2823 * XXX: kmem_cache_alloc_node will fallback to other nodes
2824 * since memory is not yet available from the node that
2825 * is brought up.
2826 */
2827 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2828 if (!n) {
2829 ret = -ENOMEM;
2830 goto out;
2831 }
2832 init_kmem_cache_node(n);
2833 s->node[nid] = n;
2834 }
2835 out:
2836 up_read(&slub_lock);
2837 return ret;
2838 }
2839
2840 static int slab_memory_callback(struct notifier_block *self,
2841 unsigned long action, void *arg)
2842 {
2843 int ret = 0;
2844
2845 switch (action) {
2846 case MEM_GOING_ONLINE:
2847 ret = slab_mem_going_online_callback(arg);
2848 break;
2849 case MEM_GOING_OFFLINE:
2850 ret = slab_mem_going_offline_callback(arg);
2851 break;
2852 case MEM_OFFLINE:
2853 case MEM_CANCEL_ONLINE:
2854 slab_mem_offline_callback(arg);
2855 break;
2856 case MEM_ONLINE:
2857 case MEM_CANCEL_OFFLINE:
2858 break;
2859 }
2860
2861 ret = notifier_from_errno(ret);
2862 return ret;
2863 }
2864
2865 #endif /* CONFIG_MEMORY_HOTPLUG */
2866
2867 /********************************************************************
2868 * Basic setup of slabs
2869 *******************************************************************/
2870
2871 void __init kmem_cache_init(void)
2872 {
2873 int i;
2874 int caches = 0;
2875
2876 init_alloc_cpu();
2877
2878 #ifdef CONFIG_NUMA
2879 /*
2880 * Must first have the slab cache available for the allocations of the
2881 * struct kmem_cache_node's. There is special bootstrap code in
2882 * kmem_cache_open for slab_state == DOWN.
2883 */
2884 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2885 sizeof(struct kmem_cache_node), GFP_KERNEL);
2886 kmalloc_caches[0].refcount = -1;
2887 caches++;
2888
2889 hotplug_memory_notifier(slab_memory_callback, 1);
2890 #endif
2891
2892 /* Able to allocate the per node structures */
2893 slab_state = PARTIAL;
2894
2895 /* Caches that are not of the two-to-the-power-of size */
2896 if (KMALLOC_MIN_SIZE <= 64) {
2897 create_kmalloc_cache(&kmalloc_caches[1],
2898 "kmalloc-96", 96, GFP_KERNEL);
2899 caches++;
2900 }
2901 if (KMALLOC_MIN_SIZE <= 128) {
2902 create_kmalloc_cache(&kmalloc_caches[2],
2903 "kmalloc-192", 192, GFP_KERNEL);
2904 caches++;
2905 }
2906
2907 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2908 create_kmalloc_cache(&kmalloc_caches[i],
2909 "kmalloc", 1 << i, GFP_KERNEL);
2910 caches++;
2911 }
2912
2913
2914 /*
2915 * Patch up the size_index table if we have strange large alignment
2916 * requirements for the kmalloc array. This is only the case for
2917 * mips it seems. The standard arches will not generate any code here.
2918 *
2919 * Largest permitted alignment is 256 bytes due to the way we
2920 * handle the index determination for the smaller caches.
2921 *
2922 * Make sure that nothing crazy happens if someone starts tinkering
2923 * around with ARCH_KMALLOC_MINALIGN
2924 */
2925 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2926 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2927
2928 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2929 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2930
2931 slab_state = UP;
2932
2933 /* Provide the correct kmalloc names now that the caches are up */
2934 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
2935 kmalloc_caches[i]. name =
2936 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2937
2938 #ifdef CONFIG_SMP
2939 register_cpu_notifier(&slab_notifier);
2940 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2941 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2942 #else
2943 kmem_size = sizeof(struct kmem_cache);
2944 #endif
2945
2946
2947 printk(KERN_INFO
2948 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2949 " CPUs=%d, Nodes=%d\n",
2950 caches, cache_line_size(),
2951 slub_min_order, slub_max_order, slub_min_objects,
2952 nr_cpu_ids, nr_node_ids);
2953 }
2954
2955 /*
2956 * Find a mergeable slab cache
2957 */
2958 static int slab_unmergeable(struct kmem_cache *s)
2959 {
2960 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2961 return 1;
2962
2963 if ((s->flags & __PAGE_ALLOC_FALLBACK))
2964 return 1;
2965
2966 if (s->ctor)
2967 return 1;
2968
2969 /*
2970 * We may have set a slab to be unmergeable during bootstrap.
2971 */
2972 if (s->refcount < 0)
2973 return 1;
2974
2975 return 0;
2976 }
2977
2978 static struct kmem_cache *find_mergeable(size_t size,
2979 size_t align, unsigned long flags, const char *name,
2980 void (*ctor)(struct kmem_cache *, void *))
2981 {
2982 struct kmem_cache *s;
2983
2984 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2985 return NULL;
2986
2987 if (ctor)
2988 return NULL;
2989
2990 size = ALIGN(size, sizeof(void *));
2991 align = calculate_alignment(flags, align, size);
2992 size = ALIGN(size, align);
2993 flags = kmem_cache_flags(size, flags, name, NULL);
2994
2995 list_for_each_entry(s, &slab_caches, list) {
2996 if (slab_unmergeable(s))
2997 continue;
2998
2999 if (size > s->size)
3000 continue;
3001
3002 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3003 continue;
3004 /*
3005 * Check if alignment is compatible.
