mm: slub: work around unneeded lockdep warning
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 return s->node[node];
238 }
239
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243 {
244 void *base;
245
246 if (!object)
247 return 1;
248
249 base = page_address(page);
250 if (object < base || object >= base + page->objects * s->size ||
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256 }
257
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 return *(void **)(object + s->offset);
261 }
262
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 prefetch(object + s->offset);
266 }
267
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 void *p;
271
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 p = get_freepointer(s, object);
276 #endif
277 return p;
278 }
279
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 *(void **)(object + s->offset) = fp;
283 }
284
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 __p += (__s)->size)
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->object_size;
305
306 #endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318 }
319
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 return ((PAGE_SIZE << order) - reserved) / size;
323 }
324
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
327 {
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
330 };
331
332 return x;
333 }
334
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 return x.x >> OO_SHIFT;
338 }
339
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 return x.x & OO_MASK;
343 }
344
345 /*
346 * Per slab locking using the pagelock
347 */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 __bit_spin_unlock(PG_locked, &page->flags);
356 }
357
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 void *freelist_old, unsigned long counters_old,
361 void *freelist_new, unsigned long counters_new,
362 const char *n)
363 {
364 VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 if (s->flags & __CMPXCHG_DOUBLE) {
368 if (cmpxchg_double(&page->freelist, &page->counters,
369 freelist_old, counters_old,
370 freelist_new, counters_new))
371 return 1;
372 } else
373 #endif
374 {
375 slab_lock(page);
376 if (page->freelist == freelist_old &&
377 page->counters == counters_old) {
378 page->freelist = freelist_new;
379 page->counters = counters_new;
380 slab_unlock(page);
381 return 1;
382 }
383 slab_unlock(page);
384 }
385
386 cpu_relax();
387 stat(s, CMPXCHG_DOUBLE_FAIL);
388
389 #ifdef SLUB_DEBUG_CMPXCHG
390 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
391 #endif
392
393 return 0;
394 }
395
396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 void *freelist_old, unsigned long counters_old,
398 void *freelist_new, unsigned long counters_new,
399 const char *n)
400 {
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 if (s->flags & __CMPXCHG_DOUBLE) {
404 if (cmpxchg_double(&page->freelist, &page->counters,
405 freelist_old, counters_old,
406 freelist_new, counters_new))
407 return 1;
408 } else
409 #endif
410 {
411 unsigned long flags;
412
413 local_irq_save(flags);
414 slab_lock(page);
415 if (page->freelist == freelist_old &&
416 page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
419 slab_unlock(page);
420 local_irq_restore(flags);
421 return 1;
422 }
423 slab_unlock(page);
424 local_irq_restore(flags);
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430 #ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433
434 return 0;
435 }
436
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439 * Determine a map of object in use on a page.
440 *
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
443 */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451 }
452
453 /*
454 * Debug settings:
455 */
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
461
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
464
465 /*
466 * Object debugging
467 */
468 static void print_section(char *text, u8 *addr, unsigned int length)
469 {
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
472 }
473
474 static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
476 {
477 struct track *p;
478
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
483
484 return p + alloc;
485 }
486
487 static void set_track(struct kmem_cache *s, void *object,
488 enum track_item alloc, unsigned long addr)
489 {
490 struct track *p = get_track(s, object, alloc);
491
492 if (addr) {
493 #ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
496
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
502
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
507
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510 #endif
511 p->addr = addr;
512 p->cpu = smp_processor_id();
513 p->pid = current->pid;
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
517 }
518
519 static void init_tracking(struct kmem_cache *s, void *object)
520 {
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
523
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
526 }
527
528 static void print_track(const char *s, struct track *t)
529 {
530 if (!t->addr)
531 return;
532
533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 #ifdef CONFIG_STACKTRACE
536 {
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
543 }
544 #endif
545 }
546
547 static void print_tracking(struct kmem_cache *s, void *object)
548 {
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
554 }
555
556 static void print_page_info(struct page *page)
557 {
558 printk(KERN_ERR
559 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
560 page, page->objects, page->inuse, page->freelist, page->flags);
561
562 }
563
564 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
565 {
566 va_list args;
567 char buf[100];
568
569 va_start(args, fmt);
570 vsnprintf(buf, sizeof(buf), fmt, args);
571 va_end(args);
572 printk(KERN_ERR "========================================"
573 "=====================================\n");
574 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
575 printk(KERN_ERR "----------------------------------------"
576 "-------------------------------------\n\n");
577
578 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
579 }
580
581 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
582 {
583 va_list args;
584 char buf[100];
585
586 va_start(args, fmt);
587 vsnprintf(buf, sizeof(buf), fmt, args);
588 va_end(args);
589 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
590 }
591
592 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
593 {
594 unsigned int off; /* Offset of last byte */
595 u8 *addr = page_address(page);
596
597 print_tracking(s, p);
598
599 print_page_info(page);
600
601 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
602 p, p - addr, get_freepointer(s, p));
603
604 if (p > addr + 16)
605 print_section("Bytes b4 ", p - 16, 16);
606
607 print_section("Object ", p, min_t(unsigned long, s->object_size,
608 PAGE_SIZE));
609 if (s->flags & SLAB_RED_ZONE)
610 print_section("Redzone ", p + s->object_size,
611 s->inuse - s->object_size);
612
613 if (s->offset)
614 off = s->offset + sizeof(void *);
615 else
616 off = s->inuse;
617
618 if (s->flags & SLAB_STORE_USER)
619 off += 2 * sizeof(struct track);
620
621 if (off != s->size)
622 /* Beginning of the filler is the free pointer */
623 print_section("Padding ", p + off, s->size - off);
624
625 dump_stack();
626 }
627
628 static void object_err(struct kmem_cache *s, struct page *page,
629 u8 *object, char *reason)
630 {
631 slab_bug(s, "%s", reason);
632 print_trailer(s, page, object);
633 }
634
635 static void slab_err(struct kmem_cache *s, struct page *page,
636 const char *fmt, ...)
637 {
638 va_list args;
639 char buf[100];
640
641 va_start(args, fmt);
642 vsnprintf(buf, sizeof(buf), fmt, args);
643 va_end(args);
644 slab_bug(s, "%s", buf);
645 print_page_info(page);
646 dump_stack();
647 }
648
649 static void init_object(struct kmem_cache *s, void *object, u8 val)
650 {
651 u8 *p = object;
652
653 if (s->flags & __OBJECT_POISON) {
654 memset(p, POISON_FREE, s->object_size - 1);
655 p[s->object_size - 1] = POISON_END;
656 }
657
658 if (s->flags & SLAB_RED_ZONE)
659 memset(p + s->object_size, val, s->inuse - s->object_size);
660 }
661
662 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
663 void *from, void *to)
664 {
665 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
666 memset(from, data, to - from);
667 }
668
669 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
670 u8 *object, char *what,
671 u8 *start, unsigned int value, unsigned int bytes)
672 {
673 u8 *fault;
674 u8 *end;
675
676 fault = memchr_inv(start, value, bytes);
677 if (!fault)
678 return 1;
679
680 end = start + bytes;
681 while (end > fault && end[-1] == value)
682 end--;
683
684 slab_bug(s, "%s overwritten", what);
685 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
686 fault, end - 1, fault[0], value);
687 print_trailer(s, page, object);
688
689 restore_bytes(s, what, value, fault, end);
690 return 0;
691 }
692
693 /*
694 * Object layout:
695 *
696 * object address
697 * Bytes of the object to be managed.
698 * If the freepointer may overlay the object then the free
699 * pointer is the first word of the object.
700 *
701 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
702 * 0xa5 (POISON_END)
703 *
704 * object + s->object_size
705 * Padding to reach word boundary. This is also used for Redzoning.
706 * Padding is extended by another word if Redzoning is enabled and
707 * object_size == inuse.
708 *
709 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
710 * 0xcc (RED_ACTIVE) for objects in use.
711 *
712 * object + s->inuse
713 * Meta data starts here.
714 *
715 * A. Free pointer (if we cannot overwrite object on free)
716 * B. Tracking data for SLAB_STORE_USER
717 * C. Padding to reach required alignment boundary or at mininum
718 * one word if debugging is on to be able to detect writes
719 * before the word boundary.
720 *
721 * Padding is done using 0x5a (POISON_INUSE)
722 *
723 * object + s->size
724 * Nothing is used beyond s->size.
725 *
726 * If slabcaches are merged then the object_size and inuse boundaries are mostly
727 * ignored. And therefore no slab options that rely on these boundaries
728 * may be used with merged slabcaches.
729 */
730
731 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
732 {
733 unsigned long off = s->inuse; /* The end of info */
734
735 if (s->offset)
736 /* Freepointer is placed after the object. */
737 off += sizeof(void *);
738
739 if (s->flags & SLAB_STORE_USER)
740 /* We also have user information there */
741 off += 2 * sizeof(struct track);
742
743 if (s->size == off)
744 return 1;
745
746 return check_bytes_and_report(s, page, p, "Object padding",
747 p + off, POISON_INUSE, s->size - off);
748 }
749
750 /* Check the pad bytes at the end of a slab page */
751 static int slab_pad_check(struct kmem_cache *s, struct page *page)
752 {
753 u8 *start;
754 u8 *fault;
755 u8 *end;
756 int length;
757 int remainder;
758
759 if (!(s->flags & SLAB_POISON))
760 return 1;
761
762 start = page_address(page);
763 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
764 end = start + length;
765 remainder = length % s->size;
766 if (!remainder)
767 return 1;
768
769 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
770 if (!fault)
771 return 1;
772 while (end > fault && end[-1] == POISON_INUSE)
773 end--;
774
775 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
776 print_section("Padding ", end - remainder, remainder);
777
778 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
779 return 0;
780 }
781
782 static int check_object(struct kmem_cache *s, struct page *page,
783 void *object, u8 val)
784 {
785 u8 *p = object;
786 u8 *endobject = object + s->object_size;
787
788 if (s->flags & SLAB_RED_ZONE) {
789 if (!check_bytes_and_report(s, page, object, "Redzone",
790 endobject, val, s->inuse - s->object_size))
791 return 0;
792 } else {
793 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
794 check_bytes_and_report(s, page, p, "Alignment padding",
795 endobject, POISON_INUSE,
796 s->inuse - s->object_size);
797 }
798 }
799
800 if (s->flags & SLAB_POISON) {
801 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
802 (!check_bytes_and_report(s, page, p, "Poison", p,
803 POISON_FREE, s->object_size - 1) ||
804 !check_bytes_and_report(s, page, p, "Poison",
805 p + s->object_size - 1, POISON_END, 1)))
806 return 0;
807 /*
808 * check_pad_bytes cleans up on its own.
809 */
810 check_pad_bytes(s, page, p);
811 }
812
813 if (!s->offset && val == SLUB_RED_ACTIVE)
814 /*
815 * Object and freepointer overlap. Cannot check
816 * freepointer while object is allocated.
817 */
818 return 1;
819
820 /* Check free pointer validity */
821 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
822 object_err(s, page, p, "Freepointer corrupt");
823 /*
824 * No choice but to zap it and thus lose the remainder
825 * of the free objects in this slab. May cause
826 * another error because the object count is now wrong.
827 */
828 set_freepointer(s, p, NULL);
829 return 0;
830 }
831 return 1;
832 }
833
834 static int check_slab(struct kmem_cache *s, struct page *page)
835 {
836 int maxobj;
837
838 VM_BUG_ON(!irqs_disabled());
839
840 if (!PageSlab(page)) {
841 slab_err(s, page, "Not a valid slab page");
842 return 0;
843 }
844
845 maxobj = order_objects(compound_order(page), s->size, s->reserved);
846 if (page->objects > maxobj) {
847 slab_err(s, page, "objects %u > max %u",
848 s->name, page->objects, maxobj);
849 return 0;
850 }
851 if (page->inuse > page->objects) {
852 slab_err(s, page, "inuse %u > max %u",
853 s->name, page->inuse, page->objects);
854 return 0;
855 }
856 /* Slab_pad_check fixes things up after itself */
857 slab_pad_check(s, page);
858 return 1;
859 }
860
861 /*
862 * Determine if a certain object on a page is on the freelist. Must hold the
863 * slab lock to guarantee that the chains are in a consistent state.
864 */
865 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
866 {
867 int nr = 0;
868 void *fp;
869 void *object = NULL;
870 unsigned long max_objects;
871
872 fp = page->freelist;
873 while (fp && nr <= page->objects) {
874 if (fp == search)
875 return 1;
876 if (!check_valid_pointer(s, page, fp)) {
877 if (object) {
878 object_err(s, page, object,
879 "Freechain corrupt");
880 set_freepointer(s, object, NULL);
881 } else {
882 slab_err(s, page, "Freepointer corrupt");
883 page->freelist = NULL;
884 page->inuse = page->objects;
885 slab_fix(s, "Freelist cleared");
886 return 0;
887 }
888 break;
889 }
890 object = fp;
891 fp = get_freepointer(s, object);
892 nr++;
893 }
894
895 max_objects = order_objects(compound_order(page), s->size, s->reserved);
896 if (max_objects > MAX_OBJS_PER_PAGE)
897 max_objects = MAX_OBJS_PER_PAGE;
898
899 if (page->objects != max_objects) {
900 slab_err(s, page, "Wrong number of objects. Found %d but "
901 "should be %d", page->objects, max_objects);
902 page->objects = max_objects;
903 slab_fix(s, "Number of objects adjusted.");
904 }
905 if (page->inuse != page->objects - nr) {
906 slab_err(s, page, "Wrong object count. Counter is %d but "
907 "counted were %d", page->inuse, page->objects - nr);
908 page->inuse = page->objects - nr;
909 slab_fix(s, "Object count adjusted.");
910 }
911 return search == NULL;
912 }
913
914 static void trace(struct kmem_cache *s, struct page *page, void *object,
915 int alloc)
916 {
917 if (s->flags & SLAB_TRACE) {
918 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
919 s->name,
920 alloc ? "alloc" : "free",
921 object, page->inuse,
922 page->freelist);
923
924 if (!alloc)
925 print_section("Object ", (void *)object,
926 s->object_size);
927
928 dump_stack();
929 }
930 }
931
932 /*
933 * Hooks for other subsystems that check memory allocations. In a typical
934 * production configuration these hooks all should produce no code at all.
935 */
936 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
937 {
938 kmemleak_alloc(ptr, size, 1, flags);
939 }
940
941 static inline void kfree_hook(const void *x)
942 {
943 kmemleak_free(x);
944 }
945
946 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
947 {
948 flags &= gfp_allowed_mask;
949 lockdep_trace_alloc(flags);
950 might_sleep_if(flags & __GFP_WAIT);
951
952 return should_failslab(s->object_size, flags, s->flags);
953 }
954
955 static inline void slab_post_alloc_hook(struct kmem_cache *s,
956 gfp_t flags, void *object)
957 {
958 flags &= gfp_allowed_mask;
959 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
960 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
961 }
962
963 static inline void slab_free_hook(struct kmem_cache *s, void *x)
964 {
965 kmemleak_free_recursive(x, s->flags);
966
967 /*
968 * Trouble is that we may no longer disable interrupts in the fast path
969 * So in order to make the debug calls that expect irqs to be
970 * disabled we need to disable interrupts temporarily.
971 */
972 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
973 {
974 unsigned long flags;
975
976 local_irq_save(flags);
977 kmemcheck_slab_free(s, x, s->object_size);
978 debug_check_no_locks_freed(x, s->object_size);
979 local_irq_restore(flags);
980 }
981 #endif
982 if (!(s->flags & SLAB_DEBUG_OBJECTS))
983 debug_check_no_obj_freed(x, s->object_size);
984 }
985
986 /*
987 * Tracking of fully allocated slabs for debugging purposes.
988 */
989 static void add_full(struct kmem_cache *s,
990 struct kmem_cache_node *n, struct page *page)
991 {
992 lockdep_assert_held(&n->list_lock);
993
994 if (!(s->flags & SLAB_STORE_USER))
995 return;
996
997 list_add(&page->lru, &n->full);
998 }
999
1000 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1001 {
1002 lockdep_assert_held(&n->list_lock);
1003
1004 if (!(s->flags & SLAB_STORE_USER))
1005 return;
1006
1007 list_del(&page->lru);
1008 }
1009
1010 /* Tracking of the number of slabs for debugging purposes */
1011 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1012 {
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 return atomic_long_read(&n->nr_slabs);
1016 }
1017
1018 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1019 {
1020 return atomic_long_read(&n->nr_slabs);
1021 }
1022
1023 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1024 {
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 /*
1028 * May be called early in order to allocate a slab for the
1029 * kmem_cache_node structure. Solve the chicken-egg
1030 * dilemma by deferring the increment of the count during
1031 * bootstrap (see early_kmem_cache_node_alloc).
1032 */
1033 if (likely(n)) {
1034 atomic_long_inc(&n->nr_slabs);
1035 atomic_long_add(objects, &n->total_objects);
1036 }
1037 }
1038 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1039 {
1040 struct kmem_cache_node *n = get_node(s, node);
1041
1042 atomic_long_dec(&n->nr_slabs);
1043 atomic_long_sub(objects, &n->total_objects);
1044 }
1045
1046 /* Object debug checks for alloc/free paths */
1047 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 void *object)
1049 {
1050 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 return;
1052
1053 init_object(s, object, SLUB_RED_INACTIVE);
1054 init_tracking(s, object);
1055 }
1056
1057 static noinline int alloc_debug_processing(struct kmem_cache *s,
1058 struct page *page,
1059 void *object, unsigned long addr)
1060 {
1061 if (!check_slab(s, page))
1062 goto bad;
1063
1064 if (!check_valid_pointer(s, page, object)) {
1065 object_err(s, page, object, "Freelist Pointer check fails");
1066 goto bad;
1067 }
1068
1069 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1070 goto bad;
1071
1072 /* Success perform special debug activities for allocs */
1073 if (s->flags & SLAB_STORE_USER)
1074 set_track(s, object, TRACK_ALLOC, addr);
1075 trace(s, page, object, 1);
1076 init_object(s, object, SLUB_RED_ACTIVE);
1077 return 1;
1078
1079 bad:
1080 if (PageSlab(page)) {
1081 /*
1082 * If this is a slab page then lets do the best we can
1083 * to avoid issues in the future. Marking all objects
1084 * as used avoids touching the remaining objects.
