count_partial() is not used if !SLUB_DEBUG and !CONFIG_SLABINFO
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24
25 /*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
101 */
102
103 #define FROZEN (1 << PG_active)
104
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110
111 static inline int SlabFrozen(struct page *page)
112 {
113 return page->flags & FROZEN;
114 }
115
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 page->flags |= FROZEN;
119 }
120
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 page->flags &= ~FROZEN;
124 }
125
126 static inline int SlabDebug(struct page *page)
127 {
128 return page->flags & SLABDEBUG;
129 }
130
131 static inline void SetSlabDebug(struct page *page)
132 {
133 page->flags |= SLABDEBUG;
134 }
135
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 page->flags &= ~SLABDEBUG;
139 }
140
141 /*
142 * Issues still to be resolved:
143 *
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
146 * - Variable sizing of the per node arrays
147 */
148
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151
152 #if PAGE_SHIFT <= 12
153
154 /*
155 * Small page size. Make sure that we do not fragment memory
156 */
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
159
160 #else
161
162 /*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
168
169 #endif
170
171 /*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
175 #define MIN_PARTIAL 5
176
177 /*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182 #define MAX_PARTIAL 10
183
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
186
187 /*
188 * Set of flags that will prevent slab merging
189 */
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
199
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
203
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
209
210 /* Not all arches define cache_line_size */
211 #ifndef cache_line_size
212 #define cache_line_size() L1_CACHE_BYTES
213 #endif
214
215 static int kmem_size = sizeof(struct kmem_cache);
216
217 #ifdef CONFIG_SMP
218 static struct notifier_block slab_notifier;
219 #endif
220
221 static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
224 UP, /* Everything works but does not show up in sysfs */
225 SYSFS /* Sysfs up */
226 } slab_state = DOWN;
227
228 /* A list of all slab caches on the system */
229 static DECLARE_RWSEM(slub_lock);
230 static LIST_HEAD(slab_caches);
231
232 /*
233 * Tracking user of a slab.
234 */
235 struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240 };
241
242 enum track_item { TRACK_ALLOC, TRACK_FREE };
243
244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
245 static int sysfs_slab_add(struct kmem_cache *);
246 static int sysfs_slab_alias(struct kmem_cache *, const char *);
247 static void sysfs_slab_remove(struct kmem_cache *);
248
249 #else
250 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
253 static inline void sysfs_slab_remove(struct kmem_cache *s)
254 {
255 kfree(s);
256 }
257
258 #endif
259
260 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261 {
262 #ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264 #endif
265 }
266
267 /********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271 int slab_is_available(void)
272 {
273 return slab_state >= UP;
274 }
275
276 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277 {
278 #ifdef CONFIG_NUMA
279 return s->node[node];
280 #else
281 return &s->local_node;
282 #endif
283 }
284
285 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286 {
287 #ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289 #else
290 return &s->cpu_slab;
291 #endif
292 }
293
294 /* Verify that a pointer has an address that is valid within a slab page */
295 static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
297 {
298 void *base;
299
300 if (!object)
301 return 1;
302
303 base = page_address(page);
304 if (object < base || object >= base + s->objects * s->size ||
305 (object - base) % s->size) {
306 return 0;
307 }
308
309 return 1;
310 }
311
312 /*
313 * Slow version of get and set free pointer.
314 *
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
318 */
319 static inline void *get_freepointer(struct kmem_cache *s, void *object)
320 {
321 return *(void **)(object + s->offset);
322 }
323
324 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
325 {
326 *(void **)(object + s->offset) = fp;
327 }
328
329 /* Loop over all objects in a slab */
330 #define for_each_object(__p, __s, __addr) \
331 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
332 __p += (__s)->size)
333
334 /* Scan freelist */
335 #define for_each_free_object(__p, __s, __free) \
336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
337
338 /* Determine object index from a given position */
339 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
340 {
341 return (p - addr) / s->size;
342 }
343
344 #ifdef CONFIG_SLUB_DEBUG
345 /*
346 * Debug settings:
347 */
348 #ifdef CONFIG_SLUB_DEBUG_ON
349 static int slub_debug = DEBUG_DEFAULT_FLAGS;
350 #else
351 static int slub_debug;
352 #endif
353
354 static char *slub_debug_slabs;
355
356 /*
357 * Object debugging
358 */
359 static void print_section(char *text, u8 *addr, unsigned int length)
360 {
361 int i, offset;
362 int newline = 1;
363 char ascii[17];
364
365 ascii[16] = 0;
366
367 for (i = 0; i < length; i++) {
368 if (newline) {
369 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
370 newline = 0;
371 }
372 printk(KERN_CONT " %02x", addr[i]);
373 offset = i % 16;
374 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
375 if (offset == 15) {
376 printk(KERN_CONT " %s\n", ascii);
377 newline = 1;
378 }
379 }
380 if (!newline) {
381 i %= 16;
382 while (i < 16) {
383 printk(KERN_CONT " ");
384 ascii[i] = ' ';
385 i++;
386 }
387 printk(KERN_CONT " %s\n", ascii);
388 }
389 }
390
391 static struct track *get_track(struct kmem_cache *s, void *object,
392 enum track_item alloc)
393 {
394 struct track *p;
395
396 if (s->offset)
397 p = object + s->offset + sizeof(void *);
398 else
399 p = object + s->inuse;
400
401 return p + alloc;
402 }
403
404 static void set_track(struct kmem_cache *s, void *object,
405 enum track_item alloc, void *addr)
406 {
407 struct track *p;
408
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
413
414 p += alloc;
415 if (addr) {
416 p->addr = addr;
417 p->cpu = smp_processor_id();
418 p->pid = current ? current->pid : -1;
419 p->when = jiffies;
420 } else
421 memset(p, 0, sizeof(struct track));
422 }
423
424 static void init_tracking(struct kmem_cache *s, void *object)
425 {
426 if (!(s->flags & SLAB_STORE_USER))
427 return;
428
429 set_track(s, object, TRACK_FREE, NULL);
430 set_track(s, object, TRACK_ALLOC, NULL);
431 }
432
433 static void print_track(const char *s, struct track *t)
434 {
435 if (!t->addr)
436 return;
437
438 printk(KERN_ERR "INFO: %s in ", s);
439 __print_symbol("%s", (unsigned long)t->addr);
440 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
441 }
442
443 static void print_tracking(struct kmem_cache *s, void *object)
444 {
445 if (!(s->flags & SLAB_STORE_USER))
446 return;
447
448 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
449 print_track("Freed", get_track(s, object, TRACK_FREE));
450 }
451
452 static void print_page_info(struct page *page)
453 {
454 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
455 page, page->inuse, page->freelist, page->flags);
456
457 }
458
459 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
460 {
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "========================================"
468 "=====================================\n");
469 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
470 printk(KERN_ERR "----------------------------------------"
471 "-------------------------------------\n\n");
472 }
473
474 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
475 {
476 va_list args;
477 char buf[100];
478
479 va_start(args, fmt);
480 vsnprintf(buf, sizeof(buf), fmt, args);
481 va_end(args);
482 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
483 }
484
485 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
486 {
487 unsigned int off; /* Offset of last byte */
488 u8 *addr = page_address(page);
489
490 print_tracking(s, p);
491
492 print_page_info(page);
493
494 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
495 p, p - addr, get_freepointer(s, p));
496
497 if (p > addr + 16)
498 print_section("Bytes b4", p - 16, 16);
499
500 print_section("Object", p, min(s->objsize, 128));
501
502 if (s->flags & SLAB_RED_ZONE)
503 print_section("Redzone", p + s->objsize,
504 s->inuse - s->objsize);
505
506 if (s->offset)
507 off = s->offset + sizeof(void *);
508 else
509 off = s->inuse;
510
511 if (s->flags & SLAB_STORE_USER)
512 off += 2 * sizeof(struct track);
513
514 if (off != s->size)
515 /* Beginning of the filler is the free pointer */
516 print_section("Padding", p + off, s->size - off);
517
518 dump_stack();
519 }
520
521 static void object_err(struct kmem_cache *s, struct page *page,
522 u8 *object, char *reason)
523 {
524 slab_bug(s, reason);
525 print_trailer(s, page, object);
526 }
527
528 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
529 {
530 va_list args;
531 char buf[100];
532
533 va_start(args, fmt);
534 vsnprintf(buf, sizeof(buf), fmt, args);
535 va_end(args);
536 slab_bug(s, fmt);
537 print_page_info(page);
538 dump_stack();
539 }
540
541 static void init_object(struct kmem_cache *s, void *object, int active)
542 {
543 u8 *p = object;
544
545 if (s->flags & __OBJECT_POISON) {
546 memset(p, POISON_FREE, s->objsize - 1);
547 p[s->objsize - 1] = POISON_END;
548 }
549
550 if (s->flags & SLAB_RED_ZONE)
551 memset(p + s->objsize,
552 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
553 s->inuse - s->objsize);
554 }
555
556 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
557 {
558 while (bytes) {
559 if (*start != (u8)value)
560 return start;
561 start++;
562 bytes--;
563 }
564 return NULL;
565 }
566
567 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
568 void *from, void *to)
569 {
570 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
571 memset(from, data, to - from);
572 }
573
574 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
575 u8 *object, char *what,
576 u8 *start, unsigned int value, unsigned int bytes)
577 {
578 u8 *fault;
579 u8 *end;
580
581 fault = check_bytes(start, value, bytes);
582 if (!fault)
583 return 1;
584
585 end = start + bytes;
586 while (end > fault && end[-1] == value)
587 end--;
588
589 slab_bug(s, "%s overwritten", what);
590 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
591 fault, end - 1, fault[0], value);
592 print_trailer(s, page, object);
593
594 restore_bytes(s, what, value, fault, end);
595 return 0;
596 }
597
598 /*
599 * Object layout:
600 *
601 * object address
602 * Bytes of the object to be managed.
603 * If the freepointer may overlay the object then the free
604 * pointer is the first word of the object.
605 *
606 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
607 * 0xa5 (POISON_END)
608 *
609 * object + s->objsize
610 * Padding to reach word boundary. This is also used for Redzoning.
611 * Padding is extended by another word if Redzoning is enabled and
612 * objsize == inuse.
613 *
614 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
615 * 0xcc (RED_ACTIVE) for objects in use.
616 *
617 * object + s->inuse
618 * Meta data starts here.
619 *
620 * A. Free pointer (if we cannot overwrite object on free)
621 * B. Tracking data for SLAB_STORE_USER
622 * C. Padding to reach required alignment boundary or at mininum
623 * one word if debugging is on to be able to detect writes
624 * before the word boundary.
625 *
626 * Padding is done using 0x5a (POISON_INUSE)
627 *
628 * object + s->size
629 * Nothing is used beyond s->size.
630 *
631 * If slabcaches are merged then the objsize and inuse boundaries are mostly
632 * ignored. And therefore no slab options that rely on these boundaries
633 * may be used with merged slabcaches.
634 */
635
636 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
637 {
638 unsigned long off = s->inuse; /* The end of info */
639
640 if (s->offset)
641 /* Freepointer is placed after the object. */
642 off += sizeof(void *);
643
644 if (s->flags & SLAB_STORE_USER)
645 /* We also have user information there */
646 off += 2 * sizeof(struct track);
647
648 if (s->size == off)
649 return 1;
650
651 return check_bytes_and_report(s, page, p, "Object padding",
652 p + off, POISON_INUSE, s->size - off);
653 }
654
655 static int slab_pad_check(struct kmem_cache *s, struct page *page)
656 {
657 u8 *start;
658 u8 *fault;
659 u8 *end;
660 int length;
661 int remainder;
662
663 if (!(s->flags & SLAB_POISON))
664 return 1;
665
666 start = page_address(page);
667 end = start + (PAGE_SIZE << s->order);
668 length = s->objects * s->size;
669 remainder = end - (start + length);
670 if (!remainder)
671 return 1;
672
673 fault = check_bytes(start + length, POISON_INUSE, remainder);
674 if (!fault)
675 return 1;
676 while (end > fault && end[-1] == POISON_INUSE)
677 end--;
678
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
680 print_section("Padding", start, length);
681
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
683 return 0;
684 }
685
686 static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
688 {
689 u8 *p = object;
690 u8 *endobject = object + s->objsize;
691
692 if (s->flags & SLAB_RED_ZONE) {
693 unsigned int red =
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
695
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
698 return 0;
699 } else {
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
703 }
704 }
705
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
711 p + s->objsize - 1, POISON_END, 1)))
712 return 0;
713 /*
714 * check_pad_bytes cleans up on its own.
715 */
716 check_pad_bytes(s, page, p);
717 }
718
719 if (!s->offset && active)
720 /*
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
723 */
724 return 1;
725
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
729 /*
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
732 * another error because the object count is now wrong.
733 */
734 set_freepointer(s, p, NULL);
735 return 0;
736 }
737 return 1;
738 }
739
740 static int check_slab(struct kmem_cache *s, struct page *page)
741 {
742 VM_BUG_ON(!irqs_disabled());
743
744 if (!PageSlab(page)) {
745 slab_err(s, page, "Not a valid slab page");
746 return 0;
747 }
748 if (page->inuse > s->objects) {
749 slab_err(s, page, "inuse %u > max %u",
750 s->name, page->inuse, s->objects);
751 return 0;
752 }
753 /* Slab_pad_check fixes things up after itself */
754 slab_pad_check(s, page);
755 return 1;
756 }
757
758 /*
759 * Determine if a certain object on a page is on the freelist. Must hold the
760 * slab lock to guarantee that the chains are in a consistent state.
761 */
762 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
763 {
764 int nr = 0;
765 void *fp = page->freelist;
766 void *object = NULL;
767
768 while (fp && nr <= s->objects) {
769 if (fp == search)
770 return 1;
771 if (!check_valid_pointer(s, page, fp)) {
772 if (object) {
773 object_err(s, page, object,
774 "Freechain corrupt");
775 set_freepointer(s, object, NULL);
776 break;
777 } else {
778 slab_err(s, page, "Freepointer corrupt");
779 page->freelist = NULL;
780 page->inuse = s->objects;
781 slab_fix(s, "Freelist cleared");
782 return 0;
783 }
784 break;
785 }
786 object = fp;
787 fp = get_freepointer(s, object);
788 nr++;
789 }
790
791 if (page->inuse != s->objects - nr) {
792 slab_err(s, page, "Wrong object count. Counter is %d but "
793 "counted were %d", page->inuse, s->objects - nr);
794 page->inuse = s->objects - nr;
795 slab_fix(s, "Object count adjusted.");
796 }
797 return search == NULL;
798 }
799
800 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
801 {
802 if (s->flags & SLAB_TRACE) {
803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804 s->name,
805 alloc ? "alloc" : "free",
806 object, page->inuse,
807 page->freelist);
808
809 if (!alloc)
810 print_section("Object", (void *)object, s->objsize);
811
812 dump_stack();
813 }
814 }
815
816 /*
817 * Tracking of fully allocated slabs for debugging purposes.
