mm/slub: fix slab double-free in case of duplicate sysfs filename
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131 #else
132 return false;
133 #endif
134 }
135
136 /*
137 * Issues still to be resolved:
138 *
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
141 * - Variable sizing of the per node arrays
142 */
143
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149
150 /*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
154 #define MIN_PARTIAL 5
155
156 /*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
160 */
161 #define MAX_PARTIAL 10
162
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
165
166 /*
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
170 */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230 {
231 void *base;
232
233 if (!object)
234 return 1;
235
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243 }
244
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 return *(void **)(object + s->offset);
248 }
249
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 prefetch(object + s->offset);
253 }
254
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 void *p;
258
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 p = get_freepointer(s, object);
263 #endif
264 return p;
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
296
297 #endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309 }
310
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 return ((PAGE_SIZE << order) - reserved) / size;
314 }
315
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
318 {
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
321 };
322
323 return x;
324 }
325
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 return x.x >> OO_SHIFT;
329 }
330
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 return x.x & OO_MASK;
334 }
335
336 /*
337 * Per slab locking using the pagelock
338 */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 bit_spin_lock(PG_locked, &page->flags);
342 }
343
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 __bit_spin_unlock(PG_locked, &page->flags);
347 }
348
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 set_page_slub_counters(page, counters_new);
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return false;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 set_page_slub_counters(page, counters_new);
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return false;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 /*
460 * Debug settings:
461 */
462 #ifdef CONFIG_SLUB_DEBUG_ON
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #else
465 static int slub_debug;
466 #endif
467
468 static char *slub_debug_slabs;
469 static int disable_higher_order_debug;
470
471 /*
472 * slub is about to manipulate internal object metadata. This memory lies
473 * outside the range of the allocated object, so accessing it would normally
474 * be reported by kasan as a bounds error. metadata_access_enable() is used
475 * to tell kasan that these accesses are OK.
476 */
477 static inline void metadata_access_enable(void)
478 {
479 kasan_disable_current();
480 }
481
482 static inline void metadata_access_disable(void)
483 {
484 kasan_enable_current();
485 }
486
487 /*
488 * Object debugging
489 */
490 static void print_section(char *text, u8 *addr, unsigned int length)
491 {
492 metadata_access_enable();
493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 length, 1);
495 metadata_access_disable();
496 }
497
498 static struct track *get_track(struct kmem_cache *s, void *object,
499 enum track_item alloc)
500 {
501 struct track *p;
502
503 if (s->offset)
504 p = object + s->offset + sizeof(void *);
505 else
506 p = object + s->inuse;
507
508 return p + alloc;
509 }
510
511 static void set_track(struct kmem_cache *s, void *object,
512 enum track_item alloc, unsigned long addr)
513 {
514 struct track *p = get_track(s, object, alloc);
515
516 if (addr) {
517 #ifdef CONFIG_STACKTRACE
518 struct stack_trace trace;
519 int i;
520
521 trace.nr_entries = 0;
522 trace.max_entries = TRACK_ADDRS_COUNT;
523 trace.entries = p->addrs;
524 trace.skip = 3;
525 metadata_access_enable();
526 save_stack_trace(&trace);
527 metadata_access_disable();
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536 #endif
537 p->addr = addr;
538 p->cpu = smp_processor_id();
539 p->pid = current->pid;
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543 }
544
545 static void init_tracking(struct kmem_cache *s, void *object)
546 {
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
552 }
553
554 static void print_track(const char *s, struct track *t)
555 {
556 if (!t->addr)
557 return;
558
559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 pr_err("\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570 #endif
571 }
572
573 static void print_tracking(struct kmem_cache *s, void *object)
574 {
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580 }
581
582 static void print_page_info(struct page *page)
583 {
584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
586
587 }
588
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590 {
591 struct va_format vaf;
592 va_list args;
593
594 va_start(args, fmt);
595 vaf.fmt = fmt;
596 vaf.va = &args;
597 pr_err("=============================================================================\n");
598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599 pr_err("-----------------------------------------------------------------------------\n\n");
600
601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602 va_end(args);
603 }
604
605 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606 {
607 struct va_format vaf;
608 va_list args;
609
610 va_start(args, fmt);
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 pr_err("FIX %s: %pV\n", s->name, &vaf);
614 va_end(args);
615 }
616
617 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 unsigned int off; /* Offset of last byte */
620 u8 *addr = page_address(page);
621
622 print_tracking(s, p);
623
624 print_page_info(page);
625
626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 p, p - addr, get_freepointer(s, p));
628
629 if (p > addr + 16)
630 print_section("Bytes b4 ", p - 16, 16);
631
632 print_section("Object ", p, min_t(unsigned long, s->object_size,
633 PAGE_SIZE));
634 if (s->flags & SLAB_RED_ZONE)
635 print_section("Redzone ", p + s->object_size,
636 s->inuse - s->object_size);
637
638 if (s->offset)
639 off = s->offset + sizeof(void *);
640 else
641 off = s->inuse;
642
643 if (s->flags & SLAB_STORE_USER)
644 off += 2 * sizeof(struct track);
645
646 if (off != s->size)
647 /* Beginning of the filler is the free pointer */
648 print_section("Padding ", p + off, s->size - off);
649
650 dump_stack();
651 }
652
653 void object_err(struct kmem_cache *s, struct page *page,
654 u8 *object, char *reason)
655 {
656 slab_bug(s, "%s", reason);
657 print_trailer(s, page, object);
658 }
659
660 static void slab_err(struct kmem_cache *s, struct page *page,
661 const char *fmt, ...)
662 {
663 va_list args;
664 char buf[100];
665
666 va_start(args, fmt);
667 vsnprintf(buf, sizeof(buf), fmt, args);
668 va_end(args);
669 slab_bug(s, "%s", buf);
670 print_page_info(page);
671 dump_stack();
672 }
673
674 static void init_object(struct kmem_cache *s, void *object, u8 val)
675 {
676 u8 *p = object;
677
678 if (s->flags & __OBJECT_POISON) {
679 memset(p, POISON_FREE, s->object_size - 1);
680 p[s->object_size - 1] = POISON_END;
681 }
682
683 if (s->flags & SLAB_RED_ZONE)
684 memset(p + s->object_size, val, s->inuse - s->object_size);
685 }
686
687 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 void *from, void *to)
689 {
690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 memset(from, data, to - from);
692 }
693
694 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 u8 *object, char *what,
696 u8 *start, unsigned int value, unsigned int bytes)
697 {
698 u8 *fault;
699 u8 *end;
700
701 metadata_access_enable();
702 fault = memchr_inv(start, value, bytes);
703 metadata_access_disable();
704 if (!fault)
705 return 1;
706
707 end = start + bytes;
708 while (end > fault && end[-1] == value)
709 end--;
710
711 slab_bug(s, "%s overwritten", what);
712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 fault, end - 1, fault[0], value);
714 print_trailer(s, page, object);
715
716 restore_bytes(s, what, value, fault, end);
717 return 0;
718 }
719
720 /*
721 * Object layout:
722 *
723 * object address
724 * Bytes of the object to be managed.
725 * If the freepointer may overlay the object then the free
726 * pointer is the first word of the object.
727 *
728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
729 * 0xa5 (POISON_END)
730 *
731 * object + s->object_size
732 * Padding to reach word boundary. This is also used for Redzoning.
733 * Padding is extended by another word if Redzoning is enabled and
734 * object_size == inuse.
735 *
736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737 * 0xcc (RED_ACTIVE) for objects in use.
738 *
739 * object + s->inuse
740 * Meta data starts here.
741 *
742 * A. Free pointer (if we cannot overwrite object on free)
743 * B. Tracking data for SLAB_STORE_USER
744 * C. Padding to reach required alignment boundary or at mininum
745 * one word if debugging is on to be able to detect writes
746 * before the word boundary.
747 *
748 * Padding is done using 0x5a (POISON_INUSE)
749 *
750 * object + s->size
751 * Nothing is used beyond s->size.
752 *
753 * If slabcaches are merged then the object_size and inuse boundaries are mostly
754 * ignored. And therefore no slab options that rely on these boundaries
755 * may be used with merged slabcaches.
756 */
757
758 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759 {
760 unsigned long off = s->inuse; /* The end of info */
761
762 if (s->offset)
763 /* Freepointer is placed after the object. */
764 off += sizeof(void *);
765
766 if (s->flags & SLAB_STORE_USER)
767 /* We also have user information there */
768 off += 2 * sizeof(struct track);
769
770 if (s->size == off)
771 return 1;
772
773 return check_bytes_and_report(s, page, p, "Object padding",
774 p + off, POISON_INUSE, s->size - off);
775 }
776
777 /* Check the pad bytes at the end of a slab page */
778 static int slab_pad_check(struct kmem_cache *s, struct page *page)
779 {
780 u8 *start;
781 u8 *fault;
782 u8 *end;
783 int length;
784 int remainder;
785
786 if (!(s->flags & SLAB_POISON))
787 return 1;
788
789 start = page_address(page);
790 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 end = start + length;
792 remainder = length % s->size;
793 if (!remainder)
794 return 1;
795
796 metadata_access_enable();
797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798 metadata_access_disable();
799 if (!fault)
800 return 1;
801 while (end > fault && end[-1] == POISON_INUSE)
802 end--;
803
804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805 print_section("Padding ", end - remainder, remainder);
806
807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808 return 0;
809 }
810
811 static int check_object(struct kmem_cache *s, struct page *page,
812 void *object, u8 val)
813 {
814 u8 *p = object;
815 u8 *endobject = object + s->object_size;
816
817 if (s->flags & SLAB_RED_ZONE) {
818 if (!check_bytes_and_report(s, page, object, "Redzone",
819 endobject, val, s->inuse - s->object_size))
820 return 0;
821 } else {
822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
823 check_bytes_and_report(s, page, p, "Alignment padding",
824 endobject, POISON_INUSE,
825 s->inuse - s->object_size);
826 }
827 }
828
829 if (s->flags & SLAB_POISON) {
830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831 (!check_bytes_and_report(s, page, p, "Poison", p,
832 POISON_FREE, s->object_size - 1) ||
833 !check_bytes_and_report(s, page, p, "Poison",
834 p + s->object_size - 1, POISON_END, 1)))
835 return 0;
836 /*
837 * check_pad_bytes cleans up on its own.
838 */
839 check_pad_bytes(s, page, p);
840 }
841
842 if (!s->offset && val == SLUB_RED_ACTIVE)
843 /*
844 * Object and freepointer overlap. Cannot check
845 * freepointer while object is allocated.
846 */
847 return 1;
848
849 /* Check free pointer validity */
850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 object_err(s, page, p, "Freepointer corrupt");
852 /*
853 * No choice but to zap it and thus lose the remainder
854 * of the free objects in this slab. May cause
855 * another error because the object count is now wrong.
856 */
857 set_freepointer(s, p, NULL);
858 return 0;
859 }
860 return 1;
861 }
862
863 static int check_slab(struct kmem_cache *s, struct page *page)
864 {
865 int maxobj;
866
867 VM_BUG_ON(!irqs_disabled());
868
869 if (!PageSlab(page)) {
870 slab_err(s, page, "Not a valid slab page");
871 return 0;
872 }
873
874 maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 if (page->objects > maxobj) {
876 slab_err(s, page, "objects %u > max %u",
877 page->objects, maxobj);
878 return 0;
879 }
880 if (page->inuse > page->objects) {
881 slab_err(s, page, "inuse %u > max %u",
882 page->inuse, page->objects);
883 return 0;
884 }
885 /* Slab_pad_check fixes things up after itself */
886 slab_pad_check(s, page);
887 return 1;
888 }
889
890 /*
891 * Determine if a certain object on a page is on the freelist. Must hold the
892 * slab lock to guarantee that the chains are in a consistent state.
893 */
894 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895 {
896 int nr = 0;
897 void *fp;
898 void *object = NULL;
899 int max_objects;
900
901 fp = page->freelist;
902 while (fp && nr <= page->objects) {
903 if (fp == search)
904 return 1;
905 if (!check_valid_pointer(s, page, fp)) {
906 if (object) {
907 object_err(s, page, object,
908 "Freechain corrupt");
909 set_freepointer(s, object, NULL);
910 } else {
911 slab_err(s, page, "Freepointer corrupt");
912 page->freelist = NULL;
913 page->inuse = page->objects;
914 slab_fix(s, "Freelist cleared");
915 return 0;
916 }
917 break;
918 }
919 object = fp;
920 fp = get_freepointer(s, object);
921 nr++;
922 }
923
924 max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 if (max_objects > MAX_OBJS_PER_PAGE)
926 max_objects = MAX_OBJS_PER_PAGE;
927
928 if (page->objects != max_objects) {
929 slab_err(s, page, "Wrong number of objects. Found %d but "
930 "should be %d", page->objects, max_objects);
931 page->objects = max_objects;
932 slab_fix(s, "Number of objects adjusted.");
933 }
934 if (page->inuse != page->objects - nr) {
935 slab_err(s, page, "Wrong object count. Counter is %d but "
936 "counted were %d", page->inuse, page->objects - nr);
937 page->inuse = page->objects - nr;
938 slab_fix(s, "Object count adjusted.");
939 }
940 return search == NULL;
941 }
942
943 static void trace(struct kmem_cache *s, struct page *page, void *object,
944 int alloc)
945 {
946 if (s->flags & SLAB_TRACE) {
947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
948 s->name,
949 alloc ? "alloc" : "free",
950 object, page->inuse,
951 page->freelist);
952
953 if (!alloc)
954 print_section("Object ", (void *)object,
955 s->object_size);
956
957 dump_stack();
958 }
959 }
960
961 /*
962 * Tracking of fully allocated slabs for debugging purposes.