3006 * Courtesy of Adrian Drzewiecki
3007 */
3008 if ((s->size & ~(align - 1)) != s->size)
3009 continue;
3010
3011 if (s->size - size >= sizeof(void *))
3012 continue;
3013
3014 return s;
3015 }
3016 return NULL;
3017 }
3018
3019 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3020 size_t align, unsigned long flags,
3021 void (*ctor)(struct kmem_cache *, void *))
3022 {
3023 struct kmem_cache *s;
3024
3025 down_write(&slub_lock);
3026 s = find_mergeable(size, align, flags, name, ctor);
3027 if (s) {
3028 int cpu;
3029
3030 s->refcount++;
3031 /*
3032 * Adjust the object sizes so that we clear
3033 * the complete object on kzalloc.
3034 */
3035 s->objsize = max(s->objsize, (int)size);
3036
3037 /*
3038 * And then we need to update the object size in the
3039 * per cpu structures
3040 */
3041 for_each_online_cpu(cpu)
3042 get_cpu_slab(s, cpu)->objsize = s->objsize;
3043 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3044 up_write(&slub_lock);
3045 if (sysfs_slab_alias(s, name))
3046 goto err;
3047 return s;
3048 }
3049 s = kmalloc(kmem_size, GFP_KERNEL);
3050 if (s) {
3051 if (kmem_cache_open(s, GFP_KERNEL, name,
3052 size, align, flags, ctor)) {
3053 list_add(&s->list, &slab_caches);
3054 up_write(&slub_lock);
3055 if (sysfs_slab_add(s))
3056 goto err;
3057 return s;
3058 }
3059 kfree(s);
3060 }
3061 up_write(&slub_lock);
3062
3063 err:
3064 if (flags & SLAB_PANIC)
3065 panic("Cannot create slabcache %s\n", name);
3066 else
3067 s = NULL;
3068 return s;
3069 }
3070 EXPORT_SYMBOL(kmem_cache_create);
3071
3072 #ifdef CONFIG_SMP
3073 /*
3074 * Use the cpu notifier to insure that the cpu slabs are flushed when
3075 * necessary.
3076 */
3077 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3078 unsigned long action, void *hcpu)
3079 {
3080 long cpu = (long)hcpu;
3081 struct kmem_cache *s;
3082 unsigned long flags;
3083
3084 switch (action) {
3085 case CPU_UP_PREPARE:
3086 case CPU_UP_PREPARE_FROZEN:
3087 init_alloc_cpu_cpu(cpu);
3088 down_read(&slub_lock);
3089 list_for_each_entry(s, &slab_caches, list)
3090 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3091 GFP_KERNEL);
3092 up_read(&slub_lock);
3093 break;
3094
3095 case CPU_UP_CANCELED:
3096 case CPU_UP_CANCELED_FROZEN:
3097 case CPU_DEAD:
3098 case CPU_DEAD_FROZEN:
3099 down_read(&slub_lock);
3100 list_for_each_entry(s, &slab_caches, list) {
3101 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3102
3103 local_irq_save(flags);
3104 __flush_cpu_slab(s, cpu);
3105 local_irq_restore(flags);
3106 free_kmem_cache_cpu(c, cpu);
3107 s->cpu_slab[cpu] = NULL;
3108 }
3109 up_read(&slub_lock);
3110 break;
3111 default:
3112 break;
3113 }
3114 return NOTIFY_OK;
3115 }
3116
3117 static struct notifier_block __cpuinitdata slab_notifier = {
3118 .notifier_call = slab_cpuup_callback
3119 };
3120
3121 #endif
3122
3123 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3124 {
3125 struct kmem_cache *s;
3126
3127 if (unlikely(size > PAGE_SIZE))
3128 return kmalloc_large(size, gfpflags);
3129
3130 s = get_slab(size, gfpflags);
3131
3132 if (unlikely(ZERO_OR_NULL_PTR(s)))
3133 return s;
3134
3135 return slab_alloc(s, gfpflags, -1, caller);
3136 }
3137
3138 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3139 int node, void *caller)
3140 {
3141 struct kmem_cache *s;
3142
3143 if (unlikely(size > PAGE_SIZE))
3144 return kmalloc_large(size, gfpflags);
3145
3146 s = get_slab(size, gfpflags);
3147
3148 if (unlikely(ZERO_OR_NULL_PTR(s)))
3149 return s;
3150
3151 return slab_alloc(s, gfpflags, node, caller);
3152 }
3153
3154 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3155 static int validate_slab(struct kmem_cache *s, struct page *page,
3156 unsigned long *map)
3157 {
3158 void *p;
3159 void *addr = page_address(page);
3160
3161 if (!check_slab(s, page) ||
3162 !on_freelist(s, page, NULL))
3163 return 0;
3164
3165 /* Now we know that a valid freelist exists */
3166 bitmap_zero(map, s->objects);
3167
3168 for_each_free_object(p, s, page->freelist) {
3169 set_bit(slab_index(p, s, addr), map);
3170 if (!check_object(s, page, p, 0))
3171 return 0;
3172 }
3173
3174 for_each_object(p, s, addr)
3175 if (!test_bit(slab_index(p, s, addr), map))
3176 if (!check_object(s, page, p, 1))
3177 return 0;
3178 return 1;
3179 }
3180
3181 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3182 unsigned long *map)
3183 {
3184 if (slab_trylock(page)) {
3185 validate_slab(s, page, map);
3186 slab_unlock(page);
3187 } else
3188 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3189 s->name, page);
3190
3191 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3192 if (!SlabDebug(page))
3193 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3194 "on slab 0x%p\n", s->name, page);
3195 } else {
3196 if (SlabDebug(page))
3197 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3198 "slab 0x%p\n", s->name, page);