818 */
819 static void add_full(struct kmem_cache_node *n, struct page *page)
820 {
821 spin_lock(&n->list_lock);
822 list_add(&page->lru, &n->full);
823 spin_unlock(&n->list_lock);
824 }
825
826 static void remove_full(struct kmem_cache *s, struct page *page)
827 {
828 struct kmem_cache_node *n;
829
830 if (!(s->flags & SLAB_STORE_USER))
831 return;
832
833 n = get_node(s, page_to_nid(page));
834
835 spin_lock(&n->list_lock);
836 list_del(&page->lru);
837 spin_unlock(&n->list_lock);
838 }
839
840 static void setup_object_debug(struct kmem_cache *s, struct page *page,
841 void *object)
842 {
843 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
844 return;
845
846 init_object(s, object, 0);
847 init_tracking(s, object);
848 }
849
850 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
851 void *object, void *addr)
852 {
853 if (!check_slab(s, page))
854 goto bad;
855
856 if (!on_freelist(s, page, object)) {
857 object_err(s, page, object, "Object already allocated");
858 goto bad;
859 }
860
861 if (!check_valid_pointer(s, page, object)) {
862 object_err(s, page, object, "Freelist Pointer check fails");
863 goto bad;
864 }
865
866 if (!check_object(s, page, object, 0))
867 goto bad;
868
869 /* Success perform special debug activities for allocs */
870 if (s->flags & SLAB_STORE_USER)
871 set_track(s, object, TRACK_ALLOC, addr);
872 trace(s, page, object, 1);
873 init_object(s, object, 1);
874 return 1;
875
876 bad:
877 if (PageSlab(page)) {
878 /*
879 * If this is a slab page then lets do the best we can
880 * to avoid issues in the future. Marking all objects
881 * as used avoids touching the remaining objects.
882 */
883 slab_fix(s, "Marking all objects used");
884 page->inuse = s->objects;
885 page->freelist = NULL;
886 }
887 return 0;
888 }
889
890 static int free_debug_processing(struct kmem_cache *s, struct page *page,
891 void *object, void *addr)
892 {
893 if (!check_slab(s, page))
894 goto fail;
895
896 if (!check_valid_pointer(s, page, object)) {
897 slab_err(s, page, "Invalid object pointer 0x%p", object);
898 goto fail;
899 }
900
901 if (on_freelist(s, page, object)) {
902 object_err(s, page, object, "Object already free");
903 goto fail;
904 }
905
906 if (!check_object(s, page, object, 1))
907 return 0;
908
909 if (unlikely(s != page->slab)) {
910 if (!PageSlab(page)) {
911 slab_err(s, page, "Attempt to free object(0x%p) "
912 "outside of slab", object);
913 } else if (!page->slab) {
914 printk(KERN_ERR
915 "SLUB <none>: no slab for object 0x%p.\n",
916 object);
917 dump_stack();
918 } else
919 object_err(s, page, object,
920 "page slab pointer corrupt.");
921 goto fail;
922 }
923
924 /* Special debug activities for freeing objects */
925 if (!SlabFrozen(page) && !page->freelist)
926 remove_full(s, page);
927 if (s->flags & SLAB_STORE_USER)
928 set_track(s, object, TRACK_FREE, addr);
929 trace(s, page, object, 0);
930 init_object(s, object, 0);
931 return 1;
932
933 fail:
934 slab_fix(s, "Object at 0x%p not freed", object);
935 return 0;
936 }
937
938 static int __init setup_slub_debug(char *str)
939 {
940 slub_debug = DEBUG_DEFAULT_FLAGS;
941 if (*str++ != '=' || !*str)
942 /*
943 * No options specified. Switch on full debugging.
944 */
945 goto out;
946
947 if (*str == ',')
948 /*
949 * No options but restriction on slabs. This means full
950 * debugging for slabs matching a pattern.
951 */
952 goto check_slabs;
953
954 slub_debug = 0;
955 if (*str == '-')
956 /*
957 * Switch off all debugging measures.
958 */
959 goto out;
960
961 /*
962 * Determine which debug features should be switched on
963 */
964 for (; *str && *str != ','; str++) {
965 switch (tolower(*str)) {
966 case 'f':
967 slub_debug |= SLAB_DEBUG_FREE;
968 break;
969 case 'z':
970 slub_debug |= SLAB_RED_ZONE;
971 break;
972 case 'p':
973 slub_debug |= SLAB_POISON;
974 break;
975 case 'u':
976 slub_debug |= SLAB_STORE_USER;
977 break;
978 case 't':
979 slub_debug |= SLAB_TRACE;
980 break;
981 default:
982 printk(KERN_ERR "slub_debug option '%c' "
983 "unknown. skipped\n", *str);
984 }
985 }
986
987 check_slabs:
988 if (*str == ',')
989 slub_debug_slabs = str + 1;
990 out:
991 return 1;
992 }
993
994 __setup("slub_debug", setup_slub_debug);
995
996 static unsigned long kmem_cache_flags(unsigned long objsize,
997 unsigned long flags, const char *name,
998 void (*ctor)(struct kmem_cache *, void *))
999 {
1000 /*
1001 * Enable debugging if selected on the kernel commandline.
1002 */
1003 if (slub_debug && (!slub_debug_slabs ||
1004 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1005 flags |= slub_debug;
1006
1007 return flags;
1008 }
1009 #else
1010 static inline void setup_object_debug(struct kmem_cache *s,
1011 struct page *page, void *object) {}
1012
1013 static inline int alloc_debug_processing(struct kmem_cache *s,
1014 struct page *page, void *object, void *addr) { return 0; }
1015
1016 static inline int free_debug_processing(struct kmem_cache *s,
1017 struct page *page, void *object, void *addr) { return 0; }
1018
1019 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1020 { return 1; }
1021 static inline int check_object(struct kmem_cache *s, struct page *page,
1022 void *object, int active) { return 1; }
1023 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1024 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1025 unsigned long flags, const char *name,
1026 void (*ctor)(struct kmem_cache *, void *))
1027 {
1028 return flags;
1029 }
1030 #define slub_debug 0
1031 #endif
1032 /*
1033 * Slab allocation and freeing
1034 */
1035 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1036 {
1037 struct page *page;
1038 int pages = 1 << s->order;
1039
1040 flags |= s->allocflags;
1041
1042 if (node == -1)
1043 page = alloc_pages(flags, s->order);
1044 else
1045 page = alloc_pages_node(node, flags, s->order);
1046
1047 if (!page)
1048 return NULL;
1049
1050 mod_zone_page_state(page_zone(page),
1051 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1052 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1053 pages);
1054
1055 return page;
1056 }
1057
1058 static void setup_object(struct kmem_cache *s, struct page *page,
1059 void *object)
1060 {
1061 setup_object_debug(s, page, object);
1062 if (unlikely(s->ctor))
1063 s->ctor(s, object);
1064 }
1065
1066 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1067 {
1068 struct page *page;
1069 struct kmem_cache_node *n;
1070 void *start;
1071 void *last;
1072 void *p;
1073
1074 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1075
1076 page = allocate_slab(s,
1077 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1078 if (!page)
1079 goto out;
1080
1081 n = get_node(s, page_to_nid(page));
1082 if (n)
1083 atomic_long_inc(&n->nr_slabs);
1084 page->slab = s;
1085 page->flags |= 1 << PG_slab;
1086 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1087 SLAB_STORE_USER | SLAB_TRACE))
1088 SetSlabDebug(page);
1089
1090 start = page_address(page);
1091
1092 if (unlikely(s->flags & SLAB_POISON))
1093 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1094
1095 last = start;
1096 for_each_object(p, s, start) {
1097 setup_object(s, page, last);
1098 set_freepointer(s, last, p);
1099 last = p;
1100 }
1101 setup_object(s, page, last);
1102 set_freepointer(s, last, NULL);
1103
1104 page->freelist = start;
1105 page->inuse = 0;
1106 out:
1107 return page;
1108 }
1109
1110 static void __free_slab(struct kmem_cache *s, struct page *page)
1111 {
1112 int pages = 1 << s->order;
1113
1114 if (unlikely(SlabDebug(page))) {
1115 void *p;
1116
1117 slab_pad_check(s, page);
1118 for_each_object(p, s, page_address(page))
1119 check_object(s, page, p, 0);
1120 ClearSlabDebug(page);
1121 }
1122
1123 mod_zone_page_state(page_zone(page),
1124 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1125 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1126 -pages);
1127
1128 __free_pages(page, s->order);
1129 }
1130
1131 static void rcu_free_slab(struct rcu_head *h)
1132 {
1133 struct page *page;
1134
1135 page = container_of((struct list_head *)h, struct page, lru);
1136 __free_slab(page->slab, page);
1137 }
1138
1139 static void free_slab(struct kmem_cache *s, struct page *page)
1140 {
1141 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1142 /*
1143 * RCU free overloads the RCU head over the LRU
1144 */
1145 struct rcu_head *head = (void *)&page->lru;
1146
1147 call_rcu(head, rcu_free_slab);
1148 } else
1149 __free_slab(s, page);
1150 }
1151
1152 static void discard_slab(struct kmem_cache *s, struct page *page)
1153 {
1154 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1155
1156 atomic_long_dec(&n->nr_slabs);
1157 reset_page_mapcount(page);
1158 __ClearPageSlab(page);
1159 free_slab(s, page);
1160 }
1161
1162 /*
1163 * Per slab locking using the pagelock
1164 */
1165 static __always_inline void slab_lock(struct page *page)
1166 {
1167 bit_spin_lock(PG_locked, &page->flags);
1168 }
1169
1170 static __always_inline void slab_unlock(struct page *page)
1171 {
1172 __bit_spin_unlock(PG_locked, &page->flags);
1173 }
1174
1175 static __always_inline int slab_trylock(struct page *page)
1176 {
1177 int rc = 1;
1178
1179 rc = bit_spin_trylock(PG_locked, &page->flags);
1180 return rc;
1181 }
1182
1183 /*
1184 * Management of partially allocated slabs
1185 */
1186 static void add_partial(struct kmem_cache_node *n,
1187 struct page *page, int tail)
1188 {
1189 spin_lock(&n->list_lock);
1190 n->nr_partial++;
1191 if (tail)
1192 list_add_tail(&page->lru, &n->partial);
1193 else
1194 list_add(&page->lru, &n->partial);
1195 spin_unlock(&n->list_lock);
1196 }
1197
1198 static void remove_partial(struct kmem_cache *s,
1199 struct page *page)
1200 {
1201 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1202
1203 spin_lock(&n->list_lock);
1204 list_del(&page->lru);
1205 n->nr_partial--;
1206 spin_unlock(&n->list_lock);
1207 }
1208
1209 /*
1210 * Lock slab and remove from the partial list.
1211 *
1212 * Must hold list_lock.
1213 */
1214 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1215 {
1216 if (slab_trylock(page)) {
1217 list_del(&page->lru);
1218 n->nr_partial--;
1219 SetSlabFrozen(page);
1220 return 1;
1221 }
1222 return 0;
1223 }
1224
1225 /*
1226 * Try to allocate a partial slab from a specific node.
1227 */
1228 static struct page *get_partial_node(struct kmem_cache_node *n)
1229 {
1230 struct page *page;
1231
1232 /*
1233 * Racy check. If we mistakenly see no partial slabs then we
1234 * just allocate an empty slab. If we mistakenly try to get a
1235 * partial slab and there is none available then get_partials()
1236 * will return NULL.
1237 */
1238 if (!n || !n->nr_partial)
1239 return NULL;
1240
1241 spin_lock(&n->list_lock);
1242 list_for_each_entry(page, &n->partial, lru)
1243 if (lock_and_freeze_slab(n, page))
1244 goto out;
1245 page = NULL;
1246 out:
1247 spin_unlock(&n->list_lock);
1248 return page;
1249 }
1250
1251 /*
1252 * Get a page from somewhere. Search in increasing NUMA distances.
1253 */
1254 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1255 {
1256 #ifdef CONFIG_NUMA
1257 struct zonelist *zonelist;
1258 struct zone **z;
1259 struct page *page;
1260
1261 /*
1262 * The defrag ratio allows a configuration of the tradeoffs between
1263 * inter node defragmentation and node local allocations. A lower
1264 * defrag_ratio increases the tendency to do local allocations
1265 * instead of attempting to obtain partial slabs from other nodes.
1266 *
1267 * If the defrag_ratio is set to 0 then kmalloc() always
1268 * returns node local objects. If the ratio is higher then kmalloc()
1269 * may return off node objects because partial slabs are obtained
1270 * from other nodes and filled up.
1271 *
1272 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1273 * defrag_ratio = 1000) then every (well almost) allocation will
1274 * first attempt to defrag slab caches on other nodes. This means
1275 * scanning over all nodes to look for partial slabs which may be
1276 * expensive if we do it every time we are trying to find a slab
1277 * with available objects.
1278 */
1279 if (!s->remote_node_defrag_ratio ||
1280 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1281 return NULL;
1282
1283 zonelist = &NODE_DATA(
1284 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1285 for (z = zonelist->zones; *z; z++) {
1286 struct kmem_cache_node *n;
1287
1288 n = get_node(s, zone_to_nid(*z));
1289
1290 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1291 n->nr_partial > MIN_PARTIAL) {
1292 page = get_partial_node(n);
1293 if (page)
1294 return page;
1295 }
1296 }
1297 #endif
1298 return NULL;
1299 }
1300
1301 /*
1302 * Get a partial page, lock it and return it.
1303 */
1304 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1305 {
1306 struct page *page;
1307 int searchnode = (node == -1) ? numa_node_id() : node;
1308
1309 page = get_partial_node(get_node(s, searchnode));
1310 if (page || (flags & __GFP_THISNODE))
1311 return page;
1312
1313 return get_any_partial(s, flags);
1314 }
1315
1316 /*
1317 * Move a page back to the lists.
1318 *
1319 * Must be called with the slab lock held.
1320 *
1321 * On exit the slab lock will have been dropped.
1322 */
1323 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1324 {
1325 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1326 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1327
1328 ClearSlabFrozen(page);
1329 if (page->inuse) {
1330
1331 if (page->freelist) {
1332 add_partial(n, page, tail);
1333 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1334 } else {
1335 stat(c, DEACTIVATE_FULL);
1336 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1337 add_full(n, page);
1338 }
1339 slab_unlock(page);
1340 } else {
1341 stat(c, DEACTIVATE_EMPTY);
1342 if (n->nr_partial < MIN_PARTIAL) {
1343 /*
1344 * Adding an empty slab to the partial slabs in order
1345 * to avoid page allocator overhead. This slab needs
1346 * to come after the other slabs with objects in
1347 * so that the others get filled first. That way the
1348 * size of the partial list stays small.