963 */
964 static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
966 {
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
970 lockdep_assert_held(&n->list_lock);
971 list_add(&page->lru, &n->full);
972 }
973
974 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 {
976 if (!(s->flags & SLAB_STORE_USER))
977 return;
978
979 lockdep_assert_held(&n->list_lock);
980 list_del(&page->lru);
981 }
982
983 /* Tracking of the number of slabs for debugging purposes */
984 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985 {
986 struct kmem_cache_node *n = get_node(s, node);
987
988 return atomic_long_read(&n->nr_slabs);
989 }
990
991 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992 {
993 return atomic_long_read(&n->nr_slabs);
994 }
995
996 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 /*
1001 * May be called early in order to allocate a slab for the
1002 * kmem_cache_node structure. Solve the chicken-egg
1003 * dilemma by deferring the increment of the count during
1004 * bootstrap (see early_kmem_cache_node_alloc).
1005 */
1006 if (likely(n)) {
1007 atomic_long_inc(&n->nr_slabs);
1008 atomic_long_add(objects, &n->total_objects);
1009 }
1010 }
1011 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 {
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 atomic_long_dec(&n->nr_slabs);
1016 atomic_long_sub(objects, &n->total_objects);
1017 }
1018
1019 /* Object debug checks for alloc/free paths */
1020 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 void *object)
1022 {
1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 return;
1025
1026 init_object(s, object, SLUB_RED_INACTIVE);
1027 init_tracking(s, object);
1028 }
1029
1030 static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page,
1032 void *object, unsigned long addr)
1033 {
1034 if (!check_slab(s, page))
1035 goto bad;
1036
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
1039 goto bad;
1040 }
1041
1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 goto bad;
1044
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
1049 init_object(s, object, SLUB_RED_ACTIVE);
1050 return 1;
1051
1052 bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
1057 * as used avoids touching the remaining objects.
1058 */
1059 slab_fix(s, "Marking all objects used");
1060 page->inuse = page->objects;
1061 page->freelist = NULL;
1062 }
1063 return 0;
1064 }
1065
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
1069 {
1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071
1072 spin_lock_irqsave(&n->list_lock, *flags);
1073 slab_lock(page);
1074
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
1084 object_err(s, page, object, "Object already free");
1085 goto fail;
1086 }
1087
1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 goto out;
1090
1091 if (unlikely(s != page->slab_cache)) {
1092 if (!PageSlab(page)) {
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1095 } else if (!page->slab_cache) {
1096 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 object);
1098 dump_stack();
1099 } else
1100 object_err(s, page, object,
1101 "page slab pointer corrupt.");
1102 goto fail;
1103 }
1104
1105 if (s->flags & SLAB_STORE_USER)
1106 set_track(s, object, TRACK_FREE, addr);
1107 trace(s, page, object, 0);
1108 init_object(s, object, SLUB_RED_INACTIVE);
1109 out:
1110 slab_unlock(page);
1111 /*
1112 * Keep node_lock to preserve integrity
1113 * until the object is actually freed
1114 */
1115 return n;
1116
1117 fail:
1118 slab_unlock(page);
1119 spin_unlock_irqrestore(&n->list_lock, *flags);
1120 slab_fix(s, "Object at 0x%p not freed", object);
1121 return NULL;
1122 }
1123
1124 static int __init setup_slub_debug(char *str)
1125 {
1126 slub_debug = DEBUG_DEFAULT_FLAGS;
1127 if (*str++ != '=' || !*str)
1128 /*
1129 * No options specified. Switch on full debugging.
1130 */
1131 goto out;
1132
1133 if (*str == ',')
1134 /*
1135 * No options but restriction on slabs. This means full
1136 * debugging for slabs matching a pattern.
1137 */
1138 goto check_slabs;
1139
1140 slub_debug = 0;
1141 if (*str == '-')
1142 /*
1143 * Switch off all debugging measures.
1144 */
1145 goto out;
1146
1147 /*
1148 * Determine which debug features should be switched on
1149 */
1150 for (; *str && *str != ','; str++) {
1151 switch (tolower(*str)) {
1152 case 'f':
1153 slub_debug |= SLAB_DEBUG_FREE;
1154 break;
1155 case 'z':
1156 slub_debug |= SLAB_RED_ZONE;
1157 break;
1158 case 'p':
1159 slub_debug |= SLAB_POISON;
1160 break;
1161 case 'u':
1162 slub_debug |= SLAB_STORE_USER;
1163 break;
1164 case 't':
1165 slub_debug |= SLAB_TRACE;
1166 break;
1167 case 'a':
1168 slub_debug |= SLAB_FAILSLAB;
1169 break;
1170 case 'o':
1171 /*
1172 * Avoid enabling debugging on caches if its minimum
1173 * order would increase as a result.
1174 */
1175 disable_higher_order_debug = 1;
1176 break;
1177 default:
1178 pr_err("slub_debug option '%c' unknown. skipped\n",
1179 *str);
1180 }
1181 }
1182
1183 check_slabs:
1184 if (*str == ',')
1185 slub_debug_slabs = str + 1;
1186 out:
1187 return 1;
1188 }
1189
1190 __setup("slub_debug", setup_slub_debug);
1191
1192 unsigned long kmem_cache_flags(unsigned long object_size,
1193 unsigned long flags, const char *name,
1194 void (*ctor)(void *))
1195 {
1196 /*
1197 * Enable debugging if selected on the kernel commandline.
1198 */
1199 if (slub_debug && (!slub_debug_slabs || (name &&
1200 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1201 flags |= slub_debug;
1202
1203 return flags;
1204 }
1205 #else
1206 static inline void setup_object_debug(struct kmem_cache *s,
1207 struct page *page, void *object) {}
1208
1209 static inline int alloc_debug_processing(struct kmem_cache *s,
1210 struct page *page, void *object, unsigned long addr) { return 0; }
1211
1212 static inline struct kmem_cache_node *free_debug_processing(
1213 struct kmem_cache *s, struct page *page, void *object,
1214 unsigned long addr, unsigned long *flags) { return NULL; }
1215
1216 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1217 { return 1; }
1218 static inline int check_object(struct kmem_cache *s, struct page *page,
1219 void *object, u8 val) { return 1; }
1220 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1221 struct page *page) {}
1222 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
1224 unsigned long kmem_cache_flags(unsigned long object_size,
1225 unsigned long flags, const char *name,
1226 void (*ctor)(void *))
1227 {
1228 return flags;
1229 }
1230 #define slub_debug 0
1231
1232 #define disable_higher_order_debug 0
1233
1234 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1235 { return 0; }
1236 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1237 { return 0; }
1238 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1239 int objects) {}
1240 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242
1243 #endif /* CONFIG_SLUB_DEBUG */
1244
1245 /*
1246 * Hooks for other subsystems that check memory allocations. In a typical
1247 * production configuration these hooks all should produce no code at all.
1248 */
1249 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1250 {
1251 kmemleak_alloc(ptr, size, 1, flags);
1252 kasan_kmalloc_large(ptr, size);
1253 }
1254
1255 static inline void kfree_hook(const void *x)
1256 {
1257 kmemleak_free(x);
1258 kasan_kfree_large(x);
1259 }
1260
1261 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1262 gfp_t flags)
1263 {
1264 flags &= gfp_allowed_mask;
1265 lockdep_trace_alloc(flags);
1266 might_sleep_if(flags & __GFP_WAIT);
1267
1268 if (should_failslab(s->object_size, flags, s->flags))
1269 return NULL;
1270
1271 return memcg_kmem_get_cache(s, flags);
1272 }
1273
1274 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1275 gfp_t flags, void *object)
1276 {
1277 flags &= gfp_allowed_mask;
1278 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1279 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1280 memcg_kmem_put_cache(s);
1281 kasan_slab_alloc(s, object);
1282 }
1283
1284 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1285 {
1286 kmemleak_free_recursive(x, s->flags);
1287
1288 /*
1289 * Trouble is that we may no longer disable interrupts in the fast path
1290 * So in order to make the debug calls that expect irqs to be
1291 * disabled we need to disable interrupts temporarily.
1292 */
1293 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1294 {
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 kmemcheck_slab_free(s, x, s->object_size);
1299 debug_check_no_locks_freed(x, s->object_size);
1300 local_irq_restore(flags);
1301 }
1302 #endif
1303 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1304 debug_check_no_obj_freed(x, s->object_size);
1305
1306 kasan_slab_free(s, x);
1307 }
1308
1309 static void setup_object(struct kmem_cache *s, struct page *page,
1310 void *object)
1311 {
1312 setup_object_debug(s, page, object);
1313 if (unlikely(s->ctor)) {
1314 kasan_unpoison_object_data(s, object);
1315 s->ctor(object);
1316 kasan_poison_object_data(s, object);
1317 }
1318 }
1319
1320 /*
1321 * Slab allocation and freeing
1322 */
1323 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1324 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1325 {
1326 struct page *page;
1327 int order = oo_order(oo);
1328
1329 flags |= __GFP_NOTRACK;
1330
1331 if (memcg_charge_slab(s, flags, order))
1332 return NULL;
1333
1334 if (node == NUMA_NO_NODE)
1335 page = alloc_pages(flags, order);
1336 else
1337 page = alloc_pages_exact_node(node, flags, order);
1338
1339 if (!page)
1340 memcg_uncharge_slab(s, order);
1341
1342 return page;
1343 }
1344
1345 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1346 {
1347 struct page *page;
1348 struct kmem_cache_order_objects oo = s->oo;
1349 gfp_t alloc_gfp;
1350 void *start, *p;
1351 int idx, order;
1352
1353 flags &= gfp_allowed_mask;
1354
1355 if (flags & __GFP_WAIT)
1356 local_irq_enable();
1357
1358 flags |= s->allocflags;
1359
1360 /*
1361 * Let the initial higher-order allocation fail under memory pressure
1362 * so we fall-back to the minimum order allocation.
1363 */
1364 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1365
1366 page = alloc_slab_page(s, alloc_gfp, node, oo);
1367 if (unlikely(!page)) {
1368 oo = s->min;
1369 alloc_gfp = flags;
1370 /*
1371 * Allocation may have failed due to fragmentation.
1372 * Try a lower order alloc if possible
1373 */
1374 page = alloc_slab_page(s, alloc_gfp, node, oo);
1375 if (unlikely(!page))
1376 goto out;
1377 stat(s, ORDER_FALLBACK);
1378 }
1379
1380 if (kmemcheck_enabled &&
1381 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1382 int pages = 1 << oo_order(oo);
1383
1384 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1385
1386 /*
1387 * Objects from caches that have a constructor don't get
1388 * cleared when they're allocated, so we need to do it here.
