Merge branches 'pm-wakeup' and 'pm-domains'
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 return s->node[node];
238 }
239
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243 {
244 void *base;
245
246 if (!object)
247 return 1;
248
249 base = page_address(page);
250 if (object < base || object >= base + page->objects * s->size ||
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256 }
257
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 return *(void **)(object + s->offset);
261 }
262
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 prefetch(object + s->offset);
266 }
267
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 void *p;
271
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 p = get_freepointer(s, object);
276 #endif
277 return p;
278 }
279
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 *(void **)(object + s->offset) = fp;
283 }
284
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 __p += (__s)->size)
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->object_size;
305
306 #endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318 }
319
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 return ((PAGE_SIZE << order) - reserved) / size;
323 }
324
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
327 {
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
330 };
331
332 return x;
333 }
334
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 return x.x >> OO_SHIFT;
338 }
339
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 return x.x & OO_MASK;
343 }
344
345 /*
346 * Per slab locking using the pagelock
347 */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 __bit_spin_unlock(PG_locked, &page->flags);
356 }
357
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359 {
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371 }
372
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378 {
379 VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
387 } else
388 #endif
389 {
390 slab_lock(page);
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
393 page->freelist = freelist_new;
394 set_page_slub_counters(page, counters_new);
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404 #ifdef SLUB_DEBUG_CMPXCHG
405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406 #endif
407
408 return 0;
409 }
410
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415 {
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 if (s->flags & __CMPXCHG_DOUBLE) {
419 if (cmpxchg_double(&page->freelist, &page->counters,
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
423 } else
424 #endif
425 {
426 unsigned long flags;
427
428 local_irq_save(flags);
429 slab_lock(page);
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
432 page->freelist = freelist_new;
433 set_page_slub_counters(page, counters_new);
434 slab_unlock(page);
435 local_irq_restore(flags);
436 return 1;
437 }
438 slab_unlock(page);
439 local_irq_restore(flags);
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445 #ifdef SLUB_DEBUG_CMPXCHG
446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447 #endif
448
449 return 0;
450 }
451
452 #ifdef CONFIG_SLUB_DEBUG
453 /*
454 * Determine a map of object in use on a page.
455 *
456 * Node listlock must be held to guarantee that the page does
457 * not vanish from under us.
458 */
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460 {
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466 }
467
468 /*
469 * Debug settings:
470 */
471 #ifdef CONFIG_SLUB_DEBUG_ON
472 static int slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static int slub_debug;
475 #endif
476
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479
480 /*
481 * Object debugging
482 */
483 static void print_section(char *text, u8 *addr, unsigned int length)
484 {
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
487 }
488
489 static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491 {
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500 }
501
502 static void set_track(struct kmem_cache *s, void *object,
503 enum track_item alloc, unsigned long addr)
504 {
505 struct track *p = get_track(s, object, alloc);
506
507 if (addr) {
508 #ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525 #endif
526 p->addr = addr;
527 p->cpu = smp_processor_id();
528 p->pid = current->pid;
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532 }
533
534 static void init_tracking(struct kmem_cache *s, void *object)
535 {
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
541 }
542
543 static void print_track(const char *s, struct track *t)
544 {
545 if (!t->addr)
546 return;
547
548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 #ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 else
557 break;
558 }
559 #endif
560 }
561
562 static void print_tracking(struct kmem_cache *s, void *object)
563 {
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569 }
570
571 static void print_page_info(struct page *page)
572 {
573 printk(KERN_ERR
574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
576
577 }
578
579 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580 {
581 va_list args;
582 char buf[100];
583
584 va_start(args, fmt);
585 vsnprintf(buf, sizeof(buf), fmt, args);
586 va_end(args);
587 printk(KERN_ERR "========================================"
588 "=====================================\n");
589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 printk(KERN_ERR "----------------------------------------"
591 "-------------------------------------\n\n");
592
593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
594 }
595
596 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597 {
598 va_list args;
599 char buf[100];
600
601 va_start(args, fmt);
602 vsnprintf(buf, sizeof(buf), fmt, args);
603 va_end(args);
604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605 }
606
607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
608 {
609 unsigned int off; /* Offset of last byte */
610 u8 *addr = page_address(page);
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
620 print_section("Bytes b4 ", p - 16, 16);
621
622 print_section("Object ", p, min_t(unsigned long, s->object_size,
623 PAGE_SIZE));
624 if (s->flags & SLAB_RED_ZONE)
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
627
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
633 if (s->flags & SLAB_STORE_USER)
634 off += 2 * sizeof(struct track);
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
638 print_section("Padding ", p + off, s->size - off);
639
640 dump_stack();
641 }
642
643 static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645 {
646 slab_bug(s, "%s", reason);
647 print_trailer(s, page, object);
648 }
649
650 static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
652 {
653 va_list args;
654 char buf[100];
655
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
658 va_end(args);
659 slab_bug(s, "%s", buf);
660 print_page_info(page);
661 dump_stack();
662 }
663
664 static void init_object(struct kmem_cache *s, void *object, u8 val)
665 {
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
674 memset(p + s->object_size, val, s->inuse - s->object_size);
675 }
676
677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679 {
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682 }
683
684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
686 u8 *start, unsigned int value, unsigned int bytes)
687 {
688 u8 *fault;
689 u8 *end;
690
691 fault = memchr_inv(start, value, bytes);
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
706 }
707
708 /*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
715 *
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
719 * object + s->object_size
720 * Padding to reach word boundary. This is also used for Redzoning.
721 * Padding is extended by another word if Redzoning is enabled and
722 * object_size == inuse.
723 *
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
728 * Meta data starts here.
729 *
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
732 * C. Padding to reach required alignment boundary or at mininum
733 * one word if debugging is on to be able to detect writes
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
737 *
738 * object + s->size
739 * Nothing is used beyond s->size.
740 *
741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
742 * ignored. And therefore no slab options that rely on these boundaries
743 * may be used with merged slabcaches.
744 */
745
746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747 {
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
763 }
764
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache *s, struct page *page)
767 {
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
777 start = page_address(page);
778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 end = start + length;
780 remainder = length % s->size;
781 if (!remainder)
782 return 1;
783
784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791 print_section("Padding ", end - remainder, remainder);
792
793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794 return 0;
795 }
796
797 static int check_object(struct kmem_cache *s, struct page *page,
798 void *object, u8 val)
799 {
800 u8 *p = object;
801 u8 *endobject = object + s->object_size;
802
803 if (s->flags & SLAB_RED_ZONE) {
804 if (!check_bytes_and_report(s, page, object, "Redzone",
805 endobject, val, s->inuse - s->object_size))
806 return 0;
807 } else {
808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
809 check_bytes_and_report(s, page, p, "Alignment padding",
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
812 }
813 }
814
815 if (s->flags & SLAB_POISON) {
816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817 (!check_bytes_and_report(s, page, p, "Poison", p,
818 POISON_FREE, s->object_size - 1) ||
819 !check_bytes_and_report(s, page, p, "Poison",
820 p + s->object_size - 1, POISON_END, 1)))
821 return 0;
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
828 if (!s->offset && val == SLUB_RED_ACTIVE)
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
839 * No choice but to zap it and thus lose the remainder
840 * of the free objects in this slab. May cause
841 * another error because the object count is now wrong.
842 */
843 set_freepointer(s, p, NULL);
844 return 0;
845 }
846 return 1;
847 }
848
849 static int check_slab(struct kmem_cache *s, struct page *page)
850 {
851 int maxobj;
852
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
856 slab_err(s, page, "Not a valid slab page");
857 return 0;
858 }
859
860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
867 slab_err(s, page, "inuse %u > max %u",
868 s->name, page->inuse, page->objects);
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874 }
875
876 /*
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
879 */
880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881 {
882 int nr = 0;
883 void *fp;
884 void *object = NULL;
885 unsigned long max_objects;
886
887 fp = page->freelist;
888 while (fp && nr <= page->objects) {
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
895 set_freepointer(s, object, NULL);
896 } else {
897 slab_err(s, page, "Freepointer corrupt");
898 page->freelist = NULL;
899 page->inuse = page->objects;
900 slab_fix(s, "Freelist cleared");
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
920 if (page->inuse != page->objects - nr) {
921 slab_err(s, page, "Wrong object count. Counter is %d but "
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
924 slab_fix(s, "Object count adjusted.");
925 }
926 return search == NULL;
927 }
928
929 static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
931 {
932 if (s->flags & SLAB_TRACE) {
933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
940 print_section("Object ", (void *)object,
941 s->object_size);
942
943 dump_stack();
944 }
945 }
946
947 /*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952 {
953 kmemleak_alloc(ptr, size, 1, flags);
954 }
955
956 static inline void kfree_hook(const void *x)
957 {
958 kmemleak_free(x);
959 }
960
961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962 {
963 flags &= gfp_allowed_mask;
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
967 return should_failslab(s->object_size, flags, s->flags);
968 }
969
970 static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
972 {
973 flags &= gfp_allowed_mask;
974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 }
977
978 static inline void slab_free_hook(struct kmem_cache *s, void *x)
979 {
980 kmemleak_free_recursive(x, s->flags);
981
982 /*
983 * Trouble is that we may no longer disable interrupts in the fast path
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
994 local_irq_restore(flags);
995 }
996 #endif
997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
998 debug_check_no_obj_freed(x, s->object_size);
999 }
1000
1001 /*
1002 * Tracking of fully allocated slabs for debugging purposes.
1003 */
1004 static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
1006 {
1007 if (!(s->flags & SLAB_STORE_USER))
1008 return;
1009
1010 lockdep_assert_held(&n->list_lock);
1011 list_add(&page->lru, &n->full);
1012 }
1013
1014 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 {
1016 if (!(s->flags & SLAB_STORE_USER))
1017 return;
1018
1019 lockdep_assert_held(&n->list_lock);
1020 list_del(&page->lru);
1021 }
1022
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025 {
1026 struct kmem_cache_node *n = get_node(s, node);
1027
1028 return atomic_long_read(&n->nr_slabs);
1029 }
1030
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032 {
1033 return atomic_long_read(&n->nr_slabs);
1034 }
1035
1036 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 {
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 /*
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1045 */
1046 if (likely(n)) {
1047 atomic_long_inc(&n->nr_slabs);
1048 atomic_long_add(objects, &n->total_objects);
1049 }
1050 }
1051 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 {
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 atomic_long_dec(&n->nr_slabs);
1056 atomic_long_sub(objects, &n->total_objects);
1057 }
1058
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1062 {
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1065
1066 init_object(s, object, SLUB_RED_INACTIVE);
1067 init_tracking(s, object);
1068 }
1069
1070 static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
1072 void *object, unsigned long addr)
1073 {
1074 if (!check_slab(s, page))
1075 goto bad;
1076
1077 if (!check_valid_pointer(s, page, object)) {
1078 object_err(s, page, object, "Freelist Pointer check fails");
1079 goto bad;
1080 }
1081
1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1083 goto bad;
1084
1085 /* Success perform special debug activities for allocs */
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_ALLOC, addr);
1088 trace(s, page, object, 1);
1089 init_object(s, object, SLUB_RED_ACTIVE);
1090 return 1;
1091
1092 bad:
1093 if (PageSlab(page)) {
1094 /*
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
1097 * as used avoids touching the remaining objects.
1098 */
1099 slab_fix(s, "Marking all objects used");
1100 page->inuse = page->objects;
1101 page->freelist = NULL;
1102 }
1103 return 0;
1104 }
1105
1106 static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page, void *object,
1108 unsigned long addr, unsigned long *flags)
1109 {
1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111
1112 spin_lock_irqsave(&n->list_lock, *flags);
1113 slab_lock(page);
1114
1115 if (!check_slab(s, page))
1116 goto fail;
1117
1118 if (!check_valid_pointer(s, page, object)) {
1119 slab_err(s, page, "Invalid object pointer 0x%p", object);
1120 goto fail;
1121 }
1122
1123 if (on_freelist(s, page, object)) {
1124 object_err(s, page, object, "Object already free");
1125 goto fail;
1126 }
1127
1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129 goto out;
1130
1131 if (unlikely(s != page->slab_cache)) {
1132 if (!PageSlab(page)) {
1133 slab_err(s, page, "Attempt to free object(0x%p) "
1134 "outside of slab", object);
1135 } else if (!page->slab_cache) {
1136 printk(KERN_ERR
1137 "SLUB <none>: no slab for object 0x%p.\n",
1138 object);
1139 dump_stack();
1140 } else
1141 object_err(s, page, object,
1142 "page slab pointer corrupt.");
1143 goto fail;
1144 }
1145
1146 if (s->flags & SLAB_STORE_USER)
1147 set_track(s, object, TRACK_FREE, addr);
1148 trace(s, page, object, 0);
1149 init_object(s, object, SLUB_RED_INACTIVE);
1150 out:
1151 slab_unlock(page);
1152 /*
1153 * Keep node_lock to preserve integrity
1154 * until the object is actually freed
1155 */
1156 return n;
1157
1158 fail:
1159 slab_unlock(page);
1160 spin_unlock_irqrestore(&n->list_lock, *flags);
1161 slab_fix(s, "Object at 0x%p not freed", object);
1162 return NULL;
1163 }
1164
1165 static int __init setup_slub_debug(char *str)
1166 {
1167 slub_debug = DEBUG_DEFAULT_FLAGS;
1168 if (*str++ != '=' || !*str)
1169 /*
1170 * No options specified. Switch on full debugging.
1171 */
1172 goto out;
1173
1174 if (*str == ',')
1175 /*
1176 * No options but restriction on slabs. This means full
1177 * debugging for slabs matching a pattern.
1178 */
1179 goto check_slabs;
1180
1181 if (tolower(*str) == 'o') {
1182 /*
1183 * Avoid enabling debugging on caches if its minimum order
1184 * would increase as a result.
1185 */
1186 disable_higher_order_debug = 1;
1187 goto out;
1188 }
1189
1190 slub_debug = 0;
1191 if (*str == '-')
1192 /*
1193 * Switch off all debugging measures.
1194 */
1195 goto out;
1196
1197 /*
1198 * Determine which debug features should be switched on
1199 */
1200 for (; *str && *str != ','; str++) {
1201 switch (tolower(*str)) {
1202 case 'f':
1203 slub_debug |= SLAB_DEBUG_FREE;
1204 break;
1205 case 'z':
1206 slub_debug |= SLAB_RED_ZONE;
1207 break;
1208 case 'p':
1209 slub_debug |= SLAB_POISON;
1210 break;
1211 case 'u':
1212 slub_debug |= SLAB_STORE_USER;
1213 break;
1214 case 't':
1215 slub_debug |= SLAB_TRACE;
1216 break;
1217 case 'a':
1218 slub_debug |= SLAB_FAILSLAB;
1219 break;
1220 default:
1221 printk(KERN_ERR "slub_debug option '%c' "
1222 "unknown. skipped\n", *str);
1223 }
1224 }
1225
1226 check_slabs:
1227 if (*str == ',')
1228 slub_debug_slabs = str + 1;
1229 out:
1230 return 1;
1231 }
1232
1233 __setup("slub_debug", setup_slub_debug);
1234
1235 static unsigned long kmem_cache_flags(unsigned long object_size,
1236 unsigned long flags, const char *name,
1237 void (*ctor)(void *))
1238 {
1239 /*
1240 * Enable debugging if selected on the kernel commandline.
1241 */
1242 if (slub_debug && (!slub_debug_slabs || (name &&
1243 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1244 flags |= slub_debug;
1245
1246 return flags;
1247 }
1248 #else
1249 static inline void setup_object_debug(struct kmem_cache *s,
1250 struct page *page, void *object) {}
1251
1252 static inline int alloc_debug_processing(struct kmem_cache *s,
1253 struct page *page, void *object, unsigned long addr) { return 0; }
1254
1255 static inline struct kmem_cache_node *free_debug_processing(
1256 struct kmem_cache *s, struct page *page, void *object,
1257 unsigned long addr, unsigned long *flags) { return NULL; }
1258
1259 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1260 { return 1; }
1261 static inline int check_object(struct kmem_cache *s, struct page *page,
1262 void *object, u8 val) { return 1; }
1263 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1264 struct page *page) {}
1265 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1266 struct page *page) {}
1267 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1268 unsigned long flags, const char *name,
1269 void (*ctor)(void *))
1270 {
1271 return flags;
1272 }
1273 #define slub_debug 0
1274
1275 #define disable_higher_order_debug 0
1276
1277 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1278 { return 0; }
1279 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1280 { return 0; }
1281 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1282 int objects) {}
1283 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1284 int objects) {}
1285
1286 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1287 {
1288 kmemleak_alloc(ptr, size, 1, flags);
1289 }
1290
1291 static inline void kfree_hook(const void *x)
1292 {
1293 kmemleak_free(x);
1294 }
1295
1296 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1297 { return 0; }
1298
1299 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1300 void *object)
1301 {
1302 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1303 flags & gfp_allowed_mask);
1304 }
1305
1306 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1307 {
1308 kmemleak_free_recursive(x, s->flags);
1309 }
1310
1311 #endif /* CONFIG_SLUB_DEBUG */
1312
1313 /*
1314 * Slab allocation and freeing
1315 */
1316 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1317 struct kmem_cache_order_objects oo)
1318 {
1319 int order = oo_order(oo);
1320
1321 flags |= __GFP_NOTRACK;
1322
1323 if (node == NUMA_NO_NODE)
1324 return alloc_pages(flags, order);
1325 else
1326 return alloc_pages_exact_node(node, flags, order);
1327 }
1328
1329 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1330 {
1331 struct page *page;
1332 struct kmem_cache_order_objects oo = s->oo;
1333 gfp_t alloc_gfp;
1334
1335 flags &= gfp_allowed_mask;
1336
1337 if (flags & __GFP_WAIT)
1338 local_irq_enable();
1339
1340 flags |= s->allocflags;
1341
1342 /*
1343 * Let the initial higher-order allocation fail under memory pressure
1344 * so we fall-back to the minimum order allocation.