3199 }
3200 }
3201
3202 static int validate_slab_node(struct kmem_cache *s,
3203 struct kmem_cache_node *n, unsigned long *map)
3204 {
3205 unsigned long count = 0;
3206 struct page *page;
3207 unsigned long flags;
3208
3209 spin_lock_irqsave(&n->list_lock, flags);
3210
3211 list_for_each_entry(page, &n->partial, lru) {
3212 validate_slab_slab(s, page, map);
3213 count++;
3214 }
3215 if (count != n->nr_partial)
3216 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3217 "counter=%ld\n", s->name, count, n->nr_partial);
3218
3219 if (!(s->flags & SLAB_STORE_USER))
3220 goto out;
3221
3222 list_for_each_entry(page, &n->full, lru) {
3223 validate_slab_slab(s, page, map);
3224 count++;
3225 }
3226 if (count != atomic_long_read(&n->nr_slabs))
3227 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3228 "counter=%ld\n", s->name, count,
3229 atomic_long_read(&n->nr_slabs));
3230
3231 out:
3232 spin_unlock_irqrestore(&n->list_lock, flags);
3233 return count;
3234 }
3235
3236 static long validate_slab_cache(struct kmem_cache *s)
3237 {
3238 int node;
3239 unsigned long count = 0;
3240 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3241 sizeof(unsigned long), GFP_KERNEL);
3242
3243 if (!map)
3244 return -ENOMEM;
3245
3246 flush_all(s);
3247 for_each_node_state(node, N_NORMAL_MEMORY) {
3248 struct kmem_cache_node *n = get_node(s, node);
3249
3250 count += validate_slab_node(s, n, map);
3251 }
3252 kfree(map);
3253 return count;
3254 }
3255
3256 #ifdef SLUB_RESILIENCY_TEST
3257 static void resiliency_test(void)
3258 {
3259 u8 *p;
3260
3261 printk(KERN_ERR "SLUB resiliency testing\n");
3262 printk(KERN_ERR "-----------------------\n");
3263 printk(KERN_ERR "A. Corruption after allocation\n");
3264
3265 p = kzalloc(16, GFP_KERNEL);
3266 p[16] = 0x12;
3267 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3268 " 0x12->0x%p\n\n", p + 16);
3269
3270 validate_slab_cache(kmalloc_caches + 4);
3271
3272 /* Hmmm... The next two are dangerous */
3273 p = kzalloc(32, GFP_KERNEL);
3274 p[32 + sizeof(void *)] = 0x34;
3275 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3276 " 0x34 -> -0x%p\n", p);
3277 printk(KERN_ERR
3278 "If allocated object is overwritten then not detectable\n\n");
3279
3280 validate_slab_cache(kmalloc_caches + 5);
3281 p = kzalloc(64, GFP_KERNEL);
3282 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3283 *p = 0x56;
3284 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3285 p);
3286 printk(KERN_ERR
3287 "If allocated object is overwritten then not detectable\n\n");
3288 validate_slab_cache(kmalloc_caches + 6);
3289
3290 printk(KERN_ERR "\nB. Corruption after free\n");
3291 p = kzalloc(128, GFP_KERNEL);
3292 kfree(p);
3293 *p = 0x78;
3294 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3295 validate_slab_cache(kmalloc_caches + 7);
3296
3297 p = kzalloc(256, GFP_KERNEL);
3298 kfree(p);
3299 p[50] = 0x9a;
3300 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3301 p);
3302 validate_slab_cache(kmalloc_caches + 8);
3303
3304 p = kzalloc(512, GFP_KERNEL);
3305 kfree(p);
3306 p[512] = 0xab;
3307 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3308 validate_slab_cache(kmalloc_caches + 9);
3309 }
3310 #else
3311 static void resiliency_test(void) {};
3312 #endif
3313
3314 /*
3315 * Generate lists of code addresses where slabcache objects are allocated
3316 * and freed.
3317 */
3318
3319 struct location {
3320 unsigned long count;
3321 void *addr;
3322 long long sum_time;
3323 long min_time;
3324 long max_time;
3325 long min_pid;
3326 long max_pid;
3327 cpumask_t cpus;
3328 nodemask_t nodes;
3329 };
3330
3331 struct loc_track {
3332 unsigned long max;
3333 unsigned long count;
3334 struct location *loc;
3335 };
3336
3337 static void free_loc_track(struct loc_track *t)
3338 {
3339 if (t->max)
3340 free_pages((unsigned long)t->loc,
3341 get_order(sizeof(struct location) * t->max));
3342 }
3343
3344 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3345 {
3346 struct location *l;
3347 int order;
3348
3349 order = get_order(sizeof(struct location) * max);
3350
3351 l = (void *)__get_free_pages(flags, order);
3352 if (!l)
3353 return 0;
3354
3355 if (t->count) {
3356 memcpy(l, t->loc, sizeof(struct location) * t->count);
3357 free_loc_track(t);
3358 }
3359 t->max = max;
3360 t->loc = l;
3361 return 1;
3362 }
3363
3364 static int add_location(struct loc_track *t, struct kmem_cache *s,
3365 const struct track *track)
3366 {
3367 long start, end, pos;
3368 struct location *l;
3369 void *caddr;
3370 unsigned long age = jiffies - track->when;
3371
3372 start = -1;
3373 end = t->count;
3374
3375 for ( ; ; ) {
3376 pos = start + (end - start + 1) / 2;
3377
3378 /*
3379 * There is nothing at "end". If we end up there
3380 * we need to add something to before end.
