Merge branch 'for-linus/2639/i2c-2' of git://git.fluff.org/bjdooks/linux
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30
31 #include <trace/events/kmem.h>
32
33 /*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
121 }
122
123 /*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133
134 /*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
138 #define MIN_PARTIAL 5
139
140 /*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145 #define MAX_PARTIAL 10
146
147 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
154 */
155 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156
157 /*
158 * Set of flags that will prevent slab merging
159 */
160 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
163
164 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
165 SLAB_CACHE_DMA | SLAB_NOTRACK)
166
167 #define OO_SHIFT 16
168 #define OO_MASK ((1 << OO_SHIFT) - 1)
169 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
171 /* Internal SLUB flags */
172 #define __OBJECT_POISON 0x80000000UL /* Poison object */
173
174 static int kmem_size = sizeof(struct kmem_cache);
175
176 #ifdef CONFIG_SMP
177 static struct notifier_block slab_notifier;
178 #endif
179
180 static enum {
181 DOWN, /* No slab functionality available */
182 PARTIAL, /* Kmem_cache_node works */
183 UP, /* Everything works but does not show up in sysfs */
184 SYSFS /* Sysfs up */
185 } slab_state = DOWN;
186
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
190
191 /*
192 * Tracking user of a slab.
193 */
194 struct track {
195 unsigned long addr; /* Called from address */
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199 };
200
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
202
203 #ifdef CONFIG_SYSFS
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
207
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 {
214 kfree(s->name);
215 kfree(s);
216 }
217
218 #endif
219
220 static inline void stat(struct kmem_cache *s, enum stat_item si)
221 {
222 #ifdef CONFIG_SLUB_STATS
223 __this_cpu_inc(s->cpu_slab->stat[si]);
224 #endif
225 }
226
227 /********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231 int slab_is_available(void)
232 {
233 return slab_state >= UP;
234 }
235
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 return s->node[node];
239 }
240
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244 {
245 void *base;
246
247 if (!object)
248 return 1;
249
250 base = page_address(page);
251 if (object < base || object >= base + page->objects * s->size ||
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257 }
258
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 return *(void **)(object + s->offset);
262 }
263
264 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265 {
266 *(void **)(object + s->offset) = fp;
267 }
268
269 /* Loop over all objects in a slab */
270 #define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272 __p += (__s)->size)
273
274 /* Scan freelist */
275 #define for_each_free_object(__p, __s, __free) \
276 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
277
278 /* Determine object index from a given position */
279 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280 {
281 return (p - addr) / s->size;
282 }
283
284 static inline size_t slab_ksize(const struct kmem_cache *s)
285 {
286 #ifdef CONFIG_SLUB_DEBUG
287 /*
288 * Debugging requires use of the padding between object
289 * and whatever may come after it.
290 */
291 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
292 return s->objsize;
293
294 #endif
295 /*
296 * If we have the need to store the freelist pointer
297 * back there or track user information then we can
298 * only use the space before that information.
299 */
300 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
301 return s->inuse;
302 /*
303 * Else we can use all the padding etc for the allocation
304 */
305 return s->size;
306 }
307
308 static inline int order_objects(int order, unsigned long size, int reserved)
309 {
310 return ((PAGE_SIZE << order) - reserved) / size;
311 }
312
313 static inline struct kmem_cache_order_objects oo_make(int order,
314 unsigned long size, int reserved)
315 {
316 struct kmem_cache_order_objects x = {
317 (order << OO_SHIFT) + order_objects(order, size, reserved)
318 };
319
320 return x;
321 }
322
323 static inline int oo_order(struct kmem_cache_order_objects x)
324 {
325 return x.x >> OO_SHIFT;
326 }
327
328 static inline int oo_objects(struct kmem_cache_order_objects x)
329 {
330 return x.x & OO_MASK;
331 }
332
333 #ifdef CONFIG_SLUB_DEBUG
334 /*
335 * Debug settings:
336 */
337 #ifdef CONFIG_SLUB_DEBUG_ON
338 static int slub_debug = DEBUG_DEFAULT_FLAGS;
339 #else
340 static int slub_debug;
341 #endif
342
343 static char *slub_debug_slabs;
344 static int disable_higher_order_debug;
345
346 /*
347 * Object debugging
348 */
349 static void print_section(char *text, u8 *addr, unsigned int length)
350 {
351 int i, offset;
352 int newline = 1;
353 char ascii[17];
354
355 ascii[16] = 0;
356
357 for (i = 0; i < length; i++) {
358 if (newline) {
359 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
360 newline = 0;
361 }
362 printk(KERN_CONT " %02x", addr[i]);
363 offset = i % 16;
364 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
365 if (offset == 15) {
366 printk(KERN_CONT " %s\n", ascii);
367 newline = 1;
368 }
369 }
370 if (!newline) {
371 i %= 16;
372 while (i < 16) {
373 printk(KERN_CONT " ");
374 ascii[i] = ' ';
375 i++;
376 }
377 printk(KERN_CONT " %s\n", ascii);
378 }
379 }
380
381 static struct track *get_track(struct kmem_cache *s, void *object,
382 enum track_item alloc)
383 {
384 struct track *p;
385
386 if (s->offset)
387 p = object + s->offset + sizeof(void *);
388 else
389 p = object + s->inuse;
390
391 return p + alloc;
392 }
393
394 static void set_track(struct kmem_cache *s, void *object,
395 enum track_item alloc, unsigned long addr)
396 {
397 struct track *p = get_track(s, object, alloc);
398
399 if (addr) {
400 p->addr = addr;
401 p->cpu = smp_processor_id();
402 p->pid = current->pid;
403 p->when = jiffies;
404 } else
405 memset(p, 0, sizeof(struct track));
406 }
407
408 static void init_tracking(struct kmem_cache *s, void *object)
409 {
410 if (!(s->flags & SLAB_STORE_USER))
411 return;
412
413 set_track(s, object, TRACK_FREE, 0UL);
414 set_track(s, object, TRACK_ALLOC, 0UL);
415 }
416
417 static void print_track(const char *s, struct track *t)
418 {
419 if (!t->addr)
420 return;
421
422 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
423 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
424 }
425
426 static void print_tracking(struct kmem_cache *s, void *object)
427 {
428 if (!(s->flags & SLAB_STORE_USER))
429 return;
430
431 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
432 print_track("Freed", get_track(s, object, TRACK_FREE));
433 }
434
435 static void print_page_info(struct page *page)
436 {
437 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
438 page, page->objects, page->inuse, page->freelist, page->flags);
439
440 }
441
442 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
443 {
444 va_list args;
445 char buf[100];
446
447 va_start(args, fmt);
448 vsnprintf(buf, sizeof(buf), fmt, args);
449 va_end(args);
450 printk(KERN_ERR "========================================"
451 "=====================================\n");
452 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
453 printk(KERN_ERR "----------------------------------------"
454 "-------------------------------------\n\n");
455 }
456
457 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
458 {
459 va_list args;
460 char buf[100];
461
462 va_start(args, fmt);
463 vsnprintf(buf, sizeof(buf), fmt, args);
464 va_end(args);
465 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
466 }
467
468 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
469 {
470 unsigned int off; /* Offset of last byte */
471 u8 *addr = page_address(page);
472
473 print_tracking(s, p);
474
475 print_page_info(page);
476
477 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
478 p, p - addr, get_freepointer(s, p));
479
480 if (p > addr + 16)
481 print_section("Bytes b4", p - 16, 16);
482
483 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
484
485 if (s->flags & SLAB_RED_ZONE)
486 print_section("Redzone", p + s->objsize,
487 s->inuse - s->objsize);
488
489 if (s->offset)
490 off = s->offset + sizeof(void *);
491 else
492 off = s->inuse;
493
494 if (s->flags & SLAB_STORE_USER)
495 off += 2 * sizeof(struct track);
496
497 if (off != s->size)
498 /* Beginning of the filler is the free pointer */
499 print_section("Padding", p + off, s->size - off);
500
501 dump_stack();
502 }
503
504 static void object_err(struct kmem_cache *s, struct page *page,
505 u8 *object, char *reason)
506 {
507 slab_bug(s, "%s", reason);
508 print_trailer(s, page, object);
509 }
510
511 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
512 {
513 va_list args;
514 char buf[100];
515
516 va_start(args, fmt);
517 vsnprintf(buf, sizeof(buf), fmt, args);
518 va_end(args);
519 slab_bug(s, "%s", buf);
520 print_page_info(page);
521 dump_stack();
522 }
523
524 static void init_object(struct kmem_cache *s, void *object, u8 val)
525 {
526 u8 *p = object;
527
528 if (s->flags & __OBJECT_POISON) {
529 memset(p, POISON_FREE, s->objsize - 1);
530 p[s->objsize - 1] = POISON_END;
531 }
532
533 if (s->flags & SLAB_RED_ZONE)
534 memset(p + s->objsize, val, s->inuse - s->objsize);
535 }
536
537 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
538 {
539 while (bytes) {
540 if (*start != (u8)value)
541 return start;
542 start++;
543 bytes--;
544 }
545 return NULL;
546 }
547
548 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
549 void *from, void *to)
550 {
551 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
552 memset(from, data, to - from);
553 }
554
555 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
556 u8 *object, char *what,
557 u8 *start, unsigned int value, unsigned int bytes)
558 {
559 u8 *fault;
560 u8 *end;
561
562 fault = check_bytes(start, value, bytes);
563 if (!fault)
564 return 1;
565
566 end = start + bytes;
567 while (end > fault && end[-1] == value)
568 end--;
569
570 slab_bug(s, "%s overwritten", what);
571 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
572 fault, end - 1, fault[0], value);
573 print_trailer(s, page, object);
574
575 restore_bytes(s, what, value, fault, end);
576 return 0;
577 }
578
579 /*
580 * Object layout:
581 *
582 * object address
583 * Bytes of the object to be managed.
584 * If the freepointer may overlay the object then the free
585 * pointer is the first word of the object.
586 *
587 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
588 * 0xa5 (POISON_END)
589 *
590 * object + s->objsize
591 * Padding to reach word boundary. This is also used for Redzoning.
592 * Padding is extended by another word if Redzoning is enabled and
593 * objsize == inuse.
594 *
595 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
596 * 0xcc (RED_ACTIVE) for objects in use.
597 *
598 * object + s->inuse
599 * Meta data starts here.
600 *
601 * A. Free pointer (if we cannot overwrite object on free)
602 * B. Tracking data for SLAB_STORE_USER
603 * C. Padding to reach required alignment boundary or at mininum
604 * one word if debugging is on to be able to detect writes
605 * before the word boundary.
606 *
607 * Padding is done using 0x5a (POISON_INUSE)
608 *
609 * object + s->size
610 * Nothing is used beyond s->size.
611 *
612 * If slabcaches are merged then the objsize and inuse boundaries are mostly
613 * ignored. And therefore no slab options that rely on these boundaries
614 * may be used with merged slabcaches.
615 */
616
617 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 unsigned long off = s->inuse; /* The end of info */
620
621 if (s->offset)
622 /* Freepointer is placed after the object. */
623 off += sizeof(void *);
624
625 if (s->flags & SLAB_STORE_USER)
626 /* We also have user information there */
627 off += 2 * sizeof(struct track);
628
629 if (s->size == off)
630 return 1;
631
632 return check_bytes_and_report(s, page, p, "Object padding",
633 p + off, POISON_INUSE, s->size - off);
634 }
635
636 /* Check the pad bytes at the end of a slab page */
637 static int slab_pad_check(struct kmem_cache *s, struct page *page)
638 {
639 u8 *start;
640 u8 *fault;
641 u8 *end;
642 int length;
643 int remainder;
644
645 if (!(s->flags & SLAB_POISON))
646 return 1;
647
648 start = page_address(page);
649 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
650 end = start + length;
651 remainder = length % s->size;
652 if (!remainder)
653 return 1;
654
655 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
656 if (!fault)
657 return 1;
658 while (end > fault && end[-1] == POISON_INUSE)
659 end--;
660
661 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
662 print_section("Padding", end - remainder, remainder);
663
664 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
665 return 0;
666 }
667
668 static int check_object(struct kmem_cache *s, struct page *page,
669 void *object, u8 val)
670 {
671 u8 *p = object;
672 u8 *endobject = object + s->objsize;
673
674 if (s->flags & SLAB_RED_ZONE) {
675 if (!check_bytes_and_report(s, page, object, "Redzone",
676 endobject, val, s->inuse - s->objsize))
677 return 0;
678 } else {
679 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
680 check_bytes_and_report(s, page, p, "Alignment padding",
681 endobject, POISON_INUSE, s->inuse - s->objsize);
682 }
683 }
684
685 if (s->flags & SLAB_POISON) {
686 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
687 (!check_bytes_and_report(s, page, p, "Poison", p,
688 POISON_FREE, s->objsize - 1) ||
689 !check_bytes_and_report(s, page, p, "Poison",
690 p + s->objsize - 1, POISON_END, 1)))
691 return 0;
692 /*
693 * check_pad_bytes cleans up on its own.
694 */
695 check_pad_bytes(s, page, p);
696 }
697
698 if (!s->offset && val == SLUB_RED_ACTIVE)
699 /*
700 * Object and freepointer overlap. Cannot check
701 * freepointer while object is allocated.
702 */
703 return 1;
704
705 /* Check free pointer validity */
706 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
707 object_err(s, page, p, "Freepointer corrupt");
708 /*
709 * No choice but to zap it and thus lose the remainder
710 * of the free objects in this slab. May cause
711 * another error because the object count is now wrong.
712 */
713 set_freepointer(s, p, NULL);
714 return 0;
715 }
716 return 1;
717 }
718
719 static int check_slab(struct kmem_cache *s, struct page *page)
720 {
721 int maxobj;
722
723 VM_BUG_ON(!irqs_disabled());
724
725 if (!PageSlab(page)) {
726 slab_err(s, page, "Not a valid slab page");
727 return 0;
728 }
729
730 maxobj = order_objects(compound_order(page), s->size, s->reserved);
731 if (page->objects > maxobj) {
732 slab_err(s, page, "objects %u > max %u",
733 s->name, page->objects, maxobj);
734 return 0;
735 }
736 if (page->inuse > page->objects) {
737 slab_err(s, page, "inuse %u > max %u",
738 s->name, page->inuse, page->objects);
739 return 0;
740 }
741 /* Slab_pad_check fixes things up after itself */
742 slab_pad_check(s, page);
743 return 1;
744 }
745
746 /*
747 * Determine if a certain object on a page is on the freelist. Must hold the
748 * slab lock to guarantee that the chains are in a consistent state.
749 */
750 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
751 {
752 int nr = 0;
753 void *fp = page->freelist;
754 void *object = NULL;
755 unsigned long max_objects;
756
757 while (fp && nr <= page->objects) {
758 if (fp == search)
759 return 1;
760 if (!check_valid_pointer(s, page, fp)) {
761 if (object) {
762 object_err(s, page, object,
763 "Freechain corrupt");
764 set_freepointer(s, object, NULL);
765 break;
766 } else {
767 slab_err(s, page, "Freepointer corrupt");
768 page->freelist = NULL;
769 page->inuse = page->objects;
770 slab_fix(s, "Freelist cleared");
771 return 0;
772 }
773 break;
774 }
775 object = fp;
776 fp = get_freepointer(s, object);
777 nr++;
778 }
779
780 max_objects = order_objects(compound_order(page), s->size, s->reserved);
781 if (max_objects > MAX_OBJS_PER_PAGE)
782 max_objects = MAX_OBJS_PER_PAGE;
783
784 if (page->objects != max_objects) {
785 slab_err(s, page, "Wrong number of objects. Found %d but "
786 "should be %d", page->objects, max_objects);
787 page->objects = max_objects;
788 slab_fix(s, "Number of objects adjusted.");
789 }
790 if (page->inuse != page->objects - nr) {
791 slab_err(s, page, "Wrong object count. Counter is %d but "
792 "counted were %d", page->inuse, page->objects - nr);
793 page->inuse = page->objects - nr;
794 slab_fix(s, "Object count adjusted.");
795 }
796 return search == NULL;
797 }
798
799 static void trace(struct kmem_cache *s, struct page *page, void *object,
800 int alloc)
801 {
802 if (s->flags & SLAB_TRACE) {
803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804 s->name,
805 alloc ? "alloc" : "free",
806 object, page->inuse,
807 page->freelist);
808
809 if (!alloc)
810 print_section("Object", (void *)object, s->objsize);
811
812 dump_stack();
813 }
814 }
815
816 /*
817 * Hooks for other subsystems that check memory allocations. In a typical
818 * production configuration these hooks all should produce no code at all.