1345 */
1346 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1347
1348 page = alloc_slab_page(alloc_gfp, node, oo);
1349 if (unlikely(!page)) {
1350 oo = s->min;
1351 /*
1352 * Allocation may have failed due to fragmentation.
1353 * Try a lower order alloc if possible
1354 */
1355 page = alloc_slab_page(flags, node, oo);
1356
1357 if (page)
1358 stat(s, ORDER_FALLBACK);
1359 }
1360
1361 if (kmemcheck_enabled && page
1362 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1363 int pages = 1 << oo_order(oo);
1364
1365 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1366
1367 /*
1368 * Objects from caches that have a constructor don't get
1369 * cleared when they're allocated, so we need to do it here.
1370 */
1371 if (s->ctor)
1372 kmemcheck_mark_uninitialized_pages(page, pages);
1373 else
1374 kmemcheck_mark_unallocated_pages(page, pages);
1375 }
1376
1377 if (flags & __GFP_WAIT)
1378 local_irq_disable();
1379 if (!page)
1380 return NULL;
1381
1382 page->objects = oo_objects(oo);
1383 mod_zone_page_state(page_zone(page),
1384 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1385 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1386 1 << oo_order(oo));
1387
1388 return page;
1389 }
1390
1391 static void setup_object(struct kmem_cache *s, struct page *page,
1392 void *object)
1393 {
1394 setup_object_debug(s, page, object);
1395 if (unlikely(s->ctor))
1396 s->ctor(object);
1397 }
1398
1399 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1400 {
1401 struct page *page;
1402 void *start;
1403 void *last;
1404 void *p;
1405 int order;
1406
1407 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1408
1409 page = allocate_slab(s,
1410 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1411 if (!page)
1412 goto out;
1413
1414 order = compound_order(page);
1415 inc_slabs_node(s, page_to_nid(page), page->objects);
1416 memcg_bind_pages(s, order);
1417 page->slab_cache = s;
1418 __SetPageSlab(page);
1419 if (page->pfmemalloc)
1420 SetPageSlabPfmemalloc(page);
1421
1422 start = page_address(page);
1423
1424 if (unlikely(s->flags & SLAB_POISON))
1425 memset(start, POISON_INUSE, PAGE_SIZE << order);
1426
1427 last = start;
1428 for_each_object(p, s, start, page->objects) {
1429 setup_object(s, page, last);
1430 set_freepointer(s, last, p);
1431 last = p;
1432 }
1433 setup_object(s, page, last);
1434 set_freepointer(s, last, NULL);
1435
1436 page->freelist = start;
1437 page->inuse = page->objects;
1438 page->frozen = 1;
1439 out:
1440 return page;
1441 }
1442
1443 static void __free_slab(struct kmem_cache *s, struct page *page)
1444 {
1445 int order = compound_order(page);
1446 int pages = 1 << order;
1447
1448 if (kmem_cache_debug(s)) {
1449 void *p;
1450
1451 slab_pad_check(s, page);
1452 for_each_object(p, s, page_address(page),
1453 page->objects)
1454 check_object(s, page, p, SLUB_RED_INACTIVE);
1455 }
1456
1457 kmemcheck_free_shadow(page, compound_order(page));
1458
1459 mod_zone_page_state(page_zone(page),
1460 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1461 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1462 -pages);
1463
1464 __ClearPageSlabPfmemalloc(page);
1465 __ClearPageSlab(page);
1466
1467 memcg_release_pages(s, order);
1468 page_mapcount_reset(page);
1469 if (current->reclaim_state)
1470 current->reclaim_state->reclaimed_slab += pages;
1471 __free_memcg_kmem_pages(page, order);
1472 }
1473
1474 #define need_reserve_slab_rcu \
1475 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1476
1477 static void rcu_free_slab(struct rcu_head *h)
1478 {
1479 struct page *page;
1480
1481 if (need_reserve_slab_rcu)
1482 page = virt_to_head_page(h);
1483 else
1484 page = container_of((struct list_head *)h, struct page, lru);
1485
1486 __free_slab(page->slab_cache, page);
1487 }
1488
1489 static void free_slab(struct kmem_cache *s, struct page *page)
1490 {
1491 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1492 struct rcu_head *head;
1493
1494 if (need_reserve_slab_rcu) {
1495 int order = compound_order(page);
1496 int offset = (PAGE_SIZE << order) - s->reserved;
1497
1498 VM_BUG_ON(s->reserved != sizeof(*head));
1499 head = page_address(page) + offset;
1500 } else {
1501 /*
1502 * RCU free overloads the RCU head over the LRU
1503 */
1504 head = (void *)&page->lru;
1505 }
1506
1507 call_rcu(head, rcu_free_slab);
1508 } else
1509 __free_slab(s, page);
1510 }
1511
1512 static void discard_slab(struct kmem_cache *s, struct page *page)
1513 {
1514 dec_slabs_node(s, page_to_nid(page), page->objects);
1515 free_slab(s, page);
1516 }
1517
1518 /*
1519 * Management of partially allocated slabs.
1520 */
1521 static inline void
1522 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1523 {
1524 n->nr_partial++;
1525 if (tail == DEACTIVATE_TO_TAIL)
1526 list_add_tail(&page->lru, &n->partial);
1527 else
1528 list_add(&page->lru, &n->partial);
1529 }
1530
1531 static inline void add_partial(struct kmem_cache_node *n,
1532 struct page *page, int tail)
1533 {
1534 lockdep_assert_held(&n->list_lock);
1535 __add_partial(n, page, tail);
1536 }
1537
1538 static inline void
1539 __remove_partial(struct kmem_cache_node *n, struct page *page)
1540 {
1541 list_del(&page->lru);
1542 n->nr_partial--;
1543 }
1544
1545 static inline void remove_partial(struct kmem_cache_node *n,
1546 struct page *page)
1547 {
1548 lockdep_assert_held(&n->list_lock);
1549 __remove_partial(n, page);
1550 }
1551
1552 /*
1553 * Remove slab from the partial list, freeze it and
1554 * return the pointer to the freelist.
1555 *
1556 * Returns a list of objects or NULL if it fails.
1557 */
1558 static inline void *acquire_slab(struct kmem_cache *s,
1559 struct kmem_cache_node *n, struct page *page,
1560 int mode, int *objects)
1561 {
1562 void *freelist;
1563 unsigned long counters;
1564 struct page new;
1565
1566 lockdep_assert_held(&n->list_lock);
1567
1568 /*
1569 * Zap the freelist and set the frozen bit.
1570 * The old freelist is the list of objects for the
1571 * per cpu allocation list.
1572 */
1573 freelist = page->freelist;
1574 counters = page->counters;
1575 new.counters = counters;
1576 *objects = new.objects - new.inuse;
1577 if (mode) {
1578 new.inuse = page->objects;
1579 new.freelist = NULL;
1580 } else {
1581 new.freelist = freelist;
1582 }
1583
1584 VM_BUG_ON(new.frozen);
1585 new.frozen = 1;
1586
1587 if (!__cmpxchg_double_slab(s, page,
1588 freelist, counters,
1589 new.freelist, new.counters,
1590 "acquire_slab"))
1591 return NULL;
1592
1593 remove_partial(n, page);
1594 WARN_ON(!freelist);
1595 return freelist;
1596 }
1597
1598 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1599 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1600
1601 /*
1602 * Try to allocate a partial slab from a specific node.
1603 */
1604 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1605 struct kmem_cache_cpu *c, gfp_t flags)
1606 {
1607 struct page *page, *page2;
1608 void *object = NULL;
1609 int available = 0;
1610 int objects;
1611
1612 /*
1613 * Racy check. If we mistakenly see no partial slabs then we
1614 * just allocate an empty slab. If we mistakenly try to get a
1615 * partial slab and there is none available then get_partials()
1616 * will return NULL.
1617 */
1618 if (!n || !n->nr_partial)
1619 return NULL;
1620
1621 spin_lock(&n->list_lock);
1622 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1623 void *t;
1624
1625 if (!pfmemalloc_match(page, flags))
1626 continue;
1627
1628 t = acquire_slab(s, n, page, object == NULL, &objects);
1629 if (!t)
1630 break;
1631
1632 available += objects;
1633 if (!object) {
1634 c->page = page;
1635 stat(s, ALLOC_FROM_PARTIAL);
1636 object = t;
1637 } else {
1638 put_cpu_partial(s, page, 0);
1639 stat(s, CPU_PARTIAL_NODE);
1640 }
1641 if (!kmem_cache_has_cpu_partial(s)
1642 || available > s->cpu_partial / 2)
1643 break;
1644
1645 }
1646 spin_unlock(&n->list_lock);
1647 return object;
1648 }
1649
1650 /*
1651 * Get a page from somewhere. Search in increasing NUMA distances.
1652 */
1653 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1654 struct kmem_cache_cpu *c)
1655 {
1656 #ifdef CONFIG_NUMA
1657 struct zonelist *zonelist;
1658 struct zoneref *z;
1659 struct zone *zone;
1660 enum zone_type high_zoneidx = gfp_zone(flags);
1661 void *object;
1662 unsigned int cpuset_mems_cookie;
1663
1664 /*
1665 * The defrag ratio allows a configuration of the tradeoffs between
1666 * inter node defragmentation and node local allocations. A lower
1667 * defrag_ratio increases the tendency to do local allocations
1668 * instead of attempting to obtain partial slabs from other nodes.
1669 *
1670 * If the defrag_ratio is set to 0 then kmalloc() always
1671 * returns node local objects. If the ratio is higher then kmalloc()
1672 * may return off node objects because partial slabs are obtained
1673 * from other nodes and filled up.
1674 *
1675 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1676 * defrag_ratio = 1000) then every (well almost) allocation will
1677 * first attempt to defrag slab caches on other nodes. This means
1678 * scanning over all nodes to look for partial slabs which may be
1679 * expensive if we do it every time we are trying to find a slab
1680 * with available objects.
1681 */
1682 if (!s->remote_node_defrag_ratio ||
1683 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1684 return NULL;
1685
1686 do {
1687 cpuset_mems_cookie = read_mems_allowed_begin();
1688 zonelist = node_zonelist(slab_node(), flags);
1689 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1690 struct kmem_cache_node *n;
1691
1692 n = get_node(s, zone_to_nid(zone));
1693
1694 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1695 n->nr_partial > s->min_partial) {
1696 object = get_partial_node(s, n, c, flags);
1697 if (object) {
1698 /*
1699 * Don't check read_mems_allowed_retry()
1700 * here - if mems_allowed was updated in
1701 * parallel, that was a harmless race
1702 * between allocation and the cpuset
1703 * update
1704 */
1705 return object;
1706 }
1707 }
1708 }
1709 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1710 #endif
1711 return NULL;
1712 }
1713
1714 /*
1715 * Get a partial page, lock it and return it.
1716 */
1717 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1718 struct kmem_cache_cpu *c)
1719 {
1720 void *object;
1721 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1722
1723 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1724 if (object || node != NUMA_NO_NODE)
1725 return object;
1726
1727 return get_any_partial(s, flags, c);
1728 }
1729
1730 #ifdef CONFIG_PREEMPT
1731 /*
1732 * Calculate the next globally unique transaction for disambiguiation
1733 * during cmpxchg. The transactions start with the cpu number and are then
1734 * incremented by CONFIG_NR_CPUS.
1735 */
1736 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1737 #else
1738 /*
1739 * No preemption supported therefore also no need to check for
1740 * different cpus.
1741 */
1742 #define TID_STEP 1
1743 #endif
1744
1745 static inline unsigned long next_tid(unsigned long tid)
1746 {
1747 return tid + TID_STEP;
1748 }
1749
1750 static inline unsigned int tid_to_cpu(unsigned long tid)
1751 {
1752 return tid % TID_STEP;
1753 }
1754
1755 static inline unsigned long tid_to_event(unsigned long tid)
1756 {
1757 return tid / TID_STEP;
1758 }
1759
1760 static inline unsigned int init_tid(int cpu)
1761 {
1762 return cpu;
1763 }
1764
1765 static inline void note_cmpxchg_failure(const char *n,
1766 const struct kmem_cache *s, unsigned long tid)
1767 {
1768 #ifdef SLUB_DEBUG_CMPXCHG
1769 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1770
1771 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1772
1773 #ifdef CONFIG_PREEMPT
1774 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1775 printk("due to cpu change %d -> %d\n",
1776 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1777 else
1778 #endif
1779 if (tid_to_event(tid) != tid_to_event(actual_tid))
1780 printk("due to cpu running other code. Event %ld->%ld\n",
1781 tid_to_event(tid), tid_to_event(actual_tid));
1782 else
1783 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1784 actual_tid, tid, next_tid(tid));
1785 #endif
1786 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1787 }
1788
1789 static void init_kmem_cache_cpus(struct kmem_cache *s)
1790 {
1791 int cpu;
1792
1793 for_each_possible_cpu(cpu)
1794 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1795 }
1796
1797 /*
1798 * Remove the cpu slab
1799 */
1800 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1801 void *freelist)
1802 {
1803 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1804 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1805 int lock = 0;
1806 enum slab_modes l = M_NONE, m = M_NONE;
1807 void *nextfree;
1808 int tail = DEACTIVATE_TO_HEAD;
1809 struct page new;
1810 struct page old;
1811
1812 if (page->freelist) {
1813 stat(s, DEACTIVATE_REMOTE_FREES);
1814 tail = DEACTIVATE_TO_TAIL;
1815 }
1816
1817 /*
1818 * Stage one: Free all available per cpu objects back
1819 * to the page freelist while it is still frozen. Leave the
1820 * last one.
1821 *
1822 * There is no need to take the list->lock because the page
1823 * is still frozen.
1824 */
1825 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1826 void *prior;
1827 unsigned long counters;
1828
1829 do {
1830 prior = page->freelist;
1831 counters = page->counters;
1832 set_freepointer(s, freelist, prior);
1833 new.counters = counters;
1834 new.inuse--;
1835 VM_BUG_ON(!new.frozen);
1836
1837 } while (!__cmpxchg_double_slab(s, page,
1838 prior, counters,
1839 freelist, new.counters,
1840 "drain percpu freelist"));
1841
1842 freelist = nextfree;
1843 }
1844
1845 /*
1846 * Stage two: Ensure that the page is unfrozen while the
1847 * list presence reflects the actual number of objects
1848 * during unfreeze.
1849 *
1850 * We setup the list membership and then perform a cmpxchg
1851 * with the count. If there is a mismatch then the page
1852 * is not unfrozen but the page is on the wrong list.
1853 *
1854 * Then we restart the process which may have to remove
1855 * the page from the list that we just put it on again
1856 * because the number of objects in the slab may have
1857 * changed.
1858 */
1859 redo:
1860
1861 old.freelist = page->freelist;
1862 old.counters = page->counters;
1863 VM_BUG_ON(!old.frozen);
1864
1865 /* Determine target state of the slab */
1866 new.counters = old.counters;
1867 if (freelist) {
1868 new.inuse--;
1869 set_freepointer(s, freelist, old.freelist);
1870 new.freelist = freelist;
1871 } else
1872 new.freelist = old.freelist;
1873
1874 new.frozen = 0;
1875
1876 if (!new.inuse && n->nr_partial > s->min_partial)
1877 m = M_FREE;
1878 else if (new.freelist) {
1879 m = M_PARTIAL;
1880 if (!lock) {
1881 lock = 1;
1882 /*
1883 * Taking the spinlock removes the possiblity
1884 * that acquire_slab() will see a slab page that
1885 * is frozen
1886 */
1887 spin_lock(&n->list_lock);
1888 }
1889 } else {
1890 m = M_FULL;
1891 if (kmem_cache_debug(s) && !lock) {
1892 lock = 1;
1893 /*
1894 * This also ensures that the scanning of full
1895 * slabs from diagnostic functions will not see
1896 * any frozen slabs.