1085 */
1086 slab_fix(s, "Marking all objects used");
1087 page->inuse = page->objects;
1088 page->freelist = NULL;
1089 }
1090 return 0;
1091 }
1092
1093 static noinline struct kmem_cache_node *free_debug_processing(
1094 struct kmem_cache *s, struct page *page, void *object,
1095 unsigned long addr, unsigned long *flags)
1096 {
1097 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1098
1099 spin_lock_irqsave(&n->list_lock, *flags);
1100 slab_lock(page);
1101
1102 if (!check_slab(s, page))
1103 goto fail;
1104
1105 if (!check_valid_pointer(s, page, object)) {
1106 slab_err(s, page, "Invalid object pointer 0x%p", object);
1107 goto fail;
1108 }
1109
1110 if (on_freelist(s, page, object)) {
1111 object_err(s, page, object, "Object already free");
1112 goto fail;
1113 }
1114
1115 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1116 goto out;
1117
1118 if (unlikely(s != page->slab_cache)) {
1119 if (!PageSlab(page)) {
1120 slab_err(s, page, "Attempt to free object(0x%p) "
1121 "outside of slab", object);
1122 } else if (!page->slab_cache) {
1123 printk(KERN_ERR
1124 "SLUB <none>: no slab for object 0x%p.\n",
1125 object);
1126 dump_stack();
1127 } else
1128 object_err(s, page, object,
1129 "page slab pointer corrupt.");
1130 goto fail;
1131 }
1132
1133 if (s->flags & SLAB_STORE_USER)
1134 set_track(s, object, TRACK_FREE, addr);
1135 trace(s, page, object, 0);
1136 init_object(s, object, SLUB_RED_INACTIVE);
1137 out:
1138 slab_unlock(page);
1139 /*
1140 * Keep node_lock to preserve integrity
1141 * until the object is actually freed
1142 */
1143 return n;
1144
1145 fail:
1146 slab_unlock(page);
1147 spin_unlock_irqrestore(&n->list_lock, *flags);
1148 slab_fix(s, "Object at 0x%p not freed", object);
1149 return NULL;
1150 }
1151
1152 static int __init setup_slub_debug(char *str)
1153 {
1154 slub_debug = DEBUG_DEFAULT_FLAGS;
1155 if (*str++ != '=' || !*str)
1156 /*
1157 * No options specified. Switch on full debugging.
1158 */
1159 goto out;
1160
1161 if (*str == ',')
1162 /*
1163 * No options but restriction on slabs. This means full
1164 * debugging for slabs matching a pattern.
1165 */
1166 goto check_slabs;
1167
1168 if (tolower(*str) == 'o') {
1169 /*
1170 * Avoid enabling debugging on caches if its minimum order
1171 * would increase as a result.
1172 */
1173 disable_higher_order_debug = 1;
1174 goto out;
1175 }
1176
1177 slub_debug = 0;
1178 if (*str == '-')
1179 /*
1180 * Switch off all debugging measures.
1181 */
1182 goto out;
1183
1184 /*
1185 * Determine which debug features should be switched on
1186 */
1187 for (; *str && *str != ','; str++) {
1188 switch (tolower(*str)) {
1189 case 'f':
1190 slub_debug |= SLAB_DEBUG_FREE;
1191 break;
1192 case 'z':
1193 slub_debug |= SLAB_RED_ZONE;
1194 break;
1195 case 'p':
1196 slub_debug |= SLAB_POISON;
1197 break;
1198 case 'u':
1199 slub_debug |= SLAB_STORE_USER;
1200 break;
1201 case 't':
1202 slub_debug |= SLAB_TRACE;
1203 break;
1204 case 'a':
1205 slub_debug |= SLAB_FAILSLAB;
1206 break;
1207 default:
1208 printk(KERN_ERR "slub_debug option '%c' "
1209 "unknown. skipped\n", *str);
1210 }
1211 }
1212
1213 check_slabs:
1214 if (*str == ',')
1215 slub_debug_slabs = str + 1;
1216 out:
1217 return 1;
1218 }
1219
1220 __setup("slub_debug", setup_slub_debug);
1221
1222 static unsigned long kmem_cache_flags(unsigned long object_size,
1223 unsigned long flags, const char *name,
1224 void (*ctor)(void *))
1225 {
1226 /*
1227 * Enable debugging if selected on the kernel commandline.
1228 */
1229 if (slub_debug && (!slub_debug_slabs || (name &&
1230 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1231 flags |= slub_debug;
1232
1233 return flags;
1234 }
1235 #else
1236 static inline void setup_object_debug(struct kmem_cache *s,
1237 struct page *page, void *object) {}
1238
1239 static inline int alloc_debug_processing(struct kmem_cache *s,
1240 struct page *page, void *object, unsigned long addr) { return 0; }
1241
1242 static inline struct kmem_cache_node *free_debug_processing(
1243 struct kmem_cache *s, struct page *page, void *object,
1244 unsigned long addr, unsigned long *flags) { return NULL; }
1245
1246 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1247 { return 1; }
1248 static inline int check_object(struct kmem_cache *s, struct page *page,
1249 void *object, u8 val) { return 1; }
1250 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1251 struct page *page) {}
1252 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1253 struct page *page) {}
1254 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1255 unsigned long flags, const char *name,
1256 void (*ctor)(void *))
1257 {
1258 return flags;
1259 }
1260 #define slub_debug 0
1261
1262 #define disable_higher_order_debug 0
1263
1264 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1265 { return 0; }
1266 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1267 { return 0; }
1268 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1269 int objects) {}
1270 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1271 int objects) {}
1272
1273 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1274 {
1275 kmemleak_alloc(ptr, size, 1, flags);
1276 }
1277
1278 static inline void kfree_hook(const void *x)
1279 {
1280 kmemleak_free(x);
1281 }
1282
1283 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1284 { return 0; }
1285
1286 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1287 void *object)
1288 {
1289 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1290 flags & gfp_allowed_mask);
1291 }
1292
1293 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1294 {
1295 kmemleak_free_recursive(x, s->flags);
1296 }
1297
1298 #endif /* CONFIG_SLUB_DEBUG */
1299
1300 /*
1301 * Slab allocation and freeing
1302 */
1303 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1304 struct kmem_cache_order_objects oo)
1305 {
1306 int order = oo_order(oo);
1307
1308 flags |= __GFP_NOTRACK;
1309
1310 if (node == NUMA_NO_NODE)
1311 return alloc_pages(flags, order);
1312 else
1313 return alloc_pages_exact_node(node, flags, order);
1314 }
1315
1316 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1317 {
1318 struct page *page;
1319 struct kmem_cache_order_objects oo = s->oo;
1320 gfp_t alloc_gfp;
1321
1322 flags &= gfp_allowed_mask;
1323
1324 if (flags & __GFP_WAIT)
1325 local_irq_enable();
1326
1327 flags |= s->allocflags;
1328
1329 /*
1330 * Let the initial higher-order allocation fail under memory pressure
1331 * so we fall-back to the minimum order allocation.
1332 */
1333 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1334
1335 page = alloc_slab_page(alloc_gfp, node, oo);
1336 if (unlikely(!page)) {
1337 oo = s->min;
1338 /*
1339 * Allocation may have failed due to fragmentation.
1340 * Try a lower order alloc if possible
1341 */
1342 page = alloc_slab_page(flags, node, oo);
1343
1344 if (page)
1345 stat(s, ORDER_FALLBACK);
1346 }
1347
1348 if (kmemcheck_enabled && page
1349 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1350 int pages = 1 << oo_order(oo);
1351
1352 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1353
1354 /*
1355 * Objects from caches that have a constructor don't get
1356 * cleared when they're allocated, so we need to do it here.
1357 */
1358 if (s->ctor)
1359 kmemcheck_mark_uninitialized_pages(page, pages);
1360 else
1361 kmemcheck_mark_unallocated_pages(page, pages);
1362 }
1363
1364 if (flags & __GFP_WAIT)
1365 local_irq_disable();
1366 if (!page)
1367 return NULL;
1368
1369 page->objects = oo_objects(oo);
1370 mod_zone_page_state(page_zone(page),
1371 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1372 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1373 1 << oo_order(oo));
1374
1375 return page;
1376 }
1377
1378 static void setup_object(struct kmem_cache *s, struct page *page,
1379 void *object)
1380 {
1381 setup_object_debug(s, page, object);
1382 if (unlikely(s->ctor))
1383 s->ctor(object);
1384 }
1385
1386 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1387 {
1388 struct page *page;
1389 void *start;
1390 void *last;
1391 void *p;
1392 int order;
1393
1394 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1395
1396 page = allocate_slab(s,
1397 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1398 if (!page)
1399 goto out;
1400
1401 order = compound_order(page);
1402 inc_slabs_node(s, page_to_nid(page), page->objects);
1403 memcg_bind_pages(s, order);
1404 page->slab_cache = s;
1405 __SetPageSlab(page);
1406 if (page->pfmemalloc)
1407 SetPageSlabPfmemalloc(page);
1408
1409 start = page_address(page);
1410
1411 if (unlikely(s->flags & SLAB_POISON))
1412 memset(start, POISON_INUSE, PAGE_SIZE << order);
1413
1414 last = start;
1415 for_each_object(p, s, start, page->objects) {
1416 setup_object(s, page, last);
1417 set_freepointer(s, last, p);
1418 last = p;
1419 }
1420 setup_object(s, page, last);
1421 set_freepointer(s, last, NULL);
1422
1423 page->freelist = start;
1424 page->inuse = page->objects;
1425 page->frozen = 1;
1426 out:
1427 return page;
1428 }
1429
1430 static void __free_slab(struct kmem_cache *s, struct page *page)
1431 {
1432 int order = compound_order(page);
1433 int pages = 1 << order;
1434
1435 if (kmem_cache_debug(s)) {
1436 void *p;
1437
1438 slab_pad_check(s, page);
1439 for_each_object(p, s, page_address(page),
1440 page->objects)
1441 check_object(s, page, p, SLUB_RED_INACTIVE);
1442 }
1443
1444 kmemcheck_free_shadow(page, compound_order(page));
1445
1446 mod_zone_page_state(page_zone(page),
1447 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1448 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1449 -pages);
1450
1451 __ClearPageSlabPfmemalloc(page);
1452 __ClearPageSlab(page);
1453
1454 memcg_release_pages(s, order);
1455 page_mapcount_reset(page);
1456 if (current->reclaim_state)
1457 current->reclaim_state->reclaimed_slab += pages;
1458 __free_memcg_kmem_pages(page, order);
1459 }
1460
1461 #define need_reserve_slab_rcu \
1462 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1463
1464 static void rcu_free_slab(struct rcu_head *h)
1465 {
1466 struct page *page;
1467
1468 if (need_reserve_slab_rcu)
1469 page = virt_to_head_page(h);
1470 else
1471 page = container_of((struct list_head *)h, struct page, lru);
1472
1473 __free_slab(page->slab_cache, page);
1474 }
1475
1476 static void free_slab(struct kmem_cache *s, struct page *page)
1477 {
1478 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1479 struct rcu_head *head;
1480
1481 if (need_reserve_slab_rcu) {
1482 int order = compound_order(page);
1483 int offset = (PAGE_SIZE << order) - s->reserved;
1484
1485 VM_BUG_ON(s->reserved != sizeof(*head));
1486 head = page_address(page) + offset;
1487 } else {
1488 /*
1489 * RCU free overloads the RCU head over the LRU
1490 */
1491 head = (void *)&page->lru;
1492 }
1493
1494 call_rcu(head, rcu_free_slab);
1495 } else
1496 __free_slab(s, page);
1497 }
1498
1499 static void discard_slab(struct kmem_cache *s, struct page *page)
1500 {
1501 dec_slabs_node(s, page_to_nid(page), page->objects);
1502 free_slab(s, page);
1503 }
1504
1505 /*
1506 * Management of partially allocated slabs.
1507 */
1508 static inline void add_partial(struct kmem_cache_node *n,
1509 struct page *page, int tail)
1510 {
1511 lockdep_assert_held(&n->list_lock);
1512
1513 n->nr_partial++;
1514 if (tail == DEACTIVATE_TO_TAIL)
1515 list_add_tail(&page->lru, &n->partial);
1516 else
1517 list_add(&page->lru, &n->partial);
1518 }
1519
1520 static inline void remove_partial(struct kmem_cache_node *n,
1521 struct page *page)
1522 {
1523 lockdep_assert_held(&n->list_lock);
1524
1525 list_del(&page->lru);
1526 n->nr_partial--;
1527 }
1528
1529 /*
1530 * Remove slab from the partial list, freeze it and
1531 * return the pointer to the freelist.
1532 *
1533 * Returns a list of objects or NULL if it fails.
1534 */
1535 static inline void *acquire_slab(struct kmem_cache *s,
1536 struct kmem_cache_node *n, struct page *page,
1537 int mode, int *objects)
1538 {
1539 void *freelist;
1540 unsigned long counters;
1541 struct page new;
1542
1543 lockdep_assert_held(&n->list_lock);
1544
1545 /*
1546 * Zap the freelist and set the frozen bit.
1547 * The old freelist is the list of objects for the
1548 * per cpu allocation list.
1549 */
1550 freelist = page->freelist;
1551 counters = page->counters;
1552 new.counters = counters;
1553 *objects = new.objects - new.inuse;
1554 if (mode) {
1555 new.inuse = page->objects;
1556 new.freelist = NULL;
1557 } else {
1558 new.freelist = freelist;
1559 }
1560
1561 VM_BUG_ON(new.frozen);
1562 new.frozen = 1;
1563
1564 if (!__cmpxchg_double_slab(s, page,
1565 freelist, counters,
1566 new.freelist, new.counters,
1567 "acquire_slab"))
1568 return NULL;
1569
1570 remove_partial(n, page);
1571 WARN_ON(!freelist);
1572 return freelist;
1573 }
1574
1575 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1576 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1577
1578 /*
1579 * Try to allocate a partial slab from a specific node.
1580 */
1581 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1582 struct kmem_cache_cpu *c, gfp_t flags)
1583 {
1584 struct page *page, *page2;
1585 void *object = NULL;
1586 int available = 0;
1587 int objects;
1588
1589 /*
1590 * Racy check. If we mistakenly see no partial slabs then we
1591 * just allocate an empty slab. If we mistakenly try to get a
1592 * partial slab and there is none available then get_partials()
1593 * will return NULL.
1594 */
1595 if (!n || !n->nr_partial)
1596 return NULL;
1597
1598 spin_lock(&n->list_lock);
1599 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1600 void *t;
1601
1602 if (!pfmemalloc_match(page, flags))
1603 continue;
1604
1605 t = acquire_slab(s, n, page, object == NULL, &objects);
1606 if (!t)
1607 break;
1608
1609 available += objects;
1610 if (!object) {
1611 c->page = page;
1612 stat(s, ALLOC_FROM_PARTIAL);
1613 object = t;
1614 } else {
1615 put_cpu_partial(s, page, 0);
1616 stat(s, CPU_PARTIAL_NODE);
1617 }
1618 if (!kmem_cache_has_cpu_partial(s)
1619 || available > s->cpu_partial / 2)
1620 break;
1621
1622 }
1623 spin_unlock(&n->list_lock);
1624 return object;
1625 }
1626
1627 /*
1628 * Get a page from somewhere. Search in increasing NUMA distances.
1629 */
1630 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1631 struct kmem_cache_cpu *c)
1632 {
1633 #ifdef CONFIG_NUMA
1634 struct zonelist *zonelist;
1635 struct zoneref *z;
1636 struct zone *zone;
1637 enum zone_type high_zoneidx = gfp_zone(flags);
1638 void *object;
1639 unsigned int cpuset_mems_cookie;
1640
1641 /*
1642 * The defrag ratio allows a configuration of the tradeoffs between
1643 * inter node defragmentation and node local allocations. A lower
1644 * defrag_ratio increases the tendency to do local allocations
1645 * instead of attempting to obtain partial slabs from other nodes.
1646 *
1647 * If the defrag_ratio is set to 0 then kmalloc() always
1648 * returns node local objects. If the ratio is higher then kmalloc()
1649 * may return off node objects because partial slabs are obtained
1650 * from other nodes and filled up.
1651 *
1652 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1653 * defrag_ratio = 1000) then every (well almost) allocation will
1654 * first attempt to defrag slab caches on other nodes. This means
1655 * scanning over all nodes to look for partial slabs which may be
1656 * expensive if we do it every time we are trying to find a slab
1657 * with available objects.
1658 */
1659 if (!s->remote_node_defrag_ratio ||
1660 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1661 return NULL;
1662
1663 do {
1664 cpuset_mems_cookie = get_mems_allowed();
1665 zonelist = node_zonelist(slab_node(), flags);
1666 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1667 struct kmem_cache_node *n;
1668
1669 n = get_node(s, zone_to_nid(zone));
1670
1671 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1672 n->nr_partial > s->min_partial) {
1673 object = get_partial_node(s, n, c, flags);
1674 if (object) {
1675 /*
1676 * Return the object even if
1677 * put_mems_allowed indicated that
1678 * the cpuset mems_allowed was
1679 * updated in parallel. It's a
1680 * harmless race between the alloc
1681 * and the cpuset update.