1389 */
1390 if (s->ctor)
1391 kmemcheck_mark_uninitialized_pages(page, pages);
1392 else
1393 kmemcheck_mark_unallocated_pages(page, pages);
1394 }
1395
1396 page->objects = oo_objects(oo);
1397
1398 order = compound_order(page);
1399 page->slab_cache = s;
1400 __SetPageSlab(page);
1401 if (page_is_pfmemalloc(page))
1402 SetPageSlabPfmemalloc(page);
1403
1404 start = page_address(page);
1405
1406 if (unlikely(s->flags & SLAB_POISON))
1407 memset(start, POISON_INUSE, PAGE_SIZE << order);
1408
1409 kasan_poison_slab(page);
1410
1411 for_each_object_idx(p, idx, s, start, page->objects) {
1412 setup_object(s, page, p);
1413 if (likely(idx < page->objects))
1414 set_freepointer(s, p, p + s->size);
1415 else
1416 set_freepointer(s, p, NULL);
1417 }
1418
1419 page->freelist = start;
1420 page->inuse = page->objects;
1421 page->frozen = 1;
1422
1423 out:
1424 if (flags & __GFP_WAIT)
1425 local_irq_disable();
1426 if (!page)
1427 return NULL;
1428
1429 mod_zone_page_state(page_zone(page),
1430 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1431 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1432 1 << oo_order(oo));
1433
1434 inc_slabs_node(s, page_to_nid(page), page->objects);
1435
1436 return page;
1437 }
1438
1439 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1440 {
1441 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1442 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1443 BUG();
1444 }
1445
1446 return allocate_slab(s,
1447 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1448 }
1449
1450 static void __free_slab(struct kmem_cache *s, struct page *page)
1451 {
1452 int order = compound_order(page);
1453 int pages = 1 << order;
1454
1455 if (kmem_cache_debug(s)) {
1456 void *p;
1457
1458 slab_pad_check(s, page);
1459 for_each_object(p, s, page_address(page),
1460 page->objects)
1461 check_object(s, page, p, SLUB_RED_INACTIVE);
1462 }
1463
1464 kmemcheck_free_shadow(page, compound_order(page));
1465
1466 mod_zone_page_state(page_zone(page),
1467 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1468 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1469 -pages);
1470
1471 __ClearPageSlabPfmemalloc(page);
1472 __ClearPageSlab(page);
1473
1474 page_mapcount_reset(page);
1475 if (current->reclaim_state)
1476 current->reclaim_state->reclaimed_slab += pages;
1477 __free_pages(page, order);
1478 memcg_uncharge_slab(s, order);
1479 }
1480
1481 #define need_reserve_slab_rcu \
1482 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1483
1484 static void rcu_free_slab(struct rcu_head *h)
1485 {
1486 struct page *page;
1487
1488 if (need_reserve_slab_rcu)
1489 page = virt_to_head_page(h);
1490 else
1491 page = container_of((struct list_head *)h, struct page, lru);
1492
1493 __free_slab(page->slab_cache, page);
1494 }
1495
1496 static void free_slab(struct kmem_cache *s, struct page *page)
1497 {
1498 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1499 struct rcu_head *head;
1500
1501 if (need_reserve_slab_rcu) {
1502 int order = compound_order(page);
1503 int offset = (PAGE_SIZE << order) - s->reserved;
1504
1505 VM_BUG_ON(s->reserved != sizeof(*head));
1506 head = page_address(page) + offset;
1507 } else {
1508 /*
1509 * RCU free overloads the RCU head over the LRU
1510 */
1511 head = (void *)&page->lru;
1512 }
1513
1514 call_rcu(head, rcu_free_slab);
1515 } else
1516 __free_slab(s, page);
1517 }
1518
1519 static void discard_slab(struct kmem_cache *s, struct page *page)
1520 {
1521 dec_slabs_node(s, page_to_nid(page), page->objects);
1522 free_slab(s, page);
1523 }
1524
1525 /*
1526 * Management of partially allocated slabs.
1527 */
1528 static inline void
1529 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1530 {
1531 n->nr_partial++;
1532 if (tail == DEACTIVATE_TO_TAIL)
1533 list_add_tail(&page->lru, &n->partial);
1534 else
1535 list_add(&page->lru, &n->partial);
1536 }
1537
1538 static inline void add_partial(struct kmem_cache_node *n,
1539 struct page *page, int tail)
1540 {
1541 lockdep_assert_held(&n->list_lock);
1542 __add_partial(n, page, tail);
1543 }
1544
1545 static inline void
1546 __remove_partial(struct kmem_cache_node *n, struct page *page)
1547 {
1548 list_del(&page->lru);
1549 n->nr_partial--;
1550 }
1551
1552 static inline void remove_partial(struct kmem_cache_node *n,
1553 struct page *page)
1554 {
1555 lockdep_assert_held(&n->list_lock);
1556 __remove_partial(n, page);
1557 }
1558
1559 /*
1560 * Remove slab from the partial list, freeze it and
1561 * return the pointer to the freelist.
1562 *
1563 * Returns a list of objects or NULL if it fails.
1564 */
1565 static inline void *acquire_slab(struct kmem_cache *s,
1566 struct kmem_cache_node *n, struct page *page,
1567 int mode, int *objects)
1568 {
1569 void *freelist;
1570 unsigned long counters;
1571 struct page new;
1572
1573 lockdep_assert_held(&n->list_lock);
1574
1575 /*
1576 * Zap the freelist and set the frozen bit.
1577 * The old freelist is the list of objects for the
1578 * per cpu allocation list.
1579 */
1580 freelist = page->freelist;
1581 counters = page->counters;
1582 new.counters = counters;
1583 *objects = new.objects - new.inuse;
1584 if (mode) {
1585 new.inuse = page->objects;
1586 new.freelist = NULL;
1587 } else {
1588 new.freelist = freelist;
1589 }
1590
1591 VM_BUG_ON(new.frozen);
1592 new.frozen = 1;
1593
1594 if (!__cmpxchg_double_slab(s, page,
1595 freelist, counters,
1596 new.freelist, new.counters,
1597 "acquire_slab"))
1598 return NULL;
1599
1600 remove_partial(n, page);
1601 WARN_ON(!freelist);
1602 return freelist;
1603 }
1604
1605 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1606 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1607
1608 /*
1609 * Try to allocate a partial slab from a specific node.
1610 */
1611 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1612 struct kmem_cache_cpu *c, gfp_t flags)
1613 {
1614 struct page *page, *page2;
1615 void *object = NULL;
1616 int available = 0;
1617 int objects;
1618
1619 /*
1620 * Racy check. If we mistakenly see no partial slabs then we
1621 * just allocate an empty slab. If we mistakenly try to get a
1622 * partial slab and there is none available then get_partials()
1623 * will return NULL.
1624 */
1625 if (!n || !n->nr_partial)
1626 return NULL;
1627
1628 spin_lock(&n->list_lock);
1629 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1630 void *t;
1631
1632 if (!pfmemalloc_match(page, flags))
1633 continue;
1634
1635 t = acquire_slab(s, n, page, object == NULL, &objects);
1636 if (!t)
1637 break;
1638
1639 available += objects;
1640 if (!object) {
1641 c->page = page;
1642 stat(s, ALLOC_FROM_PARTIAL);
1643 object = t;
1644 } else {
1645 put_cpu_partial(s, page, 0);
1646 stat(s, CPU_PARTIAL_NODE);
1647 }
1648 if (!kmem_cache_has_cpu_partial(s)
1649 || available > s->cpu_partial / 2)
1650 break;
1651
1652 }
1653 spin_unlock(&n->list_lock);
1654 return object;
1655 }
1656
1657 /*
1658 * Get a page from somewhere. Search in increasing NUMA distances.
1659 */
1660 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1661 struct kmem_cache_cpu *c)
1662 {
1663 #ifdef CONFIG_NUMA
1664 struct zonelist *zonelist;
1665 struct zoneref *z;
1666 struct zone *zone;
1667 enum zone_type high_zoneidx = gfp_zone(flags);
1668 void *object;
1669 unsigned int cpuset_mems_cookie;
1670
1671 /*
1672 * The defrag ratio allows a configuration of the tradeoffs between
1673 * inter node defragmentation and node local allocations. A lower
1674 * defrag_ratio increases the tendency to do local allocations
1675 * instead of attempting to obtain partial slabs from other nodes.
1676 *
1677 * If the defrag_ratio is set to 0 then kmalloc() always
1678 * returns node local objects. If the ratio is higher then kmalloc()
1679 * may return off node objects because partial slabs are obtained
1680 * from other nodes and filled up.
1681 *
1682 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1683 * defrag_ratio = 1000) then every (well almost) allocation will
1684 * first attempt to defrag slab caches on other nodes. This means
1685 * scanning over all nodes to look for partial slabs which may be
1686 * expensive if we do it every time we are trying to find a slab
1687 * with available objects.
1688 */
1689 if (!s->remote_node_defrag_ratio ||
1690 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1691 return NULL;
1692
1693 do {
1694 cpuset_mems_cookie = read_mems_allowed_begin();
1695 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1696 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1697 struct kmem_cache_node *n;
1698
1699 n = get_node(s, zone_to_nid(zone));
1700
1701 if (n && cpuset_zone_allowed(zone, flags) &&
1702 n->nr_partial > s->min_partial) {
1703 object = get_partial_node(s, n, c, flags);
1704 if (object) {
1705 /*
1706 * Don't check read_mems_allowed_retry()
1707 * here - if mems_allowed was updated in
1708 * parallel, that was a harmless race
1709 * between allocation and the cpuset
1710 * update
1711 */
1712 return object;
1713 }
1714 }
1715 }
1716 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1717 #endif
1718 return NULL;
1719 }
1720
1721 /*
1722 * Get a partial page, lock it and return it.
1723 */
1724 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1725 struct kmem_cache_cpu *c)
1726 {
1727 void *object;
1728 int searchnode = node;
1729
1730 if (node == NUMA_NO_NODE)
1731 searchnode = numa_mem_id();
1732 else if (!node_present_pages(node))
1733 searchnode = node_to_mem_node(node);
1734
1735 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1736 if (object || node != NUMA_NO_NODE)
1737 return object;
1738
1739 return get_any_partial(s, flags, c);
1740 }
1741
1742 #ifdef CONFIG_PREEMPT
1743 /*
1744 * Calculate the next globally unique transaction for disambiguiation
1745 * during cmpxchg. The transactions start with the cpu number and are then
1746 * incremented by CONFIG_NR_CPUS.
1747 */
1748 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1749 #else
1750 /*
1751 * No preemption supported therefore also no need to check for
1752 * different cpus.
1753 */
1754 #define TID_STEP 1
1755 #endif
1756
1757 static inline unsigned long next_tid(unsigned long tid)
1758 {
1759 return tid + TID_STEP;
1760 }
1761
1762 static inline unsigned int tid_to_cpu(unsigned long tid)
1763 {
1764 return tid % TID_STEP;
1765 }
1766
1767 static inline unsigned long tid_to_event(unsigned long tid)
1768 {
1769 return tid / TID_STEP;
1770 }
1771
1772 static inline unsigned int init_tid(int cpu)
1773 {
1774 return cpu;
1775 }
1776
1777 static inline void note_cmpxchg_failure(const char *n,
1778 const struct kmem_cache *s, unsigned long tid)
1779 {
1780 #ifdef SLUB_DEBUG_CMPXCHG
1781 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1782
1783 pr_info("%s %s: cmpxchg redo ", n, s->name);
1784
1785 #ifdef CONFIG_PREEMPT
1786 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1787 pr_warn("due to cpu change %d -> %d\n",
1788 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1789 else
1790 #endif
1791 if (tid_to_event(tid) != tid_to_event(actual_tid))
1792 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1793 tid_to_event(tid), tid_to_event(actual_tid));
1794 else
1795 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1796 actual_tid, tid, next_tid(tid));
1797 #endif
1798 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1799 }
1800
1801 static void init_kmem_cache_cpus(struct kmem_cache *s)
1802 {
1803 int cpu;
1804
1805 for_each_possible_cpu(cpu)
1806 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1807 }
1808
1809 /*
1810 * Remove the cpu slab
1811 */
1812 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1813 void *freelist)
1814 {
1815 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1816 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1817 int lock = 0;
1818 enum slab_modes l = M_NONE, m = M_NONE;
1819 void *nextfree;
1820 int tail = DEACTIVATE_TO_HEAD;
1821 struct page new;
1822 struct page old;
1823
1824 if (page->freelist) {
1825 stat(s, DEACTIVATE_REMOTE_FREES);
1826 tail = DEACTIVATE_TO_TAIL;
1827 }
1828
1829 /*
1830 * Stage one: Free all available per cpu objects back
1831 * to the page freelist while it is still frozen. Leave the
1832 * last one.
1833 *
1834 * There is no need to take the list->lock because the page
1835 * is still frozen.
1836 */
1837 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1838 void *prior;
1839 unsigned long counters;
1840
1841 do {
1842 prior = page->freelist;
1843 counters = page->counters;
1844 set_freepointer(s, freelist, prior);
1845 new.counters = counters;
1846 new.inuse--;
1847 VM_BUG_ON(!new.frozen);
1848
1849 } while (!__cmpxchg_double_slab(s, page,
1850 prior, counters,
1851 freelist, new.counters,
1852 "drain percpu freelist"));
1853
1854 freelist = nextfree;
1855 }
1856
1857 /*
1858 * Stage two: Ensure that the page is unfrozen while the
1859 * list presence reflects the actual number of objects
1860 * during unfreeze.
1861 *
1862 * We setup the list membership and then perform a cmpxchg
1863 * with the count. If there is a mismatch then the page
1864 * is not unfrozen but the page is on the wrong list.
1865 *
1866 * Then we restart the process which may have to remove
1867 * the page from the list that we just put it on again
1868 * because the number of objects in the slab may have
1869 * changed.
1870 */
1871 redo:
1872
1873 old.freelist = page->freelist;
1874 old.counters = page->counters;
1875 VM_BUG_ON(!old.frozen);
1876
1877 /* Determine target state of the slab */
1878 new.counters = old.counters;
1879 if (freelist) {
1880 new.inuse--;
1881 set_freepointer(s, freelist, old.freelist);
1882 new.freelist = freelist;
1883 } else
1884 new.freelist = old.freelist;
1885
1886 new.frozen = 0;
1887
1888 if (!new.inuse && n->nr_partial >= s->min_partial)
1889 m = M_FREE;
1890 else if (new.freelist) {
1891 m = M_PARTIAL;
1892 if (!lock) {
1893 lock = 1;
1894 /*
1895 * Taking the spinlock removes the possiblity
1896 * that acquire_slab() will see a slab page that
1897 * is frozen
1898 */
1899 spin_lock(&n->list_lock);
1900 }
1901 } else {
1902 m = M_FULL;
1903 if (kmem_cache_debug(s) && !lock) {
1904 lock = 1;
1905 /*
1906 * This also ensures that the scanning of full
1907 * slabs from diagnostic functions will not see
1908 * any frozen slabs.