1897 */
1898 spin_lock(&n->list_lock);
1899 }
1900 }
1901
1902 if (l != m) {
1903
1904 if (l == M_PARTIAL)
1905
1906 remove_partial(n, page);
1907
1908 else if (l == M_FULL)
1909
1910 remove_full(s, n, page);
1911
1912 if (m == M_PARTIAL) {
1913
1914 add_partial(n, page, tail);
1915 stat(s, tail);
1916
1917 } else if (m == M_FULL) {
1918
1919 stat(s, DEACTIVATE_FULL);
1920 add_full(s, n, page);
1921
1922 }
1923 }
1924
1925 l = m;
1926 if (!__cmpxchg_double_slab(s, page,
1927 old.freelist, old.counters,
1928 new.freelist, new.counters,
1929 "unfreezing slab"))
1930 goto redo;
1931
1932 if (lock)
1933 spin_unlock(&n->list_lock);
1934
1935 if (m == M_FREE) {
1936 stat(s, DEACTIVATE_EMPTY);
1937 discard_slab(s, page);
1938 stat(s, FREE_SLAB);
1939 }
1940 }
1941
1942 /*
1943 * Unfreeze all the cpu partial slabs.
1944 *
1945 * This function must be called with interrupts disabled
1946 * for the cpu using c (or some other guarantee must be there
1947 * to guarantee no concurrent accesses).
1948 */
1949 static void unfreeze_partials(struct kmem_cache *s,
1950 struct kmem_cache_cpu *c)
1951 {
1952 #ifdef CONFIG_SLUB_CPU_PARTIAL
1953 struct kmem_cache_node *n = NULL, *n2 = NULL;
1954 struct page *page, *discard_page = NULL;
1955
1956 while ((page = c->partial)) {
1957 struct page new;
1958 struct page old;
1959
1960 c->partial = page->next;
1961
1962 n2 = get_node(s, page_to_nid(page));
1963 if (n != n2) {
1964 if (n)
1965 spin_unlock(&n->list_lock);
1966
1967 n = n2;
1968 spin_lock(&n->list_lock);
1969 }
1970
1971 do {
1972
1973 old.freelist = page->freelist;
1974 old.counters = page->counters;
1975 VM_BUG_ON(!old.frozen);
1976
1977 new.counters = old.counters;
1978 new.freelist = old.freelist;
1979
1980 new.frozen = 0;
1981
1982 } while (!__cmpxchg_double_slab(s, page,
1983 old.freelist, old.counters,
1984 new.freelist, new.counters,
1985 "unfreezing slab"));
1986
1987 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1988 page->next = discard_page;
1989 discard_page = page;
1990 } else {
1991 add_partial(n, page, DEACTIVATE_TO_TAIL);
1992 stat(s, FREE_ADD_PARTIAL);
1993 }
1994 }
1995
1996 if (n)
1997 spin_unlock(&n->list_lock);
1998
1999 while (discard_page) {
2000 page = discard_page;
2001 discard_page = discard_page->next;
2002
2003 stat(s, DEACTIVATE_EMPTY);
2004 discard_slab(s, page);
2005 stat(s, FREE_SLAB);
2006 }
2007 #endif
2008 }
2009
2010 /*
2011 * Put a page that was just frozen (in __slab_free) into a partial page
2012 * slot if available. This is done without interrupts disabled and without
2013 * preemption disabled. The cmpxchg is racy and may put the partial page
2014 * onto a random cpus partial slot.
2015 *
2016 * If we did not find a slot then simply move all the partials to the
2017 * per node partial list.
2018 */
2019 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2020 {
2021 #ifdef CONFIG_SLUB_CPU_PARTIAL
2022 struct page *oldpage;
2023 int pages;
2024 int pobjects;
2025
2026 do {
2027 pages = 0;
2028 pobjects = 0;
2029 oldpage = this_cpu_read(s->cpu_slab->partial);
2030
2031 if (oldpage) {
2032 pobjects = oldpage->pobjects;
2033 pages = oldpage->pages;
2034 if (drain && pobjects > s->cpu_partial) {
2035 unsigned long flags;
2036 /*
2037 * partial array is full. Move the existing
2038 * set to the per node partial list.
2039 */
2040 local_irq_save(flags);
2041 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2042 local_irq_restore(flags);
2043 oldpage = NULL;
2044 pobjects = 0;
2045 pages = 0;
2046 stat(s, CPU_PARTIAL_DRAIN);
2047 }
2048 }
2049
2050 pages++;
2051 pobjects += page->objects - page->inuse;
2052
2053 page->pages = pages;
2054 page->pobjects = pobjects;
2055 page->next = oldpage;
2056
2057 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2058 != oldpage);
2059 #endif
2060 }
2061
2062 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2063 {
2064 stat(s, CPUSLAB_FLUSH);
2065 deactivate_slab(s, c->page, c->freelist);
2066
2067 c->tid = next_tid(c->tid);
2068 c->page = NULL;
2069 c->freelist = NULL;
2070 }
2071
2072 /*
2073 * Flush cpu slab.
2074 *
2075 * Called from IPI handler with interrupts disabled.
2076 */
2077 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2078 {
2079 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2080
2081 if (likely(c)) {
2082 if (c->page)
2083 flush_slab(s, c);
2084
2085 unfreeze_partials(s, c);
2086 }
2087 }
2088
2089 static void flush_cpu_slab(void *d)
2090 {
2091 struct kmem_cache *s = d;
2092
2093 __flush_cpu_slab(s, smp_processor_id());
2094 }
2095
2096 static bool has_cpu_slab(int cpu, void *info)
2097 {
2098 struct kmem_cache *s = info;
2099 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2100
2101 return c->page || c->partial;
2102 }
2103
2104 static void flush_all(struct kmem_cache *s)
2105 {
2106 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2107 }
2108
2109 /*
2110 * Check if the objects in a per cpu structure fit numa
2111 * locality expectations.
2112 */
2113 static inline int node_match(struct page *page, int node)
2114 {
2115 #ifdef CONFIG_NUMA
2116 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2117 return 0;
2118 #endif
2119 return 1;
2120 }
2121
2122 static int count_free(struct page *page)
2123 {
2124 return page->objects - page->inuse;
2125 }
2126
2127 static unsigned long count_partial(struct kmem_cache_node *n,
2128 int (*get_count)(struct page *))
2129 {
2130 unsigned long flags;
2131 unsigned long x = 0;
2132 struct page *page;
2133
2134 spin_lock_irqsave(&n->list_lock, flags);
2135 list_for_each_entry(page, &n->partial, lru)
2136 x += get_count(page);
2137 spin_unlock_irqrestore(&n->list_lock, flags);
2138 return x;
2139 }
2140
2141 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2142 {
2143 #ifdef CONFIG_SLUB_DEBUG
2144 return atomic_long_read(&n->total_objects);
2145 #else
2146 return 0;
2147 #endif
2148 }
2149
2150 static noinline void
2151 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2152 {
2153 int node;
2154
2155 printk(KERN_WARNING
2156 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2157 nid, gfpflags);
2158 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2159 "default order: %d, min order: %d\n", s->name, s->object_size,
2160 s->size, oo_order(s->oo), oo_order(s->min));
2161
2162 if (oo_order(s->min) > get_order(s->object_size))
2163 printk(KERN_WARNING " %s debugging increased min order, use "
2164 "slub_debug=O to disable.\n", s->name);
2165
2166 for_each_online_node(node) {
2167 struct kmem_cache_node *n = get_node(s, node);
2168 unsigned long nr_slabs;
2169 unsigned long nr_objs;
2170 unsigned long nr_free;
2171
2172 if (!n)
2173 continue;
2174
2175 nr_free = count_partial(n, count_free);
2176 nr_slabs = node_nr_slabs(n);
2177 nr_objs = node_nr_objs(n);
2178
2179 printk(KERN_WARNING
2180 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2181 node, nr_slabs, nr_objs, nr_free);
2182 }
2183 }
2184
2185 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2186 int node, struct kmem_cache_cpu **pc)
2187 {
2188 void *freelist;
2189 struct kmem_cache_cpu *c = *pc;
2190 struct page *page;
2191
2192 freelist = get_partial(s, flags, node, c);
2193
2194 if (freelist)
2195 return freelist;
2196
2197 page = new_slab(s, flags, node);
2198 if (page) {
2199 c = __this_cpu_ptr(s->cpu_slab);
2200 if (c->page)
2201 flush_slab(s, c);
2202
2203 /*
2204 * No other reference to the page yet so we can
2205 * muck around with it freely without cmpxchg
2206 */
2207 freelist = page->freelist;
2208 page->freelist = NULL;
2209
2210 stat(s, ALLOC_SLAB);
2211 c->page = page;
2212 *pc = c;
2213 } else
2214 freelist = NULL;
2215
2216 return freelist;
2217 }
2218
2219 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2220 {
2221 if (unlikely(PageSlabPfmemalloc(page)))
2222 return gfp_pfmemalloc_allowed(gfpflags);
2223
2224 return true;
2225 }
2226
2227 /*
2228 * Check the page->freelist of a page and either transfer the freelist to the
2229 * per cpu freelist or deactivate the page.
2230 *
2231 * The page is still frozen if the return value is not NULL.
2232 *
2233 * If this function returns NULL then the page has been unfrozen.
2234 *
2235 * This function must be called with interrupt disabled.
2236 */
2237 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2238 {
2239 struct page new;
2240 unsigned long counters;
2241 void *freelist;
2242
2243 do {
2244 freelist = page->freelist;
2245 counters = page->counters;
2246
2247 new.counters = counters;
2248 VM_BUG_ON(!new.frozen);
2249
2250 new.inuse = page->objects;
2251 new.frozen = freelist != NULL;
2252
2253 } while (!__cmpxchg_double_slab(s, page,
2254 freelist, counters,
2255 NULL, new.counters,
2256 "get_freelist"));
2257
2258 return freelist;
2259 }
2260
2261 /*
2262 * Slow path. The lockless freelist is empty or we need to perform
2263 * debugging duties.
2264 *
2265 * Processing is still very fast if new objects have been freed to the
2266 * regular freelist. In that case we simply take over the regular freelist
2267 * as the lockless freelist and zap the regular freelist.
2268 *
2269 * If that is not working then we fall back to the partial lists. We take the
2270 * first element of the freelist as the object to allocate now and move the
2271 * rest of the freelist to the lockless freelist.
2272 *
2273 * And if we were unable to get a new slab from the partial slab lists then
2274 * we need to allocate a new slab. This is the slowest path since it involves
2275 * a call to the page allocator and the setup of a new slab.
2276 */
2277 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2278 unsigned long addr, struct kmem_cache_cpu *c)
2279 {
2280 void *freelist;
2281 struct page *page;
2282 unsigned long flags;
2283
2284 local_irq_save(flags);
2285 #ifdef CONFIG_PREEMPT
2286 /*
2287 * We may have been preempted and rescheduled on a different
2288 * cpu before disabling interrupts. Need to reload cpu area
2289 * pointer.
2290 */
2291 c = this_cpu_ptr(s->cpu_slab);
2292 #endif
2293
2294 page = c->page;
2295 if (!page)
2296 goto new_slab;
2297 redo:
2298
2299 if (unlikely(!node_match(page, node))) {
2300 stat(s, ALLOC_NODE_MISMATCH);
2301 deactivate_slab(s, page, c->freelist);
2302 c->page = NULL;
2303 c->freelist = NULL;
2304 goto new_slab;
2305 }
2306
2307 /*
2308 * By rights, we should be searching for a slab page that was
2309 * PFMEMALLOC but right now, we are losing the pfmemalloc
2310 * information when the page leaves the per-cpu allocator
2311 */
2312 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2313 deactivate_slab(s, page, c->freelist);
2314 c->page = NULL;
2315 c->freelist = NULL;
2316 goto new_slab;
2317 }
2318
2319 /* must check again c->freelist in case of cpu migration or IRQ */
2320 freelist = c->freelist;
2321 if (freelist)
2322 goto load_freelist;
2323
2324 stat(s, ALLOC_SLOWPATH);
2325
2326 freelist = get_freelist(s, page);
2327
2328 if (!freelist) {
2329 c->page = NULL;
2330 stat(s, DEACTIVATE_BYPASS);
2331 goto new_slab;
2332 }
2333
2334 stat(s, ALLOC_REFILL);
2335
2336 load_freelist:
2337 /*
2338 * freelist is pointing to the list of objects to be used.
2339 * page is pointing to the page from which the objects are obtained.
2340 * That page must be frozen for per cpu allocations to work.
2341 */
2342 VM_BUG_ON(!c->page->frozen);
2343 c->freelist = get_freepointer(s, freelist);
2344 c->tid = next_tid(c->tid);
2345 local_irq_restore(flags);
2346 return freelist;
2347
2348 new_slab:
2349
2350 if (c->partial) {
2351 page = c->page = c->partial;
2352 c->partial = page->next;
2353 stat(s, CPU_PARTIAL_ALLOC);
2354 c->freelist = NULL;
2355 goto redo;
2356 }
2357
2358 freelist = new_slab_objects(s, gfpflags, node, &c);
2359
2360 if (unlikely(!freelist)) {
2361 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2362 slab_out_of_memory(s, gfpflags, node);
2363
2364 local_irq_restore(flags);
2365 return NULL;
2366 }
2367
2368 page = c->page;
2369 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2370 goto load_freelist;
2371
2372 /* Only entered in the debug case */
2373 if (kmem_cache_debug(s) &&
2374 !alloc_debug_processing(s, page, freelist, addr))
2375 goto new_slab; /* Slab failed checks. Next slab needed */
2376
2377 deactivate_slab(s, page, get_freepointer(s, freelist));
2378 c->page = NULL;
2379 c->freelist = NULL;
2380 local_irq_restore(flags);
2381 return freelist;
2382 }
2383
2384 /*
2385 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2386 * have the fastpath folded into their functions. So no function call
2387 * overhead for requests that can be satisfied on the fastpath.
2388 *
2389 * The fastpath works by first checking if the lockless freelist can be used.
2390 * If not then __slab_alloc is called for slow processing.
2391 *
2392 * Otherwise we can simply pick the next object from the lockless free list.
2393 */
2394 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2395 gfp_t gfpflags, int node, unsigned long addr)
2396 {
2397 void **object;
2398 struct kmem_cache_cpu *c;
2399 struct page *page;
2400 unsigned long tid;
2401
2402 if (slab_pre_alloc_hook(s, gfpflags))
2403 return NULL;
2404
2405 s = memcg_kmem_get_cache(s, gfpflags);
2406 redo:
2407 /*
2408 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2409 * enabled. We may switch back and forth between cpus while
2410 * reading from one cpu area. That does not matter as long
2411 * as we end up on the original cpu again when doing the cmpxchg.
2412 *
2413 * Preemption is disabled for the retrieval of the tid because that
2414 * must occur from the current processor. We cannot allow rescheduling
2415 * on a different processor between the determination of the pointer
2416 * and the retrieval of the tid.
2417 */
2418 preempt_disable();
2419 c = __this_cpu_ptr(s->cpu_slab);
2420
2421 /*
2422 * The transaction ids are globally unique per cpu and per operation on
2423 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2424 * occurs on the right processor and that there was no operation on the
2425 * linked list in between.
2426 */
2427 tid = c->tid;
2428 preempt_enable();
2429
2430 object = c->freelist;
2431 page = c->page;
2432 if (unlikely(!object || !node_match(page, node)))
2433 object = __slab_alloc(s, gfpflags, node, addr, c);
2434
2435 else {
2436 void *next_object = get_freepointer_safe(s, object);
2437
2438 /*
2439 * The cmpxchg will only match if there was no additional
2440 * operation and if we are on the right processor.
2441 *
2442 * The cmpxchg does the following atomically (without lock
2443 * semantics!)
2444 * 1. Relocate first pointer to the current per cpu area.
2445 * 2. Verify that tid and freelist have not been changed
2446 * 3. If they were not changed replace tid and freelist
2447 *
2448 * Since this is without lock semantics the protection is only
2449 * against code executing on this cpu *not* from access by
2450 * other cpus.
