slub: Remove dynamic dma slab allocation
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30
31 /*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
107 */
108
109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112 static inline int kmem_cache_debug(struct kmem_cache *s)
113 {
114 #ifdef CONFIG_SLUB_DEBUG
115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116 #else
117 return 0;
118 #endif
119 }
120
121 /*
122 * Issues still to be resolved:
123 *
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
126 * - Variable sizing of the per node arrays
127 */
128
129 /* Enable to test recovery from slab corruption on boot */
130 #undef SLUB_RESILIENCY_TEST
131
132 /*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
136 #define MIN_PARTIAL 5
137
138 /*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143 #define MAX_PARTIAL 10
144
145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
147
148 /*
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
152 */
153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Set of flags that will prevent slab merging
157 */
158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
161
162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 SLAB_CACHE_DMA | SLAB_NOTRACK)
164
165 #define OO_SHIFT 16
166 #define OO_MASK ((1 << OO_SHIFT) - 1)
167 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
169 /* Internal SLUB flags */
170 #define __OBJECT_POISON 0x80000000UL /* Poison object */
171 #define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */
172
173 static int kmem_size = sizeof(struct kmem_cache);
174
175 #ifdef CONFIG_SMP
176 static struct notifier_block slab_notifier;
177 #endif
178
179 static enum {
180 DOWN, /* No slab functionality available */
181 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
182 UP, /* Everything works but does not show up in sysfs */
183 SYSFS /* Sysfs up */
184 } slab_state = DOWN;
185
186 /* A list of all slab caches on the system */
187 static DECLARE_RWSEM(slub_lock);
188 static LIST_HEAD(slab_caches);
189
190 /*
191 * Tracking user of a slab.
192 */
193 struct track {
194 unsigned long addr; /* Called from address */
195 int cpu; /* Was running on cpu */
196 int pid; /* Pid context */
197 unsigned long when; /* When did the operation occur */
198 };
199
200 enum track_item { TRACK_ALLOC, TRACK_FREE };
201
202 #ifdef CONFIG_SLUB_DEBUG
203 static int sysfs_slab_add(struct kmem_cache *);
204 static int sysfs_slab_alias(struct kmem_cache *, const char *);
205 static void sysfs_slab_remove(struct kmem_cache *);
206
207 #else
208 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
209 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
210 { return 0; }
211 static inline void sysfs_slab_remove(struct kmem_cache *s)
212 {
213 kfree(s);
214 }
215
216 #endif
217
218 static inline void stat(struct kmem_cache *s, enum stat_item si)
219 {
220 #ifdef CONFIG_SLUB_STATS
221 __this_cpu_inc(s->cpu_slab->stat[si]);
222 #endif
223 }
224
225 /********************************************************************
226 * Core slab cache functions
227 *******************************************************************/
228
229 int slab_is_available(void)
230 {
231 return slab_state >= UP;
232 }
233
234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235 {
236 #ifdef CONFIG_NUMA
237 return s->node[node];
238 #else
239 return &s->local_node;
240 #endif
241 }
242
243 /* Verify that a pointer has an address that is valid within a slab page */
244 static inline int check_valid_pointer(struct kmem_cache *s,
245 struct page *page, const void *object)
246 {
247 void *base;
248
249 if (!object)
250 return 1;
251
252 base = page_address(page);
253 if (object < base || object >= base + page->objects * s->size ||
254 (object - base) % s->size) {
255 return 0;
256 }
257
258 return 1;
259 }
260
261 static inline void *get_freepointer(struct kmem_cache *s, void *object)
262 {
263 return *(void **)(object + s->offset);
264 }
265
266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267 {
268 *(void **)(object + s->offset) = fp;
269 }
270
271 /* Loop over all objects in a slab */
272 #define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 __p += (__s)->size)
275
276 /* Scan freelist */
277 #define for_each_free_object(__p, __s, __free) \
278 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline struct kmem_cache_order_objects oo_make(int order,
287 unsigned long size)
288 {
289 struct kmem_cache_order_objects x = {
290 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
291 };
292
293 return x;
294 }
295
296 static inline int oo_order(struct kmem_cache_order_objects x)
297 {
298 return x.x >> OO_SHIFT;
299 }
300
301 static inline int oo_objects(struct kmem_cache_order_objects x)
302 {
303 return x.x & OO_MASK;
304 }
305
306 #ifdef CONFIG_SLUB_DEBUG
307 /*
308 * Debug settings:
309 */
310 #ifdef CONFIG_SLUB_DEBUG_ON
311 static int slub_debug = DEBUG_DEFAULT_FLAGS;
312 #else
313 static int slub_debug;
314 #endif
315
316 static char *slub_debug_slabs;
317 static int disable_higher_order_debug;
318
319 /*
320 * Object debugging
321 */
322 static void print_section(char *text, u8 *addr, unsigned int length)
323 {
324 int i, offset;
325 int newline = 1;
326 char ascii[17];
327
328 ascii[16] = 0;
329
330 for (i = 0; i < length; i++) {
331 if (newline) {
332 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
333 newline = 0;
334 }
335 printk(KERN_CONT " %02x", addr[i]);
336 offset = i % 16;
337 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
338 if (offset == 15) {
339 printk(KERN_CONT " %s\n", ascii);
340 newline = 1;
341 }
342 }
343 if (!newline) {
344 i %= 16;
345 while (i < 16) {
346 printk(KERN_CONT " ");
347 ascii[i] = ' ';
348 i++;
349 }
350 printk(KERN_CONT " %s\n", ascii);
351 }
352 }
353
354 static struct track *get_track(struct kmem_cache *s, void *object,
355 enum track_item alloc)
356 {
357 struct track *p;
358
359 if (s->offset)
360 p = object + s->offset + sizeof(void *);
361 else
362 p = object + s->inuse;
363
364 return p + alloc;
365 }
366
367 static void set_track(struct kmem_cache *s, void *object,
368 enum track_item alloc, unsigned long addr)
369 {
370 struct track *p = get_track(s, object, alloc);
371
372 if (addr) {
373 p->addr = addr;
374 p->cpu = smp_processor_id();
375 p->pid = current->pid;
376 p->when = jiffies;
377 } else
378 memset(p, 0, sizeof(struct track));
379 }
380
381 static void init_tracking(struct kmem_cache *s, void *object)
382 {
383 if (!(s->flags & SLAB_STORE_USER))
384 return;
385
386 set_track(s, object, TRACK_FREE, 0UL);
387 set_track(s, object, TRACK_ALLOC, 0UL);
388 }
389
390 static void print_track(const char *s, struct track *t)
391 {
392 if (!t->addr)
393 return;
394
395 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
396 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
397 }
398
399 static void print_tracking(struct kmem_cache *s, void *object)
400 {
401 if (!(s->flags & SLAB_STORE_USER))
402 return;
403
404 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
405 print_track("Freed", get_track(s, object, TRACK_FREE));
406 }
407
408 static void print_page_info(struct page *page)
409 {
410 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
411 page, page->objects, page->inuse, page->freelist, page->flags);
412
413 }
414
415 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
416 {
417 va_list args;
418 char buf[100];
419
420 va_start(args, fmt);
421 vsnprintf(buf, sizeof(buf), fmt, args);
422 va_end(args);
423 printk(KERN_ERR "========================================"
424 "=====================================\n");
425 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
426 printk(KERN_ERR "----------------------------------------"
427 "-------------------------------------\n\n");
428 }
429
430 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
431 {
432 va_list args;
433 char buf[100];
434
435 va_start(args, fmt);
436 vsnprintf(buf, sizeof(buf), fmt, args);
437 va_end(args);
438 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
439 }
440
441 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
442 {
443 unsigned int off; /* Offset of last byte */
444 u8 *addr = page_address(page);
445
446 print_tracking(s, p);
447
448 print_page_info(page);
449
450 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
451 p, p - addr, get_freepointer(s, p));
452
453 if (p > addr + 16)
454 print_section("Bytes b4", p - 16, 16);
455
456 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
457
458 if (s->flags & SLAB_RED_ZONE)
459 print_section("Redzone", p + s->objsize,
460 s->inuse - s->objsize);
461
462 if (s->offset)
463 off = s->offset + sizeof(void *);
464 else
465 off = s->inuse;
466
467 if (s->flags & SLAB_STORE_USER)
468 off += 2 * sizeof(struct track);
469
470 if (off != s->size)
471 /* Beginning of the filler is the free pointer */
472 print_section("Padding", p + off, s->size - off);
473
474 dump_stack();
475 }
476
477 static void object_err(struct kmem_cache *s, struct page *page,
478 u8 *object, char *reason)
479 {
480 slab_bug(s, "%s", reason);
481 print_trailer(s, page, object);
482 }
483
484 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
485 {
486 va_list args;
487 char buf[100];
488
489 va_start(args, fmt);
490 vsnprintf(buf, sizeof(buf), fmt, args);
491 va_end(args);
492 slab_bug(s, "%s", buf);
493 print_page_info(page);
494 dump_stack();
495 }
496
497 static void init_object(struct kmem_cache *s, void *object, int active)
498 {
499 u8 *p = object;
500
501 if (s->flags & __OBJECT_POISON) {
502 memset(p, POISON_FREE, s->objsize - 1);
503 p[s->objsize - 1] = POISON_END;
504 }
505
506 if (s->flags & SLAB_RED_ZONE)
507 memset(p + s->objsize,
508 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
509 s->inuse - s->objsize);
510 }
511
512 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
513 {
514 while (bytes) {
515 if (*start != (u8)value)
516 return start;
517 start++;
518 bytes--;
519 }
520 return NULL;
521 }
522
523 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
524 void *from, void *to)
525 {
526 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
527 memset(from, data, to - from);
528 }
529
530 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
531 u8 *object, char *what,
532 u8 *start, unsigned int value, unsigned int bytes)
533 {
534 u8 *fault;
535 u8 *end;
536
537 fault = check_bytes(start, value, bytes);
538 if (!fault)
539 return 1;
540
541 end = start + bytes;
542 while (end > fault && end[-1] == value)
543 end--;
544
545 slab_bug(s, "%s overwritten", what);
546 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
547 fault, end - 1, fault[0], value);
548 print_trailer(s, page, object);
549
550 restore_bytes(s, what, value, fault, end);
551 return 0;
552 }
553
554 /*
555 * Object layout:
556 *
557 * object address
558 * Bytes of the object to be managed.
559 * If the freepointer may overlay the object then the free
560 * pointer is the first word of the object.
561 *
562 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
563 * 0xa5 (POISON_END)
564 *
565 * object + s->objsize
566 * Padding to reach word boundary. This is also used for Redzoning.
567 * Padding is extended by another word if Redzoning is enabled and
568 * objsize == inuse.
569 *
570 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
571 * 0xcc (RED_ACTIVE) for objects in use.
572 *
573 * object + s->inuse
574 * Meta data starts here.
575 *
576 * A. Free pointer (if we cannot overwrite object on free)
577 * B. Tracking data for SLAB_STORE_USER
578 * C. Padding to reach required alignment boundary or at mininum
579 * one word if debugging is on to be able to detect writes
580 * before the word boundary.
581 *
582 * Padding is done using 0x5a (POISON_INUSE)
583 *
584 * object + s->size
585 * Nothing is used beyond s->size.
586 *
587 * If slabcaches are merged then the objsize and inuse boundaries are mostly
588 * ignored. And therefore no slab options that rely on these boundaries
589 * may be used with merged slabcaches.
590 */
591
592 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
593 {
594 unsigned long off = s->inuse; /* The end of info */
595
596 if (s->offset)
597 /* Freepointer is placed after the object. */
598 off += sizeof(void *);
599
600 if (s->flags & SLAB_STORE_USER)
601 /* We also have user information there */
602 off += 2 * sizeof(struct track);
603
604 if (s->size == off)
605 return 1;
606
607 return check_bytes_and_report(s, page, p, "Object padding",
608 p + off, POISON_INUSE, s->size - off);
609 }
610
611 /* Check the pad bytes at the end of a slab page */
612 static int slab_pad_check(struct kmem_cache *s, struct page *page)
613 {
614 u8 *start;
615 u8 *fault;
616 u8 *end;
617 int length;
618 int remainder;
619
620 if (!(s->flags & SLAB_POISON))
621 return 1;
622
623 start = page_address(page);
624 length = (PAGE_SIZE << compound_order(page));
625 end = start + length;
626 remainder = length % s->size;
627 if (!remainder)
628 return 1;
629
630 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
631 if (!fault)
632 return 1;
633 while (end > fault && end[-1] == POISON_INUSE)
634 end--;
635
636 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
637 print_section("Padding", end - remainder, remainder);
638
639 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
640 return 0;
641 }
642
643 static int check_object(struct kmem_cache *s, struct page *page,
644 void *object, int active)
645 {
646 u8 *p = object;
647 u8 *endobject = object + s->objsize;
648
649 if (s->flags & SLAB_RED_ZONE) {
650 unsigned int red =
651 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
652
653 if (!check_bytes_and_report(s, page, object, "Redzone",
654 endobject, red, s->inuse - s->objsize))
655 return 0;
656 } else {
657 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
658 check_bytes_and_report(s, page, p, "Alignment padding",
659 endobject, POISON_INUSE, s->inuse - s->objsize);
660 }
661 }
662
663 if (s->flags & SLAB_POISON) {
664 if (!active && (s->flags & __OBJECT_POISON) &&
665 (!check_bytes_and_report(s, page, p, "Poison", p,
666 POISON_FREE, s->objsize - 1) ||
667 !check_bytes_and_report(s, page, p, "Poison",
668 p + s->objsize - 1, POISON_END, 1)))
669 return 0;
670 /*
671 * check_pad_bytes cleans up on its own.
672 */
673 check_pad_bytes(s, page, p);
674 }
675
676 if (!s->offset && active)
677 /*
678 * Object and freepointer overlap. Cannot check
679 * freepointer while object is allocated.
680 */
681 return 1;
682
683 /* Check free pointer validity */
684 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
685 object_err(s, page, p, "Freepointer corrupt");
686 /*
687 * No choice but to zap it and thus lose the remainder
688 * of the free objects in this slab. May cause
689 * another error because the object count is now wrong.
690 */
691 set_freepointer(s, p, NULL);
692 return 0;
693 }
694 return 1;
695 }
696
697 static int check_slab(struct kmem_cache *s, struct page *page)
698 {
699 int maxobj;
700
701 VM_BUG_ON(!irqs_disabled());
702
703 if (!PageSlab(page)) {
704 slab_err(s, page, "Not a valid slab page");
705 return 0;
706 }
707
708 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
709 if (page->objects > maxobj) {
710 slab_err(s, page, "objects %u > max %u",
711 s->name, page->objects, maxobj);
712 return 0;
713 }
714 if (page->inuse > page->objects) {
715 slab_err(s, page, "inuse %u > max %u",
716 s->name, page->inuse, page->objects);
717 return 0;
718 }
719 /* Slab_pad_check fixes things up after itself */
720 slab_pad_check(s, page);
721 return 1;
722 }
723
724 /*
725 * Determine if a certain object on a page is on the freelist. Must hold the
726 * slab lock to guarantee that the chains are in a consistent state.