1682 */
1683 put_mems_allowed(cpuset_mems_cookie);
1684 return object;
1685 }
1686 }
1687 }
1688 } while (!put_mems_allowed(cpuset_mems_cookie));
1689 #endif
1690 return NULL;
1691 }
1692
1693 /*
1694 * Get a partial page, lock it and return it.
1695 */
1696 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1697 struct kmem_cache_cpu *c)
1698 {
1699 void *object;
1700 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1701
1702 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1703 if (object || node != NUMA_NO_NODE)
1704 return object;
1705
1706 return get_any_partial(s, flags, c);
1707 }
1708
1709 #ifdef CONFIG_PREEMPT
1710 /*
1711 * Calculate the next globally unique transaction for disambiguiation
1712 * during cmpxchg. The transactions start with the cpu number and are then
1713 * incremented by CONFIG_NR_CPUS.
1714 */
1715 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1716 #else
1717 /*
1718 * No preemption supported therefore also no need to check for
1719 * different cpus.
1720 */
1721 #define TID_STEP 1
1722 #endif
1723
1724 static inline unsigned long next_tid(unsigned long tid)
1725 {
1726 return tid + TID_STEP;
1727 }
1728
1729 static inline unsigned int tid_to_cpu(unsigned long tid)
1730 {
1731 return tid % TID_STEP;
1732 }
1733
1734 static inline unsigned long tid_to_event(unsigned long tid)
1735 {
1736 return tid / TID_STEP;
1737 }
1738
1739 static inline unsigned int init_tid(int cpu)
1740 {
1741 return cpu;
1742 }
1743
1744 static inline void note_cmpxchg_failure(const char *n,
1745 const struct kmem_cache *s, unsigned long tid)
1746 {
1747 #ifdef SLUB_DEBUG_CMPXCHG
1748 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1749
1750 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1751
1752 #ifdef CONFIG_PREEMPT
1753 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1754 printk("due to cpu change %d -> %d\n",
1755 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1756 else
1757 #endif
1758 if (tid_to_event(tid) != tid_to_event(actual_tid))
1759 printk("due to cpu running other code. Event %ld->%ld\n",
1760 tid_to_event(tid), tid_to_event(actual_tid));
1761 else
1762 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1763 actual_tid, tid, next_tid(tid));
1764 #endif
1765 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1766 }
1767
1768 static void init_kmem_cache_cpus(struct kmem_cache *s)
1769 {
1770 int cpu;
1771
1772 for_each_possible_cpu(cpu)
1773 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1774 }
1775
1776 /*
1777 * Remove the cpu slab
1778 */
1779 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1780 void *freelist)
1781 {
1782 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1783 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1784 int lock = 0;
1785 enum slab_modes l = M_NONE, m = M_NONE;
1786 void *nextfree;
1787 int tail = DEACTIVATE_TO_HEAD;
1788 struct page new;
1789 struct page old;
1790
1791 if (page->freelist) {
1792 stat(s, DEACTIVATE_REMOTE_FREES);
1793 tail = DEACTIVATE_TO_TAIL;
1794 }
1795
1796 /*
1797 * Stage one: Free all available per cpu objects back
1798 * to the page freelist while it is still frozen. Leave the
1799 * last one.
1800 *
1801 * There is no need to take the list->lock because the page
1802 * is still frozen.
1803 */
1804 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1805 void *prior;
1806 unsigned long counters;
1807
1808 do {
1809 prior = page->freelist;
1810 counters = page->counters;
1811 set_freepointer(s, freelist, prior);
1812 new.counters = counters;
1813 new.inuse--;
1814 VM_BUG_ON(!new.frozen);
1815
1816 } while (!__cmpxchg_double_slab(s, page,
1817 prior, counters,
1818 freelist, new.counters,
1819 "drain percpu freelist"));
1820
1821 freelist = nextfree;
1822 }
1823
1824 /*
1825 * Stage two: Ensure that the page is unfrozen while the
1826 * list presence reflects the actual number of objects
1827 * during unfreeze.
1828 *
1829 * We setup the list membership and then perform a cmpxchg
1830 * with the count. If there is a mismatch then the page
1831 * is not unfrozen but the page is on the wrong list.
1832 *
1833 * Then we restart the process which may have to remove
1834 * the page from the list that we just put it on again
1835 * because the number of objects in the slab may have
1836 * changed.
1837 */
1838 redo:
1839
1840 old.freelist = page->freelist;
1841 old.counters = page->counters;
1842 VM_BUG_ON(!old.frozen);
1843
1844 /* Determine target state of the slab */
1845 new.counters = old.counters;
1846 if (freelist) {
1847 new.inuse--;
1848 set_freepointer(s, freelist, old.freelist);
1849 new.freelist = freelist;
1850 } else
1851 new.freelist = old.freelist;
1852
1853 new.frozen = 0;
1854
1855 if (!new.inuse && n->nr_partial > s->min_partial)
1856 m = M_FREE;
1857 else if (new.freelist) {
1858 m = M_PARTIAL;
1859 if (!lock) {
1860 lock = 1;
1861 /*
1862 * Taking the spinlock removes the possiblity
1863 * that acquire_slab() will see a slab page that
1864 * is frozen
1865 */
1866 spin_lock(&n->list_lock);
1867 }
1868 } else {
1869 m = M_FULL;
1870 if (kmem_cache_debug(s) && !lock) {
1871 lock = 1;
1872 /*
1873 * This also ensures that the scanning of full
1874 * slabs from diagnostic functions will not see
1875 * any frozen slabs.
1876 */
1877 spin_lock(&n->list_lock);
1878 }
1879 }
1880
1881 if (l != m) {
1882
1883 if (l == M_PARTIAL)
1884
1885 remove_partial(n, page);
1886
1887 else if (l == M_FULL)
1888
1889 remove_full(s, n, page);
1890
1891 if (m == M_PARTIAL) {
1892
1893 add_partial(n, page, tail);
1894 stat(s, tail);
1895
1896 } else if (m == M_FULL) {
1897
1898 stat(s, DEACTIVATE_FULL);
1899 add_full(s, n, page);
1900
1901 }
1902 }
1903
1904 l = m;
1905 if (!__cmpxchg_double_slab(s, page,
1906 old.freelist, old.counters,
1907 new.freelist, new.counters,
1908 "unfreezing slab"))
1909 goto redo;
1910
1911 if (lock)
1912 spin_unlock(&n->list_lock);
1913
1914 if (m == M_FREE) {
1915 stat(s, DEACTIVATE_EMPTY);
1916 discard_slab(s, page);
1917 stat(s, FREE_SLAB);
1918 }
1919 }
1920
1921 /*
1922 * Unfreeze all the cpu partial slabs.
1923 *
1924 * This function must be called with interrupts disabled
1925 * for the cpu using c (or some other guarantee must be there
1926 * to guarantee no concurrent accesses).
1927 */
1928 static void unfreeze_partials(struct kmem_cache *s,
1929 struct kmem_cache_cpu *c)
1930 {
1931 #ifdef CONFIG_SLUB_CPU_PARTIAL
1932 struct kmem_cache_node *n = NULL, *n2 = NULL;
1933 struct page *page, *discard_page = NULL;
1934
1935 while ((page = c->partial)) {
1936 struct page new;
1937 struct page old;
1938
1939 c->partial = page->next;
1940
1941 n2 = get_node(s, page_to_nid(page));
1942 if (n != n2) {
1943 if (n)
1944 spin_unlock(&n->list_lock);
1945
1946 n = n2;
1947 spin_lock(&n->list_lock);
1948 }
1949
1950 do {
1951
1952 old.freelist = page->freelist;
1953 old.counters = page->counters;
1954 VM_BUG_ON(!old.frozen);
1955
1956 new.counters = old.counters;
1957 new.freelist = old.freelist;
1958
1959 new.frozen = 0;
1960
1961 } while (!__cmpxchg_double_slab(s, page,
1962 old.freelist, old.counters,
1963 new.freelist, new.counters,
1964 "unfreezing slab"));
1965
1966 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1967 page->next = discard_page;
1968 discard_page = page;
1969 } else {
1970 add_partial(n, page, DEACTIVATE_TO_TAIL);
1971 stat(s, FREE_ADD_PARTIAL);
1972 }
1973 }
1974
1975 if (n)
1976 spin_unlock(&n->list_lock);
1977
1978 while (discard_page) {
1979 page = discard_page;
1980 discard_page = discard_page->next;
1981
1982 stat(s, DEACTIVATE_EMPTY);
1983 discard_slab(s, page);
1984 stat(s, FREE_SLAB);
1985 }
1986 #endif
1987 }
1988
1989 /*
1990 * Put a page that was just frozen (in __slab_free) into a partial page
1991 * slot if available. This is done without interrupts disabled and without
1992 * preemption disabled. The cmpxchg is racy and may put the partial page
1993 * onto a random cpus partial slot.
1994 *
1995 * If we did not find a slot then simply move all the partials to the
1996 * per node partial list.
1997 */
1998 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1999 {
2000 #ifdef CONFIG_SLUB_CPU_PARTIAL
2001 struct page *oldpage;
2002 int pages;
2003 int pobjects;
2004
2005 do {
2006 pages = 0;
2007 pobjects = 0;
2008 oldpage = this_cpu_read(s->cpu_slab->partial);
2009
2010 if (oldpage) {
2011 pobjects = oldpage->pobjects;
2012 pages = oldpage->pages;
2013 if (drain && pobjects > s->cpu_partial) {
2014 unsigned long flags;
2015 /*
2016 * partial array is full. Move the existing
2017 * set to the per node partial list.
2018 */
2019 local_irq_save(flags);
2020 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2021 local_irq_restore(flags);
2022 oldpage = NULL;
2023 pobjects = 0;
2024 pages = 0;
2025 stat(s, CPU_PARTIAL_DRAIN);
2026 }
2027 }
2028
2029 pages++;
2030 pobjects += page->objects - page->inuse;
2031
2032 page->pages = pages;
2033 page->pobjects = pobjects;
2034 page->next = oldpage;
2035
2036 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2037 != oldpage);
2038 #endif
2039 }
2040
2041 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2042 {
2043 stat(s, CPUSLAB_FLUSH);
2044 deactivate_slab(s, c->page, c->freelist);
2045
2046 c->tid = next_tid(c->tid);
2047 c->page = NULL;
2048 c->freelist = NULL;
2049 }
2050
2051 /*
2052 * Flush cpu slab.
2053 *
2054 * Called from IPI handler with interrupts disabled.
2055 */
2056 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2057 {
2058 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2059
2060 if (likely(c)) {
2061 if (c->page)
2062 flush_slab(s, c);
2063
2064 unfreeze_partials(s, c);
2065 }
2066 }
2067
2068 static void flush_cpu_slab(void *d)
2069 {
2070 struct kmem_cache *s = d;
2071
2072 __flush_cpu_slab(s, smp_processor_id());
2073 }
2074
2075 static bool has_cpu_slab(int cpu, void *info)
2076 {
2077 struct kmem_cache *s = info;
2078 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2079
2080 return c->page || c->partial;
2081 }
2082
2083 static void flush_all(struct kmem_cache *s)
2084 {
2085 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2086 }
2087
2088 /*
2089 * Check if the objects in a per cpu structure fit numa
2090 * locality expectations.
2091 */
2092 static inline int node_match(struct page *page, int node)
2093 {
2094 #ifdef CONFIG_NUMA
2095 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2096 return 0;
2097 #endif
2098 return 1;
2099 }
2100
2101 static int count_free(struct page *page)
2102 {
2103 return page->objects - page->inuse;
2104 }
2105
2106 static unsigned long count_partial(struct kmem_cache_node *n,
2107 int (*get_count)(struct page *))
2108 {
2109 unsigned long flags;
2110 unsigned long x = 0;
2111 struct page *page;
2112
2113 spin_lock_irqsave(&n->list_lock, flags);
2114 list_for_each_entry(page, &n->partial, lru)
2115 x += get_count(page);
2116 spin_unlock_irqrestore(&n->list_lock, flags);
2117 return x;
2118 }
2119
2120 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2121 {
2122 #ifdef CONFIG_SLUB_DEBUG
2123 return atomic_long_read(&n->total_objects);
2124 #else
2125 return 0;
2126 #endif
2127 }
2128
2129 static noinline void
2130 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2131 {
2132 int node;
2133
2134 printk(KERN_WARNING
2135 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2136 nid, gfpflags);
2137 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2138 "default order: %d, min order: %d\n", s->name, s->object_size,
2139 s->size, oo_order(s->oo), oo_order(s->min));
2140
2141 if (oo_order(s->min) > get_order(s->object_size))
2142 printk(KERN_WARNING " %s debugging increased min order, use "
2143 "slub_debug=O to disable.\n", s->name);
2144
2145 for_each_online_node(node) {
2146 struct kmem_cache_node *n = get_node(s, node);
2147 unsigned long nr_slabs;
2148 unsigned long nr_objs;
2149 unsigned long nr_free;
2150
2151 if (!n)
2152 continue;
2153
2154 nr_free = count_partial(n, count_free);
2155 nr_slabs = node_nr_slabs(n);
2156 nr_objs = node_nr_objs(n);
2157
2158 printk(KERN_WARNING
2159 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2160 node, nr_slabs, nr_objs, nr_free);
2161 }
2162 }
2163
2164 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2165 int node, struct kmem_cache_cpu **pc)
2166 {
2167 void *freelist;
2168 struct kmem_cache_cpu *c = *pc;
2169 struct page *page;
2170
2171 freelist = get_partial(s, flags, node, c);
2172
2173 if (freelist)
2174 return freelist;
2175
2176 page = new_slab(s, flags, node);
2177 if (page) {
2178 c = __this_cpu_ptr(s->cpu_slab);
2179 if (c->page)
2180 flush_slab(s, c);
2181
2182 /*
2183 * No other reference to the page yet so we can
2184 * muck around with it freely without cmpxchg
2185 */
2186 freelist = page->freelist;
2187 page->freelist = NULL;
2188
2189 stat(s, ALLOC_SLAB);
2190 c->page = page;
2191 *pc = c;
2192 } else
2193 freelist = NULL;
2194
2195 return freelist;
2196 }
2197
2198 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2199 {
2200 if (unlikely(PageSlabPfmemalloc(page)))
2201 return gfp_pfmemalloc_allowed(gfpflags);
2202
2203 return true;
2204 }
2205
2206 /*
2207 * Check the page->freelist of a page and either transfer the freelist to the
2208 * per cpu freelist or deactivate the page.
2209 *
2210 * The page is still frozen if the return value is not NULL.
2211 *
2212 * If this function returns NULL then the page has been unfrozen.
2213 *
2214 * This function must be called with interrupt disabled.
2215 */
2216 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2217 {
2218 struct page new;
2219 unsigned long counters;
2220 void *freelist;
2221
2222 do {
2223 freelist = page->freelist;
2224 counters = page->counters;
2225
2226 new.counters = counters;
2227 VM_BUG_ON(!new.frozen);
2228
2229 new.inuse = page->objects;
2230 new.frozen = freelist != NULL;
2231
2232 } while (!__cmpxchg_double_slab(s, page,
2233 freelist, counters,
2234 NULL, new.counters,
2235 "get_freelist"));
2236
2237 return freelist;
2238 }
2239
2240 /*
2241 * Slow path. The lockless freelist is empty or we need to perform
2242 * debugging duties.
2243 *
2244 * Processing is still very fast if new objects have been freed to the
2245 * regular freelist. In that case we simply take over the regular freelist
2246 * as the lockless freelist and zap the regular freelist.
2247 *
2248 * If that is not working then we fall back to the partial lists. We take the
2249 * first element of the freelist as the object to allocate now and move the
2250 * rest of the freelist to the lockless freelist.
2251 *
2252 * And if we were unable to get a new slab from the partial slab lists then
2253 * we need to allocate a new slab. This is the slowest path since it involves
2254 * a call to the page allocator and the setup of a new slab.
2255 */
2256 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2257 unsigned long addr, struct kmem_cache_cpu *c)
2258 {
2259 void *freelist;
2260 struct page *page;
2261 unsigned long flags;
2262
2263 local_irq_save(flags);
2264 #ifdef CONFIG_PREEMPT
2265 /*
2266 * We may have been preempted and rescheduled on a different
2267 * cpu before disabling interrupts. Need to reload cpu area
2268 * pointer.
2269 */
2270 c = this_cpu_ptr(s->cpu_slab);
2271 #endif
2272
2273 page = c->page;
2274 if (!page)
2275 goto new_slab;
2276 redo:
2277
2278 if (unlikely(!node_match(page, node))) {
2279 stat(s, ALLOC_NODE_MISMATCH);
2280 deactivate_slab(s, page, c->freelist);
2281 c->page = NULL;
2282 c->freelist = NULL;
2283 goto new_slab;
2284 }
2285
2286 /*
2287 * By rights, we should be searching for a slab page that was
2288 * PFMEMALLOC but right now, we are losing the pfmemalloc
2289 * information when the page leaves the per-cpu allocator
2290 */
2291 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2292 deactivate_slab(s, page, c->freelist);
2293 c->page = NULL;
2294 c->freelist = NULL;
2295 goto new_slab;
2296 }
2297
2298 /* must check again c->freelist in case of cpu migration or IRQ */
2299 freelist = c->freelist;
2300 if (freelist)
2301 goto load_freelist;
2302
2303 stat(s, ALLOC_SLOWPATH);
2304
2305 freelist = get_freelist(s, page);
2306
2307 if (!freelist) {
2308 c->page = NULL;
2309 stat(s, DEACTIVATE_BYPASS);
2310 goto new_slab;
2311 }
2312
2313 stat(s, ALLOC_REFILL);
2314
2315 load_freelist:
2316 /*
2317 * freelist is pointing to the list of objects to be used.