3381 */
3382 if (pos == end)
3383 break;
3384
3385 caddr = t->loc[pos].addr;
3386 if (track->addr == caddr) {
3387
3388 l = &t->loc[pos];
3389 l->count++;
3390 if (track->when) {
3391 l->sum_time += age;
3392 if (age < l->min_time)
3393 l->min_time = age;
3394 if (age > l->max_time)
3395 l->max_time = age;
3396
3397 if (track->pid < l->min_pid)
3398 l->min_pid = track->pid;
3399 if (track->pid > l->max_pid)
3400 l->max_pid = track->pid;
3401
3402 cpu_set(track->cpu, l->cpus);
3403 }
3404 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3405 return 1;
3406 }
3407
3408 if (track->addr < caddr)
3409 end = pos;
3410 else
3411 start = pos;
3412 }
3413
3414 /*
3415 * Not found. Insert new tracking element.
3416 */
3417 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3418 return 0;
3419
3420 l = t->loc + pos;
3421 if (pos < t->count)
3422 memmove(l + 1, l,
3423 (t->count - pos) * sizeof(struct location));
3424 t->count++;
3425 l->count = 1;
3426 l->addr = track->addr;
3427 l->sum_time = age;
3428 l->min_time = age;
3429 l->max_time = age;
3430 l->min_pid = track->pid;
3431 l->max_pid = track->pid;
3432 cpus_clear(l->cpus);
3433 cpu_set(track->cpu, l->cpus);
3434 nodes_clear(l->nodes);
3435 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3436 return 1;
3437 }
3438
3439 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3440 struct page *page, enum track_item alloc)
3441 {
3442 void *addr = page_address(page);
3443 DECLARE_BITMAP(map, s->objects);
3444 void *p;
3445
3446 bitmap_zero(map, s->objects);
3447 for_each_free_object(p, s, page->freelist)
3448 set_bit(slab_index(p, s, addr), map);
3449
3450 for_each_object(p, s, addr)
3451 if (!test_bit(slab_index(p, s, addr), map))
3452 add_location(t, s, get_track(s, p, alloc));
3453 }
3454
3455 static int list_locations(struct kmem_cache *s, char *buf,
3456 enum track_item alloc)
3457 {
3458 int len = 0;
3459 unsigned long i;
3460 struct loc_track t = { 0, 0, NULL };
3461 int node;
3462
3463 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3464 GFP_TEMPORARY))
3465 return sprintf(buf, "Out of memory\n");
3466
3467 /* Push back cpu slabs */
3468 flush_all(s);
3469
3470 for_each_node_state(node, N_NORMAL_MEMORY) {
3471 struct kmem_cache_node *n = get_node(s, node);
3472 unsigned long flags;
3473 struct page *page;
3474
3475 if (!atomic_long_read(&n->nr_slabs))
3476 continue;
3477
3478 spin_lock_irqsave(&n->list_lock, flags);
3479 list_for_each_entry(page, &n->partial, lru)
3480 process_slab(&t, s, page, alloc);
3481 list_for_each_entry(page, &n->full, lru)
3482 process_slab(&t, s, page, alloc);
3483 spin_unlock_irqrestore(&n->list_lock, flags);
3484 }
3485
3486 for (i = 0; i < t.count; i++) {
3487 struct location *l = &t.loc[i];
3488
3489 if (len > PAGE_SIZE - 100)
3490 break;
3491 len += sprintf(buf + len, "%7ld ", l->count);
3492
3493 if (l->addr)
3494 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3495 else
3496 len += sprintf(buf + len, "<not-available>");
3497
3498 if (l->sum_time != l->min_time) {
3499 unsigned long remainder;
3500
3501 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3502 l->min_time,
3503 div_long_long_rem(l->sum_time, l->count, &remainder),
3504 l->max_time);
3505 } else
3506 len += sprintf(buf + len, " age=%ld",
3507 l->min_time);
3508
3509 if (l->min_pid != l->max_pid)
3510 len += sprintf(buf + len, " pid=%ld-%ld",
3511 l->min_pid, l->max_pid);
3512 else
3513 len += sprintf(buf + len, " pid=%ld",
3514 l->min_pid);
3515
3516 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3517 len < PAGE_SIZE - 60) {
3518 len += sprintf(buf + len, " cpus=");
3519 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3520 l->cpus);
3521 }
3522
3523 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3524 len < PAGE_SIZE - 60) {
3525 len += sprintf(buf + len, " nodes=");
3526 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3527 l->nodes);
3528 }
3529
3530 len += sprintf(buf + len, "\n");
3531 }
3532
3533 free_loc_track(&t);
3534 if (!t.count)
3535 len += sprintf(buf, "No data\n");
3536 return len;
3537 }
3538
3539 enum slab_stat_type {
3540 SL_FULL,
3541 SL_PARTIAL,
3542 SL_CPU,
3543 SL_OBJECTS
3544 };
3545
3546 #define SO_FULL (1 << SL_FULL)
3547 #define SO_PARTIAL (1 << SL_PARTIAL)
3548 #define SO_CPU (1 << SL_CPU)
3549 #define SO_OBJECTS (1 << SL_OBJECTS)
3550
3551 static unsigned long show_slab_objects(struct kmem_cache *s,
3552 char *buf, unsigned long flags)
3553 {
3554 unsigned long total = 0;
3555 int cpu;
3556 int node;
3557 int x;
3558 unsigned long *nodes;
3559 unsigned long *per_cpu;
3560
3561 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3562 per_cpu = nodes + nr_node_ids;
3563
3564 for_each_possible_cpu(cpu) {
3565 struct page *page;
3566 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3567
3568 if (!c)
3569 continue;
3570
3571 page = c->page;
3572 node = c->node;
3573 if (node < 0)
3574 continue;
3575 if (page) {