819 */
820 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
821 {
822 flags &= gfp_allowed_mask;
823 lockdep_trace_alloc(flags);
824 might_sleep_if(flags & __GFP_WAIT);
825
826 return should_failslab(s->objsize, flags, s->flags);
827 }
828
829 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
830 {
831 flags &= gfp_allowed_mask;
832 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
833 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
834 }
835
836 static inline void slab_free_hook(struct kmem_cache *s, void *x)
837 {
838 kmemleak_free_recursive(x, s->flags);
839
840 /*
841 * Trouble is that we may no longer disable interupts in the fast path
842 * So in order to make the debug calls that expect irqs to be
843 * disabled we need to disable interrupts temporarily.
844 */
845 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
846 {
847 unsigned long flags;
848
849 local_irq_save(flags);
850 kmemcheck_slab_free(s, x, s->objsize);
851 debug_check_no_locks_freed(x, s->objsize);
852 if (!(s->flags & SLAB_DEBUG_OBJECTS))
853 debug_check_no_obj_freed(x, s->objsize);
854 local_irq_restore(flags);
855 }
856 #endif
857 }
858
859 /*
860 * Tracking of fully allocated slabs for debugging purposes.
861 */
862 static void add_full(struct kmem_cache_node *n, struct page *page)
863 {
864 spin_lock(&n->list_lock);
865 list_add(&page->lru, &n->full);
866 spin_unlock(&n->list_lock);
867 }
868
869 static void remove_full(struct kmem_cache *s, struct page *page)
870 {
871 struct kmem_cache_node *n;
872
873 if (!(s->flags & SLAB_STORE_USER))
874 return;
875
876 n = get_node(s, page_to_nid(page));
877
878 spin_lock(&n->list_lock);
879 list_del(&page->lru);
880 spin_unlock(&n->list_lock);
881 }
882
883 /* Tracking of the number of slabs for debugging purposes */
884 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
885 {
886 struct kmem_cache_node *n = get_node(s, node);
887
888 return atomic_long_read(&n->nr_slabs);
889 }
890
891 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
892 {
893 return atomic_long_read(&n->nr_slabs);
894 }
895
896 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
897 {
898 struct kmem_cache_node *n = get_node(s, node);
899
900 /*
901 * May be called early in order to allocate a slab for the
902 * kmem_cache_node structure. Solve the chicken-egg
903 * dilemma by deferring the increment of the count during
904 * bootstrap (see early_kmem_cache_node_alloc).
905 */
906 if (n) {
907 atomic_long_inc(&n->nr_slabs);
908 atomic_long_add(objects, &n->total_objects);
909 }
910 }
911 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
912 {
913 struct kmem_cache_node *n = get_node(s, node);
914
915 atomic_long_dec(&n->nr_slabs);
916 atomic_long_sub(objects, &n->total_objects);
917 }
918
919 /* Object debug checks for alloc/free paths */
920 static void setup_object_debug(struct kmem_cache *s, struct page *page,
921 void *object)
922 {
923 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
924 return;
925
926 init_object(s, object, SLUB_RED_INACTIVE);
927 init_tracking(s, object);
928 }
929
930 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
931 void *object, unsigned long addr)
932 {
933 if (!check_slab(s, page))
934 goto bad;
935
936 if (!on_freelist(s, page, object)) {
937 object_err(s, page, object, "Object already allocated");
938 goto bad;
939 }
940
941 if (!check_valid_pointer(s, page, object)) {
942 object_err(s, page, object, "Freelist Pointer check fails");
943 goto bad;
944 }
945
946 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
947 goto bad;
948
949 /* Success perform special debug activities for allocs */
950 if (s->flags & SLAB_STORE_USER)
951 set_track(s, object, TRACK_ALLOC, addr);
952 trace(s, page, object, 1);
953 init_object(s, object, SLUB_RED_ACTIVE);
954 return 1;
955
956 bad:
957 if (PageSlab(page)) {
958 /*
959 * If this is a slab page then lets do the best we can
960 * to avoid issues in the future. Marking all objects
961 * as used avoids touching the remaining objects.
962 */
963 slab_fix(s, "Marking all objects used");
964 page->inuse = page->objects;
965 page->freelist = NULL;
966 }
967 return 0;
968 }
969
970 static noinline int free_debug_processing(struct kmem_cache *s,
971 struct page *page, void *object, unsigned long addr)
972 {
973 if (!check_slab(s, page))
974 goto fail;
975
976 if (!check_valid_pointer(s, page, object)) {
977 slab_err(s, page, "Invalid object pointer 0x%p", object);
978 goto fail;
979 }
980
981 if (on_freelist(s, page, object)) {
982 object_err(s, page, object, "Object already free");
983 goto fail;
984 }
985
986 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
987 return 0;
988
989 if (unlikely(s != page->slab)) {
990 if (!PageSlab(page)) {
991 slab_err(s, page, "Attempt to free object(0x%p) "
992 "outside of slab", object);
993 } else if (!page->slab) {
994 printk(KERN_ERR
995 "SLUB <none>: no slab for object 0x%p.\n",
996 object);
997 dump_stack();
998 } else
999 object_err(s, page, object,
1000 "page slab pointer corrupt.");
1001 goto fail;
1002 }
1003
1004 /* Special debug activities for freeing objects */
1005 if (!PageSlubFrozen(page) && !page->freelist)
1006 remove_full(s, page);
1007 if (s->flags & SLAB_STORE_USER)
1008 set_track(s, object, TRACK_FREE, addr);
1009 trace(s, page, object, 0);
1010 init_object(s, object, SLUB_RED_INACTIVE);
1011 return 1;
1012
1013 fail:
1014 slab_fix(s, "Object at 0x%p not freed", object);
1015 return 0;
1016 }
1017
1018 static int __init setup_slub_debug(char *str)
1019 {
1020 slub_debug = DEBUG_DEFAULT_FLAGS;
1021 if (*str++ != '=' || !*str)
1022 /*
1023 * No options specified. Switch on full debugging.
1024 */
1025 goto out;
1026
1027 if (*str == ',')
1028 /*
1029 * No options but restriction on slabs. This means full
1030 * debugging for slabs matching a pattern.
1031 */
1032 goto check_slabs;
1033
1034 if (tolower(*str) == 'o') {
1035 /*
1036 * Avoid enabling debugging on caches if its minimum order
1037 * would increase as a result.
1038 */
1039 disable_higher_order_debug = 1;
1040 goto out;
1041 }
1042
1043 slub_debug = 0;
1044 if (*str == '-')
1045 /*
1046 * Switch off all debugging measures.
1047 */
1048 goto out;
1049
1050 /*
1051 * Determine which debug features should be switched on
1052 */
1053 for (; *str && *str != ','; str++) {
1054 switch (tolower(*str)) {
1055 case 'f':
1056 slub_debug |= SLAB_DEBUG_FREE;
1057 break;
1058 case 'z':
1059 slub_debug |= SLAB_RED_ZONE;
1060 break;
1061 case 'p':
1062 slub_debug |= SLAB_POISON;
1063 break;
1064 case 'u':
1065 slub_debug |= SLAB_STORE_USER;
1066 break;
1067 case 't':
1068 slub_debug |= SLAB_TRACE;
1069 break;
1070 case 'a':
1071 slub_debug |= SLAB_FAILSLAB;
1072 break;
1073 default:
1074 printk(KERN_ERR "slub_debug option '%c' "
1075 "unknown. skipped\n", *str);
1076 }
1077 }
1078
1079 check_slabs:
1080 if (*str == ',')
1081 slub_debug_slabs = str + 1;
1082 out:
1083 return 1;
1084 }
1085
1086 __setup("slub_debug", setup_slub_debug);
1087
1088 static unsigned long kmem_cache_flags(unsigned long objsize,
1089 unsigned long flags, const char *name,
1090 void (*ctor)(void *))
1091 {
1092 /*
1093 * Enable debugging if selected on the kernel commandline.
1094 */
1095 if (slub_debug && (!slub_debug_slabs ||
1096 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1097 flags |= slub_debug;
1098
1099 return flags;
1100 }
1101 #else
1102 static inline void setup_object_debug(struct kmem_cache *s,
1103 struct page *page, void *object) {}
1104
1105 static inline int alloc_debug_processing(struct kmem_cache *s,
1106 struct page *page, void *object, unsigned long addr) { return 0; }
1107
1108 static inline int free_debug_processing(struct kmem_cache *s,
1109 struct page *page, void *object, unsigned long addr) { return 0; }
1110
1111 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1112 { return 1; }
1113 static inline int check_object(struct kmem_cache *s, struct page *page,
1114 void *object, u8 val) { return 1; }
1115 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1116 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1117 unsigned long flags, const char *name,
1118 void (*ctor)(void *))
1119 {
1120 return flags;
1121 }
1122 #define slub_debug 0
1123
1124 #define disable_higher_order_debug 0
1125
1126 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1127 { return 0; }
1128 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1129 { return 0; }
1130 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1131 int objects) {}
1132 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1133 int objects) {}
1134
1135 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1136 { return 0; }
1137
1138 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1139 void *object) {}
1140
1141 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1142
1143 #endif /* CONFIG_SLUB_DEBUG */
1144
1145 /*
1146 * Slab allocation and freeing
1147 */
1148 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1149 struct kmem_cache_order_objects oo)
1150 {
1151 int order = oo_order(oo);
1152
1153 flags |= __GFP_NOTRACK;
1154
1155 if (node == NUMA_NO_NODE)
1156 return alloc_pages(flags, order);
1157 else
1158 return alloc_pages_exact_node(node, flags, order);
1159 }
1160
1161 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1162 {
1163 struct page *page;
1164 struct kmem_cache_order_objects oo = s->oo;
1165 gfp_t alloc_gfp;
1166
1167 flags |= s->allocflags;
1168
1169 /*
1170 * Let the initial higher-order allocation fail under memory pressure
1171 * so we fall-back to the minimum order allocation.
1172 */
1173 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1174
1175 page = alloc_slab_page(alloc_gfp, node, oo);
1176 if (unlikely(!page)) {
1177 oo = s->min;
1178 /*
1179 * Allocation may have failed due to fragmentation.
1180 * Try a lower order alloc if possible
1181 */
1182 page = alloc_slab_page(flags, node, oo);
1183 if (!page)
1184 return NULL;
1185
1186 stat(s, ORDER_FALLBACK);
1187 }
1188
1189 if (kmemcheck_enabled
1190 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1191 int pages = 1 << oo_order(oo);
1192
1193 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1194
1195 /*
1196 * Objects from caches that have a constructor don't get
1197 * cleared when they're allocated, so we need to do it here.
1198 */
1199 if (s->ctor)
1200 kmemcheck_mark_uninitialized_pages(page, pages);
1201 else
1202 kmemcheck_mark_unallocated_pages(page, pages);
1203 }
1204
1205 page->objects = oo_objects(oo);
1206 mod_zone_page_state(page_zone(page),
1207 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1208 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1209 1 << oo_order(oo));
1210
1211 return page;
1212 }
1213
1214 static void setup_object(struct kmem_cache *s, struct page *page,
1215 void *object)
1216 {
1217 setup_object_debug(s, page, object);
1218 if (unlikely(s->ctor))
1219 s->ctor(object);
1220 }
1221
1222 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1223 {
1224 struct page *page;
1225 void *start;
1226 void *last;
1227 void *p;
1228
1229 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1230
1231 page = allocate_slab(s,
1232 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1233 if (!page)
1234 goto out;
1235
1236 inc_slabs_node(s, page_to_nid(page), page->objects);
1237 page->slab = s;
1238 page->flags |= 1 << PG_slab;
1239
1240 start = page_address(page);
1241
1242 if (unlikely(s->flags & SLAB_POISON))
1243 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1244
1245 last = start;
1246 for_each_object(p, s, start, page->objects) {
1247 setup_object(s, page, last);
1248 set_freepointer(s, last, p);
1249 last = p;
1250 }
1251 setup_object(s, page, last);
1252 set_freepointer(s, last, NULL);
1253
1254 page->freelist = start;
1255 page->inuse = 0;
1256 out:
1257 return page;
1258 }
1259
1260 static void __free_slab(struct kmem_cache *s, struct page *page)
1261 {
1262 int order = compound_order(page);
1263 int pages = 1 << order;
1264
1265 if (kmem_cache_debug(s)) {
1266 void *p;
1267
1268 slab_pad_check(s, page);
1269 for_each_object(p, s, page_address(page),
1270 page->objects)
1271 check_object(s, page, p, SLUB_RED_INACTIVE);
1272 }
1273
1274 kmemcheck_free_shadow(page, compound_order(page));
1275
1276 mod_zone_page_state(page_zone(page),
1277 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1278 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1279 -pages);
1280
1281 __ClearPageSlab(page);
1282 reset_page_mapcount(page);
1283 if (current->reclaim_state)
1284 current->reclaim_state->reclaimed_slab += pages;
1285 __free_pages(page, order);
1286 }
1287
1288 #define need_reserve_slab_rcu \
1289 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1290
1291 static void rcu_free_slab(struct rcu_head *h)
1292 {
1293 struct page *page;
1294
1295 if (need_reserve_slab_rcu)
1296 page = virt_to_head_page(h);
1297 else
1298 page = container_of((struct list_head *)h, struct page, lru);
1299
1300 __free_slab(page->slab, page);
1301 }
1302
1303 static void free_slab(struct kmem_cache *s, struct page *page)
1304 {
1305 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1306 struct rcu_head *head;
1307
1308 if (need_reserve_slab_rcu) {
1309 int order = compound_order(page);
1310 int offset = (PAGE_SIZE << order) - s->reserved;
1311
1312 VM_BUG_ON(s->reserved != sizeof(*head));
1313 head = page_address(page) + offset;
1314 } else {
1315 /*
1316 * RCU free overloads the RCU head over the LRU
1317 */
1318 head = (void *)&page->lru;
1319 }
1320
1321 call_rcu(head, rcu_free_slab);
1322 } else
1323 __free_slab(s, page);
1324 }
1325
1326 static void discard_slab(struct kmem_cache *s, struct page *page)
1327 {
1328 dec_slabs_node(s, page_to_nid(page), page->objects);
1329 free_slab(s, page);
1330 }
1331
1332 /*
1333 * Per slab locking using the pagelock
1334 */
1335 static __always_inline void slab_lock(struct page *page)
1336 {
1337 bit_spin_lock(PG_locked, &page->flags);
1338 }
1339
1340 static __always_inline void slab_unlock(struct page *page)
1341 {
1342 __bit_spin_unlock(PG_locked, &page->flags);
1343 }
1344
1345 static __always_inline int slab_trylock(struct page *page)
1346 {
1347 int rc = 1;
1348
1349 rc = bit_spin_trylock(PG_locked, &page->flags);
1350 return rc;
1351 }
1352
1353 /*
1354 * Management of partially allocated slabs
1355 */
1356 static void add_partial(struct kmem_cache_node *n,
1357 struct page *page, int tail)
1358 {
1359 spin_lock(&n->list_lock);
1360 n->nr_partial++;
1361 if (tail)
1362 list_add_tail(&page->lru, &n->partial);
1363 else
1364 list_add(&page->lru, &n->partial);
1365 spin_unlock(&n->list_lock);
1366 }
1367
1368 static inline void __remove_partial(struct kmem_cache_node *n,
1369 struct page *page)
1370 {
1371 list_del(&page->lru);
1372 n->nr_partial--;
1373 }
1374
1375 static void remove_partial(struct kmem_cache *s, struct page *page)
1376 {
1377 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1378
1379 spin_lock(&n->list_lock);
1380 __remove_partial(n, page);
1381 spin_unlock(&n->list_lock);
1382 }
1383
1384 /*
1385 * Lock slab and remove from the partial list.
1386 *
1387 * Must hold list_lock.
1388 */
1389 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1390 struct page *page)
1391 {
1392 if (slab_trylock(page)) {
1393 __remove_partial(n, page);
1394 __SetPageSlubFrozen(page);
1395 return 1;
1396 }
1397 return 0;
1398 }
1399
1400 /*
1401 * Try to allocate a partial slab from a specific node.
1402 */
1403 static struct page *get_partial_node(struct kmem_cache_node *n)
1404 {
1405 struct page *page;
1406
1407 /*
1408 * Racy check. If we mistakenly see no partial slabs then we
1409 * just allocate an empty slab. If we mistakenly try to get a
1410 * partial slab and there is none available then get_partials()
1411 * will return NULL.
1412 */
1413 if (!n || !n->nr_partial)
1414 return NULL;
1415
1416 spin_lock(&n->list_lock);
1417 list_for_each_entry(page, &n->partial, lru)
1418 if (lock_and_freeze_slab(n, page))
1419 goto out;
1420 page = NULL;
1421 out:
1422 spin_unlock(&n->list_lock);
1423 return page;
1424 }
1425
1426 /*
1427 * Get a page from somewhere. Search in increasing NUMA distances.
1428 */
1429 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1430 {
1431 #ifdef CONFIG_NUMA
1432 struct zonelist *zonelist;
1433 struct zoneref *z;
1434 struct zone *zone;
1435 enum zone_type high_zoneidx = gfp_zone(flags);
1436 struct page *page;
1437
1438 /*
1439 * The defrag ratio allows a configuration of the tradeoffs between
1440 * inter node defragmentation and node local allocations. A lower
1441 * defrag_ratio increases the tendency to do local allocations
1442 * instead of attempting to obtain partial slabs from other nodes.