2451 */
2452 if (unlikely(!this_cpu_cmpxchg_double(
2453 s->cpu_slab->freelist, s->cpu_slab->tid,
2454 object, tid,
2455 next_object, next_tid(tid)))) {
2456
2457 note_cmpxchg_failure("slab_alloc", s, tid);
2458 goto redo;
2459 }
2460 prefetch_freepointer(s, next_object);
2461 stat(s, ALLOC_FASTPATH);
2462 }
2463
2464 if (unlikely(gfpflags & __GFP_ZERO) && object)
2465 memset(object, 0, s->object_size);
2466
2467 slab_post_alloc_hook(s, gfpflags, object);
2468
2469 return object;
2470 }
2471
2472 static __always_inline void *slab_alloc(struct kmem_cache *s,
2473 gfp_t gfpflags, unsigned long addr)
2474 {
2475 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2476 }
2477
2478 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2479 {
2480 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2481
2482 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2483 s->size, gfpflags);
2484
2485 return ret;
2486 }
2487 EXPORT_SYMBOL(kmem_cache_alloc);
2488
2489 #ifdef CONFIG_TRACING
2490 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2491 {
2492 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2493 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2494 return ret;
2495 }
2496 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2497 #endif
2498
2499 #ifdef CONFIG_NUMA
2500 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2501 {
2502 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2503
2504 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2505 s->object_size, s->size, gfpflags, node);
2506
2507 return ret;
2508 }
2509 EXPORT_SYMBOL(kmem_cache_alloc_node);
2510
2511 #ifdef CONFIG_TRACING
2512 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2513 gfp_t gfpflags,
2514 int node, size_t size)
2515 {
2516 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2517
2518 trace_kmalloc_node(_RET_IP_, ret,
2519 size, s->size, gfpflags, node);
2520 return ret;
2521 }
2522 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2523 #endif
2524 #endif
2525
2526 /*
2527 * Slow patch handling. This may still be called frequently since objects
2528 * have a longer lifetime than the cpu slabs in most processing loads.
2529 *
2530 * So we still attempt to reduce cache line usage. Just take the slab
2531 * lock and free the item. If there is no additional partial page
2532 * handling required then we can return immediately.
2533 */
2534 static void __slab_free(struct kmem_cache *s, struct page *page,
2535 void *x, unsigned long addr)
2536 {
2537 void *prior;
2538 void **object = (void *)x;
2539 int was_frozen;
2540 struct page new;
2541 unsigned long counters;
2542 struct kmem_cache_node *n = NULL;
2543 unsigned long uninitialized_var(flags);
2544
2545 stat(s, FREE_SLOWPATH);
2546
2547 if (kmem_cache_debug(s) &&
2548 !(n = free_debug_processing(s, page, x, addr, &flags)))
2549 return;
2550
2551 do {
2552 if (unlikely(n)) {
2553 spin_unlock_irqrestore(&n->list_lock, flags);
2554 n = NULL;
2555 }
2556 prior = page->freelist;
2557 counters = page->counters;
2558 set_freepointer(s, object, prior);
2559 new.counters = counters;
2560 was_frozen = new.frozen;
2561 new.inuse--;
2562 if ((!new.inuse || !prior) && !was_frozen) {
2563
2564 if (kmem_cache_has_cpu_partial(s) && !prior) {
2565
2566 /*
2567 * Slab was on no list before and will be
2568 * partially empty
2569 * We can defer the list move and instead
2570 * freeze it.
2571 */
2572 new.frozen = 1;
2573
2574 } else { /* Needs to be taken off a list */
2575
2576 n = get_node(s, page_to_nid(page));
2577 /*
2578 * Speculatively acquire the list_lock.
2579 * If the cmpxchg does not succeed then we may
2580 * drop the list_lock without any processing.
2581 *
2582 * Otherwise the list_lock will synchronize with
2583 * other processors updating the list of slabs.
2584 */
2585 spin_lock_irqsave(&n->list_lock, flags);
2586
2587 }
2588 }
2589
2590 } while (!cmpxchg_double_slab(s, page,
2591 prior, counters,
2592 object, new.counters,
2593 "__slab_free"));
2594
2595 if (likely(!n)) {
2596
2597 /*
2598 * If we just froze the page then put it onto the
2599 * per cpu partial list.
2600 */
2601 if (new.frozen && !was_frozen) {
2602 put_cpu_partial(s, page, 1);
2603 stat(s, CPU_PARTIAL_FREE);
2604 }
2605 /*
2606 * The list lock was not taken therefore no list
2607 * activity can be necessary.
2608 */
2609 if (was_frozen)
2610 stat(s, FREE_FROZEN);
2611 return;
2612 }
2613
2614 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2615 goto slab_empty;
2616
2617 /*
2618 * Objects left in the slab. If it was not on the partial list before
2619 * then add it.
2620 */
2621 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2622 if (kmem_cache_debug(s))
2623 remove_full(s, n, page);
2624 add_partial(n, page, DEACTIVATE_TO_TAIL);
2625 stat(s, FREE_ADD_PARTIAL);
2626 }
2627 spin_unlock_irqrestore(&n->list_lock, flags);
2628 return;
2629
2630 slab_empty:
2631 if (prior) {
2632 /*
2633 * Slab on the partial list.
2634 */
2635 remove_partial(n, page);
2636 stat(s, FREE_REMOVE_PARTIAL);
2637 } else {
2638 /* Slab must be on the full list */
2639 remove_full(s, n, page);
2640 }
2641
2642 spin_unlock_irqrestore(&n->list_lock, flags);
2643 stat(s, FREE_SLAB);
2644 discard_slab(s, page);
2645 }
2646
2647 /*
2648 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2649 * can perform fastpath freeing without additional function calls.
2650 *
2651 * The fastpath is only possible if we are freeing to the current cpu slab
2652 * of this processor. This typically the case if we have just allocated
2653 * the item before.
2654 *
2655 * If fastpath is not possible then fall back to __slab_free where we deal
2656 * with all sorts of special processing.
2657 */
2658 static __always_inline void slab_free(struct kmem_cache *s,
2659 struct page *page, void *x, unsigned long addr)
2660 {
2661 void **object = (void *)x;
2662 struct kmem_cache_cpu *c;
2663 unsigned long tid;
2664
2665 slab_free_hook(s, x);
2666
2667 redo:
2668 /*
2669 * Determine the currently cpus per cpu slab.
2670 * The cpu may change afterward. However that does not matter since
2671 * data is retrieved via this pointer. If we are on the same cpu
2672 * during the cmpxchg then the free will succedd.
2673 */
2674 preempt_disable();
2675 c = __this_cpu_ptr(s->cpu_slab);
2676
2677 tid = c->tid;
2678 preempt_enable();
2679
2680 if (likely(page == c->page)) {
2681 set_freepointer(s, object, c->freelist);
2682
2683 if (unlikely(!this_cpu_cmpxchg_double(
2684 s->cpu_slab->freelist, s->cpu_slab->tid,
2685 c->freelist, tid,
2686 object, next_tid(tid)))) {
2687
2688 note_cmpxchg_failure("slab_free", s, tid);
2689 goto redo;
2690 }
2691 stat(s, FREE_FASTPATH);
2692 } else
2693 __slab_free(s, page, x, addr);
2694
2695 }
2696
2697 void kmem_cache_free(struct kmem_cache *s, void *x)
2698 {
2699 s = cache_from_obj(s, x);
2700 if (!s)
2701 return;
2702 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2703 trace_kmem_cache_free(_RET_IP_, x);
2704 }
2705 EXPORT_SYMBOL(kmem_cache_free);
2706
2707 /*
2708 * Object placement in a slab is made very easy because we always start at
2709 * offset 0. If we tune the size of the object to the alignment then we can
2710 * get the required alignment by putting one properly sized object after
2711 * another.
2712 *
2713 * Notice that the allocation order determines the sizes of the per cpu
2714 * caches. Each processor has always one slab available for allocations.
2715 * Increasing the allocation order reduces the number of times that slabs
2716 * must be moved on and off the partial lists and is therefore a factor in
2717 * locking overhead.
2718 */
2719
2720 /*
2721 * Mininum / Maximum order of slab pages. This influences locking overhead
2722 * and slab fragmentation. A higher order reduces the number of partial slabs
2723 * and increases the number of allocations possible without having to
2724 * take the list_lock.
2725 */
2726 static int slub_min_order;
2727 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2728 static int slub_min_objects;
2729
2730 /*
2731 * Merge control. If this is set then no merging of slab caches will occur.
2732 * (Could be removed. This was introduced to pacify the merge skeptics.)
2733 */
2734 static int slub_nomerge;
2735
2736 /*
2737 * Calculate the order of allocation given an slab object size.
2738 *
2739 * The order of allocation has significant impact on performance and other
2740 * system components. Generally order 0 allocations should be preferred since
2741 * order 0 does not cause fragmentation in the page allocator. Larger objects
2742 * be problematic to put into order 0 slabs because there may be too much
2743 * unused space left. We go to a higher order if more than 1/16th of the slab
2744 * would be wasted.
2745 *
2746 * In order to reach satisfactory performance we must ensure that a minimum
2747 * number of objects is in one slab. Otherwise we may generate too much
2748 * activity on the partial lists which requires taking the list_lock. This is
2749 * less a concern for large slabs though which are rarely used.
2750 *
2751 * slub_max_order specifies the order where we begin to stop considering the
2752 * number of objects in a slab as critical. If we reach slub_max_order then
2753 * we try to keep the page order as low as possible. So we accept more waste
2754 * of space in favor of a small page order.
2755 *
2756 * Higher order allocations also allow the placement of more objects in a
2757 * slab and thereby reduce object handling overhead. If the user has
2758 * requested a higher mininum order then we start with that one instead of
2759 * the smallest order which will fit the object.
2760 */
2761 static inline int slab_order(int size, int min_objects,
2762 int max_order, int fract_leftover, int reserved)
2763 {
2764 int order;
2765 int rem;
2766 int min_order = slub_min_order;
2767
2768 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2769 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2770
2771 for (order = max(min_order,
2772 fls(min_objects * size - 1) - PAGE_SHIFT);
2773 order <= max_order; order++) {
2774
2775 unsigned long slab_size = PAGE_SIZE << order;
2776
2777 if (slab_size < min_objects * size + reserved)
2778 continue;
2779
2780 rem = (slab_size - reserved) % size;
2781
2782 if (rem <= slab_size / fract_leftover)
2783 break;
2784
2785 }
2786
2787 return order;
2788 }
2789
2790 static inline int calculate_order(int size, int reserved)
2791 {
2792 int order;
2793 int min_objects;
2794 int fraction;
2795 int max_objects;
2796
2797 /*
2798 * Attempt to find best configuration for a slab. This
2799 * works by first attempting to generate a layout with
2800 * the best configuration and backing off gradually.
2801 *
2802 * First we reduce the acceptable waste in a slab. Then
2803 * we reduce the minimum objects required in a slab.
2804 */
2805 min_objects = slub_min_objects;
2806 if (!min_objects)
2807 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2808 max_objects = order_objects(slub_max_order, size, reserved);
2809 min_objects = min(min_objects, max_objects);
2810
2811 while (min_objects > 1) {
2812 fraction = 16;
2813 while (fraction >= 4) {
2814 order = slab_order(size, min_objects,
2815 slub_max_order, fraction, reserved);
2816 if (order <= slub_max_order)
2817 return order;
2818 fraction /= 2;
2819 }
2820 min_objects--;
2821 }
2822
2823 /*
2824 * We were unable to place multiple objects in a slab. Now
2825 * lets see if we can place a single object there.
2826 */
2827 order = slab_order(size, 1, slub_max_order, 1, reserved);
2828 if (order <= slub_max_order)
2829 return order;
2830
2831 /*
2832 * Doh this slab cannot be placed using slub_max_order.
2833 */
2834 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2835 if (order < MAX_ORDER)
2836 return order;
2837 return -ENOSYS;
2838 }
2839
2840 static void
2841 init_kmem_cache_node(struct kmem_cache_node *n)
2842 {
2843 n->nr_partial = 0;
2844 spin_lock_init(&n->list_lock);
2845 INIT_LIST_HEAD(&n->partial);
2846 #ifdef CONFIG_SLUB_DEBUG
2847 atomic_long_set(&n->nr_slabs, 0);
2848 atomic_long_set(&n->total_objects, 0);
2849 INIT_LIST_HEAD(&n->full);
2850 #endif
2851 }
2852
2853 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2854 {
2855 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2856 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2857
2858 /*
2859 * Must align to double word boundary for the double cmpxchg
2860 * instructions to work; see __pcpu_double_call_return_bool().
2861 */
2862 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2863 2 * sizeof(void *));
2864
2865 if (!s->cpu_slab)
2866 return 0;
2867
2868 init_kmem_cache_cpus(s);
2869
2870 return 1;
2871 }
2872
2873 static struct kmem_cache *kmem_cache_node;
2874
2875 /*
2876 * No kmalloc_node yet so do it by hand. We know that this is the first
2877 * slab on the node for this slabcache. There are no concurrent accesses
2878 * possible.
2879 *
2880 * Note that this function only works on the kmem_cache_node
2881 * when allocating for the kmem_cache_node. This is used for bootstrapping
2882 * memory on a fresh node that has no slab structures yet.
2883 */
2884 static void early_kmem_cache_node_alloc(int node)
2885 {
2886 struct page *page;
2887 struct kmem_cache_node *n;
2888
2889 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2890
2891 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2892
2893 BUG_ON(!page);
2894 if (page_to_nid(page) != node) {
2895 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2896 "node %d\n", node);
2897 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2898 "in order to be able to continue\n");
2899 }
2900
2901 n = page->freelist;
2902 BUG_ON(!n);
2903 page->freelist = get_freepointer(kmem_cache_node, n);
2904 page->inuse = 1;
2905 page->frozen = 0;
2906 kmem_cache_node->node[node] = n;
2907 #ifdef CONFIG_SLUB_DEBUG
2908 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2909 init_tracking(kmem_cache_node, n);
2910 #endif
2911 init_kmem_cache_node(n);
2912 inc_slabs_node(kmem_cache_node, node, page->objects);
2913
2914 /*
2915 * No locks need to be taken here as it has just been
2916 * initialized and there is no concurrent access.
2917 */
2918 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2919 }
2920
2921 static void free_kmem_cache_nodes(struct kmem_cache *s)
2922 {
2923 int node;
2924
2925 for_each_node_state(node, N_NORMAL_MEMORY) {
2926 struct kmem_cache_node *n = s->node[node];
2927
2928 if (n)
2929 kmem_cache_free(kmem_cache_node, n);
2930
2931 s->node[node] = NULL;
2932 }
2933 }
2934
2935 static int init_kmem_cache_nodes(struct kmem_cache *s)
2936 {
2937 int node;
2938
2939 for_each_node_state(node, N_NORMAL_MEMORY) {
2940 struct kmem_cache_node *n;
2941
2942 if (slab_state == DOWN) {
2943 early_kmem_cache_node_alloc(node);
2944 continue;
2945 }
2946 n = kmem_cache_alloc_node(kmem_cache_node,
2947 GFP_KERNEL, node);
2948
2949 if (!n) {
2950 free_kmem_cache_nodes(s);
2951 return 0;
2952 }
2953
2954 s->node[node] = n;
2955 init_kmem_cache_node(n);
2956 }
2957 return 1;
2958 }
2959
2960 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2961 {
2962 if (min < MIN_PARTIAL)
2963 min = MIN_PARTIAL;
2964 else if (min > MAX_PARTIAL)
2965 min = MAX_PARTIAL;
2966 s->min_partial = min;
2967 }
2968
2969 /*
2970 * calculate_sizes() determines the order and the distribution of data within
2971 * a slab object.
2972 */
2973 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2974 {
2975 unsigned long flags = s->flags;
2976 unsigned long size = s->object_size;
2977 int order;
2978
2979 /*
2980 * Round up object size to the next word boundary. We can only
2981 * place the free pointer at word boundaries and this determines
2982 * the possible location of the free pointer.
2983 */
2984 size = ALIGN(size, sizeof(void *));
2985
2986 #ifdef CONFIG_SLUB_DEBUG
2987 /*
2988 * Determine if we can poison the object itself. If the user of
2989 * the slab may touch the object after free or before allocation
2990 * then we should never poison the object itself.
2991 */
2992 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2993 !s->ctor)
2994 s->flags |= __OBJECT_POISON;
2995 else
2996 s->flags &= ~__OBJECT_POISON;
2997
2998
2999 /*
3000 * If we are Redzoning then check if there is some space between the
3001 * end of the object and the free pointer. If not then add an
3002 * additional word to have some bytes to store Redzone information.
3003 */
3004 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3005 size += sizeof(void *);
3006 #endif
3007
3008 /*
3009 * With that we have determined the number of bytes in actual use
3010 * by the object. This is the potential offset to the free pointer.