727 */
728 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
729 {
730 int nr = 0;
731 void *fp = page->freelist;
732 void *object = NULL;
733 unsigned long max_objects;
734
735 while (fp && nr <= page->objects) {
736 if (fp == search)
737 return 1;
738 if (!check_valid_pointer(s, page, fp)) {
739 if (object) {
740 object_err(s, page, object,
741 "Freechain corrupt");
742 set_freepointer(s, object, NULL);
743 break;
744 } else {
745 slab_err(s, page, "Freepointer corrupt");
746 page->freelist = NULL;
747 page->inuse = page->objects;
748 slab_fix(s, "Freelist cleared");
749 return 0;
750 }
751 break;
752 }
753 object = fp;
754 fp = get_freepointer(s, object);
755 nr++;
756 }
757
758 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
759 if (max_objects > MAX_OBJS_PER_PAGE)
760 max_objects = MAX_OBJS_PER_PAGE;
761
762 if (page->objects != max_objects) {
763 slab_err(s, page, "Wrong number of objects. Found %d but "
764 "should be %d", page->objects, max_objects);
765 page->objects = max_objects;
766 slab_fix(s, "Number of objects adjusted.");
767 }
768 if (page->inuse != page->objects - nr) {
769 slab_err(s, page, "Wrong object count. Counter is %d but "
770 "counted were %d", page->inuse, page->objects - nr);
771 page->inuse = page->objects - nr;
772 slab_fix(s, "Object count adjusted.");
773 }
774 return search == NULL;
775 }
776
777 static void trace(struct kmem_cache *s, struct page *page, void *object,
778 int alloc)
779 {
780 if (s->flags & SLAB_TRACE) {
781 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
782 s->name,
783 alloc ? "alloc" : "free",
784 object, page->inuse,
785 page->freelist);
786
787 if (!alloc)
788 print_section("Object", (void *)object, s->objsize);
789
790 dump_stack();
791 }
792 }
793
794 /*
795 * Tracking of fully allocated slabs for debugging purposes.
796 */
797 static void add_full(struct kmem_cache_node *n, struct page *page)
798 {
799 spin_lock(&n->list_lock);
800 list_add(&page->lru, &n->full);
801 spin_unlock(&n->list_lock);
802 }
803
804 static void remove_full(struct kmem_cache *s, struct page *page)
805 {
806 struct kmem_cache_node *n;
807
808 if (!(s->flags & SLAB_STORE_USER))
809 return;
810
811 n = get_node(s, page_to_nid(page));
812
813 spin_lock(&n->list_lock);
814 list_del(&page->lru);
815 spin_unlock(&n->list_lock);
816 }
817
818 /* Tracking of the number of slabs for debugging purposes */
819 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
820 {
821 struct kmem_cache_node *n = get_node(s, node);
822
823 return atomic_long_read(&n->nr_slabs);
824 }
825
826 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
827 {
828 return atomic_long_read(&n->nr_slabs);
829 }
830
831 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
832 {
833 struct kmem_cache_node *n = get_node(s, node);
834
835 /*
836 * May be called early in order to allocate a slab for the
837 * kmem_cache_node structure. Solve the chicken-egg
838 * dilemma by deferring the increment of the count during
839 * bootstrap (see early_kmem_cache_node_alloc).
840 */
841 if (!NUMA_BUILD || n) {
842 atomic_long_inc(&n->nr_slabs);
843 atomic_long_add(objects, &n->total_objects);
844 }
845 }
846 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
847 {
848 struct kmem_cache_node *n = get_node(s, node);
849
850 atomic_long_dec(&n->nr_slabs);
851 atomic_long_sub(objects, &n->total_objects);
852 }
853
854 /* Object debug checks for alloc/free paths */
855 static void setup_object_debug(struct kmem_cache *s, struct page *page,
856 void *object)
857 {
858 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
859 return;
860
861 init_object(s, object, 0);
862 init_tracking(s, object);
863 }
864
865 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
866 void *object, unsigned long addr)
867 {
868 if (!check_slab(s, page))
869 goto bad;
870
871 if (!on_freelist(s, page, object)) {
872 object_err(s, page, object, "Object already allocated");
873 goto bad;
874 }
875
876 if (!check_valid_pointer(s, page, object)) {
877 object_err(s, page, object, "Freelist Pointer check fails");
878 goto bad;
879 }
880
881 if (!check_object(s, page, object, 0))
882 goto bad;
883
884 /* Success perform special debug activities for allocs */
885 if (s->flags & SLAB_STORE_USER)
886 set_track(s, object, TRACK_ALLOC, addr);
887 trace(s, page, object, 1);
888 init_object(s, object, 1);
889 return 1;
890
891 bad:
892 if (PageSlab(page)) {
893 /*
894 * If this is a slab page then lets do the best we can
895 * to avoid issues in the future. Marking all objects
896 * as used avoids touching the remaining objects.
897 */
898 slab_fix(s, "Marking all objects used");
899 page->inuse = page->objects;
900 page->freelist = NULL;
901 }
902 return 0;
903 }
904
905 static noinline int free_debug_processing(struct kmem_cache *s,
906 struct page *page, void *object, unsigned long addr)
907 {
908 if (!check_slab(s, page))
909 goto fail;
910
911 if (!check_valid_pointer(s, page, object)) {
912 slab_err(s, page, "Invalid object pointer 0x%p", object);
913 goto fail;
914 }
915
916 if (on_freelist(s, page, object)) {
917 object_err(s, page, object, "Object already free");
918 goto fail;
919 }
920
921 if (!check_object(s, page, object, 1))
922 return 0;
923
924 if (unlikely(s != page->slab)) {
925 if (!PageSlab(page)) {
926 slab_err(s, page, "Attempt to free object(0x%p) "
927 "outside of slab", object);
928 } else if (!page->slab) {
929 printk(KERN_ERR
930 "SLUB <none>: no slab for object 0x%p.\n",
931 object);
932 dump_stack();
933 } else
934 object_err(s, page, object,
935 "page slab pointer corrupt.");
936 goto fail;
937 }
938
939 /* Special debug activities for freeing objects */
940 if (!PageSlubFrozen(page) && !page->freelist)
941 remove_full(s, page);
942 if (s->flags & SLAB_STORE_USER)
943 set_track(s, object, TRACK_FREE, addr);
944 trace(s, page, object, 0);
945 init_object(s, object, 0);
946 return 1;
947
948 fail:
949 slab_fix(s, "Object at 0x%p not freed", object);
950 return 0;
951 }
952
953 static int __init setup_slub_debug(char *str)
954 {
955 slub_debug = DEBUG_DEFAULT_FLAGS;
956 if (*str++ != '=' || !*str)
957 /*
958 * No options specified. Switch on full debugging.
959 */
960 goto out;
961
962 if (*str == ',')
963 /*
964 * No options but restriction on slabs. This means full
965 * debugging for slabs matching a pattern.
966 */
967 goto check_slabs;
968
969 if (tolower(*str) == 'o') {
970 /*
971 * Avoid enabling debugging on caches if its minimum order
972 * would increase as a result.
973 */
974 disable_higher_order_debug = 1;
975 goto out;
976 }
977
978 slub_debug = 0;
979 if (*str == '-')
980 /*
981 * Switch off all debugging measures.
982 */
983 goto out;
984
985 /*
986 * Determine which debug features should be switched on
987 */
988 for (; *str && *str != ','; str++) {
989 switch (tolower(*str)) {
990 case 'f':
991 slub_debug |= SLAB_DEBUG_FREE;
992 break;
993 case 'z':
994 slub_debug |= SLAB_RED_ZONE;
995 break;
996 case 'p':
997 slub_debug |= SLAB_POISON;
998 break;
999 case 'u':
1000 slub_debug |= SLAB_STORE_USER;
1001 break;
1002 case 't':
1003 slub_debug |= SLAB_TRACE;
1004 break;
1005 case 'a':
1006 slub_debug |= SLAB_FAILSLAB;
1007 break;
1008 default:
1009 printk(KERN_ERR "slub_debug option '%c' "
1010 "unknown. skipped\n", *str);
1011 }
1012 }
1013
1014 check_slabs:
1015 if (*str == ',')
1016 slub_debug_slabs = str + 1;
1017 out:
1018 return 1;
1019 }
1020
1021 __setup("slub_debug", setup_slub_debug);
1022
1023 static unsigned long kmem_cache_flags(unsigned long objsize,
1024 unsigned long flags, const char *name,
1025 void (*ctor)(void *))
1026 {
1027 /*
1028 * Enable debugging if selected on the kernel commandline.
1029 */
1030 if (slub_debug && (!slub_debug_slabs ||
1031 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1032 flags |= slub_debug;
1033
1034 return flags;
1035 }
1036 #else
1037 static inline void setup_object_debug(struct kmem_cache *s,
1038 struct page *page, void *object) {}
1039
1040 static inline int alloc_debug_processing(struct kmem_cache *s,
1041 struct page *page, void *object, unsigned long addr) { return 0; }
1042
1043 static inline int free_debug_processing(struct kmem_cache *s,
1044 struct page *page, void *object, unsigned long addr) { return 0; }
1045
1046 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1047 { return 1; }
1048 static inline int check_object(struct kmem_cache *s, struct page *page,
1049 void *object, int active) { return 1; }
1050 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1051 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1052 unsigned long flags, const char *name,
1053 void (*ctor)(void *))
1054 {
1055 return flags;
1056 }
1057 #define slub_debug 0
1058
1059 #define disable_higher_order_debug 0
1060
1061 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1062 { return 0; }
1063 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1064 { return 0; }
1065 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1066 int objects) {}
1067 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1068 int objects) {}
1069 #endif
1070
1071 /*
1072 * Slab allocation and freeing
1073 */
1074 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1075 struct kmem_cache_order_objects oo)
1076 {
1077 int order = oo_order(oo);
1078
1079 flags |= __GFP_NOTRACK;
1080
1081 if (node == NUMA_NO_NODE)
1082 return alloc_pages(flags, order);
1083 else
1084 return alloc_pages_exact_node(node, flags, order);
1085 }
1086
1087 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1088 {
1089 struct page *page;
1090 struct kmem_cache_order_objects oo = s->oo;
1091 gfp_t alloc_gfp;
1092
1093 flags |= s->allocflags;
1094
1095 /*
1096 * Let the initial higher-order allocation fail under memory pressure
1097 * so we fall-back to the minimum order allocation.
1098 */
1099 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1100
1101 page = alloc_slab_page(alloc_gfp, node, oo);
1102 if (unlikely(!page)) {
1103 oo = s->min;
1104 /*
1105 * Allocation may have failed due to fragmentation.
1106 * Try a lower order alloc if possible
1107 */
1108 page = alloc_slab_page(flags, node, oo);
1109 if (!page)
1110 return NULL;
1111
1112 stat(s, ORDER_FALLBACK);
1113 }
1114
1115 if (kmemcheck_enabled
1116 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1117 int pages = 1 << oo_order(oo);
1118
1119 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1120
1121 /*
1122 * Objects from caches that have a constructor don't get
1123 * cleared when they're allocated, so we need to do it here.
1124 */
1125 if (s->ctor)
1126 kmemcheck_mark_uninitialized_pages(page, pages);
1127 else
1128 kmemcheck_mark_unallocated_pages(page, pages);
1129 }
1130
1131 page->objects = oo_objects(oo);
1132 mod_zone_page_state(page_zone(page),
1133 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1134 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1135 1 << oo_order(oo));
1136
1137 return page;
1138 }
1139
1140 static void setup_object(struct kmem_cache *s, struct page *page,
1141 void *object)
1142 {
1143 setup_object_debug(s, page, object);
1144 if (unlikely(s->ctor))
1145 s->ctor(object);
1146 }
1147
1148 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1149 {
1150 struct page *page;
1151 void *start;
1152 void *last;
1153 void *p;
1154
1155 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1156
1157 page = allocate_slab(s,
1158 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1159 if (!page)
1160 goto out;
1161
1162 inc_slabs_node(s, page_to_nid(page), page->objects);
1163 page->slab = s;
1164 page->flags |= 1 << PG_slab;
1165
1166 start = page_address(page);
1167
1168 if (unlikely(s->flags & SLAB_POISON))
1169 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1170
1171 last = start;
1172 for_each_object(p, s, start, page->objects) {
1173 setup_object(s, page, last);
1174 set_freepointer(s, last, p);
1175 last = p;
1176 }
1177 setup_object(s, page, last);
1178 set_freepointer(s, last, NULL);
1179
1180 page->freelist = start;
1181 page->inuse = 0;
1182 out:
1183 return page;
1184 }
1185
1186 static void __free_slab(struct kmem_cache *s, struct page *page)
1187 {
1188 int order = compound_order(page);
1189 int pages = 1 << order;
1190
1191 if (kmem_cache_debug(s)) {
1192 void *p;
1193
1194 slab_pad_check(s, page);
1195 for_each_object(p, s, page_address(page),
1196 page->objects)
1197 check_object(s, page, p, 0);
1198 }
1199
1200 kmemcheck_free_shadow(page, compound_order(page));
1201
1202 mod_zone_page_state(page_zone(page),
1203 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1204 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1205 -pages);
1206
1207 __ClearPageSlab(page);
1208 reset_page_mapcount(page);
1209 if (current->reclaim_state)
1210 current->reclaim_state->reclaimed_slab += pages;
1211 __free_pages(page, order);
1212 }
1213
1214 static void rcu_free_slab(struct rcu_head *h)
1215 {
1216 struct page *page;
1217
1218 page = container_of((struct list_head *)h, struct page, lru);
1219 __free_slab(page->slab, page);
1220 }
1221
1222 static void free_slab(struct kmem_cache *s, struct page *page)
1223 {
1224 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1225 /*
1226 * RCU free overloads the RCU head over the LRU
1227 */
1228 struct rcu_head *head = (void *)&page->lru;
1229
1230 call_rcu(head, rcu_free_slab);
1231 } else
1232 __free_slab(s, page);
1233 }
1234
1235 static void discard_slab(struct kmem_cache *s, struct page *page)
1236 {
1237 dec_slabs_node(s, page_to_nid(page), page->objects);
1238 free_slab(s, page);
1239 }
1240
1241 /*
1242 * Per slab locking using the pagelock
1243 */
1244 static __always_inline void slab_lock(struct page *page)
1245 {
1246 bit_spin_lock(PG_locked, &page->flags);
1247 }
1248
1249 static __always_inline void slab_unlock(struct page *page)
1250 {
1251 __bit_spin_unlock(PG_locked, &page->flags);
1252 }
1253
1254 static __always_inline int slab_trylock(struct page *page)
1255 {
1256 int rc = 1;
1257
1258 rc = bit_spin_trylock(PG_locked, &page->flags);
1259 return rc;
1260 }
1261
1262 /*
1263 * Management of partially allocated slabs
1264 */
1265 static void add_partial(struct kmem_cache_node *n,
1266 struct page *page, int tail)
1267 {
1268 spin_lock(&n->list_lock);
1269 n->nr_partial++;
1270 if (tail)
1271 list_add_tail(&page->lru, &n->partial);
1272 else
1273 list_add(&page->lru, &n->partial);
1274 spin_unlock(&n->list_lock);
1275 }
1276
1277 static void remove_partial(struct kmem_cache *s, struct page *page)
1278 {
1279 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1280
1281 spin_lock(&n->list_lock);
1282 list_del(&page->lru);
1283 n->nr_partial--;
1284 spin_unlock(&n->list_lock);
1285 }
1286
1287 /*
1288 * Lock slab and remove from the partial list.
1289 *
1290 * Must hold list_lock.
1291 */
1292 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1293 struct page *page)
1294 {
1295 if (slab_trylock(page)) {
1296 list_del(&page->lru);
1297 n->nr_partial--;
1298 __SetPageSlubFrozen(page);
1299 return 1;
1300 }
1301 return 0;
1302 }
1303
1304 /*
1305 * Try to allocate a partial slab from a specific node.
1306 */
1307 static struct page *get_partial_node(struct kmem_cache_node *n)
1308 {
1309 struct page *page;
1310
1311 /*
1312 * Racy check. If we mistakenly see no partial slabs then we
1313 * just allocate an empty slab. If we mistakenly try to get a
1314 * partial slab and there is none available then get_partials()
1315 * will return NULL.
1316 */
1317 if (!n || !n->nr_partial)
1318 return NULL;
1319
1320 spin_lock(&n->list_lock);
1321 list_for_each_entry(page, &n->partial, lru)
1322 if (lock_and_freeze_slab(n, page))
1323 goto out;
1324 page = NULL;
1325 out:
1326 spin_unlock(&n->list_lock);
1327 return page;
1328 }
1329
1330 /*
1331 * Get a page from somewhere. Search in increasing NUMA distances.