2318 * page is pointing to the page from which the objects are obtained.
2319 * That page must be frozen for per cpu allocations to work.
2320 */
2321 VM_BUG_ON(!c->page->frozen);
2322 c->freelist = get_freepointer(s, freelist);
2323 c->tid = next_tid(c->tid);
2324 local_irq_restore(flags);
2325 return freelist;
2326
2327 new_slab:
2328
2329 if (c->partial) {
2330 page = c->page = c->partial;
2331 c->partial = page->next;
2332 stat(s, CPU_PARTIAL_ALLOC);
2333 c->freelist = NULL;
2334 goto redo;
2335 }
2336
2337 freelist = new_slab_objects(s, gfpflags, node, &c);
2338
2339 if (unlikely(!freelist)) {
2340 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2341 slab_out_of_memory(s, gfpflags, node);
2342
2343 local_irq_restore(flags);
2344 return NULL;
2345 }
2346
2347 page = c->page;
2348 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2349 goto load_freelist;
2350
2351 /* Only entered in the debug case */
2352 if (kmem_cache_debug(s) &&
2353 !alloc_debug_processing(s, page, freelist, addr))
2354 goto new_slab; /* Slab failed checks. Next slab needed */
2355
2356 deactivate_slab(s, page, get_freepointer(s, freelist));
2357 c->page = NULL;
2358 c->freelist = NULL;
2359 local_irq_restore(flags);
2360 return freelist;
2361 }
2362
2363 /*
2364 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2365 * have the fastpath folded into their functions. So no function call
2366 * overhead for requests that can be satisfied on the fastpath.
2367 *
2368 * The fastpath works by first checking if the lockless freelist can be used.
2369 * If not then __slab_alloc is called for slow processing.
2370 *
2371 * Otherwise we can simply pick the next object from the lockless free list.
2372 */
2373 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2374 gfp_t gfpflags, int node, unsigned long addr)
2375 {
2376 void **object;
2377 struct kmem_cache_cpu *c;
2378 struct page *page;
2379 unsigned long tid;
2380
2381 if (slab_pre_alloc_hook(s, gfpflags))
2382 return NULL;
2383
2384 s = memcg_kmem_get_cache(s, gfpflags);
2385 redo:
2386 /*
2387 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2388 * enabled. We may switch back and forth between cpus while
2389 * reading from one cpu area. That does not matter as long
2390 * as we end up on the original cpu again when doing the cmpxchg.
2391 *
2392 * Preemption is disabled for the retrieval of the tid because that
2393 * must occur from the current processor. We cannot allow rescheduling
2394 * on a different processor between the determination of the pointer
2395 * and the retrieval of the tid.
2396 */
2397 preempt_disable();
2398 c = __this_cpu_ptr(s->cpu_slab);
2399
2400 /*
2401 * The transaction ids are globally unique per cpu and per operation on
2402 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2403 * occurs on the right processor and that there was no operation on the
2404 * linked list in between.
2405 */
2406 tid = c->tid;
2407 preempt_enable();
2408
2409 object = c->freelist;
2410 page = c->page;
2411 if (unlikely(!object || !node_match(page, node)))
2412 object = __slab_alloc(s, gfpflags, node, addr, c);
2413
2414 else {
2415 void *next_object = get_freepointer_safe(s, object);
2416
2417 /*
2418 * The cmpxchg will only match if there was no additional
2419 * operation and if we are on the right processor.
2420 *
2421 * The cmpxchg does the following atomically (without lock
2422 * semantics!)
2423 * 1. Relocate first pointer to the current per cpu area.
2424 * 2. Verify that tid and freelist have not been changed
2425 * 3. If they were not changed replace tid and freelist
2426 *
2427 * Since this is without lock semantics the protection is only
2428 * against code executing on this cpu *not* from access by
2429 * other cpus.
2430 */
2431 if (unlikely(!this_cpu_cmpxchg_double(
2432 s->cpu_slab->freelist, s->cpu_slab->tid,
2433 object, tid,
2434 next_object, next_tid(tid)))) {
2435
2436 note_cmpxchg_failure("slab_alloc", s, tid);
2437 goto redo;
2438 }
2439 prefetch_freepointer(s, next_object);
2440 stat(s, ALLOC_FASTPATH);
2441 }
2442
2443 if (unlikely(gfpflags & __GFP_ZERO) && object)
2444 memset(object, 0, s->object_size);
2445
2446 slab_post_alloc_hook(s, gfpflags, object);
2447
2448 return object;
2449 }
2450
2451 static __always_inline void *slab_alloc(struct kmem_cache *s,
2452 gfp_t gfpflags, unsigned long addr)
2453 {
2454 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2455 }
2456
2457 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2458 {
2459 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2460
2461 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2462 s->size, gfpflags);
2463
2464 return ret;
2465 }
2466 EXPORT_SYMBOL(kmem_cache_alloc);
2467
2468 #ifdef CONFIG_TRACING
2469 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2470 {
2471 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2472 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2473 return ret;
2474 }
2475 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2476 #endif
2477
2478 #ifdef CONFIG_NUMA
2479 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2480 {
2481 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2482
2483 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2484 s->object_size, s->size, gfpflags, node);
2485
2486 return ret;
2487 }
2488 EXPORT_SYMBOL(kmem_cache_alloc_node);
2489
2490 #ifdef CONFIG_TRACING
2491 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2492 gfp_t gfpflags,
2493 int node, size_t size)
2494 {
2495 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2496
2497 trace_kmalloc_node(_RET_IP_, ret,
2498 size, s->size, gfpflags, node);
2499 return ret;
2500 }
2501 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2502 #endif
2503 #endif
2504
2505 /*
2506 * Slow patch handling. This may still be called frequently since objects
2507 * have a longer lifetime than the cpu slabs in most processing loads.
2508 *
2509 * So we still attempt to reduce cache line usage. Just take the slab
2510 * lock and free the item. If there is no additional partial page
2511 * handling required then we can return immediately.
2512 */
2513 static void __slab_free(struct kmem_cache *s, struct page *page,
2514 void *x, unsigned long addr)
2515 {
2516 void *prior;
2517 void **object = (void *)x;
2518 int was_frozen;
2519 struct page new;
2520 unsigned long counters;
2521 struct kmem_cache_node *n = NULL;
2522 unsigned long uninitialized_var(flags);
2523
2524 stat(s, FREE_SLOWPATH);
2525
2526 if (kmem_cache_debug(s) &&
2527 !(n = free_debug_processing(s, page, x, addr, &flags)))
2528 return;
2529
2530 do {
2531 if (unlikely(n)) {
2532 spin_unlock_irqrestore(&n->list_lock, flags);
2533 n = NULL;
2534 }
2535 prior = page->freelist;
2536 counters = page->counters;
2537 set_freepointer(s, object, prior);
2538 new.counters = counters;
2539 was_frozen = new.frozen;
2540 new.inuse--;
2541 if ((!new.inuse || !prior) && !was_frozen) {
2542
2543 if (kmem_cache_has_cpu_partial(s) && !prior) {
2544
2545 /*
2546 * Slab was on no list before and will be
2547 * partially empty
2548 * We can defer the list move and instead
2549 * freeze it.
2550 */
2551 new.frozen = 1;
2552
2553 } else { /* Needs to be taken off a list */
2554
2555 n = get_node(s, page_to_nid(page));
2556 /*
2557 * Speculatively acquire the list_lock.
2558 * If the cmpxchg does not succeed then we may
2559 * drop the list_lock without any processing.
2560 *
2561 * Otherwise the list_lock will synchronize with
2562 * other processors updating the list of slabs.
2563 */
2564 spin_lock_irqsave(&n->list_lock, flags);
2565
2566 }
2567 }
2568
2569 } while (!cmpxchg_double_slab(s, page,
2570 prior, counters,
2571 object, new.counters,
2572 "__slab_free"));
2573
2574 if (likely(!n)) {
2575
2576 /*
2577 * If we just froze the page then put it onto the
2578 * per cpu partial list.
2579 */
2580 if (new.frozen && !was_frozen) {
2581 put_cpu_partial(s, page, 1);
2582 stat(s, CPU_PARTIAL_FREE);
2583 }
2584 /*
2585 * The list lock was not taken therefore no list
2586 * activity can be necessary.
2587 */
2588 if (was_frozen)
2589 stat(s, FREE_FROZEN);
2590 return;
2591 }
2592
2593 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2594 goto slab_empty;
2595
2596 /*
2597 * Objects left in the slab. If it was not on the partial list before
2598 * then add it.
2599 */
2600 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2601 if (kmem_cache_debug(s))
2602 remove_full(s, n, page);
2603 add_partial(n, page, DEACTIVATE_TO_TAIL);
2604 stat(s, FREE_ADD_PARTIAL);
2605 }
2606 spin_unlock_irqrestore(&n->list_lock, flags);
2607 return;
2608
2609 slab_empty:
2610 if (prior) {
2611 /*
2612 * Slab on the partial list.
2613 */
2614 remove_partial(n, page);
2615 stat(s, FREE_REMOVE_PARTIAL);
2616 } else {
2617 /* Slab must be on the full list */
2618 remove_full(s, n, page);
2619 }
2620
2621 spin_unlock_irqrestore(&n->list_lock, flags);
2622 stat(s, FREE_SLAB);
2623 discard_slab(s, page);
2624 }
2625
2626 /*
2627 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2628 * can perform fastpath freeing without additional function calls.
2629 *
2630 * The fastpath is only possible if we are freeing to the current cpu slab
2631 * of this processor. This typically the case if we have just allocated
2632 * the item before.
2633 *
2634 * If fastpath is not possible then fall back to __slab_free where we deal
2635 * with all sorts of special processing.
2636 */
2637 static __always_inline void slab_free(struct kmem_cache *s,
2638 struct page *page, void *x, unsigned long addr)
2639 {
2640 void **object = (void *)x;
2641 struct kmem_cache_cpu *c;
2642 unsigned long tid;
2643
2644 slab_free_hook(s, x);
2645
2646 redo:
2647 /*
2648 * Determine the currently cpus per cpu slab.
2649 * The cpu may change afterward. However that does not matter since
2650 * data is retrieved via this pointer. If we are on the same cpu
2651 * during the cmpxchg then the free will succedd.
2652 */
2653 preempt_disable();
2654 c = __this_cpu_ptr(s->cpu_slab);
2655
2656 tid = c->tid;
2657 preempt_enable();
2658
2659 if (likely(page == c->page)) {
2660 set_freepointer(s, object, c->freelist);
2661
2662 if (unlikely(!this_cpu_cmpxchg_double(
2663 s->cpu_slab->freelist, s->cpu_slab->tid,
2664 c->freelist, tid,
2665 object, next_tid(tid)))) {
2666
2667 note_cmpxchg_failure("slab_free", s, tid);
2668 goto redo;
2669 }
2670 stat(s, FREE_FASTPATH);
2671 } else
2672 __slab_free(s, page, x, addr);
2673
2674 }
2675
2676 void kmem_cache_free(struct kmem_cache *s, void *x)
2677 {
2678 s = cache_from_obj(s, x);
2679 if (!s)
2680 return;
2681 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2682 trace_kmem_cache_free(_RET_IP_, x);
2683 }
2684 EXPORT_SYMBOL(kmem_cache_free);
2685
2686 /*
2687 * Object placement in a slab is made very easy because we always start at
2688 * offset 0. If we tune the size of the object to the alignment then we can
2689 * get the required alignment by putting one properly sized object after
2690 * another.
2691 *
2692 * Notice that the allocation order determines the sizes of the per cpu
2693 * caches. Each processor has always one slab available for allocations.
2694 * Increasing the allocation order reduces the number of times that slabs
2695 * must be moved on and off the partial lists and is therefore a factor in
2696 * locking overhead.
2697 */
2698
2699 /*
2700 * Mininum / Maximum order of slab pages. This influences locking overhead
2701 * and slab fragmentation. A higher order reduces the number of partial slabs
2702 * and increases the number of allocations possible without having to
2703 * take the list_lock.
2704 */
2705 static int slub_min_order;
2706 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2707 static int slub_min_objects;
2708
2709 /*
2710 * Merge control. If this is set then no merging of slab caches will occur.
2711 * (Could be removed. This was introduced to pacify the merge skeptics.)
2712 */
2713 static int slub_nomerge;
2714
2715 /*
2716 * Calculate the order of allocation given an slab object size.
2717 *
2718 * The order of allocation has significant impact on performance and other
2719 * system components. Generally order 0 allocations should be preferred since
2720 * order 0 does not cause fragmentation in the page allocator. Larger objects
2721 * be problematic to put into order 0 slabs because there may be too much
2722 * unused space left. We go to a higher order if more than 1/16th of the slab
2723 * would be wasted.
2724 *
2725 * In order to reach satisfactory performance we must ensure that a minimum
2726 * number of objects is in one slab. Otherwise we may generate too much
2727 * activity on the partial lists which requires taking the list_lock. This is
2728 * less a concern for large slabs though which are rarely used.
2729 *
2730 * slub_max_order specifies the order where we begin to stop considering the
2731 * number of objects in a slab as critical. If we reach slub_max_order then
2732 * we try to keep the page order as low as possible. So we accept more waste
2733 * of space in favor of a small page order.
2734 *
2735 * Higher order allocations also allow the placement of more objects in a
2736 * slab and thereby reduce object handling overhead. If the user has
2737 * requested a higher mininum order then we start with that one instead of
2738 * the smallest order which will fit the object.
2739 */
2740 static inline int slab_order(int size, int min_objects,
2741 int max_order, int fract_leftover, int reserved)
2742 {
2743 int order;
2744 int rem;
2745 int min_order = slub_min_order;
2746
2747 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2748 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2749
2750 for (order = max(min_order,
2751 fls(min_objects * size - 1) - PAGE_SHIFT);
2752 order <= max_order; order++) {
2753
2754 unsigned long slab_size = PAGE_SIZE << order;
2755
2756 if (slab_size < min_objects * size + reserved)
2757 continue;
2758
2759 rem = (slab_size - reserved) % size;
2760
2761 if (rem <= slab_size / fract_leftover)
2762 break;
2763
2764 }
2765
2766 return order;
2767 }
2768
2769 static inline int calculate_order(int size, int reserved)
2770 {
2771 int order;
2772 int min_objects;
2773 int fraction;
2774 int max_objects;
2775
2776 /*
2777 * Attempt to find best configuration for a slab. This
2778 * works by first attempting to generate a layout with
2779 * the best configuration and backing off gradually.
2780 *
2781 * First we reduce the acceptable waste in a slab. Then
2782 * we reduce the minimum objects required in a slab.
2783 */
2784 min_objects = slub_min_objects;
2785 if (!min_objects)
2786 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2787 max_objects = order_objects(slub_max_order, size, reserved);
2788 min_objects = min(min_objects, max_objects);
2789
2790 while (min_objects > 1) {
2791 fraction = 16;
2792 while (fraction >= 4) {
2793 order = slab_order(size, min_objects,
2794 slub_max_order, fraction, reserved);
2795 if (order <= slub_max_order)
2796 return order;
2797 fraction /= 2;
2798 }
2799 min_objects--;
2800 }
2801
2802 /*
2803 * We were unable to place multiple objects in a slab. Now
2804 * lets see if we can place a single object there.
2805 */
2806 order = slab_order(size, 1, slub_max_order, 1, reserved);
2807 if (order <= slub_max_order)
2808 return order;
2809
2810 /*
2811 * Doh this slab cannot be placed using slub_max_order.
2812 */
2813 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2814 if (order < MAX_ORDER)
2815 return order;
2816 return -ENOSYS;
2817 }
2818
2819 static void
2820 init_kmem_cache_node(struct kmem_cache_node *n)
2821 {
2822 n->nr_partial = 0;
2823 spin_lock_init(&n->list_lock);
2824 INIT_LIST_HEAD(&n->partial);
2825 #ifdef CONFIG_SLUB_DEBUG
2826 atomic_long_set(&n->nr_slabs, 0);
2827 atomic_long_set(&n->total_objects, 0);
2828 INIT_LIST_HEAD(&n->full);
2829 #endif
2830 }
2831
2832 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2833 {
2834 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2835 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2836
2837 /*
2838 * Must align to double word boundary for the double cmpxchg
2839 * instructions to work; see __pcpu_double_call_return_bool().
2840 */
2841 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2842 2 * sizeof(void *));
2843
2844 if (!s->cpu_slab)
2845 return 0;
2846
2847 init_kmem_cache_cpus(s);
2848
2849 return 1;
2850 }
2851
2852 static struct kmem_cache *kmem_cache_node;
2853
2854 /*
2855 * No kmalloc_node yet so do it by hand. We know that this is the first
2856 * slab on the node for this slabcache. There are no concurrent accesses
2857 * possible.
2858 *
2859 * Note that this function only works on the kmem_cache_node
2860 * when allocating for the kmem_cache_node. This is used for bootstrapping
2861 * memory on a fresh node that has no slab structures yet.