3011 */
3012 s->inuse = size;
3013
3014 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3015 s->ctor)) {
3016 /*
3017 * Relocate free pointer after the object if it is not
3018 * permitted to overwrite the first word of the object on
3019 * kmem_cache_free.
3020 *
3021 * This is the case if we do RCU, have a constructor or
3022 * destructor or are poisoning the objects.
3023 */
3024 s->offset = size;
3025 size += sizeof(void *);
3026 }
3027
3028 #ifdef CONFIG_SLUB_DEBUG
3029 if (flags & SLAB_STORE_USER)
3030 /*
3031 * Need to store information about allocs and frees after
3032 * the object.
3033 */
3034 size += 2 * sizeof(struct track);
3035
3036 if (flags & SLAB_RED_ZONE)
3037 /*
3038 * Add some empty padding so that we can catch
3039 * overwrites from earlier objects rather than let
3040 * tracking information or the free pointer be
3041 * corrupted if a user writes before the start
3042 * of the object.
3043 */
3044 size += sizeof(void *);
3045 #endif
3046
3047 /*
3048 * SLUB stores one object immediately after another beginning from
3049 * offset 0. In order to align the objects we have to simply size
3050 * each object to conform to the alignment.
3051 */
3052 size = ALIGN(size, s->align);
3053 s->size = size;
3054 if (forced_order >= 0)
3055 order = forced_order;
3056 else
3057 order = calculate_order(size, s->reserved);
3058
3059 if (order < 0)
3060 return 0;
3061
3062 s->allocflags = 0;
3063 if (order)
3064 s->allocflags |= __GFP_COMP;
3065
3066 if (s->flags & SLAB_CACHE_DMA)
3067 s->allocflags |= GFP_DMA;
3068
3069 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3070 s->allocflags |= __GFP_RECLAIMABLE;
3071
3072 /*
3073 * Determine the number of objects per slab
3074 */
3075 s->oo = oo_make(order, size, s->reserved);
3076 s->min = oo_make(get_order(size), size, s->reserved);
3077 if (oo_objects(s->oo) > oo_objects(s->max))
3078 s->max = s->oo;
3079
3080 return !!oo_objects(s->oo);
3081 }
3082
3083 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3084 {
3085 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3086 s->reserved = 0;
3087
3088 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3089 s->reserved = sizeof(struct rcu_head);
3090
3091 if (!calculate_sizes(s, -1))
3092 goto error;
3093 if (disable_higher_order_debug) {
3094 /*
3095 * Disable debugging flags that store metadata if the min slab
3096 * order increased.
3097 */
3098 if (get_order(s->size) > get_order(s->object_size)) {
3099 s->flags &= ~DEBUG_METADATA_FLAGS;
3100 s->offset = 0;
3101 if (!calculate_sizes(s, -1))
3102 goto error;
3103 }
3104 }
3105
3106 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3107 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3108 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3109 /* Enable fast mode */
3110 s->flags |= __CMPXCHG_DOUBLE;
3111 #endif
3112
3113 /*
3114 * The larger the object size is, the more pages we want on the partial
3115 * list to avoid pounding the page allocator excessively.
3116 */
3117 set_min_partial(s, ilog2(s->size) / 2);
3118
3119 /*
3120 * cpu_partial determined the maximum number of objects kept in the
3121 * per cpu partial lists of a processor.
3122 *
3123 * Per cpu partial lists mainly contain slabs that just have one
3124 * object freed. If they are used for allocation then they can be
3125 * filled up again with minimal effort. The slab will never hit the
3126 * per node partial lists and therefore no locking will be required.
3127 *
3128 * This setting also determines
3129 *
3130 * A) The number of objects from per cpu partial slabs dumped to the
3131 * per node list when we reach the limit.
3132 * B) The number of objects in cpu partial slabs to extract from the
3133 * per node list when we run out of per cpu objects. We only fetch
3134 * 50% to keep some capacity around for frees.
3135 */
3136 if (!kmem_cache_has_cpu_partial(s))
3137 s->cpu_partial = 0;
3138 else if (s->size >= PAGE_SIZE)
3139 s->cpu_partial = 2;
3140 else if (s->size >= 1024)
3141 s->cpu_partial = 6;
3142 else if (s->size >= 256)
3143 s->cpu_partial = 13;
3144 else
3145 s->cpu_partial = 30;
3146
3147 #ifdef CONFIG_NUMA
3148 s->remote_node_defrag_ratio = 1000;
3149 #endif
3150 if (!init_kmem_cache_nodes(s))
3151 goto error;
3152
3153 if (alloc_kmem_cache_cpus(s))
3154 return 0;
3155
3156 free_kmem_cache_nodes(s);
3157 error:
3158 if (flags & SLAB_PANIC)
3159 panic("Cannot create slab %s size=%lu realsize=%u "
3160 "order=%u offset=%u flags=%lx\n",
3161 s->name, (unsigned long)s->size, s->size,
3162 oo_order(s->oo), s->offset, flags);
3163 return -EINVAL;
3164 }
3165
3166 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3167 const char *text)
3168 {
3169 #ifdef CONFIG_SLUB_DEBUG
3170 void *addr = page_address(page);
3171 void *p;
3172 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3173 sizeof(long), GFP_ATOMIC);
3174 if (!map)
3175 return;
3176 slab_err(s, page, text, s->name);
3177 slab_lock(page);
3178
3179 get_map(s, page, map);
3180 for_each_object(p, s, addr, page->objects) {
3181
3182 if (!test_bit(slab_index(p, s, addr), map)) {
3183 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3184 p, p - addr);
3185 print_tracking(s, p);
3186 }
3187 }
3188 slab_unlock(page);
3189 kfree(map);
3190 #endif
3191 }
3192
3193 /*
3194 * Attempt to free all partial slabs on a node.
3195 * This is called from kmem_cache_close(). We must be the last thread
3196 * using the cache and therefore we do not need to lock anymore.
3197 */
3198 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3199 {
3200 struct page *page, *h;
3201
3202 list_for_each_entry_safe(page, h, &n->partial, lru) {
3203 if (!page->inuse) {
3204 __remove_partial(n, page);
3205 discard_slab(s, page);
3206 } else {
3207 list_slab_objects(s, page,
3208 "Objects remaining in %s on kmem_cache_close()");
3209 }
3210 }
3211 }
3212
3213 /*
3214 * Release all resources used by a slab cache.
3215 */
3216 static inline int kmem_cache_close(struct kmem_cache *s)
3217 {
3218 int node;
3219
3220 flush_all(s);
3221 /* Attempt to free all objects */
3222 for_each_node_state(node, N_NORMAL_MEMORY) {
3223 struct kmem_cache_node *n = get_node(s, node);
3224
3225 free_partial(s, n);
3226 if (n->nr_partial || slabs_node(s, node))
3227 return 1;
3228 }
3229 free_percpu(s->cpu_slab);
3230 free_kmem_cache_nodes(s);
3231 return 0;
3232 }
3233
3234 int __kmem_cache_shutdown(struct kmem_cache *s)
3235 {
3236 int rc = kmem_cache_close(s);
3237
3238 if (!rc) {
3239 /*
3240 * Since slab_attr_store may take the slab_mutex, we should
3241 * release the lock while removing the sysfs entry in order to
3242 * avoid a deadlock. Because this is pretty much the last
3243 * operation we do and the lock will be released shortly after
3244 * that in slab_common.c, we could just move sysfs_slab_remove
3245 * to a later point in common code. We should do that when we
3246 * have a common sysfs framework for all allocators.
3247 */
3248 mutex_unlock(&slab_mutex);
3249 sysfs_slab_remove(s);
3250 mutex_lock(&slab_mutex);
3251 }
3252
3253 return rc;
3254 }
3255
3256 /********************************************************************
3257 * Kmalloc subsystem
3258 *******************************************************************/
3259
3260 static int __init setup_slub_min_order(char *str)
3261 {
3262 get_option(&str, &slub_min_order);
3263
3264 return 1;
3265 }
3266
3267 __setup("slub_min_order=", setup_slub_min_order);
3268
3269 static int __init setup_slub_max_order(char *str)
3270 {
3271 get_option(&str, &slub_max_order);
3272 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3273
3274 return 1;
3275 }
3276
3277 __setup("slub_max_order=", setup_slub_max_order);
3278
3279 static int __init setup_slub_min_objects(char *str)
3280 {
3281 get_option(&str, &slub_min_objects);
3282
3283 return 1;
3284 }
3285
3286 __setup("slub_min_objects=", setup_slub_min_objects);
3287
3288 static int __init setup_slub_nomerge(char *str)
3289 {
3290 slub_nomerge = 1;
3291 return 1;
3292 }
3293
3294 __setup("slub_nomerge", setup_slub_nomerge);
3295
3296 void *__kmalloc(size_t size, gfp_t flags)
3297 {
3298 struct kmem_cache *s;
3299 void *ret;
3300
3301 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3302 return kmalloc_large(size, flags);
3303
3304 s = kmalloc_slab(size, flags);
3305
3306 if (unlikely(ZERO_OR_NULL_PTR(s)))
3307 return s;
3308
3309 ret = slab_alloc(s, flags, _RET_IP_);
3310
3311 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3312
3313 return ret;
3314 }
3315 EXPORT_SYMBOL(__kmalloc);
3316
3317 #ifdef CONFIG_NUMA
3318 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3319 {
3320 struct page *page;
3321 void *ptr = NULL;
3322
3323 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3324 page = alloc_pages_node(node, flags, get_order(size));
3325 if (page)
3326 ptr = page_address(page);
3327
3328 kmalloc_large_node_hook(ptr, size, flags);
3329 return ptr;
3330 }
3331
3332 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3333 {
3334 struct kmem_cache *s;
3335 void *ret;
3336
3337 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3338 ret = kmalloc_large_node(size, flags, node);
3339
3340 trace_kmalloc_node(_RET_IP_, ret,
3341 size, PAGE_SIZE << get_order(size),
3342 flags, node);
3343
3344 return ret;
3345 }
3346
3347 s = kmalloc_slab(size, flags);
3348
3349 if (unlikely(ZERO_OR_NULL_PTR(s)))
3350 return s;
3351
3352 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3353
3354 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3355
3356 return ret;
3357 }
3358 EXPORT_SYMBOL(__kmalloc_node);
3359 #endif
3360
3361 size_t ksize(const void *object)
3362 {
3363 struct page *page;
3364
3365 if (unlikely(object == ZERO_SIZE_PTR))
3366 return 0;
3367
3368 page = virt_to_head_page(object);
3369
3370 if (unlikely(!PageSlab(page))) {
3371 WARN_ON(!PageCompound(page));
3372 return PAGE_SIZE << compound_order(page);
3373 }
3374
3375 return slab_ksize(page->slab_cache);
3376 }
3377 EXPORT_SYMBOL(ksize);
3378
3379 void kfree(const void *x)
3380 {
3381 struct page *page;
3382 void *object = (void *)x;
3383
3384 trace_kfree(_RET_IP_, x);
3385
3386 if (unlikely(ZERO_OR_NULL_PTR(x)))
3387 return;
3388
3389 page = virt_to_head_page(x);
3390 if (unlikely(!PageSlab(page))) {
3391 BUG_ON(!PageCompound(page));
3392 kfree_hook(x);
3393 __free_memcg_kmem_pages(page, compound_order(page));
3394 return;
3395 }
3396 slab_free(page->slab_cache, page, object, _RET_IP_);
3397 }
3398 EXPORT_SYMBOL(kfree);
3399
3400 /*
3401 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3402 * the remaining slabs by the number of items in use. The slabs with the
3403 * most items in use come first. New allocations will then fill those up
3404 * and thus they can be removed from the partial lists.
3405 *
3406 * The slabs with the least items are placed last. This results in them
3407 * being allocated from last increasing the chance that the last objects
3408 * are freed in them.
3409 */
3410 int kmem_cache_shrink(struct kmem_cache *s)
3411 {
3412 int node;
3413 int i;
3414 struct kmem_cache_node *n;
3415 struct page *page;
3416 struct page *t;
3417 int objects = oo_objects(s->max);
3418 struct list_head *slabs_by_inuse =
3419 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3420 unsigned long flags;
3421
3422 if (!slabs_by_inuse)
3423 return -ENOMEM;
3424
3425 flush_all(s);
3426 for_each_node_state(node, N_NORMAL_MEMORY) {
3427 n = get_node(s, node);
3428
3429 if (!n->nr_partial)
3430 continue;
3431
3432 for (i = 0; i < objects; i++)
3433 INIT_LIST_HEAD(slabs_by_inuse + i);
3434
3435 spin_lock_irqsave(&n->list_lock, flags);
3436
3437 /*
3438 * Build lists indexed by the items in use in each slab.
3439 *
3440 * Note that concurrent frees may occur while we hold the
3441 * list_lock. page->inuse here is the upper limit.
3442 */
3443 list_for_each_entry_safe(page, t, &n->partial, lru) {
3444 list_move(&page->lru, slabs_by_inuse + page->inuse);
3445 if (!page->inuse)
3446 n->nr_partial--;
3447 }
3448
3449 /*
3450 * Rebuild the partial list with the slabs filled up most
3451 * first and the least used slabs at the end.
3452 */
3453 for (i = objects - 1; i > 0; i--)
3454 list_splice(slabs_by_inuse + i, n->partial.prev);
3455
3456 spin_unlock_irqrestore(&n->list_lock, flags);
3457
3458 /* Release empty slabs */
3459 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3460 discard_slab(s, page);
3461 }
3462
3463 kfree(slabs_by_inuse);
3464 return 0;
3465 }
3466 EXPORT_SYMBOL(kmem_cache_shrink);
3467
3468 static int slab_mem_going_offline_callback(void *arg)
3469 {
3470 struct kmem_cache *s;
3471
3472 mutex_lock(&slab_mutex);
3473 list_for_each_entry(s, &slab_caches, list)
3474 kmem_cache_shrink(s);
3475 mutex_unlock(&slab_mutex);
3476
3477 return 0;
3478 }
3479
3480 static void slab_mem_offline_callback(void *arg)
3481 {
3482 struct kmem_cache_node *n;
3483 struct kmem_cache *s;
3484 struct memory_notify *marg = arg;
3485 int offline_node;
3486
3487 offline_node = marg->status_change_nid_normal;
3488
3489 /*
3490 * If the node still has available memory. we need kmem_cache_node
3491 * for it yet.
3492 */
3493 if (offline_node < 0)
3494 return;
3495
3496 mutex_lock(&slab_mutex);
3497 list_for_each_entry(s, &slab_caches, list) {
3498 n = get_node(s, offline_node);
3499 if (n) {
3500 /*
3501 * if n->nr_slabs > 0, slabs still exist on the node
3502 * that is going down. We were unable to free them,
3503 * and offline_pages() function shouldn't call this
3504 * callback. So, we must fail.
3505 */
3506 BUG_ON(slabs_node(s, offline_node));
3507
3508 s->node[offline_node] = NULL;
3509 kmem_cache_free(kmem_cache_node, n);
3510 }
3511 }
3512 mutex_unlock(&slab_mutex);
3513 }
3514
3515 static int slab_mem_going_online_callback(void *arg)
3516 {
3517 struct kmem_cache_node *n;
3518 struct kmem_cache *s;
3519 struct memory_notify *marg = arg;
3520 int nid = marg->status_change_nid_normal;
3521 int ret = 0;
3522
3523 /*
3524 * If the node's memory is already available, then kmem_cache_node is
3525 * already created. Nothing to do.
3526 */
3527 if (nid < 0)
3528 return 0;
3529
3530 /*
3531 * We are bringing a node online. No memory is available yet. We must
3532 * allocate a kmem_cache_node structure in order to bring the node
3533 * online.
3534 */
3535 mutex_lock(&slab_mutex);
3536 list_for_each_entry(s, &slab_caches, list) {
3537 /*
3538 * XXX: kmem_cache_alloc_node will fallback to other nodes
3539 * since memory is not yet available from the node that
3540 * is brought up.
3541 */
3542 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3543 if (!n) {
3544 ret = -ENOMEM;
3545 goto out;
3546 }
3547 init_kmem_cache_node(n);
3548 s->node[nid] = n;
3549 }
3550 out:
3551 mutex_unlock(&slab_mutex);
3552 return ret;
3553 }
3554
3555 static int slab_memory_callback(struct notifier_block *self,
3556 unsigned long action, void *arg)
3557 {
3558 int ret = 0;
3559
3560 switch (action) {
3561 case MEM_GOING_ONLINE:
3562 ret = slab_mem_going_online_callback(arg);
3563 break;
3564 case MEM_GOING_OFFLINE:
3565 ret = slab_mem_going_offline_callback(arg);
3566 break;
3567 case MEM_OFFLINE:
3568 case MEM_CANCEL_ONLINE:
3569 slab_mem_offline_callback(arg);
3570 break;
3571 case MEM_ONLINE:
3572 case MEM_CANCEL_OFFLINE:
3573 break;
3574 }
3575 if (ret)
3576 ret = notifier_from_errno(ret);
3577 else
3578 ret = NOTIFY_OK;
3579 return ret;
3580 }
3581
3582 static struct notifier_block slab_memory_callback_nb = {
3583 .notifier_call = slab_memory_callback,
3584 .priority = SLAB_CALLBACK_PRI,
3585 };
3586
3587 /********************************************************************
3588 * Basic setup of slabs
3589 *******************************************************************/
3590
3591 /*
3592 * Used for early kmem_cache structures that were allocated using
3593 * the page allocator. Allocate them properly then fix up the pointers
3594 * that may be pointing to the wrong kmem_cache structure.