1349 *
1350 * kmem_cache_shrink can reclaim any empty slabs from the
1351 * partial list.
1352 */
1353 add_partial(n, page, 1);
1354 slab_unlock(page);
1355 } else {
1356 slab_unlock(page);
1357 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1358 discard_slab(s, page);
1359 }
1360 }
1361 }
1362
1363 /*
1364 * Remove the cpu slab
1365 */
1366 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1367 {
1368 struct page *page = c->page;
1369 int tail = 1;
1370
1371 if (page->freelist)
1372 stat(c, DEACTIVATE_REMOTE_FREES);
1373 /*
1374 * Merge cpu freelist into slab freelist. Typically we get here
1375 * because both freelists are empty. So this is unlikely
1376 * to occur.
1377 */
1378 while (unlikely(c->freelist)) {
1379 void **object;
1380
1381 tail = 0; /* Hot objects. Put the slab first */
1382
1383 /* Retrieve object from cpu_freelist */
1384 object = c->freelist;
1385 c->freelist = c->freelist[c->offset];
1386
1387 /* And put onto the regular freelist */
1388 object[c->offset] = page->freelist;
1389 page->freelist = object;
1390 page->inuse--;
1391 }
1392 c->page = NULL;
1393 unfreeze_slab(s, page, tail);
1394 }
1395
1396 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1397 {
1398 stat(c, CPUSLAB_FLUSH);
1399 slab_lock(c->page);
1400 deactivate_slab(s, c);
1401 }
1402
1403 /*
1404 * Flush cpu slab.
1405 *
1406 * Called from IPI handler with interrupts disabled.
1407 */
1408 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1409 {
1410 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1411
1412 if (likely(c && c->page))
1413 flush_slab(s, c);
1414 }
1415
1416 static void flush_cpu_slab(void *d)
1417 {
1418 struct kmem_cache *s = d;
1419
1420 __flush_cpu_slab(s, smp_processor_id());
1421 }
1422
1423 static void flush_all(struct kmem_cache *s)
1424 {
1425 #ifdef CONFIG_SMP
1426 on_each_cpu(flush_cpu_slab, s, 1, 1);
1427 #else
1428 unsigned long flags;
1429
1430 local_irq_save(flags);
1431 flush_cpu_slab(s);
1432 local_irq_restore(flags);
1433 #endif
1434 }
1435
1436 /*
1437 * Check if the objects in a per cpu structure fit numa
1438 * locality expectations.
1439 */
1440 static inline int node_match(struct kmem_cache_cpu *c, int node)
1441 {
1442 #ifdef CONFIG_NUMA
1443 if (node != -1 && c->node != node)
1444 return 0;
1445 #endif
1446 return 1;
1447 }
1448
1449 /*
1450 * Slow path. The lockless freelist is empty or we need to perform
1451 * debugging duties.
1452 *
1453 * Interrupts are disabled.
1454 *
1455 * Processing is still very fast if new objects have been freed to the
1456 * regular freelist. In that case we simply take over the regular freelist
1457 * as the lockless freelist and zap the regular freelist.
1458 *
1459 * If that is not working then we fall back to the partial lists. We take the
1460 * first element of the freelist as the object to allocate now and move the
1461 * rest of the freelist to the lockless freelist.
1462 *
1463 * And if we were unable to get a new slab from the partial slab lists then
1464 * we need to allocate a new slab. This is the slowest path since it involves
1465 * a call to the page allocator and the setup of a new slab.
1466 */
1467 static void *__slab_alloc(struct kmem_cache *s,
1468 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1469 {
1470 void **object;
1471 struct page *new;
1472
1473 if (!c->page)
1474 goto new_slab;
1475
1476 slab_lock(c->page);
1477 if (unlikely(!node_match(c, node)))
1478 goto another_slab;
1479
1480 stat(c, ALLOC_REFILL);
1481
1482 load_freelist:
1483 object = c->page->freelist;
1484 if (unlikely(!object))
1485 goto another_slab;
1486 if (unlikely(SlabDebug(c->page)))
1487 goto debug;
1488
1489 c->freelist = object[c->offset];
1490 c->page->inuse = s->objects;
1491 c->page->freelist = NULL;
1492 c->node = page_to_nid(c->page);
1493 unlock_out:
1494 slab_unlock(c->page);
1495 stat(c, ALLOC_SLOWPATH);
1496 return object;
1497
1498 another_slab:
1499 deactivate_slab(s, c);
1500
1501 new_slab:
1502 new = get_partial(s, gfpflags, node);
1503 if (new) {
1504 c->page = new;
1505 stat(c, ALLOC_FROM_PARTIAL);
1506 goto load_freelist;
1507 }
1508
1509 if (gfpflags & __GFP_WAIT)
1510 local_irq_enable();
1511
1512 new = new_slab(s, gfpflags, node);
1513
1514 if (gfpflags & __GFP_WAIT)
1515 local_irq_disable();
1516
1517 if (new) {
1518 c = get_cpu_slab(s, smp_processor_id());
1519 stat(c, ALLOC_SLAB);
1520 if (c->page)
1521 flush_slab(s, c);
1522 slab_lock(new);
1523 SetSlabFrozen(new);
1524 c->page = new;
1525 goto load_freelist;
1526 }
1527
1528 /*
1529 * No memory available.
1530 *
1531 * If the slab uses higher order allocs but the object is
1532 * smaller than a page size then we can fallback in emergencies
1533 * to the page allocator via kmalloc_large. The page allocator may
1534 * have failed to obtain a higher order page and we can try to
1535 * allocate a single page if the object fits into a single page.
1536 * That is only possible if certain conditions are met that are being
1537 * checked when a slab is created.
1538 */
1539 if (!(gfpflags & __GFP_NORETRY) &&
1540 (s->flags & __PAGE_ALLOC_FALLBACK)) {
1541 if (gfpflags & __GFP_WAIT)
1542 local_irq_enable();
1543 object = kmalloc_large(s->objsize, gfpflags);
1544 if (gfpflags & __GFP_WAIT)
1545 local_irq_disable();
1546 return object;
1547 }
1548 return NULL;
1549 debug:
1550 if (!alloc_debug_processing(s, c->page, object, addr))
1551 goto another_slab;
1552
1553 c->page->inuse++;
1554 c->page->freelist = object[c->offset];
1555 c->node = -1;
1556 goto unlock_out;
1557 }
1558
1559 /*
1560 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1561 * have the fastpath folded into their functions. So no function call
1562 * overhead for requests that can be satisfied on the fastpath.
1563 *
1564 * The fastpath works by first checking if the lockless freelist can be used.
1565 * If not then __slab_alloc is called for slow processing.
1566 *
1567 * Otherwise we can simply pick the next object from the lockless free list.
1568 */
1569 static __always_inline void *slab_alloc(struct kmem_cache *s,
1570 gfp_t gfpflags, int node, void *addr)
1571 {
1572 void **object;
1573 struct kmem_cache_cpu *c;
1574 unsigned long flags;
1575
1576 local_irq_save(flags);
1577 c = get_cpu_slab(s, smp_processor_id());
1578 if (unlikely(!c->freelist || !node_match(c, node)))
1579
1580 object = __slab_alloc(s, gfpflags, node, addr, c);
1581
1582 else {
1583 object = c->freelist;
1584 c->freelist = object[c->offset];
1585 stat(c, ALLOC_FASTPATH);
1586 }
1587 local_irq_restore(flags);
1588
1589 if (unlikely((gfpflags & __GFP_ZERO) && object))
1590 memset(object, 0, c->objsize);
1591
1592 return object;
1593 }
1594
1595 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1596 {
1597 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1598 }
1599 EXPORT_SYMBOL(kmem_cache_alloc);
1600
1601 #ifdef CONFIG_NUMA
1602 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1603 {
1604 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1605 }
1606 EXPORT_SYMBOL(kmem_cache_alloc_node);
1607 #endif
1608
1609 /*
1610 * Slow patch handling. This may still be called frequently since objects
1611 * have a longer lifetime than the cpu slabs in most processing loads.
1612 *
1613 * So we still attempt to reduce cache line usage. Just take the slab
1614 * lock and free the item. If there is no additional partial page
1615 * handling required then we can return immediately.
1616 */
1617 static void __slab_free(struct kmem_cache *s, struct page *page,
1618 void *x, void *addr, unsigned int offset)
1619 {
1620 void *prior;
1621 void **object = (void *)x;
1622 struct kmem_cache_cpu *c;
1623
1624 c = get_cpu_slab(s, raw_smp_processor_id());
1625 stat(c, FREE_SLOWPATH);
1626 slab_lock(page);
1627
1628 if (unlikely(SlabDebug(page)))
1629 goto debug;
1630
1631 checks_ok:
1632 prior = object[offset] = page->freelist;
1633 page->freelist = object;
1634 page->inuse--;
1635
1636 if (unlikely(SlabFrozen(page))) {
1637 stat(c, FREE_FROZEN);
1638 goto out_unlock;
1639 }
1640
1641 if (unlikely(!page->inuse))
1642 goto slab_empty;
1643
1644 /*
1645 * Objects left in the slab. If it was not on the partial list before
1646 * then add it.
1647 */
1648 if (unlikely(!prior)) {
1649 add_partial(get_node(s, page_to_nid(page)), page, 1);
1650 stat(c, FREE_ADD_PARTIAL);
1651 }
1652
1653 out_unlock:
1654 slab_unlock(page);
1655 return;
1656
1657 slab_empty:
1658 if (prior) {
1659 /*
1660 * Slab still on the partial list.
1661 */
1662 remove_partial(s, page);
1663 stat(c, FREE_REMOVE_PARTIAL);
1664 }
1665 slab_unlock(page);
1666 stat(c, FREE_SLAB);
1667 discard_slab(s, page);
1668 return;
1669
1670 debug:
1671 if (!free_debug_processing(s, page, x, addr))
1672 goto out_unlock;
1673 goto checks_ok;
1674 }
1675
1676 /*
1677 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1678 * can perform fastpath freeing without additional function calls.
1679 *
1680 * The fastpath is only possible if we are freeing to the current cpu slab
1681 * of this processor. This typically the case if we have just allocated
1682 * the item before.
1683 *
1684 * If fastpath is not possible then fall back to __slab_free where we deal
1685 * with all sorts of special processing.
1686 */
1687 static __always_inline void slab_free(struct kmem_cache *s,
1688 struct page *page, void *x, void *addr)
1689 {
1690 void **object = (void *)x;
1691 struct kmem_cache_cpu *c;
1692 unsigned long flags;
1693
1694 local_irq_save(flags);
1695 c = get_cpu_slab(s, smp_processor_id());
1696 debug_check_no_locks_freed(object, c->objsize);
1697 if (likely(page == c->page && c->node >= 0)) {
1698 object[c->offset] = c->freelist;
1699 c->freelist = object;
1700 stat(c, FREE_FASTPATH);
1701 } else
1702 __slab_free(s, page, x, addr, c->offset);
1703
1704 local_irq_restore(flags);
1705 }
1706
1707 void kmem_cache_free(struct kmem_cache *s, void *x)
1708 {
1709 struct page *page;
1710
1711 page = virt_to_head_page(x);
1712
1713 slab_free(s, page, x, __builtin_return_address(0));
1714 }
1715 EXPORT_SYMBOL(kmem_cache_free);
1716
1717 /* Figure out on which slab object the object resides */
1718 static struct page *get_object_page(const void *x)
1719 {
1720 struct page *page = virt_to_head_page(x);
1721
1722 if (!PageSlab(page))
1723 return NULL;
1724
1725 return page;
1726 }
1727
1728 /*
1729 * Object placement in a slab is made very easy because we always start at
1730 * offset 0. If we tune the size of the object to the alignment then we can
1731 * get the required alignment by putting one properly sized object after
1732 * another.
1733 *
1734 * Notice that the allocation order determines the sizes of the per cpu
1735 * caches. Each processor has always one slab available for allocations.
1736 * Increasing the allocation order reduces the number of times that slabs
1737 * must be moved on and off the partial lists and is therefore a factor in
1738 * locking overhead.
1739 */
1740
1741 /*
1742 * Mininum / Maximum order of slab pages. This influences locking overhead
1743 * and slab fragmentation. A higher order reduces the number of partial slabs
1744 * and increases the number of allocations possible without having to
1745 * take the list_lock.
1746 */
1747 static int slub_min_order;
1748 static int slub_max_order = DEFAULT_MAX_ORDER;
1749 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1750
1751 /*
1752 * Merge control. If this is set then no merging of slab caches will occur.
1753 * (Could be removed. This was introduced to pacify the merge skeptics.)
1754 */
1755 static int slub_nomerge;
1756
1757 /*
1758 * Calculate the order of allocation given an slab object size.
1759 *
1760 * The order of allocation has significant impact on performance and other
1761 * system components. Generally order 0 allocations should be preferred since
1762 * order 0 does not cause fragmentation in the page allocator. Larger objects
1763 * be problematic to put into order 0 slabs because there may be too much
1764 * unused space left. We go to a higher order if more than 1/8th of the slab
1765 * would be wasted.
1766 *
1767 * In order to reach satisfactory performance we must ensure that a minimum
1768 * number of objects is in one slab. Otherwise we may generate too much
1769 * activity on the partial lists which requires taking the list_lock. This is
1770 * less a concern for large slabs though which are rarely used.
1771 *
1772 * slub_max_order specifies the order where we begin to stop considering the
1773 * number of objects in a slab as critical. If we reach slub_max_order then
1774 * we try to keep the page order as low as possible. So we accept more waste
1775 * of space in favor of a small page order.
1776 *
1777 * Higher order allocations also allow the placement of more objects in a
1778 * slab and thereby reduce object handling overhead. If the user has
1779 * requested a higher mininum order then we start with that one instead of
1780 * the smallest order which will fit the object.
1781 */
1782 static inline int slab_order(int size, int min_objects,
1783 int max_order, int fract_leftover)
1784 {
1785 int order;
1786 int rem;
1787 int min_order = slub_min_order;
1788
1789 for (order = max(min_order,
1790 fls(min_objects * size - 1) - PAGE_SHIFT);
1791 order <= max_order; order++) {
1792
1793 unsigned long slab_size = PAGE_SIZE << order;
1794
1795 if (slab_size < min_objects * size)
1796 continue;
1797
1798 rem = slab_size % size;
1799
1800 if (rem <= slab_size / fract_leftover)
1801 break;
1802
1803 }
1804
1805 return order;
1806 }
1807
1808 static inline int calculate_order(int size)
1809 {
1810 int order;
1811 int min_objects;
1812 int fraction;
1813
1814 /*
1815 * Attempt to find best configuration for a slab. This
1816 * works by first attempting to generate a layout with
1817 * the best configuration and backing off gradually.