1443 *
1444 * If the defrag_ratio is set to 0 then kmalloc() always
1445 * returns node local objects. If the ratio is higher then kmalloc()
1446 * may return off node objects because partial slabs are obtained
1447 * from other nodes and filled up.
1448 *
1449 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1450 * defrag_ratio = 1000) then every (well almost) allocation will
1451 * first attempt to defrag slab caches on other nodes. This means
1452 * scanning over all nodes to look for partial slabs which may be
1453 * expensive if we do it every time we are trying to find a slab
1454 * with available objects.
1455 */
1456 if (!s->remote_node_defrag_ratio ||
1457 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1458 return NULL;
1459
1460 get_mems_allowed();
1461 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1462 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1463 struct kmem_cache_node *n;
1464
1465 n = get_node(s, zone_to_nid(zone));
1466
1467 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1468 n->nr_partial > s->min_partial) {
1469 page = get_partial_node(n);
1470 if (page) {
1471 put_mems_allowed();
1472 return page;
1473 }
1474 }
1475 }
1476 put_mems_allowed();
1477 #endif
1478 return NULL;
1479 }
1480
1481 /*
1482 * Get a partial page, lock it and return it.
1483 */
1484 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1485 {
1486 struct page *page;
1487 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1488
1489 page = get_partial_node(get_node(s, searchnode));
1490 if (page || node != -1)
1491 return page;
1492
1493 return get_any_partial(s, flags);
1494 }
1495
1496 /*
1497 * Move a page back to the lists.
1498 *
1499 * Must be called with the slab lock held.
1500 *
1501 * On exit the slab lock will have been dropped.
1502 */
1503 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1504 __releases(bitlock)
1505 {
1506 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1507
1508 __ClearPageSlubFrozen(page);
1509 if (page->inuse) {
1510
1511 if (page->freelist) {
1512 add_partial(n, page, tail);
1513 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1514 } else {
1515 stat(s, DEACTIVATE_FULL);
1516 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1517 add_full(n, page);
1518 }
1519 slab_unlock(page);
1520 } else {
1521 stat(s, DEACTIVATE_EMPTY);
1522 if (n->nr_partial < s->min_partial) {
1523 /*
1524 * Adding an empty slab to the partial slabs in order
1525 * to avoid page allocator overhead. This slab needs
1526 * to come after the other slabs with objects in
1527 * so that the others get filled first. That way the
1528 * size of the partial list stays small.
1529 *
1530 * kmem_cache_shrink can reclaim any empty slabs from
1531 * the partial list.
1532 */
1533 add_partial(n, page, 1);
1534 slab_unlock(page);
1535 } else {
1536 slab_unlock(page);
1537 stat(s, FREE_SLAB);
1538 discard_slab(s, page);
1539 }
1540 }
1541 }
1542
1543 #ifdef CONFIG_CMPXCHG_LOCAL
1544 #ifdef CONFIG_PREEMPT
1545 /*
1546 * Calculate the next globally unique transaction for disambiguiation
1547 * during cmpxchg. The transactions start with the cpu number and are then
1548 * incremented by CONFIG_NR_CPUS.
1549 */
1550 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1551 #else
1552 /*
1553 * No preemption supported therefore also no need to check for
1554 * different cpus.
1555 */
1556 #define TID_STEP 1
1557 #endif
1558
1559 static inline unsigned long next_tid(unsigned long tid)
1560 {
1561 return tid + TID_STEP;
1562 }
1563
1564 static inline unsigned int tid_to_cpu(unsigned long tid)
1565 {
1566 return tid % TID_STEP;
1567 }
1568
1569 static inline unsigned long tid_to_event(unsigned long tid)
1570 {
1571 return tid / TID_STEP;
1572 }
1573
1574 static inline unsigned int init_tid(int cpu)
1575 {
1576 return cpu;
1577 }
1578
1579 static inline void note_cmpxchg_failure(const char *n,
1580 const struct kmem_cache *s, unsigned long tid)
1581 {
1582 #ifdef SLUB_DEBUG_CMPXCHG
1583 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1584
1585 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1586
1587 #ifdef CONFIG_PREEMPT
1588 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1589 printk("due to cpu change %d -> %d\n",
1590 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1591 else
1592 #endif
1593 if (tid_to_event(tid) != tid_to_event(actual_tid))
1594 printk("due to cpu running other code. Event %ld->%ld\n",
1595 tid_to_event(tid), tid_to_event(actual_tid));
1596 else
1597 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1598 actual_tid, tid, next_tid(tid));
1599 #endif
1600 }
1601
1602 #endif
1603
1604 void init_kmem_cache_cpus(struct kmem_cache *s)
1605 {
1606 #if defined(CONFIG_CMPXCHG_LOCAL) && defined(CONFIG_PREEMPT)
1607 int cpu;
1608
1609 for_each_possible_cpu(cpu)
1610 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1611 #endif
1612
1613 }
1614 /*
1615 * Remove the cpu slab
1616 */
1617 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1618 __releases(bitlock)
1619 {
1620 struct page *page = c->page;
1621 int tail = 1;
1622
1623 if (page->freelist)
1624 stat(s, DEACTIVATE_REMOTE_FREES);
1625 /*
1626 * Merge cpu freelist into slab freelist. Typically we get here
1627 * because both freelists are empty. So this is unlikely
1628 * to occur.
1629 */
1630 while (unlikely(c->freelist)) {
1631 void **object;
1632
1633 tail = 0; /* Hot objects. Put the slab first */
1634
1635 /* Retrieve object from cpu_freelist */
1636 object = c->freelist;
1637 c->freelist = get_freepointer(s, c->freelist);
1638
1639 /* And put onto the regular freelist */
1640 set_freepointer(s, object, page->freelist);
1641 page->freelist = object;
1642 page->inuse--;
1643 }
1644 c->page = NULL;
1645 #ifdef CONFIG_CMPXCHG_LOCAL
1646 c->tid = next_tid(c->tid);
1647 #endif
1648 unfreeze_slab(s, page, tail);
1649 }
1650
1651 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1652 {
1653 stat(s, CPUSLAB_FLUSH);
1654 slab_lock(c->page);
1655 deactivate_slab(s, c);
1656 }
1657
1658 /*
1659 * Flush cpu slab.
1660 *
1661 * Called from IPI handler with interrupts disabled.
1662 */
1663 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1664 {
1665 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1666
1667 if (likely(c && c->page))
1668 flush_slab(s, c);
1669 }
1670
1671 static void flush_cpu_slab(void *d)
1672 {
1673 struct kmem_cache *s = d;
1674
1675 __flush_cpu_slab(s, smp_processor_id());
1676 }
1677
1678 static void flush_all(struct kmem_cache *s)
1679 {
1680 on_each_cpu(flush_cpu_slab, s, 1);
1681 }
1682
1683 /*
1684 * Check if the objects in a per cpu structure fit numa
1685 * locality expectations.
1686 */
1687 static inline int node_match(struct kmem_cache_cpu *c, int node)
1688 {
1689 #ifdef CONFIG_NUMA
1690 if (node != NUMA_NO_NODE && c->node != node)
1691 return 0;
1692 #endif
1693 return 1;
1694 }
1695
1696 static int count_free(struct page *page)
1697 {
1698 return page->objects - page->inuse;
1699 }
1700
1701 static unsigned long count_partial(struct kmem_cache_node *n,
1702 int (*get_count)(struct page *))
1703 {
1704 unsigned long flags;
1705 unsigned long x = 0;
1706 struct page *page;
1707
1708 spin_lock_irqsave(&n->list_lock, flags);
1709 list_for_each_entry(page, &n->partial, lru)
1710 x += get_count(page);
1711 spin_unlock_irqrestore(&n->list_lock, flags);
1712 return x;
1713 }
1714
1715 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1716 {
1717 #ifdef CONFIG_SLUB_DEBUG
1718 return atomic_long_read(&n->total_objects);
1719 #else
1720 return 0;
1721 #endif
1722 }
1723
1724 static noinline void
1725 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1726 {
1727 int node;
1728
1729 printk(KERN_WARNING
1730 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1731 nid, gfpflags);
1732 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1733 "default order: %d, min order: %d\n", s->name, s->objsize,
1734 s->size, oo_order(s->oo), oo_order(s->min));
1735
1736 if (oo_order(s->min) > get_order(s->objsize))
1737 printk(KERN_WARNING " %s debugging increased min order, use "
1738 "slub_debug=O to disable.\n", s->name);
1739
1740 for_each_online_node(node) {
1741 struct kmem_cache_node *n = get_node(s, node);
1742 unsigned long nr_slabs;
1743 unsigned long nr_objs;
1744 unsigned long nr_free;
1745
1746 if (!n)
1747 continue;
1748
1749 nr_free = count_partial(n, count_free);
1750 nr_slabs = node_nr_slabs(n);
1751 nr_objs = node_nr_objs(n);
1752
1753 printk(KERN_WARNING
1754 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1755 node, nr_slabs, nr_objs, nr_free);
1756 }
1757 }
1758
1759 /*
1760 * Slow path. The lockless freelist is empty or we need to perform
1761 * debugging duties.
1762 *
1763 * Interrupts are disabled.
1764 *
1765 * Processing is still very fast if new objects have been freed to the
1766 * regular freelist. In that case we simply take over the regular freelist
1767 * as the lockless freelist and zap the regular freelist.
1768 *
1769 * If that is not working then we fall back to the partial lists. We take the
1770 * first element of the freelist as the object to allocate now and move the
1771 * rest of the freelist to the lockless freelist.
1772 *
1773 * And if we were unable to get a new slab from the partial slab lists then
1774 * we need to allocate a new slab. This is the slowest path since it involves
1775 * a call to the page allocator and the setup of a new slab.
1776 */
1777 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1778 unsigned long addr, struct kmem_cache_cpu *c)
1779 {
1780 void **object;
1781 struct page *new;
1782 #ifdef CONFIG_CMPXCHG_LOCAL
1783 unsigned long flags;
1784
1785 local_irq_save(flags);
1786 #ifdef CONFIG_PREEMPT
1787 /*
1788 * We may have been preempted and rescheduled on a different
1789 * cpu before disabling interrupts. Need to reload cpu area
1790 * pointer.
1791 */
1792 c = this_cpu_ptr(s->cpu_slab);
1793 #endif
1794 #endif
1795
1796 /* We handle __GFP_ZERO in the caller */
1797 gfpflags &= ~__GFP_ZERO;
1798
1799 if (!c->page)
1800 goto new_slab;
1801
1802 slab_lock(c->page);
1803 if (unlikely(!node_match(c, node)))
1804 goto another_slab;
1805
1806 stat(s, ALLOC_REFILL);
1807
1808 load_freelist:
1809 object = c->page->freelist;
1810 if (unlikely(!object))
1811 goto another_slab;
1812 if (kmem_cache_debug(s))
1813 goto debug;
1814
1815 c->freelist = get_freepointer(s, object);
1816 c->page->inuse = c->page->objects;
1817 c->page->freelist = NULL;
1818 c->node = page_to_nid(c->page);
1819 unlock_out:
1820 slab_unlock(c->page);
1821 #ifdef CONFIG_CMPXCHG_LOCAL
1822 c->tid = next_tid(c->tid);
1823 local_irq_restore(flags);
1824 #endif
1825 stat(s, ALLOC_SLOWPATH);
1826 return object;
1827
1828 another_slab:
1829 deactivate_slab(s, c);
1830
1831 new_slab:
1832 new = get_partial(s, gfpflags, node);
1833 if (new) {
1834 c->page = new;
1835 stat(s, ALLOC_FROM_PARTIAL);
1836 goto load_freelist;
1837 }
1838
1839 gfpflags &= gfp_allowed_mask;
1840 if (gfpflags & __GFP_WAIT)
1841 local_irq_enable();
1842
1843 new = new_slab(s, gfpflags, node);
1844
1845 if (gfpflags & __GFP_WAIT)
1846 local_irq_disable();
1847
1848 if (new) {
1849 c = __this_cpu_ptr(s->cpu_slab);
1850 stat(s, ALLOC_SLAB);
1851 if (c->page)
1852 flush_slab(s, c);
1853 slab_lock(new);
1854 __SetPageSlubFrozen(new);
1855 c->page = new;
1856 goto load_freelist;
1857 }
1858 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1859 slab_out_of_memory(s, gfpflags, node);
1860 return NULL;
1861 debug:
1862 if (!alloc_debug_processing(s, c->page, object, addr))
1863 goto another_slab;
1864
1865 c->page->inuse++;
1866 c->page->freelist = get_freepointer(s, object);
1867 c->node = NUMA_NO_NODE;
1868 goto unlock_out;
1869 }
1870
1871 /*
1872 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1873 * have the fastpath folded into their functions. So no function call
1874 * overhead for requests that can be satisfied on the fastpath.
1875 *
1876 * The fastpath works by first checking if the lockless freelist can be used.
1877 * If not then __slab_alloc is called for slow processing.
1878 *
1879 * Otherwise we can simply pick the next object from the lockless free list.
1880 */
1881 static __always_inline void *slab_alloc(struct kmem_cache *s,
1882 gfp_t gfpflags, int node, unsigned long addr)
1883 {
1884 void **object;
1885 struct kmem_cache_cpu *c;
1886 #ifdef CONFIG_CMPXCHG_LOCAL
1887 unsigned long tid;
1888 #else
1889 unsigned long flags;
1890 #endif
1891
1892 if (slab_pre_alloc_hook(s, gfpflags))
1893 return NULL;
1894
1895 #ifndef CONFIG_CMPXCHG_LOCAL
1896 local_irq_save(flags);
1897 #else
1898 redo:
1899 #endif
1900
1901 /*
1902 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1903 * enabled. We may switch back and forth between cpus while
1904 * reading from one cpu area. That does not matter as long
1905 * as we end up on the original cpu again when doing the cmpxchg.
1906 */
1907 c = __this_cpu_ptr(s->cpu_slab);
1908
1909 #ifdef CONFIG_CMPXCHG_LOCAL
1910 /*
1911 * The transaction ids are globally unique per cpu and per operation on
1912 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1913 * occurs on the right processor and that there was no operation on the
1914 * linked list in between.
1915 */
1916 tid = c->tid;
1917 barrier();
1918 #endif
1919
1920 object = c->freelist;
1921 if (unlikely(!object || !node_match(c, node)))
1922
1923 object = __slab_alloc(s, gfpflags, node, addr, c);
1924
1925 else {
1926 #ifdef CONFIG_CMPXCHG_LOCAL
1927 /*
1928 * The cmpxchg will only match if there was no additonal
1929 * operation and if we are on the right processor.
1930 *
1931 * The cmpxchg does the following atomically (without lock semantics!)
1932 * 1. Relocate first pointer to the current per cpu area.
1933 * 2. Verify that tid and freelist have not been changed
1934 * 3. If they were not changed replace tid and freelist
1935 *
1936 * Since this is without lock semantics the protection is only against
1937 * code executing on this cpu *not* from access by other cpus.
1938 */
1939 if (unlikely(!this_cpu_cmpxchg_double(
1940 s->cpu_slab->freelist, s->cpu_slab->tid,
1941 object, tid,
1942 get_freepointer(s, object), next_tid(tid)))) {
1943
1944 note_cmpxchg_failure("slab_alloc", s, tid);
1945 goto redo;
1946 }
1947 #else
1948 c->freelist = get_freepointer(s, object);
1949 #endif
1950 stat(s, ALLOC_FASTPATH);
1951 }
1952
1953 #ifndef CONFIG_CMPXCHG_LOCAL
1954 local_irq_restore(flags);
1955 #endif
1956
1957 if (unlikely(gfpflags & __GFP_ZERO) && object)
1958 memset(object, 0, s->objsize);
1959
1960 slab_post_alloc_hook(s, gfpflags, object);
1961
1962 return object;
1963 }
1964
1965 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1966 {
1967 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1968
1969 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1970
1971 return ret;
1972 }
1973 EXPORT_SYMBOL(kmem_cache_alloc);
1974
1975 #ifdef CONFIG_TRACING
1976 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1977 {
1978 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1979 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1980 return ret;
1981 }
1982 EXPORT_SYMBOL(kmem_cache_alloc_trace);
1983
1984 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1985 {
1986 void *ret = kmalloc_order(size, flags, order);
1987 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1988 return ret;
1989 }
1990 EXPORT_SYMBOL(kmalloc_order_trace);
1991 #endif
1992
1993 #ifdef CONFIG_NUMA
1994 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1995 {
1996 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1997
1998 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1999 s->objsize, s->size, gfpflags, node);
2000
2001 return ret;
2002 }
2003 EXPORT_SYMBOL(kmem_cache_alloc_node);
2004
2005 #ifdef CONFIG_TRACING
2006 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2007 gfp_t gfpflags,
2008 int node, size_t size)
2009 {
2010 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2011
2012 trace_kmalloc_node(_RET_IP_, ret,
2013 size, s->size, gfpflags, node);
2014 return ret;
2015 }
2016 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2017 #endif
2018 #endif
2019
2020 /*
2021 * Slow patch handling. This may still be called frequently since objects
2022 * have a longer lifetime than the cpu slabs in most processing loads.