1332 */
1333 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1334 {
1335 #ifdef CONFIG_NUMA
1336 struct zonelist *zonelist;
1337 struct zoneref *z;
1338 struct zone *zone;
1339 enum zone_type high_zoneidx = gfp_zone(flags);
1340 struct page *page;
1341
1342 /*
1343 * The defrag ratio allows a configuration of the tradeoffs between
1344 * inter node defragmentation and node local allocations. A lower
1345 * defrag_ratio increases the tendency to do local allocations
1346 * instead of attempting to obtain partial slabs from other nodes.
1347 *
1348 * If the defrag_ratio is set to 0 then kmalloc() always
1349 * returns node local objects. If the ratio is higher then kmalloc()
1350 * may return off node objects because partial slabs are obtained
1351 * from other nodes and filled up.
1352 *
1353 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1354 * defrag_ratio = 1000) then every (well almost) allocation will
1355 * first attempt to defrag slab caches on other nodes. This means
1356 * scanning over all nodes to look for partial slabs which may be
1357 * expensive if we do it every time we are trying to find a slab
1358 * with available objects.
1359 */
1360 if (!s->remote_node_defrag_ratio ||
1361 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1362 return NULL;
1363
1364 get_mems_allowed();
1365 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1366 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1367 struct kmem_cache_node *n;
1368
1369 n = get_node(s, zone_to_nid(zone));
1370
1371 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1372 n->nr_partial > s->min_partial) {
1373 page = get_partial_node(n);
1374 if (page) {
1375 put_mems_allowed();
1376 return page;
1377 }
1378 }
1379 }
1380 put_mems_allowed();
1381 #endif
1382 return NULL;
1383 }
1384
1385 /*
1386 * Get a partial page, lock it and return it.
1387 */
1388 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1389 {
1390 struct page *page;
1391 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1392
1393 page = get_partial_node(get_node(s, searchnode));
1394 if (page || node != -1)
1395 return page;
1396
1397 return get_any_partial(s, flags);
1398 }
1399
1400 /*
1401 * Move a page back to the lists.
1402 *
1403 * Must be called with the slab lock held.
1404 *
1405 * On exit the slab lock will have been dropped.
1406 */
1407 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1408 {
1409 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1410
1411 __ClearPageSlubFrozen(page);
1412 if (page->inuse) {
1413
1414 if (page->freelist) {
1415 add_partial(n, page, tail);
1416 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1417 } else {
1418 stat(s, DEACTIVATE_FULL);
1419 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1420 add_full(n, page);
1421 }
1422 slab_unlock(page);
1423 } else {
1424 stat(s, DEACTIVATE_EMPTY);
1425 if (n->nr_partial < s->min_partial) {
1426 /*
1427 * Adding an empty slab to the partial slabs in order
1428 * to avoid page allocator overhead. This slab needs
1429 * to come after the other slabs with objects in
1430 * so that the others get filled first. That way the
1431 * size of the partial list stays small.
1432 *
1433 * kmem_cache_shrink can reclaim any empty slabs from
1434 * the partial list.
1435 */
1436 add_partial(n, page, 1);
1437 slab_unlock(page);
1438 } else {
1439 slab_unlock(page);
1440 stat(s, FREE_SLAB);
1441 discard_slab(s, page);
1442 }
1443 }
1444 }
1445
1446 /*
1447 * Remove the cpu slab
1448 */
1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 {
1451 struct page *page = c->page;
1452 int tail = 1;
1453
1454 if (page->freelist)
1455 stat(s, DEACTIVATE_REMOTE_FREES);
1456 /*
1457 * Merge cpu freelist into slab freelist. Typically we get here
1458 * because both freelists are empty. So this is unlikely
1459 * to occur.
1460 */
1461 while (unlikely(c->freelist)) {
1462 void **object;
1463
1464 tail = 0; /* Hot objects. Put the slab first */
1465
1466 /* Retrieve object from cpu_freelist */
1467 object = c->freelist;
1468 c->freelist = get_freepointer(s, c->freelist);
1469
1470 /* And put onto the regular freelist */
1471 set_freepointer(s, object, page->freelist);
1472 page->freelist = object;
1473 page->inuse--;
1474 }
1475 c->page = NULL;
1476 unfreeze_slab(s, page, tail);
1477 }
1478
1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1480 {
1481 stat(s, CPUSLAB_FLUSH);
1482 slab_lock(c->page);
1483 deactivate_slab(s, c);
1484 }
1485
1486 /*
1487 * Flush cpu slab.
1488 *
1489 * Called from IPI handler with interrupts disabled.
1490 */
1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1492 {
1493 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1494
1495 if (likely(c && c->page))
1496 flush_slab(s, c);
1497 }
1498
1499 static void flush_cpu_slab(void *d)
1500 {
1501 struct kmem_cache *s = d;
1502
1503 __flush_cpu_slab(s, smp_processor_id());
1504 }
1505
1506 static void flush_all(struct kmem_cache *s)
1507 {
1508 on_each_cpu(flush_cpu_slab, s, 1);
1509 }
1510
1511 /*
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1514 */
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1516 {
1517 #ifdef CONFIG_NUMA
1518 if (node != NUMA_NO_NODE && c->node != node)
1519 return 0;
1520 #endif
1521 return 1;
1522 }
1523
1524 static int count_free(struct page *page)
1525 {
1526 return page->objects - page->inuse;
1527 }
1528
1529 static unsigned long count_partial(struct kmem_cache_node *n,
1530 int (*get_count)(struct page *))
1531 {
1532 unsigned long flags;
1533 unsigned long x = 0;
1534 struct page *page;
1535
1536 spin_lock_irqsave(&n->list_lock, flags);
1537 list_for_each_entry(page, &n->partial, lru)
1538 x += get_count(page);
1539 spin_unlock_irqrestore(&n->list_lock, flags);
1540 return x;
1541 }
1542
1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1544 {
1545 #ifdef CONFIG_SLUB_DEBUG
1546 return atomic_long_read(&n->total_objects);
1547 #else
1548 return 0;
1549 #endif
1550 }
1551
1552 static noinline void
1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554 {
1555 int node;
1556
1557 printk(KERN_WARNING
1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1559 nid, gfpflags);
1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1561 "default order: %d, min order: %d\n", s->name, s->objsize,
1562 s->size, oo_order(s->oo), oo_order(s->min));
1563
1564 if (oo_order(s->min) > get_order(s->objsize))
1565 printk(KERN_WARNING " %s debugging increased min order, use "
1566 "slub_debug=O to disable.\n", s->name);
1567
1568 for_each_online_node(node) {
1569 struct kmem_cache_node *n = get_node(s, node);
1570 unsigned long nr_slabs;
1571 unsigned long nr_objs;
1572 unsigned long nr_free;
1573
1574 if (!n)
1575 continue;
1576
1577 nr_free = count_partial(n, count_free);
1578 nr_slabs = node_nr_slabs(n);
1579 nr_objs = node_nr_objs(n);
1580
1581 printk(KERN_WARNING
1582 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1583 node, nr_slabs, nr_objs, nr_free);
1584 }
1585 }
1586
1587 /*
1588 * Slow path. The lockless freelist is empty or we need to perform
1589 * debugging duties.
1590 *
1591 * Interrupts are disabled.
1592 *
1593 * Processing is still very fast if new objects have been freed to the
1594 * regular freelist. In that case we simply take over the regular freelist
1595 * as the lockless freelist and zap the regular freelist.
1596 *
1597 * If that is not working then we fall back to the partial lists. We take the
1598 * first element of the freelist as the object to allocate now and move the
1599 * rest of the freelist to the lockless freelist.
1600 *
1601 * And if we were unable to get a new slab from the partial slab lists then
1602 * we need to allocate a new slab. This is the slowest path since it involves
1603 * a call to the page allocator and the setup of a new slab.
1604 */
1605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1606 unsigned long addr, struct kmem_cache_cpu *c)
1607 {
1608 void **object;
1609 struct page *new;
1610
1611 /* We handle __GFP_ZERO in the caller */
1612 gfpflags &= ~__GFP_ZERO;
1613
1614 if (!c->page)
1615 goto new_slab;
1616
1617 slab_lock(c->page);
1618 if (unlikely(!node_match(c, node)))
1619 goto another_slab;
1620
1621 stat(s, ALLOC_REFILL);
1622
1623 load_freelist:
1624 object = c->page->freelist;
1625 if (unlikely(!object))
1626 goto another_slab;
1627 if (kmem_cache_debug(s))
1628 goto debug;
1629
1630 c->freelist = get_freepointer(s, object);
1631 c->page->inuse = c->page->objects;
1632 c->page->freelist = NULL;
1633 c->node = page_to_nid(c->page);
1634 unlock_out:
1635 slab_unlock(c->page);
1636 stat(s, ALLOC_SLOWPATH);
1637 return object;
1638
1639 another_slab:
1640 deactivate_slab(s, c);
1641
1642 new_slab:
1643 new = get_partial(s, gfpflags, node);
1644 if (new) {
1645 c->page = new;
1646 stat(s, ALLOC_FROM_PARTIAL);
1647 goto load_freelist;
1648 }
1649
1650 if (gfpflags & __GFP_WAIT)
1651 local_irq_enable();
1652
1653 new = new_slab(s, gfpflags, node);
1654
1655 if (gfpflags & __GFP_WAIT)
1656 local_irq_disable();
1657
1658 if (new) {
1659 c = __this_cpu_ptr(s->cpu_slab);
1660 stat(s, ALLOC_SLAB);
1661 if (c->page)
1662 flush_slab(s, c);
1663 slab_lock(new);
1664 __SetPageSlubFrozen(new);
1665 c->page = new;
1666 goto load_freelist;
1667 }
1668 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1669 slab_out_of_memory(s, gfpflags, node);
1670 return NULL;
1671 debug:
1672 if (!alloc_debug_processing(s, c->page, object, addr))
1673 goto another_slab;
1674
1675 c->page->inuse++;
1676 c->page->freelist = get_freepointer(s, object);
1677 c->node = -1;
1678 goto unlock_out;
1679 }
1680
1681 /*
1682 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1683 * have the fastpath folded into their functions. So no function call
1684 * overhead for requests that can be satisfied on the fastpath.
1685 *
1686 * The fastpath works by first checking if the lockless freelist can be used.
1687 * If not then __slab_alloc is called for slow processing.
1688 *
1689 * Otherwise we can simply pick the next object from the lockless free list.
1690 */
1691 static __always_inline void *slab_alloc(struct kmem_cache *s,
1692 gfp_t gfpflags, int node, unsigned long addr)
1693 {
1694 void **object;
1695 struct kmem_cache_cpu *c;
1696 unsigned long flags;
1697
1698 gfpflags &= gfp_allowed_mask;
1699
1700 lockdep_trace_alloc(gfpflags);
1701 might_sleep_if(gfpflags & __GFP_WAIT);
1702
1703 if (should_failslab(s->objsize, gfpflags, s->flags))
1704 return NULL;
1705
1706 local_irq_save(flags);
1707 c = __this_cpu_ptr(s->cpu_slab);
1708 object = c->freelist;
1709 if (unlikely(!object || !node_match(c, node)))
1710
1711 object = __slab_alloc(s, gfpflags, node, addr, c);
1712
1713 else {
1714 c->freelist = get_freepointer(s, object);
1715 stat(s, ALLOC_FASTPATH);
1716 }
1717 local_irq_restore(flags);
1718
1719 if (unlikely(gfpflags & __GFP_ZERO) && object)
1720 memset(object, 0, s->objsize);
1721
1722 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1723 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1724
1725 return object;
1726 }
1727
1728 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1729 {
1730 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1731
1732 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1733
1734 return ret;
1735 }
1736 EXPORT_SYMBOL(kmem_cache_alloc);
1737
1738 #ifdef CONFIG_TRACING
1739 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1740 {
1741 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1742 }
1743 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1744 #endif
1745
1746 #ifdef CONFIG_NUMA
1747 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1748 {
1749 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1750
1751 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1752 s->objsize, s->size, gfpflags, node);
1753
1754 return ret;
1755 }
1756 EXPORT_SYMBOL(kmem_cache_alloc_node);
1757 #endif
1758
1759 #ifdef CONFIG_TRACING
1760 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1761 gfp_t gfpflags,
1762 int node)
1763 {
1764 return slab_alloc(s, gfpflags, node, _RET_IP_);
1765 }
1766 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1767 #endif
1768
1769 /*
1770 * Slow patch handling. This may still be called frequently since objects
1771 * have a longer lifetime than the cpu slabs in most processing loads.
1772 *
1773 * So we still attempt to reduce cache line usage. Just take the slab
1774 * lock and free the item. If there is no additional partial page
1775 * handling required then we can return immediately.
1776 */
1777 static void __slab_free(struct kmem_cache *s, struct page *page,
1778 void *x, unsigned long addr)
1779 {
1780 void *prior;
1781 void **object = (void *)x;
1782
1783 stat(s, FREE_SLOWPATH);
1784 slab_lock(page);
1785
1786 if (kmem_cache_debug(s))
1787 goto debug;
1788
1789 checks_ok:
1790 prior = page->freelist;
1791 set_freepointer(s, object, prior);
1792 page->freelist = object;
1793 page->inuse--;
1794
1795 if (unlikely(PageSlubFrozen(page))) {
1796 stat(s, FREE_FROZEN);
1797 goto out_unlock;
1798 }
1799
1800 if (unlikely(!page->inuse))
1801 goto slab_empty;
1802
1803 /*
1804 * Objects left in the slab. If it was not on the partial list before
1805 * then add it.
1806 */
1807 if (unlikely(!prior)) {
1808 add_partial(get_node(s, page_to_nid(page)), page, 1);
1809 stat(s, FREE_ADD_PARTIAL);
1810 }
1811
1812 out_unlock:
1813 slab_unlock(page);
1814 return;
1815
1816 slab_empty:
1817 if (prior) {
1818 /*
1819 * Slab still on the partial list.
1820 */
1821 remove_partial(s, page);
1822 stat(s, FREE_REMOVE_PARTIAL);
1823 }
1824 slab_unlock(page);
1825 stat(s, FREE_SLAB);
1826 discard_slab(s, page);
1827 return;
1828
1829 debug:
1830 if (!free_debug_processing(s, page, x, addr))
1831 goto out_unlock;
1832 goto checks_ok;
1833 }
1834
1835 /*
1836 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1837 * can perform fastpath freeing without additional function calls.
1838 *
1839 * The fastpath is only possible if we are freeing to the current cpu slab
1840 * of this processor. This typically the case if we have just allocated
1841 * the item before.
1842 *
1843 * If fastpath is not possible then fall back to __slab_free where we deal
1844 * with all sorts of special processing.
1845 */
1846 static __always_inline void slab_free(struct kmem_cache *s,
1847 struct page *page, void *x, unsigned long addr)
1848 {
1849 void **object = (void *)x;
1850 struct kmem_cache_cpu *c;
1851 unsigned long flags;
1852
1853 kmemleak_free_recursive(x, s->flags);
1854 local_irq_save(flags);
1855 c = __this_cpu_ptr(s->cpu_slab);
1856 kmemcheck_slab_free(s, object, s->objsize);
1857 debug_check_no_locks_freed(object, s->objsize);
1858 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1859 debug_check_no_obj_freed(object, s->objsize);
1860 if (likely(page == c->page && c->node >= 0)) {
1861 set_freepointer(s, object, c->freelist);
1862 c->freelist = object;
1863 stat(s, FREE_FASTPATH);
1864 } else
1865 __slab_free(s, page, x, addr);
1866
1867 local_irq_restore(flags);
1868 }
1869
1870 void kmem_cache_free(struct kmem_cache *s, void *x)
1871 {
1872 struct page *page;
1873
1874 page = virt_to_head_page(x);
1875
1876 slab_free(s, page, x, _RET_IP_);
1877
1878 trace_kmem_cache_free(_RET_IP_, x);
1879 }
1880 EXPORT_SYMBOL(kmem_cache_free);
1881
1882 /* Figure out on which slab page the object resides */
1883 static struct page *get_object_page(const void *x)
1884 {
1885 struct page *page = virt_to_head_page(x);
1886
1887 if (!PageSlab(page))
1888 return NULL;
1889
1890 return page;
1891 }
1892
1893 /*
1894 * Object placement in a slab is made very easy because we always start at
1895 * offset 0. If we tune the size of the object to the alignment then we can
1896 * get the required alignment by putting one properly sized object after
1897 * another.