1909 */
1910 spin_lock(&n->list_lock);
1911 }
1912 }
1913
1914 if (l != m) {
1915
1916 if (l == M_PARTIAL)
1917
1918 remove_partial(n, page);
1919
1920 else if (l == M_FULL)
1921
1922 remove_full(s, n, page);
1923
1924 if (m == M_PARTIAL) {
1925
1926 add_partial(n, page, tail);
1927 stat(s, tail);
1928
1929 } else if (m == M_FULL) {
1930
1931 stat(s, DEACTIVATE_FULL);
1932 add_full(s, n, page);
1933
1934 }
1935 }
1936
1937 l = m;
1938 if (!__cmpxchg_double_slab(s, page,
1939 old.freelist, old.counters,
1940 new.freelist, new.counters,
1941 "unfreezing slab"))
1942 goto redo;
1943
1944 if (lock)
1945 spin_unlock(&n->list_lock);
1946
1947 if (m == M_FREE) {
1948 stat(s, DEACTIVATE_EMPTY);
1949 discard_slab(s, page);
1950 stat(s, FREE_SLAB);
1951 }
1952 }
1953
1954 /*
1955 * Unfreeze all the cpu partial slabs.
1956 *
1957 * This function must be called with interrupts disabled
1958 * for the cpu using c (or some other guarantee must be there
1959 * to guarantee no concurrent accesses).
1960 */
1961 static void unfreeze_partials(struct kmem_cache *s,
1962 struct kmem_cache_cpu *c)
1963 {
1964 #ifdef CONFIG_SLUB_CPU_PARTIAL
1965 struct kmem_cache_node *n = NULL, *n2 = NULL;
1966 struct page *page, *discard_page = NULL;
1967
1968 while ((page = c->partial)) {
1969 struct page new;
1970 struct page old;
1971
1972 c->partial = page->next;
1973
1974 n2 = get_node(s, page_to_nid(page));
1975 if (n != n2) {
1976 if (n)
1977 spin_unlock(&n->list_lock);
1978
1979 n = n2;
1980 spin_lock(&n->list_lock);
1981 }
1982
1983 do {
1984
1985 old.freelist = page->freelist;
1986 old.counters = page->counters;
1987 VM_BUG_ON(!old.frozen);
1988
1989 new.counters = old.counters;
1990 new.freelist = old.freelist;
1991
1992 new.frozen = 0;
1993
1994 } while (!__cmpxchg_double_slab(s, page,
1995 old.freelist, old.counters,
1996 new.freelist, new.counters,
1997 "unfreezing slab"));
1998
1999 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2000 page->next = discard_page;
2001 discard_page = page;
2002 } else {
2003 add_partial(n, page, DEACTIVATE_TO_TAIL);
2004 stat(s, FREE_ADD_PARTIAL);
2005 }
2006 }
2007
2008 if (n)
2009 spin_unlock(&n->list_lock);
2010
2011 while (discard_page) {
2012 page = discard_page;
2013 discard_page = discard_page->next;
2014
2015 stat(s, DEACTIVATE_EMPTY);
2016 discard_slab(s, page);
2017 stat(s, FREE_SLAB);
2018 }
2019 #endif
2020 }
2021
2022 /*
2023 * Put a page that was just frozen (in __slab_free) into a partial page
2024 * slot if available. This is done without interrupts disabled and without
2025 * preemption disabled. The cmpxchg is racy and may put the partial page
2026 * onto a random cpus partial slot.
2027 *
2028 * If we did not find a slot then simply move all the partials to the
2029 * per node partial list.
2030 */
2031 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2032 {
2033 #ifdef CONFIG_SLUB_CPU_PARTIAL
2034 struct page *oldpage;
2035 int pages;
2036 int pobjects;
2037
2038 preempt_disable();
2039 do {
2040 pages = 0;
2041 pobjects = 0;
2042 oldpage = this_cpu_read(s->cpu_slab->partial);
2043
2044 if (oldpage) {
2045 pobjects = oldpage->pobjects;
2046 pages = oldpage->pages;
2047 if (drain && pobjects > s->cpu_partial) {
2048 unsigned long flags;
2049 /*
2050 * partial array is full. Move the existing
2051 * set to the per node partial list.
2052 */
2053 local_irq_save(flags);
2054 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2055 local_irq_restore(flags);
2056 oldpage = NULL;
2057 pobjects = 0;
2058 pages = 0;
2059 stat(s, CPU_PARTIAL_DRAIN);
2060 }
2061 }
2062
2063 pages++;
2064 pobjects += page->objects - page->inuse;
2065
2066 page->pages = pages;
2067 page->pobjects = pobjects;
2068 page->next = oldpage;
2069
2070 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2071 != oldpage);
2072 if (unlikely(!s->cpu_partial)) {
2073 unsigned long flags;
2074
2075 local_irq_save(flags);
2076 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2077 local_irq_restore(flags);
2078 }
2079 preempt_enable();
2080 #endif
2081 }
2082
2083 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2084 {
2085 stat(s, CPUSLAB_FLUSH);
2086 deactivate_slab(s, c->page, c->freelist);
2087
2088 c->tid = next_tid(c->tid);
2089 c->page = NULL;
2090 c->freelist = NULL;
2091 }
2092
2093 /*
2094 * Flush cpu slab.
2095 *
2096 * Called from IPI handler with interrupts disabled.
2097 */
2098 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2099 {
2100 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2101
2102 if (likely(c)) {
2103 if (c->page)
2104 flush_slab(s, c);
2105
2106 unfreeze_partials(s, c);
2107 }
2108 }
2109
2110 static void flush_cpu_slab(void *d)
2111 {
2112 struct kmem_cache *s = d;
2113
2114 __flush_cpu_slab(s, smp_processor_id());
2115 }
2116
2117 static bool has_cpu_slab(int cpu, void *info)
2118 {
2119 struct kmem_cache *s = info;
2120 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2121
2122 return c->page || c->partial;
2123 }
2124
2125 static void flush_all(struct kmem_cache *s)
2126 {
2127 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2128 }
2129
2130 /*
2131 * Check if the objects in a per cpu structure fit numa
2132 * locality expectations.
2133 */
2134 static inline int node_match(struct page *page, int node)
2135 {
2136 #ifdef CONFIG_NUMA
2137 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2138 return 0;
2139 #endif
2140 return 1;
2141 }
2142
2143 #ifdef CONFIG_SLUB_DEBUG
2144 static int count_free(struct page *page)
2145 {
2146 return page->objects - page->inuse;
2147 }
2148
2149 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2150 {
2151 return atomic_long_read(&n->total_objects);
2152 }
2153 #endif /* CONFIG_SLUB_DEBUG */
2154
2155 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2156 static unsigned long count_partial(struct kmem_cache_node *n,
2157 int (*get_count)(struct page *))
2158 {
2159 unsigned long flags;
2160 unsigned long x = 0;
2161 struct page *page;
2162
2163 spin_lock_irqsave(&n->list_lock, flags);
2164 list_for_each_entry(page, &n->partial, lru)
2165 x += get_count(page);
2166 spin_unlock_irqrestore(&n->list_lock, flags);
2167 return x;
2168 }
2169 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2170
2171 static noinline void
2172 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2173 {
2174 #ifdef CONFIG_SLUB_DEBUG
2175 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2176 DEFAULT_RATELIMIT_BURST);
2177 int node;
2178 struct kmem_cache_node *n;
2179
2180 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2181 return;
2182
2183 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2184 nid, gfpflags);
2185 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2186 s->name, s->object_size, s->size, oo_order(s->oo),
2187 oo_order(s->min));
2188
2189 if (oo_order(s->min) > get_order(s->object_size))
2190 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2191 s->name);
2192
2193 for_each_kmem_cache_node(s, node, n) {
2194 unsigned long nr_slabs;
2195 unsigned long nr_objs;
2196 unsigned long nr_free;
2197
2198 nr_free = count_partial(n, count_free);
2199 nr_slabs = node_nr_slabs(n);
2200 nr_objs = node_nr_objs(n);
2201
2202 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2203 node, nr_slabs, nr_objs, nr_free);
2204 }
2205 #endif
2206 }
2207
2208 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2209 int node, struct kmem_cache_cpu **pc)
2210 {
2211 void *freelist;
2212 struct kmem_cache_cpu *c = *pc;
2213 struct page *page;
2214
2215 freelist = get_partial(s, flags, node, c);
2216
2217 if (freelist)
2218 return freelist;
2219
2220 page = new_slab(s, flags, node);
2221 if (page) {
2222 c = raw_cpu_ptr(s->cpu_slab);
2223 if (c->page)
2224 flush_slab(s, c);
2225
2226 /*
2227 * No other reference to the page yet so we can
2228 * muck around with it freely without cmpxchg
2229 */
2230 freelist = page->freelist;
2231 page->freelist = NULL;
2232
2233 stat(s, ALLOC_SLAB);
2234 c->page = page;
2235 *pc = c;
2236 } else
2237 freelist = NULL;
2238
2239 return freelist;
2240 }
2241
2242 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2243 {
2244 if (unlikely(PageSlabPfmemalloc(page)))
2245 return gfp_pfmemalloc_allowed(gfpflags);
2246
2247 return true;
2248 }
2249
2250 /*
2251 * Check the page->freelist of a page and either transfer the freelist to the
2252 * per cpu freelist or deactivate the page.
2253 *
2254 * The page is still frozen if the return value is not NULL.
2255 *
2256 * If this function returns NULL then the page has been unfrozen.
2257 *
2258 * This function must be called with interrupt disabled.
2259 */
2260 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2261 {
2262 struct page new;
2263 unsigned long counters;
2264 void *freelist;
2265
2266 do {
2267 freelist = page->freelist;
2268 counters = page->counters;
2269
2270 new.counters = counters;
2271 VM_BUG_ON(!new.frozen);
2272
2273 new.inuse = page->objects;
2274 new.frozen = freelist != NULL;
2275
2276 } while (!__cmpxchg_double_slab(s, page,
2277 freelist, counters,
2278 NULL, new.counters,
2279 "get_freelist"));
2280
2281 return freelist;
2282 }
2283
2284 /*
2285 * Slow path. The lockless freelist is empty or we need to perform
2286 * debugging duties.
2287 *
2288 * Processing is still very fast if new objects have been freed to the
2289 * regular freelist. In that case we simply take over the regular freelist
2290 * as the lockless freelist and zap the regular freelist.
2291 *
2292 * If that is not working then we fall back to the partial lists. We take the
2293 * first element of the freelist as the object to allocate now and move the
2294 * rest of the freelist to the lockless freelist.
2295 *
2296 * And if we were unable to get a new slab from the partial slab lists then
2297 * we need to allocate a new slab. This is the slowest path since it involves
2298 * a call to the page allocator and the setup of a new slab.
2299 */
2300 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2301 unsigned long addr, struct kmem_cache_cpu *c)
2302 {
2303 void *freelist;
2304 struct page *page;
2305 unsigned long flags;
2306
2307 local_irq_save(flags);
2308 #ifdef CONFIG_PREEMPT
2309 /*
2310 * We may have been preempted and rescheduled on a different
2311 * cpu before disabling interrupts. Need to reload cpu area
2312 * pointer.
2313 */
2314 c = this_cpu_ptr(s->cpu_slab);
2315 #endif
2316
2317 page = c->page;
2318 if (!page)
2319 goto new_slab;
2320 redo:
2321
2322 if (unlikely(!node_match(page, node))) {
2323 int searchnode = node;
2324
2325 if (node != NUMA_NO_NODE && !node_present_pages(node))
2326 searchnode = node_to_mem_node(node);
2327
2328 if (unlikely(!node_match(page, searchnode))) {
2329 stat(s, ALLOC_NODE_MISMATCH);
2330 deactivate_slab(s, page, c->freelist);
2331 c->page = NULL;
2332 c->freelist = NULL;
2333 goto new_slab;
2334 }
2335 }
2336
2337 /*
2338 * By rights, we should be searching for a slab page that was
2339 * PFMEMALLOC but right now, we are losing the pfmemalloc
2340 * information when the page leaves the per-cpu allocator
2341 */
2342 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2343 deactivate_slab(s, page, c->freelist);
2344 c->page = NULL;
2345 c->freelist = NULL;
2346 goto new_slab;
2347 }
2348
2349 /* must check again c->freelist in case of cpu migration or IRQ */
2350 freelist = c->freelist;
2351 if (freelist)
2352 goto load_freelist;
2353
2354 freelist = get_freelist(s, page);
2355
2356 if (!freelist) {
2357 c->page = NULL;
2358 stat(s, DEACTIVATE_BYPASS);
2359 goto new_slab;
2360 }
2361
2362 stat(s, ALLOC_REFILL);
2363
2364 load_freelist:
2365 /*
2366 * freelist is pointing to the list of objects to be used.