1818 *
1819 * First we reduce the acceptable waste in a slab. Then
1820 * we reduce the minimum objects required in a slab.
1821 */
1822 min_objects = slub_min_objects;
1823 while (min_objects > 1) {
1824 fraction = 8;
1825 while (fraction >= 4) {
1826 order = slab_order(size, min_objects,
1827 slub_max_order, fraction);
1828 if (order <= slub_max_order)
1829 return order;
1830 fraction /= 2;
1831 }
1832 min_objects /= 2;
1833 }
1834
1835 /*
1836 * We were unable to place multiple objects in a slab. Now
1837 * lets see if we can place a single object there.
1838 */
1839 order = slab_order(size, 1, slub_max_order, 1);
1840 if (order <= slub_max_order)
1841 return order;
1842
1843 /*
1844 * Doh this slab cannot be placed using slub_max_order.
1845 */
1846 order = slab_order(size, 1, MAX_ORDER, 1);
1847 if (order <= MAX_ORDER)
1848 return order;
1849 return -ENOSYS;
1850 }
1851
1852 /*
1853 * Figure out what the alignment of the objects will be.
1854 */
1855 static unsigned long calculate_alignment(unsigned long flags,
1856 unsigned long align, unsigned long size)
1857 {
1858 /*
1859 * If the user wants hardware cache aligned objects then follow that
1860 * suggestion if the object is sufficiently large.
1861 *
1862 * The hardware cache alignment cannot override the specified
1863 * alignment though. If that is greater then use it.
1864 */
1865 if (flags & SLAB_HWCACHE_ALIGN) {
1866 unsigned long ralign = cache_line_size();
1867 while (size <= ralign / 2)
1868 ralign /= 2;
1869 align = max(align, ralign);
1870 }
1871
1872 if (align < ARCH_SLAB_MINALIGN)
1873 align = ARCH_SLAB_MINALIGN;
1874
1875 return ALIGN(align, sizeof(void *));
1876 }
1877
1878 static void init_kmem_cache_cpu(struct kmem_cache *s,
1879 struct kmem_cache_cpu *c)
1880 {
1881 c->page = NULL;
1882 c->freelist = NULL;
1883 c->node = 0;
1884 c->offset = s->offset / sizeof(void *);
1885 c->objsize = s->objsize;
1886 }
1887
1888 static void init_kmem_cache_node(struct kmem_cache_node *n)
1889 {
1890 n->nr_partial = 0;
1891 atomic_long_set(&n->nr_slabs, 0);
1892 spin_lock_init(&n->list_lock);
1893 INIT_LIST_HEAD(&n->partial);
1894 #ifdef CONFIG_SLUB_DEBUG
1895 INIT_LIST_HEAD(&n->full);
1896 #endif
1897 }
1898
1899 #ifdef CONFIG_SMP
1900 /*
1901 * Per cpu array for per cpu structures.
1902 *
1903 * The per cpu array places all kmem_cache_cpu structures from one processor
1904 * close together meaning that it becomes possible that multiple per cpu
1905 * structures are contained in one cacheline. This may be particularly
1906 * beneficial for the kmalloc caches.
1907 *
1908 * A desktop system typically has around 60-80 slabs. With 100 here we are
1909 * likely able to get per cpu structures for all caches from the array defined
1910 * here. We must be able to cover all kmalloc caches during bootstrap.
1911 *
1912 * If the per cpu array is exhausted then fall back to kmalloc
1913 * of individual cachelines. No sharing is possible then.
1914 */
1915 #define NR_KMEM_CACHE_CPU 100
1916
1917 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1918 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1919
1920 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1921 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1922
1923 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1924 int cpu, gfp_t flags)
1925 {
1926 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1927
1928 if (c)
1929 per_cpu(kmem_cache_cpu_free, cpu) =
1930 (void *)c->freelist;
1931 else {
1932 /* Table overflow: So allocate ourselves */
1933 c = kmalloc_node(
1934 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1935 flags, cpu_to_node(cpu));
1936 if (!c)
1937 return NULL;
1938 }
1939
1940 init_kmem_cache_cpu(s, c);
1941 return c;
1942 }
1943
1944 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1945 {
1946 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1947 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1948 kfree(c);
1949 return;
1950 }
1951 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1952 per_cpu(kmem_cache_cpu_free, cpu) = c;
1953 }
1954
1955 static void free_kmem_cache_cpus(struct kmem_cache *s)
1956 {
1957 int cpu;
1958
1959 for_each_online_cpu(cpu) {
1960 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1961
1962 if (c) {
1963 s->cpu_slab[cpu] = NULL;
1964 free_kmem_cache_cpu(c, cpu);
1965 }
1966 }
1967 }
1968
1969 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1970 {
1971 int cpu;
1972
1973 for_each_online_cpu(cpu) {
1974 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1975
1976 if (c)
1977 continue;
1978
1979 c = alloc_kmem_cache_cpu(s, cpu, flags);
1980 if (!c) {
1981 free_kmem_cache_cpus(s);
1982 return 0;
1983 }
1984 s->cpu_slab[cpu] = c;
1985 }
1986 return 1;
1987 }
1988
1989 /*
1990 * Initialize the per cpu array.
1991 */
1992 static void init_alloc_cpu_cpu(int cpu)
1993 {
1994 int i;
1995
1996 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1997 return;
1998
1999 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2000 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2001
2002 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2003 }
2004
2005 static void __init init_alloc_cpu(void)
2006 {
2007 int cpu;
2008
2009 for_each_online_cpu(cpu)
2010 init_alloc_cpu_cpu(cpu);
2011 }
2012
2013 #else
2014 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2015 static inline void init_alloc_cpu(void) {}
2016
2017 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2018 {
2019 init_kmem_cache_cpu(s, &s->cpu_slab);
2020 return 1;
2021 }
2022 #endif
2023
2024 #ifdef CONFIG_NUMA
2025 /*
2026 * No kmalloc_node yet so do it by hand. We know that this is the first
2027 * slab on the node for this slabcache. There are no concurrent accesses
2028 * possible.
2029 *
2030 * Note that this function only works on the kmalloc_node_cache
2031 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2032 * memory on a fresh node that has no slab structures yet.
2033 */
2034 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2035 int node)
2036 {
2037 struct page *page;
2038 struct kmem_cache_node *n;
2039 unsigned long flags;
2040
2041 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2042
2043 page = new_slab(kmalloc_caches, gfpflags, node);
2044
2045 BUG_ON(!page);
2046 if (page_to_nid(page) != node) {
2047 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2048 "node %d\n", node);
2049 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2050 "in order to be able to continue\n");
2051 }
2052
2053 n = page->freelist;
2054 BUG_ON(!n);
2055 page->freelist = get_freepointer(kmalloc_caches, n);
2056 page->inuse++;
2057 kmalloc_caches->node[node] = n;
2058 #ifdef CONFIG_SLUB_DEBUG
2059 init_object(kmalloc_caches, n, 1);
2060 init_tracking(kmalloc_caches, n);
2061 #endif
2062 init_kmem_cache_node(n);
2063 atomic_long_inc(&n->nr_slabs);
2064
2065 /*
2066 * lockdep requires consistent irq usage for each lock
2067 * so even though there cannot be a race this early in
2068 * the boot sequence, we still disable irqs.
2069 */
2070 local_irq_save(flags);
2071 add_partial(n, page, 0);
2072 local_irq_restore(flags);
2073 return n;
2074 }
2075
2076 static void free_kmem_cache_nodes(struct kmem_cache *s)
2077 {
2078 int node;
2079
2080 for_each_node_state(node, N_NORMAL_MEMORY) {
2081 struct kmem_cache_node *n = s->node[node];
2082 if (n && n != &s->local_node)
2083 kmem_cache_free(kmalloc_caches, n);
2084 s->node[node] = NULL;
2085 }
2086 }
2087
2088 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2089 {
2090 int node;
2091 int local_node;
2092
2093 if (slab_state >= UP)
2094 local_node = page_to_nid(virt_to_page(s));
2095 else
2096 local_node = 0;
2097
2098 for_each_node_state(node, N_NORMAL_MEMORY) {
2099 struct kmem_cache_node *n;
2100
2101 if (local_node == node)
2102 n = &s->local_node;
2103 else {
2104 if (slab_state == DOWN) {
2105 n = early_kmem_cache_node_alloc(gfpflags,
2106 node);
2107 continue;
2108 }
2109 n = kmem_cache_alloc_node(kmalloc_caches,
2110 gfpflags, node);
2111
2112 if (!n) {
2113 free_kmem_cache_nodes(s);
2114 return 0;
2115 }
2116
2117 }
2118 s->node[node] = n;
2119 init_kmem_cache_node(n);
2120 }
2121 return 1;
2122 }
2123 #else
2124 static void free_kmem_cache_nodes(struct kmem_cache *s)
2125 {
2126 }
2127
2128 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2129 {
2130 init_kmem_cache_node(&s->local_node);
2131 return 1;
2132 }
2133 #endif
2134
2135 /*
2136 * calculate_sizes() determines the order and the distribution of data within
2137 * a slab object.
2138 */
2139 static int calculate_sizes(struct kmem_cache *s)
2140 {
2141 unsigned long flags = s->flags;
2142 unsigned long size = s->objsize;
2143 unsigned long align = s->align;
2144
2145 /*
2146 * Round up object size to the next word boundary. We can only
2147 * place the free pointer at word boundaries and this determines
2148 * the possible location of the free pointer.
2149 */
2150 size = ALIGN(size, sizeof(void *));
2151
2152 #ifdef CONFIG_SLUB_DEBUG
2153 /*
2154 * Determine if we can poison the object itself. If the user of
2155 * the slab may touch the object after free or before allocation
2156 * then we should never poison the object itself.
2157 */
2158 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2159 !s->ctor)
2160 s->flags |= __OBJECT_POISON;
2161 else
2162 s->flags &= ~__OBJECT_POISON;
2163
2164
2165 /*
2166 * If we are Redzoning then check if there is some space between the
2167 * end of the object and the free pointer. If not then add an
2168 * additional word to have some bytes to store Redzone information.
2169 */
2170 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2171 size += sizeof(void *);
2172 #endif
2173
2174 /*
2175 * With that we have determined the number of bytes in actual use
2176 * by the object. This is the potential offset to the free pointer.
2177 */
2178 s->inuse = size;
2179
2180 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2181 s->ctor)) {
2182 /*
2183 * Relocate free pointer after the object if it is not
2184 * permitted to overwrite the first word of the object on
2185 * kmem_cache_free.
2186 *
2187 * This is the case if we do RCU, have a constructor or
2188 * destructor or are poisoning the objects.
2189 */
2190 s->offset = size;
2191 size += sizeof(void *);
2192 }
2193
2194 #ifdef CONFIG_SLUB_DEBUG
2195 if (flags & SLAB_STORE_USER)
2196 /*
2197 * Need to store information about allocs and frees after
2198 * the object.
2199 */
2200 size += 2 * sizeof(struct track);
2201
2202 if (flags & SLAB_RED_ZONE)
2203 /*
2204 * Add some empty padding so that we can catch
2205 * overwrites from earlier objects rather than let
2206 * tracking information or the free pointer be
2207 * corrupted if an user writes before the start
2208 * of the object.
2209 */
2210 size += sizeof(void *);
2211 #endif
2212
2213 /*
2214 * Determine the alignment based on various parameters that the
2215 * user specified and the dynamic determination of cache line size
2216 * on bootup.
2217 */
2218 align = calculate_alignment(flags, align, s->objsize);
2219
2220 /*
2221 * SLUB stores one object immediately after another beginning from
2222 * offset 0. In order to align the objects we have to simply size
2223 * each object to conform to the alignment.
2224 */
2225 size = ALIGN(size, align);
2226 s->size = size;
2227
2228 if ((flags & __KMALLOC_CACHE) &&
2229 PAGE_SIZE / size < slub_min_objects) {
2230 /*
2231 * Kmalloc cache that would not have enough objects in
2232 * an order 0 page. Kmalloc slabs can fallback to
2233 * page allocator order 0 allocs so take a reasonably large
2234 * order that will allows us a good number of objects.
2235 */
2236 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2237 s->flags |= __PAGE_ALLOC_FALLBACK;
2238 s->allocflags |= __GFP_NOWARN;
2239 } else
2240 s->order = calculate_order(size);
2241
2242 if (s->order < 0)
2243 return 0;
2244
2245 s->allocflags = 0;
2246 if (s->order)
2247 s->allocflags |= __GFP_COMP;
2248
2249 if (s->flags & SLAB_CACHE_DMA)
2250 s->allocflags |= SLUB_DMA;
2251
2252 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2253 s->allocflags |= __GFP_RECLAIMABLE;
2254
2255 /*
2256 * Determine the number of objects per slab
2257 */
2258 s->objects = (PAGE_SIZE << s->order) / size;
2259
2260 return !!s->objects;
2261
2262 }
2263
2264 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2265 const char *name, size_t size,
2266 size_t align, unsigned long flags,
2267 void (*ctor)(struct kmem_cache *, void *))
2268 {
2269 memset(s, 0, kmem_size);
2270 s->name = name;
2271 s->ctor = ctor;
2272 s->objsize = size;
2273 s->align = align;
2274 s->flags = kmem_cache_flags(size, flags, name, ctor);
2275
2276 if (!calculate_sizes(s))
2277 goto error;
2278
2279 s->refcount = 1;
2280 #ifdef CONFIG_NUMA
2281 s->remote_node_defrag_ratio = 100;
2282 #endif
2283 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2284 goto error;
2285
2286 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2287 return 1;
2288 free_kmem_cache_nodes(s);
2289 error:
2290 if (flags & SLAB_PANIC)
2291 panic("Cannot create slab %s size=%lu realsize=%u "
2292 "order=%u offset=%u flags=%lx\n",
2293 s->name, (unsigned long)size, s->size, s->order,
2294 s->offset, flags);
2295 return 0;
2296 }
2297
2298 /*
2299 * Check if a given pointer is valid
2300 */
2301 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2302 {
2303 struct page *page;
2304
2305 page = get_object_page(object);
2306
2307 if (!page || s != page->slab)
2308 /* No slab or wrong slab */
2309 return 0;
2310
2311 if (!check_valid_pointer(s, page, object))
2312 return 0;
2313
2314 /*
2315 * We could also check if the object is on the slabs freelist.