1898 *
1899 * Notice that the allocation order determines the sizes of the per cpu
1900 * caches. Each processor has always one slab available for allocations.
1901 * Increasing the allocation order reduces the number of times that slabs
1902 * must be moved on and off the partial lists and is therefore a factor in
1903 * locking overhead.
1904 */
1905
1906 /*
1907 * Mininum / Maximum order of slab pages. This influences locking overhead
1908 * and slab fragmentation. A higher order reduces the number of partial slabs
1909 * and increases the number of allocations possible without having to
1910 * take the list_lock.
1911 */
1912 static int slub_min_order;
1913 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1914 static int slub_min_objects;
1915
1916 /*
1917 * Merge control. If this is set then no merging of slab caches will occur.
1918 * (Could be removed. This was introduced to pacify the merge skeptics.)
1919 */
1920 static int slub_nomerge;
1921
1922 /*
1923 * Calculate the order of allocation given an slab object size.
1924 *
1925 * The order of allocation has significant impact on performance and other
1926 * system components. Generally order 0 allocations should be preferred since
1927 * order 0 does not cause fragmentation in the page allocator. Larger objects
1928 * be problematic to put into order 0 slabs because there may be too much
1929 * unused space left. We go to a higher order if more than 1/16th of the slab
1930 * would be wasted.
1931 *
1932 * In order to reach satisfactory performance we must ensure that a minimum
1933 * number of objects is in one slab. Otherwise we may generate too much
1934 * activity on the partial lists which requires taking the list_lock. This is
1935 * less a concern for large slabs though which are rarely used.
1936 *
1937 * slub_max_order specifies the order where we begin to stop considering the
1938 * number of objects in a slab as critical. If we reach slub_max_order then
1939 * we try to keep the page order as low as possible. So we accept more waste
1940 * of space in favor of a small page order.
1941 *
1942 * Higher order allocations also allow the placement of more objects in a
1943 * slab and thereby reduce object handling overhead. If the user has
1944 * requested a higher mininum order then we start with that one instead of
1945 * the smallest order which will fit the object.
1946 */
1947 static inline int slab_order(int size, int min_objects,
1948 int max_order, int fract_leftover)
1949 {
1950 int order;
1951 int rem;
1952 int min_order = slub_min_order;
1953
1954 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1955 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1956
1957 for (order = max(min_order,
1958 fls(min_objects * size - 1) - PAGE_SHIFT);
1959 order <= max_order; order++) {
1960
1961 unsigned long slab_size = PAGE_SIZE << order;
1962
1963 if (slab_size < min_objects * size)
1964 continue;
1965
1966 rem = slab_size % size;
1967
1968 if (rem <= slab_size / fract_leftover)
1969 break;
1970
1971 }
1972
1973 return order;
1974 }
1975
1976 static inline int calculate_order(int size)
1977 {
1978 int order;
1979 int min_objects;
1980 int fraction;
1981 int max_objects;
1982
1983 /*
1984 * Attempt to find best configuration for a slab. This
1985 * works by first attempting to generate a layout with
1986 * the best configuration and backing off gradually.
1987 *
1988 * First we reduce the acceptable waste in a slab. Then
1989 * we reduce the minimum objects required in a slab.
1990 */
1991 min_objects = slub_min_objects;
1992 if (!min_objects)
1993 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1994 max_objects = (PAGE_SIZE << slub_max_order)/size;
1995 min_objects = min(min_objects, max_objects);
1996
1997 while (min_objects > 1) {
1998 fraction = 16;
1999 while (fraction >= 4) {
2000 order = slab_order(size, min_objects,
2001 slub_max_order, fraction);
2002 if (order <= slub_max_order)
2003 return order;
2004 fraction /= 2;
2005 }
2006 min_objects--;
2007 }
2008
2009 /*
2010 * We were unable to place multiple objects in a slab. Now
2011 * lets see if we can place a single object there.
2012 */
2013 order = slab_order(size, 1, slub_max_order, 1);
2014 if (order <= slub_max_order)
2015 return order;
2016
2017 /*
2018 * Doh this slab cannot be placed using slub_max_order.
2019 */
2020 order = slab_order(size, 1, MAX_ORDER, 1);
2021 if (order < MAX_ORDER)
2022 return order;
2023 return -ENOSYS;
2024 }
2025
2026 /*
2027 * Figure out what the alignment of the objects will be.
2028 */
2029 static unsigned long calculate_alignment(unsigned long flags,
2030 unsigned long align, unsigned long size)
2031 {
2032 /*
2033 * If the user wants hardware cache aligned objects then follow that
2034 * suggestion if the object is sufficiently large.
2035 *
2036 * The hardware cache alignment cannot override the specified
2037 * alignment though. If that is greater then use it.
2038 */
2039 if (flags & SLAB_HWCACHE_ALIGN) {
2040 unsigned long ralign = cache_line_size();
2041 while (size <= ralign / 2)
2042 ralign /= 2;
2043 align = max(align, ralign);
2044 }
2045
2046 if (align < ARCH_SLAB_MINALIGN)
2047 align = ARCH_SLAB_MINALIGN;
2048
2049 return ALIGN(align, sizeof(void *));
2050 }
2051
2052 static void
2053 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2054 {
2055 n->nr_partial = 0;
2056 spin_lock_init(&n->list_lock);
2057 INIT_LIST_HEAD(&n->partial);
2058 #ifdef CONFIG_SLUB_DEBUG
2059 atomic_long_set(&n->nr_slabs, 0);
2060 atomic_long_set(&n->total_objects, 0);
2061 INIT_LIST_HEAD(&n->full);
2062 #endif
2063 }
2064
2065 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2066
2067 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2068 {
2069 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2070 /*
2071 * Boot time creation of the kmalloc array. Use static per cpu data
2072 * since the per cpu allocator is not available yet.
2073 */
2074 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2075 else
2076 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2077
2078 if (!s->cpu_slab)
2079 return 0;
2080
2081 return 1;
2082 }
2083
2084 #ifdef CONFIG_NUMA
2085 /*
2086 * No kmalloc_node yet so do it by hand. We know that this is the first
2087 * slab on the node for this slabcache. There are no concurrent accesses
2088 * possible.
2089 *
2090 * Note that this function only works on the kmalloc_node_cache
2091 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2092 * memory on a fresh node that has no slab structures yet.
2093 */
2094 static void early_kmem_cache_node_alloc(int node)
2095 {
2096 struct page *page;
2097 struct kmem_cache_node *n;
2098 unsigned long flags;
2099
2100 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2101
2102 page = new_slab(kmalloc_caches, GFP_NOWAIT, node);
2103
2104 BUG_ON(!page);
2105 if (page_to_nid(page) != node) {
2106 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2107 "node %d\n", node);
2108 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2109 "in order to be able to continue\n");
2110 }
2111
2112 n = page->freelist;
2113 BUG_ON(!n);
2114 page->freelist = get_freepointer(kmalloc_caches, n);
2115 page->inuse++;
2116 kmalloc_caches->node[node] = n;
2117 #ifdef CONFIG_SLUB_DEBUG
2118 init_object(kmalloc_caches, n, 1);
2119 init_tracking(kmalloc_caches, n);
2120 #endif
2121 init_kmem_cache_node(n, kmalloc_caches);
2122 inc_slabs_node(kmalloc_caches, node, page->objects);
2123
2124 /*
2125 * lockdep requires consistent irq usage for each lock
2126 * so even though there cannot be a race this early in
2127 * the boot sequence, we still disable irqs.
2128 */
2129 local_irq_save(flags);
2130 add_partial(n, page, 0);
2131 local_irq_restore(flags);
2132 }
2133
2134 static void free_kmem_cache_nodes(struct kmem_cache *s)
2135 {
2136 int node;
2137
2138 for_each_node_state(node, N_NORMAL_MEMORY) {
2139 struct kmem_cache_node *n = s->node[node];
2140 if (n)
2141 kmem_cache_free(kmalloc_caches, n);
2142 s->node[node] = NULL;
2143 }
2144 }
2145
2146 static int init_kmem_cache_nodes(struct kmem_cache *s)
2147 {
2148 int node;
2149
2150 for_each_node_state(node, N_NORMAL_MEMORY) {
2151 struct kmem_cache_node *n;
2152
2153 if (slab_state == DOWN) {
2154 early_kmem_cache_node_alloc(node);
2155 continue;
2156 }
2157 n = kmem_cache_alloc_node(kmalloc_caches,
2158 GFP_KERNEL, node);
2159
2160 if (!n) {
2161 free_kmem_cache_nodes(s);
2162 return 0;
2163 }
2164
2165 s->node[node] = n;
2166 init_kmem_cache_node(n, s);
2167 }
2168 return 1;
2169 }
2170 #else
2171 static void free_kmem_cache_nodes(struct kmem_cache *s)
2172 {
2173 }
2174
2175 static int init_kmem_cache_nodes(struct kmem_cache *s)
2176 {
2177 init_kmem_cache_node(&s->local_node, s);
2178 return 1;
2179 }
2180 #endif
2181
2182 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2183 {
2184 if (min < MIN_PARTIAL)
2185 min = MIN_PARTIAL;
2186 else if (min > MAX_PARTIAL)
2187 min = MAX_PARTIAL;
2188 s->min_partial = min;
2189 }
2190
2191 /*
2192 * calculate_sizes() determines the order and the distribution of data within
2193 * a slab object.
2194 */
2195 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2196 {
2197 unsigned long flags = s->flags;
2198 unsigned long size = s->objsize;
2199 unsigned long align = s->align;
2200 int order;
2201
2202 /*
2203 * Round up object size to the next word boundary. We can only
2204 * place the free pointer at word boundaries and this determines
2205 * the possible location of the free pointer.
2206 */
2207 size = ALIGN(size, sizeof(void *));
2208
2209 #ifdef CONFIG_SLUB_DEBUG
2210 /*
2211 * Determine if we can poison the object itself. If the user of
2212 * the slab may touch the object after free or before allocation
2213 * then we should never poison the object itself.
2214 */
2215 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2216 !s->ctor)
2217 s->flags |= __OBJECT_POISON;
2218 else
2219 s->flags &= ~__OBJECT_POISON;
2220
2221
2222 /*
2223 * If we are Redzoning then check if there is some space between the
2224 * end of the object and the free pointer. If not then add an
2225 * additional word to have some bytes to store Redzone information.
2226 */
2227 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2228 size += sizeof(void *);
2229 #endif
2230
2231 /*
2232 * With that we have determined the number of bytes in actual use
2233 * by the object. This is the potential offset to the free pointer.
2234 */
2235 s->inuse = size;
2236
2237 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2238 s->ctor)) {
2239 /*
2240 * Relocate free pointer after the object if it is not
2241 * permitted to overwrite the first word of the object on
2242 * kmem_cache_free.
2243 *
2244 * This is the case if we do RCU, have a constructor or
2245 * destructor or are poisoning the objects.
2246 */
2247 s->offset = size;
2248 size += sizeof(void *);
2249 }
2250
2251 #ifdef CONFIG_SLUB_DEBUG
2252 if (flags & SLAB_STORE_USER)
2253 /*
2254 * Need to store information about allocs and frees after
2255 * the object.
2256 */
2257 size += 2 * sizeof(struct track);
2258
2259 if (flags & SLAB_RED_ZONE)
2260 /*
2261 * Add some empty padding so that we can catch
2262 * overwrites from earlier objects rather than let
2263 * tracking information or the free pointer be
2264 * corrupted if a user writes before the start
2265 * of the object.
2266 */
2267 size += sizeof(void *);
2268 #endif
2269
2270 /*
2271 * Determine the alignment based on various parameters that the
2272 * user specified and the dynamic determination of cache line size
2273 * on bootup.
2274 */
2275 align = calculate_alignment(flags, align, s->objsize);
2276 s->align = align;
2277
2278 /*
2279 * SLUB stores one object immediately after another beginning from
2280 * offset 0. In order to align the objects we have to simply size
2281 * each object to conform to the alignment.
2282 */
2283 size = ALIGN(size, align);
2284 s->size = size;
2285 if (forced_order >= 0)
2286 order = forced_order;
2287 else
2288 order = calculate_order(size);
2289
2290 if (order < 0)
2291 return 0;
2292
2293 s->allocflags = 0;
2294 if (order)
2295 s->allocflags |= __GFP_COMP;
2296
2297 if (s->flags & SLAB_CACHE_DMA)
2298 s->allocflags |= SLUB_DMA;
2299
2300 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2301 s->allocflags |= __GFP_RECLAIMABLE;
2302
2303 /*
2304 * Determine the number of objects per slab
2305 */
2306 s->oo = oo_make(order, size);
2307 s->min = oo_make(get_order(size), size);
2308 if (oo_objects(s->oo) > oo_objects(s->max))
2309 s->max = s->oo;
2310
2311 return !!oo_objects(s->oo);
2312
2313 }
2314
2315 static int kmem_cache_open(struct kmem_cache *s,
2316 const char *name, size_t size,
2317 size_t align, unsigned long flags,
2318 void (*ctor)(void *))
2319 {
2320 memset(s, 0, kmem_size);
2321 s->name = name;
2322 s->ctor = ctor;
2323 s->objsize = size;
2324 s->align = align;
2325 s->flags = kmem_cache_flags(size, flags, name, ctor);
2326
2327 if (!calculate_sizes(s, -1))
2328 goto error;
2329 if (disable_higher_order_debug) {
2330 /*
2331 * Disable debugging flags that store metadata if the min slab
2332 * order increased.
2333 */
2334 if (get_order(s->size) > get_order(s->objsize)) {
2335 s->flags &= ~DEBUG_METADATA_FLAGS;
2336 s->offset = 0;
2337 if (!calculate_sizes(s, -1))
2338 goto error;
2339 }
2340 }
2341
2342 /*
2343 * The larger the object size is, the more pages we want on the partial
2344 * list to avoid pounding the page allocator excessively.
2345 */
2346 set_min_partial(s, ilog2(s->size));
2347 s->refcount = 1;
2348 #ifdef CONFIG_NUMA
2349 s->remote_node_defrag_ratio = 1000;
2350 #endif
2351 if (!init_kmem_cache_nodes(s))
2352 goto error;
2353
2354 if (alloc_kmem_cache_cpus(s))
2355 return 1;
2356
2357 free_kmem_cache_nodes(s);
2358 error:
2359 if (flags & SLAB_PANIC)
2360 panic("Cannot create slab %s size=%lu realsize=%u "
2361 "order=%u offset=%u flags=%lx\n",
2362 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2363 s->offset, flags);
2364 return 0;
2365 }
2366
2367 /*
2368 * Check if a given pointer is valid
2369 */
2370 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2371 {
2372 struct page *page;
2373
2374 if (!kern_ptr_validate(object, s->size))
2375 return 0;
2376
2377 page = get_object_page(object);
2378
2379 if (!page || s != page->slab)
2380 /* No slab or wrong slab */
2381 return 0;
2382
2383 if (!check_valid_pointer(s, page, object))
2384 return 0;
2385
2386 /*
2387 * We could also check if the object is on the slabs freelist.