3576 if (flags & SO_CPU) {
3577 if (flags & SO_OBJECTS)
3578 x = page->inuse;
3579 else
3580 x = 1;
3581 total += x;
3582 nodes[node] += x;
3583 }
3584 per_cpu[node]++;
3585 }
3586 }
3587
3588 for_each_node_state(node, N_NORMAL_MEMORY) {
3589 struct kmem_cache_node *n = get_node(s, node);
3590
3591 if (flags & SO_PARTIAL) {
3592 if (flags & SO_OBJECTS)
3593 x = count_partial(n);
3594 else
3595 x = n->nr_partial;
3596 total += x;
3597 nodes[node] += x;
3598 }
3599
3600 if (flags & SO_FULL) {
3601 int full_slabs = atomic_long_read(&n->nr_slabs)
3602 - per_cpu[node]
3603 - n->nr_partial;
3604
3605 if (flags & SO_OBJECTS)
3606 x = full_slabs * s->objects;
3607 else
3608 x = full_slabs;
3609 total += x;
3610 nodes[node] += x;
3611 }
3612 }
3613
3614 x = sprintf(buf, "%lu", total);
3615 #ifdef CONFIG_NUMA
3616 for_each_node_state(node, N_NORMAL_MEMORY)
3617 if (nodes[node])
3618 x += sprintf(buf + x, " N%d=%lu",
3619 node, nodes[node]);
3620 #endif
3621 kfree(nodes);
3622 return x + sprintf(buf + x, "\n");
3623 }
3624
3625 static int any_slab_objects(struct kmem_cache *s)
3626 {
3627 int node;
3628 int cpu;
3629
3630 for_each_possible_cpu(cpu) {
3631 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3632
3633 if (c && c->page)
3634 return 1;
3635 }
3636
3637 for_each_online_node(node) {
3638 struct kmem_cache_node *n = get_node(s, node);
3639
3640 if (!n)
3641 continue;
3642
3643 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3644 return 1;
3645 }
3646 return 0;
3647 }
3648
3649 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3650 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3651
3652 struct slab_attribute {
3653 struct attribute attr;
3654 ssize_t (*show)(struct kmem_cache *s, char *buf);
3655 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3656 };
3657
3658 #define SLAB_ATTR_RO(_name) \
3659 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3660
3661 #define SLAB_ATTR(_name) \
3662 static struct slab_attribute _name##_attr = \
3663 __ATTR(_name, 0644, _name##_show, _name##_store)
3664
3665 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3666 {
3667 return sprintf(buf, "%d\n", s->size);
3668 }
3669 SLAB_ATTR_RO(slab_size);
3670
3671 static ssize_t align_show(struct kmem_cache *s, char *buf)
3672 {
3673 return sprintf(buf, "%d\n", s->align);
3674 }
3675 SLAB_ATTR_RO(align);
3676
3677 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3678 {
3679 return sprintf(buf, "%d\n", s->objsize);
3680 }
3681 SLAB_ATTR_RO(object_size);
3682
3683 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3684 {
3685 return sprintf(buf, "%d\n", s->objects);
3686 }
3687 SLAB_ATTR_RO(objs_per_slab);
3688
3689 static ssize_t order_show(struct kmem_cache *s, char *buf)
3690 {
3691 return sprintf(buf, "%d\n", s->order);
3692 }
3693 SLAB_ATTR_RO(order);
3694
3695 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3696 {
3697 if (s->ctor) {
3698 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3699
3700 return n + sprintf(buf + n, "\n");
3701 }
3702 return 0;
3703 }
3704 SLAB_ATTR_RO(ctor);
3705
3706 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3707 {
3708 return sprintf(buf, "%d\n", s->refcount - 1);
3709 }
3710 SLAB_ATTR_RO(aliases);
3711
3712 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3713 {
3714 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3715 }
3716 SLAB_ATTR_RO(slabs);
3717
3718 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3719 {
3720 return show_slab_objects(s, buf, SO_PARTIAL);
3721 }
3722 SLAB_ATTR_RO(partial);
3723
3724 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3725 {
3726 return show_slab_objects(s, buf, SO_CPU);
3727 }
3728 SLAB_ATTR_RO(cpu_slabs);
3729
3730 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3731 {
3732 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3733 }
3734 SLAB_ATTR_RO(objects);
3735
3736 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3737 {
3738 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3739 }
3740
3741 static ssize_t sanity_checks_store(struct kmem_cache *s,
3742 const char *buf, size_t length)
3743 {
3744 s->flags &= ~SLAB_DEBUG_FREE;
3745 if (buf[0] == '1')
3746 s->flags |= SLAB_DEBUG_FREE;
3747 return length;
3748 }
3749 SLAB_ATTR(sanity_checks);
3750
3751 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3752 {
3753 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3754 }
3755
3756 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3757 size_t length)
3758 {
3759 s->flags &= ~SLAB_TRACE;
3760 if (buf[0] == '1')
3761 s->flags |= SLAB_TRACE;
3762 return length;
3763 }
3764 SLAB_ATTR(trace);
3765
3766 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3767 {
3768 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3769 }
3770
3771 static ssize_t reclaim_account_store(struct kmem_cache *s,
3772 const char *buf, size_t length)
3773 {
3774 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3775 if (buf[0] == '1')