2316 * But this would be too expensive and it seems that the main
2317 * purpose of kmem_ptr_valid() is to check if the object belongs
2318 * to a certain slab.
2319 */
2320 return 1;
2321 }
2322 EXPORT_SYMBOL(kmem_ptr_validate);
2323
2324 /*
2325 * Determine the size of a slab object
2326 */
2327 unsigned int kmem_cache_size(struct kmem_cache *s)
2328 {
2329 return s->objsize;
2330 }
2331 EXPORT_SYMBOL(kmem_cache_size);
2332
2333 const char *kmem_cache_name(struct kmem_cache *s)
2334 {
2335 return s->name;
2336 }
2337 EXPORT_SYMBOL(kmem_cache_name);
2338
2339 /*
2340 * Attempt to free all slabs on a node. Return the number of slabs we
2341 * were unable to free.
2342 */
2343 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2344 struct list_head *list)
2345 {
2346 int slabs_inuse = 0;
2347 unsigned long flags;
2348 struct page *page, *h;
2349
2350 spin_lock_irqsave(&n->list_lock, flags);
2351 list_for_each_entry_safe(page, h, list, lru)
2352 if (!page->inuse) {
2353 list_del(&page->lru);
2354 discard_slab(s, page);
2355 } else
2356 slabs_inuse++;
2357 spin_unlock_irqrestore(&n->list_lock, flags);
2358 return slabs_inuse;
2359 }
2360
2361 /*
2362 * Release all resources used by a slab cache.
2363 */
2364 static inline int kmem_cache_close(struct kmem_cache *s)
2365 {
2366 int node;
2367
2368 flush_all(s);
2369
2370 /* Attempt to free all objects */
2371 free_kmem_cache_cpus(s);
2372 for_each_node_state(node, N_NORMAL_MEMORY) {
2373 struct kmem_cache_node *n = get_node(s, node);
2374
2375 n->nr_partial -= free_list(s, n, &n->partial);
2376 if (atomic_long_read(&n->nr_slabs))
2377 return 1;
2378 }
2379 free_kmem_cache_nodes(s);
2380 return 0;
2381 }
2382
2383 /*
2384 * Close a cache and release the kmem_cache structure
2385 * (must be used for caches created using kmem_cache_create)
2386 */
2387 void kmem_cache_destroy(struct kmem_cache *s)
2388 {
2389 down_write(&slub_lock);
2390 s->refcount--;
2391 if (!s->refcount) {
2392 list_del(&s->list);
2393 up_write(&slub_lock);
2394 if (kmem_cache_close(s))
2395 WARN_ON(1);
2396 sysfs_slab_remove(s);
2397 } else
2398 up_write(&slub_lock);
2399 }
2400 EXPORT_SYMBOL(kmem_cache_destroy);
2401
2402 /********************************************************************
2403 * Kmalloc subsystem
2404 *******************************************************************/
2405
2406 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2407 EXPORT_SYMBOL(kmalloc_caches);
2408
2409 #ifdef CONFIG_ZONE_DMA
2410 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2411 #endif
2412
2413 static int __init setup_slub_min_order(char *str)
2414 {
2415 get_option(&str, &slub_min_order);
2416
2417 return 1;
2418 }
2419
2420 __setup("slub_min_order=", setup_slub_min_order);
2421
2422 static int __init setup_slub_max_order(char *str)
2423 {
2424 get_option(&str, &slub_max_order);
2425
2426 return 1;
2427 }
2428
2429 __setup("slub_max_order=", setup_slub_max_order);
2430
2431 static int __init setup_slub_min_objects(char *str)
2432 {
2433 get_option(&str, &slub_min_objects);
2434
2435 return 1;
2436 }
2437
2438 __setup("slub_min_objects=", setup_slub_min_objects);
2439
2440 static int __init setup_slub_nomerge(char *str)
2441 {
2442 slub_nomerge = 1;
2443 return 1;
2444 }
2445
2446 __setup("slub_nomerge", setup_slub_nomerge);
2447
2448 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2449 const char *name, int size, gfp_t gfp_flags)
2450 {
2451 unsigned int flags = 0;
2452
2453 if (gfp_flags & SLUB_DMA)
2454 flags = SLAB_CACHE_DMA;
2455
2456 down_write(&slub_lock);
2457 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2458 flags | __KMALLOC_CACHE, NULL))
2459 goto panic;
2460
2461 list_add(&s->list, &slab_caches);
2462 up_write(&slub_lock);
2463 if (sysfs_slab_add(s))
2464 goto panic;
2465 return s;
2466
2467 panic:
2468 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2469 }
2470
2471 #ifdef CONFIG_ZONE_DMA
2472
2473 static void sysfs_add_func(struct work_struct *w)
2474 {
2475 struct kmem_cache *s;
2476
2477 down_write(&slub_lock);
2478 list_for_each_entry(s, &slab_caches, list) {
2479 if (s->flags & __SYSFS_ADD_DEFERRED) {
2480 s->flags &= ~__SYSFS_ADD_DEFERRED;
2481 sysfs_slab_add(s);
2482 }
2483 }
2484 up_write(&slub_lock);
2485 }
2486
2487 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2488
2489 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2490 {
2491 struct kmem_cache *s;
2492 char *text;
2493 size_t realsize;
2494
2495 s = kmalloc_caches_dma[index];
2496 if (s)
2497 return s;
2498
2499 /* Dynamically create dma cache */
2500 if (flags & __GFP_WAIT)
2501 down_write(&slub_lock);
2502 else {
2503 if (!down_write_trylock(&slub_lock))
2504 goto out;
2505 }
2506
2507 if (kmalloc_caches_dma[index])
2508 goto unlock_out;
2509
2510 realsize = kmalloc_caches[index].objsize;
2511 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2512 (unsigned int)realsize);
2513 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2514
2515 if (!s || !text || !kmem_cache_open(s, flags, text,
2516 realsize, ARCH_KMALLOC_MINALIGN,
2517 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2518 kfree(s);
2519 kfree(text);
2520 goto unlock_out;
2521 }
2522
2523 list_add(&s->list, &slab_caches);
2524 kmalloc_caches_dma[index] = s;
2525
2526 schedule_work(&sysfs_add_work);
2527
2528 unlock_out:
2529 up_write(&slub_lock);
2530 out:
2531 return kmalloc_caches_dma[index];
2532 }
2533 #endif
2534
2535 /*
2536 * Conversion table for small slabs sizes / 8 to the index in the
2537 * kmalloc array. This is necessary for slabs < 192 since we have non power
2538 * of two cache sizes there. The size of larger slabs can be determined using
2539 * fls.
2540 */
2541 static s8 size_index[24] = {
2542 3, /* 8 */
2543 4, /* 16 */
2544 5, /* 24 */
2545 5, /* 32 */
2546 6, /* 40 */
2547 6, /* 48 */
2548 6, /* 56 */
2549 6, /* 64 */
2550 1, /* 72 */
2551 1, /* 80 */
2552 1, /* 88 */
2553 1, /* 96 */
2554 7, /* 104 */
2555 7, /* 112 */
2556 7, /* 120 */
2557 7, /* 128 */
2558 2, /* 136 */
2559 2, /* 144 */
2560 2, /* 152 */
2561 2, /* 160 */
2562 2, /* 168 */
2563 2, /* 176 */
2564 2, /* 184 */
2565 2 /* 192 */
2566 };
2567
2568 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2569 {
2570 int index;
2571
2572 if (size <= 192) {
2573 if (!size)
2574 return ZERO_SIZE_PTR;
2575
2576 index = size_index[(size - 1) / 8];
2577 } else
2578 index = fls(size - 1);
2579
2580 #ifdef CONFIG_ZONE_DMA
2581 if (unlikely((flags & SLUB_DMA)))
2582 return dma_kmalloc_cache(index, flags);
2583
2584 #endif
2585 return &kmalloc_caches[index];
2586 }
2587
2588 void *__kmalloc(size_t size, gfp_t flags)
2589 {
2590 struct kmem_cache *s;
2591
2592 if (unlikely(size > PAGE_SIZE))
2593 return kmalloc_large(size, flags);
2594
2595 s = get_slab(size, flags);
2596
2597 if (unlikely(ZERO_OR_NULL_PTR(s)))
2598 return s;
2599
2600 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2601 }
2602 EXPORT_SYMBOL(__kmalloc);
2603
2604 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2605 {
2606 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2607 get_order(size));
2608
2609 if (page)
2610 return page_address(page);
2611 else
2612 return NULL;
2613 }
2614
2615 #ifdef CONFIG_NUMA
2616 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2617 {
2618 struct kmem_cache *s;
2619
2620 if (unlikely(size > PAGE_SIZE))
2621 return kmalloc_large_node(size, flags, node);
2622
2623 s = get_slab(size, flags);
2624
2625 if (unlikely(ZERO_OR_NULL_PTR(s)))
2626 return s;
2627
2628 return slab_alloc(s, flags, node, __builtin_return_address(0));
2629 }
2630 EXPORT_SYMBOL(__kmalloc_node);
2631 #endif
2632
2633 size_t ksize(const void *object)
2634 {
2635 struct page *page;
2636 struct kmem_cache *s;
2637
2638 if (unlikely(object == ZERO_SIZE_PTR))
2639 return 0;
2640
2641 page = virt_to_head_page(object);
2642
2643 if (unlikely(!PageSlab(page)))
2644 return PAGE_SIZE << compound_order(page);
2645
2646 s = page->slab;
2647
2648 #ifdef CONFIG_SLUB_DEBUG
2649 /*
2650 * Debugging requires use of the padding between object
2651 * and whatever may come after it.
2652 */
2653 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2654 return s->objsize;
2655
2656 #endif
2657 /*
2658 * If we have the need to store the freelist pointer
2659 * back there or track user information then we can
2660 * only use the space before that information.
2661 */
2662 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2663 return s->inuse;
2664 /*
2665 * Else we can use all the padding etc for the allocation
2666 */
2667 return s->size;
2668 }
2669 EXPORT_SYMBOL(ksize);
2670
2671 void kfree(const void *x)
2672 {
2673 struct page *page;
2674 void *object = (void *)x;
2675
2676 if (unlikely(ZERO_OR_NULL_PTR(x)))
2677 return;
2678
2679 page = virt_to_head_page(x);
2680 if (unlikely(!PageSlab(page))) {
2681 put_page(page);
2682 return;
2683 }
2684 slab_free(page->slab, page, object, __builtin_return_address(0));
2685 }
2686 EXPORT_SYMBOL(kfree);
2687
2688 #if defined(SLUB_DEBUG) || defined(CONFIG_SLABINFO)
2689 static unsigned long count_partial(struct kmem_cache_node *n)
2690 {
2691 unsigned long flags;
2692 unsigned long x = 0;
2693 struct page *page;
2694
2695 spin_lock_irqsave(&n->list_lock, flags);
2696 list_for_each_entry(page, &n->partial, lru)
2697 x += page->inuse;
2698 spin_unlock_irqrestore(&n->list_lock, flags);
2699 return x;
2700 }
2701 #endif
2702
2703 /*
2704 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2705 * the remaining slabs by the number of items in use. The slabs with the
2706 * most items in use come first. New allocations will then fill those up
2707 * and thus they can be removed from the partial lists.
2708 *
2709 * The slabs with the least items are placed last. This results in them
2710 * being allocated from last increasing the chance that the last objects
2711 * are freed in them.
2712 */
2713 int kmem_cache_shrink(struct kmem_cache *s)
2714 {
2715 int node;
2716 int i;
2717 struct kmem_cache_node *n;
2718 struct page *page;
2719 struct page *t;
2720 struct list_head *slabs_by_inuse =
2721 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2722 unsigned long flags;
2723
2724 if (!slabs_by_inuse)
2725 return -ENOMEM;
2726
2727 flush_all(s);
2728 for_each_node_state(node, N_NORMAL_MEMORY) {
2729 n = get_node(s, node);
2730
2731 if (!n->nr_partial)
2732 continue;
2733
2734 for (i = 0; i < s->objects; i++)
2735 INIT_LIST_HEAD(slabs_by_inuse + i);
2736
2737 spin_lock_irqsave(&n->list_lock, flags);
2738
2739 /*
2740 * Build lists indexed by the items in use in each slab.
2741 *
2742 * Note that concurrent frees may occur while we hold the
2743 * list_lock. page->inuse here is the upper limit.
2744 */
2745 list_for_each_entry_safe(page, t, &n->partial, lru) {
2746 if (!page->inuse && slab_trylock(page)) {
2747 /*
2748 * Must hold slab lock here because slab_free
2749 * may have freed the last object and be
2750 * waiting to release the slab.
2751 */
2752 list_del(&page->lru);
2753 n->nr_partial--;
2754 slab_unlock(page);
2755 discard_slab(s, page);
2756 } else {
2757 list_move(&page->lru,
2758 slabs_by_inuse + page->inuse);
2759 }
2760 }
2761
2762 /*
2763 * Rebuild the partial list with the slabs filled up most
2764 * first and the least used slabs at the end.
2765 */
2766 for (i = s->objects - 1; i >= 0; i--)
2767 list_splice(slabs_by_inuse + i, n->partial.prev);
2768
2769 spin_unlock_irqrestore(&n->list_lock, flags);
2770 }
2771
2772 kfree(slabs_by_inuse);
2773 return 0;
2774 }
2775 EXPORT_SYMBOL(kmem_cache_shrink);
2776
2777 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2778 static int slab_mem_going_offline_callback(void *arg)
2779 {
2780 struct kmem_cache *s;
2781
2782 down_read(&slub_lock);
2783 list_for_each_entry(s, &slab_caches, list)
2784 kmem_cache_shrink(s);
2785 up_read(&slub_lock);
2786
2787 return 0;
2788 }
2789
2790 static void slab_mem_offline_callback(void *arg)
2791 {
2792 struct kmem_cache_node *n;
2793 struct kmem_cache *s;
2794 struct memory_notify *marg = arg;
2795 int offline_node;
2796
2797 offline_node = marg->status_change_nid;
2798
2799 /*
2800 * If the node still has available memory. we need kmem_cache_node
2801 * for it yet.
2802 */
2803 if (offline_node < 0)
2804 return;
2805
2806 down_read(&slub_lock);
2807 list_for_each_entry(s, &slab_caches, list) {
2808 n = get_node(s, offline_node);
2809 if (n) {
2810 /*
2811 * if n->nr_slabs > 0, slabs still exist on the node
2812 * that is going down. We were unable to free them,
2813 * and offline_pages() function shoudn't call this
2814 * callback. So, we must fail.