2388 * But this would be too expensive and it seems that the main
2389 * purpose of kmem_ptr_valid() is to check if the object belongs
2390 * to a certain slab.
2391 */
2392 return 1;
2393 }
2394 EXPORT_SYMBOL(kmem_ptr_validate);
2395
2396 /*
2397 * Determine the size of a slab object
2398 */
2399 unsigned int kmem_cache_size(struct kmem_cache *s)
2400 {
2401 return s->objsize;
2402 }
2403 EXPORT_SYMBOL(kmem_cache_size);
2404
2405 const char *kmem_cache_name(struct kmem_cache *s)
2406 {
2407 return s->name;
2408 }
2409 EXPORT_SYMBOL(kmem_cache_name);
2410
2411 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2412 const char *text)
2413 {
2414 #ifdef CONFIG_SLUB_DEBUG
2415 void *addr = page_address(page);
2416 void *p;
2417 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2418 GFP_ATOMIC);
2419
2420 if (!map)
2421 return;
2422 slab_err(s, page, "%s", text);
2423 slab_lock(page);
2424 for_each_free_object(p, s, page->freelist)
2425 set_bit(slab_index(p, s, addr), map);
2426
2427 for_each_object(p, s, addr, page->objects) {
2428
2429 if (!test_bit(slab_index(p, s, addr), map)) {
2430 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2431 p, p - addr);
2432 print_tracking(s, p);
2433 }
2434 }
2435 slab_unlock(page);
2436 kfree(map);
2437 #endif
2438 }
2439
2440 /*
2441 * Attempt to free all partial slabs on a node.
2442 */
2443 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2444 {
2445 unsigned long flags;
2446 struct page *page, *h;
2447
2448 spin_lock_irqsave(&n->list_lock, flags);
2449 list_for_each_entry_safe(page, h, &n->partial, lru) {
2450 if (!page->inuse) {
2451 list_del(&page->lru);
2452 discard_slab(s, page);
2453 n->nr_partial--;
2454 } else {
2455 list_slab_objects(s, page,
2456 "Objects remaining on kmem_cache_close()");
2457 }
2458 }
2459 spin_unlock_irqrestore(&n->list_lock, flags);
2460 }
2461
2462 /*
2463 * Release all resources used by a slab cache.
2464 */
2465 static inline int kmem_cache_close(struct kmem_cache *s)
2466 {
2467 int node;
2468
2469 flush_all(s);
2470 free_percpu(s->cpu_slab);
2471 /* Attempt to free all objects */
2472 for_each_node_state(node, N_NORMAL_MEMORY) {
2473 struct kmem_cache_node *n = get_node(s, node);
2474
2475 free_partial(s, n);
2476 if (n->nr_partial || slabs_node(s, node))
2477 return 1;
2478 }
2479 free_kmem_cache_nodes(s);
2480 return 0;
2481 }
2482
2483 /*
2484 * Close a cache and release the kmem_cache structure
2485 * (must be used for caches created using kmem_cache_create)
2486 */
2487 void kmem_cache_destroy(struct kmem_cache *s)
2488 {
2489 down_write(&slub_lock);
2490 s->refcount--;
2491 if (!s->refcount) {
2492 list_del(&s->list);
2493 if (kmem_cache_close(s)) {
2494 printk(KERN_ERR "SLUB %s: %s called for cache that "
2495 "still has objects.\n", s->name, __func__);
2496 dump_stack();
2497 }
2498 if (s->flags & SLAB_DESTROY_BY_RCU)
2499 rcu_barrier();
2500 sysfs_slab_remove(s);
2501 }
2502 up_write(&slub_lock);
2503 }
2504 EXPORT_SYMBOL(kmem_cache_destroy);
2505
2506 /********************************************************************
2507 * Kmalloc subsystem
2508 *******************************************************************/
2509
2510 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2511 EXPORT_SYMBOL(kmalloc_caches);
2512
2513 #ifdef CONFIG_ZONE_DMA
2514 static struct kmem_cache kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2515 #endif
2516
2517 static int __init setup_slub_min_order(char *str)
2518 {
2519 get_option(&str, &slub_min_order);
2520
2521 return 1;
2522 }
2523
2524 __setup("slub_min_order=", setup_slub_min_order);
2525
2526 static int __init setup_slub_max_order(char *str)
2527 {
2528 get_option(&str, &slub_max_order);
2529 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2530
2531 return 1;
2532 }
2533
2534 __setup("slub_max_order=", setup_slub_max_order);
2535
2536 static int __init setup_slub_min_objects(char *str)
2537 {
2538 get_option(&str, &slub_min_objects);
2539
2540 return 1;
2541 }
2542
2543 __setup("slub_min_objects=", setup_slub_min_objects);
2544
2545 static int __init setup_slub_nomerge(char *str)
2546 {
2547 slub_nomerge = 1;
2548 return 1;
2549 }
2550
2551 __setup("slub_nomerge", setup_slub_nomerge);
2552
2553 static void create_kmalloc_cache(struct kmem_cache *s,
2554 const char *name, int size, unsigned int flags)
2555 {
2556 /*
2557 * This function is called with IRQs disabled during early-boot on
2558 * single CPU so there's no need to take slub_lock here.
2559 */
2560 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2561 flags, NULL))
2562 goto panic;
2563
2564 list_add(&s->list, &slab_caches);
2565
2566 if (!sysfs_slab_add(s))
2567 return;
2568
2569 panic:
2570 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2571 }
2572
2573 /*
2574 * Conversion table for small slabs sizes / 8 to the index in the
2575 * kmalloc array. This is necessary for slabs < 192 since we have non power
2576 * of two cache sizes there. The size of larger slabs can be determined using
2577 * fls.
2578 */
2579 static s8 size_index[24] = {
2580 3, /* 8 */
2581 4, /* 16 */
2582 5, /* 24 */
2583 5, /* 32 */
2584 6, /* 40 */
2585 6, /* 48 */
2586 6, /* 56 */
2587 6, /* 64 */
2588 1, /* 72 */
2589 1, /* 80 */
2590 1, /* 88 */
2591 1, /* 96 */
2592 7, /* 104 */
2593 7, /* 112 */
2594 7, /* 120 */
2595 7, /* 128 */
2596 2, /* 136 */
2597 2, /* 144 */
2598 2, /* 152 */
2599 2, /* 160 */
2600 2, /* 168 */
2601 2, /* 176 */
2602 2, /* 184 */
2603 2 /* 192 */
2604 };
2605
2606 static inline int size_index_elem(size_t bytes)
2607 {
2608 return (bytes - 1) / 8;
2609 }
2610
2611 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2612 {
2613 int index;
2614
2615 if (size <= 192) {
2616 if (!size)
2617 return ZERO_SIZE_PTR;
2618
2619 index = size_index[size_index_elem(size)];
2620 } else
2621 index = fls(size - 1);
2622
2623 #ifdef CONFIG_ZONE_DMA
2624 if (unlikely((flags & SLUB_DMA)))
2625 return &kmalloc_dma_caches[index];
2626
2627 #endif
2628 return &kmalloc_caches[index];
2629 }
2630
2631 void *__kmalloc(size_t size, gfp_t flags)
2632 {
2633 struct kmem_cache *s;
2634 void *ret;
2635
2636 if (unlikely(size > SLUB_MAX_SIZE))
2637 return kmalloc_large(size, flags);
2638
2639 s = get_slab(size, flags);
2640
2641 if (unlikely(ZERO_OR_NULL_PTR(s)))
2642 return s;
2643
2644 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2645
2646 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2647
2648 return ret;
2649 }
2650 EXPORT_SYMBOL(__kmalloc);
2651
2652 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2653 {
2654 struct page *page;
2655 void *ptr = NULL;
2656
2657 flags |= __GFP_COMP | __GFP_NOTRACK;
2658 page = alloc_pages_node(node, flags, get_order(size));
2659 if (page)
2660 ptr = page_address(page);
2661
2662 kmemleak_alloc(ptr, size, 1, flags);
2663 return ptr;
2664 }
2665
2666 #ifdef CONFIG_NUMA
2667 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2668 {
2669 struct kmem_cache *s;
2670 void *ret;
2671
2672 if (unlikely(size > SLUB_MAX_SIZE)) {
2673 ret = kmalloc_large_node(size, flags, node);
2674
2675 trace_kmalloc_node(_RET_IP_, ret,
2676 size, PAGE_SIZE << get_order(size),
2677 flags, node);
2678
2679 return ret;
2680 }
2681
2682 s = get_slab(size, flags);
2683
2684 if (unlikely(ZERO_OR_NULL_PTR(s)))
2685 return s;
2686
2687 ret = slab_alloc(s, flags, node, _RET_IP_);
2688
2689 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2690
2691 return ret;
2692 }
2693 EXPORT_SYMBOL(__kmalloc_node);
2694 #endif
2695
2696 size_t ksize(const void *object)
2697 {
2698 struct page *page;
2699 struct kmem_cache *s;
2700
2701 if (unlikely(object == ZERO_SIZE_PTR))
2702 return 0;
2703
2704 page = virt_to_head_page(object);
2705
2706 if (unlikely(!PageSlab(page))) {
2707 WARN_ON(!PageCompound(page));
2708 return PAGE_SIZE << compound_order(page);
2709 }
2710 s = page->slab;
2711
2712 #ifdef CONFIG_SLUB_DEBUG
2713 /*
2714 * Debugging requires use of the padding between object
2715 * and whatever may come after it.
2716 */
2717 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2718 return s->objsize;
2719
2720 #endif
2721 /*
2722 * If we have the need to store the freelist pointer
2723 * back there or track user information then we can
2724 * only use the space before that information.
2725 */
2726 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2727 return s->inuse;
2728 /*
2729 * Else we can use all the padding etc for the allocation
2730 */
2731 return s->size;
2732 }
2733 EXPORT_SYMBOL(ksize);
2734
2735 void kfree(const void *x)
2736 {
2737 struct page *page;
2738 void *object = (void *)x;
2739
2740 trace_kfree(_RET_IP_, x);
2741
2742 if (unlikely(ZERO_OR_NULL_PTR(x)))
2743 return;
2744
2745 page = virt_to_head_page(x);
2746 if (unlikely(!PageSlab(page))) {
2747 BUG_ON(!PageCompound(page));
2748 kmemleak_free(x);
2749 put_page(page);
2750 return;
2751 }
2752 slab_free(page->slab, page, object, _RET_IP_);
2753 }
2754 EXPORT_SYMBOL(kfree);
2755
2756 /*
2757 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2758 * the remaining slabs by the number of items in use. The slabs with the
2759 * most items in use come first. New allocations will then fill those up
2760 * and thus they can be removed from the partial lists.
2761 *
2762 * The slabs with the least items are placed last. This results in them
2763 * being allocated from last increasing the chance that the last objects
2764 * are freed in them.
2765 */
2766 int kmem_cache_shrink(struct kmem_cache *s)
2767 {
2768 int node;
2769 int i;
2770 struct kmem_cache_node *n;
2771 struct page *page;
2772 struct page *t;
2773 int objects = oo_objects(s->max);
2774 struct list_head *slabs_by_inuse =
2775 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2776 unsigned long flags;
2777
2778 if (!slabs_by_inuse)
2779 return -ENOMEM;
2780
2781 flush_all(s);
2782 for_each_node_state(node, N_NORMAL_MEMORY) {
2783 n = get_node(s, node);
2784
2785 if (!n->nr_partial)
2786 continue;
2787
2788 for (i = 0; i < objects; i++)
2789 INIT_LIST_HEAD(slabs_by_inuse + i);
2790
2791 spin_lock_irqsave(&n->list_lock, flags);
2792
2793 /*
2794 * Build lists indexed by the items in use in each slab.
2795 *
2796 * Note that concurrent frees may occur while we hold the
2797 * list_lock. page->inuse here is the upper limit.
2798 */
2799 list_for_each_entry_safe(page, t, &n->partial, lru) {
2800 if (!page->inuse && slab_trylock(page)) {
2801 /*
2802 * Must hold slab lock here because slab_free
2803 * may have freed the last object and be
2804 * waiting to release the slab.
2805 */
2806 list_del(&page->lru);
2807 n->nr_partial--;
2808 slab_unlock(page);
2809 discard_slab(s, page);
2810 } else {
2811 list_move(&page->lru,
2812 slabs_by_inuse + page->inuse);
2813 }
2814 }
2815
2816 /*
2817 * Rebuild the partial list with the slabs filled up most
2818 * first and the least used slabs at the end.
2819 */
2820 for (i = objects - 1; i >= 0; i--)
2821 list_splice(slabs_by_inuse + i, n->partial.prev);
2822
2823 spin_unlock_irqrestore(&n->list_lock, flags);
2824 }
2825
2826 kfree(slabs_by_inuse);
2827 return 0;
2828 }
2829 EXPORT_SYMBOL(kmem_cache_shrink);
2830
2831 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2832 static int slab_mem_going_offline_callback(void *arg)
2833 {
2834 struct kmem_cache *s;
2835
2836 down_read(&slub_lock);
2837 list_for_each_entry(s, &slab_caches, list)
2838 kmem_cache_shrink(s);
2839 up_read(&slub_lock);
2840
2841 return 0;
2842 }
2843
2844 static void slab_mem_offline_callback(void *arg)
2845 {
2846 struct kmem_cache_node *n;
2847 struct kmem_cache *s;
2848 struct memory_notify *marg = arg;
2849 int offline_node;
2850
2851 offline_node = marg->status_change_nid;
2852
2853 /*
2854 * If the node still has available memory. we need kmem_cache_node
2855 * for it yet.
2856 */
2857 if (offline_node < 0)
2858 return;
2859
2860 down_read(&slub_lock);
2861 list_for_each_entry(s, &slab_caches, list) {
2862 n = get_node(s, offline_node);
2863 if (n) {
2864 /*
2865 * if n->nr_slabs > 0, slabs still exist on the node
2866 * that is going down. We were unable to free them,
2867 * and offline_pages() function shouldn't call this
2868 * callback. So, we must fail.
2869 */
2870 BUG_ON(slabs_node(s, offline_node));
2871
2872 s->node[offline_node] = NULL;
2873 kmem_cache_free(kmalloc_caches, n);
2874 }
2875 }
2876 up_read(&slub_lock);
2877 }
2878
2879 static int slab_mem_going_online_callback(void *arg)
2880 {
2881 struct kmem_cache_node *n;
2882 struct kmem_cache *s;
2883 struct memory_notify *marg = arg;
2884 int nid = marg->status_change_nid;
2885 int ret = 0;
2886
2887 /*
2888 * If the node's memory is already available, then kmem_cache_node is
2889 * already created. Nothing to do.
2890 */
2891 if (nid < 0)
2892 return 0;
2893
2894 /*
2895 * We are bringing a node online. No memory is available yet. We must
2896 * allocate a kmem_cache_node structure in order to bring the node
2897 * online.
2898 */
2899 down_read(&slub_lock);
2900 list_for_each_entry(s, &slab_caches, list) {
2901 /*
2902 * XXX: kmem_cache_alloc_node will fallback to other nodes
2903 * since memory is not yet available from the node that
2904 * is brought up.