3776 s->flags |= SLAB_RECLAIM_ACCOUNT;
3777 return length;
3778 }
3779 SLAB_ATTR(reclaim_account);
3780
3781 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3782 {
3783 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3784 }
3785 SLAB_ATTR_RO(hwcache_align);
3786
3787 #ifdef CONFIG_ZONE_DMA
3788 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3789 {
3790 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3791 }
3792 SLAB_ATTR_RO(cache_dma);
3793 #endif
3794
3795 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3796 {
3797 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3798 }
3799 SLAB_ATTR_RO(destroy_by_rcu);
3800
3801 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3802 {
3803 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3804 }
3805
3806 static ssize_t red_zone_store(struct kmem_cache *s,
3807 const char *buf, size_t length)
3808 {
3809 if (any_slab_objects(s))
3810 return -EBUSY;
3811
3812 s->flags &= ~SLAB_RED_ZONE;
3813 if (buf[0] == '1')
3814 s->flags |= SLAB_RED_ZONE;
3815 calculate_sizes(s);
3816 return length;
3817 }
3818 SLAB_ATTR(red_zone);
3819
3820 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3821 {
3822 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3823 }
3824
3825 static ssize_t poison_store(struct kmem_cache *s,
3826 const char *buf, size_t length)
3827 {
3828 if (any_slab_objects(s))
3829 return -EBUSY;
3830
3831 s->flags &= ~SLAB_POISON;
3832 if (buf[0] == '1')
3833 s->flags |= SLAB_POISON;
3834 calculate_sizes(s);
3835 return length;
3836 }
3837 SLAB_ATTR(poison);
3838
3839 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3840 {
3841 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3842 }
3843
3844 static ssize_t store_user_store(struct kmem_cache *s,
3845 const char *buf, size_t length)
3846 {
3847 if (any_slab_objects(s))
3848 return -EBUSY;
3849
3850 s->flags &= ~SLAB_STORE_USER;
3851 if (buf[0] == '1')
3852 s->flags |= SLAB_STORE_USER;
3853 calculate_sizes(s);
3854 return length;
3855 }
3856 SLAB_ATTR(store_user);
3857
3858 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3859 {
3860 return 0;
3861 }
3862
3863 static ssize_t validate_store(struct kmem_cache *s,
3864 const char *buf, size_t length)
3865 {
3866 int ret = -EINVAL;
3867
3868 if (buf[0] == '1') {
3869 ret = validate_slab_cache(s);
3870 if (ret >= 0)
3871 ret = length;
3872 }
3873 return ret;
3874 }
3875 SLAB_ATTR(validate);
3876
3877 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3878 {
3879 return 0;
3880 }
3881
3882 static ssize_t shrink_store(struct kmem_cache *s,
3883 const char *buf, size_t length)
3884 {
3885 if (buf[0] == '1') {
3886 int rc = kmem_cache_shrink(s);
3887
3888 if (rc)
3889 return rc;
3890 } else
3891 return -EINVAL;
3892 return length;
3893 }
3894 SLAB_ATTR(shrink);
3895
3896 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3897 {
3898 if (!(s->flags & SLAB_STORE_USER))
3899 return -ENOSYS;
3900 return list_locations(s, buf, TRACK_ALLOC);
3901 }
3902 SLAB_ATTR_RO(alloc_calls);
3903
3904 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3905 {
3906 if (!(s->flags & SLAB_STORE_USER))
3907 return -ENOSYS;
3908 return list_locations(s, buf, TRACK_FREE);
3909 }
3910 SLAB_ATTR_RO(free_calls);
3911
3912 #ifdef CONFIG_NUMA
3913 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
3914 {
3915 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
3916 }
3917
3918 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
3919 const char *buf, size_t length)
3920 {
3921 int n = simple_strtoul(buf, NULL, 10);
3922
3923 if (n < 100)
3924 s->remote_node_defrag_ratio = n * 10;
3925 return length;
3926 }
3927 SLAB_ATTR(remote_node_defrag_ratio);
3928 #endif
3929
3930 #ifdef CONFIG_SLUB_STATS
3931
3932 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3933 {
3934 unsigned long sum = 0;
3935 int cpu;
3936 int len;
3937 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3938
3939 if (!data)
3940 return -ENOMEM;
3941
3942 for_each_online_cpu(cpu) {
3943 unsigned x = get_cpu_slab(s, cpu)->stat[si];
3944
3945 data[cpu] = x;
3946 sum += x;
3947 }
3948
3949 len = sprintf(buf, "%lu", sum);
3950
3951 for_each_online_cpu(cpu) {
3952 if (data[cpu] && len < PAGE_SIZE - 20)
3953 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
3954 }
3955 kfree(data);
3956 return len + sprintf(buf + len, "\n");
3957 }
3958
3959 #define STAT_ATTR(si, text) \
3960 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
3961 { \
3962 return show_stat(s, buf, si); \
3963 } \
3964 SLAB_ATTR_RO(text); \
3965
3966 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
3967 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
3968 STAT_ATTR(FREE_FASTPATH, free_fastpath);
3969 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
3970 STAT_ATTR(FREE_FROZEN, free_frozen);
3971 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
3972 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