2815 */
2816 BUG_ON(atomic_long_read(&n->nr_slabs));
2817
2818 s->node[offline_node] = NULL;
2819 kmem_cache_free(kmalloc_caches, n);
2820 }
2821 }
2822 up_read(&slub_lock);
2823 }
2824
2825 static int slab_mem_going_online_callback(void *arg)
2826 {
2827 struct kmem_cache_node *n;
2828 struct kmem_cache *s;
2829 struct memory_notify *marg = arg;
2830 int nid = marg->status_change_nid;
2831 int ret = 0;
2832
2833 /*
2834 * If the node's memory is already available, then kmem_cache_node is
2835 * already created. Nothing to do.
2836 */
2837 if (nid < 0)
2838 return 0;
2839
2840 /*
2841 * We are bringing a node online. No memory is availabe yet. We must
2842 * allocate a kmem_cache_node structure in order to bring the node
2843 * online.
2844 */
2845 down_read(&slub_lock);
2846 list_for_each_entry(s, &slab_caches, list) {
2847 /*
2848 * XXX: kmem_cache_alloc_node will fallback to other nodes
2849 * since memory is not yet available from the node that
2850 * is brought up.
2851 */
2852 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2853 if (!n) {
2854 ret = -ENOMEM;
2855 goto out;
2856 }
2857 init_kmem_cache_node(n);
2858 s->node[nid] = n;
2859 }
2860 out:
2861 up_read(&slub_lock);
2862 return ret;
2863 }
2864
2865 static int slab_memory_callback(struct notifier_block *self,
2866 unsigned long action, void *arg)
2867 {
2868 int ret = 0;
2869
2870 switch (action) {
2871 case MEM_GOING_ONLINE:
2872 ret = slab_mem_going_online_callback(arg);
2873 break;
2874 case MEM_GOING_OFFLINE:
2875 ret = slab_mem_going_offline_callback(arg);
2876 break;
2877 case MEM_OFFLINE:
2878 case MEM_CANCEL_ONLINE:
2879 slab_mem_offline_callback(arg);
2880 break;
2881 case MEM_ONLINE:
2882 case MEM_CANCEL_OFFLINE:
2883 break;
2884 }
2885
2886 ret = notifier_from_errno(ret);
2887 return ret;
2888 }
2889
2890 #endif /* CONFIG_MEMORY_HOTPLUG */
2891
2892 /********************************************************************
2893 * Basic setup of slabs
2894 *******************************************************************/
2895
2896 void __init kmem_cache_init(void)
2897 {
2898 int i;
2899 int caches = 0;
2900
2901 init_alloc_cpu();
2902
2903 #ifdef CONFIG_NUMA
2904 /*
2905 * Must first have the slab cache available for the allocations of the
2906 * struct kmem_cache_node's. There is special bootstrap code in
2907 * kmem_cache_open for slab_state == DOWN.
2908 */
2909 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2910 sizeof(struct kmem_cache_node), GFP_KERNEL);
2911 kmalloc_caches[0].refcount = -1;
2912 caches++;
2913
2914 hotplug_memory_notifier(slab_memory_callback, 1);
2915 #endif
2916
2917 /* Able to allocate the per node structures */
2918 slab_state = PARTIAL;
2919
2920 /* Caches that are not of the two-to-the-power-of size */
2921 if (KMALLOC_MIN_SIZE <= 64) {
2922 create_kmalloc_cache(&kmalloc_caches[1],
2923 "kmalloc-96", 96, GFP_KERNEL);
2924 caches++;
2925 }
2926 if (KMALLOC_MIN_SIZE <= 128) {
2927 create_kmalloc_cache(&kmalloc_caches[2],
2928 "kmalloc-192", 192, GFP_KERNEL);
2929 caches++;
2930 }
2931
2932 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2933 create_kmalloc_cache(&kmalloc_caches[i],
2934 "kmalloc", 1 << i, GFP_KERNEL);
2935 caches++;
2936 }
2937
2938
2939 /*
2940 * Patch up the size_index table if we have strange large alignment
2941 * requirements for the kmalloc array. This is only the case for
2942 * MIPS it seems. The standard arches will not generate any code here.
2943 *
2944 * Largest permitted alignment is 256 bytes due to the way we
2945 * handle the index determination for the smaller caches.
2946 *
2947 * Make sure that nothing crazy happens if someone starts tinkering
2948 * around with ARCH_KMALLOC_MINALIGN
2949 */
2950 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2951 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2952
2953 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2954 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2955
2956 slab_state = UP;
2957
2958 /* Provide the correct kmalloc names now that the caches are up */
2959 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
2960 kmalloc_caches[i]. name =
2961 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2962
2963 #ifdef CONFIG_SMP
2964 register_cpu_notifier(&slab_notifier);
2965 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2966 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2967 #else
2968 kmem_size = sizeof(struct kmem_cache);
2969 #endif
2970
2971 printk(KERN_INFO
2972 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2973 " CPUs=%d, Nodes=%d\n",
2974 caches, cache_line_size(),
2975 slub_min_order, slub_max_order, slub_min_objects,
2976 nr_cpu_ids, nr_node_ids);
2977 }
2978
2979 /*
2980 * Find a mergeable slab cache
2981 */
2982 static int slab_unmergeable(struct kmem_cache *s)
2983 {
2984 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2985 return 1;
2986
2987 if ((s->flags & __PAGE_ALLOC_FALLBACK))
2988 return 1;
2989
2990 if (s->ctor)
2991 return 1;
2992
2993 /*
2994 * We may have set a slab to be unmergeable during bootstrap.
2995 */
2996 if (s->refcount < 0)
2997 return 1;
2998
2999 return 0;
3000 }
3001
3002 static struct kmem_cache *find_mergeable(size_t size,
3003 size_t align, unsigned long flags, const char *name,
3004 void (*ctor)(struct kmem_cache *, void *))
3005 {
3006 struct kmem_cache *s;
3007
3008 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3009 return NULL;
3010
3011 if (ctor)
3012 return NULL;
3013
3014 size = ALIGN(size, sizeof(void *));
3015 align = calculate_alignment(flags, align, size);
3016 size = ALIGN(size, align);
3017 flags = kmem_cache_flags(size, flags, name, NULL);
3018
3019 list_for_each_entry(s, &slab_caches, list) {
3020 if (slab_unmergeable(s))
3021 continue;
3022
3023 if (size > s->size)
3024 continue;
3025
3026 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3027 continue;
3028 /*
3029 * Check if alignment is compatible.
3030 * Courtesy of Adrian Drzewiecki
3031 */
3032 if ((s->size & ~(align - 1)) != s->size)
3033 continue;
3034
3035 if (s->size - size >= sizeof(void *))
3036 continue;
3037
3038 return s;
3039 }
3040 return NULL;
3041 }
3042
3043 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3044 size_t align, unsigned long flags,
3045 void (*ctor)(struct kmem_cache *, void *))
3046 {
3047 struct kmem_cache *s;
3048
3049 down_write(&slub_lock);
3050 s = find_mergeable(size, align, flags, name, ctor);
3051 if (s) {
3052 int cpu;
3053
3054 s->refcount++;
3055 /*
3056 * Adjust the object sizes so that we clear
3057 * the complete object on kzalloc.
3058 */
3059 s->objsize = max(s->objsize, (int)size);
3060
3061 /*
3062 * And then we need to update the object size in the
3063 * per cpu structures
3064 */
3065 for_each_online_cpu(cpu)
3066 get_cpu_slab(s, cpu)->objsize = s->objsize;
3067
3068 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3069 up_write(&slub_lock);
3070
3071 if (sysfs_slab_alias(s, name))
3072 goto err;
3073 return s;
3074 }
3075
3076 s = kmalloc(kmem_size, GFP_KERNEL);
3077 if (s) {
3078 if (kmem_cache_open(s, GFP_KERNEL, name,
3079 size, align, flags, ctor)) {
3080 list_add(&s->list, &slab_caches);
3081 up_write(&slub_lock);
3082 if (sysfs_slab_add(s))
3083 goto err;
3084 return s;
3085 }
3086 kfree(s);
3087 }
3088 up_write(&slub_lock);
3089
3090 err:
3091 if (flags & SLAB_PANIC)
3092 panic("Cannot create slabcache %s\n", name);
3093 else
3094 s = NULL;
3095 return s;
3096 }
3097 EXPORT_SYMBOL(kmem_cache_create);
3098
3099 #ifdef CONFIG_SMP
3100 /*
3101 * Use the cpu notifier to insure that the cpu slabs are flushed when
3102 * necessary.
3103 */
3104 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3105 unsigned long action, void *hcpu)
3106 {
3107 long cpu = (long)hcpu;
3108 struct kmem_cache *s;
3109 unsigned long flags;
3110
3111 switch (action) {
3112 case CPU_UP_PREPARE:
3113 case CPU_UP_PREPARE_FROZEN:
3114 init_alloc_cpu_cpu(cpu);
3115 down_read(&slub_lock);
3116 list_for_each_entry(s, &slab_caches, list)
3117 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3118 GFP_KERNEL);
3119 up_read(&slub_lock);
3120 break;
3121
3122 case CPU_UP_CANCELED:
3123 case CPU_UP_CANCELED_FROZEN:
3124 case CPU_DEAD:
3125 case CPU_DEAD_FROZEN:
3126 down_read(&slub_lock);
3127 list_for_each_entry(s, &slab_caches, list) {
3128 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3129
3130 local_irq_save(flags);
3131 __flush_cpu_slab(s, cpu);
3132 local_irq_restore(flags);
3133 free_kmem_cache_cpu(c, cpu);
3134 s->cpu_slab[cpu] = NULL;
3135 }
3136 up_read(&slub_lock);
3137 break;
3138 default:
3139 break;
3140 }
3141 return NOTIFY_OK;
3142 }
3143
3144 static struct notifier_block __cpuinitdata slab_notifier = {
3145 .notifier_call = slab_cpuup_callback
3146 };
3147
3148 #endif
3149
3150 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3151 {
3152 struct kmem_cache *s;
3153
3154 if (unlikely(size > PAGE_SIZE))
3155 return kmalloc_large(size, gfpflags);
3156
3157 s = get_slab(size, gfpflags);
3158
3159 if (unlikely(ZERO_OR_NULL_PTR(s)))
3160 return s;
3161
3162 return slab_alloc(s, gfpflags, -1, caller);
3163 }
3164
3165 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3166 int node, void *caller)
3167 {
3168 struct kmem_cache *s;
3169
3170 if (unlikely(size > PAGE_SIZE))
3171 return kmalloc_large_node(size, gfpflags, node);
3172
3173 s = get_slab(size, gfpflags);
3174
3175 if (unlikely(ZERO_OR_NULL_PTR(s)))
3176 return s;
3177
3178 return slab_alloc(s, gfpflags, node, caller);
3179 }
3180
3181 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3182 static int validate_slab(struct kmem_cache *s, struct page *page,
3183 unsigned long *map)
3184 {
3185 void *p;
3186 void *addr = page_address(page);
3187
3188 if (!check_slab(s, page) ||
3189 !on_freelist(s, page, NULL))
3190 return 0;
3191
3192 /* Now we know that a valid freelist exists */
3193 bitmap_zero(map, s->objects);
3194
3195 for_each_free_object(p, s, page->freelist) {
3196 set_bit(slab_index(p, s, addr), map);
3197 if (!check_object(s, page, p, 0))
3198 return 0;
3199 }
3200
3201 for_each_object(p, s, addr)
3202 if (!test_bit(slab_index(p, s, addr), map))
3203 if (!check_object(s, page, p, 1))
3204 return 0;
3205 return 1;
3206 }
3207
3208 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3209 unsigned long *map)
3210 {
3211 if (slab_trylock(page)) {
3212 validate_slab(s, page, map);
3213 slab_unlock(page);
3214 } else
3215 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3216 s->name, page);
3217
3218 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3219 if (!SlabDebug(page))
3220 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3221 "on slab 0x%p\n", s->name, page);
3222 } else {
3223 if (SlabDebug(page))
3224 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3225 "slab 0x%p\n", s->name, page);
3226 }
3227 }
3228
3229 static int validate_slab_node(struct kmem_cache *s,
3230 struct kmem_cache_node *n, unsigned long *map)
3231 {
3232 unsigned long count = 0;
3233 struct page *page;
3234 unsigned long flags;
3235
3236 spin_lock_irqsave(&n->list_lock, flags);
3237
3238 list_for_each_entry(page, &n->partial, lru) {
3239 validate_slab_slab(s, page, map);
3240 count++;
3241 }
3242 if (count != n->nr_partial)
3243 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3244 "counter=%ld\n", s->name, count, n->nr_partial);
3245
3246 if (!(s->flags & SLAB_STORE_USER))
3247 goto out;
3248
3249 list_for_each_entry(page, &n->full, lru) {
3250 validate_slab_slab(s, page, map);
3251 count++;
3252 }
3253 if (count != atomic_long_read(&n->nr_slabs))
3254 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3255 "counter=%ld\n", s->name, count,
3256 atomic_long_read(&n->nr_slabs));
3257
3258 out:
3259 spin_unlock_irqrestore(&n->list_lock, flags);
3260 return count;
3261 }
3262
3263 static long validate_slab_cache(struct kmem_cache *s)
3264 {
3265 int node;
3266 unsigned long count = 0;
3267 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3268 sizeof(unsigned long), GFP_KERNEL);
3269
3270 if (!map)
3271 return -ENOMEM;
3272
3273 flush_all(s);
3274 for_each_node_state(node, N_NORMAL_MEMORY) {
3275 struct kmem_cache_node *n = get_node(s, node);
3276
3277 count += validate_slab_node(s, n, map);
3278 }
3279 kfree(map);
3280 return count;
3281 }
3282
3283 #ifdef SLUB_RESILIENCY_TEST
3284 static void resiliency_test(void)
3285 {
3286 u8 *p;
3287
3288 printk(KERN_ERR "SLUB resiliency testing\n");
3289 printk(KERN_ERR "-----------------------\n");
3290 printk(KERN_ERR "A. Corruption after allocation\n");
3291
3292 p = kzalloc(16, GFP_KERNEL);
3293 p[16] = 0x12;
3294 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3295 " 0x12->0x%p\n\n", p + 16);
3296
3297 validate_slab_cache(kmalloc_caches + 4);
3298
3299 /* Hmmm... The next two are dangerous */
3300 p = kzalloc(32, GFP_KERNEL);
3301 p[32 + sizeof(void *)] = 0x34;
3302 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3303 " 0x34 -> -0x%p\n", p);
3304 printk(KERN_ERR
3305 "If allocated object is overwritten then not detectable\n\n");
3306
3307 validate_slab_cache(kmalloc_caches + 5);
3308 p = kzalloc(64, GFP_KERNEL);
3309 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3310 *p = 0x56;
3311 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3312 p);
3313 printk(KERN_ERR
3314 "If allocated object is overwritten then not detectable\n\n");
3315 validate_slab_cache(kmalloc_caches + 6);
3316
3317 printk(KERN_ERR "\nB. Corruption after free\n");
3318 p = kzalloc(128, GFP_KERNEL);
3319 kfree(p);
3320 *p = 0x78;
3321 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3322 validate_slab_cache(kmalloc_caches + 7);
3323
3324 p = kzalloc(256, GFP_KERNEL);
3325 kfree(p);
3326 p[50] = 0x9a;
3327 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3328 p);
3329 validate_slab_cache(kmalloc_caches + 8);
3330
3331 p = kzalloc(512, GFP_KERNEL);
3332 kfree(p);
3333 p[512] = 0xab;
3334 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3335 validate_slab_cache(kmalloc_caches + 9);
3336 }
3337 #else
3338 static void resiliency_test(void) {};
3339 #endif
3340
3341 /*
3342 * Generate lists of code addresses where slabcache objects are allocated
3343 * and freed.