2905 */
2906 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2907 if (!n) {
2908 ret = -ENOMEM;
2909 goto out;
2910 }
2911 init_kmem_cache_node(n, s);
2912 s->node[nid] = n;
2913 }
2914 out:
2915 up_read(&slub_lock);
2916 return ret;
2917 }
2918
2919 static int slab_memory_callback(struct notifier_block *self,
2920 unsigned long action, void *arg)
2921 {
2922 int ret = 0;
2923
2924 switch (action) {
2925 case MEM_GOING_ONLINE:
2926 ret = slab_mem_going_online_callback(arg);
2927 break;
2928 case MEM_GOING_OFFLINE:
2929 ret = slab_mem_going_offline_callback(arg);
2930 break;
2931 case MEM_OFFLINE:
2932 case MEM_CANCEL_ONLINE:
2933 slab_mem_offline_callback(arg);
2934 break;
2935 case MEM_ONLINE:
2936 case MEM_CANCEL_OFFLINE:
2937 break;
2938 }
2939 if (ret)
2940 ret = notifier_from_errno(ret);
2941 else
2942 ret = NOTIFY_OK;
2943 return ret;
2944 }
2945
2946 #endif /* CONFIG_MEMORY_HOTPLUG */
2947
2948 /********************************************************************
2949 * Basic setup of slabs
2950 *******************************************************************/
2951
2952 void __init kmem_cache_init(void)
2953 {
2954 int i;
2955 int caches = 0;
2956
2957 #ifdef CONFIG_NUMA
2958 /*
2959 * Must first have the slab cache available for the allocations of the
2960 * struct kmem_cache_node's. There is special bootstrap code in
2961 * kmem_cache_open for slab_state == DOWN.
2962 */
2963 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2964 sizeof(struct kmem_cache_node), 0);
2965 kmalloc_caches[0].refcount = -1;
2966 caches++;
2967
2968 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2969 #endif
2970
2971 /* Able to allocate the per node structures */
2972 slab_state = PARTIAL;
2973
2974 /* Caches that are not of the two-to-the-power-of size */
2975 if (KMALLOC_MIN_SIZE <= 32) {
2976 create_kmalloc_cache(&kmalloc_caches[1],
2977 "kmalloc-96", 96, 0);
2978 caches++;
2979 }
2980 if (KMALLOC_MIN_SIZE <= 64) {
2981 create_kmalloc_cache(&kmalloc_caches[2],
2982 "kmalloc-192", 192, 0);
2983 caches++;
2984 }
2985
2986 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
2987 create_kmalloc_cache(&kmalloc_caches[i],
2988 "kmalloc", 1 << i, 0);
2989 caches++;
2990 }
2991
2992
2993 /*
2994 * Patch up the size_index table if we have strange large alignment
2995 * requirements for the kmalloc array. This is only the case for
2996 * MIPS it seems. The standard arches will not generate any code here.
2997 *
2998 * Largest permitted alignment is 256 bytes due to the way we
2999 * handle the index determination for the smaller caches.
3000 *
3001 * Make sure that nothing crazy happens if someone starts tinkering
3002 * around with ARCH_KMALLOC_MINALIGN
3003 */
3004 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3005 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3006
3007 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3008 int elem = size_index_elem(i);
3009 if (elem >= ARRAY_SIZE(size_index))
3010 break;
3011 size_index[elem] = KMALLOC_SHIFT_LOW;
3012 }
3013
3014 if (KMALLOC_MIN_SIZE == 64) {
3015 /*
3016 * The 96 byte size cache is not used if the alignment
3017 * is 64 byte.
3018 */
3019 for (i = 64 + 8; i <= 96; i += 8)
3020 size_index[size_index_elem(i)] = 7;
3021 } else if (KMALLOC_MIN_SIZE == 128) {
3022 /*
3023 * The 192 byte sized cache is not used if the alignment
3024 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3025 * instead.
3026 */
3027 for (i = 128 + 8; i <= 192; i += 8)
3028 size_index[size_index_elem(i)] = 8;
3029 }
3030
3031 slab_state = UP;
3032
3033 /* Provide the correct kmalloc names now that the caches are up */
3034 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3035 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3036
3037 BUG_ON(!s);
3038 kmalloc_caches[i].name = s;
3039 }
3040
3041 #ifdef CONFIG_SMP
3042 register_cpu_notifier(&slab_notifier);
3043 #endif
3044 #ifdef CONFIG_NUMA
3045 kmem_size = offsetof(struct kmem_cache, node) +
3046 nr_node_ids * sizeof(struct kmem_cache_node *);
3047 #else
3048 kmem_size = sizeof(struct kmem_cache);
3049 #endif
3050
3051 #ifdef CONFIG_ZONE_DMA
3052 for (i = 1; i < SLUB_PAGE_SHIFT; i++) {
3053 struct kmem_cache *s = &kmalloc_caches[i];
3054
3055 if (s->size) {
3056 char *name = kasprintf(GFP_NOWAIT,
3057 "dma-kmalloc-%d", s->objsize);
3058
3059 BUG_ON(!name);
3060 create_kmalloc_cache(&kmalloc_dma_caches[i],
3061 name, s->objsize, SLAB_CACHE_DMA);
3062 }
3063 }
3064 #endif
3065 printk(KERN_INFO
3066 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3067 " CPUs=%d, Nodes=%d\n",
3068 caches, cache_line_size(),
3069 slub_min_order, slub_max_order, slub_min_objects,
3070 nr_cpu_ids, nr_node_ids);
3071 }
3072
3073 void __init kmem_cache_init_late(void)
3074 {
3075 }
3076
3077 /*
3078 * Find a mergeable slab cache
3079 */
3080 static int slab_unmergeable(struct kmem_cache *s)
3081 {
3082 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3083 return 1;
3084
3085 if (s->ctor)
3086 return 1;
3087
3088 /*
3089 * We may have set a slab to be unmergeable during bootstrap.
3090 */
3091 if (s->refcount < 0)
3092 return 1;
3093
3094 return 0;
3095 }
3096
3097 static struct kmem_cache *find_mergeable(size_t size,
3098 size_t align, unsigned long flags, const char *name,
3099 void (*ctor)(void *))
3100 {
3101 struct kmem_cache *s;
3102
3103 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3104 return NULL;
3105
3106 if (ctor)
3107 return NULL;
3108
3109 size = ALIGN(size, sizeof(void *));
3110 align = calculate_alignment(flags, align, size);
3111 size = ALIGN(size, align);
3112 flags = kmem_cache_flags(size, flags, name, NULL);
3113
3114 list_for_each_entry(s, &slab_caches, list) {
3115 if (slab_unmergeable(s))
3116 continue;
3117
3118 if (size > s->size)
3119 continue;
3120
3121 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3122 continue;
3123 /*
3124 * Check if alignment is compatible.
3125 * Courtesy of Adrian Drzewiecki
3126 */
3127 if ((s->size & ~(align - 1)) != s->size)
3128 continue;
3129
3130 if (s->size - size >= sizeof(void *))
3131 continue;
3132
3133 return s;
3134 }
3135 return NULL;
3136 }
3137
3138 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3139 size_t align, unsigned long flags, void (*ctor)(void *))
3140 {
3141 struct kmem_cache *s;
3142
3143 if (WARN_ON(!name))
3144 return NULL;
3145
3146 down_write(&slub_lock);
3147 s = find_mergeable(size, align, flags, name, ctor);
3148 if (s) {
3149 s->refcount++;
3150 /*
3151 * Adjust the object sizes so that we clear
3152 * the complete object on kzalloc.
3153 */
3154 s->objsize = max(s->objsize, (int)size);
3155 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3156
3157 if (sysfs_slab_alias(s, name)) {
3158 s->refcount--;
3159 goto err;
3160 }
3161 up_write(&slub_lock);
3162 return s;
3163 }
3164
3165 s = kmalloc(kmem_size, GFP_KERNEL);
3166 if (s) {
3167 if (kmem_cache_open(s, name,
3168 size, align, flags, ctor)) {
3169 list_add(&s->list, &slab_caches);
3170 if (sysfs_slab_add(s)) {
3171 list_del(&s->list);
3172 kfree(s);
3173 goto err;
3174 }
3175 up_write(&slub_lock);
3176 return s;
3177 }
3178 kfree(s);
3179 }
3180 up_write(&slub_lock);
3181
3182 err:
3183 if (flags & SLAB_PANIC)
3184 panic("Cannot create slabcache %s\n", name);
3185 else
3186 s = NULL;
3187 return s;
3188 }
3189 EXPORT_SYMBOL(kmem_cache_create);
3190
3191 #ifdef CONFIG_SMP
3192 /*
3193 * Use the cpu notifier to insure that the cpu slabs are flushed when
3194 * necessary.
3195 */
3196 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3197 unsigned long action, void *hcpu)
3198 {
3199 long cpu = (long)hcpu;
3200 struct kmem_cache *s;
3201 unsigned long flags;
3202
3203 switch (action) {
3204 case CPU_UP_CANCELED:
3205 case CPU_UP_CANCELED_FROZEN:
3206 case CPU_DEAD:
3207 case CPU_DEAD_FROZEN:
3208 down_read(&slub_lock);
3209 list_for_each_entry(s, &slab_caches, list) {
3210 local_irq_save(flags);
3211 __flush_cpu_slab(s, cpu);
3212 local_irq_restore(flags);
3213 }
3214 up_read(&slub_lock);
3215 break;
3216 default:
3217 break;
3218 }
3219 return NOTIFY_OK;
3220 }
3221
3222 static struct notifier_block __cpuinitdata slab_notifier = {
3223 .notifier_call = slab_cpuup_callback
3224 };
3225
3226 #endif
3227
3228 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3229 {
3230 struct kmem_cache *s;
3231 void *ret;
3232
3233 if (unlikely(size > SLUB_MAX_SIZE))
3234 return kmalloc_large(size, gfpflags);
3235
3236 s = get_slab(size, gfpflags);
3237
3238 if (unlikely(ZERO_OR_NULL_PTR(s)))
3239 return s;
3240
3241 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3242
3243 /* Honor the call site pointer we recieved. */
3244 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3245
3246 return ret;
3247 }
3248
3249 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3250 int node, unsigned long caller)
3251 {
3252 struct kmem_cache *s;
3253 void *ret;
3254
3255 if (unlikely(size > SLUB_MAX_SIZE)) {
3256 ret = kmalloc_large_node(size, gfpflags, node);
3257
3258 trace_kmalloc_node(caller, ret,
3259 size, PAGE_SIZE << get_order(size),
3260 gfpflags, node);
3261
3262 return ret;
3263 }
3264
3265 s = get_slab(size, gfpflags);
3266
3267 if (unlikely(ZERO_OR_NULL_PTR(s)))
3268 return s;
3269
3270 ret = slab_alloc(s, gfpflags, node, caller);
3271
3272 /* Honor the call site pointer we recieved. */
3273 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3274
3275 return ret;
3276 }
3277
3278 #ifdef CONFIG_SLUB_DEBUG
3279 static int count_inuse(struct page *page)
3280 {
3281 return page->inuse;
3282 }
3283
3284 static int count_total(struct page *page)
3285 {
3286 return page->objects;
3287 }
3288
3289 static int validate_slab(struct kmem_cache *s, struct page *page,
3290 unsigned long *map)
3291 {
3292 void *p;
3293 void *addr = page_address(page);
3294
3295 if (!check_slab(s, page) ||
3296 !on_freelist(s, page, NULL))
3297 return 0;
3298
3299 /* Now we know that a valid freelist exists */
3300 bitmap_zero(map, page->objects);
3301
3302 for_each_free_object(p, s, page->freelist) {
3303 set_bit(slab_index(p, s, addr), map);
3304 if (!check_object(s, page, p, 0))
3305 return 0;
3306 }
3307
3308 for_each_object(p, s, addr, page->objects)
3309 if (!test_bit(slab_index(p, s, addr), map))
3310 if (!check_object(s, page, p, 1))
3311 return 0;
3312 return 1;
3313 }
3314
3315 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3316 unsigned long *map)
3317 {
3318 if (slab_trylock(page)) {
3319 validate_slab(s, page, map);
3320 slab_unlock(page);
3321 } else
3322 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3323 s->name, page);
3324 }
3325
3326 static int validate_slab_node(struct kmem_cache *s,
3327 struct kmem_cache_node *n, unsigned long *map)
3328 {
3329 unsigned long count = 0;
3330 struct page *page;
3331 unsigned long flags;
3332
3333 spin_lock_irqsave(&n->list_lock, flags);
3334
3335 list_for_each_entry(page, &n->partial, lru) {
3336 validate_slab_slab(s, page, map);
3337 count++;
3338 }
3339 if (count != n->nr_partial)
3340 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3341 "counter=%ld\n", s->name, count, n->nr_partial);
3342
3343 if (!(s->flags & SLAB_STORE_USER))
3344 goto out;
3345
3346 list_for_each_entry(page, &n->full, lru) {
3347 validate_slab_slab(s, page, map);
3348 count++;
3349 }
3350 if (count != atomic_long_read(&n->nr_slabs))
3351 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3352 "counter=%ld\n", s->name, count,
3353 atomic_long_read(&n->nr_slabs));
3354
3355 out:
3356 spin_unlock_irqrestore(&n->list_lock, flags);
3357 return count;
3358 }
3359
3360 static long validate_slab_cache(struct kmem_cache *s)
3361 {
3362 int node;
3363 unsigned long count = 0;
3364 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3365 sizeof(unsigned long), GFP_KERNEL);
3366
3367 if (!map)
3368 return -ENOMEM;
3369
3370 flush_all(s);
3371 for_each_node_state(node, N_NORMAL_MEMORY) {
3372 struct kmem_cache_node *n = get_node(s, node);
3373
3374 count += validate_slab_node(s, n, map);
3375 }
3376 kfree(map);
3377 return count;
3378 }
3379
3380 #ifdef SLUB_RESILIENCY_TEST
3381 static void resiliency_test(void)
3382 {
3383 u8 *p;
3384
3385 printk(KERN_ERR "SLUB resiliency testing\n");
3386 printk(KERN_ERR "-----------------------\n");
3387 printk(KERN_ERR "A. Corruption after allocation\n");
3388
3389 p = kzalloc(16, GFP_KERNEL);
3390 p[16] = 0x12;
3391 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3392 " 0x12->0x%p\n\n", p + 16);
3393
3394 validate_slab_cache(kmalloc_caches + 4);
3395
3396 /* Hmmm... The next two are dangerous */
3397 p = kzalloc(32, GFP_KERNEL);
3398 p[32 + sizeof(void *)] = 0x34;
3399 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3400 " 0x34 -> -0x%p\n", p);
3401 printk(KERN_ERR
3402 "If allocated object is overwritten then not detectable\n\n");
3403
3404 validate_slab_cache(kmalloc_caches + 5);
3405 p = kzalloc(64, GFP_KERNEL);
3406 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3407 *p = 0x56;
3408 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3409 p);
3410 printk(KERN_ERR
3411 "If allocated object is overwritten then not detectable\n\n");
3412 validate_slab_cache(kmalloc_caches + 6);
3413
3414 printk(KERN_ERR "\nB. Corruption after free\n");
3415 p = kzalloc(128, GFP_KERNEL);
3416 kfree(p);
3417 *p = 0x78;
3418 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3419 validate_slab_cache(kmalloc_caches + 7);
3420
3421 p = kzalloc(256, GFP_KERNEL);
3422 kfree(p);
3423 p[50] = 0x9a;
3424 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3425 p);
3426 validate_slab_cache(kmalloc_caches + 8);
3427
3428 p = kzalloc(512, GFP_KERNEL);
3429 kfree(p);
3430 p[512] = 0xab;
3431 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3432 validate_slab_cache(kmalloc_caches + 9);
3433 }
3434 #else
3435 static void resiliency_test(void) {};
3436 #endif
3437
3438 /*
3439 * Generate lists of code addresses where slabcache objects are allocated
3440 * and freed.