2862 */
2863 static void early_kmem_cache_node_alloc(int node)
2864 {
2865 struct page *page;
2866 struct kmem_cache_node *n;
2867
2868 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2869
2870 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2871
2872 BUG_ON(!page);
2873 if (page_to_nid(page) != node) {
2874 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2875 "node %d\n", node);
2876 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2877 "in order to be able to continue\n");
2878 }
2879
2880 n = page->freelist;
2881 BUG_ON(!n);
2882 page->freelist = get_freepointer(kmem_cache_node, n);
2883 page->inuse = 1;
2884 page->frozen = 0;
2885 kmem_cache_node->node[node] = n;
2886 #ifdef CONFIG_SLUB_DEBUG
2887 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2888 init_tracking(kmem_cache_node, n);
2889 #endif
2890 init_kmem_cache_node(n);
2891 inc_slabs_node(kmem_cache_node, node, page->objects);
2892
2893 /*
2894 * the lock is for lockdep's sake, not for any actual
2895 * race protection
2896 */
2897 spin_lock(&n->list_lock);
2898 add_partial(n, page, DEACTIVATE_TO_HEAD);
2899 spin_unlock(&n->list_lock);
2900 }
2901
2902 static void free_kmem_cache_nodes(struct kmem_cache *s)
2903 {
2904 int node;
2905
2906 for_each_node_state(node, N_NORMAL_MEMORY) {
2907 struct kmem_cache_node *n = s->node[node];
2908
2909 if (n)
2910 kmem_cache_free(kmem_cache_node, n);
2911
2912 s->node[node] = NULL;
2913 }
2914 }
2915
2916 static int init_kmem_cache_nodes(struct kmem_cache *s)
2917 {
2918 int node;
2919
2920 for_each_node_state(node, N_NORMAL_MEMORY) {
2921 struct kmem_cache_node *n;
2922
2923 if (slab_state == DOWN) {
2924 early_kmem_cache_node_alloc(node);
2925 continue;
2926 }
2927 n = kmem_cache_alloc_node(kmem_cache_node,
2928 GFP_KERNEL, node);
2929
2930 if (!n) {
2931 free_kmem_cache_nodes(s);
2932 return 0;
2933 }
2934
2935 s->node[node] = n;
2936 init_kmem_cache_node(n);
2937 }
2938 return 1;
2939 }
2940
2941 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2942 {
2943 if (min < MIN_PARTIAL)
2944 min = MIN_PARTIAL;
2945 else if (min > MAX_PARTIAL)
2946 min = MAX_PARTIAL;
2947 s->min_partial = min;
2948 }
2949
2950 /*
2951 * calculate_sizes() determines the order and the distribution of data within
2952 * a slab object.
2953 */
2954 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2955 {
2956 unsigned long flags = s->flags;
2957 unsigned long size = s->object_size;
2958 int order;
2959
2960 /*
2961 * Round up object size to the next word boundary. We can only
2962 * place the free pointer at word boundaries and this determines
2963 * the possible location of the free pointer.
2964 */
2965 size = ALIGN(size, sizeof(void *));
2966
2967 #ifdef CONFIG_SLUB_DEBUG
2968 /*
2969 * Determine if we can poison the object itself. If the user of
2970 * the slab may touch the object after free or before allocation
2971 * then we should never poison the object itself.
2972 */
2973 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2974 !s->ctor)
2975 s->flags |= __OBJECT_POISON;
2976 else
2977 s->flags &= ~__OBJECT_POISON;
2978
2979
2980 /*
2981 * If we are Redzoning then check if there is some space between the
2982 * end of the object and the free pointer. If not then add an
2983 * additional word to have some bytes to store Redzone information.
2984 */
2985 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2986 size += sizeof(void *);
2987 #endif
2988
2989 /*
2990 * With that we have determined the number of bytes in actual use
2991 * by the object. This is the potential offset to the free pointer.
2992 */
2993 s->inuse = size;
2994
2995 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2996 s->ctor)) {
2997 /*
2998 * Relocate free pointer after the object if it is not
2999 * permitted to overwrite the first word of the object on
3000 * kmem_cache_free.
3001 *
3002 * This is the case if we do RCU, have a constructor or
3003 * destructor or are poisoning the objects.
3004 */
3005 s->offset = size;
3006 size += sizeof(void *);
3007 }
3008
3009 #ifdef CONFIG_SLUB_DEBUG
3010 if (flags & SLAB_STORE_USER)
3011 /*
3012 * Need to store information about allocs and frees after
3013 * the object.
3014 */
3015 size += 2 * sizeof(struct track);
3016
3017 if (flags & SLAB_RED_ZONE)
3018 /*
3019 * Add some empty padding so that we can catch
3020 * overwrites from earlier objects rather than let
3021 * tracking information or the free pointer be
3022 * corrupted if a user writes before the start
3023 * of the object.
3024 */
3025 size += sizeof(void *);
3026 #endif
3027
3028 /*
3029 * SLUB stores one object immediately after another beginning from
3030 * offset 0. In order to align the objects we have to simply size
3031 * each object to conform to the alignment.
3032 */
3033 size = ALIGN(size, s->align);
3034 s->size = size;
3035 if (forced_order >= 0)
3036 order = forced_order;
3037 else
3038 order = calculate_order(size, s->reserved);
3039
3040 if (order < 0)
3041 return 0;
3042
3043 s->allocflags = 0;
3044 if (order)
3045 s->allocflags |= __GFP_COMP;
3046
3047 if (s->flags & SLAB_CACHE_DMA)
3048 s->allocflags |= GFP_DMA;
3049
3050 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3051 s->allocflags |= __GFP_RECLAIMABLE;
3052
3053 /*
3054 * Determine the number of objects per slab
3055 */
3056 s->oo = oo_make(order, size, s->reserved);
3057 s->min = oo_make(get_order(size), size, s->reserved);
3058 if (oo_objects(s->oo) > oo_objects(s->max))
3059 s->max = s->oo;
3060
3061 return !!oo_objects(s->oo);
3062 }
3063
3064 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3065 {
3066 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3067 s->reserved = 0;
3068
3069 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3070 s->reserved = sizeof(struct rcu_head);
3071
3072 if (!calculate_sizes(s, -1))
3073 goto error;
3074 if (disable_higher_order_debug) {
3075 /*
3076 * Disable debugging flags that store metadata if the min slab
3077 * order increased.
3078 */
3079 if (get_order(s->size) > get_order(s->object_size)) {
3080 s->flags &= ~DEBUG_METADATA_FLAGS;
3081 s->offset = 0;
3082 if (!calculate_sizes(s, -1))
3083 goto error;
3084 }
3085 }
3086
3087 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3088 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3089 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3090 /* Enable fast mode */
3091 s->flags |= __CMPXCHG_DOUBLE;
3092 #endif
3093
3094 /*
3095 * The larger the object size is, the more pages we want on the partial
3096 * list to avoid pounding the page allocator excessively.
3097 */
3098 set_min_partial(s, ilog2(s->size) / 2);
3099
3100 /*
3101 * cpu_partial determined the maximum number of objects kept in the
3102 * per cpu partial lists of a processor.
3103 *
3104 * Per cpu partial lists mainly contain slabs that just have one
3105 * object freed. If they are used for allocation then they can be
3106 * filled up again with minimal effort. The slab will never hit the
3107 * per node partial lists and therefore no locking will be required.
3108 *
3109 * This setting also determines
3110 *
3111 * A) The number of objects from per cpu partial slabs dumped to the
3112 * per node list when we reach the limit.
3113 * B) The number of objects in cpu partial slabs to extract from the
3114 * per node list when we run out of per cpu objects. We only fetch
3115 * 50% to keep some capacity around for frees.
3116 */
3117 if (!kmem_cache_has_cpu_partial(s))
3118 s->cpu_partial = 0;
3119 else if (s->size >= PAGE_SIZE)
3120 s->cpu_partial = 2;
3121 else if (s->size >= 1024)
3122 s->cpu_partial = 6;
3123 else if (s->size >= 256)
3124 s->cpu_partial = 13;
3125 else
3126 s->cpu_partial = 30;
3127
3128 #ifdef CONFIG_NUMA
3129 s->remote_node_defrag_ratio = 1000;
3130 #endif
3131 if (!init_kmem_cache_nodes(s))
3132 goto error;
3133
3134 if (alloc_kmem_cache_cpus(s))
3135 return 0;
3136
3137 free_kmem_cache_nodes(s);
3138 error:
3139 if (flags & SLAB_PANIC)
3140 panic("Cannot create slab %s size=%lu realsize=%u "
3141 "order=%u offset=%u flags=%lx\n",
3142 s->name, (unsigned long)s->size, s->size,
3143 oo_order(s->oo), s->offset, flags);
3144 return -EINVAL;
3145 }
3146
3147 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3148 const char *text)
3149 {
3150 #ifdef CONFIG_SLUB_DEBUG
3151 void *addr = page_address(page);
3152 void *p;
3153 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3154 sizeof(long), GFP_ATOMIC);
3155 if (!map)
3156 return;
3157 slab_err(s, page, text, s->name);
3158 slab_lock(page);
3159
3160 get_map(s, page, map);
3161 for_each_object(p, s, addr, page->objects) {
3162
3163 if (!test_bit(slab_index(p, s, addr), map)) {
3164 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3165 p, p - addr);
3166 print_tracking(s, p);
3167 }
3168 }
3169 slab_unlock(page);
3170 kfree(map);
3171 #endif
3172 }
3173
3174 /*
3175 * Attempt to free all partial slabs on a node.
3176 * This is called from kmem_cache_close(). We must be the last thread
3177 * using the cache and therefore we do not need to lock anymore.
3178 */
3179 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3180 {
3181 struct page *page, *h;
3182
3183 list_for_each_entry_safe(page, h, &n->partial, lru) {
3184 if (!page->inuse) {
3185 remove_partial(n, page);
3186 discard_slab(s, page);
3187 } else {
3188 list_slab_objects(s, page,
3189 "Objects remaining in %s on kmem_cache_close()");
3190 }
3191 }
3192 }
3193
3194 /*
3195 * Release all resources used by a slab cache.
3196 */
3197 static inline int kmem_cache_close(struct kmem_cache *s)
3198 {
3199 int node;
3200
3201 flush_all(s);
3202 /* Attempt to free all objects */
3203 for_each_node_state(node, N_NORMAL_MEMORY) {
3204 struct kmem_cache_node *n = get_node(s, node);
3205
3206 free_partial(s, n);
3207 if (n->nr_partial || slabs_node(s, node))
3208 return 1;
3209 }
3210 free_percpu(s->cpu_slab);
3211 free_kmem_cache_nodes(s);
3212 return 0;
3213 }
3214
3215 int __kmem_cache_shutdown(struct kmem_cache *s)
3216 {
3217 int rc = kmem_cache_close(s);
3218
3219 if (!rc) {
3220 /*
3221 * We do the same lock strategy around sysfs_slab_add, see
3222 * __kmem_cache_create. Because this is pretty much the last
3223 * operation we do and the lock will be released shortly after
3224 * that in slab_common.c, we could just move sysfs_slab_remove
3225 * to a later point in common code. We should do that when we
3226 * have a common sysfs framework for all allocators.
3227 */
3228 mutex_unlock(&slab_mutex);
3229 sysfs_slab_remove(s);
3230 mutex_lock(&slab_mutex);
3231 }
3232
3233 return rc;
3234 }
3235
3236 /********************************************************************
3237 * Kmalloc subsystem
3238 *******************************************************************/
3239
3240 static int __init setup_slub_min_order(char *str)
3241 {
3242 get_option(&str, &slub_min_order);
3243
3244 return 1;
3245 }
3246
3247 __setup("slub_min_order=", setup_slub_min_order);
3248
3249 static int __init setup_slub_max_order(char *str)
3250 {
3251 get_option(&str, &slub_max_order);
3252 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3253
3254 return 1;
3255 }
3256
3257 __setup("slub_max_order=", setup_slub_max_order);
3258
3259 static int __init setup_slub_min_objects(char *str)
3260 {
3261 get_option(&str, &slub_min_objects);
3262
3263 return 1;
3264 }
3265
3266 __setup("slub_min_objects=", setup_slub_min_objects);
3267
3268 static int __init setup_slub_nomerge(char *str)
3269 {
3270 slub_nomerge = 1;
3271 return 1;
3272 }
3273
3274 __setup("slub_nomerge", setup_slub_nomerge);
3275
3276 void *__kmalloc(size_t size, gfp_t flags)
3277 {
3278 struct kmem_cache *s;
3279 void *ret;
3280
3281 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3282 return kmalloc_large(size, flags);
3283
3284 s = kmalloc_slab(size, flags);
3285
3286 if (unlikely(ZERO_OR_NULL_PTR(s)))
3287 return s;
3288
3289 ret = slab_alloc(s, flags, _RET_IP_);
3290
3291 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3292
3293 return ret;
3294 }
3295 EXPORT_SYMBOL(__kmalloc);
3296
3297 #ifdef CONFIG_NUMA
3298 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3299 {
3300 struct page *page;
3301 void *ptr = NULL;
3302
3303 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3304 page = alloc_pages_node(node, flags, get_order(size));
3305 if (page)
3306 ptr = page_address(page);
3307
3308 kmalloc_large_node_hook(ptr, size, flags);
3309 return ptr;
3310 }
3311
3312 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3313 {
3314 struct kmem_cache *s;
3315 void *ret;
3316
3317 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3318 ret = kmalloc_large_node(size, flags, node);
3319
3320 trace_kmalloc_node(_RET_IP_, ret,
3321 size, PAGE_SIZE << get_order(size),
3322 flags, node);
3323
3324 return ret;
3325 }
3326
3327 s = kmalloc_slab(size, flags);
3328
3329 if (unlikely(ZERO_OR_NULL_PTR(s)))
3330 return s;
3331
3332 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3333
3334 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3335
3336 return ret;
3337 }
3338 EXPORT_SYMBOL(__kmalloc_node);
3339 #endif
3340
3341 size_t ksize(const void *object)
3342 {
3343 struct page *page;
3344
3345 if (unlikely(object == ZERO_SIZE_PTR))
3346 return 0;
3347
3348 page = virt_to_head_page(object);
3349
3350 if (unlikely(!PageSlab(page))) {
3351 WARN_ON(!PageCompound(page));
3352 return PAGE_SIZE << compound_order(page);
3353 }
3354
3355 return slab_ksize(page->slab_cache);
3356 }
3357 EXPORT_SYMBOL(ksize);
3358
3359 void kfree(const void *x)
3360 {
3361 struct page *page;
3362 void *object = (void *)x;
3363
3364 trace_kfree(_RET_IP_, x);
3365
3366 if (unlikely(ZERO_OR_NULL_PTR(x)))
3367 return;
3368
3369 page = virt_to_head_page(x);
3370 if (unlikely(!PageSlab(page))) {
3371 BUG_ON(!PageCompound(page));
3372 kfree_hook(x);
3373 __free_memcg_kmem_pages(page, compound_order(page));
3374 return;
3375 }
3376 slab_free(page->slab_cache, page, object, _RET_IP_);
3377 }
3378 EXPORT_SYMBOL(kfree);
3379
3380 /*
3381 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3382 * the remaining slabs by the number of items in use. The slabs with the
3383 * most items in use come first. New allocations will then fill those up
3384 * and thus they can be removed from the partial lists.
3385 *
3386 * The slabs with the least items are placed last. This results in them
3387 * being allocated from last increasing the chance that the last objects
3388 * are freed in them.
3389 */
3390 int kmem_cache_shrink(struct kmem_cache *s)
3391 {
3392 int node;
3393 int i;
3394 struct kmem_cache_node *n;
3395 struct page *page;
3396 struct page *t;
3397 int objects = oo_objects(s->max);
3398 struct list_head *slabs_by_inuse =
3399 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3400 unsigned long flags;
3401
3402 if (!slabs_by_inuse)
3403 return -ENOMEM;
3404
3405 flush_all(s);
3406 for_each_node_state(node, N_NORMAL_MEMORY) {
3407 n = get_node(s, node);
3408
3409 if (!n->nr_partial)
3410 continue;
3411
3412 for (i = 0; i < objects; i++)
3413 INIT_LIST_HEAD(slabs_by_inuse + i);
3414
3415 spin_lock_irqsave(&n->list_lock, flags);
3416
3417 /*
3418 * Build lists indexed by the items in use in each slab.
3419 *
3420 * Note that concurrent frees may occur while we hold the
3421 * list_lock. page->inuse here is the upper limit.
3422 */
3423 list_for_each_entry_safe(page, t, &n->partial, lru) {
3424 list_move(&page->lru, slabs_by_inuse + page->inuse);
3425 if (!page->inuse)
3426 n->nr_partial--;
3427 }
3428
3429 /*
3430 * Rebuild the partial list with the slabs filled up most
3431 * first and the least used slabs at the end.
3432 */
3433 for (i = objects - 1; i > 0; i--)
3434 list_splice(slabs_by_inuse + i, n->partial.prev);
3435
3436 spin_unlock_irqrestore(&n->list_lock, flags);
3437
3438 /* Release empty slabs */
3439 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3440 discard_slab(s, page);
3441 }
3442
3443 kfree(slabs_by_inuse);
3444 return 0;
3445 }
3446 EXPORT_SYMBOL(kmem_cache_shrink);
3447
3448 static int slab_mem_going_offline_callback(void *arg)
3449 {
3450 struct kmem_cache *s;
3451
3452 mutex_lock(&slab_mutex);
3453 list_for_each_entry(s, &slab_caches, list)
3454 kmem_cache_shrink(s);
3455 mutex_unlock(&slab_mutex);
3456
3457 return 0;
3458 }
3459
3460 static void slab_mem_offline_callback(void *arg)
3461 {
3462 struct kmem_cache_node *n;
3463 struct kmem_cache *s;
3464 struct memory_notify *marg = arg;
3465 int offline_node;
3466
3467 offline_node = marg->status_change_nid_normal;
3468
3469 /*
3470 * If the node still has available memory. we need kmem_cache_node
3471 * for it yet.