2367 * page is pointing to the page from which the objects are obtained.
2368 * That page must be frozen for per cpu allocations to work.
2369 */
2370 VM_BUG_ON(!c->page->frozen);
2371 c->freelist = get_freepointer(s, freelist);
2372 c->tid = next_tid(c->tid);
2373 local_irq_restore(flags);
2374 return freelist;
2375
2376 new_slab:
2377
2378 if (c->partial) {
2379 page = c->page = c->partial;
2380 c->partial = page->next;
2381 stat(s, CPU_PARTIAL_ALLOC);
2382 c->freelist = NULL;
2383 goto redo;
2384 }
2385
2386 freelist = new_slab_objects(s, gfpflags, node, &c);
2387
2388 if (unlikely(!freelist)) {
2389 slab_out_of_memory(s, gfpflags, node);
2390 local_irq_restore(flags);
2391 return NULL;
2392 }
2393
2394 page = c->page;
2395 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2396 goto load_freelist;
2397
2398 /* Only entered in the debug case */
2399 if (kmem_cache_debug(s) &&
2400 !alloc_debug_processing(s, page, freelist, addr))
2401 goto new_slab; /* Slab failed checks. Next slab needed */
2402
2403 deactivate_slab(s, page, get_freepointer(s, freelist));
2404 c->page = NULL;
2405 c->freelist = NULL;
2406 local_irq_restore(flags);
2407 return freelist;
2408 }
2409
2410 /*
2411 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2412 * have the fastpath folded into their functions. So no function call
2413 * overhead for requests that can be satisfied on the fastpath.
2414 *
2415 * The fastpath works by first checking if the lockless freelist can be used.
2416 * If not then __slab_alloc is called for slow processing.
2417 *
2418 * Otherwise we can simply pick the next object from the lockless free list.
2419 */
2420 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2421 gfp_t gfpflags, int node, unsigned long addr)
2422 {
2423 void **object;
2424 struct kmem_cache_cpu *c;
2425 struct page *page;
2426 unsigned long tid;
2427
2428 s = slab_pre_alloc_hook(s, gfpflags);
2429 if (!s)
2430 return NULL;
2431 redo:
2432 /*
2433 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2434 * enabled. We may switch back and forth between cpus while
2435 * reading from one cpu area. That does not matter as long
2436 * as we end up on the original cpu again when doing the cmpxchg.
2437 *
2438 * We should guarantee that tid and kmem_cache are retrieved on
2439 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2440 * to check if it is matched or not.
2441 */
2442 do {
2443 tid = this_cpu_read(s->cpu_slab->tid);
2444 c = raw_cpu_ptr(s->cpu_slab);
2445 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2446 unlikely(tid != READ_ONCE(c->tid)));
2447
2448 /*
2449 * Irqless object alloc/free algorithm used here depends on sequence
2450 * of fetching cpu_slab's data. tid should be fetched before anything
2451 * on c to guarantee that object and page associated with previous tid
2452 * won't be used with current tid. If we fetch tid first, object and
2453 * page could be one associated with next tid and our alloc/free
2454 * request will be failed. In this case, we will retry. So, no problem.
2455 */
2456 barrier();
2457
2458 /*
2459 * The transaction ids are globally unique per cpu and per operation on
2460 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2461 * occurs on the right processor and that there was no operation on the
2462 * linked list in between.
2463 */
2464
2465 object = c->freelist;
2466 page = c->page;
2467 if (unlikely(!object || !node_match(page, node))) {
2468 object = __slab_alloc(s, gfpflags, node, addr, c);
2469 stat(s, ALLOC_SLOWPATH);
2470 } else {
2471 void *next_object = get_freepointer_safe(s, object);
2472
2473 /*
2474 * The cmpxchg will only match if there was no additional
2475 * operation and if we are on the right processor.
2476 *
2477 * The cmpxchg does the following atomically (without lock
2478 * semantics!)
2479 * 1. Relocate first pointer to the current per cpu area.
2480 * 2. Verify that tid and freelist have not been changed
2481 * 3. If they were not changed replace tid and freelist
2482 *
2483 * Since this is without lock semantics the protection is only
2484 * against code executing on this cpu *not* from access by
2485 * other cpus.
2486 */
2487 if (unlikely(!this_cpu_cmpxchg_double(
2488 s->cpu_slab->freelist, s->cpu_slab->tid,
2489 object, tid,
2490 next_object, next_tid(tid)))) {
2491
2492 note_cmpxchg_failure("slab_alloc", s, tid);
2493 goto redo;
2494 }
2495 prefetch_freepointer(s, next_object);
2496 stat(s, ALLOC_FASTPATH);
2497 }
2498
2499 if (unlikely(gfpflags & __GFP_ZERO) && object)
2500 memset(object, 0, s->object_size);
2501
2502 slab_post_alloc_hook(s, gfpflags, object);
2503
2504 return object;
2505 }
2506
2507 static __always_inline void *slab_alloc(struct kmem_cache *s,
2508 gfp_t gfpflags, unsigned long addr)
2509 {
2510 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2511 }
2512
2513 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2514 {
2515 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2516
2517 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2518 s->size, gfpflags);
2519
2520 return ret;
2521 }
2522 EXPORT_SYMBOL(kmem_cache_alloc);
2523
2524 #ifdef CONFIG_TRACING
2525 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2526 {
2527 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2528 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2529 kasan_kmalloc(s, ret, size);
2530 return ret;
2531 }
2532 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2533 #endif
2534
2535 #ifdef CONFIG_NUMA
2536 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2537 {
2538 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2539
2540 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2541 s->object_size, s->size, gfpflags, node);
2542
2543 return ret;
2544 }
2545 EXPORT_SYMBOL(kmem_cache_alloc_node);
2546
2547 #ifdef CONFIG_TRACING
2548 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2549 gfp_t gfpflags,
2550 int node, size_t size)
2551 {
2552 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2553
2554 trace_kmalloc_node(_RET_IP_, ret,
2555 size, s->size, gfpflags, node);
2556
2557 kasan_kmalloc(s, ret, size);
2558 return ret;
2559 }
2560 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2561 #endif
2562 #endif
2563
2564 /*
2565 * Slow path handling. This may still be called frequently since objects
2566 * have a longer lifetime than the cpu slabs in most processing loads.
2567 *
2568 * So we still attempt to reduce cache line usage. Just take the slab
2569 * lock and free the item. If there is no additional partial page
2570 * handling required then we can return immediately.
2571 */
2572 static void __slab_free(struct kmem_cache *s, struct page *page,
2573 void *x, unsigned long addr)
2574 {
2575 void *prior;
2576 void **object = (void *)x;
2577 int was_frozen;
2578 struct page new;
2579 unsigned long counters;
2580 struct kmem_cache_node *n = NULL;
2581 unsigned long uninitialized_var(flags);
2582
2583 stat(s, FREE_SLOWPATH);
2584
2585 if (kmem_cache_debug(s) &&
2586 !(n = free_debug_processing(s, page, x, addr, &flags)))
2587 return;
2588
2589 do {
2590 if (unlikely(n)) {
2591 spin_unlock_irqrestore(&n->list_lock, flags);
2592 n = NULL;
2593 }
2594 prior = page->freelist;
2595 counters = page->counters;
2596 set_freepointer(s, object, prior);
2597 new.counters = counters;
2598 was_frozen = new.frozen;
2599 new.inuse--;
2600 if ((!new.inuse || !prior) && !was_frozen) {
2601
2602 if (kmem_cache_has_cpu_partial(s) && !prior) {
2603
2604 /*
2605 * Slab was on no list before and will be
2606 * partially empty
2607 * We can defer the list move and instead
2608 * freeze it.
2609 */
2610 new.frozen = 1;
2611
2612 } else { /* Needs to be taken off a list */
2613
2614 n = get_node(s, page_to_nid(page));
2615 /*
2616 * Speculatively acquire the list_lock.
2617 * If the cmpxchg does not succeed then we may
2618 * drop the list_lock without any processing.
2619 *
2620 * Otherwise the list_lock will synchronize with
2621 * other processors updating the list of slabs.
2622 */
2623 spin_lock_irqsave(&n->list_lock, flags);
2624
2625 }
2626 }
2627
2628 } while (!cmpxchg_double_slab(s, page,
2629 prior, counters,
2630 object, new.counters,
2631 "__slab_free"));
2632
2633 if (likely(!n)) {
2634
2635 /*
2636 * If we just froze the page then put it onto the
2637 * per cpu partial list.
2638 */
2639 if (new.frozen && !was_frozen) {
2640 put_cpu_partial(s, page, 1);
2641 stat(s, CPU_PARTIAL_FREE);
2642 }
2643 /*
2644 * The list lock was not taken therefore no list
2645 * activity can be necessary.
2646 */
2647 if (was_frozen)
2648 stat(s, FREE_FROZEN);
2649 return;
2650 }
2651
2652 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2653 goto slab_empty;
2654
2655 /*
2656 * Objects left in the slab. If it was not on the partial list before
2657 * then add it.
2658 */
2659 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2660 if (kmem_cache_debug(s))
2661 remove_full(s, n, page);
2662 add_partial(n, page, DEACTIVATE_TO_TAIL);
2663 stat(s, FREE_ADD_PARTIAL);
2664 }
2665 spin_unlock_irqrestore(&n->list_lock, flags);
2666 return;
2667
2668 slab_empty:
2669 if (prior) {
2670 /*
2671 * Slab on the partial list.
2672 */
2673 remove_partial(n, page);
2674 stat(s, FREE_REMOVE_PARTIAL);
2675 } else {
2676 /* Slab must be on the full list */
2677 remove_full(s, n, page);
2678 }
2679
2680 spin_unlock_irqrestore(&n->list_lock, flags);
2681 stat(s, FREE_SLAB);
2682 discard_slab(s, page);
2683 }
2684
2685 /*
2686 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2687 * can perform fastpath freeing without additional function calls.
2688 *
2689 * The fastpath is only possible if we are freeing to the current cpu slab
2690 * of this processor. This typically the case if we have just allocated
2691 * the item before.
2692 *
2693 * If fastpath is not possible then fall back to __slab_free where we deal
2694 * with all sorts of special processing.
2695 */
2696 static __always_inline void slab_free(struct kmem_cache *s,
2697 struct page *page, void *x, unsigned long addr)
2698 {
2699 void **object = (void *)x;
2700 struct kmem_cache_cpu *c;
2701 unsigned long tid;
2702
2703 slab_free_hook(s, x);
2704
2705 redo:
2706 /*
2707 * Determine the currently cpus per cpu slab.
2708 * The cpu may change afterward. However that does not matter since
2709 * data is retrieved via this pointer. If we are on the same cpu
2710 * during the cmpxchg then the free will succeed.
2711 */
2712 do {
2713 tid = this_cpu_read(s->cpu_slab->tid);
2714 c = raw_cpu_ptr(s->cpu_slab);
2715 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2716 unlikely(tid != READ_ONCE(c->tid)));
2717
2718 /* Same with comment on barrier() in slab_alloc_node() */
2719 barrier();
2720
2721 if (likely(page == c->page)) {
2722 set_freepointer(s, object, c->freelist);
2723
2724 if (unlikely(!this_cpu_cmpxchg_double(
2725 s->cpu_slab->freelist, s->cpu_slab->tid,
2726 c->freelist, tid,
2727 object, next_tid(tid)))) {
2728
2729 note_cmpxchg_failure("slab_free", s, tid);
2730 goto redo;
2731 }
2732 stat(s, FREE_FASTPATH);
2733 } else
2734 __slab_free(s, page, x, addr);
2735
2736 }
2737
2738 void kmem_cache_free(struct kmem_cache *s, void *x)
2739 {
2740 s = cache_from_obj(s, x);
2741 if (!s)
2742 return;
2743 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2744 trace_kmem_cache_free(_RET_IP_, x);
2745 }
2746 EXPORT_SYMBOL(kmem_cache_free);
2747
2748 /* Note that interrupts must be enabled when calling this function. */
2749 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2750 {
2751 struct kmem_cache_cpu *c;
2752 struct page *page;
2753 int i;
2754
2755 local_irq_disable();
2756 c = this_cpu_ptr(s->cpu_slab);
2757
2758 for (i = 0; i < size; i++) {
2759 void *object = p[i];
2760
2761 BUG_ON(!object);
2762 /* kmem cache debug support */
2763 s = cache_from_obj(s, object);
2764 if (unlikely(!s))
2765 goto exit;
2766 slab_free_hook(s, object);
2767
2768 page = virt_to_head_page(object);
2769
2770 if (c->page == page) {
2771 /* Fastpath: local CPU free */
2772 set_freepointer(s, object, c->freelist);
2773 c->freelist = object;
2774 } else {
2775 c->tid = next_tid(c->tid);
2776 local_irq_enable();
2777 /* Slowpath: overhead locked cmpxchg_double_slab */
2778 __slab_free(s, page, object, _RET_IP_);
2779 local_irq_disable();
2780 c = this_cpu_ptr(s->cpu_slab);
2781 }
2782 }
2783 exit:
2784 c->tid = next_tid(c->tid);
2785 local_irq_enable();
2786 }
2787 EXPORT_SYMBOL(kmem_cache_free_bulk);
2788
2789 /* Note that interrupts must be enabled when calling this function. */
2790 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2791 void **p)
2792 {
2793 struct kmem_cache_cpu *c;
2794 int i;
2795
2796 /*
2797 * Drain objects in the per cpu slab, while disabling local
2798 * IRQs, which protects against PREEMPT and interrupts
2799 * handlers invoking normal fastpath.