3344 */
3345
3346 struct location {
3347 unsigned long count;
3348 void *addr;
3349 long long sum_time;
3350 long min_time;
3351 long max_time;
3352 long min_pid;
3353 long max_pid;
3354 cpumask_t cpus;
3355 nodemask_t nodes;
3356 };
3357
3358 struct loc_track {
3359 unsigned long max;
3360 unsigned long count;
3361 struct location *loc;
3362 };
3363
3364 static void free_loc_track(struct loc_track *t)
3365 {
3366 if (t->max)
3367 free_pages((unsigned long)t->loc,
3368 get_order(sizeof(struct location) * t->max));
3369 }
3370
3371 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3372 {
3373 struct location *l;
3374 int order;
3375
3376 order = get_order(sizeof(struct location) * max);
3377
3378 l = (void *)__get_free_pages(flags, order);
3379 if (!l)
3380 return 0;
3381
3382 if (t->count) {
3383 memcpy(l, t->loc, sizeof(struct location) * t->count);
3384 free_loc_track(t);
3385 }
3386 t->max = max;
3387 t->loc = l;
3388 return 1;
3389 }
3390
3391 static int add_location(struct loc_track *t, struct kmem_cache *s,
3392 const struct track *track)
3393 {
3394 long start, end, pos;
3395 struct location *l;
3396 void *caddr;
3397 unsigned long age = jiffies - track->when;
3398
3399 start = -1;
3400 end = t->count;
3401
3402 for ( ; ; ) {
3403 pos = start + (end - start + 1) / 2;
3404
3405 /*
3406 * There is nothing at "end". If we end up there
3407 * we need to add something to before end.
3408 */
3409 if (pos == end)
3410 break;
3411
3412 caddr = t->loc[pos].addr;
3413 if (track->addr == caddr) {
3414
3415 l = &t->loc[pos];
3416 l->count++;
3417 if (track->when) {
3418 l->sum_time += age;
3419 if (age < l->min_time)
3420 l->min_time = age;
3421 if (age > l->max_time)
3422 l->max_time = age;
3423
3424 if (track->pid < l->min_pid)
3425 l->min_pid = track->pid;
3426 if (track->pid > l->max_pid)
3427 l->max_pid = track->pid;
3428
3429 cpu_set(track->cpu, l->cpus);
3430 }
3431 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3432 return 1;
3433 }
3434
3435 if (track->addr < caddr)
3436 end = pos;
3437 else
3438 start = pos;
3439 }
3440
3441 /*
3442 * Not found. Insert new tracking element.
3443 */
3444 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3445 return 0;
3446
3447 l = t->loc + pos;
3448 if (pos < t->count)
3449 memmove(l + 1, l,
3450 (t->count - pos) * sizeof(struct location));
3451 t->count++;
3452 l->count = 1;
3453 l->addr = track->addr;
3454 l->sum_time = age;
3455 l->min_time = age;
3456 l->max_time = age;
3457 l->min_pid = track->pid;
3458 l->max_pid = track->pid;
3459 cpus_clear(l->cpus);
3460 cpu_set(track->cpu, l->cpus);
3461 nodes_clear(l->nodes);
3462 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3463 return 1;
3464 }
3465
3466 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3467 struct page *page, enum track_item alloc)
3468 {
3469 void *addr = page_address(page);
3470 DECLARE_BITMAP(map, s->objects);
3471 void *p;
3472
3473 bitmap_zero(map, s->objects);
3474 for_each_free_object(p, s, page->freelist)
3475 set_bit(slab_index(p, s, addr), map);
3476
3477 for_each_object(p, s, addr)
3478 if (!test_bit(slab_index(p, s, addr), map))
3479 add_location(t, s, get_track(s, p, alloc));
3480 }
3481
3482 static int list_locations(struct kmem_cache *s, char *buf,
3483 enum track_item alloc)
3484 {
3485 int len = 0;
3486 unsigned long i;
3487 struct loc_track t = { 0, 0, NULL };
3488 int node;
3489
3490 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3491 GFP_TEMPORARY))
3492 return sprintf(buf, "Out of memory\n");
3493
3494 /* Push back cpu slabs */
3495 flush_all(s);
3496
3497 for_each_node_state(node, N_NORMAL_MEMORY) {
3498 struct kmem_cache_node *n = get_node(s, node);
3499 unsigned long flags;
3500 struct page *page;
3501
3502 if (!atomic_long_read(&n->nr_slabs))
3503 continue;
3504
3505 spin_lock_irqsave(&n->list_lock, flags);
3506 list_for_each_entry(page, &n->partial, lru)
3507 process_slab(&t, s, page, alloc);
3508 list_for_each_entry(page, &n->full, lru)
3509 process_slab(&t, s, page, alloc);
3510 spin_unlock_irqrestore(&n->list_lock, flags);
3511 }
3512
3513 for (i = 0; i < t.count; i++) {
3514 struct location *l = &t.loc[i];
3515
3516 if (len > PAGE_SIZE - 100)
3517 break;
3518 len += sprintf(buf + len, "%7ld ", l->count);
3519
3520 if (l->addr)
3521 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3522 else
3523 len += sprintf(buf + len, "<not-available>");
3524
3525 if (l->sum_time != l->min_time) {
3526 unsigned long remainder;
3527
3528 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3529 l->min_time,
3530 div_long_long_rem(l->sum_time, l->count, &remainder),
3531 l->max_time);
3532 } else
3533 len += sprintf(buf + len, " age=%ld",
3534 l->min_time);
3535
3536 if (l->min_pid != l->max_pid)
3537 len += sprintf(buf + len, " pid=%ld-%ld",
3538 l->min_pid, l->max_pid);
3539 else
3540 len += sprintf(buf + len, " pid=%ld",
3541 l->min_pid);
3542
3543 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3544 len < PAGE_SIZE - 60) {
3545 len += sprintf(buf + len, " cpus=");
3546 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3547 l->cpus);
3548 }
3549
3550 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3551 len < PAGE_SIZE - 60) {
3552 len += sprintf(buf + len, " nodes=");
3553 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3554 l->nodes);
3555 }
3556
3557 len += sprintf(buf + len, "\n");
3558 }
3559
3560 free_loc_track(&t);
3561 if (!t.count)
3562 len += sprintf(buf, "No data\n");
3563 return len;
3564 }
3565
3566 enum slab_stat_type {
3567 SL_FULL,
3568 SL_PARTIAL,
3569 SL_CPU,
3570 SL_OBJECTS
3571 };
3572
3573 #define SO_FULL (1 << SL_FULL)
3574 #define SO_PARTIAL (1 << SL_PARTIAL)
3575 #define SO_CPU (1 << SL_CPU)
3576 #define SO_OBJECTS (1 << SL_OBJECTS)
3577
3578 static ssize_t show_slab_objects(struct kmem_cache *s,
3579 char *buf, unsigned long flags)
3580 {
3581 unsigned long total = 0;
3582 int cpu;
3583 int node;
3584 int x;
3585 unsigned long *nodes;
3586 unsigned long *per_cpu;
3587
3588 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3589 if (!nodes)
3590 return -ENOMEM;
3591 per_cpu = nodes + nr_node_ids;
3592
3593 for_each_possible_cpu(cpu) {
3594 struct page *page;
3595 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3596
3597 if (!c)
3598 continue;
3599
3600 page = c->page;
3601 node = c->node;
3602 if (node < 0)
3603 continue;
3604 if (page) {
3605 if (flags & SO_CPU) {
3606 if (flags & SO_OBJECTS)
3607 x = page->inuse;
3608 else
3609 x = 1;
3610 total += x;
3611 nodes[node] += x;
3612 }
3613 per_cpu[node]++;
3614 }
3615 }
3616
3617 for_each_node_state(node, N_NORMAL_MEMORY) {
3618 struct kmem_cache_node *n = get_node(s, node);
3619
3620 if (flags & SO_PARTIAL) {
3621 if (flags & SO_OBJECTS)
3622 x = count_partial(n);
3623 else
3624 x = n->nr_partial;
3625 total += x;
3626 nodes[node] += x;
3627 }
3628
3629 if (flags & SO_FULL) {
3630 int full_slabs = atomic_long_read(&n->nr_slabs)
3631 - per_cpu[node]
3632 - n->nr_partial;
3633
3634 if (flags & SO_OBJECTS)
3635 x = full_slabs * s->objects;
3636 else
3637 x = full_slabs;
3638 total += x;
3639 nodes[node] += x;
3640 }
3641 }
3642
3643 x = sprintf(buf, "%lu", total);
3644 #ifdef CONFIG_NUMA
3645 for_each_node_state(node, N_NORMAL_MEMORY)
3646 if (nodes[node])
3647 x += sprintf(buf + x, " N%d=%lu",
3648 node, nodes[node]);
3649 #endif
3650 kfree(nodes);
3651 return x + sprintf(buf + x, "\n");
3652 }
3653
3654 static int any_slab_objects(struct kmem_cache *s)
3655 {
3656 int node;
3657 int cpu;
3658
3659 for_each_possible_cpu(cpu) {
3660 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3661
3662 if (c && c->page)
3663 return 1;
3664 }
3665
3666 for_each_online_node(node) {
3667 struct kmem_cache_node *n = get_node(s, node);
3668
3669 if (!n)
3670 continue;
3671
3672 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3673 return 1;
3674 }
3675 return 0;
3676 }
3677
3678 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3679 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3680
3681 struct slab_attribute {
3682 struct attribute attr;
3683 ssize_t (*show)(struct kmem_cache *s, char *buf);
3684 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3685 };
3686
3687 #define SLAB_ATTR_RO(_name) \
3688 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3689
3690 #define SLAB_ATTR(_name) \
3691 static struct slab_attribute _name##_attr = \
3692 __ATTR(_name, 0644, _name##_show, _name##_store)
3693
3694 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3695 {
3696 return sprintf(buf, "%d\n", s->size);
3697 }
3698 SLAB_ATTR_RO(slab_size);
3699
3700 static ssize_t align_show(struct kmem_cache *s, char *buf)
3701 {
3702 return sprintf(buf, "%d\n", s->align);
3703 }
3704 SLAB_ATTR_RO(align);
3705
3706 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3707 {
3708 return sprintf(buf, "%d\n", s->objsize);
3709 }
3710 SLAB_ATTR_RO(object_size);
3711
3712 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3713 {
3714 return sprintf(buf, "%d\n", s->objects);
3715 }
3716 SLAB_ATTR_RO(objs_per_slab);
3717
3718 static ssize_t order_show(struct kmem_cache *s, char *buf)
3719 {
3720 return sprintf(buf, "%d\n", s->order);
3721 }
3722 SLAB_ATTR_RO(order);
3723
3724 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3725 {
3726 if (s->ctor) {
3727 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3728
3729 return n + sprintf(buf + n, "\n");
3730 }
3731 return 0;
3732 }
3733 SLAB_ATTR_RO(ctor);
3734
3735 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3736 {
3737 return sprintf(buf, "%d\n", s->refcount - 1);
3738 }
3739 SLAB_ATTR_RO(aliases);
3740
3741 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3742 {
3743 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3744 }
3745 SLAB_ATTR_RO(slabs);
3746
3747 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3748 {
3749 return show_slab_objects(s, buf, SO_PARTIAL);
3750 }
3751 SLAB_ATTR_RO(partial);
3752
3753 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3754 {
3755 return show_slab_objects(s, buf, SO_CPU);
3756 }
3757 SLAB_ATTR_RO(cpu_slabs);
3758
3759 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3760 {
3761 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3762 }
3763 SLAB_ATTR_RO(objects);
3764
3765 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3766 {
3767 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3768 }
3769
3770 static ssize_t sanity_checks_store(struct kmem_cache *s,
3771 const char *buf, size_t length)
3772 {
3773 s->flags &= ~SLAB_DEBUG_FREE;
3774 if (buf[0] == '1')
3775 s->flags |= SLAB_DEBUG_FREE;
3776 return length;
3777 }
3778 SLAB_ATTR(sanity_checks);
3779
3780 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3781 {
3782 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3783 }
3784
3785 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3786 size_t length)
3787 {
3788 s->flags &= ~SLAB_TRACE;
3789 if (buf[0] == '1')
3790 s->flags |= SLAB_TRACE;
3791 return length;
3792 }
3793 SLAB_ATTR(trace);
3794
3795 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3796 {
3797 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3798 }
3799
3800 static ssize_t reclaim_account_store(struct kmem_cache *s,
3801 const char *buf, size_t length)
3802 {
3803 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3804 if (buf[0] == '1')
3805 s->flags |= SLAB_RECLAIM_ACCOUNT;
3806 return length;
3807 }
3808 SLAB_ATTR(reclaim_account);
3809
3810 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3811 {
3812 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3813 }
3814 SLAB_ATTR_RO(hwcache_align);
3815
3816 #ifdef CONFIG_ZONE_DMA
3817 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3818 {
3819 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3820 }
3821 SLAB_ATTR_RO(cache_dma);
3822 #endif
3823
3824 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3825 {
3826 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3827 }
3828 SLAB_ATTR_RO(destroy_by_rcu);
3829
3830 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3831 {
3832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3833 }
3834
3835 static ssize_t red_zone_store(struct kmem_cache *s,
3836 const char *buf, size_t length)
3837 {
3838 if (any_slab_objects(s))
3839 return -EBUSY;
3840
3841 s->flags &= ~SLAB_RED_ZONE;
3842 if (buf[0] == '1')
3843 s->flags |= SLAB_RED_ZONE;
3844 calculate_sizes(s);
3845 return length;
3846 }
3847 SLAB_ATTR(red_zone);
3848
3849 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3850 {
3851 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3852 }
3853
3854 static ssize_t poison_store(struct kmem_cache *s,
3855 const char *buf, size_t length)
3856 {
3857 if (any_slab_objects(s))
3858 return -EBUSY;
3859
3860 s->flags &= ~SLAB_POISON;
3861 if (buf[0] == '1')
3862 s->flags |= SLAB_POISON;
3863 calculate_sizes(s);
3864 return length;
3865 }
3866 SLAB_ATTR(poison);
3867
3868 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3869 {
3870 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3871 }
3872