3472 */
3473 if (offline_node < 0)
3474 return;
3475
3476 mutex_lock(&slab_mutex);
3477 list_for_each_entry(s, &slab_caches, list) {
3478 n = get_node(s, offline_node);
3479 if (n) {
3480 /*
3481 * if n->nr_slabs > 0, slabs still exist on the node
3482 * that is going down. We were unable to free them,
3483 * and offline_pages() function shouldn't call this
3484 * callback. So, we must fail.
3485 */
3486 BUG_ON(slabs_node(s, offline_node));
3487
3488 s->node[offline_node] = NULL;
3489 kmem_cache_free(kmem_cache_node, n);
3490 }
3491 }
3492 mutex_unlock(&slab_mutex);
3493 }
3494
3495 static int slab_mem_going_online_callback(void *arg)
3496 {
3497 struct kmem_cache_node *n;
3498 struct kmem_cache *s;
3499 struct memory_notify *marg = arg;
3500 int nid = marg->status_change_nid_normal;
3501 int ret = 0;
3502
3503 /*
3504 * If the node's memory is already available, then kmem_cache_node is
3505 * already created. Nothing to do.
3506 */
3507 if (nid < 0)
3508 return 0;
3509
3510 /*
3511 * We are bringing a node online. No memory is available yet. We must
3512 * allocate a kmem_cache_node structure in order to bring the node
3513 * online.
3514 */
3515 mutex_lock(&slab_mutex);
3516 list_for_each_entry(s, &slab_caches, list) {
3517 /*
3518 * XXX: kmem_cache_alloc_node will fallback to other nodes
3519 * since memory is not yet available from the node that
3520 * is brought up.
3521 */
3522 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3523 if (!n) {
3524 ret = -ENOMEM;
3525 goto out;
3526 }
3527 init_kmem_cache_node(n);
3528 s->node[nid] = n;
3529 }
3530 out:
3531 mutex_unlock(&slab_mutex);
3532 return ret;
3533 }
3534
3535 static int slab_memory_callback(struct notifier_block *self,
3536 unsigned long action, void *arg)
3537 {
3538 int ret = 0;
3539
3540 switch (action) {
3541 case MEM_GOING_ONLINE:
3542 ret = slab_mem_going_online_callback(arg);
3543 break;
3544 case MEM_GOING_OFFLINE:
3545 ret = slab_mem_going_offline_callback(arg);
3546 break;
3547 case MEM_OFFLINE:
3548 case MEM_CANCEL_ONLINE:
3549 slab_mem_offline_callback(arg);
3550 break;
3551 case MEM_ONLINE:
3552 case MEM_CANCEL_OFFLINE:
3553 break;
3554 }
3555 if (ret)
3556 ret = notifier_from_errno(ret);
3557 else
3558 ret = NOTIFY_OK;
3559 return ret;
3560 }
3561
3562 static struct notifier_block slab_memory_callback_nb = {
3563 .notifier_call = slab_memory_callback,
3564 .priority = SLAB_CALLBACK_PRI,
3565 };
3566
3567 /********************************************************************
3568 * Basic setup of slabs
3569 *******************************************************************/
3570
3571 /*
3572 * Used for early kmem_cache structures that were allocated using
3573 * the page allocator. Allocate them properly then fix up the pointers
3574 * that may be pointing to the wrong kmem_cache structure.
3575 */
3576
3577 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3578 {
3579 int node;
3580 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3581
3582 memcpy(s, static_cache, kmem_cache->object_size);
3583
3584 /*
3585 * This runs very early, and only the boot processor is supposed to be
3586 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3587 * IPIs around.
3588 */
3589 __flush_cpu_slab(s, smp_processor_id());
3590 for_each_node_state(node, N_NORMAL_MEMORY) {
3591 struct kmem_cache_node *n = get_node(s, node);
3592 struct page *p;
3593
3594 if (n) {
3595 list_for_each_entry(p, &n->partial, lru)
3596 p->slab_cache = s;
3597
3598 #ifdef CONFIG_SLUB_DEBUG
3599 list_for_each_entry(p, &n->full, lru)
3600 p->slab_cache = s;
3601 #endif
3602 }
3603 }
3604 list_add(&s->list, &slab_caches);
3605 return s;
3606 }
3607
3608 void __init kmem_cache_init(void)
3609 {
3610 static __initdata struct kmem_cache boot_kmem_cache,
3611 boot_kmem_cache_node;
3612
3613 if (debug_guardpage_minorder())
3614 slub_max_order = 0;
3615
3616 kmem_cache_node = &boot_kmem_cache_node;
3617 kmem_cache = &boot_kmem_cache;
3618
3619 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3620 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3621
3622 register_hotmemory_notifier(&slab_memory_callback_nb);
3623
3624 /* Able to allocate the per node structures */
3625 slab_state = PARTIAL;
3626
3627 create_boot_cache(kmem_cache, "kmem_cache",
3628 offsetof(struct kmem_cache, node) +
3629 nr_node_ids * sizeof(struct kmem_cache_node *),
3630 SLAB_HWCACHE_ALIGN);
3631
3632 kmem_cache = bootstrap(&boot_kmem_cache);
3633
3634 /*
3635 * Allocate kmem_cache_node properly from the kmem_cache slab.
3636 * kmem_cache_node is separately allocated so no need to
3637 * update any list pointers.
3638 */
3639 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3640
3641 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3642 create_kmalloc_caches(0);
3643
3644 #ifdef CONFIG_SMP
3645 register_cpu_notifier(&slab_notifier);
3646 #endif
3647
3648 printk(KERN_INFO
3649 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3650 " CPUs=%d, Nodes=%d\n",
3651 cache_line_size(),
3652 slub_min_order, slub_max_order, slub_min_objects,
3653 nr_cpu_ids, nr_node_ids);
3654 }
3655
3656 void __init kmem_cache_init_late(void)
3657 {
3658 }
3659
3660 /*
3661 * Find a mergeable slab cache
3662 */
3663 static int slab_unmergeable(struct kmem_cache *s)
3664 {
3665 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3666 return 1;
3667
3668 if (s->ctor)
3669 return 1;
3670
3671 /*
3672 * We may have set a slab to be unmergeable during bootstrap.
3673 */
3674 if (s->refcount < 0)
3675 return 1;
3676
3677 return 0;
3678 }
3679
3680 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3681 size_t align, unsigned long flags, const char *name,
3682 void (*ctor)(void *))
3683 {
3684 struct kmem_cache *s;
3685
3686 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3687 return NULL;
3688
3689 if (ctor)
3690 return NULL;
3691
3692 size = ALIGN(size, sizeof(void *));
3693 align = calculate_alignment(flags, align, size);
3694 size = ALIGN(size, align);
3695 flags = kmem_cache_flags(size, flags, name, NULL);
3696
3697 list_for_each_entry(s, &slab_caches, list) {
3698 if (slab_unmergeable(s))
3699 continue;
3700
3701 if (size > s->size)
3702 continue;
3703
3704 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3705 continue;
3706 /*
3707 * Check if alignment is compatible.
3708 * Courtesy of Adrian Drzewiecki
3709 */
3710 if ((s->size & ~(align - 1)) != s->size)
3711 continue;
3712
3713 if (s->size - size >= sizeof(void *))
3714 continue;
3715
3716 if (!cache_match_memcg(s, memcg))
3717 continue;
3718
3719 return s;
3720 }
3721 return NULL;
3722 }
3723
3724 struct kmem_cache *
3725 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3726 size_t align, unsigned long flags, void (*ctor)(void *))
3727 {
3728 struct kmem_cache *s;
3729
3730 s = find_mergeable(memcg, size, align, flags, name, ctor);
3731 if (s) {
3732 s->refcount++;
3733 /*
3734 * Adjust the object sizes so that we clear
3735 * the complete object on kzalloc.
3736 */
3737 s->object_size = max(s->object_size, (int)size);
3738 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3739
3740 if (sysfs_slab_alias(s, name)) {
3741 s->refcount--;
3742 s = NULL;
3743 }
3744 }
3745
3746 return s;
3747 }
3748
3749 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3750 {
3751 int err;
3752
3753 err = kmem_cache_open(s, flags);
3754 if (err)
3755 return err;
3756
3757 /* Mutex is not taken during early boot */
3758 if (slab_state <= UP)
3759 return 0;
3760
3761 memcg_propagate_slab_attrs(s);
3762 mutex_unlock(&slab_mutex);
3763 err = sysfs_slab_add(s);
3764 mutex_lock(&slab_mutex);
3765
3766 if (err)
3767 kmem_cache_close(s);
3768
3769 return err;
3770 }
3771
3772 #ifdef CONFIG_SMP
3773 /*
3774 * Use the cpu notifier to insure that the cpu slabs are flushed when
3775 * necessary.
3776 */
3777 static int slab_cpuup_callback(struct notifier_block *nfb,
3778 unsigned long action, void *hcpu)
3779 {
3780 long cpu = (long)hcpu;
3781 struct kmem_cache *s;
3782 unsigned long flags;
3783
3784 switch (action) {
3785 case CPU_UP_CANCELED:
3786 case CPU_UP_CANCELED_FROZEN:
3787 case CPU_DEAD:
3788 case CPU_DEAD_FROZEN:
3789 mutex_lock(&slab_mutex);
3790 list_for_each_entry(s, &slab_caches, list) {
3791 local_irq_save(flags);
3792 __flush_cpu_slab(s, cpu);
3793 local_irq_restore(flags);
3794 }
3795 mutex_unlock(&slab_mutex);
3796 break;
3797 default:
3798 break;
3799 }
3800 return NOTIFY_OK;
3801 }
3802
3803 static struct notifier_block slab_notifier = {
3804 .notifier_call = slab_cpuup_callback
3805 };
3806
3807 #endif
3808
3809 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3810 {
3811 struct kmem_cache *s;
3812 void *ret;
3813
3814 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3815 return kmalloc_large(size, gfpflags);
3816
3817 s = kmalloc_slab(size, gfpflags);
3818
3819 if (unlikely(ZERO_OR_NULL_PTR(s)))
3820 return s;
3821
3822 ret = slab_alloc(s, gfpflags, caller);
3823
3824 /* Honor the call site pointer we received. */
3825 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3826
3827 return ret;
3828 }
3829
3830 #ifdef CONFIG_NUMA
3831 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3832 int node, unsigned long caller)
3833 {
3834 struct kmem_cache *s;
3835 void *ret;
3836
3837 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3838 ret = kmalloc_large_node(size, gfpflags, node);
3839
3840 trace_kmalloc_node(caller, ret,
3841 size, PAGE_SIZE << get_order(size),
3842 gfpflags, node);
3843
3844 return ret;
3845 }
3846
3847 s = kmalloc_slab(size, gfpflags);
3848
3849 if (unlikely(ZERO_OR_NULL_PTR(s)))
3850 return s;
3851
3852 ret = slab_alloc_node(s, gfpflags, node, caller);
3853
3854 /* Honor the call site pointer we received. */
3855 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3856
3857 return ret;
3858 }
3859 #endif
3860
3861 #ifdef CONFIG_SYSFS
3862 static int count_inuse(struct page *page)
3863 {
3864 return page->inuse;
3865 }
3866
3867 static int count_total(struct page *page)
3868 {
3869 return page->objects;
3870 }
3871 #endif
3872
3873 #ifdef CONFIG_SLUB_DEBUG
3874 static int validate_slab(struct kmem_cache *s, struct page *page,
3875 unsigned long *map)
3876 {
3877 void *p;
3878 void *addr = page_address(page);
3879
3880 if (!check_slab(s, page) ||
3881 !on_freelist(s, page, NULL))
3882 return 0;
3883
3884 /* Now we know that a valid freelist exists */
3885 bitmap_zero(map, page->objects);
3886
3887 get_map(s, page, map);
3888 for_each_object(p, s, addr, page->objects) {
3889 if (test_bit(slab_index(p, s, addr), map))
3890 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3891 return 0;
3892 }
3893
3894 for_each_object(p, s, addr, page->objects)
3895 if (!test_bit(slab_index(p, s, addr), map))
3896 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3897 return 0;
3898 return 1;
3899 }
3900
3901 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3902 unsigned long *map)
3903 {
3904 slab_lock(page);
3905 validate_slab(s, page, map);
3906 slab_unlock(page);
3907 }
3908
3909 static int validate_slab_node(struct kmem_cache *s,
3910 struct kmem_cache_node *n, unsigned long *map)
3911 {
3912 unsigned long count = 0;
3913 struct page *page;
3914 unsigned long flags;
3915
3916 spin_lock_irqsave(&n->list_lock, flags);
3917
3918 list_for_each_entry(page, &n->partial, lru) {
3919 validate_slab_slab(s, page, map);
3920 count++;
3921 }
3922 if (count != n->nr_partial)
3923 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3924 "counter=%ld\n", s->name, count, n->nr_partial);
3925
3926 if (!(s->flags & SLAB_STORE_USER))
3927 goto out;
3928
3929 list_for_each_entry(page, &n->full, lru) {
3930 validate_slab_slab(s, page, map);
3931 count++;
3932 }
3933 if (count != atomic_long_read(&n->nr_slabs))
3934 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3935 "counter=%ld\n", s->name, count,
3936 atomic_long_read(&n->nr_slabs));
3937
3938 out:
3939 spin_unlock_irqrestore(&n->list_lock, flags);
3940 return count;
3941 }
3942
3943 static long validate_slab_cache(struct kmem_cache *s)
3944 {
3945 int node;
3946 unsigned long count = 0;
3947 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3948 sizeof(unsigned long), GFP_KERNEL);
3949
3950 if (!map)
3951 return -ENOMEM;
3952
3953 flush_all(s);
3954 for_each_node_state(node, N_NORMAL_MEMORY) {
3955 struct kmem_cache_node *n = get_node(s, node);
3956
3957 count += validate_slab_node(s, n, map);
3958 }
3959 kfree(map);
3960 return count;
3961 }
3962 /*
3963 * Generate lists of code addresses where slabcache objects are allocated
3964 * and freed.
3965 */
3966
3967 struct location {
3968 unsigned long count;
3969 unsigned long addr;
3970 long long sum_time;
3971 long min_time;
3972 long max_time;
3973 long min_pid;
3974 long max_pid;
3975 DECLARE_BITMAP(cpus, NR_CPUS);
3976 nodemask_t nodes;
3977 };
3978
3979 struct loc_track {
3980 unsigned long max;
3981 unsigned long count;
3982 struct location *loc;
3983 };
3984
3985 static void free_loc_track(struct loc_track *t)
3986 {
3987 if (t->max)
3988 free_pages((unsigned long)t->loc,
3989 get_order(sizeof(struct location) * t->max));
3990 }
3991
3992 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3993 {
3994 struct location *l;
3995 int order;
3996
3997 order = get_order(sizeof(struct location) * max);
3998
3999 l = (void *)__get_free_pages(flags, order);
4000 if (!l)
4001 return 0;
4002
4003 if (t->count) {
4004 memcpy(l, t->loc, sizeof(struct location) * t->count);
4005 free_loc_track(t);
4006 }
4007 t->max = max;
4008 t->loc = l;
4009 return 1;
4010 }
4011
4012 static int add_location(struct loc_track *t, struct kmem_cache *s,
4013 const struct track *track)
4014 {
4015 long start, end, pos;
4016 struct location *l;
4017 unsigned long caddr;
4018 unsigned long age = jiffies - track->when;
4019
4020 start = -1;
4021 end = t->count;
4022
4023 for ( ; ; ) {
4024 pos = start + (end - start + 1) / 2;
4025
4026 /*
4027 * There is nothing at "end". If we end up there
4028 * we need to add something to before end.
4029 */
4030 if (pos == end)
4031 break;
4032
4033 caddr = t->loc[pos].addr;
4034 if (track->addr == caddr) {
4035
4036 l = &t->loc[pos];
4037 l->count++;
4038 if (track->when) {
4039 l->sum_time += age;
4040 if (age < l->min_time)
4041 l->min_time = age;
4042 if (age > l->max_time)
4043 l->max_time = age;
4044
4045 if (track->pid < l->min_pid)
4046 l->min_pid = track->pid;
4047 if (track->pid > l->max_pid)
4048 l->max_pid = track->pid;
4049
4050 cpumask_set_cpu(track->cpu,
4051 to_cpumask(l->cpus));
4052 }
4053 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4054 return 1;
4055 }
4056
4057 if (track->addr < caddr)
4058 end = pos;
4059 else
4060 start = pos;
4061 }
4062
4063 /*
4064 * Not found. Insert new tracking element.