2800 */
2801 local_irq_disable();
2802 c = this_cpu_ptr(s->cpu_slab);
2803
2804 for (i = 0; i < size; i++) {
2805 void *object = c->freelist;
2806
2807 if (unlikely(!object)) {
2808 local_irq_enable();
2809 /*
2810 * Invoking slow path likely have side-effect
2811 * of re-populating per CPU c->freelist
2812 */
2813 p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
2814 _RET_IP_, c);
2815 if (unlikely(!p[i])) {
2816 __kmem_cache_free_bulk(s, i, p);
2817 return false;
2818 }
2819 local_irq_disable();
2820 c = this_cpu_ptr(s->cpu_slab);
2821 continue; /* goto for-loop */
2822 }
2823
2824 /* kmem_cache debug support */
2825 s = slab_pre_alloc_hook(s, flags);
2826 if (unlikely(!s)) {
2827 __kmem_cache_free_bulk(s, i, p);
2828 c->tid = next_tid(c->tid);
2829 local_irq_enable();
2830 return false;
2831 }
2832
2833 c->freelist = get_freepointer(s, object);
2834 p[i] = object;
2835
2836 /* kmem_cache debug support */
2837 slab_post_alloc_hook(s, flags, object);
2838 }
2839 c->tid = next_tid(c->tid);
2840 local_irq_enable();
2841
2842 /* Clear memory outside IRQ disabled fastpath loop */
2843 if (unlikely(flags & __GFP_ZERO)) {
2844 int j;
2845
2846 for (j = 0; j < i; j++)
2847 memset(p[j], 0, s->object_size);
2848 }
2849
2850 return true;
2851 }
2852 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2853
2854
2855 /*
2856 * Object placement in a slab is made very easy because we always start at
2857 * offset 0. If we tune the size of the object to the alignment then we can
2858 * get the required alignment by putting one properly sized object after
2859 * another.
2860 *
2861 * Notice that the allocation order determines the sizes of the per cpu
2862 * caches. Each processor has always one slab available for allocations.
2863 * Increasing the allocation order reduces the number of times that slabs
2864 * must be moved on and off the partial lists and is therefore a factor in
2865 * locking overhead.
2866 */
2867
2868 /*
2869 * Mininum / Maximum order of slab pages. This influences locking overhead
2870 * and slab fragmentation. A higher order reduces the number of partial slabs
2871 * and increases the number of allocations possible without having to
2872 * take the list_lock.
2873 */
2874 static int slub_min_order;
2875 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2876 static int slub_min_objects;
2877
2878 /*
2879 * Calculate the order of allocation given an slab object size.
2880 *
2881 * The order of allocation has significant impact on performance and other
2882 * system components. Generally order 0 allocations should be preferred since
2883 * order 0 does not cause fragmentation in the page allocator. Larger objects
2884 * be problematic to put into order 0 slabs because there may be too much
2885 * unused space left. We go to a higher order if more than 1/16th of the slab
2886 * would be wasted.
2887 *
2888 * In order to reach satisfactory performance we must ensure that a minimum
2889 * number of objects is in one slab. Otherwise we may generate too much
2890 * activity on the partial lists which requires taking the list_lock. This is
2891 * less a concern for large slabs though which are rarely used.
2892 *
2893 * slub_max_order specifies the order where we begin to stop considering the
2894 * number of objects in a slab as critical. If we reach slub_max_order then
2895 * we try to keep the page order as low as possible. So we accept more waste
2896 * of space in favor of a small page order.
2897 *
2898 * Higher order allocations also allow the placement of more objects in a
2899 * slab and thereby reduce object handling overhead. If the user has
2900 * requested a higher mininum order then we start with that one instead of
2901 * the smallest order which will fit the object.
2902 */
2903 static inline int slab_order(int size, int min_objects,
2904 int max_order, int fract_leftover, int reserved)
2905 {
2906 int order;
2907 int rem;
2908 int min_order = slub_min_order;
2909
2910 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2911 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2912
2913 for (order = max(min_order,
2914 fls(min_objects * size - 1) - PAGE_SHIFT);
2915 order <= max_order; order++) {
2916
2917 unsigned long slab_size = PAGE_SIZE << order;
2918
2919 if (slab_size < min_objects * size + reserved)
2920 continue;
2921
2922 rem = (slab_size - reserved) % size;
2923
2924 if (rem <= slab_size / fract_leftover)
2925 break;
2926
2927 }
2928
2929 return order;
2930 }
2931
2932 static inline int calculate_order(int size, int reserved)
2933 {
2934 int order;
2935 int min_objects;
2936 int fraction;
2937 int max_objects;
2938
2939 /*
2940 * Attempt to find best configuration for a slab. This
2941 * works by first attempting to generate a layout with
2942 * the best configuration and backing off gradually.
2943 *
2944 * First we reduce the acceptable waste in a slab. Then
2945 * we reduce the minimum objects required in a slab.
2946 */
2947 min_objects = slub_min_objects;
2948 if (!min_objects)
2949 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2950 max_objects = order_objects(slub_max_order, size, reserved);
2951 min_objects = min(min_objects, max_objects);
2952
2953 while (min_objects > 1) {
2954 fraction = 16;
2955 while (fraction >= 4) {
2956 order = slab_order(size, min_objects,
2957 slub_max_order, fraction, reserved);
2958 if (order <= slub_max_order)
2959 return order;
2960 fraction /= 2;
2961 }
2962 min_objects--;
2963 }
2964
2965 /*
2966 * We were unable to place multiple objects in a slab. Now
2967 * lets see if we can place a single object there.
2968 */
2969 order = slab_order(size, 1, slub_max_order, 1, reserved);
2970 if (order <= slub_max_order)
2971 return order;
2972
2973 /*
2974 * Doh this slab cannot be placed using slub_max_order.
2975 */
2976 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2977 if (order < MAX_ORDER)
2978 return order;
2979 return -ENOSYS;
2980 }
2981
2982 static void
2983 init_kmem_cache_node(struct kmem_cache_node *n)
2984 {
2985 n->nr_partial = 0;
2986 spin_lock_init(&n->list_lock);
2987 INIT_LIST_HEAD(&n->partial);
2988 #ifdef CONFIG_SLUB_DEBUG
2989 atomic_long_set(&n->nr_slabs, 0);
2990 atomic_long_set(&n->total_objects, 0);
2991 INIT_LIST_HEAD(&n->full);
2992 #endif
2993 }
2994
2995 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2996 {
2997 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2998 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2999
3000 /*
3001 * Must align to double word boundary for the double cmpxchg
3002 * instructions to work; see __pcpu_double_call_return_bool().
3003 */
3004 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3005 2 * sizeof(void *));
3006
3007 if (!s->cpu_slab)
3008 return 0;
3009
3010 init_kmem_cache_cpus(s);
3011
3012 return 1;
3013 }
3014
3015 static struct kmem_cache *kmem_cache_node;
3016
3017 /*
3018 * No kmalloc_node yet so do it by hand. We know that this is the first
3019 * slab on the node for this slabcache. There are no concurrent accesses
3020 * possible.
3021 *
3022 * Note that this function only works on the kmem_cache_node
3023 * when allocating for the kmem_cache_node. This is used for bootstrapping
3024 * memory on a fresh node that has no slab structures yet.
3025 */
3026 static void early_kmem_cache_node_alloc(int node)
3027 {
3028 struct page *page;
3029 struct kmem_cache_node *n;
3030
3031 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3032
3033 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3034
3035 BUG_ON(!page);
3036 if (page_to_nid(page) != node) {
3037 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3038 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3039 }
3040
3041 n = page->freelist;
3042 BUG_ON(!n);
3043 page->freelist = get_freepointer(kmem_cache_node, n);
3044 page->inuse = 1;
3045 page->frozen = 0;
3046 kmem_cache_node->node[node] = n;
3047 #ifdef CONFIG_SLUB_DEBUG
3048 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3049 init_tracking(kmem_cache_node, n);
3050 #endif
3051 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3052 init_kmem_cache_node(n);
3053 inc_slabs_node(kmem_cache_node, node, page->objects);
3054
3055 /*
3056 * No locks need to be taken here as it has just been
3057 * initialized and there is no concurrent access.
3058 */
3059 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3060 }
3061
3062 static void free_kmem_cache_nodes(struct kmem_cache *s)
3063 {
3064 int node;
3065 struct kmem_cache_node *n;
3066
3067 for_each_kmem_cache_node(s, node, n) {
3068 kmem_cache_free(kmem_cache_node, n);
3069 s->node[node] = NULL;
3070 }
3071 }
3072
3073 static int init_kmem_cache_nodes(struct kmem_cache *s)
3074 {
3075 int node;
3076
3077 for_each_node_state(node, N_NORMAL_MEMORY) {
3078 struct kmem_cache_node *n;
3079
3080 if (slab_state == DOWN) {
3081 early_kmem_cache_node_alloc(node);
3082 continue;
3083 }
3084 n = kmem_cache_alloc_node(kmem_cache_node,
3085 GFP_KERNEL, node);
3086
3087 if (!n) {
3088 free_kmem_cache_nodes(s);
3089 return 0;
3090 }
3091
3092 s->node[node] = n;
3093 init_kmem_cache_node(n);
3094 }
3095 return 1;
3096 }
3097
3098 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3099 {
3100 if (min < MIN_PARTIAL)
3101 min = MIN_PARTIAL;
3102 else if (min > MAX_PARTIAL)
3103 min = MAX_PARTIAL;
3104 s->min_partial = min;
3105 }
3106
3107 /*
3108 * calculate_sizes() determines the order and the distribution of data within
3109 * a slab object.
3110 */
3111 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3112 {
3113 unsigned long flags = s->flags;
3114 unsigned long size = s->object_size;
3115 int order;
3116
3117 /*
3118 * Round up object size to the next word boundary. We can only
3119 * place the free pointer at word boundaries and this determines
3120 * the possible location of the free pointer.
3121 */
3122 size = ALIGN(size, sizeof(void *));
3123
3124 #ifdef CONFIG_SLUB_DEBUG
3125 /*
3126 * Determine if we can poison the object itself. If the user of
3127 * the slab may touch the object after free or before allocation
3128 * then we should never poison the object itself.
3129 */
3130 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3131 !s->ctor)
3132 s->flags |= __OBJECT_POISON;
3133 else
3134 s->flags &= ~__OBJECT_POISON;
3135
3136
3137 /*
3138 * If we are Redzoning then check if there is some space between the
3139 * end of the object and the free pointer. If not then add an
3140 * additional word to have some bytes to store Redzone information.
3141 */
3142 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3143 size += sizeof(void *);
3144 #endif
3145
3146 /*
3147 * With that we have determined the number of bytes in actual use
3148 * by the object. This is the potential offset to the free pointer.
3149 */
3150 s->inuse = size;
3151
3152 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3153 s->ctor)) {
3154 /*
3155 * Relocate free pointer after the object if it is not
3156 * permitted to overwrite the first word of the object on
3157 * kmem_cache_free.
3158 *
3159 * This is the case if we do RCU, have a constructor or
3160 * destructor or are poisoning the objects.
3161 */
3162 s->offset = size;
3163 size += sizeof(void *);
3164 }
3165
3166 #ifdef CONFIG_SLUB_DEBUG
3167 if (flags & SLAB_STORE_USER)
3168 /*
3169 * Need to store information about allocs and frees after
3170 * the object.
3171 */
3172 size += 2 * sizeof(struct track);
3173
3174 if (flags & SLAB_RED_ZONE)
3175 /*
3176 * Add some empty padding so that we can catch
3177 * overwrites from earlier objects rather than let
3178 * tracking information or the free pointer be
3179 * corrupted if a user writes before the start
3180 * of the object.
3181 */
3182 size += sizeof(void *);
3183 #endif
3184
3185 /*
3186 * SLUB stores one object immediately after another beginning from
3187 * offset 0. In order to align the objects we have to simply size
3188 * each object to conform to the alignment.