2023 *
2024 * So we still attempt to reduce cache line usage. Just take the slab
2025 * lock and free the item. If there is no additional partial page
2026 * handling required then we can return immediately.
2027 */
2028 static void __slab_free(struct kmem_cache *s, struct page *page,
2029 void *x, unsigned long addr)
2030 {
2031 void *prior;
2032 void **object = (void *)x;
2033 #ifdef CONFIG_CMPXCHG_LOCAL
2034 unsigned long flags;
2035
2036 local_irq_save(flags);
2037 #endif
2038 slab_lock(page);
2039 stat(s, FREE_SLOWPATH);
2040
2041 if (kmem_cache_debug(s))
2042 goto debug;
2043
2044 checks_ok:
2045 prior = page->freelist;
2046 set_freepointer(s, object, prior);
2047 page->freelist = object;
2048 page->inuse--;
2049
2050 if (unlikely(PageSlubFrozen(page))) {
2051 stat(s, FREE_FROZEN);
2052 goto out_unlock;
2053 }
2054
2055 if (unlikely(!page->inuse))
2056 goto slab_empty;
2057
2058 /*
2059 * Objects left in the slab. If it was not on the partial list before
2060 * then add it.
2061 */
2062 if (unlikely(!prior)) {
2063 add_partial(get_node(s, page_to_nid(page)), page, 1);
2064 stat(s, FREE_ADD_PARTIAL);
2065 }
2066
2067 out_unlock:
2068 slab_unlock(page);
2069 #ifdef CONFIG_CMPXCHG_LOCAL
2070 local_irq_restore(flags);
2071 #endif
2072 return;
2073
2074 slab_empty:
2075 if (prior) {
2076 /*
2077 * Slab still on the partial list.
2078 */
2079 remove_partial(s, page);
2080 stat(s, FREE_REMOVE_PARTIAL);
2081 }
2082 slab_unlock(page);
2083 #ifdef CONFIG_CMPXCHG_LOCAL
2084 local_irq_restore(flags);
2085 #endif
2086 stat(s, FREE_SLAB);
2087 discard_slab(s, page);
2088 return;
2089
2090 debug:
2091 if (!free_debug_processing(s, page, x, addr))
2092 goto out_unlock;
2093 goto checks_ok;
2094 }
2095
2096 /*
2097 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2098 * can perform fastpath freeing without additional function calls.
2099 *
2100 * The fastpath is only possible if we are freeing to the current cpu slab
2101 * of this processor. This typically the case if we have just allocated
2102 * the item before.
2103 *
2104 * If fastpath is not possible then fall back to __slab_free where we deal
2105 * with all sorts of special processing.
2106 */
2107 static __always_inline void slab_free(struct kmem_cache *s,
2108 struct page *page, void *x, unsigned long addr)
2109 {
2110 void **object = (void *)x;
2111 struct kmem_cache_cpu *c;
2112 #ifdef CONFIG_CMPXCHG_LOCAL
2113 unsigned long tid;
2114 #else
2115 unsigned long flags;
2116 #endif
2117
2118 slab_free_hook(s, x);
2119
2120 #ifndef CONFIG_CMPXCHG_LOCAL
2121 local_irq_save(flags);
2122
2123 #else
2124 redo:
2125 #endif
2126
2127 /*
2128 * Determine the currently cpus per cpu slab.
2129 * The cpu may change afterward. However that does not matter since
2130 * data is retrieved via this pointer. If we are on the same cpu
2131 * during the cmpxchg then the free will succedd.
2132 */
2133 c = __this_cpu_ptr(s->cpu_slab);
2134
2135 #ifdef CONFIG_CMPXCHG_LOCAL
2136 tid = c->tid;
2137 barrier();
2138 #endif
2139
2140 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
2141 set_freepointer(s, object, c->freelist);
2142
2143 #ifdef CONFIG_CMPXCHG_LOCAL
2144 if (unlikely(!this_cpu_cmpxchg_double(
2145 s->cpu_slab->freelist, s->cpu_slab->tid,
2146 c->freelist, tid,
2147 object, next_tid(tid)))) {
2148
2149 note_cmpxchg_failure("slab_free", s, tid);
2150 goto redo;
2151 }
2152 #else
2153 c->freelist = object;
2154 #endif
2155 stat(s, FREE_FASTPATH);
2156 } else
2157 __slab_free(s, page, x, addr);
2158
2159 #ifndef CONFIG_CMPXCHG_LOCAL
2160 local_irq_restore(flags);
2161 #endif
2162 }
2163
2164 void kmem_cache_free(struct kmem_cache *s, void *x)
2165 {
2166 struct page *page;
2167
2168 page = virt_to_head_page(x);
2169
2170 slab_free(s, page, x, _RET_IP_);
2171
2172 trace_kmem_cache_free(_RET_IP_, x);
2173 }
2174 EXPORT_SYMBOL(kmem_cache_free);
2175
2176 /*
2177 * Object placement in a slab is made very easy because we always start at
2178 * offset 0. If we tune the size of the object to the alignment then we can
2179 * get the required alignment by putting one properly sized object after
2180 * another.
2181 *
2182 * Notice that the allocation order determines the sizes of the per cpu
2183 * caches. Each processor has always one slab available for allocations.
2184 * Increasing the allocation order reduces the number of times that slabs
2185 * must be moved on and off the partial lists and is therefore a factor in
2186 * locking overhead.
2187 */
2188
2189 /*
2190 * Mininum / Maximum order of slab pages. This influences locking overhead
2191 * and slab fragmentation. A higher order reduces the number of partial slabs
2192 * and increases the number of allocations possible without having to
2193 * take the list_lock.
2194 */
2195 static int slub_min_order;
2196 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2197 static int slub_min_objects;
2198
2199 /*
2200 * Merge control. If this is set then no merging of slab caches will occur.
2201 * (Could be removed. This was introduced to pacify the merge skeptics.)
2202 */
2203 static int slub_nomerge;
2204
2205 /*
2206 * Calculate the order of allocation given an slab object size.
2207 *
2208 * The order of allocation has significant impact on performance and other
2209 * system components. Generally order 0 allocations should be preferred since
2210 * order 0 does not cause fragmentation in the page allocator. Larger objects
2211 * be problematic to put into order 0 slabs because there may be too much
2212 * unused space left. We go to a higher order if more than 1/16th of the slab
2213 * would be wasted.
2214 *
2215 * In order to reach satisfactory performance we must ensure that a minimum
2216 * number of objects is in one slab. Otherwise we may generate too much
2217 * activity on the partial lists which requires taking the list_lock. This is
2218 * less a concern for large slabs though which are rarely used.
2219 *
2220 * slub_max_order specifies the order where we begin to stop considering the
2221 * number of objects in a slab as critical. If we reach slub_max_order then
2222 * we try to keep the page order as low as possible. So we accept more waste
2223 * of space in favor of a small page order.
2224 *
2225 * Higher order allocations also allow the placement of more objects in a
2226 * slab and thereby reduce object handling overhead. If the user has
2227 * requested a higher mininum order then we start with that one instead of
2228 * the smallest order which will fit the object.
2229 */
2230 static inline int slab_order(int size, int min_objects,
2231 int max_order, int fract_leftover, int reserved)
2232 {
2233 int order;
2234 int rem;
2235 int min_order = slub_min_order;
2236
2237 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2238 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2239
2240 for (order = max(min_order,
2241 fls(min_objects * size - 1) - PAGE_SHIFT);
2242 order <= max_order; order++) {
2243
2244 unsigned long slab_size = PAGE_SIZE << order;
2245
2246 if (slab_size < min_objects * size + reserved)
2247 continue;
2248
2249 rem = (slab_size - reserved) % size;
2250
2251 if (rem <= slab_size / fract_leftover)
2252 break;
2253
2254 }
2255
2256 return order;
2257 }
2258
2259 static inline int calculate_order(int size, int reserved)
2260 {
2261 int order;
2262 int min_objects;
2263 int fraction;
2264 int max_objects;
2265
2266 /*
2267 * Attempt to find best configuration for a slab. This
2268 * works by first attempting to generate a layout with
2269 * the best configuration and backing off gradually.
2270 *
2271 * First we reduce the acceptable waste in a slab. Then
2272 * we reduce the minimum objects required in a slab.
2273 */
2274 min_objects = slub_min_objects;
2275 if (!min_objects)
2276 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2277 max_objects = order_objects(slub_max_order, size, reserved);
2278 min_objects = min(min_objects, max_objects);
2279
2280 while (min_objects > 1) {
2281 fraction = 16;
2282 while (fraction >= 4) {
2283 order = slab_order(size, min_objects,
2284 slub_max_order, fraction, reserved);
2285 if (order <= slub_max_order)
2286 return order;
2287 fraction /= 2;
2288 }
2289 min_objects--;
2290 }
2291
2292 /*
2293 * We were unable to place multiple objects in a slab. Now
2294 * lets see if we can place a single object there.
2295 */
2296 order = slab_order(size, 1, slub_max_order, 1, reserved);
2297 if (order <= slub_max_order)
2298 return order;
2299
2300 /*
2301 * Doh this slab cannot be placed using slub_max_order.
2302 */
2303 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2304 if (order < MAX_ORDER)
2305 return order;
2306 return -ENOSYS;
2307 }
2308
2309 /*
2310 * Figure out what the alignment of the objects will be.
2311 */
2312 static unsigned long calculate_alignment(unsigned long flags,
2313 unsigned long align, unsigned long size)
2314 {
2315 /*
2316 * If the user wants hardware cache aligned objects then follow that
2317 * suggestion if the object is sufficiently large.
2318 *
2319 * The hardware cache alignment cannot override the specified
2320 * alignment though. If that is greater then use it.
2321 */
2322 if (flags & SLAB_HWCACHE_ALIGN) {
2323 unsigned long ralign = cache_line_size();
2324 while (size <= ralign / 2)
2325 ralign /= 2;
2326 align = max(align, ralign);
2327 }
2328
2329 if (align < ARCH_SLAB_MINALIGN)
2330 align = ARCH_SLAB_MINALIGN;
2331
2332 return ALIGN(align, sizeof(void *));
2333 }
2334
2335 static void
2336 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2337 {
2338 n->nr_partial = 0;
2339 spin_lock_init(&n->list_lock);
2340 INIT_LIST_HEAD(&n->partial);
2341 #ifdef CONFIG_SLUB_DEBUG
2342 atomic_long_set(&n->nr_slabs, 0);
2343 atomic_long_set(&n->total_objects, 0);
2344 INIT_LIST_HEAD(&n->full);
2345 #endif
2346 }
2347
2348 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2349 {
2350 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2351 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2352
2353 #ifdef CONFIG_CMPXCHG_LOCAL
2354 /*
2355 * Must align to double word boundary for the double cmpxchg instructions
2356 * to work.
2357 */
2358 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2359 #else
2360 /* Regular alignment is sufficient */
2361 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2362 #endif
2363
2364 if (!s->cpu_slab)
2365 return 0;
2366
2367 init_kmem_cache_cpus(s);
2368
2369 return 1;
2370 }
2371
2372 static struct kmem_cache *kmem_cache_node;
2373
2374 /*
2375 * No kmalloc_node yet so do it by hand. We know that this is the first
2376 * slab on the node for this slabcache. There are no concurrent accesses
2377 * possible.
2378 *
2379 * Note that this function only works on the kmalloc_node_cache
2380 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2381 * memory on a fresh node that has no slab structures yet.
2382 */
2383 static void early_kmem_cache_node_alloc(int node)
2384 {
2385 struct page *page;
2386 struct kmem_cache_node *n;
2387 unsigned long flags;
2388
2389 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2390
2391 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2392
2393 BUG_ON(!page);
2394 if (page_to_nid(page) != node) {
2395 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2396 "node %d\n", node);
2397 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2398 "in order to be able to continue\n");
2399 }
2400
2401 n = page->freelist;
2402 BUG_ON(!n);
2403 page->freelist = get_freepointer(kmem_cache_node, n);
2404 page->inuse++;
2405 kmem_cache_node->node[node] = n;
2406 #ifdef CONFIG_SLUB_DEBUG
2407 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2408 init_tracking(kmem_cache_node, n);
2409 #endif
2410 init_kmem_cache_node(n, kmem_cache_node);
2411 inc_slabs_node(kmem_cache_node, node, page->objects);
2412
2413 /*
2414 * lockdep requires consistent irq usage for each lock
2415 * so even though there cannot be a race this early in
2416 * the boot sequence, we still disable irqs.
2417 */
2418 local_irq_save(flags);
2419 add_partial(n, page, 0);
2420 local_irq_restore(flags);
2421 }
2422
2423 static void free_kmem_cache_nodes(struct kmem_cache *s)
2424 {
2425 int node;
2426
2427 for_each_node_state(node, N_NORMAL_MEMORY) {
2428 struct kmem_cache_node *n = s->node[node];
2429
2430 if (n)
2431 kmem_cache_free(kmem_cache_node, n);
2432
2433 s->node[node] = NULL;
2434 }
2435 }
2436
2437 static int init_kmem_cache_nodes(struct kmem_cache *s)
2438 {
2439 int node;
2440
2441 for_each_node_state(node, N_NORMAL_MEMORY) {
2442 struct kmem_cache_node *n;
2443
2444 if (slab_state == DOWN) {
2445 early_kmem_cache_node_alloc(node);
2446 continue;
2447 }
2448 n = kmem_cache_alloc_node(kmem_cache_node,
2449 GFP_KERNEL, node);
2450
2451 if (!n) {
2452 free_kmem_cache_nodes(s);
2453 return 0;
2454 }
2455
2456 s->node[node] = n;
2457 init_kmem_cache_node(n, s);
2458 }
2459 return 1;
2460 }
2461
2462 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2463 {
2464 if (min < MIN_PARTIAL)
2465 min = MIN_PARTIAL;
2466 else if (min > MAX_PARTIAL)
2467 min = MAX_PARTIAL;
2468 s->min_partial = min;
2469 }
2470
2471 /*
2472 * calculate_sizes() determines the order and the distribution of data within
2473 * a slab object.
2474 */
2475 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2476 {
2477 unsigned long flags = s->flags;
2478 unsigned long size = s->objsize;
2479 unsigned long align = s->align;
2480 int order;
2481
2482 /*
2483 * Round up object size to the next word boundary. We can only
2484 * place the free pointer at word boundaries and this determines
2485 * the possible location of the free pointer.
2486 */
2487 size = ALIGN(size, sizeof(void *));
2488
2489 #ifdef CONFIG_SLUB_DEBUG
2490 /*
2491 * Determine if we can poison the object itself. If the user of
2492 * the slab may touch the object after free or before allocation
2493 * then we should never poison the object itself.
2494 */
2495 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2496 !s->ctor)
2497 s->flags |= __OBJECT_POISON;
2498 else
2499 s->flags &= ~__OBJECT_POISON;
2500
2501
2502 /*
2503 * If we are Redzoning then check if there is some space between the
2504 * end of the object and the free pointer. If not then add an
2505 * additional word to have some bytes to store Redzone information.
2506 */
2507 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2508 size += sizeof(void *);
2509 #endif
2510
2511 /*
2512 * With that we have determined the number of bytes in actual use
2513 * by the object. This is the potential offset to the free pointer.
2514 */
2515 s->inuse = size;
2516
2517 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2518 s->ctor)) {
2519 /*
2520 * Relocate free pointer after the object if it is not
2521 * permitted to overwrite the first word of the object on
2522 * kmem_cache_free.
2523 *
2524 * This is the case if we do RCU, have a constructor or
2525 * destructor or are poisoning the objects.
2526 */
2527 s->offset = size;
2528 size += sizeof(void *);
2529 }
2530
2531 #ifdef CONFIG_SLUB_DEBUG
2532 if (flags & SLAB_STORE_USER)
2533 /*
2534 * Need to store information about allocs and frees after
2535 * the object.
2536 */
2537 size += 2 * sizeof(struct track);
2538
2539 if (flags & SLAB_RED_ZONE)
2540 /*
2541 * Add some empty padding so that we can catch
2542 * overwrites from earlier objects rather than let
2543 * tracking information or the free pointer be
2544 * corrupted if a user writes before the start
2545 * of the object.
2546 */
2547 size += sizeof(void *);
2548 #endif
2549
2550 /*
2551 * Determine the alignment based on various parameters that the
2552 * user specified and the dynamic determination of cache line size
2553 * on bootup.
2554 */
2555 align = calculate_alignment(flags, align, s->objsize);
2556 s->align = align;
2557
2558 /*
2559 * SLUB stores one object immediately after another beginning from
2560 * offset 0. In order to align the objects we have to simply size
2561 * each object to conform to the alignment.