3595 */
3596
3597 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3598 {
3599 int node;
3600 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3601
3602 memcpy(s, static_cache, kmem_cache->object_size);
3603
3604 /*
3605 * This runs very early, and only the boot processor is supposed to be
3606 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3607 * IPIs around.
3608 */
3609 __flush_cpu_slab(s, smp_processor_id());
3610 for_each_node_state(node, N_NORMAL_MEMORY) {
3611 struct kmem_cache_node *n = get_node(s, node);
3612 struct page *p;
3613
3614 if (n) {
3615 list_for_each_entry(p, &n->partial, lru)
3616 p->slab_cache = s;
3617
3618 #ifdef CONFIG_SLUB_DEBUG
3619 list_for_each_entry(p, &n->full, lru)
3620 p->slab_cache = s;
3621 #endif
3622 }
3623 }
3624 list_add(&s->list, &slab_caches);
3625 return s;
3626 }
3627
3628 void __init kmem_cache_init(void)
3629 {
3630 static __initdata struct kmem_cache boot_kmem_cache,
3631 boot_kmem_cache_node;
3632
3633 if (debug_guardpage_minorder())
3634 slub_max_order = 0;
3635
3636 kmem_cache_node = &boot_kmem_cache_node;
3637 kmem_cache = &boot_kmem_cache;
3638
3639 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3640 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3641
3642 register_hotmemory_notifier(&slab_memory_callback_nb);
3643
3644 /* Able to allocate the per node structures */
3645 slab_state = PARTIAL;
3646
3647 create_boot_cache(kmem_cache, "kmem_cache",
3648 offsetof(struct kmem_cache, node) +
3649 nr_node_ids * sizeof(struct kmem_cache_node *),
3650 SLAB_HWCACHE_ALIGN);
3651
3652 kmem_cache = bootstrap(&boot_kmem_cache);
3653
3654 /*
3655 * Allocate kmem_cache_node properly from the kmem_cache slab.
3656 * kmem_cache_node is separately allocated so no need to
3657 * update any list pointers.
3658 */
3659 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3660
3661 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3662 create_kmalloc_caches(0);
3663
3664 #ifdef CONFIG_SMP
3665 register_cpu_notifier(&slab_notifier);
3666 #endif
3667
3668 printk(KERN_INFO
3669 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3670 " CPUs=%d, Nodes=%d\n",
3671 cache_line_size(),
3672 slub_min_order, slub_max_order, slub_min_objects,
3673 nr_cpu_ids, nr_node_ids);
3674 }
3675
3676 void __init kmem_cache_init_late(void)
3677 {
3678 }
3679
3680 /*
3681 * Find a mergeable slab cache
3682 */
3683 static int slab_unmergeable(struct kmem_cache *s)
3684 {
3685 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3686 return 1;
3687
3688 if (s->ctor)
3689 return 1;
3690
3691 /*
3692 * We may have set a slab to be unmergeable during bootstrap.
3693 */
3694 if (s->refcount < 0)
3695 return 1;
3696
3697 return 0;
3698 }
3699
3700 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3701 size_t align, unsigned long flags, const char *name,
3702 void (*ctor)(void *))
3703 {
3704 struct kmem_cache *s;
3705
3706 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3707 return NULL;
3708
3709 if (ctor)
3710 return NULL;
3711
3712 size = ALIGN(size, sizeof(void *));
3713 align = calculate_alignment(flags, align, size);
3714 size = ALIGN(size, align);
3715 flags = kmem_cache_flags(size, flags, name, NULL);
3716
3717 list_for_each_entry(s, &slab_caches, list) {
3718 if (slab_unmergeable(s))
3719 continue;
3720
3721 if (size > s->size)
3722 continue;
3723
3724 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3725 continue;
3726 /*
3727 * Check if alignment is compatible.
3728 * Courtesy of Adrian Drzewiecki
3729 */
3730 if ((s->size & ~(align - 1)) != s->size)
3731 continue;
3732
3733 if (s->size - size >= sizeof(void *))
3734 continue;
3735
3736 if (!cache_match_memcg(s, memcg))
3737 continue;
3738
3739 return s;
3740 }
3741 return NULL;
3742 }
3743
3744 struct kmem_cache *
3745 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3746 size_t align, unsigned long flags, void (*ctor)(void *))
3747 {
3748 struct kmem_cache *s;
3749
3750 s = find_mergeable(memcg, size, align, flags, name, ctor);
3751 if (s) {
3752 s->refcount++;
3753 /*
3754 * Adjust the object sizes so that we clear
3755 * the complete object on kzalloc.
3756 */
3757 s->object_size = max(s->object_size, (int)size);
3758 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3759
3760 if (sysfs_slab_alias(s, name)) {
3761 s->refcount--;
3762 s = NULL;
3763 }
3764 }
3765
3766 return s;
3767 }
3768
3769 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3770 {
3771 int err;
3772
3773 err = kmem_cache_open(s, flags);
3774 if (err)
3775 return err;
3776
3777 /* Mutex is not taken during early boot */
3778 if (slab_state <= UP)
3779 return 0;
3780
3781 memcg_propagate_slab_attrs(s);
3782 err = sysfs_slab_add(s);
3783 if (err)
3784 kmem_cache_close(s);
3785
3786 return err;
3787 }
3788
3789 #ifdef CONFIG_SMP
3790 /*
3791 * Use the cpu notifier to insure that the cpu slabs are flushed when
3792 * necessary.
3793 */
3794 static int slab_cpuup_callback(struct notifier_block *nfb,
3795 unsigned long action, void *hcpu)
3796 {
3797 long cpu = (long)hcpu;
3798 struct kmem_cache *s;
3799 unsigned long flags;
3800
3801 switch (action) {
3802 case CPU_UP_CANCELED:
3803 case CPU_UP_CANCELED_FROZEN:
3804 case CPU_DEAD:
3805 case CPU_DEAD_FROZEN:
3806 mutex_lock(&slab_mutex);
3807 list_for_each_entry(s, &slab_caches, list) {
3808 local_irq_save(flags);
3809 __flush_cpu_slab(s, cpu);
3810 local_irq_restore(flags);
3811 }
3812 mutex_unlock(&slab_mutex);
3813 break;
3814 default:
3815 break;
3816 }
3817 return NOTIFY_OK;
3818 }
3819
3820 static struct notifier_block slab_notifier = {
3821 .notifier_call = slab_cpuup_callback
3822 };
3823
3824 #endif
3825
3826 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3827 {
3828 struct kmem_cache *s;
3829 void *ret;
3830
3831 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3832 return kmalloc_large(size, gfpflags);
3833
3834 s = kmalloc_slab(size, gfpflags);
3835
3836 if (unlikely(ZERO_OR_NULL_PTR(s)))
3837 return s;
3838
3839 ret = slab_alloc(s, gfpflags, caller);
3840
3841 /* Honor the call site pointer we received. */
3842 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3843
3844 return ret;
3845 }
3846
3847 #ifdef CONFIG_NUMA
3848 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3849 int node, unsigned long caller)
3850 {
3851 struct kmem_cache *s;
3852 void *ret;
3853
3854 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3855 ret = kmalloc_large_node(size, gfpflags, node);
3856
3857 trace_kmalloc_node(caller, ret,
3858 size, PAGE_SIZE << get_order(size),
3859 gfpflags, node);
3860
3861 return ret;
3862 }
3863
3864 s = kmalloc_slab(size, gfpflags);
3865
3866 if (unlikely(ZERO_OR_NULL_PTR(s)))
3867 return s;
3868
3869 ret = slab_alloc_node(s, gfpflags, node, caller);
3870
3871 /* Honor the call site pointer we received. */
3872 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3873
3874 return ret;
3875 }
3876 #endif
3877
3878 #ifdef CONFIG_SYSFS
3879 static int count_inuse(struct page *page)
3880 {
3881 return page->inuse;
3882 }
3883
3884 static int count_total(struct page *page)
3885 {
3886 return page->objects;
3887 }
3888 #endif
3889
3890 #ifdef CONFIG_SLUB_DEBUG
3891 static int validate_slab(struct kmem_cache *s, struct page *page,
3892 unsigned long *map)
3893 {
3894 void *p;
3895 void *addr = page_address(page);
3896
3897 if (!check_slab(s, page) ||
3898 !on_freelist(s, page, NULL))
3899 return 0;
3900
3901 /* Now we know that a valid freelist exists */
3902 bitmap_zero(map, page->objects);
3903
3904 get_map(s, page, map);
3905 for_each_object(p, s, addr, page->objects) {
3906 if (test_bit(slab_index(p, s, addr), map))
3907 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3908 return 0;
3909 }
3910
3911 for_each_object(p, s, addr, page->objects)
3912 if (!test_bit(slab_index(p, s, addr), map))
3913 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3914 return 0;
3915 return 1;
3916 }
3917
3918 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3919 unsigned long *map)
3920 {
3921 slab_lock(page);
3922 validate_slab(s, page, map);
3923 slab_unlock(page);
3924 }
3925
3926 static int validate_slab_node(struct kmem_cache *s,
3927 struct kmem_cache_node *n, unsigned long *map)
3928 {
3929 unsigned long count = 0;
3930 struct page *page;
3931 unsigned long flags;
3932
3933 spin_lock_irqsave(&n->list_lock, flags);
3934
3935 list_for_each_entry(page, &n->partial, lru) {
3936 validate_slab_slab(s, page, map);
3937 count++;
3938 }
3939 if (count != n->nr_partial)
3940 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3941 "counter=%ld\n", s->name, count, n->nr_partial);
3942
3943 if (!(s->flags & SLAB_STORE_USER))
3944 goto out;
3945
3946 list_for_each_entry(page, &n->full, lru) {
3947 validate_slab_slab(s, page, map);
3948 count++;
3949 }
3950 if (count != atomic_long_read(&n->nr_slabs))
3951 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3952 "counter=%ld\n", s->name, count,
3953 atomic_long_read(&n->nr_slabs));
3954
3955 out:
3956 spin_unlock_irqrestore(&n->list_lock, flags);
3957 return count;
3958 }
3959
3960 static long validate_slab_cache(struct kmem_cache *s)
3961 {
3962 int node;
3963 unsigned long count = 0;
3964 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3965 sizeof(unsigned long), GFP_KERNEL);
3966
3967 if (!map)
3968 return -ENOMEM;
3969
3970 flush_all(s);
3971 for_each_node_state(node, N_NORMAL_MEMORY) {
3972 struct kmem_cache_node *n = get_node(s, node);
3973
3974 count += validate_slab_node(s, n, map);
3975 }
3976 kfree(map);
3977 return count;
3978 }
3979 /*
3980 * Generate lists of code addresses where slabcache objects are allocated
3981 * and freed.
3982 */
3983
3984 struct location {
3985 unsigned long count;
3986 unsigned long addr;
3987 long long sum_time;
3988 long min_time;
3989 long max_time;
3990 long min_pid;
3991 long max_pid;
3992 DECLARE_BITMAP(cpus, NR_CPUS);
3993 nodemask_t nodes;
3994 };
3995
3996 struct loc_track {
3997 unsigned long max;
3998 unsigned long count;
3999 struct location *loc;
4000 };
4001
4002 static void free_loc_track(struct loc_track *t)
4003 {
4004 if (t->max)
4005 free_pages((unsigned long)t->loc,
4006 get_order(sizeof(struct location) * t->max));
4007 }
4008
4009 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4010 {
4011 struct location *l;
4012 int order;
4013
4014 order = get_order(sizeof(struct location) * max);
4015
4016 l = (void *)__get_free_pages(flags, order);
4017 if (!l)
4018 return 0;
4019
4020 if (t->count) {
4021 memcpy(l, t->loc, sizeof(struct location) * t->count);
4022 free_loc_track(t);
4023 }
4024 t->max = max;
4025 t->loc = l;
4026 return 1;
4027 }
4028
4029 static int add_location(struct loc_track *t, struct kmem_cache *s,
4030 const struct track *track)
4031 {
4032 long start, end, pos;
4033 struct location *l;
4034 unsigned long caddr;
4035 unsigned long age = jiffies - track->when;
4036
4037 start = -1;
4038 end = t->count;
4039
4040 for ( ; ; ) {
4041 pos = start + (end - start + 1) / 2;
4042
4043 /*
4044 * There is nothing at "end". If we end up there
4045 * we need to add something to before end.
4046 */
4047 if (pos == end)
4048 break;
4049
4050 caddr = t->loc[pos].addr;
4051 if (track->addr == caddr) {
4052
4053 l = &t->loc[pos];
4054 l->count++;
4055 if (track->when) {
4056 l->sum_time += age;
4057 if (age < l->min_time)
4058 l->min_time = age;
4059 if (age > l->max_time)
4060 l->max_time = age;
4061
4062 if (track->pid < l->min_pid)
4063 l->min_pid = track->pid;
4064 if (track->pid > l->max_pid)
4065 l->max_pid = track->pid;
4066
4067 cpumask_set_cpu(track->cpu,
4068 to_cpumask(l->cpus));
4069 }
4070 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4071 return 1;
4072 }
4073
4074 if (track->addr < caddr)
4075 end = pos;
4076 else
4077 start = pos;
4078 }
4079
4080 /*
4081 * Not found. Insert new tracking element.