3441 */
3442
3443 struct location {
3444 unsigned long count;
3445 unsigned long addr;
3446 long long sum_time;
3447 long min_time;
3448 long max_time;
3449 long min_pid;
3450 long max_pid;
3451 DECLARE_BITMAP(cpus, NR_CPUS);
3452 nodemask_t nodes;
3453 };
3454
3455 struct loc_track {
3456 unsigned long max;
3457 unsigned long count;
3458 struct location *loc;
3459 };
3460
3461 static void free_loc_track(struct loc_track *t)
3462 {
3463 if (t->max)
3464 free_pages((unsigned long)t->loc,
3465 get_order(sizeof(struct location) * t->max));
3466 }
3467
3468 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3469 {
3470 struct location *l;
3471 int order;
3472
3473 order = get_order(sizeof(struct location) * max);
3474
3475 l = (void *)__get_free_pages(flags, order);
3476 if (!l)
3477 return 0;
3478
3479 if (t->count) {
3480 memcpy(l, t->loc, sizeof(struct location) * t->count);
3481 free_loc_track(t);
3482 }
3483 t->max = max;
3484 t->loc = l;
3485 return 1;
3486 }
3487
3488 static int add_location(struct loc_track *t, struct kmem_cache *s,
3489 const struct track *track)
3490 {
3491 long start, end, pos;
3492 struct location *l;
3493 unsigned long caddr;
3494 unsigned long age = jiffies - track->when;
3495
3496 start = -1;
3497 end = t->count;
3498
3499 for ( ; ; ) {
3500 pos = start + (end - start + 1) / 2;
3501
3502 /*
3503 * There is nothing at "end". If we end up there
3504 * we need to add something to before end.
3505 */
3506 if (pos == end)
3507 break;
3508
3509 caddr = t->loc[pos].addr;
3510 if (track->addr == caddr) {
3511
3512 l = &t->loc[pos];
3513 l->count++;
3514 if (track->when) {
3515 l->sum_time += age;
3516 if (age < l->min_time)
3517 l->min_time = age;
3518 if (age > l->max_time)
3519 l->max_time = age;
3520
3521 if (track->pid < l->min_pid)
3522 l->min_pid = track->pid;
3523 if (track->pid > l->max_pid)
3524 l->max_pid = track->pid;
3525
3526 cpumask_set_cpu(track->cpu,
3527 to_cpumask(l->cpus));
3528 }
3529 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3530 return 1;
3531 }
3532
3533 if (track->addr < caddr)
3534 end = pos;
3535 else
3536 start = pos;
3537 }
3538
3539 /*
3540 * Not found. Insert new tracking element.
3541 */
3542 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3543 return 0;
3544
3545 l = t->loc + pos;
3546 if (pos < t->count)
3547 memmove(l + 1, l,
3548 (t->count - pos) * sizeof(struct location));
3549 t->count++;
3550 l->count = 1;
3551 l->addr = track->addr;
3552 l->sum_time = age;
3553 l->min_time = age;
3554 l->max_time = age;
3555 l->min_pid = track->pid;
3556 l->max_pid = track->pid;
3557 cpumask_clear(to_cpumask(l->cpus));
3558 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3559 nodes_clear(l->nodes);
3560 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3561 return 1;
3562 }
3563
3564 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3565 struct page *page, enum track_item alloc,
3566 long *map)
3567 {
3568 void *addr = page_address(page);
3569 void *p;
3570
3571 bitmap_zero(map, page->objects);
3572 for_each_free_object(p, s, page->freelist)
3573 set_bit(slab_index(p, s, addr), map);
3574
3575 for_each_object(p, s, addr, page->objects)
3576 if (!test_bit(slab_index(p, s, addr), map))
3577 add_location(t, s, get_track(s, p, alloc));
3578 }
3579
3580 static int list_locations(struct kmem_cache *s, char *buf,
3581 enum track_item alloc)
3582 {
3583 int len = 0;
3584 unsigned long i;
3585 struct loc_track t = { 0, 0, NULL };
3586 int node;
3587 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3588 sizeof(unsigned long), GFP_KERNEL);
3589
3590 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3591 GFP_TEMPORARY)) {
3592 kfree(map);
3593 return sprintf(buf, "Out of memory\n");
3594 }
3595 /* Push back cpu slabs */
3596 flush_all(s);
3597
3598 for_each_node_state(node, N_NORMAL_MEMORY) {
3599 struct kmem_cache_node *n = get_node(s, node);
3600 unsigned long flags;
3601 struct page *page;
3602
3603 if (!atomic_long_read(&n->nr_slabs))
3604 continue;
3605
3606 spin_lock_irqsave(&n->list_lock, flags);
3607 list_for_each_entry(page, &n->partial, lru)
3608 process_slab(&t, s, page, alloc, map);
3609 list_for_each_entry(page, &n->full, lru)
3610 process_slab(&t, s, page, alloc, map);
3611 spin_unlock_irqrestore(&n->list_lock, flags);
3612 }
3613
3614 for (i = 0; i < t.count; i++) {
3615 struct location *l = &t.loc[i];
3616
3617 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3618 break;
3619 len += sprintf(buf + len, "%7ld ", l->count);
3620
3621 if (l->addr)
3622 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3623 else
3624 len += sprintf(buf + len, "<not-available>");
3625
3626 if (l->sum_time != l->min_time) {
3627 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3628 l->min_time,
3629 (long)div_u64(l->sum_time, l->count),
3630 l->max_time);
3631 } else
3632 len += sprintf(buf + len, " age=%ld",
3633 l->min_time);
3634
3635 if (l->min_pid != l->max_pid)
3636 len += sprintf(buf + len, " pid=%ld-%ld",
3637 l->min_pid, l->max_pid);
3638 else
3639 len += sprintf(buf + len, " pid=%ld",
3640 l->min_pid);
3641
3642 if (num_online_cpus() > 1 &&
3643 !cpumask_empty(to_cpumask(l->cpus)) &&
3644 len < PAGE_SIZE - 60) {
3645 len += sprintf(buf + len, " cpus=");
3646 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3647 to_cpumask(l->cpus));
3648 }
3649
3650 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3651 len < PAGE_SIZE - 60) {
3652 len += sprintf(buf + len, " nodes=");
3653 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3654 l->nodes);
3655 }
3656
3657 len += sprintf(buf + len, "\n");
3658 }
3659
3660 free_loc_track(&t);
3661 kfree(map);
3662 if (!t.count)
3663 len += sprintf(buf, "No data\n");
3664 return len;
3665 }
3666
3667 enum slab_stat_type {
3668 SL_ALL, /* All slabs */
3669 SL_PARTIAL, /* Only partially allocated slabs */
3670 SL_CPU, /* Only slabs used for cpu caches */
3671 SL_OBJECTS, /* Determine allocated objects not slabs */
3672 SL_TOTAL /* Determine object capacity not slabs */
3673 };
3674
3675 #define SO_ALL (1 << SL_ALL)
3676 #define SO_PARTIAL (1 << SL_PARTIAL)
3677 #define SO_CPU (1 << SL_CPU)
3678 #define SO_OBJECTS (1 << SL_OBJECTS)
3679 #define SO_TOTAL (1 << SL_TOTAL)
3680
3681 static ssize_t show_slab_objects(struct kmem_cache *s,
3682 char *buf, unsigned long flags)
3683 {
3684 unsigned long total = 0;
3685 int node;
3686 int x;
3687 unsigned long *nodes;
3688 unsigned long *per_cpu;
3689
3690 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3691 if (!nodes)
3692 return -ENOMEM;
3693 per_cpu = nodes + nr_node_ids;
3694
3695 if (flags & SO_CPU) {
3696 int cpu;
3697
3698 for_each_possible_cpu(cpu) {
3699 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3700
3701 if (!c || c->node < 0)
3702 continue;
3703
3704 if (c->page) {
3705 if (flags & SO_TOTAL)
3706 x = c->page->objects;
3707 else if (flags & SO_OBJECTS)
3708 x = c->page->inuse;
3709 else
3710 x = 1;
3711
3712 total += x;
3713 nodes[c->node] += x;
3714 }
3715 per_cpu[c->node]++;
3716 }
3717 }
3718
3719 if (flags & SO_ALL) {
3720 for_each_node_state(node, N_NORMAL_MEMORY) {
3721 struct kmem_cache_node *n = get_node(s, node);
3722
3723 if (flags & SO_TOTAL)
3724 x = atomic_long_read(&n->total_objects);
3725 else if (flags & SO_OBJECTS)
3726 x = atomic_long_read(&n->total_objects) -
3727 count_partial(n, count_free);
3728
3729 else
3730 x = atomic_long_read(&n->nr_slabs);
3731 total += x;
3732 nodes[node] += x;
3733 }
3734
3735 } else if (flags & SO_PARTIAL) {
3736 for_each_node_state(node, N_NORMAL_MEMORY) {
3737 struct kmem_cache_node *n = get_node(s, node);
3738
3739 if (flags & SO_TOTAL)
3740 x = count_partial(n, count_total);
3741 else if (flags & SO_OBJECTS)
3742 x = count_partial(n, count_inuse);
3743 else
3744 x = n->nr_partial;
3745 total += x;
3746 nodes[node] += x;
3747 }
3748 }
3749 x = sprintf(buf, "%lu", total);
3750 #ifdef CONFIG_NUMA
3751 for_each_node_state(node, N_NORMAL_MEMORY)
3752 if (nodes[node])
3753 x += sprintf(buf + x, " N%d=%lu",
3754 node, nodes[node]);
3755 #endif
3756 kfree(nodes);
3757 return x + sprintf(buf + x, "\n");
3758 }
3759
3760 static int any_slab_objects(struct kmem_cache *s)
3761 {
3762 int node;
3763
3764 for_each_online_node(node) {
3765 struct kmem_cache_node *n = get_node(s, node);
3766
3767 if (!n)
3768 continue;
3769
3770 if (atomic_long_read(&n->total_objects))
3771 return 1;
3772 }
3773 return 0;
3774 }
3775
3776 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3777 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3778
3779 struct slab_attribute {
3780 struct attribute attr;
3781 ssize_t (*show)(struct kmem_cache *s, char *buf);
3782 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3783 };
3784
3785 #define SLAB_ATTR_RO(_name) \
3786 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3787
3788 #define SLAB_ATTR(_name) \
3789 static struct slab_attribute _name##_attr = \
3790 __ATTR(_name, 0644, _name##_show, _name##_store)
3791
3792 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3793 {
3794 return sprintf(buf, "%d\n", s->size);
3795 }
3796 SLAB_ATTR_RO(slab_size);
3797
3798 static ssize_t align_show(struct kmem_cache *s, char *buf)
3799 {
3800 return sprintf(buf, "%d\n", s->align);
3801 }
3802 SLAB_ATTR_RO(align);
3803
3804 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3805 {
3806 return sprintf(buf, "%d\n", s->objsize);
3807 }
3808 SLAB_ATTR_RO(object_size);
3809
3810 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3811 {
3812 return sprintf(buf, "%d\n", oo_objects(s->oo));
3813 }
3814 SLAB_ATTR_RO(objs_per_slab);
3815
3816 static ssize_t order_store(struct kmem_cache *s,
3817 const char *buf, size_t length)
3818 {
3819 unsigned long order;
3820 int err;
3821
3822 err = strict_strtoul(buf, 10, &order);
3823 if (err)
3824 return err;
3825
3826 if (order > slub_max_order || order < slub_min_order)
3827 return -EINVAL;
3828
3829 calculate_sizes(s, order);
3830 return length;
3831 }
3832
3833 static ssize_t order_show(struct kmem_cache *s, char *buf)
3834 {
3835 return sprintf(buf, "%d\n", oo_order(s->oo));
3836 }
3837 SLAB_ATTR(order);
3838
3839 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3840 {
3841 return sprintf(buf, "%lu\n", s->min_partial);
3842 }
3843
3844 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3845 size_t length)
3846 {
3847 unsigned long min;
3848 int err;
3849
3850 err = strict_strtoul(buf, 10, &min);
3851 if (err)
3852 return err;
3853
3854 set_min_partial(s, min);
3855 return length;
3856 }
3857 SLAB_ATTR(min_partial);
3858
3859 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3860 {
3861 if (s->ctor) {
3862 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3863
3864 return n + sprintf(buf + n, "\n");
3865 }
3866 return 0;
3867 }
3868 SLAB_ATTR_RO(ctor);
3869
3870 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3871 {
3872 return sprintf(buf, "%d\n", s->refcount - 1);
3873 }
3874 SLAB_ATTR_RO(aliases);
3875
3876 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3877 {
3878 return show_slab_objects(s, buf, SO_ALL);
3879 }
3880 SLAB_ATTR_RO(slabs);
3881
3882 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3883 {
3884 return show_slab_objects(s, buf, SO_PARTIAL);
3885 }
3886 SLAB_ATTR_RO(partial);
3887
3888 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3889 {
3890 return show_slab_objects(s, buf, SO_CPU);
3891 }
3892 SLAB_ATTR_RO(cpu_slabs);
3893
3894 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3895 {
3896 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3897 }
3898 SLAB_ATTR_RO(objects);
3899
3900 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3901 {
3902 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3903 }
3904 SLAB_ATTR_RO(objects_partial);
3905
3906 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3907 {
3908 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3909 }
3910 SLAB_ATTR_RO(total_objects);
3911
3912 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3913 {
3914 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3915 }
3916
3917 static ssize_t sanity_checks_store(struct kmem_cache *s,
3918 const char *buf, size_t length)
3919 {
3920 s->flags &= ~SLAB_DEBUG_FREE;
3921 if (buf[0] == '1')
3922 s->flags |= SLAB_DEBUG_FREE;
3923 return length;
3924 }
3925 SLAB_ATTR(sanity_checks);
3926
3927 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3928 {
3929 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3930 }
3931
3932 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3933 size_t length)
3934 {
3935 s->flags &= ~SLAB_TRACE;
3936 if (buf[0] == '1')
3937 s->flags |= SLAB_TRACE;
3938 return length;
3939 }
3940 SLAB_ATTR(trace);
3941
3942 #ifdef CONFIG_FAILSLAB
3943 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
3944 {
3945 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
3946 }
3947
3948 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
3949 size_t length)
3950 {
3951 s->flags &= ~SLAB_FAILSLAB;
3952 if (buf[0] == '1')
3953 s->flags |= SLAB_FAILSLAB;
3954 return length;
3955 }
3956 SLAB_ATTR(failslab);
3957 #endif
3958
3959 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3960 {
3961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3962 }
3963
3964 static ssize_t reclaim_account_store(struct kmem_cache *s,
3965 const char *buf, size_t length)
3966 {
3967 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3968 if (buf[0] == '1')
3969 s->flags |= SLAB_RECLAIM_ACCOUNT;
3970 return length;
3971 }
3972 SLAB_ATTR(reclaim_account);
3973
3974 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3975 {
3976 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3977 }
3978 SLAB_ATTR_RO(hwcache_align);
3979
3980 #ifdef CONFIG_ZONE_DMA
3981 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3982 {
3983 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3984 }
3985 SLAB_ATTR_RO(cache_dma);
3986 #endif
3987
3988 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3989 {
3990 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3991 }
3992 SLAB_ATTR_RO(destroy_by_rcu);
3993
3994 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3995 {
3996 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3997 }
3998
3999 static ssize_t red_zone_store(struct kmem_cache *s,
4000 const char *buf, size_t length)
4001 {
4002 if (any_slab_objects(s))
4003 return -EBUSY;
4004
4005 s->flags &= ~SLAB_RED_ZONE;
4006 if (buf[0] == '1')
4007 s->flags |= SLAB_RED_ZONE;
4008 calculate_sizes(s, -1);
4009 return length;
4010 }
4011 SLAB_ATTR(red_zone);
4012
4013 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4014 {
4015 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4016 }
4017
4018 static ssize_t poison_store(struct kmem_cache *s,
4019 const char *buf, size_t length)
4020 {
4021 if (any_slab_objects(s))
4022 return -EBUSY;
4023
4024 s->flags &= ~SLAB_POISON;