2562 */
2563 size = ALIGN(size, align);
2564 s->size = size;
2565 if (forced_order >= 0)
2566 order = forced_order;
2567 else
2568 order = calculate_order(size, s->reserved);
2569
2570 if (order < 0)
2571 return 0;
2572
2573 s->allocflags = 0;
2574 if (order)
2575 s->allocflags |= __GFP_COMP;
2576
2577 if (s->flags & SLAB_CACHE_DMA)
2578 s->allocflags |= SLUB_DMA;
2579
2580 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2581 s->allocflags |= __GFP_RECLAIMABLE;
2582
2583 /*
2584 * Determine the number of objects per slab
2585 */
2586 s->oo = oo_make(order, size, s->reserved);
2587 s->min = oo_make(get_order(size), size, s->reserved);
2588 if (oo_objects(s->oo) > oo_objects(s->max))
2589 s->max = s->oo;
2590
2591 return !!oo_objects(s->oo);
2592
2593 }
2594
2595 static int kmem_cache_open(struct kmem_cache *s,
2596 const char *name, size_t size,
2597 size_t align, unsigned long flags,
2598 void (*ctor)(void *))
2599 {
2600 memset(s, 0, kmem_size);
2601 s->name = name;
2602 s->ctor = ctor;
2603 s->objsize = size;
2604 s->align = align;
2605 s->flags = kmem_cache_flags(size, flags, name, ctor);
2606 s->reserved = 0;
2607
2608 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2609 s->reserved = sizeof(struct rcu_head);
2610
2611 if (!calculate_sizes(s, -1))
2612 goto error;
2613 if (disable_higher_order_debug) {
2614 /*
2615 * Disable debugging flags that store metadata if the min slab
2616 * order increased.
2617 */
2618 if (get_order(s->size) > get_order(s->objsize)) {
2619 s->flags &= ~DEBUG_METADATA_FLAGS;
2620 s->offset = 0;
2621 if (!calculate_sizes(s, -1))
2622 goto error;
2623 }
2624 }
2625
2626 /*
2627 * The larger the object size is, the more pages we want on the partial
2628 * list to avoid pounding the page allocator excessively.
2629 */
2630 set_min_partial(s, ilog2(s->size));
2631 s->refcount = 1;
2632 #ifdef CONFIG_NUMA
2633 s->remote_node_defrag_ratio = 1000;
2634 #endif
2635 if (!init_kmem_cache_nodes(s))
2636 goto error;
2637
2638 if (alloc_kmem_cache_cpus(s))
2639 return 1;
2640
2641 free_kmem_cache_nodes(s);
2642 error:
2643 if (flags & SLAB_PANIC)
2644 panic("Cannot create slab %s size=%lu realsize=%u "
2645 "order=%u offset=%u flags=%lx\n",
2646 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2647 s->offset, flags);
2648 return 0;
2649 }
2650
2651 /*
2652 * Determine the size of a slab object
2653 */
2654 unsigned int kmem_cache_size(struct kmem_cache *s)
2655 {
2656 return s->objsize;
2657 }
2658 EXPORT_SYMBOL(kmem_cache_size);
2659
2660 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2661 const char *text)
2662 {
2663 #ifdef CONFIG_SLUB_DEBUG
2664 void *addr = page_address(page);
2665 void *p;
2666 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2667 sizeof(long), GFP_ATOMIC);
2668 if (!map)
2669 return;
2670 slab_err(s, page, "%s", text);
2671 slab_lock(page);
2672 for_each_free_object(p, s, page->freelist)
2673 set_bit(slab_index(p, s, addr), map);
2674
2675 for_each_object(p, s, addr, page->objects) {
2676
2677 if (!test_bit(slab_index(p, s, addr), map)) {
2678 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2679 p, p - addr);
2680 print_tracking(s, p);
2681 }
2682 }
2683 slab_unlock(page);
2684 kfree(map);
2685 #endif
2686 }
2687
2688 /*
2689 * Attempt to free all partial slabs on a node.
2690 */
2691 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2692 {
2693 unsigned long flags;
2694 struct page *page, *h;
2695
2696 spin_lock_irqsave(&n->list_lock, flags);
2697 list_for_each_entry_safe(page, h, &n->partial, lru) {
2698 if (!page->inuse) {
2699 __remove_partial(n, page);
2700 discard_slab(s, page);
2701 } else {
2702 list_slab_objects(s, page,
2703 "Objects remaining on kmem_cache_close()");
2704 }
2705 }
2706 spin_unlock_irqrestore(&n->list_lock, flags);
2707 }
2708
2709 /*
2710 * Release all resources used by a slab cache.
2711 */
2712 static inline int kmem_cache_close(struct kmem_cache *s)
2713 {
2714 int node;
2715
2716 flush_all(s);
2717 free_percpu(s->cpu_slab);
2718 /* Attempt to free all objects */
2719 for_each_node_state(node, N_NORMAL_MEMORY) {
2720 struct kmem_cache_node *n = get_node(s, node);
2721
2722 free_partial(s, n);
2723 if (n->nr_partial || slabs_node(s, node))
2724 return 1;
2725 }
2726 free_kmem_cache_nodes(s);
2727 return 0;
2728 }
2729
2730 /*
2731 * Close a cache and release the kmem_cache structure
2732 * (must be used for caches created using kmem_cache_create)
2733 */
2734 void kmem_cache_destroy(struct kmem_cache *s)
2735 {
2736 down_write(&slub_lock);
2737 s->refcount--;
2738 if (!s->refcount) {
2739 list_del(&s->list);
2740 if (kmem_cache_close(s)) {
2741 printk(KERN_ERR "SLUB %s: %s called for cache that "
2742 "still has objects.\n", s->name, __func__);
2743 dump_stack();
2744 }
2745 if (s->flags & SLAB_DESTROY_BY_RCU)
2746 rcu_barrier();
2747 sysfs_slab_remove(s);
2748 }
2749 up_write(&slub_lock);
2750 }
2751 EXPORT_SYMBOL(kmem_cache_destroy);
2752
2753 /********************************************************************
2754 * Kmalloc subsystem
2755 *******************************************************************/
2756
2757 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2758 EXPORT_SYMBOL(kmalloc_caches);
2759
2760 static struct kmem_cache *kmem_cache;
2761
2762 #ifdef CONFIG_ZONE_DMA
2763 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2764 #endif
2765
2766 static int __init setup_slub_min_order(char *str)
2767 {
2768 get_option(&str, &slub_min_order);
2769
2770 return 1;
2771 }
2772
2773 __setup("slub_min_order=", setup_slub_min_order);
2774
2775 static int __init setup_slub_max_order(char *str)
2776 {
2777 get_option(&str, &slub_max_order);
2778 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2779
2780 return 1;
2781 }
2782
2783 __setup("slub_max_order=", setup_slub_max_order);
2784
2785 static int __init setup_slub_min_objects(char *str)
2786 {
2787 get_option(&str, &slub_min_objects);
2788
2789 return 1;
2790 }
2791
2792 __setup("slub_min_objects=", setup_slub_min_objects);
2793
2794 static int __init setup_slub_nomerge(char *str)
2795 {
2796 slub_nomerge = 1;
2797 return 1;
2798 }
2799
2800 __setup("slub_nomerge", setup_slub_nomerge);
2801
2802 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2803 int size, unsigned int flags)
2804 {
2805 struct kmem_cache *s;
2806
2807 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2808
2809 /*
2810 * This function is called with IRQs disabled during early-boot on
2811 * single CPU so there's no need to take slub_lock here.
2812 */
2813 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2814 flags, NULL))
2815 goto panic;
2816
2817 list_add(&s->list, &slab_caches);
2818 return s;
2819
2820 panic:
2821 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2822 return NULL;
2823 }
2824
2825 /*
2826 * Conversion table for small slabs sizes / 8 to the index in the
2827 * kmalloc array. This is necessary for slabs < 192 since we have non power
2828 * of two cache sizes there. The size of larger slabs can be determined using
2829 * fls.
2830 */
2831 static s8 size_index[24] = {
2832 3, /* 8 */
2833 4, /* 16 */
2834 5, /* 24 */
2835 5, /* 32 */
2836 6, /* 40 */
2837 6, /* 48 */
2838 6, /* 56 */
2839 6, /* 64 */
2840 1, /* 72 */
2841 1, /* 80 */
2842 1, /* 88 */
2843 1, /* 96 */
2844 7, /* 104 */
2845 7, /* 112 */
2846 7, /* 120 */
2847 7, /* 128 */
2848 2, /* 136 */
2849 2, /* 144 */
2850 2, /* 152 */
2851 2, /* 160 */
2852 2, /* 168 */
2853 2, /* 176 */
2854 2, /* 184 */
2855 2 /* 192 */
2856 };
2857
2858 static inline int size_index_elem(size_t bytes)
2859 {
2860 return (bytes - 1) / 8;
2861 }
2862
2863 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2864 {
2865 int index;
2866
2867 if (size <= 192) {
2868 if (!size)
2869 return ZERO_SIZE_PTR;
2870
2871 index = size_index[size_index_elem(size)];
2872 } else
2873 index = fls(size - 1);
2874
2875 #ifdef CONFIG_ZONE_DMA
2876 if (unlikely((flags & SLUB_DMA)))
2877 return kmalloc_dma_caches[index];
2878
2879 #endif
2880 return kmalloc_caches[index];
2881 }
2882
2883 void *__kmalloc(size_t size, gfp_t flags)
2884 {
2885 struct kmem_cache *s;
2886 void *ret;
2887
2888 if (unlikely(size > SLUB_MAX_SIZE))
2889 return kmalloc_large(size, flags);
2890
2891 s = get_slab(size, flags);
2892
2893 if (unlikely(ZERO_OR_NULL_PTR(s)))
2894 return s;
2895
2896 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2897
2898 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2899
2900 return ret;
2901 }
2902 EXPORT_SYMBOL(__kmalloc);
2903
2904 #ifdef CONFIG_NUMA
2905 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2906 {
2907 struct page *page;
2908 void *ptr = NULL;
2909
2910 flags |= __GFP_COMP | __GFP_NOTRACK;
2911 page = alloc_pages_node(node, flags, get_order(size));
2912 if (page)
2913 ptr = page_address(page);
2914
2915 kmemleak_alloc(ptr, size, 1, flags);
2916 return ptr;
2917 }
2918
2919 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2920 {
2921 struct kmem_cache *s;
2922 void *ret;
2923
2924 if (unlikely(size > SLUB_MAX_SIZE)) {
2925 ret = kmalloc_large_node(size, flags, node);
2926
2927 trace_kmalloc_node(_RET_IP_, ret,
2928 size, PAGE_SIZE << get_order(size),
2929 flags, node);
2930
2931 return ret;
2932 }
2933
2934 s = get_slab(size, flags);
2935
2936 if (unlikely(ZERO_OR_NULL_PTR(s)))
2937 return s;
2938
2939 ret = slab_alloc(s, flags, node, _RET_IP_);
2940
2941 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2942
2943 return ret;
2944 }
2945 EXPORT_SYMBOL(__kmalloc_node);
2946 #endif
2947
2948 size_t ksize(const void *object)
2949 {
2950 struct page *page;
2951
2952 if (unlikely(object == ZERO_SIZE_PTR))
2953 return 0;
2954
2955 page = virt_to_head_page(object);
2956
2957 if (unlikely(!PageSlab(page))) {
2958 WARN_ON(!PageCompound(page));
2959 return PAGE_SIZE << compound_order(page);
2960 }
2961
2962 return slab_ksize(page->slab);
2963 }
2964 EXPORT_SYMBOL(ksize);
2965
2966 void kfree(const void *x)
2967 {
2968 struct page *page;
2969 void *object = (void *)x;
2970
2971 trace_kfree(_RET_IP_, x);
2972
2973 if (unlikely(ZERO_OR_NULL_PTR(x)))
2974 return;
2975
2976 page = virt_to_head_page(x);
2977 if (unlikely(!PageSlab(page))) {
2978 BUG_ON(!PageCompound(page));
2979 kmemleak_free(x);
2980 put_page(page);
2981 return;
2982 }
2983 slab_free(page->slab, page, object, _RET_IP_);
2984 }
2985 EXPORT_SYMBOL(kfree);
2986
2987 /*
2988 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2989 * the remaining slabs by the number of items in use. The slabs with the
2990 * most items in use come first. New allocations will then fill those up
2991 * and thus they can be removed from the partial lists.
2992 *
2993 * The slabs with the least items are placed last. This results in them
2994 * being allocated from last increasing the chance that the last objects
2995 * are freed in them.
2996 */
2997 int kmem_cache_shrink(struct kmem_cache *s)
2998 {
2999 int node;
3000 int i;
3001 struct kmem_cache_node *n;
3002 struct page *page;
3003 struct page *t;
3004 int objects = oo_objects(s->max);
3005 struct list_head *slabs_by_inuse =
3006 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3007 unsigned long flags;
3008
3009 if (!slabs_by_inuse)
3010 return -ENOMEM;
3011
3012 flush_all(s);
3013 for_each_node_state(node, N_NORMAL_MEMORY) {
3014 n = get_node(s, node);
3015
3016 if (!n->nr_partial)
3017 continue;
3018
3019 for (i = 0; i < objects; i++)
3020 INIT_LIST_HEAD(slabs_by_inuse + i);
3021
3022 spin_lock_irqsave(&n->list_lock, flags);
3023
3024 /*
3025 * Build lists indexed by the items in use in each slab.
3026 *
3027 * Note that concurrent frees may occur while we hold the
3028 * list_lock. page->inuse here is the upper limit.
3029 */
3030 list_for_each_entry_safe(page, t, &n->partial, lru) {
3031 if (!page->inuse && slab_trylock(page)) {
3032 /*
3033 * Must hold slab lock here because slab_free
3034 * may have freed the last object and be
3035 * waiting to release the slab.
3036 */
3037 __remove_partial(n, page);
3038 slab_unlock(page);
3039 discard_slab(s, page);
3040 } else {
3041 list_move(&page->lru,
3042 slabs_by_inuse + page->inuse);
3043 }
3044 }
3045
3046 /*
3047 * Rebuild the partial list with the slabs filled up most
3048 * first and the least used slabs at the end.
3049 */
3050 for (i = objects - 1; i >= 0; i--)
3051 list_splice(slabs_by_inuse + i, n->partial.prev);
3052
3053 spin_unlock_irqrestore(&n->list_lock, flags);
3054 }
3055
3056 kfree(slabs_by_inuse);
3057 return 0;
3058 }
3059 EXPORT_SYMBOL(kmem_cache_shrink);
3060
3061 #if defined(CONFIG_MEMORY_HOTPLUG)
3062 static int slab_mem_going_offline_callback(void *arg)
3063 {
3064 struct kmem_cache *s;
3065
3066 down_read(&slub_lock);
3067 list_for_each_entry(s, &slab_caches, list)
3068 kmem_cache_shrink(s);
3069 up_read(&slub_lock);
3070
3071 return 0;
3072 }
3073
3074 static void slab_mem_offline_callback(void *arg)
3075 {
3076 struct kmem_cache_node *n;
3077 struct kmem_cache *s;
3078 struct memory_notify *marg = arg;
3079 int offline_node;
3080
3081 offline_node = marg->status_change_nid;
3082
3083 /*
3084 * If the node still has available memory. we need kmem_cache_node
3085 * for it yet.
3086 */
3087 if (offline_node < 0)
3088 return;
3089
3090 down_read(&slub_lock);
3091 list_for_each_entry(s, &slab_caches, list) {
3092 n = get_node(s, offline_node);
3093 if (n) {
3094 /*
3095 * if n->nr_slabs > 0, slabs still exist on the node
3096 * that is going down. We were unable to free them,
3097 * and offline_pages() function shouldn't call this
3098 * callback. So, we must fail.
3099 */
3100 BUG_ON(slabs_node(s, offline_node));
3101
3102 s->node[offline_node] = NULL;
3103 kmem_cache_free(kmem_cache_node, n);
3104 }
3105 }
3106 up_read(&slub_lock);
3107 }
3108
3109 static int slab_mem_going_online_callback(void *arg)
3110 {
3111 struct kmem_cache_node *n;
3112 struct kmem_cache *s;
3113 struct memory_notify *marg = arg;
3114 int nid = marg->status_change_nid;
3115 int ret = 0;
3116
3117 /*
3118 * If the node's memory is already available, then kmem_cache_node is
3119 * already created. Nothing to do.
3120 */
3121 if (nid < 0)
3122 return 0;
3123
3124 /*
3125 * We are bringing a node online. No memory is available yet. We must
3126 * allocate a kmem_cache_node structure in order to bring the node
3127 * online.
3128 */
3129 down_read(&slub_lock);
3130 list_for_each_entry(s, &slab_caches, list) {
3131 /*
3132 * XXX: kmem_cache_alloc_node will fallback to other nodes
3133 * since memory is not yet available from the node that
3134 * is brought up.