4065 */
4066 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4067 return 0;
4068
4069 l = t->loc + pos;
4070 if (pos < t->count)
4071 memmove(l + 1, l,
4072 (t->count - pos) * sizeof(struct location));
4073 t->count++;
4074 l->count = 1;
4075 l->addr = track->addr;
4076 l->sum_time = age;
4077 l->min_time = age;
4078 l->max_time = age;
4079 l->min_pid = track->pid;
4080 l->max_pid = track->pid;
4081 cpumask_clear(to_cpumask(l->cpus));
4082 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4083 nodes_clear(l->nodes);
4084 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4085 return 1;
4086 }
4087
4088 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4089 struct page *page, enum track_item alloc,
4090 unsigned long *map)
4091 {
4092 void *addr = page_address(page);
4093 void *p;
4094
4095 bitmap_zero(map, page->objects);
4096 get_map(s, page, map);
4097
4098 for_each_object(p, s, addr, page->objects)
4099 if (!test_bit(slab_index(p, s, addr), map))
4100 add_location(t, s, get_track(s, p, alloc));
4101 }
4102
4103 static int list_locations(struct kmem_cache *s, char *buf,
4104 enum track_item alloc)
4105 {
4106 int len = 0;
4107 unsigned long i;
4108 struct loc_track t = { 0, 0, NULL };
4109 int node;
4110 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4111 sizeof(unsigned long), GFP_KERNEL);
4112
4113 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4114 GFP_TEMPORARY)) {
4115 kfree(map);
4116 return sprintf(buf, "Out of memory\n");
4117 }
4118 /* Push back cpu slabs */
4119 flush_all(s);
4120
4121 for_each_node_state(node, N_NORMAL_MEMORY) {
4122 struct kmem_cache_node *n = get_node(s, node);
4123 unsigned long flags;
4124 struct page *page;
4125
4126 if (!atomic_long_read(&n->nr_slabs))
4127 continue;
4128
4129 spin_lock_irqsave(&n->list_lock, flags);
4130 list_for_each_entry(page, &n->partial, lru)
4131 process_slab(&t, s, page, alloc, map);
4132 list_for_each_entry(page, &n->full, lru)
4133 process_slab(&t, s, page, alloc, map);
4134 spin_unlock_irqrestore(&n->list_lock, flags);
4135 }
4136
4137 for (i = 0; i < t.count; i++) {
4138 struct location *l = &t.loc[i];
4139
4140 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4141 break;
4142 len += sprintf(buf + len, "%7ld ", l->count);
4143
4144 if (l->addr)
4145 len += sprintf(buf + len, "%pS", (void *)l->addr);
4146 else
4147 len += sprintf(buf + len, "<not-available>");
4148
4149 if (l->sum_time != l->min_time) {
4150 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4151 l->min_time,
4152 (long)div_u64(l->sum_time, l->count),
4153 l->max_time);
4154 } else
4155 len += sprintf(buf + len, " age=%ld",
4156 l->min_time);
4157
4158 if (l->min_pid != l->max_pid)
4159 len += sprintf(buf + len, " pid=%ld-%ld",
4160 l->min_pid, l->max_pid);
4161 else
4162 len += sprintf(buf + len, " pid=%ld",
4163 l->min_pid);
4164
4165 if (num_online_cpus() > 1 &&
4166 !cpumask_empty(to_cpumask(l->cpus)) &&
4167 len < PAGE_SIZE - 60) {
4168 len += sprintf(buf + len, " cpus=");
4169 len += cpulist_scnprintf(buf + len,
4170 PAGE_SIZE - len - 50,
4171 to_cpumask(l->cpus));
4172 }
4173
4174 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4175 len < PAGE_SIZE - 60) {
4176 len += sprintf(buf + len, " nodes=");
4177 len += nodelist_scnprintf(buf + len,
4178 PAGE_SIZE - len - 50,
4179 l->nodes);
4180 }
4181
4182 len += sprintf(buf + len, "\n");
4183 }
4184
4185 free_loc_track(&t);
4186 kfree(map);
4187 if (!t.count)
4188 len += sprintf(buf, "No data\n");
4189 return len;
4190 }
4191 #endif
4192
4193 #ifdef SLUB_RESILIENCY_TEST
4194 static void resiliency_test(void)
4195 {
4196 u8 *p;
4197
4198 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4199
4200 printk(KERN_ERR "SLUB resiliency testing\n");
4201 printk(KERN_ERR "-----------------------\n");
4202 printk(KERN_ERR "A. Corruption after allocation\n");
4203
4204 p = kzalloc(16, GFP_KERNEL);
4205 p[16] = 0x12;
4206 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4207 " 0x12->0x%p\n\n", p + 16);
4208
4209 validate_slab_cache(kmalloc_caches[4]);
4210
4211 /* Hmmm... The next two are dangerous */
4212 p = kzalloc(32, GFP_KERNEL);
4213 p[32 + sizeof(void *)] = 0x34;
4214 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4215 " 0x34 -> -0x%p\n", p);
4216 printk(KERN_ERR
4217 "If allocated object is overwritten then not detectable\n\n");
4218
4219 validate_slab_cache(kmalloc_caches[5]);
4220 p = kzalloc(64, GFP_KERNEL);
4221 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4222 *p = 0x56;
4223 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4224 p);
4225 printk(KERN_ERR
4226 "If allocated object is overwritten then not detectable\n\n");
4227 validate_slab_cache(kmalloc_caches[6]);
4228
4229 printk(KERN_ERR "\nB. Corruption after free\n");
4230 p = kzalloc(128, GFP_KERNEL);
4231 kfree(p);
4232 *p = 0x78;
4233 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4234 validate_slab_cache(kmalloc_caches[7]);
4235
4236 p = kzalloc(256, GFP_KERNEL);
4237 kfree(p);
4238 p[50] = 0x9a;
4239 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4240 p);
4241 validate_slab_cache(kmalloc_caches[8]);
4242
4243 p = kzalloc(512, GFP_KERNEL);
4244 kfree(p);
4245 p[512] = 0xab;
4246 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4247 validate_slab_cache(kmalloc_caches[9]);
4248 }
4249 #else
4250 #ifdef CONFIG_SYSFS
4251 static void resiliency_test(void) {};
4252 #endif
4253 #endif
4254
4255 #ifdef CONFIG_SYSFS
4256 enum slab_stat_type {
4257 SL_ALL, /* All slabs */
4258 SL_PARTIAL, /* Only partially allocated slabs */
4259 SL_CPU, /* Only slabs used for cpu caches */
4260 SL_OBJECTS, /* Determine allocated objects not slabs */
4261 SL_TOTAL /* Determine object capacity not slabs */
4262 };
4263
4264 #define SO_ALL (1 << SL_ALL)
4265 #define SO_PARTIAL (1 << SL_PARTIAL)
4266 #define SO_CPU (1 << SL_CPU)
4267 #define SO_OBJECTS (1 << SL_OBJECTS)
4268 #define SO_TOTAL (1 << SL_TOTAL)
4269
4270 static ssize_t show_slab_objects(struct kmem_cache *s,
4271 char *buf, unsigned long flags)
4272 {
4273 unsigned long total = 0;
4274 int node;
4275 int x;
4276 unsigned long *nodes;
4277
4278 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4279 if (!nodes)
4280 return -ENOMEM;
4281
4282 if (flags & SO_CPU) {
4283 int cpu;
4284
4285 for_each_possible_cpu(cpu) {
4286 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4287 cpu);
4288 int node;
4289 struct page *page;
4290
4291 page = ACCESS_ONCE(c->page);
4292 if (!page)
4293 continue;
4294
4295 node = page_to_nid(page);
4296 if (flags & SO_TOTAL)
4297 x = page->objects;
4298 else if (flags & SO_OBJECTS)
4299 x = page->inuse;
4300 else
4301 x = 1;
4302
4303 total += x;
4304 nodes[node] += x;
4305
4306 page = ACCESS_ONCE(c->partial);
4307 if (page) {
4308 node = page_to_nid(page);
4309 if (flags & SO_TOTAL)
4310 WARN_ON_ONCE(1);
4311 else if (flags & SO_OBJECTS)
4312 WARN_ON_ONCE(1);
4313 else
4314 x = page->pages;
4315 total += x;
4316 nodes[node] += x;
4317 }
4318 }
4319 }
4320
4321 lock_memory_hotplug();
4322 #ifdef CONFIG_SLUB_DEBUG
4323 if (flags & SO_ALL) {
4324 for_each_node_state(node, N_NORMAL_MEMORY) {
4325 struct kmem_cache_node *n = get_node(s, node);
4326
4327 if (flags & SO_TOTAL)
4328 x = atomic_long_read(&n->total_objects);
4329 else if (flags & SO_OBJECTS)
4330 x = atomic_long_read(&n->total_objects) -
4331 count_partial(n, count_free);
4332 else
4333 x = atomic_long_read(&n->nr_slabs);
4334 total += x;
4335 nodes[node] += x;
4336 }
4337
4338 } else
4339 #endif
4340 if (flags & SO_PARTIAL) {
4341 for_each_node_state(node, N_NORMAL_MEMORY) {
4342 struct kmem_cache_node *n = get_node(s, node);
4343
4344 if (flags & SO_TOTAL)
4345 x = count_partial(n, count_total);
4346 else if (flags & SO_OBJECTS)
4347 x = count_partial(n, count_inuse);
4348 else
4349 x = n->nr_partial;
4350 total += x;
4351 nodes[node] += x;
4352 }
4353 }
4354 x = sprintf(buf, "%lu", total);
4355 #ifdef CONFIG_NUMA
4356 for_each_node_state(node, N_NORMAL_MEMORY)
4357 if (nodes[node])
4358 x += sprintf(buf + x, " N%d=%lu",
4359 node, nodes[node]);
4360 #endif
4361 unlock_memory_hotplug();
4362 kfree(nodes);
4363 return x + sprintf(buf + x, "\n");
4364 }
4365
4366 #ifdef CONFIG_SLUB_DEBUG
4367 static int any_slab_objects(struct kmem_cache *s)
4368 {
4369 int node;
4370
4371 for_each_online_node(node) {
4372 struct kmem_cache_node *n = get_node(s, node);
4373
4374 if (!n)
4375 continue;
4376
4377 if (atomic_long_read(&n->total_objects))
4378 return 1;
4379 }
4380 return 0;
4381 }
4382 #endif
4383
4384 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4385 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4386
4387 struct slab_attribute {
4388 struct attribute attr;
4389 ssize_t (*show)(struct kmem_cache *s, char *buf);
4390 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4391 };
4392
4393 #define SLAB_ATTR_RO(_name) \
4394 static struct slab_attribute _name##_attr = \
4395 __ATTR(_name, 0400, _name##_show, NULL)
4396
4397 #define SLAB_ATTR(_name) \
4398 static struct slab_attribute _name##_attr = \
4399 __ATTR(_name, 0600, _name##_show, _name##_store)
4400
4401 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4402 {
4403 return sprintf(buf, "%d\n", s->size);
4404 }
4405 SLAB_ATTR_RO(slab_size);
4406
4407 static ssize_t align_show(struct kmem_cache *s, char *buf)
4408 {
4409 return sprintf(buf, "%d\n", s->align);
4410 }
4411 SLAB_ATTR_RO(align);
4412
4413 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4414 {
4415 return sprintf(buf, "%d\n", s->object_size);
4416 }
4417 SLAB_ATTR_RO(object_size);
4418
4419 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4420 {
4421 return sprintf(buf, "%d\n", oo_objects(s->oo));
4422 }
4423 SLAB_ATTR_RO(objs_per_slab);
4424
4425 static ssize_t order_store(struct kmem_cache *s,
4426 const char *buf, size_t length)
4427 {
4428 unsigned long order;
4429 int err;
4430
4431 err = kstrtoul(buf, 10, &order);
4432 if (err)
4433 return err;
4434
4435 if (order > slub_max_order || order < slub_min_order)
4436 return -EINVAL;
4437
4438 calculate_sizes(s, order);
4439 return length;
4440 }
4441
4442 static ssize_t order_show(struct kmem_cache *s, char *buf)
4443 {
4444 return sprintf(buf, "%d\n", oo_order(s->oo));
4445 }
4446 SLAB_ATTR(order);
4447
4448 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4449 {
4450 return sprintf(buf, "%lu\n", s->min_partial);
4451 }
4452
4453 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4454 size_t length)
4455 {
4456 unsigned long min;
4457 int err;
4458
4459 err = kstrtoul(buf, 10, &min);
4460 if (err)
4461 return err;
4462
4463 set_min_partial(s, min);
4464 return length;
4465 }
4466 SLAB_ATTR(min_partial);
4467
4468 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4469 {
4470 return sprintf(buf, "%u\n", s->cpu_partial);
4471 }
4472
4473 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4474 size_t length)
4475 {
4476 unsigned long objects;
4477 int err;
4478
4479 err = kstrtoul(buf, 10, &objects);
4480 if (err)
4481 return err;
4482 if (objects && !kmem_cache_has_cpu_partial(s))
4483 return -EINVAL;
4484
4485 s->cpu_partial = objects;
4486 flush_all(s);
4487 return length;
4488 }
4489 SLAB_ATTR(cpu_partial);
4490
4491 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4492 {
4493 if (!s->ctor)
4494 return 0;
4495 return sprintf(buf, "%pS\n", s->ctor);
4496 }
4497 SLAB_ATTR_RO(ctor);
4498
4499 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4500 {
4501 return sprintf(buf, "%d\n", s->refcount - 1);
4502 }
4503 SLAB_ATTR_RO(aliases);
4504
4505 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4506 {
4507 return show_slab_objects(s, buf, SO_PARTIAL);
4508 }
4509 SLAB_ATTR_RO(partial);
4510
4511 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4512 {
4513 return show_slab_objects(s, buf, SO_CPU);
4514 }
4515 SLAB_ATTR_RO(cpu_slabs);
4516
4517 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4518 {
4519 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4520 }
4521 SLAB_ATTR_RO(objects);
4522
4523 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4524 {
4525 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4526 }
4527 SLAB_ATTR_RO(objects_partial);
4528
4529 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4530 {
4531 int objects = 0;
4532 int pages = 0;
4533 int cpu;
4534 int len;
4535
4536 for_each_online_cpu(cpu) {
4537 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4538
4539 if (page) {
4540 pages += page->pages;
4541 objects += page->pobjects;
4542 }
4543 }
4544
4545 len = sprintf(buf, "%d(%d)", objects, pages);
4546
4547 #ifdef CONFIG_SMP
4548 for_each_online_cpu(cpu) {
4549 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4550
4551 if (page && len < PAGE_SIZE - 20)
4552 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4553 page->pobjects, page->pages);
4554 }
4555 #endif
4556 return len + sprintf(buf + len, "\n");
4557 }
4558 SLAB_ATTR_RO(slabs_cpu_partial);
4559
4560 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4561 {
4562 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4563 }
4564
4565 static ssize_t reclaim_account_store(struct kmem_cache *s,
4566 const char *buf, size_t length)
4567 {
4568 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4569 if (buf[0] == '1')
4570 s->flags |= SLAB_RECLAIM_ACCOUNT;
4571 return length;
4572 }
4573 SLAB_ATTR(reclaim_account);
4574
4575 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4576 {
4577 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4578 }
4579 SLAB_ATTR_RO(hwcache_align);
4580
4581 #ifdef CONFIG_ZONE_DMA
4582 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4583 {
4584 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4585 }
4586 SLAB_ATTR_RO(cache_dma);
4587 #endif
4588
4589 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4590 {
4591 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4592 }
4593 SLAB_ATTR_RO(destroy_by_rcu);
4594
4595 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4596 {
4597 return sprintf(buf, "%d\n", s->reserved);
4598 }
4599 SLAB_ATTR_RO(reserved);
4600
4601 #ifdef CONFIG_SLUB_DEBUG
4602 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4603 {
4604 return show_slab_objects(s, buf, SO_ALL);
4605 }
4606 SLAB_ATTR_RO(slabs);
4607
4608 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4609 {
4610 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4611 }
4612 SLAB_ATTR_RO(total_objects);
4613
4614 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4615 {
4616 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4617 }
4618
4619 static ssize_t sanity_checks_store(struct kmem_cache *s,
4620 const char *buf, size_t length)
4621 {
4622 s->flags &= ~SLAB_DEBUG_FREE;
4623 if (buf[0] == '1') {
4624 s->flags &= ~__CMPXCHG_DOUBLE;
4625 s->flags |= SLAB_DEBUG_FREE;
4626 }
4627 return length;
4628 }
4629 SLAB_ATTR(sanity_checks);
4630
4631 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4632 {
4633 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4634 }
4635
4636 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4637 size_t length)
4638 {
4639 s->flags &= ~SLAB_TRACE;
4640 if (buf[0] == '1') {
4641 s->flags &= ~__CMPXCHG_DOUBLE;
4642 s->flags |= SLAB_TRACE;
4643 }
4644 return length;
4645 }
4646 SLAB_ATTR(trace);
4647
4648 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4649 {
4650 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4651 }
4652
4653 static ssize_t red_zone_store(struct kmem_cache *s,
4654 const char *buf, size_t length)
4655 {
4656 if (any_slab_objects(s))
4657 return -EBUSY;
4658
4659 s->flags &= ~SLAB_RED_ZONE;
4660 if (buf[0] == '1') {
4661 s->flags &= ~__CMPXCHG_DOUBLE;
4662 s->flags |= SLAB_RED_ZONE;
4663 }
4664 calculate_sizes(s, -1);
4665 return length;
4666 }
4667 SLAB_ATTR(red_zone);
4668
4669 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4670 {
4671 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4672 }
4673
4674 static ssize_t poison_store(struct kmem_cache *s,
4675 const char *buf, size_t length)
4676 {
4677 if (any_slab_objects(s))
4678 return -EBUSY;
4679
4680 s->flags &= ~SLAB_POISON;
4681 if (buf[0] == '1') {
4682 s->flags &= ~__CMPXCHG_DOUBLE;
4683 s->flags |= SLAB_POISON;
4684 }
4685 calculate_sizes(s, -1);
4686 return length;
4687 }
4688 SLAB_ATTR(poison);
4689
4690 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4691 {
4692 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4693 }
4694
4695 static ssize_t store_user_store(struct kmem_cache *s,
4696 const char *buf, size_t length)
4697 {
4698 if (any_slab_objects(s))
4699 return -EBUSY;
4700
4701 s->flags &= ~SLAB_STORE_USER;
4702 if (buf[0] == '1') {
4703 s->flags &= ~__CMPXCHG_DOUBLE;