3873 static ssize_t store_user_store(struct kmem_cache *s,
3874 const char *buf, size_t length)
3875 {
3876 if (any_slab_objects(s))
3877 return -EBUSY;
3878
3879 s->flags &= ~SLAB_STORE_USER;
3880 if (buf[0] == '1')
3881 s->flags |= SLAB_STORE_USER;
3882 calculate_sizes(s);
3883 return length;
3884 }
3885 SLAB_ATTR(store_user);
3886
3887 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3888 {
3889 return 0;
3890 }
3891
3892 static ssize_t validate_store(struct kmem_cache *s,
3893 const char *buf, size_t length)
3894 {
3895 int ret = -EINVAL;
3896
3897 if (buf[0] == '1') {
3898 ret = validate_slab_cache(s);
3899 if (ret >= 0)
3900 ret = length;
3901 }
3902 return ret;
3903 }
3904 SLAB_ATTR(validate);
3905
3906 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3907 {
3908 return 0;
3909 }
3910
3911 static ssize_t shrink_store(struct kmem_cache *s,
3912 const char *buf, size_t length)
3913 {
3914 if (buf[0] == '1') {
3915 int rc = kmem_cache_shrink(s);
3916
3917 if (rc)
3918 return rc;
3919 } else
3920 return -EINVAL;
3921 return length;
3922 }
3923 SLAB_ATTR(shrink);
3924
3925 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3926 {
3927 if (!(s->flags & SLAB_STORE_USER))
3928 return -ENOSYS;
3929 return list_locations(s, buf, TRACK_ALLOC);
3930 }
3931 SLAB_ATTR_RO(alloc_calls);
3932
3933 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3934 {
3935 if (!(s->flags & SLAB_STORE_USER))
3936 return -ENOSYS;
3937 return list_locations(s, buf, TRACK_FREE);
3938 }
3939 SLAB_ATTR_RO(free_calls);
3940
3941 #ifdef CONFIG_NUMA
3942 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
3943 {
3944 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
3945 }
3946
3947 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
3948 const char *buf, size_t length)
3949 {
3950 int n = simple_strtoul(buf, NULL, 10);
3951
3952 if (n < 100)
3953 s->remote_node_defrag_ratio = n * 10;
3954 return length;
3955 }
3956 SLAB_ATTR(remote_node_defrag_ratio);
3957 #endif
3958
3959 #ifdef CONFIG_SLUB_STATS
3960 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3961 {
3962 unsigned long sum = 0;
3963 int cpu;
3964 int len;
3965 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3966
3967 if (!data)
3968 return -ENOMEM;
3969
3970 for_each_online_cpu(cpu) {
3971 unsigned x = get_cpu_slab(s, cpu)->stat[si];
3972
3973 data[cpu] = x;
3974 sum += x;
3975 }
3976
3977 len = sprintf(buf, "%lu", sum);
3978
3979 for_each_online_cpu(cpu) {
3980 if (data[cpu] && len < PAGE_SIZE - 20)
3981 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
3982 }
3983 kfree(data);
3984 return len + sprintf(buf + len, "\n");
3985 }
3986
3987 #define STAT_ATTR(si, text) \
3988 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
3989 { \
3990 return show_stat(s, buf, si); \
3991 } \
3992 SLAB_ATTR_RO(text); \
3993
3994 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
3995 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
3996 STAT_ATTR(FREE_FASTPATH, free_fastpath);
3997 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
3998 STAT_ATTR(FREE_FROZEN, free_frozen);
3999 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4000 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4001 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4002 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4003 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4004 STAT_ATTR(FREE_SLAB, free_slab);
4005 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4006 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4007 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4008 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4009 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4010 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4011
4012 #endif
4013
4014 static struct attribute *slab_attrs[] = {
4015 &slab_size_attr.attr,
4016 &object_size_attr.attr,
4017 &objs_per_slab_attr.attr,
4018 &order_attr.attr,
4019 &objects_attr.attr,
4020 &slabs_attr.attr,
4021 &partial_attr.attr,
4022 &cpu_slabs_attr.attr,
4023 &ctor_attr.attr,
4024 &aliases_attr.attr,
4025 &align_attr.attr,
4026 &sanity_checks_attr.attr,
4027 &trace_attr.attr,
4028 &hwcache_align_attr.attr,
4029 &reclaim_account_attr.attr,
4030 &destroy_by_rcu_attr.attr,
4031 &red_zone_attr.attr,
4032 &poison_attr.attr,
4033 &store_user_attr.attr,
4034 &validate_attr.attr,
4035 &shrink_attr.attr,
4036 &alloc_calls_attr.attr,
4037 &free_calls_attr.attr,
4038 #ifdef CONFIG_ZONE_DMA
4039 &cache_dma_attr.attr,
4040 #endif
4041 #ifdef CONFIG_NUMA
4042 &remote_node_defrag_ratio_attr.attr,
4043 #endif
4044 #ifdef CONFIG_SLUB_STATS
4045 &alloc_fastpath_attr.attr,
4046 &alloc_slowpath_attr.attr,
4047 &free_fastpath_attr.attr,
4048 &free_slowpath_attr.attr,
4049 &free_frozen_attr.attr,
4050 &free_add_partial_attr.attr,
4051 &free_remove_partial_attr.attr,
4052 &alloc_from_partial_attr.attr,
4053 &alloc_slab_attr.attr,
4054 &alloc_refill_attr.attr,
4055 &free_slab_attr.attr,
4056 &cpuslab_flush_attr.attr,
4057 &deactivate_full_attr.attr,
4058 &deactivate_empty_attr.attr,
4059 &deactivate_to_head_attr.attr,
4060 &deactivate_to_tail_attr.attr,
4061 &deactivate_remote_frees_attr.attr,
4062 #endif
4063 NULL
4064 };
4065
4066 static struct attribute_group slab_attr_group = {
4067 .attrs = slab_attrs,
4068 };
4069
4070 static ssize_t slab_attr_show(struct kobject *kobj,
4071 struct attribute *attr,
4072 char *buf)
4073 {
4074 struct slab_attribute *attribute;
4075 struct kmem_cache *s;
4076 int err;
4077
4078 attribute = to_slab_attr(attr);
4079 s = to_slab(kobj);
4080
4081 if (!attribute->show)
4082 return -EIO;
4083
4084 err = attribute->show(s, buf);
4085
4086 return err;
4087 }
4088
4089 static ssize_t slab_attr_store(struct kobject *kobj,
4090 struct attribute *attr,
4091 const char *buf, size_t len)
4092 {
4093 struct slab_attribute *attribute;
4094 struct kmem_cache *s;
4095 int err;
4096
4097 attribute = to_slab_attr(attr);
4098 s = to_slab(kobj);
4099
4100 if (!attribute->store)
4101 return -EIO;
4102
4103 err = attribute->store(s, buf, len);
4104
4105 return err;
4106 }
4107
4108 static void kmem_cache_release(struct kobject *kobj)
4109 {
4110 struct kmem_cache *s = to_slab(kobj);
4111
4112 kfree(s);
4113 }
4114
4115 static struct sysfs_ops slab_sysfs_ops = {
4116 .show = slab_attr_show,
4117 .store = slab_attr_store,
4118 };
4119
4120 static struct kobj_type slab_ktype = {
4121 .sysfs_ops = &slab_sysfs_ops,
4122 .release = kmem_cache_release
4123 };
4124
4125 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4126 {
4127 struct kobj_type *ktype = get_ktype(kobj);
4128
4129 if (ktype == &slab_ktype)
4130 return 1;
4131 return 0;
4132 }
4133
4134 static struct kset_uevent_ops slab_uevent_ops = {
4135 .filter = uevent_filter,
4136 };
4137
4138 static struct kset *slab_kset;
4139
4140 #define ID_STR_LENGTH 64
4141
4142 /* Create a unique string id for a slab cache:
4143 *
4144 * Format :[flags-]size
4145 */
4146 static char *create_unique_id(struct kmem_cache *s)
4147 {
4148 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4149 char *p = name;
4150
4151 BUG_ON(!name);
4152
4153 *p++ = ':';
4154 /*
4155 * First flags affecting slabcache operations. We will only
4156 * get here for aliasable slabs so we do not need to support
4157 * too many flags. The flags here must cover all flags that
4158 * are matched during merging to guarantee that the id is
4159 * unique.
4160 */
4161 if (s->flags & SLAB_CACHE_DMA)
4162 *p++ = 'd';
4163 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4164 *p++ = 'a';
4165 if (s->flags & SLAB_DEBUG_FREE)
4166 *p++ = 'F';
4167 if (p != name + 1)
4168 *p++ = '-';
4169 p += sprintf(p, "%07d", s->size);
4170 BUG_ON(p > name + ID_STR_LENGTH - 1);
4171 return name;
4172 }
4173
4174 static int sysfs_slab_add(struct kmem_cache *s)
4175 {
4176 int err;
4177 const char *name;
4178 int unmergeable;
4179
4180 if (slab_state < SYSFS)
4181 /* Defer until later */
4182 return 0;
4183
4184 unmergeable = slab_unmergeable(s);
4185 if (unmergeable) {
4186 /*
4187 * Slabcache can never be merged so we can use the name proper.
4188 * This is typically the case for debug situations. In that
4189 * case we can catch duplicate names easily.
4190 */
4191 sysfs_remove_link(&slab_kset->kobj, s->name);
4192 name = s->name;
4193 } else {
4194 /*
4195 * Create a unique name for the slab as a target
4196 * for the symlinks.
4197 */
4198 name = create_unique_id(s);
4199 }
4200
4201 s->kobj.kset = slab_kset;
4202 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4203 if (err) {
4204 kobject_put(&s->kobj);
4205 return err;
4206 }
4207
4208 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4209 if (err)
4210 return err;
4211 kobject_uevent(&s->kobj, KOBJ_ADD);
4212 if (!unmergeable) {
4213 /* Setup first alias */
4214 sysfs_slab_alias(s, s->name);
4215 kfree(name);
4216 }
4217 return 0;
4218 }
4219
4220 static void sysfs_slab_remove(struct kmem_cache *s)
4221 {
4222 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4223 kobject_del(&s->kobj);
4224 kobject_put(&s->kobj);
4225 }
4226
4227 /*
4228 * Need to buffer aliases during bootup until sysfs becomes
4229 * available lest we loose that information.
4230 */
4231 struct saved_alias {
4232 struct kmem_cache *s;
4233 const char *name;
4234 struct saved_alias *next;
4235 };
4236
4237 static struct saved_alias *alias_list;
4238
4239 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4240 {
4241 struct saved_alias *al;
4242
4243 if (slab_state == SYSFS) {
4244 /*
4245 * If we have a leftover link then remove it.
4246 */
4247 sysfs_remove_link(&slab_kset->kobj, name);
4248 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4249 }
4250
4251 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4252 if (!al)
4253 return -ENOMEM;
4254
4255 al->s = s;
4256 al->name = name;
4257 al->next = alias_list;
4258 alias_list = al;
4259 return 0;
4260 }
4261
4262 static int __init slab_sysfs_init(void)
4263 {
4264 struct kmem_cache *s;
4265 int err;
4266
4267 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4268 if (!slab_kset) {
4269 printk(KERN_ERR "Cannot register slab subsystem.\n");
4270 return -ENOSYS;
4271 }
4272
4273 slab_state = SYSFS;
4274
4275 list_for_each_entry(s, &slab_caches, list) {
4276 err = sysfs_slab_add(s);
4277 if (err)
4278 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4279 " to sysfs\n", s->name);
4280 }
4281
4282 while (alias_list) {
4283 struct saved_alias *al = alias_list;
4284
4285 alias_list = alias_list->next;
4286 err = sysfs_slab_alias(al->s, al->name);
4287 if (err)
4288 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4289 " %s to sysfs\n", s->name);
4290 kfree(al);
4291 }
4292
4293 resiliency_test();
4294 return 0;
4295 }
4296
4297 __initcall(slab_sysfs_init);
4298 #endif
4299
4300 /*
4301 * The /proc/slabinfo ABI
4302 */
4303 #ifdef CONFIG_SLABINFO
4304
4305 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4306 size_t count, loff_t *ppos)
4307 {
4308 return -EINVAL;
4309 }
4310
4311
4312 static void print_slabinfo_header(struct seq_file *m)
4313 {
4314 seq_puts(m, "slabinfo - version: 2.1\n");
4315 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4316 "<objperslab> <pagesperslab>");
4317 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4318 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4319 seq_putc(m, '\n');
4320 }
4321
4322 static void *s_start(struct seq_file *m, loff_t *pos)
4323 {
4324 loff_t n = *pos;
4325
4326 down_read(&slub_lock);
4327 if (!n)
4328 print_slabinfo_header(m);
4329
4330 return seq_list_start(&slab_caches, *pos);
4331 }
4332
4333 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4334 {
4335 return seq_list_next(p, &slab_caches, pos);
4336 }
4337
4338 static void s_stop(struct seq_file *m, void *p)
4339 {
4340 up_read(&slub_lock);
4341 }
4342
4343 static int s_show(struct seq_file *m, void *p)
4344 {
4345 unsigned long nr_partials = 0;
4346 unsigned long nr_slabs = 0;
4347 unsigned long nr_inuse = 0;
4348 unsigned long nr_objs;
4349 struct kmem_cache *s;
4350 int node;
4351
4352 s = list_entry(p, struct kmem_cache, list);
4353
4354 for_each_online_node(node) {
4355 struct kmem_cache_node *n = get_node(s, node);
4356
4357 if (!n)
4358 continue;
4359
4360 nr_partials += n->nr_partial;
4361 nr_slabs += atomic_long_read(&n->nr_slabs);
4362 nr_inuse += count_partial(n);
4363 }
4364
4365 nr_objs = nr_slabs * s->objects;
4366 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4367
4368 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4369 nr_objs, s->size, s->objects, (1 << s->order));
4370 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4371 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4372 0UL);
4373 seq_putc(m, '\n');
4374 return 0;
4375 }
4376
4377 const struct seq_operations slabinfo_op = {
4378 .start = s_start,
4379 .next = s_next,
4380 .stop = s_stop,
4381 .show = s_show,
4382 };
4383
4384 #endif /* CONFIG_SLABINFO */
This page took 0.172805 seconds and 6 git commands to generate.