3135 */
3136 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3137 if (!n) {
3138 ret = -ENOMEM;
3139 goto out;
3140 }
3141 init_kmem_cache_node(n, s);
3142 s->node[nid] = n;
3143 }
3144 out:
3145 up_read(&slub_lock);
3146 return ret;
3147 }
3148
3149 static int slab_memory_callback(struct notifier_block *self,
3150 unsigned long action, void *arg)
3151 {
3152 int ret = 0;
3153
3154 switch (action) {
3155 case MEM_GOING_ONLINE:
3156 ret = slab_mem_going_online_callback(arg);
3157 break;
3158 case MEM_GOING_OFFLINE:
3159 ret = slab_mem_going_offline_callback(arg);
3160 break;
3161 case MEM_OFFLINE:
3162 case MEM_CANCEL_ONLINE:
3163 slab_mem_offline_callback(arg);
3164 break;
3165 case MEM_ONLINE:
3166 case MEM_CANCEL_OFFLINE:
3167 break;
3168 }
3169 if (ret)
3170 ret = notifier_from_errno(ret);
3171 else
3172 ret = NOTIFY_OK;
3173 return ret;
3174 }
3175
3176 #endif /* CONFIG_MEMORY_HOTPLUG */
3177
3178 /********************************************************************
3179 * Basic setup of slabs
3180 *******************************************************************/
3181
3182 /*
3183 * Used for early kmem_cache structures that were allocated using
3184 * the page allocator
3185 */
3186
3187 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3188 {
3189 int node;
3190
3191 list_add(&s->list, &slab_caches);
3192 s->refcount = -1;
3193
3194 for_each_node_state(node, N_NORMAL_MEMORY) {
3195 struct kmem_cache_node *n = get_node(s, node);
3196 struct page *p;
3197
3198 if (n) {
3199 list_for_each_entry(p, &n->partial, lru)
3200 p->slab = s;
3201
3202 #ifdef CONFIG_SLAB_DEBUG
3203 list_for_each_entry(p, &n->full, lru)
3204 p->slab = s;
3205 #endif
3206 }
3207 }
3208 }
3209
3210 void __init kmem_cache_init(void)
3211 {
3212 int i;
3213 int caches = 0;
3214 struct kmem_cache *temp_kmem_cache;
3215 int order;
3216 struct kmem_cache *temp_kmem_cache_node;
3217 unsigned long kmalloc_size;
3218
3219 kmem_size = offsetof(struct kmem_cache, node) +
3220 nr_node_ids * sizeof(struct kmem_cache_node *);
3221
3222 /* Allocate two kmem_caches from the page allocator */
3223 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3224 order = get_order(2 * kmalloc_size);
3225 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3226
3227 /*
3228 * Must first have the slab cache available for the allocations of the
3229 * struct kmem_cache_node's. There is special bootstrap code in
3230 * kmem_cache_open for slab_state == DOWN.
3231 */
3232 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3233
3234 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3235 sizeof(struct kmem_cache_node),
3236 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3237
3238 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3239
3240 /* Able to allocate the per node structures */
3241 slab_state = PARTIAL;
3242
3243 temp_kmem_cache = kmem_cache;
3244 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3245 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3246 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3247 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3248
3249 /*
3250 * Allocate kmem_cache_node properly from the kmem_cache slab.
3251 * kmem_cache_node is separately allocated so no need to
3252 * update any list pointers.
3253 */
3254 temp_kmem_cache_node = kmem_cache_node;
3255
3256 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3257 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3258
3259 kmem_cache_bootstrap_fixup(kmem_cache_node);
3260
3261 caches++;
3262 kmem_cache_bootstrap_fixup(kmem_cache);
3263 caches++;
3264 /* Free temporary boot structure */
3265 free_pages((unsigned long)temp_kmem_cache, order);
3266
3267 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3268
3269 /*
3270 * Patch up the size_index table if we have strange large alignment
3271 * requirements for the kmalloc array. This is only the case for
3272 * MIPS it seems. The standard arches will not generate any code here.
3273 *
3274 * Largest permitted alignment is 256 bytes due to the way we
3275 * handle the index determination for the smaller caches.
3276 *
3277 * Make sure that nothing crazy happens if someone starts tinkering
3278 * around with ARCH_KMALLOC_MINALIGN
3279 */
3280 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3281 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3282
3283 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3284 int elem = size_index_elem(i);
3285 if (elem >= ARRAY_SIZE(size_index))
3286 break;
3287 size_index[elem] = KMALLOC_SHIFT_LOW;
3288 }
3289
3290 if (KMALLOC_MIN_SIZE == 64) {
3291 /*
3292 * The 96 byte size cache is not used if the alignment
3293 * is 64 byte.
3294 */
3295 for (i = 64 + 8; i <= 96; i += 8)
3296 size_index[size_index_elem(i)] = 7;
3297 } else if (KMALLOC_MIN_SIZE == 128) {
3298 /*
3299 * The 192 byte sized cache is not used if the alignment
3300 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3301 * instead.
3302 */
3303 for (i = 128 + 8; i <= 192; i += 8)
3304 size_index[size_index_elem(i)] = 8;
3305 }
3306
3307 /* Caches that are not of the two-to-the-power-of size */
3308 if (KMALLOC_MIN_SIZE <= 32) {
3309 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3310 caches++;
3311 }
3312
3313 if (KMALLOC_MIN_SIZE <= 64) {
3314 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3315 caches++;
3316 }
3317
3318 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3319 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3320 caches++;
3321 }
3322
3323 slab_state = UP;
3324
3325 /* Provide the correct kmalloc names now that the caches are up */
3326 if (KMALLOC_MIN_SIZE <= 32) {
3327 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3328 BUG_ON(!kmalloc_caches[1]->name);
3329 }
3330
3331 if (KMALLOC_MIN_SIZE <= 64) {
3332 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3333 BUG_ON(!kmalloc_caches[2]->name);
3334 }
3335
3336 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3337 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3338
3339 BUG_ON(!s);
3340 kmalloc_caches[i]->name = s;
3341 }
3342
3343 #ifdef CONFIG_SMP
3344 register_cpu_notifier(&slab_notifier);
3345 #endif
3346
3347 #ifdef CONFIG_ZONE_DMA
3348 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3349 struct kmem_cache *s = kmalloc_caches[i];
3350
3351 if (s && s->size) {
3352 char *name = kasprintf(GFP_NOWAIT,
3353 "dma-kmalloc-%d", s->objsize);
3354
3355 BUG_ON(!name);
3356 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3357 s->objsize, SLAB_CACHE_DMA);
3358 }
3359 }
3360 #endif
3361 printk(KERN_INFO
3362 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3363 " CPUs=%d, Nodes=%d\n",
3364 caches, cache_line_size(),
3365 slub_min_order, slub_max_order, slub_min_objects,
3366 nr_cpu_ids, nr_node_ids);
3367 }
3368
3369 void __init kmem_cache_init_late(void)
3370 {
3371 }
3372
3373 /*
3374 * Find a mergeable slab cache
3375 */
3376 static int slab_unmergeable(struct kmem_cache *s)
3377 {
3378 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3379 return 1;
3380
3381 if (s->ctor)
3382 return 1;
3383
3384 /*
3385 * We may have set a slab to be unmergeable during bootstrap.
3386 */
3387 if (s->refcount < 0)
3388 return 1;
3389
3390 return 0;
3391 }
3392
3393 static struct kmem_cache *find_mergeable(size_t size,
3394 size_t align, unsigned long flags, const char *name,
3395 void (*ctor)(void *))
3396 {
3397 struct kmem_cache *s;
3398
3399 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3400 return NULL;
3401
3402 if (ctor)
3403 return NULL;
3404
3405 size = ALIGN(size, sizeof(void *));
3406 align = calculate_alignment(flags, align, size);
3407 size = ALIGN(size, align);
3408 flags = kmem_cache_flags(size, flags, name, NULL);
3409
3410 list_for_each_entry(s, &slab_caches, list) {
3411 if (slab_unmergeable(s))
3412 continue;
3413
3414 if (size > s->size)
3415 continue;
3416
3417 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3418 continue;
3419 /*
3420 * Check if alignment is compatible.
3421 * Courtesy of Adrian Drzewiecki
3422 */
3423 if ((s->size & ~(align - 1)) != s->size)
3424 continue;
3425
3426 if (s->size - size >= sizeof(void *))
3427 continue;
3428
3429 return s;
3430 }
3431 return NULL;
3432 }
3433
3434 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3435 size_t align, unsigned long flags, void (*ctor)(void *))
3436 {
3437 struct kmem_cache *s;
3438 char *n;
3439
3440 if (WARN_ON(!name))
3441 return NULL;
3442
3443 down_write(&slub_lock);
3444 s = find_mergeable(size, align, flags, name, ctor);
3445 if (s) {
3446 s->refcount++;
3447 /*
3448 * Adjust the object sizes so that we clear
3449 * the complete object on kzalloc.
3450 */
3451 s->objsize = max(s->objsize, (int)size);
3452 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3453
3454 if (sysfs_slab_alias(s, name)) {
3455 s->refcount--;
3456 goto err;
3457 }
3458 up_write(&slub_lock);
3459 return s;
3460 }
3461
3462 n = kstrdup(name, GFP_KERNEL);
3463 if (!n)
3464 goto err;
3465
3466 s = kmalloc(kmem_size, GFP_KERNEL);
3467 if (s) {
3468 if (kmem_cache_open(s, n,
3469 size, align, flags, ctor)) {
3470 list_add(&s->list, &slab_caches);
3471 if (sysfs_slab_add(s)) {
3472 list_del(&s->list);
3473 kfree(n);
3474 kfree(s);
3475 goto err;
3476 }
3477 up_write(&slub_lock);
3478 return s;
3479 }
3480 kfree(n);
3481 kfree(s);
3482 }
3483 err:
3484 up_write(&slub_lock);
3485
3486 if (flags & SLAB_PANIC)
3487 panic("Cannot create slabcache %s\n", name);
3488 else
3489 s = NULL;
3490 return s;
3491 }
3492 EXPORT_SYMBOL(kmem_cache_create);
3493
3494 #ifdef CONFIG_SMP
3495 /*
3496 * Use the cpu notifier to insure that the cpu slabs are flushed when
3497 * necessary.
3498 */
3499 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3500 unsigned long action, void *hcpu)
3501 {
3502 long cpu = (long)hcpu;
3503 struct kmem_cache *s;
3504 unsigned long flags;
3505
3506 switch (action) {
3507 case CPU_UP_CANCELED:
3508 case CPU_UP_CANCELED_FROZEN:
3509 case CPU_DEAD:
3510 case CPU_DEAD_FROZEN:
3511 down_read(&slub_lock);
3512 list_for_each_entry(s, &slab_caches, list) {
3513 local_irq_save(flags);
3514 __flush_cpu_slab(s, cpu);
3515 local_irq_restore(flags);
3516 }
3517 up_read(&slub_lock);
3518 break;
3519 default:
3520 break;
3521 }
3522 return NOTIFY_OK;
3523 }
3524
3525 static struct notifier_block __cpuinitdata slab_notifier = {
3526 .notifier_call = slab_cpuup_callback
3527 };
3528
3529 #endif
3530
3531 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3532 {
3533 struct kmem_cache *s;
3534 void *ret;
3535
3536 if (unlikely(size > SLUB_MAX_SIZE))
3537 return kmalloc_large(size, gfpflags);
3538
3539 s = get_slab(size, gfpflags);
3540
3541 if (unlikely(ZERO_OR_NULL_PTR(s)))
3542 return s;
3543
3544 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3545
3546 /* Honor the call site pointer we recieved. */
3547 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3548
3549 return ret;
3550 }
3551
3552 #ifdef CONFIG_NUMA
3553 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3554 int node, unsigned long caller)
3555 {
3556 struct kmem_cache *s;
3557 void *ret;
3558
3559 if (unlikely(size > SLUB_MAX_SIZE)) {
3560 ret = kmalloc_large_node(size, gfpflags, node);
3561
3562 trace_kmalloc_node(caller, ret,
3563 size, PAGE_SIZE << get_order(size),
3564 gfpflags, node);
3565
3566 return ret;
3567 }
3568
3569 s = get_slab(size, gfpflags);
3570
3571 if (unlikely(ZERO_OR_NULL_PTR(s)))
3572 return s;
3573
3574 ret = slab_alloc(s, gfpflags, node, caller);
3575
3576 /* Honor the call site pointer we recieved. */
3577 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3578
3579 return ret;
3580 }
3581 #endif
3582
3583 #ifdef CONFIG_SYSFS
3584 static int count_inuse(struct page *page)
3585 {
3586 return page->inuse;
3587 }
3588
3589 static int count_total(struct page *page)
3590 {
3591 return page->objects;
3592 }
3593 #endif
3594
3595 #ifdef CONFIG_SLUB_DEBUG
3596 static int validate_slab(struct kmem_cache *s, struct page *page,
3597 unsigned long *map)
3598 {
3599 void *p;
3600 void *addr = page_address(page);
3601
3602 if (!check_slab(s, page) ||
3603 !on_freelist(s, page, NULL))
3604 return 0;
3605
3606 /* Now we know that a valid freelist exists */
3607 bitmap_zero(map, page->objects);
3608
3609 for_each_free_object(p, s, page->freelist) {
3610 set_bit(slab_index(p, s, addr), map);
3611 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3612 return 0;
3613 }
3614
3615 for_each_object(p, s, addr, page->objects)
3616 if (!test_bit(slab_index(p, s, addr), map))
3617 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3618 return 0;
3619 return 1;
3620 }
3621
3622 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3623 unsigned long *map)
3624 {
3625 if (slab_trylock(page)) {
3626 validate_slab(s, page, map);
3627 slab_unlock(page);
3628 } else
3629 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3630 s->name, page);
3631 }
3632
3633 static int validate_slab_node(struct kmem_cache *s,
3634 struct kmem_cache_node *n, unsigned long *map)
3635 {
3636 unsigned long count = 0;
3637 struct page *page;
3638 unsigned long flags;
3639
3640 spin_lock_irqsave(&n->list_lock, flags);
3641
3642 list_for_each_entry(page, &n->partial, lru) {
3643 validate_slab_slab(s, page, map);
3644 count++;
3645 }
3646 if (count != n->nr_partial)
3647 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3648 "counter=%ld\n", s->name, count, n->nr_partial);
3649
3650 if (!(s->flags & SLAB_STORE_USER))
3651 goto out;
3652
3653 list_for_each_entry(page, &n->full, lru) {
3654 validate_slab_slab(s, page, map);
3655 count++;
3656 }
3657 if (count != atomic_long_read(&n->nr_slabs))
3658 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3659 "counter=%ld\n", s->name, count,
3660 atomic_long_read(&n->nr_slabs));
3661
3662 out:
3663 spin_unlock_irqrestore(&n->list_lock, flags);
3664 return count;
3665 }
3666
3667 static long validate_slab_cache(struct kmem_cache *s)
3668 {
3669 int node;
3670 unsigned long count = 0;
3671 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3672 sizeof(unsigned long), GFP_KERNEL);
3673
3674 if (!map)
3675 return -ENOMEM;
3676
3677 flush_all(s);
3678 for_each_node_state(node, N_NORMAL_MEMORY) {
3679 struct kmem_cache_node *n = get_node(s, node);
3680
3681 count += validate_slab_node(s, n, map);
3682 }
3683 kfree(map);
3684 return count;
3685 }
3686 /*
3687 * Generate lists of code addresses where slabcache objects are allocated
3688 * and freed.
3689 */
3690
3691 struct location {
3692 unsigned long count;
3693 unsigned long addr;
3694 long long sum_time;
3695 long min_time;
3696 long max_time;
3697 long min_pid;
3698 long max_pid;
3699 DECLARE_BITMAP(cpus, NR_CPUS);
3700 nodemask_t nodes;
3701 };
3702
3703 struct loc_track {
3704 unsigned long max;
3705 unsigned long count;
3706 struct location *loc;
3707 };
3708
3709 static void free_loc_track(struct loc_track *t)
3710 {
3711 if (t->max)
3712 free_pages((unsigned long)t->loc,
3713 get_order(sizeof(struct location) * t->max));
3714 }
3715
3716 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3717 {
3718 struct location *l;
3719 int order;
3720
3721 order = get_order(sizeof(struct location) * max);
3722
3723 l = (void *)__get_free_pages(flags, order);
3724 if (!l)
3725 return 0;
3726
3727 if (t->count) {
3728 memcpy(l, t->loc, sizeof(struct location) * t->count);
3729 free_loc_track(t);
3730 }
3731 t->max = max;
3732 t->loc = l;
3733 return 1;
3734 }
3735
3736 static int add_location(struct loc_track *t, struct kmem_cache *s,
3737 const struct track *track)
3738 {
3739 long start, end, pos;
3740 struct location *l;
3741 unsigned long caddr;
3742 unsigned long age = jiffies - track->when;
3743
3744 start = -1;
3745 end = t->count;
3746
3747 for ( ; ; ) {
3748 pos = start + (end - start + 1) / 2;
3749
3750 /*
3751 * There is nothing at "end". If we end up there
3752 * we need to add something to before end.