3973 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
3974 STAT_ATTR(ALLOC_SLAB, alloc_slab);
3975 STAT_ATTR(ALLOC_REFILL, alloc_refill);
3976 STAT_ATTR(FREE_SLAB, free_slab);
3977 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
3978 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
3979 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
3980 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
3981 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
3982 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
3983
3984 #endif
3985
3986 static struct attribute *slab_attrs[] = {
3987 &slab_size_attr.attr,
3988 &object_size_attr.attr,
3989 &objs_per_slab_attr.attr,
3990 &order_attr.attr,
3991 &objects_attr.attr,
3992 &slabs_attr.attr,
3993 &partial_attr.attr,
3994 &cpu_slabs_attr.attr,
3995 &ctor_attr.attr,
3996 &aliases_attr.attr,
3997 &align_attr.attr,
3998 &sanity_checks_attr.attr,
3999 &trace_attr.attr,
4000 &hwcache_align_attr.attr,
4001 &reclaim_account_attr.attr,
4002 &destroy_by_rcu_attr.attr,
4003 &red_zone_attr.attr,
4004 &poison_attr.attr,
4005 &store_user_attr.attr,
4006 &validate_attr.attr,
4007 &shrink_attr.attr,
4008 &alloc_calls_attr.attr,
4009 &free_calls_attr.attr,
4010 #ifdef CONFIG_ZONE_DMA
4011 &cache_dma_attr.attr,
4012 #endif
4013 #ifdef CONFIG_NUMA
4014 &remote_node_defrag_ratio_attr.attr,
4015 #endif
4016 #ifdef CONFIG_SLUB_STATS
4017 &alloc_fastpath_attr.attr,
4018 &alloc_slowpath_attr.attr,
4019 &free_fastpath_attr.attr,
4020 &free_slowpath_attr.attr,
4021 &free_frozen_attr.attr,
4022 &free_add_partial_attr.attr,
4023 &free_remove_partial_attr.attr,
4024 &alloc_from_partial_attr.attr,
4025 &alloc_slab_attr.attr,
4026 &alloc_refill_attr.attr,
4027 &free_slab_attr.attr,
4028 &cpuslab_flush_attr.attr,
4029 &deactivate_full_attr.attr,
4030 &deactivate_empty_attr.attr,
4031 &deactivate_to_head_attr.attr,
4032 &deactivate_to_tail_attr.attr,
4033 &deactivate_remote_frees_attr.attr,
4034 #endif
4035 NULL
4036 };
4037
4038 static struct attribute_group slab_attr_group = {
4039 .attrs = slab_attrs,
4040 };
4041
4042 static ssize_t slab_attr_show(struct kobject *kobj,
4043 struct attribute *attr,
4044 char *buf)
4045 {
4046 struct slab_attribute *attribute;
4047 struct kmem_cache *s;
4048 int err;
4049
4050 attribute = to_slab_attr(attr);
4051 s = to_slab(kobj);
4052
4053 if (!attribute->show)
4054 return -EIO;
4055
4056 err = attribute->show(s, buf);
4057
4058 return err;
4059 }
4060
4061 static ssize_t slab_attr_store(struct kobject *kobj,
4062 struct attribute *attr,
4063 const char *buf, size_t len)
4064 {
4065 struct slab_attribute *attribute;
4066 struct kmem_cache *s;
4067 int err;
4068
4069 attribute = to_slab_attr(attr);
4070 s = to_slab(kobj);
4071
4072 if (!attribute->store)
4073 return -EIO;
4074
4075 err = attribute->store(s, buf, len);
4076
4077 return err;
4078 }
4079
4080 static void kmem_cache_release(struct kobject *kobj)
4081 {
4082 struct kmem_cache *s = to_slab(kobj);
4083
4084 kfree(s);
4085 }
4086
4087 static struct sysfs_ops slab_sysfs_ops = {
4088 .show = slab_attr_show,
4089 .store = slab_attr_store,
4090 };
4091
4092 static struct kobj_type slab_ktype = {
4093 .sysfs_ops = &slab_sysfs_ops,
4094 .release = kmem_cache_release
4095 };
4096
4097 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4098 {
4099 struct kobj_type *ktype = get_ktype(kobj);
4100
4101 if (ktype == &slab_ktype)
4102 return 1;
4103 return 0;
4104 }
4105
4106 static struct kset_uevent_ops slab_uevent_ops = {
4107 .filter = uevent_filter,
4108 };
4109
4110 static struct kset *slab_kset;
4111
4112 #define ID_STR_LENGTH 64
4113
4114 /* Create a unique string id for a slab cache:
4115 * format
4116 * :[flags-]size:[memory address of kmemcache]
4117 */
4118 static char *create_unique_id(struct kmem_cache *s)
4119 {
4120 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4121 char *p = name;
4122
4123 BUG_ON(!name);
4124
4125 *p++ = ':';
4126 /*
4127 * First flags affecting slabcache operations. We will only
4128 * get here for aliasable slabs so we do not need to support
4129 * too many flags. The flags here must cover all flags that
4130 * are matched during merging to guarantee that the id is
4131 * unique.
4132 */
4133 if (s->flags & SLAB_CACHE_DMA)
4134 *p++ = 'd';
4135 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4136 *p++ = 'a';
4137 if (s->flags & SLAB_DEBUG_FREE)
4138 *p++ = 'F';
4139 if (p != name + 1)
4140 *p++ = '-';
4141 p += sprintf(p, "%07d", s->size);
4142 BUG_ON(p > name + ID_STR_LENGTH - 1);
4143 return name;
4144 }
4145
4146 static int sysfs_slab_add(struct kmem_cache *s)
4147 {
4148 int err;
4149 const char *name;
4150 int unmergeable;
4151
4152 if (slab_state < SYSFS)
4153 /* Defer until later */
4154 return 0;
4155
4156 unmergeable = slab_unmergeable(s);
4157 if (unmergeable) {
4158 /*
4159 * Slabcache can never be merged so we can use the name proper.