3189 */
3190 size = ALIGN(size, s->align);
3191 s->size = size;
3192 if (forced_order >= 0)
3193 order = forced_order;
3194 else
3195 order = calculate_order(size, s->reserved);
3196
3197 if (order < 0)
3198 return 0;
3199
3200 s->allocflags = 0;
3201 if (order)
3202 s->allocflags |= __GFP_COMP;
3203
3204 if (s->flags & SLAB_CACHE_DMA)
3205 s->allocflags |= GFP_DMA;
3206
3207 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3208 s->allocflags |= __GFP_RECLAIMABLE;
3209
3210 /*
3211 * Determine the number of objects per slab
3212 */
3213 s->oo = oo_make(order, size, s->reserved);
3214 s->min = oo_make(get_order(size), size, s->reserved);
3215 if (oo_objects(s->oo) > oo_objects(s->max))
3216 s->max = s->oo;
3217
3218 return !!oo_objects(s->oo);
3219 }
3220
3221 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3222 {
3223 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3224 s->reserved = 0;
3225
3226 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3227 s->reserved = sizeof(struct rcu_head);
3228
3229 if (!calculate_sizes(s, -1))
3230 goto error;
3231 if (disable_higher_order_debug) {
3232 /*
3233 * Disable debugging flags that store metadata if the min slab
3234 * order increased.
3235 */
3236 if (get_order(s->size) > get_order(s->object_size)) {
3237 s->flags &= ~DEBUG_METADATA_FLAGS;
3238 s->offset = 0;
3239 if (!calculate_sizes(s, -1))
3240 goto error;
3241 }
3242 }
3243
3244 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3245 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3246 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3247 /* Enable fast mode */
3248 s->flags |= __CMPXCHG_DOUBLE;
3249 #endif
3250
3251 /*
3252 * The larger the object size is, the more pages we want on the partial
3253 * list to avoid pounding the page allocator excessively.
3254 */
3255 set_min_partial(s, ilog2(s->size) / 2);
3256
3257 /*
3258 * cpu_partial determined the maximum number of objects kept in the
3259 * per cpu partial lists of a processor.
3260 *
3261 * Per cpu partial lists mainly contain slabs that just have one
3262 * object freed. If they are used for allocation then they can be
3263 * filled up again with minimal effort. The slab will never hit the
3264 * per node partial lists and therefore no locking will be required.
3265 *
3266 * This setting also determines
3267 *
3268 * A) The number of objects from per cpu partial slabs dumped to the
3269 * per node list when we reach the limit.
3270 * B) The number of objects in cpu partial slabs to extract from the
3271 * per node list when we run out of per cpu objects. We only fetch
3272 * 50% to keep some capacity around for frees.
3273 */
3274 if (!kmem_cache_has_cpu_partial(s))
3275 s->cpu_partial = 0;
3276 else if (s->size >= PAGE_SIZE)
3277 s->cpu_partial = 2;
3278 else if (s->size >= 1024)
3279 s->cpu_partial = 6;
3280 else if (s->size >= 256)
3281 s->cpu_partial = 13;
3282 else
3283 s->cpu_partial = 30;
3284
3285 #ifdef CONFIG_NUMA
3286 s->remote_node_defrag_ratio = 1000;
3287 #endif
3288 if (!init_kmem_cache_nodes(s))
3289 goto error;
3290
3291 if (alloc_kmem_cache_cpus(s))
3292 return 0;
3293
3294 free_kmem_cache_nodes(s);
3295 error:
3296 if (flags & SLAB_PANIC)
3297 panic("Cannot create slab %s size=%lu realsize=%u "
3298 "order=%u offset=%u flags=%lx\n",
3299 s->name, (unsigned long)s->size, s->size,
3300 oo_order(s->oo), s->offset, flags);
3301 return -EINVAL;
3302 }
3303
3304 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3305 const char *text)
3306 {
3307 #ifdef CONFIG_SLUB_DEBUG
3308 void *addr = page_address(page);
3309 void *p;
3310 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3311 sizeof(long), GFP_ATOMIC);
3312 if (!map)
3313 return;
3314 slab_err(s, page, text, s->name);
3315 slab_lock(page);
3316
3317 get_map(s, page, map);
3318 for_each_object(p, s, addr, page->objects) {
3319
3320 if (!test_bit(slab_index(p, s, addr), map)) {
3321 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3322 print_tracking(s, p);
3323 }
3324 }
3325 slab_unlock(page);
3326 kfree(map);
3327 #endif
3328 }
3329
3330 /*
3331 * Attempt to free all partial slabs on a node.
3332 * This is called from kmem_cache_close(). We must be the last thread
3333 * using the cache and therefore we do not need to lock anymore.
3334 */
3335 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3336 {
3337 struct page *page, *h;
3338
3339 list_for_each_entry_safe(page, h, &n->partial, lru) {
3340 if (!page->inuse) {
3341 __remove_partial(n, page);
3342 discard_slab(s, page);
3343 } else {
3344 list_slab_objects(s, page,
3345 "Objects remaining in %s on kmem_cache_close()");
3346 }
3347 }
3348 }
3349
3350 /*
3351 * Release all resources used by a slab cache.
3352 */
3353 static inline int kmem_cache_close(struct kmem_cache *s)
3354 {
3355 int node;
3356 struct kmem_cache_node *n;
3357
3358 flush_all(s);
3359 /* Attempt to free all objects */
3360 for_each_kmem_cache_node(s, node, n) {
3361 free_partial(s, n);
3362 if (n->nr_partial || slabs_node(s, node))
3363 return 1;
3364 }
3365 free_percpu(s->cpu_slab);
3366 free_kmem_cache_nodes(s);
3367 return 0;
3368 }
3369
3370 int __kmem_cache_shutdown(struct kmem_cache *s)
3371 {
3372 return kmem_cache_close(s);
3373 }
3374
3375 /********************************************************************
3376 * Kmalloc subsystem
3377 *******************************************************************/
3378
3379 static int __init setup_slub_min_order(char *str)
3380 {
3381 get_option(&str, &slub_min_order);
3382
3383 return 1;
3384 }
3385
3386 __setup("slub_min_order=", setup_slub_min_order);
3387
3388 static int __init setup_slub_max_order(char *str)
3389 {
3390 get_option(&str, &slub_max_order);
3391 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3392
3393 return 1;
3394 }
3395
3396 __setup("slub_max_order=", setup_slub_max_order);
3397
3398 static int __init setup_slub_min_objects(char *str)
3399 {
3400 get_option(&str, &slub_min_objects);
3401
3402 return 1;
3403 }
3404
3405 __setup("slub_min_objects=", setup_slub_min_objects);
3406
3407 void *__kmalloc(size_t size, gfp_t flags)
3408 {
3409 struct kmem_cache *s;
3410 void *ret;
3411
3412 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3413 return kmalloc_large(size, flags);
3414
3415 s = kmalloc_slab(size, flags);
3416
3417 if (unlikely(ZERO_OR_NULL_PTR(s)))
3418 return s;
3419
3420 ret = slab_alloc(s, flags, _RET_IP_);
3421
3422 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3423
3424 kasan_kmalloc(s, ret, size);
3425
3426 return ret;
3427 }
3428 EXPORT_SYMBOL(__kmalloc);
3429
3430 #ifdef CONFIG_NUMA
3431 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3432 {
3433 struct page *page;
3434 void *ptr = NULL;
3435
3436 flags |= __GFP_COMP | __GFP_NOTRACK;
3437 page = alloc_kmem_pages_node(node, flags, get_order(size));
3438 if (page)
3439 ptr = page_address(page);
3440
3441 kmalloc_large_node_hook(ptr, size, flags);
3442 return ptr;
3443 }
3444
3445 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3446 {
3447 struct kmem_cache *s;
3448 void *ret;
3449
3450 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3451 ret = kmalloc_large_node(size, flags, node);
3452
3453 trace_kmalloc_node(_RET_IP_, ret,
3454 size, PAGE_SIZE << get_order(size),
3455 flags, node);
3456
3457 return ret;
3458 }
3459
3460 s = kmalloc_slab(size, flags);
3461
3462 if (unlikely(ZERO_OR_NULL_PTR(s)))
3463 return s;
3464
3465 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3466
3467 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3468
3469 kasan_kmalloc(s, ret, size);
3470
3471 return ret;
3472 }
3473 EXPORT_SYMBOL(__kmalloc_node);
3474 #endif
3475
3476 static size_t __ksize(const void *object)
3477 {
3478 struct page *page;
3479
3480 if (unlikely(object == ZERO_SIZE_PTR))
3481 return 0;
3482
3483 page = virt_to_head_page(object);
3484
3485 if (unlikely(!PageSlab(page))) {
3486 WARN_ON(!PageCompound(page));
3487 return PAGE_SIZE << compound_order(page);
3488 }
3489
3490 return slab_ksize(page->slab_cache);
3491 }
3492
3493 size_t ksize(const void *object)
3494 {
3495 size_t size = __ksize(object);
3496 /* We assume that ksize callers could use whole allocated area,
3497 so we need unpoison this area. */
3498 kasan_krealloc(object, size);
3499 return size;
3500 }
3501 EXPORT_SYMBOL(ksize);
3502
3503 void kfree(const void *x)
3504 {
3505 struct page *page;
3506 void *object = (void *)x;
3507
3508 trace_kfree(_RET_IP_, x);
3509
3510 if (unlikely(ZERO_OR_NULL_PTR(x)))
3511 return;
3512
3513 page = virt_to_head_page(x);
3514 if (unlikely(!PageSlab(page))) {
3515 BUG_ON(!PageCompound(page));
3516 kfree_hook(x);
3517 __free_kmem_pages(page, compound_order(page));
3518 return;
3519 }
3520 slab_free(page->slab_cache, page, object, _RET_IP_);
3521 }
3522 EXPORT_SYMBOL(kfree);
3523
3524 #define SHRINK_PROMOTE_MAX 32
3525
3526 /*
3527 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3528 * up most to the head of the partial lists. New allocations will then
3529 * fill those up and thus they can be removed from the partial lists.
3530 *
3531 * The slabs with the least items are placed last. This results in them
3532 * being allocated from last increasing the chance that the last objects
3533 * are freed in them.
3534 */
3535 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3536 {
3537 int node;
3538 int i;
3539 struct kmem_cache_node *n;
3540 struct page *page;
3541 struct page *t;
3542 struct list_head discard;
3543 struct list_head promote[SHRINK_PROMOTE_MAX];
3544 unsigned long flags;
3545 int ret = 0;
3546
3547 if (deactivate) {
3548 /*
3549 * Disable empty slabs caching. Used to avoid pinning offline
3550 * memory cgroups by kmem pages that can be freed.
3551 */
3552 s->cpu_partial = 0;
3553 s->min_partial = 0;
3554
3555 /*
3556 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3557 * so we have to make sure the change is visible.
3558 */
3559 kick_all_cpus_sync();
3560 }
3561
3562 flush_all(s);
3563 for_each_kmem_cache_node(s, node, n) {
3564 INIT_LIST_HEAD(&discard);
3565 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3566 INIT_LIST_HEAD(promote + i);
3567
3568 spin_lock_irqsave(&n->list_lock, flags);
3569
3570 /*
3571 * Build lists of slabs to discard or promote.
3572 *
3573 * Note that concurrent frees may occur while we hold the
3574 * list_lock. page->inuse here is the upper limit.
3575 */
3576 list_for_each_entry_safe(page, t, &n->partial, lru) {
3577 int free = page->objects - page->inuse;
3578
3579 /* Do not reread page->inuse */
3580 barrier();
3581
3582 /* We do not keep full slabs on the list */
3583 BUG_ON(free <= 0);
3584
3585 if (free == page->objects) {
3586 list_move(&page->lru, &discard);
3587 n->nr_partial--;
3588 } else if (free <= SHRINK_PROMOTE_MAX)
3589 list_move(&page->lru, promote + free - 1);
3590 }
3591
3592 /*
3593 * Promote the slabs filled up most to the head of the
3594 * partial list.
3595 */
3596 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3597 list_splice(promote + i, &n->partial);
3598
3599 spin_unlock_irqrestore(&n->list_lock, flags);
3600
3601 /* Release empty slabs */
3602 list_for_each_entry_safe(page, t, &discard, lru)
3603 discard_slab(s, page);
3604
3605 if (slabs_node(s, node))
3606 ret = 1;
3607 }
3608
3609 return ret;
3610 }
3611
3612 static int slab_mem_going_offline_callback(void *arg)
3613 {
3614 struct kmem_cache *s;
3615
3616 mutex_lock(&slab_mutex);
3617 list_for_each_entry(s, &slab_caches, list)
3618 __kmem_cache_shrink(s, false);
3619 mutex_unlock(&slab_mutex);
3620
3621 return 0;
3622 }
3623
3624 static void slab_mem_offline_callback(void *arg)
3625 {
3626 struct kmem_cache_node *n;
3627 struct kmem_cache *s;
3628 struct memory_notify *marg = arg;
3629 int offline_node;
3630
3631 offline_node = marg->status_change_nid_normal;
3632
3633 /*
3634 * If the node still has available memory. we need kmem_cache_node
3635 * for it yet.