3753 */
3754 if (pos == end)
3755 break;
3756
3757 caddr = t->loc[pos].addr;
3758 if (track->addr == caddr) {
3759
3760 l = &t->loc[pos];
3761 l->count++;
3762 if (track->when) {
3763 l->sum_time += age;
3764 if (age < l->min_time)
3765 l->min_time = age;
3766 if (age > l->max_time)
3767 l->max_time = age;
3768
3769 if (track->pid < l->min_pid)
3770 l->min_pid = track->pid;
3771 if (track->pid > l->max_pid)
3772 l->max_pid = track->pid;
3773
3774 cpumask_set_cpu(track->cpu,
3775 to_cpumask(l->cpus));
3776 }
3777 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3778 return 1;
3779 }
3780
3781 if (track->addr < caddr)
3782 end = pos;
3783 else
3784 start = pos;
3785 }
3786
3787 /*
3788 * Not found. Insert new tracking element.
3789 */
3790 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3791 return 0;
3792
3793 l = t->loc + pos;
3794 if (pos < t->count)
3795 memmove(l + 1, l,
3796 (t->count - pos) * sizeof(struct location));
3797 t->count++;
3798 l->count = 1;
3799 l->addr = track->addr;
3800 l->sum_time = age;
3801 l->min_time = age;
3802 l->max_time = age;
3803 l->min_pid = track->pid;
3804 l->max_pid = track->pid;
3805 cpumask_clear(to_cpumask(l->cpus));
3806 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3807 nodes_clear(l->nodes);
3808 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3809 return 1;
3810 }
3811
3812 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3813 struct page *page, enum track_item alloc,
3814 unsigned long *map)
3815 {
3816 void *addr = page_address(page);
3817 void *p;
3818
3819 bitmap_zero(map, page->objects);
3820 for_each_free_object(p, s, page->freelist)
3821 set_bit(slab_index(p, s, addr), map);
3822
3823 for_each_object(p, s, addr, page->objects)
3824 if (!test_bit(slab_index(p, s, addr), map))
3825 add_location(t, s, get_track(s, p, alloc));
3826 }
3827
3828 static int list_locations(struct kmem_cache *s, char *buf,
3829 enum track_item alloc)
3830 {
3831 int len = 0;
3832 unsigned long i;
3833 struct loc_track t = { 0, 0, NULL };
3834 int node;
3835 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3836 sizeof(unsigned long), GFP_KERNEL);
3837
3838 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3839 GFP_TEMPORARY)) {
3840 kfree(map);
3841 return sprintf(buf, "Out of memory\n");
3842 }
3843 /* Push back cpu slabs */
3844 flush_all(s);
3845
3846 for_each_node_state(node, N_NORMAL_MEMORY) {
3847 struct kmem_cache_node *n = get_node(s, node);
3848 unsigned long flags;
3849 struct page *page;
3850
3851 if (!atomic_long_read(&n->nr_slabs))
3852 continue;
3853
3854 spin_lock_irqsave(&n->list_lock, flags);
3855 list_for_each_entry(page, &n->partial, lru)
3856 process_slab(&t, s, page, alloc, map);
3857 list_for_each_entry(page, &n->full, lru)
3858 process_slab(&t, s, page, alloc, map);
3859 spin_unlock_irqrestore(&n->list_lock, flags);
3860 }
3861
3862 for (i = 0; i < t.count; i++) {
3863 struct location *l = &t.loc[i];
3864
3865 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3866 break;
3867 len += sprintf(buf + len, "%7ld ", l->count);
3868
3869 if (l->addr)
3870 len += sprintf(buf + len, "%pS", (void *)l->addr);
3871 else
3872 len += sprintf(buf + len, "<not-available>");
3873
3874 if (l->sum_time != l->min_time) {
3875 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3876 l->min_time,
3877 (long)div_u64(l->sum_time, l->count),
3878 l->max_time);
3879 } else
3880 len += sprintf(buf + len, " age=%ld",
3881 l->min_time);
3882
3883 if (l->min_pid != l->max_pid)
3884 len += sprintf(buf + len, " pid=%ld-%ld",
3885 l->min_pid, l->max_pid);
3886 else
3887 len += sprintf(buf + len, " pid=%ld",
3888 l->min_pid);
3889
3890 if (num_online_cpus() > 1 &&
3891 !cpumask_empty(to_cpumask(l->cpus)) &&
3892 len < PAGE_SIZE - 60) {
3893 len += sprintf(buf + len, " cpus=");
3894 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3895 to_cpumask(l->cpus));
3896 }
3897
3898 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3899 len < PAGE_SIZE - 60) {
3900 len += sprintf(buf + len, " nodes=");
3901 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3902 l->nodes);
3903 }
3904
3905 len += sprintf(buf + len, "\n");
3906 }
3907
3908 free_loc_track(&t);
3909 kfree(map);
3910 if (!t.count)
3911 len += sprintf(buf, "No data\n");
3912 return len;
3913 }
3914 #endif
3915
3916 #ifdef SLUB_RESILIENCY_TEST
3917 static void resiliency_test(void)
3918 {
3919 u8 *p;
3920
3921 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3922
3923 printk(KERN_ERR "SLUB resiliency testing\n");
3924 printk(KERN_ERR "-----------------------\n");
3925 printk(KERN_ERR "A. Corruption after allocation\n");
3926
3927 p = kzalloc(16, GFP_KERNEL);
3928 p[16] = 0x12;
3929 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3930 " 0x12->0x%p\n\n", p + 16);
3931
3932 validate_slab_cache(kmalloc_caches[4]);
3933
3934 /* Hmmm... The next two are dangerous */
3935 p = kzalloc(32, GFP_KERNEL);
3936 p[32 + sizeof(void *)] = 0x34;
3937 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3938 " 0x34 -> -0x%p\n", p);
3939 printk(KERN_ERR
3940 "If allocated object is overwritten then not detectable\n\n");
3941
3942 validate_slab_cache(kmalloc_caches[5]);
3943 p = kzalloc(64, GFP_KERNEL);
3944 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3945 *p = 0x56;
3946 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3947 p);
3948 printk(KERN_ERR
3949 "If allocated object is overwritten then not detectable\n\n");
3950 validate_slab_cache(kmalloc_caches[6]);
3951
3952 printk(KERN_ERR "\nB. Corruption after free\n");
3953 p = kzalloc(128, GFP_KERNEL);
3954 kfree(p);
3955 *p = 0x78;
3956 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3957 validate_slab_cache(kmalloc_caches[7]);
3958
3959 p = kzalloc(256, GFP_KERNEL);
3960 kfree(p);
3961 p[50] = 0x9a;
3962 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3963 p);
3964 validate_slab_cache(kmalloc_caches[8]);
3965
3966 p = kzalloc(512, GFP_KERNEL);
3967 kfree(p);
3968 p[512] = 0xab;
3969 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3970 validate_slab_cache(kmalloc_caches[9]);
3971 }
3972 #else
3973 #ifdef CONFIG_SYSFS
3974 static void resiliency_test(void) {};
3975 #endif
3976 #endif
3977
3978 #ifdef CONFIG_SYSFS
3979 enum slab_stat_type {
3980 SL_ALL, /* All slabs */
3981 SL_PARTIAL, /* Only partially allocated slabs */
3982 SL_CPU, /* Only slabs used for cpu caches */
3983 SL_OBJECTS, /* Determine allocated objects not slabs */
3984 SL_TOTAL /* Determine object capacity not slabs */
3985 };
3986
3987 #define SO_ALL (1 << SL_ALL)
3988 #define SO_PARTIAL (1 << SL_PARTIAL)
3989 #define SO_CPU (1 << SL_CPU)
3990 #define SO_OBJECTS (1 << SL_OBJECTS)
3991 #define SO_TOTAL (1 << SL_TOTAL)
3992
3993 static ssize_t show_slab_objects(struct kmem_cache *s,
3994 char *buf, unsigned long flags)
3995 {
3996 unsigned long total = 0;
3997 int node;
3998 int x;
3999 unsigned long *nodes;
4000 unsigned long *per_cpu;
4001
4002 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4003 if (!nodes)
4004 return -ENOMEM;
4005 per_cpu = nodes + nr_node_ids;
4006
4007 if (flags & SO_CPU) {
4008 int cpu;
4009
4010 for_each_possible_cpu(cpu) {
4011 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4012
4013 if (!c || c->node < 0)
4014 continue;
4015
4016 if (c->page) {
4017 if (flags & SO_TOTAL)
4018 x = c->page->objects;
4019 else if (flags & SO_OBJECTS)
4020 x = c->page->inuse;
4021 else
4022 x = 1;
4023
4024 total += x;
4025 nodes[c->node] += x;
4026 }
4027 per_cpu[c->node]++;
4028 }
4029 }
4030
4031 lock_memory_hotplug();
4032 #ifdef CONFIG_SLUB_DEBUG
4033 if (flags & SO_ALL) {
4034 for_each_node_state(node, N_NORMAL_MEMORY) {
4035 struct kmem_cache_node *n = get_node(s, node);
4036
4037 if (flags & SO_TOTAL)
4038 x = atomic_long_read(&n->total_objects);
4039 else if (flags & SO_OBJECTS)
4040 x = atomic_long_read(&n->total_objects) -
4041 count_partial(n, count_free);
4042
4043 else
4044 x = atomic_long_read(&n->nr_slabs);
4045 total += x;
4046 nodes[node] += x;
4047 }
4048
4049 } else
4050 #endif
4051 if (flags & SO_PARTIAL) {
4052 for_each_node_state(node, N_NORMAL_MEMORY) {
4053 struct kmem_cache_node *n = get_node(s, node);
4054
4055 if (flags & SO_TOTAL)
4056 x = count_partial(n, count_total);
4057 else if (flags & SO_OBJECTS)
4058 x = count_partial(n, count_inuse);
4059 else
4060 x = n->nr_partial;
4061 total += x;
4062 nodes[node] += x;
4063 }
4064 }
4065 x = sprintf(buf, "%lu", total);
4066 #ifdef CONFIG_NUMA
4067 for_each_node_state(node, N_NORMAL_MEMORY)
4068 if (nodes[node])
4069 x += sprintf(buf + x, " N%d=%lu",
4070 node, nodes[node]);
4071 #endif
4072 unlock_memory_hotplug();
4073 kfree(nodes);
4074 return x + sprintf(buf + x, "\n");
4075 }
4076
4077 #ifdef CONFIG_SLUB_DEBUG
4078 static int any_slab_objects(struct kmem_cache *s)
4079 {
4080 int node;
4081
4082 for_each_online_node(node) {
4083 struct kmem_cache_node *n = get_node(s, node);
4084
4085 if (!n)
4086 continue;
4087
4088 if (atomic_long_read(&n->total_objects))
4089 return 1;
4090 }
4091 return 0;
4092 }
4093 #endif
4094
4095 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4096 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
4097
4098 struct slab_attribute {
4099 struct attribute attr;
4100 ssize_t (*show)(struct kmem_cache *s, char *buf);
4101 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4102 };
4103
4104 #define SLAB_ATTR_RO(_name) \
4105 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4106
4107 #define SLAB_ATTR(_name) \
4108 static struct slab_attribute _name##_attr = \
4109 __ATTR(_name, 0644, _name##_show, _name##_store)
4110
4111 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4112 {
4113 return sprintf(buf, "%d\n", s->size);
4114 }
4115 SLAB_ATTR_RO(slab_size);
4116
4117 static ssize_t align_show(struct kmem_cache *s, char *buf)
4118 {
4119 return sprintf(buf, "%d\n", s->align);
4120 }
4121 SLAB_ATTR_RO(align);
4122
4123 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4124 {
4125 return sprintf(buf, "%d\n", s->objsize);
4126 }
4127 SLAB_ATTR_RO(object_size);
4128
4129 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4130 {
4131 return sprintf(buf, "%d\n", oo_objects(s->oo));
4132 }
4133 SLAB_ATTR_RO(objs_per_slab);
4134
4135 static ssize_t order_store(struct kmem_cache *s,
4136 const char *buf, size_t length)
4137 {
4138 unsigned long order;
4139 int err;
4140
4141 err = strict_strtoul(buf, 10, &order);
4142 if (err)
4143 return err;
4144
4145 if (order > slub_max_order || order < slub_min_order)
4146 return -EINVAL;
4147
4148 calculate_sizes(s, order);
4149 return length;
4150 }
4151
4152 static ssize_t order_show(struct kmem_cache *s, char *buf)
4153 {
4154 return sprintf(buf, "%d\n", oo_order(s->oo));
4155 }
4156 SLAB_ATTR(order);
4157
4158 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4159 {
4160 return sprintf(buf, "%lu\n", s->min_partial);
4161 }
4162
4163 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4164 size_t length)
4165 {
4166 unsigned long min;
4167 int err;
4168
4169 err = strict_strtoul(buf, 10, &min);
4170 if (err)
4171 return err;
4172
4173 set_min_partial(s, min);
4174 return length;
4175 }
4176 SLAB_ATTR(min_partial);
4177
4178 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4179 {
4180 if (!s->ctor)
4181 return 0;
4182 return sprintf(buf, "%pS\n", s->ctor);
4183 }
4184 SLAB_ATTR_RO(ctor);
4185
4186 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4187 {
4188 return sprintf(buf, "%d\n", s->refcount - 1);
4189 }
4190 SLAB_ATTR_RO(aliases);
4191
4192 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4193 {
4194 return show_slab_objects(s, buf, SO_PARTIAL);
4195 }
4196 SLAB_ATTR_RO(partial);
4197
4198 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4199 {
4200 return show_slab_objects(s, buf, SO_CPU);
4201 }
4202 SLAB_ATTR_RO(cpu_slabs);
4203
4204 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4205 {
4206 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4207 }
4208 SLAB_ATTR_RO(objects);
4209
4210 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4211 {
4212 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4213 }
4214 SLAB_ATTR_RO(objects_partial);
4215
4216 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4217 {
4218 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4219 }
4220
4221 static ssize_t reclaim_account_store(struct kmem_cache *s,
4222 const char *buf, size_t length)
4223 {
4224 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4225 if (buf[0] == '1')
4226 s->flags |= SLAB_RECLAIM_ACCOUNT;
4227 return length;
4228 }
4229 SLAB_ATTR(reclaim_account);
4230
4231 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4232 {
4233 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4234 }
4235 SLAB_ATTR_RO(hwcache_align);
4236
4237 #ifdef CONFIG_ZONE_DMA
4238 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4239 {
4240 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4241 }
4242 SLAB_ATTR_RO(cache_dma);
4243 #endif
4244
4245 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4246 {
4247 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4248 }
4249 SLAB_ATTR_RO(destroy_by_rcu);
4250
4251 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4252 {
4253 return sprintf(buf, "%d\n", s->reserved);
4254 }
4255 SLAB_ATTR_RO(reserved);
4256
4257 #ifdef CONFIG_SLUB_DEBUG
4258 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4259 {
4260 return show_slab_objects(s, buf, SO_ALL);
4261 }
4262 SLAB_ATTR_RO(slabs);
4263
4264 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4265 {
4266 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4267 }
4268 SLAB_ATTR_RO(total_objects);
4269
4270 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4271 {
4272 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4273 }
4274
4275 static ssize_t sanity_checks_store(struct kmem_cache *s,
4276 const char *buf, size_t length)
4277 {
4278 s->flags &= ~SLAB_DEBUG_FREE;
4279 if (buf[0] == '1')
4280 s->flags |= SLAB_DEBUG_FREE;
4281 return length;
4282 }
4283 SLAB_ATTR(sanity_checks);
4284
4285 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4286 {
4287 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4288 }
4289
4290 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4291 size_t length)
4292 {
4293 s->flags &= ~SLAB_TRACE;
4294 if (buf[0] == '1')
4295 s->flags |= SLAB_TRACE;
4296 return length;
4297 }
4298 SLAB_ATTR(trace);
4299
4300 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4301 {
4302 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4303 }
4304
4305 static ssize_t red_zone_store(struct kmem_cache *s,
4306 const char *buf, size_t length)
4307 {
4308 if (any_slab_objects(s))
4309 return -EBUSY;
4310
4311 s->flags &= ~SLAB_RED_ZONE;
4312 if (buf[0] == '1')
4313 s->flags |= SLAB_RED_ZONE;
4314 calculate_sizes(s, -1);
4315 return length;
4316 }
4317 SLAB_ATTR(red_zone);
4318
4319 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4320 {
4321 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4322 }
4323
4324 static ssize_t poison_store(struct kmem_cache *s,
4325 const char *buf, size_t length)
4326 {
4327 if (any_slab_objects(s))
4328 return -EBUSY;
4329
4330 s->flags &= ~SLAB_POISON;
4331 if (buf[0] == '1')
4332 s->flags |= SLAB_POISON;
4333 calculate_sizes(s, -1);
4334 return length;
4335 }