4082 */
4083 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4084 return 0;
4085
4086 l = t->loc + pos;
4087 if (pos < t->count)
4088 memmove(l + 1, l,
4089 (t->count - pos) * sizeof(struct location));
4090 t->count++;
4091 l->count = 1;
4092 l->addr = track->addr;
4093 l->sum_time = age;
4094 l->min_time = age;
4095 l->max_time = age;
4096 l->min_pid = track->pid;
4097 l->max_pid = track->pid;
4098 cpumask_clear(to_cpumask(l->cpus));
4099 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4100 nodes_clear(l->nodes);
4101 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4102 return 1;
4103 }
4104
4105 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4106 struct page *page, enum track_item alloc,
4107 unsigned long *map)
4108 {
4109 void *addr = page_address(page);
4110 void *p;
4111
4112 bitmap_zero(map, page->objects);
4113 get_map(s, page, map);
4114
4115 for_each_object(p, s, addr, page->objects)
4116 if (!test_bit(slab_index(p, s, addr), map))
4117 add_location(t, s, get_track(s, p, alloc));
4118 }
4119
4120 static int list_locations(struct kmem_cache *s, char *buf,
4121 enum track_item alloc)
4122 {
4123 int len = 0;
4124 unsigned long i;
4125 struct loc_track t = { 0, 0, NULL };
4126 int node;
4127 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4128 sizeof(unsigned long), GFP_KERNEL);
4129
4130 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4131 GFP_TEMPORARY)) {
4132 kfree(map);
4133 return sprintf(buf, "Out of memory\n");
4134 }
4135 /* Push back cpu slabs */
4136 flush_all(s);
4137
4138 for_each_node_state(node, N_NORMAL_MEMORY) {
4139 struct kmem_cache_node *n = get_node(s, node);
4140 unsigned long flags;
4141 struct page *page;
4142
4143 if (!atomic_long_read(&n->nr_slabs))
4144 continue;
4145
4146 spin_lock_irqsave(&n->list_lock, flags);
4147 list_for_each_entry(page, &n->partial, lru)
4148 process_slab(&t, s, page, alloc, map);
4149 list_for_each_entry(page, &n->full, lru)
4150 process_slab(&t, s, page, alloc, map);
4151 spin_unlock_irqrestore(&n->list_lock, flags);
4152 }
4153
4154 for (i = 0; i < t.count; i++) {
4155 struct location *l = &t.loc[i];
4156
4157 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4158 break;
4159 len += sprintf(buf + len, "%7ld ", l->count);
4160
4161 if (l->addr)
4162 len += sprintf(buf + len, "%pS", (void *)l->addr);
4163 else
4164 len += sprintf(buf + len, "<not-available>");
4165
4166 if (l->sum_time != l->min_time) {
4167 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4168 l->min_time,
4169 (long)div_u64(l->sum_time, l->count),
4170 l->max_time);
4171 } else
4172 len += sprintf(buf + len, " age=%ld",
4173 l->min_time);
4174
4175 if (l->min_pid != l->max_pid)
4176 len += sprintf(buf + len, " pid=%ld-%ld",
4177 l->min_pid, l->max_pid);
4178 else
4179 len += sprintf(buf + len, " pid=%ld",
4180 l->min_pid);
4181
4182 if (num_online_cpus() > 1 &&
4183 !cpumask_empty(to_cpumask(l->cpus)) &&
4184 len < PAGE_SIZE - 60) {
4185 len += sprintf(buf + len, " cpus=");
4186 len += cpulist_scnprintf(buf + len,
4187 PAGE_SIZE - len - 50,
4188 to_cpumask(l->cpus));
4189 }
4190
4191 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4192 len < PAGE_SIZE - 60) {
4193 len += sprintf(buf + len, " nodes=");
4194 len += nodelist_scnprintf(buf + len,
4195 PAGE_SIZE - len - 50,
4196 l->nodes);
4197 }
4198
4199 len += sprintf(buf + len, "\n");
4200 }
4201
4202 free_loc_track(&t);
4203 kfree(map);
4204 if (!t.count)
4205 len += sprintf(buf, "No data\n");
4206 return len;
4207 }
4208 #endif
4209
4210 #ifdef SLUB_RESILIENCY_TEST
4211 static void resiliency_test(void)
4212 {
4213 u8 *p;
4214
4215 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4216
4217 printk(KERN_ERR "SLUB resiliency testing\n");
4218 printk(KERN_ERR "-----------------------\n");
4219 printk(KERN_ERR "A. Corruption after allocation\n");
4220
4221 p = kzalloc(16, GFP_KERNEL);
4222 p[16] = 0x12;
4223 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4224 " 0x12->0x%p\n\n", p + 16);
4225
4226 validate_slab_cache(kmalloc_caches[4]);
4227
4228 /* Hmmm... The next two are dangerous */
4229 p = kzalloc(32, GFP_KERNEL);
4230 p[32 + sizeof(void *)] = 0x34;
4231 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4232 " 0x34 -> -0x%p\n", p);
4233 printk(KERN_ERR
4234 "If allocated object is overwritten then not detectable\n\n");
4235
4236 validate_slab_cache(kmalloc_caches[5]);
4237 p = kzalloc(64, GFP_KERNEL);
4238 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4239 *p = 0x56;
4240 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4241 p);
4242 printk(KERN_ERR
4243 "If allocated object is overwritten then not detectable\n\n");
4244 validate_slab_cache(kmalloc_caches[6]);
4245
4246 printk(KERN_ERR "\nB. Corruption after free\n");
4247 p = kzalloc(128, GFP_KERNEL);
4248 kfree(p);
4249 *p = 0x78;
4250 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4251 validate_slab_cache(kmalloc_caches[7]);
4252
4253 p = kzalloc(256, GFP_KERNEL);
4254 kfree(p);
4255 p[50] = 0x9a;
4256 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4257 p);
4258 validate_slab_cache(kmalloc_caches[8]);
4259
4260 p = kzalloc(512, GFP_KERNEL);
4261 kfree(p);
4262 p[512] = 0xab;
4263 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4264 validate_slab_cache(kmalloc_caches[9]);
4265 }
4266 #else
4267 #ifdef CONFIG_SYSFS
4268 static void resiliency_test(void) {};
4269 #endif
4270 #endif
4271
4272 #ifdef CONFIG_SYSFS
4273 enum slab_stat_type {
4274 SL_ALL, /* All slabs */
4275 SL_PARTIAL, /* Only partially allocated slabs */
4276 SL_CPU, /* Only slabs used for cpu caches */
4277 SL_OBJECTS, /* Determine allocated objects not slabs */
4278 SL_TOTAL /* Determine object capacity not slabs */
4279 };
4280
4281 #define SO_ALL (1 << SL_ALL)
4282 #define SO_PARTIAL (1 << SL_PARTIAL)
4283 #define SO_CPU (1 << SL_CPU)
4284 #define SO_OBJECTS (1 << SL_OBJECTS)
4285 #define SO_TOTAL (1 << SL_TOTAL)
4286
4287 static ssize_t show_slab_objects(struct kmem_cache *s,
4288 char *buf, unsigned long flags)
4289 {
4290 unsigned long total = 0;
4291 int node;
4292 int x;
4293 unsigned long *nodes;
4294
4295 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4296 if (!nodes)
4297 return -ENOMEM;
4298
4299 if (flags & SO_CPU) {
4300 int cpu;
4301
4302 for_each_possible_cpu(cpu) {
4303 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4304 cpu);
4305 int node;
4306 struct page *page;
4307
4308 page = ACCESS_ONCE(c->page);
4309 if (!page)
4310 continue;
4311
4312 node = page_to_nid(page);
4313 if (flags & SO_TOTAL)
4314 x = page->objects;
4315 else if (flags & SO_OBJECTS)
4316 x = page->inuse;
4317 else
4318 x = 1;
4319
4320 total += x;
4321 nodes[node] += x;
4322
4323 page = ACCESS_ONCE(c->partial);
4324 if (page) {
4325 node = page_to_nid(page);
4326 if (flags & SO_TOTAL)
4327 WARN_ON_ONCE(1);
4328 else if (flags & SO_OBJECTS)
4329 WARN_ON_ONCE(1);
4330 else
4331 x = page->pages;
4332 total += x;
4333 nodes[node] += x;
4334 }
4335 }
4336 }
4337
4338 lock_memory_hotplug();
4339 #ifdef CONFIG_SLUB_DEBUG
4340 if (flags & SO_ALL) {
4341 for_each_node_state(node, N_NORMAL_MEMORY) {
4342 struct kmem_cache_node *n = get_node(s, node);
4343
4344 if (flags & SO_TOTAL)
4345 x = atomic_long_read(&n->total_objects);
4346 else if (flags & SO_OBJECTS)
4347 x = atomic_long_read(&n->total_objects) -
4348 count_partial(n, count_free);
4349 else
4350 x = atomic_long_read(&n->nr_slabs);
4351 total += x;
4352 nodes[node] += x;
4353 }
4354
4355 } else
4356 #endif
4357 if (flags & SO_PARTIAL) {
4358 for_each_node_state(node, N_NORMAL_MEMORY) {
4359 struct kmem_cache_node *n = get_node(s, node);
4360
4361 if (flags & SO_TOTAL)
4362 x = count_partial(n, count_total);
4363 else if (flags & SO_OBJECTS)
4364 x = count_partial(n, count_inuse);
4365 else
4366 x = n->nr_partial;
4367 total += x;
4368 nodes[node] += x;
4369 }
4370 }
4371 x = sprintf(buf, "%lu", total);
4372 #ifdef CONFIG_NUMA
4373 for_each_node_state(node, N_NORMAL_MEMORY)
4374 if (nodes[node])
4375 x += sprintf(buf + x, " N%d=%lu",
4376 node, nodes[node]);
4377 #endif
4378 unlock_memory_hotplug();
4379 kfree(nodes);
4380 return x + sprintf(buf + x, "\n");
4381 }
4382
4383 #ifdef CONFIG_SLUB_DEBUG
4384 static int any_slab_objects(struct kmem_cache *s)
4385 {
4386 int node;
4387
4388 for_each_online_node(node) {
4389 struct kmem_cache_node *n = get_node(s, node);
4390
4391 if (!n)
4392 continue;
4393
4394 if (atomic_long_read(&n->total_objects))
4395 return 1;
4396 }
4397 return 0;
4398 }
4399 #endif
4400
4401 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4402 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4403
4404 struct slab_attribute {
4405 struct attribute attr;
4406 ssize_t (*show)(struct kmem_cache *s, char *buf);
4407 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4408 };
4409
4410 #define SLAB_ATTR_RO(_name) \
4411 static struct slab_attribute _name##_attr = \
4412 __ATTR(_name, 0400, _name##_show, NULL)
4413
4414 #define SLAB_ATTR(_name) \
4415 static struct slab_attribute _name##_attr = \
4416 __ATTR(_name, 0600, _name##_show, _name##_store)
4417
4418 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4419 {
4420 return sprintf(buf, "%d\n", s->size);
4421 }
4422 SLAB_ATTR_RO(slab_size);
4423
4424 static ssize_t align_show(struct kmem_cache *s, char *buf)
4425 {
4426 return sprintf(buf, "%d\n", s->align);
4427 }
4428 SLAB_ATTR_RO(align);
4429
4430 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4431 {
4432 return sprintf(buf, "%d\n", s->object_size);
4433 }
4434 SLAB_ATTR_RO(object_size);
4435
4436 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4437 {
4438 return sprintf(buf, "%d\n", oo_objects(s->oo));
4439 }
4440 SLAB_ATTR_RO(objs_per_slab);
4441
4442 static ssize_t order_store(struct kmem_cache *s,
4443 const char *buf, size_t length)
4444 {
4445 unsigned long order;
4446 int err;
4447
4448 err = kstrtoul(buf, 10, &order);
4449 if (err)
4450 return err;
4451
4452 if (order > slub_max_order || order < slub_min_order)
4453 return -EINVAL;
4454
4455 calculate_sizes(s, order);
4456 return length;
4457 }
4458
4459 static ssize_t order_show(struct kmem_cache *s, char *buf)
4460 {
4461 return sprintf(buf, "%d\n", oo_order(s->oo));
4462 }
4463 SLAB_ATTR(order);
4464
4465 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4466 {
4467 return sprintf(buf, "%lu\n", s->min_partial);
4468 }
4469
4470 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4471 size_t length)
4472 {
4473 unsigned long min;
4474 int err;
4475
4476 err = kstrtoul(buf, 10, &min);
4477 if (err)
4478 return err;
4479
4480 set_min_partial(s, min);
4481 return length;
4482 }
4483 SLAB_ATTR(min_partial);
4484
4485 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4486 {
4487 return sprintf(buf, "%u\n", s->cpu_partial);
4488 }
4489
4490 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4491 size_t length)
4492 {
4493 unsigned long objects;
4494 int err;
4495
4496 err = kstrtoul(buf, 10, &objects);
4497 if (err)
4498 return err;
4499 if (objects && !kmem_cache_has_cpu_partial(s))
4500 return -EINVAL;
4501
4502 s->cpu_partial = objects;
4503 flush_all(s);
4504 return length;
4505 }
4506 SLAB_ATTR(cpu_partial);
4507
4508 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4509 {
4510 if (!s->ctor)
4511 return 0;
4512 return sprintf(buf, "%pS\n", s->ctor);
4513 }
4514 SLAB_ATTR_RO(ctor);
4515
4516 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4517 {
4518 return sprintf(buf, "%d\n", s->refcount - 1);
4519 }
4520 SLAB_ATTR_RO(aliases);
4521
4522 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4523 {
4524 return show_slab_objects(s, buf, SO_PARTIAL);
4525 }
4526 SLAB_ATTR_RO(partial);
4527
4528 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4529 {
4530 return show_slab_objects(s, buf, SO_CPU);
4531 }
4532 SLAB_ATTR_RO(cpu_slabs);
4533
4534 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4535 {
4536 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4537 }
4538 SLAB_ATTR_RO(objects);
4539
4540 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4541 {
4542 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4543 }
4544 SLAB_ATTR_RO(objects_partial);
4545
4546 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4547 {
4548 int objects = 0;
4549 int pages = 0;
4550 int cpu;
4551 int len;
4552
4553 for_each_online_cpu(cpu) {
4554 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4555
4556 if (page) {
4557 pages += page->pages;
4558 objects += page->pobjects;
4559 }
4560 }
4561
4562 len = sprintf(buf, "%d(%d)", objects, pages);
4563
4564 #ifdef CONFIG_SMP
4565 for_each_online_cpu(cpu) {
4566 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4567
4568 if (page && len < PAGE_SIZE - 20)
4569 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4570 page->pobjects, page->pages);
4571 }
4572 #endif
4573 return len + sprintf(buf + len, "\n");
4574 }
4575 SLAB_ATTR_RO(slabs_cpu_partial);
4576
4577 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4578 {
4579 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4580 }
4581
4582 static ssize_t reclaim_account_store(struct kmem_cache *s,
4583 const char *buf, size_t length)
4584 {
4585 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4586 if (buf[0] == '1')
4587 s->flags |= SLAB_RECLAIM_ACCOUNT;
4588 return length;
4589 }
4590 SLAB_ATTR(reclaim_account);
4591
4592 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4593 {
4594 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4595 }
4596 SLAB_ATTR_RO(hwcache_align);
4597
4598 #ifdef CONFIG_ZONE_DMA
4599 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4600 {
4601 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4602 }
4603 SLAB_ATTR_RO(cache_dma);
4604 #endif
4605
4606 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4607 {
4608 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4609 }
4610 SLAB_ATTR_RO(destroy_by_rcu);
4611
4612 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4613 {
4614 return sprintf(buf, "%d\n", s->reserved);
4615 }
4616 SLAB_ATTR_RO(reserved);
4617
4618 #ifdef CONFIG_SLUB_DEBUG
4619 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4620 {
4621 return show_slab_objects(s, buf, SO_ALL);
4622 }
4623 SLAB_ATTR_RO(slabs);
4624
4625 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4626 {
4627 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4628 }
4629 SLAB_ATTR_RO(total_objects);
4630
4631 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4632 {
4633 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4634 }
4635
4636 static ssize_t sanity_checks_store(struct kmem_cache *s,
4637 const char *buf, size_t length)
4638 {
4639 s->flags &= ~SLAB_DEBUG_FREE;
4640 if (buf[0] == '1') {
4641 s->flags &= ~__CMPXCHG_DOUBLE;
4642 s->flags |= SLAB_DEBUG_FREE;
4643 }
4644 return length;
4645 }
4646 SLAB_ATTR(sanity_checks);
4647
4648 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4649 {
4650 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4651 }
4652
4653 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4654 size_t length)
4655 {
4656 s->flags &= ~SLAB_TRACE;
4657 if (buf[0] == '1') {
4658 s->flags &= ~__CMPXCHG_DOUBLE;
4659 s->flags |= SLAB_TRACE;
4660 }
4661 return length;
4662 }
4663 SLAB_ATTR(trace);
4664
4665 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4666 {
4667 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4668 }
4669
4670 static ssize_t red_zone_store(struct kmem_cache *s,
4671 const char *buf, size_t length)
4672 {
4673 if (any_slab_objects(s))
4674 return -EBUSY;
4675
4676 s->flags &= ~SLAB_RED_ZONE;
4677 if (buf[0] == '1') {
4678 s->flags &= ~__CMPXCHG_DOUBLE;
4679 s->flags |= SLAB_RED_ZONE;
4680 }
4681 calculate_sizes(s, -1);
4682 return length;
4683 }
4684 SLAB_ATTR(red_zone);
4685
4686 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4687 {
4688 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4689 }
4690
4691 static ssize_t poison_store(struct kmem_cache *s,
4692 const char *buf, size_t length)
4693 {
4694 if (any_slab_objects(s))
4695 return -EBUSY;
4696
4697 s->flags &= ~SLAB_POISON;
4698 if (buf[0] == '1') {
4699 s->flags &= ~__CMPXCHG_DOUBLE;
4700 s->flags |= SLAB_POISON;
4701 }
4702 calculate_sizes(s, -1);
4703 return length;
4704 }
4705 SLAB_ATTR(poison);
4706
4707 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4708 {
4709 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4710 }
4711
4712 static ssize_t store_user_store(struct kmem_cache *s,
4713 const char *buf, size_t length)
4714 {
4715 if (any_slab_objects(s))
4716 return -EBUSY;
4717
4718 s->flags &= ~SLAB_STORE_USER;
4719 if (buf[0] == '1') {
4720 s->flags &= ~__CMPXCHG_DOUBLE;