4160 * This is typically the case for debug situations. In that
4161 * case we can catch duplicate names easily.
4162 */
4163 sysfs_remove_link(&slab_kset->kobj, s->name);
4164 name = s->name;
4165 } else {
4166 /*
4167 * Create a unique name for the slab as a target
4168 * for the symlinks.
4169 */
4170 name = create_unique_id(s);
4171 }
4172
4173 s->kobj.kset = slab_kset;
4174 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4175 if (err) {
4176 kobject_put(&s->kobj);
4177 return err;
4178 }
4179
4180 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4181 if (err)
4182 return err;
4183 kobject_uevent(&s->kobj, KOBJ_ADD);
4184 if (!unmergeable) {
4185 /* Setup first alias */
4186 sysfs_slab_alias(s, s->name);
4187 kfree(name);
4188 }
4189 return 0;
4190 }
4191
4192 static void sysfs_slab_remove(struct kmem_cache *s)
4193 {
4194 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4195 kobject_del(&s->kobj);
4196 kobject_put(&s->kobj);
4197 }
4198
4199 /*
4200 * Need to buffer aliases during bootup until sysfs becomes
4201 * available lest we loose that information.
4202 */
4203 struct saved_alias {
4204 struct kmem_cache *s;
4205 const char *name;
4206 struct saved_alias *next;
4207 };
4208
4209 static struct saved_alias *alias_list;
4210
4211 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4212 {
4213 struct saved_alias *al;
4214
4215 if (slab_state == SYSFS) {
4216 /*
4217 * If we have a leftover link then remove it.
4218 */
4219 sysfs_remove_link(&slab_kset->kobj, name);
4220 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4221 }
4222
4223 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4224 if (!al)
4225 return -ENOMEM;
4226
4227 al->s = s;
4228 al->name = name;
4229 al->next = alias_list;
4230 alias_list = al;
4231 return 0;
4232 }
4233
4234 static int __init slab_sysfs_init(void)
4235 {
4236 struct kmem_cache *s;
4237 int err;
4238
4239 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4240 if (!slab_kset) {
4241 printk(KERN_ERR "Cannot register slab subsystem.\n");
4242 return -ENOSYS;
4243 }
4244
4245 slab_state = SYSFS;
4246
4247 list_for_each_entry(s, &slab_caches, list) {
4248 err = sysfs_slab_add(s);
4249 if (err)
4250 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4251 " to sysfs\n", s->name);
4252 }
4253
4254 while (alias_list) {
4255 struct saved_alias *al = alias_list;
4256
4257 alias_list = alias_list->next;
4258 err = sysfs_slab_alias(al->s, al->name);
4259 if (err)
4260 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4261 " %s to sysfs\n", s->name);
4262 kfree(al);
4263 }
4264
4265 resiliency_test();
4266 return 0;
4267 }
4268
4269 __initcall(slab_sysfs_init);
4270 #endif
4271
4272 /*
4273 * The /proc/slabinfo ABI
4274 */
4275 #ifdef CONFIG_SLABINFO
4276
4277 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4278 size_t count, loff_t *ppos)
4279 {
4280 return -EINVAL;
4281 }
4282
4283
4284 static void print_slabinfo_header(struct seq_file *m)
4285 {
4286 seq_puts(m, "slabinfo - version: 2.1\n");
4287 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4288 "<objperslab> <pagesperslab>");
4289 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4290 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4291 seq_putc(m, '\n');
4292 }
4293
4294 static void *s_start(struct seq_file *m, loff_t *pos)
4295 {
4296 loff_t n = *pos;
4297
4298 down_read(&slub_lock);
4299 if (!n)
4300 print_slabinfo_header(m);
4301
4302 return seq_list_start(&slab_caches, *pos);
4303 }
4304
4305 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4306 {
4307 return seq_list_next(p, &slab_caches, pos);
4308 }
4309
4310 static void s_stop(struct seq_file *m, void *p)
4311 {
4312 up_read(&slub_lock);
4313 }
4314
4315 static int s_show(struct seq_file *m, void *p)
4316 {
4317 unsigned long nr_partials = 0;
4318 unsigned long nr_slabs = 0;
4319 unsigned long nr_inuse = 0;
4320 unsigned long nr_objs;
4321 struct kmem_cache *s;
4322 int node;
4323
4324 s = list_entry(p, struct kmem_cache, list);
4325
4326 for_each_online_node(node) {
4327 struct kmem_cache_node *n = get_node(s, node);
4328
4329 if (!n)
4330 continue;
4331
4332 nr_partials += n->nr_partial;
4333 nr_slabs += atomic_long_read(&n->nr_slabs);
4334 nr_inuse += count_partial(n);
4335 }
4336
4337 nr_objs = nr_slabs * s->objects;
4338 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4339
4340 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4341 nr_objs, s->size, s->objects, (1 << s->order));
4342 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4343 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4344 0UL);
4345 seq_putc(m, '\n');
4346 return 0;
4347 }
4348
4349 const struct seq_operations slabinfo_op = {
4350 .start = s_start,
4351 .next = s_next,
4352 .stop = s_stop,
4353 .show = s_show,
4354 };
4355
4356 #endif /* CONFIG_SLABINFO */
This page took 0.191021 seconds and 6 git commands to generate.