4025 if (buf[0] == '1')
4026 s->flags |= SLAB_POISON;
4027 calculate_sizes(s, -1);
4028 return length;
4029 }
4030 SLAB_ATTR(poison);
4031
4032 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4033 {
4034 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4035 }
4036
4037 static ssize_t store_user_store(struct kmem_cache *s,
4038 const char *buf, size_t length)
4039 {
4040 if (any_slab_objects(s))
4041 return -EBUSY;
4042
4043 s->flags &= ~SLAB_STORE_USER;
4044 if (buf[0] == '1')
4045 s->flags |= SLAB_STORE_USER;
4046 calculate_sizes(s, -1);
4047 return length;
4048 }
4049 SLAB_ATTR(store_user);
4050
4051 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4052 {
4053 return 0;
4054 }
4055
4056 static ssize_t validate_store(struct kmem_cache *s,
4057 const char *buf, size_t length)
4058 {
4059 int ret = -EINVAL;
4060
4061 if (buf[0] == '1') {
4062 ret = validate_slab_cache(s);
4063 if (ret >= 0)
4064 ret = length;
4065 }
4066 return ret;
4067 }
4068 SLAB_ATTR(validate);
4069
4070 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4071 {
4072 return 0;
4073 }
4074
4075 static ssize_t shrink_store(struct kmem_cache *s,
4076 const char *buf, size_t length)
4077 {
4078 if (buf[0] == '1') {
4079 int rc = kmem_cache_shrink(s);
4080
4081 if (rc)
4082 return rc;
4083 } else
4084 return -EINVAL;
4085 return length;
4086 }
4087 SLAB_ATTR(shrink);
4088
4089 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4090 {
4091 if (!(s->flags & SLAB_STORE_USER))
4092 return -ENOSYS;
4093 return list_locations(s, buf, TRACK_ALLOC);
4094 }
4095 SLAB_ATTR_RO(alloc_calls);
4096
4097 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4098 {
4099 if (!(s->flags & SLAB_STORE_USER))
4100 return -ENOSYS;
4101 return list_locations(s, buf, TRACK_FREE);
4102 }
4103 SLAB_ATTR_RO(free_calls);
4104
4105 #ifdef CONFIG_NUMA
4106 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4107 {
4108 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4109 }
4110
4111 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4112 const char *buf, size_t length)
4113 {
4114 unsigned long ratio;
4115 int err;
4116
4117 err = strict_strtoul(buf, 10, &ratio);
4118 if (err)
4119 return err;
4120
4121 if (ratio <= 100)
4122 s->remote_node_defrag_ratio = ratio * 10;
4123
4124 return length;
4125 }
4126 SLAB_ATTR(remote_node_defrag_ratio);
4127 #endif
4128
4129 #ifdef CONFIG_SLUB_STATS
4130 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4131 {
4132 unsigned long sum = 0;
4133 int cpu;
4134 int len;
4135 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4136
4137 if (!data)
4138 return -ENOMEM;
4139
4140 for_each_online_cpu(cpu) {
4141 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4142
4143 data[cpu] = x;
4144 sum += x;
4145 }
4146
4147 len = sprintf(buf, "%lu", sum);
4148
4149 #ifdef CONFIG_SMP
4150 for_each_online_cpu(cpu) {
4151 if (data[cpu] && len < PAGE_SIZE - 20)
4152 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4153 }
4154 #endif
4155 kfree(data);
4156 return len + sprintf(buf + len, "\n");
4157 }
4158
4159 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4160 {
4161 int cpu;
4162
4163 for_each_online_cpu(cpu)
4164 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4165 }
4166
4167 #define STAT_ATTR(si, text) \
4168 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4169 { \
4170 return show_stat(s, buf, si); \
4171 } \
4172 static ssize_t text##_store(struct kmem_cache *s, \
4173 const char *buf, size_t length) \
4174 { \
4175 if (buf[0] != '0') \
4176 return -EINVAL; \
4177 clear_stat(s, si); \
4178 return length; \
4179 } \
4180 SLAB_ATTR(text); \
4181
4182 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4183 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4184 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4185 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4186 STAT_ATTR(FREE_FROZEN, free_frozen);
4187 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4188 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4189 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4190 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4191 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4192 STAT_ATTR(FREE_SLAB, free_slab);
4193 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4194 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4195 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4196 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4197 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4198 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4199 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4200 #endif
4201
4202 static struct attribute *slab_attrs[] = {
4203 &slab_size_attr.attr,
4204 &object_size_attr.attr,
4205 &objs_per_slab_attr.attr,
4206 &order_attr.attr,
4207 &min_partial_attr.attr,
4208 &objects_attr.attr,
4209 &objects_partial_attr.attr,
4210 &total_objects_attr.attr,
4211 &slabs_attr.attr,
4212 &partial_attr.attr,
4213 &cpu_slabs_attr.attr,
4214 &ctor_attr.attr,
4215 &aliases_attr.attr,
4216 &align_attr.attr,
4217 &sanity_checks_attr.attr,
4218 &trace_attr.attr,
4219 &hwcache_align_attr.attr,
4220 &reclaim_account_attr.attr,
4221 &destroy_by_rcu_attr.attr,
4222 &red_zone_attr.attr,
4223 &poison_attr.attr,
4224 &store_user_attr.attr,
4225 &validate_attr.attr,
4226 &shrink_attr.attr,
4227 &alloc_calls_attr.attr,
4228 &free_calls_attr.attr,
4229 #ifdef CONFIG_ZONE_DMA
4230 &cache_dma_attr.attr,
4231 #endif
4232 #ifdef CONFIG_NUMA
4233 &remote_node_defrag_ratio_attr.attr,
4234 #endif
4235 #ifdef CONFIG_SLUB_STATS
4236 &alloc_fastpath_attr.attr,
4237 &alloc_slowpath_attr.attr,
4238 &free_fastpath_attr.attr,
4239 &free_slowpath_attr.attr,
4240 &free_frozen_attr.attr,
4241 &free_add_partial_attr.attr,
4242 &free_remove_partial_attr.attr,
4243 &alloc_from_partial_attr.attr,
4244 &alloc_slab_attr.attr,
4245 &alloc_refill_attr.attr,
4246 &free_slab_attr.attr,
4247 &cpuslab_flush_attr.attr,
4248 &deactivate_full_attr.attr,
4249 &deactivate_empty_attr.attr,
4250 &deactivate_to_head_attr.attr,
4251 &deactivate_to_tail_attr.attr,
4252 &deactivate_remote_frees_attr.attr,
4253 &order_fallback_attr.attr,
4254 #endif
4255 #ifdef CONFIG_FAILSLAB
4256 &failslab_attr.attr,
4257 #endif
4258
4259 NULL
4260 };
4261
4262 static struct attribute_group slab_attr_group = {
4263 .attrs = slab_attrs,
4264 };
4265
4266 static ssize_t slab_attr_show(struct kobject *kobj,
4267 struct attribute *attr,
4268 char *buf)
4269 {
4270 struct slab_attribute *attribute;
4271 struct kmem_cache *s;
4272 int err;
4273
4274 attribute = to_slab_attr(attr);
4275 s = to_slab(kobj);
4276
4277 if (!attribute->show)
4278 return -EIO;
4279
4280 err = attribute->show(s, buf);
4281
4282 return err;
4283 }
4284
4285 static ssize_t slab_attr_store(struct kobject *kobj,
4286 struct attribute *attr,
4287 const char *buf, size_t len)
4288 {
4289 struct slab_attribute *attribute;
4290 struct kmem_cache *s;
4291 int err;
4292
4293 attribute = to_slab_attr(attr);
4294 s = to_slab(kobj);
4295
4296 if (!attribute->store)
4297 return -EIO;
4298
4299 err = attribute->store(s, buf, len);
4300
4301 return err;
4302 }
4303
4304 static void kmem_cache_release(struct kobject *kobj)
4305 {
4306 struct kmem_cache *s = to_slab(kobj);
4307
4308 kfree(s);
4309 }
4310
4311 static const struct sysfs_ops slab_sysfs_ops = {
4312 .show = slab_attr_show,
4313 .store = slab_attr_store,
4314 };
4315
4316 static struct kobj_type slab_ktype = {
4317 .sysfs_ops = &slab_sysfs_ops,
4318 .release = kmem_cache_release
4319 };
4320
4321 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4322 {
4323 struct kobj_type *ktype = get_ktype(kobj);
4324
4325 if (ktype == &slab_ktype)
4326 return 1;
4327 return 0;
4328 }
4329
4330 static const struct kset_uevent_ops slab_uevent_ops = {
4331 .filter = uevent_filter,
4332 };
4333
4334 static struct kset *slab_kset;
4335
4336 #define ID_STR_LENGTH 64
4337
4338 /* Create a unique string id for a slab cache:
4339 *
4340 * Format :[flags-]size
4341 */
4342 static char *create_unique_id(struct kmem_cache *s)
4343 {
4344 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4345 char *p = name;
4346
4347 BUG_ON(!name);
4348
4349 *p++ = ':';
4350 /*
4351 * First flags affecting slabcache operations. We will only
4352 * get here for aliasable slabs so we do not need to support
4353 * too many flags. The flags here must cover all flags that
4354 * are matched during merging to guarantee that the id is
4355 * unique.
4356 */
4357 if (s->flags & SLAB_CACHE_DMA)
4358 *p++ = 'd';
4359 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4360 *p++ = 'a';
4361 if (s->flags & SLAB_DEBUG_FREE)
4362 *p++ = 'F';
4363 if (!(s->flags & SLAB_NOTRACK))
4364 *p++ = 't';
4365 if (p != name + 1)
4366 *p++ = '-';
4367 p += sprintf(p, "%07d", s->size);
4368 BUG_ON(p > name + ID_STR_LENGTH - 1);
4369 return name;
4370 }
4371
4372 static int sysfs_slab_add(struct kmem_cache *s)
4373 {
4374 int err;
4375 const char *name;
4376 int unmergeable;
4377
4378 if (slab_state < SYSFS)
4379 /* Defer until later */
4380 return 0;
4381
4382 unmergeable = slab_unmergeable(s);
4383 if (unmergeable) {
4384 /*
4385 * Slabcache can never be merged so we can use the name proper.
4386 * This is typically the case for debug situations. In that
4387 * case we can catch duplicate names easily.
4388 */
4389 sysfs_remove_link(&slab_kset->kobj, s->name);
4390 name = s->name;
4391 } else {
4392 /*
4393 * Create a unique name for the slab as a target
4394 * for the symlinks.
4395 */
4396 name = create_unique_id(s);
4397 }
4398
4399 s->kobj.kset = slab_kset;
4400 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4401 if (err) {
4402 kobject_put(&s->kobj);
4403 return err;
4404 }
4405
4406 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4407 if (err) {
4408 kobject_del(&s->kobj);
4409 kobject_put(&s->kobj);
4410 return err;
4411 }
4412 kobject_uevent(&s->kobj, KOBJ_ADD);
4413 if (!unmergeable) {
4414 /* Setup first alias */
4415 sysfs_slab_alias(s, s->name);
4416 kfree(name);
4417 }
4418 return 0;
4419 }
4420
4421 static void sysfs_slab_remove(struct kmem_cache *s)
4422 {
4423 if (slab_state < SYSFS)
4424 /*
4425 * Sysfs has not been setup yet so no need to remove the
4426 * cache from sysfs.
4427 */
4428 return;
4429
4430 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4431 kobject_del(&s->kobj);
4432 kobject_put(&s->kobj);
4433 }
4434
4435 /*
4436 * Need to buffer aliases during bootup until sysfs becomes
4437 * available lest we lose that information.
4438 */
4439 struct saved_alias {
4440 struct kmem_cache *s;
4441 const char *name;
4442 struct saved_alias *next;
4443 };
4444
4445 static struct saved_alias *alias_list;
4446
4447 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4448 {
4449 struct saved_alias *al;
4450
4451 if (slab_state == SYSFS) {
4452 /*
4453 * If we have a leftover link then remove it.
4454 */
4455 sysfs_remove_link(&slab_kset->kobj, name);
4456 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4457 }
4458
4459 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4460 if (!al)
4461 return -ENOMEM;
4462
4463 al->s = s;
4464 al->name = name;
4465 al->next = alias_list;
4466 alias_list = al;
4467 return 0;
4468 }
4469
4470 static int __init slab_sysfs_init(void)
4471 {
4472 struct kmem_cache *s;
4473 int err;
4474
4475 down_write(&slub_lock);
4476
4477 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4478 if (!slab_kset) {
4479 up_write(&slub_lock);
4480 printk(KERN_ERR "Cannot register slab subsystem.\n");
4481 return -ENOSYS;
4482 }
4483
4484 slab_state = SYSFS;
4485
4486 list_for_each_entry(s, &slab_caches, list) {
4487 err = sysfs_slab_add(s);
4488 if (err)
4489 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4490 " to sysfs\n", s->name);
4491 }
4492
4493 while (alias_list) {
4494 struct saved_alias *al = alias_list;
4495
4496 alias_list = alias_list->next;
4497 err = sysfs_slab_alias(al->s, al->name);
4498 if (err)
4499 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4500 " %s to sysfs\n", s->name);
4501 kfree(al);
4502 }
4503
4504 up_write(&slub_lock);
4505 resiliency_test();
4506 return 0;
4507 }
4508
4509 __initcall(slab_sysfs_init);
4510 #endif
4511
4512 /*
4513 * The /proc/slabinfo ABI
4514 */
4515 #ifdef CONFIG_SLABINFO
4516 static void print_slabinfo_header(struct seq_file *m)
4517 {
4518 seq_puts(m, "slabinfo - version: 2.1\n");
4519 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4520 "<objperslab> <pagesperslab>");
4521 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4522 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4523 seq_putc(m, '\n');
4524 }
4525
4526 static void *s_start(struct seq_file *m, loff_t *pos)
4527 {
4528 loff_t n = *pos;
4529
4530 down_read(&slub_lock);
4531 if (!n)
4532 print_slabinfo_header(m);
4533
4534 return seq_list_start(&slab_caches, *pos);
4535 }
4536
4537 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4538 {
4539 return seq_list_next(p, &slab_caches, pos);
4540 }
4541
4542 static void s_stop(struct seq_file *m, void *p)
4543 {
4544 up_read(&slub_lock);
4545 }
4546
4547 static int s_show(struct seq_file *m, void *p)
4548 {
4549 unsigned long nr_partials = 0;
4550 unsigned long nr_slabs = 0;
4551 unsigned long nr_inuse = 0;
4552 unsigned long nr_objs = 0;
4553 unsigned long nr_free = 0;
4554 struct kmem_cache *s;
4555 int node;
4556
4557 s = list_entry(p, struct kmem_cache, list);
4558
4559 for_each_online_node(node) {
4560 struct kmem_cache_node *n = get_node(s, node);
4561
4562 if (!n)
4563 continue;
4564
4565 nr_partials += n->nr_partial;
4566 nr_slabs += atomic_long_read(&n->nr_slabs);
4567 nr_objs += atomic_long_read(&n->total_objects);
4568 nr_free += count_partial(n, count_free);
4569 }
4570
4571 nr_inuse = nr_objs - nr_free;
4572
4573 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4574 nr_objs, s->size, oo_objects(s->oo),
4575 (1 << oo_order(s->oo)));
4576 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4577 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4578 0UL);
4579 seq_putc(m, '\n');
4580 return 0;
4581 }
4582
4583 static const struct seq_operations slabinfo_op = {
4584 .start = s_start,
4585 .next = s_next,
4586 .stop = s_stop,
4587 .show = s_show,
4588 };
4589
4590 static int slabinfo_open(struct inode *inode, struct file *file)
4591 {
4592 return seq_open(file, &slabinfo_op);
4593 }
4594
4595 static const struct file_operations proc_slabinfo_operations = {
4596 .open = slabinfo_open,
4597 .read = seq_read,
4598 .llseek = seq_lseek,
4599 .release = seq_release,
4600 };
4601
4602 static int __init slab_proc_init(void)
4603 {
4604 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4605 return 0;
4606 }
4607 module_init(slab_proc_init);
4608 #endif /* CONFIG_SLABINFO */
This page took 0.122172 seconds and 6 git commands to generate.