4721 s->flags |= SLAB_STORE_USER;
4722 }
4723 calculate_sizes(s, -1);
4724 return length;
4725 }
4726 SLAB_ATTR(store_user);
4727
4728 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4729 {
4730 return 0;
4731 }
4732
4733 static ssize_t validate_store(struct kmem_cache *s,
4734 const char *buf, size_t length)
4735 {
4736 int ret = -EINVAL;
4737
4738 if (buf[0] == '1') {
4739 ret = validate_slab_cache(s);
4740 if (ret >= 0)
4741 ret = length;
4742 }
4743 return ret;
4744 }
4745 SLAB_ATTR(validate);
4746
4747 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4748 {
4749 if (!(s->flags & SLAB_STORE_USER))
4750 return -ENOSYS;
4751 return list_locations(s, buf, TRACK_ALLOC);
4752 }
4753 SLAB_ATTR_RO(alloc_calls);
4754
4755 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4756 {
4757 if (!(s->flags & SLAB_STORE_USER))
4758 return -ENOSYS;
4759 return list_locations(s, buf, TRACK_FREE);
4760 }
4761 SLAB_ATTR_RO(free_calls);
4762 #endif /* CONFIG_SLUB_DEBUG */
4763
4764 #ifdef CONFIG_FAILSLAB
4765 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4766 {
4767 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4768 }
4769
4770 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4771 size_t length)
4772 {
4773 s->flags &= ~SLAB_FAILSLAB;
4774 if (buf[0] == '1')
4775 s->flags |= SLAB_FAILSLAB;
4776 return length;
4777 }
4778 SLAB_ATTR(failslab);
4779 #endif
4780
4781 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4782 {
4783 return 0;
4784 }
4785
4786 static ssize_t shrink_store(struct kmem_cache *s,
4787 const char *buf, size_t length)
4788 {
4789 if (buf[0] == '1') {
4790 int rc = kmem_cache_shrink(s);
4791
4792 if (rc)
4793 return rc;
4794 } else
4795 return -EINVAL;
4796 return length;
4797 }
4798 SLAB_ATTR(shrink);
4799
4800 #ifdef CONFIG_NUMA
4801 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4802 {
4803 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4804 }
4805
4806 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4807 const char *buf, size_t length)
4808 {
4809 unsigned long ratio;
4810 int err;
4811
4812 err = kstrtoul(buf, 10, &ratio);
4813 if (err)
4814 return err;
4815
4816 if (ratio <= 100)
4817 s->remote_node_defrag_ratio = ratio * 10;
4818
4819 return length;
4820 }
4821 SLAB_ATTR(remote_node_defrag_ratio);
4822 #endif
4823
4824 #ifdef CONFIG_SLUB_STATS
4825 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4826 {
4827 unsigned long sum = 0;
4828 int cpu;
4829 int len;
4830 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4831
4832 if (!data)
4833 return -ENOMEM;
4834
4835 for_each_online_cpu(cpu) {
4836 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4837
4838 data[cpu] = x;
4839 sum += x;
4840 }
4841
4842 len = sprintf(buf, "%lu", sum);
4843
4844 #ifdef CONFIG_SMP
4845 for_each_online_cpu(cpu) {
4846 if (data[cpu] && len < PAGE_SIZE - 20)
4847 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4848 }
4849 #endif
4850 kfree(data);
4851 return len + sprintf(buf + len, "\n");
4852 }
4853
4854 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4855 {
4856 int cpu;
4857
4858 for_each_online_cpu(cpu)
4859 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4860 }
4861
4862 #define STAT_ATTR(si, text) \
4863 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4864 { \
4865 return show_stat(s, buf, si); \
4866 } \
4867 static ssize_t text##_store(struct kmem_cache *s, \
4868 const char *buf, size_t length) \
4869 { \
4870 if (buf[0] != '0') \
4871 return -EINVAL; \
4872 clear_stat(s, si); \
4873 return length; \
4874 } \
4875 SLAB_ATTR(text); \
4876
4877 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4878 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4879 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4880 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4881 STAT_ATTR(FREE_FROZEN, free_frozen);
4882 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4883 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4884 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4885 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4886 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4887 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4888 STAT_ATTR(FREE_SLAB, free_slab);
4889 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4890 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4891 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4892 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4893 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4894 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4895 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4896 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4897 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4898 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4899 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4900 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4901 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4902 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4903 #endif
4904
4905 static struct attribute *slab_attrs[] = {
4906 &slab_size_attr.attr,
4907 &object_size_attr.attr,
4908 &objs_per_slab_attr.attr,
4909 &order_attr.attr,
4910 &min_partial_attr.attr,
4911 &cpu_partial_attr.attr,
4912 &objects_attr.attr,
4913 &objects_partial_attr.attr,
4914 &partial_attr.attr,
4915 &cpu_slabs_attr.attr,
4916 &ctor_attr.attr,
4917 &aliases_attr.attr,
4918 &align_attr.attr,
4919 &hwcache_align_attr.attr,
4920 &reclaim_account_attr.attr,
4921 &destroy_by_rcu_attr.attr,
4922 &shrink_attr.attr,
4923 &reserved_attr.attr,
4924 &slabs_cpu_partial_attr.attr,
4925 #ifdef CONFIG_SLUB_DEBUG
4926 &total_objects_attr.attr,
4927 &slabs_attr.attr,
4928 &sanity_checks_attr.attr,
4929 &trace_attr.attr,
4930 &red_zone_attr.attr,
4931 &poison_attr.attr,
4932 &store_user_attr.attr,
4933 &validate_attr.attr,
4934 &alloc_calls_attr.attr,
4935 &free_calls_attr.attr,
4936 #endif
4937 #ifdef CONFIG_ZONE_DMA
4938 &cache_dma_attr.attr,
4939 #endif
4940 #ifdef CONFIG_NUMA
4941 &remote_node_defrag_ratio_attr.attr,
4942 #endif
4943 #ifdef CONFIG_SLUB_STATS
4944 &alloc_fastpath_attr.attr,
4945 &alloc_slowpath_attr.attr,
4946 &free_fastpath_attr.attr,
4947 &free_slowpath_attr.attr,
4948 &free_frozen_attr.attr,
4949 &free_add_partial_attr.attr,
4950 &free_remove_partial_attr.attr,
4951 &alloc_from_partial_attr.attr,
4952 &alloc_slab_attr.attr,
4953 &alloc_refill_attr.attr,
4954 &alloc_node_mismatch_attr.attr,
4955 &free_slab_attr.attr,
4956 &cpuslab_flush_attr.attr,
4957 &deactivate_full_attr.attr,
4958 &deactivate_empty_attr.attr,
4959 &deactivate_to_head_attr.attr,
4960 &deactivate_to_tail_attr.attr,
4961 &deactivate_remote_frees_attr.attr,
4962 &deactivate_bypass_attr.attr,
4963 &order_fallback_attr.attr,
4964 &cmpxchg_double_fail_attr.attr,
4965 &cmpxchg_double_cpu_fail_attr.attr,
4966 &cpu_partial_alloc_attr.attr,
4967 &cpu_partial_free_attr.attr,
4968 &cpu_partial_node_attr.attr,
4969 &cpu_partial_drain_attr.attr,
4970 #endif
4971 #ifdef CONFIG_FAILSLAB
4972 &failslab_attr.attr,
4973 #endif
4974
4975 NULL
4976 };
4977
4978 static struct attribute_group slab_attr_group = {
4979 .attrs = slab_attrs,
4980 };
4981
4982 static ssize_t slab_attr_show(struct kobject *kobj,
4983 struct attribute *attr,
4984 char *buf)
4985 {
4986 struct slab_attribute *attribute;
4987 struct kmem_cache *s;
4988 int err;
4989
4990 attribute = to_slab_attr(attr);
4991 s = to_slab(kobj);
4992
4993 if (!attribute->show)
4994 return -EIO;
4995
4996 err = attribute->show(s, buf);
4997
4998 return err;
4999 }
5000
5001 static ssize_t slab_attr_store(struct kobject *kobj,
5002 struct attribute *attr,
5003 const char *buf, size_t len)
5004 {
5005 struct slab_attribute *attribute;
5006 struct kmem_cache *s;
5007 int err;
5008
5009 attribute = to_slab_attr(attr);
5010 s = to_slab(kobj);
5011
5012 if (!attribute->store)
5013 return -EIO;
5014
5015 err = attribute->store(s, buf, len);
5016 #ifdef CONFIG_MEMCG_KMEM
5017 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5018 int i;
5019
5020 mutex_lock(&slab_mutex);
5021 if (s->max_attr_size < len)
5022 s->max_attr_size = len;
5023
5024 /*
5025 * This is a best effort propagation, so this function's return
5026 * value will be determined by the parent cache only. This is
5027 * basically because not all attributes will have a well
5028 * defined semantics for rollbacks - most of the actions will
5029 * have permanent effects.
5030 *
5031 * Returning the error value of any of the children that fail
5032 * is not 100 % defined, in the sense that users seeing the
5033 * error code won't be able to know anything about the state of
5034 * the cache.
5035 *
5036 * Only returning the error code for the parent cache at least
5037 * has well defined semantics. The cache being written to
5038 * directly either failed or succeeded, in which case we loop
5039 * through the descendants with best-effort propagation.
5040 */
5041 for_each_memcg_cache_index(i) {
5042 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5043 if (c)
5044 attribute->store(c, buf, len);
5045 }
5046 mutex_unlock(&slab_mutex);
5047 }
5048 #endif
5049 return err;
5050 }
5051
5052 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5053 {
5054 #ifdef CONFIG_MEMCG_KMEM
5055 int i;
5056 char *buffer = NULL;
5057
5058 if (!is_root_cache(s))
5059 return;
5060
5061 /*
5062 * This mean this cache had no attribute written. Therefore, no point
5063 * in copying default values around
5064 */
5065 if (!s->max_attr_size)
5066 return;
5067
5068 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5069 char mbuf[64];
5070 char *buf;
5071 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5072
5073 if (!attr || !attr->store || !attr->show)
5074 continue;
5075
5076 /*
5077 * It is really bad that we have to allocate here, so we will
5078 * do it only as a fallback. If we actually allocate, though,
5079 * we can just use the allocated buffer until the end.
5080 *
5081 * Most of the slub attributes will tend to be very small in
5082 * size, but sysfs allows buffers up to a page, so they can
5083 * theoretically happen.
5084 */
5085 if (buffer)
5086 buf = buffer;
5087 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5088 buf = mbuf;
5089 else {
5090 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5091 if (WARN_ON(!buffer))
5092 continue;
5093 buf = buffer;
5094 }
5095
5096 attr->show(s->memcg_params->root_cache, buf);
5097 attr->store(s, buf, strlen(buf));
5098 }
5099
5100 if (buffer)
5101 free_page((unsigned long)buffer);
5102 #endif
5103 }
5104
5105 static const struct sysfs_ops slab_sysfs_ops = {
5106 .show = slab_attr_show,
5107 .store = slab_attr_store,
5108 };
5109
5110 static struct kobj_type slab_ktype = {
5111 .sysfs_ops = &slab_sysfs_ops,
5112 };
5113
5114 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5115 {
5116 struct kobj_type *ktype = get_ktype(kobj);
5117
5118 if (ktype == &slab_ktype)
5119 return 1;
5120 return 0;
5121 }
5122
5123 static const struct kset_uevent_ops slab_uevent_ops = {
5124 .filter = uevent_filter,
5125 };
5126
5127 static struct kset *slab_kset;
5128
5129 #define ID_STR_LENGTH 64
5130
5131 /* Create a unique string id for a slab cache:
5132 *
5133 * Format :[flags-]size
5134 */
5135 static char *create_unique_id(struct kmem_cache *s)
5136 {
5137 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5138 char *p = name;
5139
5140 BUG_ON(!name);
5141
5142 *p++ = ':';
5143 /*
5144 * First flags affecting slabcache operations. We will only
5145 * get here for aliasable slabs so we do not need to support
5146 * too many flags. The flags here must cover all flags that
5147 * are matched during merging to guarantee that the id is
5148 * unique.
5149 */
5150 if (s->flags & SLAB_CACHE_DMA)
5151 *p++ = 'd';
5152 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5153 *p++ = 'a';
5154 if (s->flags & SLAB_DEBUG_FREE)
5155 *p++ = 'F';
5156 if (!(s->flags & SLAB_NOTRACK))
5157 *p++ = 't';
5158 if (p != name + 1)
5159 *p++ = '-';
5160 p += sprintf(p, "%07d", s->size);
5161
5162 #ifdef CONFIG_MEMCG_KMEM
5163 if (!is_root_cache(s))
5164 p += sprintf(p, "-%08d",
5165 memcg_cache_id(s->memcg_params->memcg));
5166 #endif
5167
5168 BUG_ON(p > name + ID_STR_LENGTH - 1);
5169 return name;
5170 }
5171
5172 static int sysfs_slab_add(struct kmem_cache *s)
5173 {
5174 int err;
5175 const char *name;
5176 int unmergeable = slab_unmergeable(s);
5177
5178 if (unmergeable) {
5179 /*
5180 * Slabcache can never be merged so we can use the name proper.
5181 * This is typically the case for debug situations. In that
5182 * case we can catch duplicate names easily.
5183 */
5184 sysfs_remove_link(&slab_kset->kobj, s->name);
5185 name = s->name;
5186 } else {
5187 /*
5188 * Create a unique name for the slab as a target
5189 * for the symlinks.
5190 */
5191 name = create_unique_id(s);
5192 }
5193
5194 s->kobj.kset = slab_kset;
5195 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5196 if (err) {
5197 kobject_put(&s->kobj);
5198 return err;
5199 }
5200
5201 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5202 if (err) {
5203 kobject_del(&s->kobj);
5204 kobject_put(&s->kobj);
5205 return err;
5206 }
5207 kobject_uevent(&s->kobj, KOBJ_ADD);
5208 if (!unmergeable) {
5209 /* Setup first alias */
5210 sysfs_slab_alias(s, s->name);
5211 kfree(name);
5212 }
5213 return 0;
5214 }
5215
5216 static void sysfs_slab_remove(struct kmem_cache *s)
5217 {
5218 if (slab_state < FULL)
5219 /*
5220 * Sysfs has not been setup yet so no need to remove the
5221 * cache from sysfs.
5222 */
5223 return;
5224
5225 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5226 kobject_del(&s->kobj);
5227 kobject_put(&s->kobj);
5228 }
5229
5230 /*
5231 * Need to buffer aliases during bootup until sysfs becomes
5232 * available lest we lose that information.
5233 */
5234 struct saved_alias {
5235 struct kmem_cache *s;
5236 const char *name;
5237 struct saved_alias *next;
5238 };
5239
5240 static struct saved_alias *alias_list;
5241
5242 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5243 {
5244 struct saved_alias *al;
5245
5246 if (slab_state == FULL) {
5247 /*
5248 * If we have a leftover link then remove it.
5249 */
5250 sysfs_remove_link(&slab_kset->kobj, name);
5251 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5252 }
5253
5254 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5255 if (!al)
5256 return -ENOMEM;
5257
5258 al->s = s;
5259 al->name = name;
5260 al->next = alias_list;
5261 alias_list = al;
5262 return 0;
5263 }
5264
5265 static int __init slab_sysfs_init(void)
5266 {
5267 struct kmem_cache *s;
5268 int err;
5269
5270 mutex_lock(&slab_mutex);
5271
5272 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5273 if (!slab_kset) {
5274 mutex_unlock(&slab_mutex);
5275 printk(KERN_ERR "Cannot register slab subsystem.\n");
5276 return -ENOSYS;
5277 }
5278
5279 slab_state = FULL;
5280
5281 list_for_each_entry(s, &slab_caches, list) {
5282 err = sysfs_slab_add(s);
5283 if (err)
5284 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5285 " to sysfs\n", s->name);
5286 }
5287
5288 while (alias_list) {
5289 struct saved_alias *al = alias_list;
5290
5291 alias_list = alias_list->next;
5292 err = sysfs_slab_alias(al->s, al->name);
5293 if (err)
5294 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5295 " %s to sysfs\n", al->name);
5296 kfree(al);
5297 }
5298
5299 mutex_unlock(&slab_mutex);
5300 resiliency_test();
5301 return 0;
5302 }
5303
5304 __initcall(slab_sysfs_init);
5305 #endif /* CONFIG_SYSFS */
5306
5307 /*
5308 * The /proc/slabinfo ABI
5309 */
5310 #ifdef CONFIG_SLABINFO
5311 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5312 {
5313 unsigned long nr_slabs = 0;
5314 unsigned long nr_objs = 0;
5315 unsigned long nr_free = 0;
5316 int node;
5317
5318 for_each_online_node(node) {
5319 struct kmem_cache_node *n = get_node(s, node);
5320
5321 if (!n)
5322 continue;
5323
5324 nr_slabs += node_nr_slabs(n);
5325 nr_objs += node_nr_objs(n);
5326 nr_free += count_partial(n, count_free);
5327 }
5328
5329 sinfo->active_objs = nr_objs - nr_free;
5330 sinfo->num_objs = nr_objs;
5331 sinfo->active_slabs = nr_slabs;
5332 sinfo->num_slabs = nr_slabs;
5333 sinfo->objects_per_slab = oo_objects(s->oo);
5334 sinfo->cache_order = oo_order(s->oo);
5335 }
5336
5337 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5338 {
5339 }
5340
5341 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5342 size_t count, loff_t *ppos)
5343 {
5344 return -EIO;
5345 }
5346 #endif /* CONFIG_SLABINFO */
This page took 0.137682 seconds and 6 git commands to generate.