4336 SLAB_ATTR(poison);
4337
4338 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4339 {
4340 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4341 }
4342
4343 static ssize_t store_user_store(struct kmem_cache *s,
4344 const char *buf, size_t length)
4345 {
4346 if (any_slab_objects(s))
4347 return -EBUSY;
4348
4349 s->flags &= ~SLAB_STORE_USER;
4350 if (buf[0] == '1')
4351 s->flags |= SLAB_STORE_USER;
4352 calculate_sizes(s, -1);
4353 return length;
4354 }
4355 SLAB_ATTR(store_user);
4356
4357 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4358 {
4359 return 0;
4360 }
4361
4362 static ssize_t validate_store(struct kmem_cache *s,
4363 const char *buf, size_t length)
4364 {
4365 int ret = -EINVAL;
4366
4367 if (buf[0] == '1') {
4368 ret = validate_slab_cache(s);
4369 if (ret >= 0)
4370 ret = length;
4371 }
4372 return ret;
4373 }
4374 SLAB_ATTR(validate);
4375
4376 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4377 {
4378 if (!(s->flags & SLAB_STORE_USER))
4379 return -ENOSYS;
4380 return list_locations(s, buf, TRACK_ALLOC);
4381 }
4382 SLAB_ATTR_RO(alloc_calls);
4383
4384 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4385 {
4386 if (!(s->flags & SLAB_STORE_USER))
4387 return -ENOSYS;
4388 return list_locations(s, buf, TRACK_FREE);
4389 }
4390 SLAB_ATTR_RO(free_calls);
4391 #endif /* CONFIG_SLUB_DEBUG */
4392
4393 #ifdef CONFIG_FAILSLAB
4394 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4395 {
4396 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4397 }
4398
4399 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4400 size_t length)
4401 {
4402 s->flags &= ~SLAB_FAILSLAB;
4403 if (buf[0] == '1')
4404 s->flags |= SLAB_FAILSLAB;
4405 return length;
4406 }
4407 SLAB_ATTR(failslab);
4408 #endif
4409
4410 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4411 {
4412 return 0;
4413 }
4414
4415 static ssize_t shrink_store(struct kmem_cache *s,
4416 const char *buf, size_t length)
4417 {
4418 if (buf[0] == '1') {
4419 int rc = kmem_cache_shrink(s);
4420
4421 if (rc)
4422 return rc;
4423 } else
4424 return -EINVAL;
4425 return length;
4426 }
4427 SLAB_ATTR(shrink);
4428
4429 #ifdef CONFIG_NUMA
4430 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4431 {
4432 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4433 }
4434
4435 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4436 const char *buf, size_t length)
4437 {
4438 unsigned long ratio;
4439 int err;
4440
4441 err = strict_strtoul(buf, 10, &ratio);
4442 if (err)
4443 return err;
4444
4445 if (ratio <= 100)
4446 s->remote_node_defrag_ratio = ratio * 10;
4447
4448 return length;
4449 }
4450 SLAB_ATTR(remote_node_defrag_ratio);
4451 #endif
4452
4453 #ifdef CONFIG_SLUB_STATS
4454 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4455 {
4456 unsigned long sum = 0;
4457 int cpu;
4458 int len;
4459 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4460
4461 if (!data)
4462 return -ENOMEM;
4463
4464 for_each_online_cpu(cpu) {
4465 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4466
4467 data[cpu] = x;
4468 sum += x;
4469 }
4470
4471 len = sprintf(buf, "%lu", sum);
4472
4473 #ifdef CONFIG_SMP
4474 for_each_online_cpu(cpu) {
4475 if (data[cpu] && len < PAGE_SIZE - 20)
4476 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4477 }
4478 #endif
4479 kfree(data);
4480 return len + sprintf(buf + len, "\n");
4481 }
4482
4483 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4484 {
4485 int cpu;
4486
4487 for_each_online_cpu(cpu)
4488 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4489 }
4490
4491 #define STAT_ATTR(si, text) \
4492 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4493 { \
4494 return show_stat(s, buf, si); \
4495 } \
4496 static ssize_t text##_store(struct kmem_cache *s, \
4497 const char *buf, size_t length) \
4498 { \
4499 if (buf[0] != '0') \
4500 return -EINVAL; \
4501 clear_stat(s, si); \
4502 return length; \
4503 } \
4504 SLAB_ATTR(text); \
4505
4506 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4507 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4508 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4509 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4510 STAT_ATTR(FREE_FROZEN, free_frozen);
4511 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4512 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4513 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4514 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4515 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4516 STAT_ATTR(FREE_SLAB, free_slab);
4517 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4518 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4519 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4520 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4521 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4522 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4523 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4524 #endif
4525
4526 static struct attribute *slab_attrs[] = {
4527 &slab_size_attr.attr,
4528 &object_size_attr.attr,
4529 &objs_per_slab_attr.attr,
4530 &order_attr.attr,
4531 &min_partial_attr.attr,
4532 &objects_attr.attr,
4533 &objects_partial_attr.attr,
4534 &partial_attr.attr,
4535 &cpu_slabs_attr.attr,
4536 &ctor_attr.attr,
4537 &aliases_attr.attr,
4538 &align_attr.attr,
4539 &hwcache_align_attr.attr,
4540 &reclaim_account_attr.attr,
4541 &destroy_by_rcu_attr.attr,
4542 &shrink_attr.attr,
4543 &reserved_attr.attr,
4544 #ifdef CONFIG_SLUB_DEBUG
4545 &total_objects_attr.attr,
4546 &slabs_attr.attr,
4547 &sanity_checks_attr.attr,
4548 &trace_attr.attr,
4549 &red_zone_attr.attr,
4550 &poison_attr.attr,
4551 &store_user_attr.attr,
4552 &validate_attr.attr,
4553 &alloc_calls_attr.attr,
4554 &free_calls_attr.attr,
4555 #endif
4556 #ifdef CONFIG_ZONE_DMA
4557 &cache_dma_attr.attr,
4558 #endif
4559 #ifdef CONFIG_NUMA
4560 &remote_node_defrag_ratio_attr.attr,
4561 #endif
4562 #ifdef CONFIG_SLUB_STATS
4563 &alloc_fastpath_attr.attr,
4564 &alloc_slowpath_attr.attr,
4565 &free_fastpath_attr.attr,
4566 &free_slowpath_attr.attr,
4567 &free_frozen_attr.attr,
4568 &free_add_partial_attr.attr,
4569 &free_remove_partial_attr.attr,
4570 &alloc_from_partial_attr.attr,
4571 &alloc_slab_attr.attr,
4572 &alloc_refill_attr.attr,
4573 &free_slab_attr.attr,
4574 &cpuslab_flush_attr.attr,
4575 &deactivate_full_attr.attr,
4576 &deactivate_empty_attr.attr,
4577 &deactivate_to_head_attr.attr,
4578 &deactivate_to_tail_attr.attr,
4579 &deactivate_remote_frees_attr.attr,
4580 &order_fallback_attr.attr,
4581 #endif
4582 #ifdef CONFIG_FAILSLAB
4583 &failslab_attr.attr,
4584 #endif
4585
4586 NULL
4587 };
4588
4589 static struct attribute_group slab_attr_group = {
4590 .attrs = slab_attrs,
4591 };
4592
4593 static ssize_t slab_attr_show(struct kobject *kobj,
4594 struct attribute *attr,
4595 char *buf)
4596 {
4597 struct slab_attribute *attribute;
4598 struct kmem_cache *s;
4599 int err;
4600
4601 attribute = to_slab_attr(attr);
4602 s = to_slab(kobj);
4603
4604 if (!attribute->show)
4605 return -EIO;
4606
4607 err = attribute->show(s, buf);
4608
4609 return err;
4610 }
4611
4612 static ssize_t slab_attr_store(struct kobject *kobj,
4613 struct attribute *attr,
4614 const char *buf, size_t len)
4615 {
4616 struct slab_attribute *attribute;
4617 struct kmem_cache *s;
4618 int err;
4619
4620 attribute = to_slab_attr(attr);
4621 s = to_slab(kobj);
4622
4623 if (!attribute->store)
4624 return -EIO;
4625
4626 err = attribute->store(s, buf, len);
4627
4628 return err;
4629 }
4630
4631 static void kmem_cache_release(struct kobject *kobj)
4632 {
4633 struct kmem_cache *s = to_slab(kobj);
4634
4635 kfree(s->name);
4636 kfree(s);
4637 }
4638
4639 static const struct sysfs_ops slab_sysfs_ops = {
4640 .show = slab_attr_show,
4641 .store = slab_attr_store,
4642 };
4643
4644 static struct kobj_type slab_ktype = {
4645 .sysfs_ops = &slab_sysfs_ops,
4646 .release = kmem_cache_release
4647 };
4648
4649 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4650 {
4651 struct kobj_type *ktype = get_ktype(kobj);
4652
4653 if (ktype == &slab_ktype)
4654 return 1;
4655 return 0;
4656 }
4657
4658 static const struct kset_uevent_ops slab_uevent_ops = {
4659 .filter = uevent_filter,
4660 };
4661
4662 static struct kset *slab_kset;
4663
4664 #define ID_STR_LENGTH 64
4665
4666 /* Create a unique string id for a slab cache:
4667 *
4668 * Format :[flags-]size
4669 */
4670 static char *create_unique_id(struct kmem_cache *s)
4671 {
4672 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4673 char *p = name;
4674
4675 BUG_ON(!name);
4676
4677 *p++ = ':';
4678 /*
4679 * First flags affecting slabcache operations. We will only
4680 * get here for aliasable slabs so we do not need to support
4681 * too many flags. The flags here must cover all flags that
4682 * are matched during merging to guarantee that the id is
4683 * unique.
4684 */
4685 if (s->flags & SLAB_CACHE_DMA)
4686 *p++ = 'd';
4687 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4688 *p++ = 'a';
4689 if (s->flags & SLAB_DEBUG_FREE)
4690 *p++ = 'F';
4691 if (!(s->flags & SLAB_NOTRACK))
4692 *p++ = 't';
4693 if (p != name + 1)
4694 *p++ = '-';
4695 p += sprintf(p, "%07d", s->size);
4696 BUG_ON(p > name + ID_STR_LENGTH - 1);
4697 return name;
4698 }
4699
4700 static int sysfs_slab_add(struct kmem_cache *s)
4701 {
4702 int err;
4703 const char *name;
4704 int unmergeable;
4705
4706 if (slab_state < SYSFS)
4707 /* Defer until later */
4708 return 0;
4709
4710 unmergeable = slab_unmergeable(s);
4711 if (unmergeable) {
4712 /*
4713 * Slabcache can never be merged so we can use the name proper.
4714 * This is typically the case for debug situations. In that
4715 * case we can catch duplicate names easily.
4716 */
4717 sysfs_remove_link(&slab_kset->kobj, s->name);
4718 name = s->name;
4719 } else {
4720 /*
4721 * Create a unique name for the slab as a target
4722 * for the symlinks.
4723 */
4724 name = create_unique_id(s);
4725 }
4726
4727 s->kobj.kset = slab_kset;
4728 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4729 if (err) {
4730 kobject_put(&s->kobj);
4731 return err;
4732 }
4733
4734 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4735 if (err) {
4736 kobject_del(&s->kobj);
4737 kobject_put(&s->kobj);
4738 return err;
4739 }
4740 kobject_uevent(&s->kobj, KOBJ_ADD);
4741 if (!unmergeable) {
4742 /* Setup first alias */
4743 sysfs_slab_alias(s, s->name);
4744 kfree(name);
4745 }
4746 return 0;
4747 }
4748
4749 static void sysfs_slab_remove(struct kmem_cache *s)
4750 {
4751 if (slab_state < SYSFS)
4752 /*
4753 * Sysfs has not been setup yet so no need to remove the
4754 * cache from sysfs.
4755 */
4756 return;
4757
4758 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4759 kobject_del(&s->kobj);
4760 kobject_put(&s->kobj);
4761 }
4762
4763 /*
4764 * Need to buffer aliases during bootup until sysfs becomes
4765 * available lest we lose that information.
4766 */
4767 struct saved_alias {
4768 struct kmem_cache *s;
4769 const char *name;
4770 struct saved_alias *next;
4771 };
4772
4773 static struct saved_alias *alias_list;
4774
4775 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4776 {
4777 struct saved_alias *al;
4778
4779 if (slab_state == SYSFS) {
4780 /*
4781 * If we have a leftover link then remove it.
4782 */
4783 sysfs_remove_link(&slab_kset->kobj, name);
4784 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4785 }
4786
4787 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4788 if (!al)
4789 return -ENOMEM;
4790
4791 al->s = s;
4792 al->name = name;
4793 al->next = alias_list;
4794 alias_list = al;
4795 return 0;
4796 }
4797
4798 static int __init slab_sysfs_init(void)
4799 {
4800 struct kmem_cache *s;
4801 int err;
4802
4803 down_write(&slub_lock);
4804
4805 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4806 if (!slab_kset) {
4807 up_write(&slub_lock);
4808 printk(KERN_ERR "Cannot register slab subsystem.\n");
4809 return -ENOSYS;
4810 }
4811
4812 slab_state = SYSFS;
4813
4814 list_for_each_entry(s, &slab_caches, list) {
4815 err = sysfs_slab_add(s);
4816 if (err)
4817 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4818 " to sysfs\n", s->name);
4819 }
4820
4821 while (alias_list) {
4822 struct saved_alias *al = alias_list;
4823
4824 alias_list = alias_list->next;
4825 err = sysfs_slab_alias(al->s, al->name);
4826 if (err)
4827 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4828 " %s to sysfs\n", s->name);
4829 kfree(al);
4830 }
4831
4832 up_write(&slub_lock);
4833 resiliency_test();
4834 return 0;
4835 }
4836
4837 __initcall(slab_sysfs_init);
4838 #endif /* CONFIG_SYSFS */
4839
4840 /*
4841 * The /proc/slabinfo ABI
4842 */
4843 #ifdef CONFIG_SLABINFO
4844 static void print_slabinfo_header(struct seq_file *m)
4845 {
4846 seq_puts(m, "slabinfo - version: 2.1\n");
4847 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4848 "<objperslab> <pagesperslab>");
4849 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4850 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4851 seq_putc(m, '\n');
4852 }
4853
4854 static void *s_start(struct seq_file *m, loff_t *pos)
4855 {
4856 loff_t n = *pos;
4857
4858 down_read(&slub_lock);
4859 if (!n)
4860 print_slabinfo_header(m);
4861
4862 return seq_list_start(&slab_caches, *pos);
4863 }
4864
4865 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4866 {
4867 return seq_list_next(p, &slab_caches, pos);
4868 }
4869
4870 static void s_stop(struct seq_file *m, void *p)
4871 {
4872 up_read(&slub_lock);
4873 }
4874
4875 static int s_show(struct seq_file *m, void *p)
4876 {
4877 unsigned long nr_partials = 0;
4878 unsigned long nr_slabs = 0;
4879 unsigned long nr_inuse = 0;
4880 unsigned long nr_objs = 0;
4881 unsigned long nr_free = 0;
4882 struct kmem_cache *s;
4883 int node;
4884
4885 s = list_entry(p, struct kmem_cache, list);
4886
4887 for_each_online_node(node) {
4888 struct kmem_cache_node *n = get_node(s, node);
4889
4890 if (!n)
4891 continue;
4892
4893 nr_partials += n->nr_partial;
4894 nr_slabs += atomic_long_read(&n->nr_slabs);
4895 nr_objs += atomic_long_read(&n->total_objects);
4896 nr_free += count_partial(n, count_free);
4897 }
4898
4899 nr_inuse = nr_objs - nr_free;
4900
4901 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4902 nr_objs, s->size, oo_objects(s->oo),
4903 (1 << oo_order(s->oo)));
4904 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4905 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4906 0UL);
4907 seq_putc(m, '\n');
4908 return 0;
4909 }
4910
4911 static const struct seq_operations slabinfo_op = {
4912 .start = s_start,
4913 .next = s_next,
4914 .stop = s_stop,
4915 .show = s_show,
4916 };
4917
4918 static int slabinfo_open(struct inode *inode, struct file *file)
4919 {
4920 return seq_open(file, &slabinfo_op);
4921 }
4922
4923 static const struct file_operations proc_slabinfo_operations = {
4924 .open = slabinfo_open,
4925 .read = seq_read,
4926 .llseek = seq_lseek,
4927 .release = seq_release,
4928 };
4929
4930 static int __init slab_proc_init(void)
4931 {
4932 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4933 return 0;
4934 }
4935 module_init(slab_proc_init);
4936 #endif /* CONFIG_SLABINFO */
This page took 0.17794 seconds and 6 git commands to generate.