4704 s->flags |= SLAB_STORE_USER;
4705 }
4706 calculate_sizes(s, -1);
4707 return length;
4708 }
4709 SLAB_ATTR(store_user);
4710
4711 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4712 {
4713 return 0;
4714 }
4715
4716 static ssize_t validate_store(struct kmem_cache *s,
4717 const char *buf, size_t length)
4718 {
4719 int ret = -EINVAL;
4720
4721 if (buf[0] == '1') {
4722 ret = validate_slab_cache(s);
4723 if (ret >= 0)
4724 ret = length;
4725 }
4726 return ret;
4727 }
4728 SLAB_ATTR(validate);
4729
4730 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4731 {
4732 if (!(s->flags & SLAB_STORE_USER))
4733 return -ENOSYS;
4734 return list_locations(s, buf, TRACK_ALLOC);
4735 }
4736 SLAB_ATTR_RO(alloc_calls);
4737
4738 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4739 {
4740 if (!(s->flags & SLAB_STORE_USER))
4741 return -ENOSYS;
4742 return list_locations(s, buf, TRACK_FREE);
4743 }
4744 SLAB_ATTR_RO(free_calls);
4745 #endif /* CONFIG_SLUB_DEBUG */
4746
4747 #ifdef CONFIG_FAILSLAB
4748 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4749 {
4750 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4751 }
4752
4753 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4754 size_t length)
4755 {
4756 s->flags &= ~SLAB_FAILSLAB;
4757 if (buf[0] == '1')
4758 s->flags |= SLAB_FAILSLAB;
4759 return length;
4760 }
4761 SLAB_ATTR(failslab);
4762 #endif
4763
4764 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4765 {
4766 return 0;
4767 }
4768
4769 static ssize_t shrink_store(struct kmem_cache *s,
4770 const char *buf, size_t length)
4771 {
4772 if (buf[0] == '1') {
4773 int rc = kmem_cache_shrink(s);
4774
4775 if (rc)
4776 return rc;
4777 } else
4778 return -EINVAL;
4779 return length;
4780 }
4781 SLAB_ATTR(shrink);
4782
4783 #ifdef CONFIG_NUMA
4784 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4785 {
4786 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4787 }
4788
4789 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4790 const char *buf, size_t length)
4791 {
4792 unsigned long ratio;
4793 int err;
4794
4795 err = kstrtoul(buf, 10, &ratio);
4796 if (err)
4797 return err;
4798
4799 if (ratio <= 100)
4800 s->remote_node_defrag_ratio = ratio * 10;
4801
4802 return length;
4803 }
4804 SLAB_ATTR(remote_node_defrag_ratio);
4805 #endif
4806
4807 #ifdef CONFIG_SLUB_STATS
4808 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4809 {
4810 unsigned long sum = 0;
4811 int cpu;
4812 int len;
4813 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4814
4815 if (!data)
4816 return -ENOMEM;
4817
4818 for_each_online_cpu(cpu) {
4819 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4820
4821 data[cpu] = x;
4822 sum += x;
4823 }
4824
4825 len = sprintf(buf, "%lu", sum);
4826
4827 #ifdef CONFIG_SMP
4828 for_each_online_cpu(cpu) {
4829 if (data[cpu] && len < PAGE_SIZE - 20)
4830 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4831 }
4832 #endif
4833 kfree(data);
4834 return len + sprintf(buf + len, "\n");
4835 }
4836
4837 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4838 {
4839 int cpu;
4840
4841 for_each_online_cpu(cpu)
4842 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4843 }
4844
4845 #define STAT_ATTR(si, text) \
4846 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4847 { \
4848 return show_stat(s, buf, si); \
4849 } \
4850 static ssize_t text##_store(struct kmem_cache *s, \
4851 const char *buf, size_t length) \
4852 { \
4853 if (buf[0] != '0') \
4854 return -EINVAL; \
4855 clear_stat(s, si); \
4856 return length; \
4857 } \
4858 SLAB_ATTR(text); \
4859
4860 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4861 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4862 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4863 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4864 STAT_ATTR(FREE_FROZEN, free_frozen);
4865 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4866 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4867 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4868 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4869 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4870 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4871 STAT_ATTR(FREE_SLAB, free_slab);
4872 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4873 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4874 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4875 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4876 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4877 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4878 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4879 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4880 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4881 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4882 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4883 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4884 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4885 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4886 #endif
4887
4888 static struct attribute *slab_attrs[] = {
4889 &slab_size_attr.attr,
4890 &object_size_attr.attr,
4891 &objs_per_slab_attr.attr,
4892 &order_attr.attr,
4893 &min_partial_attr.attr,
4894 &cpu_partial_attr.attr,
4895 &objects_attr.attr,
4896 &objects_partial_attr.attr,
4897 &partial_attr.attr,
4898 &cpu_slabs_attr.attr,
4899 &ctor_attr.attr,
4900 &aliases_attr.attr,
4901 &align_attr.attr,
4902 &hwcache_align_attr.attr,
4903 &reclaim_account_attr.attr,
4904 &destroy_by_rcu_attr.attr,
4905 &shrink_attr.attr,
4906 &reserved_attr.attr,
4907 &slabs_cpu_partial_attr.attr,
4908 #ifdef CONFIG_SLUB_DEBUG
4909 &total_objects_attr.attr,
4910 &slabs_attr.attr,
4911 &sanity_checks_attr.attr,
4912 &trace_attr.attr,
4913 &red_zone_attr.attr,
4914 &poison_attr.attr,
4915 &store_user_attr.attr,
4916 &validate_attr.attr,
4917 &alloc_calls_attr.attr,
4918 &free_calls_attr.attr,
4919 #endif
4920 #ifdef CONFIG_ZONE_DMA
4921 &cache_dma_attr.attr,
4922 #endif
4923 #ifdef CONFIG_NUMA
4924 &remote_node_defrag_ratio_attr.attr,
4925 #endif
4926 #ifdef CONFIG_SLUB_STATS
4927 &alloc_fastpath_attr.attr,
4928 &alloc_slowpath_attr.attr,
4929 &free_fastpath_attr.attr,
4930 &free_slowpath_attr.attr,
4931 &free_frozen_attr.attr,
4932 &free_add_partial_attr.attr,
4933 &free_remove_partial_attr.attr,
4934 &alloc_from_partial_attr.attr,
4935 &alloc_slab_attr.attr,
4936 &alloc_refill_attr.attr,
4937 &alloc_node_mismatch_attr.attr,
4938 &free_slab_attr.attr,
4939 &cpuslab_flush_attr.attr,
4940 &deactivate_full_attr.attr,
4941 &deactivate_empty_attr.attr,
4942 &deactivate_to_head_attr.attr,
4943 &deactivate_to_tail_attr.attr,
4944 &deactivate_remote_frees_attr.attr,
4945 &deactivate_bypass_attr.attr,
4946 &order_fallback_attr.attr,
4947 &cmpxchg_double_fail_attr.attr,
4948 &cmpxchg_double_cpu_fail_attr.attr,
4949 &cpu_partial_alloc_attr.attr,
4950 &cpu_partial_free_attr.attr,
4951 &cpu_partial_node_attr.attr,
4952 &cpu_partial_drain_attr.attr,
4953 #endif
4954 #ifdef CONFIG_FAILSLAB
4955 &failslab_attr.attr,
4956 #endif
4957
4958 NULL
4959 };
4960
4961 static struct attribute_group slab_attr_group = {
4962 .attrs = slab_attrs,
4963 };
4964
4965 static ssize_t slab_attr_show(struct kobject *kobj,
4966 struct attribute *attr,
4967 char *buf)
4968 {
4969 struct slab_attribute *attribute;
4970 struct kmem_cache *s;
4971 int err;
4972
4973 attribute = to_slab_attr(attr);
4974 s = to_slab(kobj);
4975
4976 if (!attribute->show)
4977 return -EIO;
4978
4979 err = attribute->show(s, buf);
4980
4981 return err;
4982 }
4983
4984 static ssize_t slab_attr_store(struct kobject *kobj,
4985 struct attribute *attr,
4986 const char *buf, size_t len)
4987 {
4988 struct slab_attribute *attribute;
4989 struct kmem_cache *s;
4990 int err;
4991
4992 attribute = to_slab_attr(attr);
4993 s = to_slab(kobj);
4994
4995 if (!attribute->store)
4996 return -EIO;
4997
4998 err = attribute->store(s, buf, len);
4999 #ifdef CONFIG_MEMCG_KMEM
5000 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5001 int i;
5002
5003 mutex_lock(&slab_mutex);
5004 if (s->max_attr_size < len)
5005 s->max_attr_size = len;
5006
5007 /*
5008 * This is a best effort propagation, so this function's return
5009 * value will be determined by the parent cache only. This is
5010 * basically because not all attributes will have a well
5011 * defined semantics for rollbacks - most of the actions will
5012 * have permanent effects.
5013 *
5014 * Returning the error value of any of the children that fail
5015 * is not 100 % defined, in the sense that users seeing the
5016 * error code won't be able to know anything about the state of
5017 * the cache.
5018 *
5019 * Only returning the error code for the parent cache at least
5020 * has well defined semantics. The cache being written to
5021 * directly either failed or succeeded, in which case we loop
5022 * through the descendants with best-effort propagation.
5023 */
5024 for_each_memcg_cache_index(i) {
5025 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5026 if (c)
5027 attribute->store(c, buf, len);
5028 }
5029 mutex_unlock(&slab_mutex);
5030 }
5031 #endif
5032 return err;
5033 }
5034
5035 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5036 {
5037 #ifdef CONFIG_MEMCG_KMEM
5038 int i;
5039 char *buffer = NULL;
5040
5041 if (!is_root_cache(s))
5042 return;
5043
5044 /*
5045 * This mean this cache had no attribute written. Therefore, no point
5046 * in copying default values around
5047 */
5048 if (!s->max_attr_size)
5049 return;
5050
5051 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5052 char mbuf[64];
5053 char *buf;
5054 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5055
5056 if (!attr || !attr->store || !attr->show)
5057 continue;
5058
5059 /*
5060 * It is really bad that we have to allocate here, so we will
5061 * do it only as a fallback. If we actually allocate, though,
5062 * we can just use the allocated buffer until the end.
5063 *
5064 * Most of the slub attributes will tend to be very small in
5065 * size, but sysfs allows buffers up to a page, so they can
5066 * theoretically happen.
5067 */
5068 if (buffer)
5069 buf = buffer;
5070 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5071 buf = mbuf;
5072 else {
5073 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5074 if (WARN_ON(!buffer))
5075 continue;
5076 buf = buffer;
5077 }
5078
5079 attr->show(s->memcg_params->root_cache, buf);
5080 attr->store(s, buf, strlen(buf));
5081 }
5082
5083 if (buffer)
5084 free_page((unsigned long)buffer);
5085 #endif
5086 }
5087
5088 static const struct sysfs_ops slab_sysfs_ops = {
5089 .show = slab_attr_show,
5090 .store = slab_attr_store,
5091 };
5092
5093 static struct kobj_type slab_ktype = {
5094 .sysfs_ops = &slab_sysfs_ops,
5095 };
5096
5097 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5098 {
5099 struct kobj_type *ktype = get_ktype(kobj);
5100
5101 if (ktype == &slab_ktype)
5102 return 1;
5103 return 0;
5104 }
5105
5106 static const struct kset_uevent_ops slab_uevent_ops = {
5107 .filter = uevent_filter,
5108 };
5109
5110 static struct kset *slab_kset;
5111
5112 #define ID_STR_LENGTH 64
5113
5114 /* Create a unique string id for a slab cache:
5115 *
5116 * Format :[flags-]size
5117 */
5118 static char *create_unique_id(struct kmem_cache *s)
5119 {
5120 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5121 char *p = name;
5122
5123 BUG_ON(!name);
5124
5125 *p++ = ':';
5126 /*
5127 * First flags affecting slabcache operations. We will only
5128 * get here for aliasable slabs so we do not need to support
5129 * too many flags. The flags here must cover all flags that
5130 * are matched during merging to guarantee that the id is
5131 * unique.
5132 */
5133 if (s->flags & SLAB_CACHE_DMA)
5134 *p++ = 'd';
5135 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5136 *p++ = 'a';
5137 if (s->flags & SLAB_DEBUG_FREE)
5138 *p++ = 'F';
5139 if (!(s->flags & SLAB_NOTRACK))
5140 *p++ = 't';
5141 if (p != name + 1)
5142 *p++ = '-';
5143 p += sprintf(p, "%07d", s->size);
5144
5145 #ifdef CONFIG_MEMCG_KMEM
5146 if (!is_root_cache(s))
5147 p += sprintf(p, "-%08d",
5148 memcg_cache_id(s->memcg_params->memcg));
5149 #endif
5150
5151 BUG_ON(p > name + ID_STR_LENGTH - 1);
5152 return name;
5153 }
5154
5155 static int sysfs_slab_add(struct kmem_cache *s)
5156 {
5157 int err;
5158 const char *name;
5159 int unmergeable = slab_unmergeable(s);
5160
5161 if (unmergeable) {
5162 /*
5163 * Slabcache can never be merged so we can use the name proper.
5164 * This is typically the case for debug situations. In that
5165 * case we can catch duplicate names easily.
5166 */
5167 sysfs_remove_link(&slab_kset->kobj, s->name);
5168 name = s->name;
5169 } else {
5170 /*
5171 * Create a unique name for the slab as a target
5172 * for the symlinks.
5173 */
5174 name = create_unique_id(s);
5175 }
5176
5177 s->kobj.kset = slab_kset;
5178 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5179 if (err) {
5180 kobject_put(&s->kobj);
5181 return err;
5182 }
5183
5184 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5185 if (err) {
5186 kobject_del(&s->kobj);
5187 kobject_put(&s->kobj);
5188 return err;
5189 }
5190 kobject_uevent(&s->kobj, KOBJ_ADD);
5191 if (!unmergeable) {
5192 /* Setup first alias */
5193 sysfs_slab_alias(s, s->name);
5194 kfree(name);
5195 }
5196 return 0;
5197 }
5198
5199 static void sysfs_slab_remove(struct kmem_cache *s)
5200 {
5201 if (slab_state < FULL)
5202 /*
5203 * Sysfs has not been setup yet so no need to remove the
5204 * cache from sysfs.
5205 */
5206 return;
5207
5208 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5209 kobject_del(&s->kobj);
5210 kobject_put(&s->kobj);
5211 }
5212
5213 /*
5214 * Need to buffer aliases during bootup until sysfs becomes
5215 * available lest we lose that information.
5216 */
5217 struct saved_alias {
5218 struct kmem_cache *s;
5219 const char *name;
5220 struct saved_alias *next;
5221 };
5222
5223 static struct saved_alias *alias_list;
5224
5225 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5226 {
5227 struct saved_alias *al;
5228
5229 if (slab_state == FULL) {
5230 /*
5231 * If we have a leftover link then remove it.
5232 */
5233 sysfs_remove_link(&slab_kset->kobj, name);
5234 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5235 }
5236
5237 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5238 if (!al)
5239 return -ENOMEM;
5240
5241 al->s = s;
5242 al->name = name;
5243 al->next = alias_list;
5244 alias_list = al;
5245 return 0;
5246 }
5247
5248 static int __init slab_sysfs_init(void)
5249 {
5250 struct kmem_cache *s;
5251 int err;
5252
5253 mutex_lock(&slab_mutex);
5254
5255 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5256 if (!slab_kset) {
5257 mutex_unlock(&slab_mutex);
5258 printk(KERN_ERR "Cannot register slab subsystem.\n");
5259 return -ENOSYS;
5260 }
5261
5262 slab_state = FULL;
5263
5264 list_for_each_entry(s, &slab_caches, list) {
5265 err = sysfs_slab_add(s);
5266 if (err)
5267 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5268 " to sysfs\n", s->name);
5269 }
5270
5271 while (alias_list) {
5272 struct saved_alias *al = alias_list;
5273
5274 alias_list = alias_list->next;
5275 err = sysfs_slab_alias(al->s, al->name);
5276 if (err)
5277 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5278 " %s to sysfs\n", al->name);
5279 kfree(al);
5280 }
5281
5282 mutex_unlock(&slab_mutex);
5283 resiliency_test();
5284 return 0;
5285 }
5286
5287 __initcall(slab_sysfs_init);
5288 #endif /* CONFIG_SYSFS */
5289
5290 /*
5291 * The /proc/slabinfo ABI
5292 */
5293 #ifdef CONFIG_SLABINFO
5294 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5295 {
5296 unsigned long nr_slabs = 0;
5297 unsigned long nr_objs = 0;
5298 unsigned long nr_free = 0;
5299 int node;
5300
5301 for_each_online_node(node) {
5302 struct kmem_cache_node *n = get_node(s, node);
5303
5304 if (!n)
5305 continue;
5306
5307 nr_slabs += node_nr_slabs(n);
5308 nr_objs += node_nr_objs(n);
5309 nr_free += count_partial(n, count_free);
5310 }
5311
5312 sinfo->active_objs = nr_objs - nr_free;
5313 sinfo->num_objs = nr_objs;
5314 sinfo->active_slabs = nr_slabs;
5315 sinfo->num_slabs = nr_slabs;
5316 sinfo->objects_per_slab = oo_objects(s->oo);
5317 sinfo->cache_order = oo_order(s->oo);
5318 }
5319
5320 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5321 {
5322 }
5323
5324 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5325 size_t count, loff_t *ppos)
5326 {
5327 return -EIO;
5328 }
5329 #endif /* CONFIG_SLABINFO */
This page took 0.352646 seconds and 6 git commands to generate.