3636 */
3637 if (offline_node < 0)
3638 return;
3639
3640 mutex_lock(&slab_mutex);
3641 list_for_each_entry(s, &slab_caches, list) {
3642 n = get_node(s, offline_node);
3643 if (n) {
3644 /*
3645 * if n->nr_slabs > 0, slabs still exist on the node
3646 * that is going down. We were unable to free them,
3647 * and offline_pages() function shouldn't call this
3648 * callback. So, we must fail.
3649 */
3650 BUG_ON(slabs_node(s, offline_node));
3651
3652 s->node[offline_node] = NULL;
3653 kmem_cache_free(kmem_cache_node, n);
3654 }
3655 }
3656 mutex_unlock(&slab_mutex);
3657 }
3658
3659 static int slab_mem_going_online_callback(void *arg)
3660 {
3661 struct kmem_cache_node *n;
3662 struct kmem_cache *s;
3663 struct memory_notify *marg = arg;
3664 int nid = marg->status_change_nid_normal;
3665 int ret = 0;
3666
3667 /*
3668 * If the node's memory is already available, then kmem_cache_node is
3669 * already created. Nothing to do.
3670 */
3671 if (nid < 0)
3672 return 0;
3673
3674 /*
3675 * We are bringing a node online. No memory is available yet. We must
3676 * allocate a kmem_cache_node structure in order to bring the node
3677 * online.
3678 */
3679 mutex_lock(&slab_mutex);
3680 list_for_each_entry(s, &slab_caches, list) {
3681 /*
3682 * XXX: kmem_cache_alloc_node will fallback to other nodes
3683 * since memory is not yet available from the node that
3684 * is brought up.
3685 */
3686 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3687 if (!n) {
3688 ret = -ENOMEM;
3689 goto out;
3690 }
3691 init_kmem_cache_node(n);
3692 s->node[nid] = n;
3693 }
3694 out:
3695 mutex_unlock(&slab_mutex);
3696 return ret;
3697 }
3698
3699 static int slab_memory_callback(struct notifier_block *self,
3700 unsigned long action, void *arg)
3701 {
3702 int ret = 0;
3703
3704 switch (action) {
3705 case MEM_GOING_ONLINE:
3706 ret = slab_mem_going_online_callback(arg);
3707 break;
3708 case MEM_GOING_OFFLINE:
3709 ret = slab_mem_going_offline_callback(arg);
3710 break;
3711 case MEM_OFFLINE:
3712 case MEM_CANCEL_ONLINE:
3713 slab_mem_offline_callback(arg);
3714 break;
3715 case MEM_ONLINE:
3716 case MEM_CANCEL_OFFLINE:
3717 break;
3718 }
3719 if (ret)
3720 ret = notifier_from_errno(ret);
3721 else
3722 ret = NOTIFY_OK;
3723 return ret;
3724 }
3725
3726 static struct notifier_block slab_memory_callback_nb = {
3727 .notifier_call = slab_memory_callback,
3728 .priority = SLAB_CALLBACK_PRI,
3729 };
3730
3731 /********************************************************************
3732 * Basic setup of slabs
3733 *******************************************************************/
3734
3735 /*
3736 * Used for early kmem_cache structures that were allocated using
3737 * the page allocator. Allocate them properly then fix up the pointers
3738 * that may be pointing to the wrong kmem_cache structure.
3739 */
3740
3741 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3742 {
3743 int node;
3744 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3745 struct kmem_cache_node *n;
3746
3747 memcpy(s, static_cache, kmem_cache->object_size);
3748
3749 /*
3750 * This runs very early, and only the boot processor is supposed to be
3751 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3752 * IPIs around.
3753 */
3754 __flush_cpu_slab(s, smp_processor_id());
3755 for_each_kmem_cache_node(s, node, n) {
3756 struct page *p;
3757
3758 list_for_each_entry(p, &n->partial, lru)
3759 p->slab_cache = s;
3760
3761 #ifdef CONFIG_SLUB_DEBUG
3762 list_for_each_entry(p, &n->full, lru)
3763 p->slab_cache = s;
3764 #endif
3765 }
3766 slab_init_memcg_params(s);
3767 list_add(&s->list, &slab_caches);
3768 return s;
3769 }
3770
3771 void __init kmem_cache_init(void)
3772 {
3773 static __initdata struct kmem_cache boot_kmem_cache,
3774 boot_kmem_cache_node;
3775
3776 if (debug_guardpage_minorder())
3777 slub_max_order = 0;
3778
3779 kmem_cache_node = &boot_kmem_cache_node;
3780 kmem_cache = &boot_kmem_cache;
3781
3782 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3783 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3784
3785 register_hotmemory_notifier(&slab_memory_callback_nb);
3786
3787 /* Able to allocate the per node structures */
3788 slab_state = PARTIAL;
3789
3790 create_boot_cache(kmem_cache, "kmem_cache",
3791 offsetof(struct kmem_cache, node) +
3792 nr_node_ids * sizeof(struct kmem_cache_node *),
3793 SLAB_HWCACHE_ALIGN);
3794
3795 kmem_cache = bootstrap(&boot_kmem_cache);
3796
3797 /*
3798 * Allocate kmem_cache_node properly from the kmem_cache slab.
3799 * kmem_cache_node is separately allocated so no need to
3800 * update any list pointers.
3801 */
3802 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3803
3804 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3805 setup_kmalloc_cache_index_table();
3806 create_kmalloc_caches(0);
3807
3808 #ifdef CONFIG_SMP
3809 register_cpu_notifier(&slab_notifier);
3810 #endif
3811
3812 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3813 cache_line_size(),
3814 slub_min_order, slub_max_order, slub_min_objects,
3815 nr_cpu_ids, nr_node_ids);
3816 }
3817
3818 void __init kmem_cache_init_late(void)
3819 {
3820 }
3821
3822 struct kmem_cache *
3823 __kmem_cache_alias(const char *name, size_t size, size_t align,
3824 unsigned long flags, void (*ctor)(void *))
3825 {
3826 struct kmem_cache *s, *c;
3827
3828 s = find_mergeable(size, align, flags, name, ctor);
3829 if (s) {
3830 s->refcount++;
3831
3832 /*
3833 * Adjust the object sizes so that we clear
3834 * the complete object on kzalloc.
3835 */
3836 s->object_size = max(s->object_size, (int)size);
3837 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3838
3839 for_each_memcg_cache(c, s) {
3840 c->object_size = s->object_size;
3841 c->inuse = max_t(int, c->inuse,
3842 ALIGN(size, sizeof(void *)));
3843 }
3844
3845 if (sysfs_slab_alias(s, name)) {
3846 s->refcount--;
3847 s = NULL;
3848 }
3849 }
3850
3851 return s;
3852 }
3853
3854 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3855 {
3856 int err;
3857
3858 err = kmem_cache_open(s, flags);
3859 if (err)
3860 return err;
3861
3862 /* Mutex is not taken during early boot */
3863 if (slab_state <= UP)
3864 return 0;
3865
3866 memcg_propagate_slab_attrs(s);
3867 err = sysfs_slab_add(s);
3868 if (err)
3869 kmem_cache_close(s);
3870
3871 return err;
3872 }
3873
3874 #ifdef CONFIG_SMP
3875 /*
3876 * Use the cpu notifier to insure that the cpu slabs are flushed when
3877 * necessary.
3878 */
3879 static int slab_cpuup_callback(struct notifier_block *nfb,
3880 unsigned long action, void *hcpu)
3881 {
3882 long cpu = (long)hcpu;
3883 struct kmem_cache *s;
3884 unsigned long flags;
3885
3886 switch (action) {
3887 case CPU_UP_CANCELED:
3888 case CPU_UP_CANCELED_FROZEN:
3889 case CPU_DEAD:
3890 case CPU_DEAD_FROZEN:
3891 mutex_lock(&slab_mutex);
3892 list_for_each_entry(s, &slab_caches, list) {
3893 local_irq_save(flags);
3894 __flush_cpu_slab(s, cpu);
3895 local_irq_restore(flags);
3896 }
3897 mutex_unlock(&slab_mutex);
3898 break;
3899 default:
3900 break;
3901 }
3902 return NOTIFY_OK;
3903 }
3904
3905 static struct notifier_block slab_notifier = {
3906 .notifier_call = slab_cpuup_callback
3907 };
3908
3909 #endif
3910
3911 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3912 {
3913 struct kmem_cache *s;
3914 void *ret;
3915
3916 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3917 return kmalloc_large(size, gfpflags);
3918
3919 s = kmalloc_slab(size, gfpflags);
3920
3921 if (unlikely(ZERO_OR_NULL_PTR(s)))
3922 return s;
3923
3924 ret = slab_alloc(s, gfpflags, caller);
3925
3926 /* Honor the call site pointer we received. */
3927 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3928
3929 return ret;
3930 }
3931
3932 #ifdef CONFIG_NUMA
3933 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3934 int node, unsigned long caller)
3935 {
3936 struct kmem_cache *s;
3937 void *ret;
3938
3939 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3940 ret = kmalloc_large_node(size, gfpflags, node);
3941
3942 trace_kmalloc_node(caller, ret,
3943 size, PAGE_SIZE << get_order(size),
3944 gfpflags, node);
3945
3946 return ret;
3947 }
3948
3949 s = kmalloc_slab(size, gfpflags);
3950
3951 if (unlikely(ZERO_OR_NULL_PTR(s)))
3952 return s;
3953
3954 ret = slab_alloc_node(s, gfpflags, node, caller);
3955
3956 /* Honor the call site pointer we received. */
3957 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3958
3959 return ret;
3960 }
3961 #endif
3962
3963 #ifdef CONFIG_SYSFS
3964 static int count_inuse(struct page *page)
3965 {
3966 return page->inuse;
3967 }
3968
3969 static int count_total(struct page *page)
3970 {
3971 return page->objects;
3972 }
3973 #endif
3974
3975 #ifdef CONFIG_SLUB_DEBUG
3976 static int validate_slab(struct kmem_cache *s, struct page *page,
3977 unsigned long *map)
3978 {
3979 void *p;
3980 void *addr = page_address(page);
3981
3982 if (!check_slab(s, page) ||
3983 !on_freelist(s, page, NULL))
3984 return 0;
3985
3986 /* Now we know that a valid freelist exists */
3987 bitmap_zero(map, page->objects);
3988
3989 get_map(s, page, map);
3990 for_each_object(p, s, addr, page->objects) {
3991 if (test_bit(slab_index(p, s, addr), map))
3992 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3993 return 0;
3994 }
3995
3996 for_each_object(p, s, addr, page->objects)
3997 if (!test_bit(slab_index(p, s, addr), map))
3998 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3999 return 0;
4000 return 1;
4001 }
4002
4003 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4004 unsigned long *map)
4005 {
4006 slab_lock(page);
4007 validate_slab(s, page, map);
4008 slab_unlock(page);
4009 }
4010
4011 static int validate_slab_node(struct kmem_cache *s,
4012 struct kmem_cache_node *n, unsigned long *map)
4013 {
4014 unsigned long count = 0;
4015 struct page *page;
4016 unsigned long flags;
4017
4018 spin_lock_irqsave(&n->list_lock, flags);
4019
4020 list_for_each_entry(page, &n->partial, lru) {
4021 validate_slab_slab(s, page, map);
4022 count++;
4023 }
4024 if (count != n->nr_partial)
4025 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4026 s->name, count, n->nr_partial);
4027
4028 if (!(s->flags & SLAB_STORE_USER))
4029 goto out;
4030
4031 list_for_each_entry(page, &n->full, lru) {
4032 validate_slab_slab(s, page, map);
4033 count++;
4034 }
4035 if (count != atomic_long_read(&n->nr_slabs))
4036 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4037 s->name, count, atomic_long_read(&n->nr_slabs));
4038
4039 out:
4040 spin_unlock_irqrestore(&n->list_lock, flags);
4041 return count;
4042 }
4043
4044 static long validate_slab_cache(struct kmem_cache *s)
4045 {
4046 int node;
4047 unsigned long count = 0;
4048 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4049 sizeof(unsigned long), GFP_KERNEL);
4050 struct kmem_cache_node *n;
4051
4052 if (!map)
4053 return -ENOMEM;
4054
4055 flush_all(s);
4056 for_each_kmem_cache_node(s, node, n)
4057 count += validate_slab_node(s, n, map);
4058 kfree(map);
4059 return count;
4060 }
4061 /*
4062 * Generate lists of code addresses where slabcache objects are allocated
4063 * and freed.
4064 */
4065
4066 struct location {
4067 unsigned long count;
4068 unsigned long addr;
4069 long long sum_time;
4070 long min_time;
4071 long max_time;
4072 long min_pid;
4073 long max_pid;
4074 DECLARE_BITMAP(cpus, NR_CPUS);
4075 nodemask_t nodes;
4076 };
4077
4078 struct loc_track {
4079 unsigned long max;
4080 unsigned long count;
4081 struct location *loc;
4082 };
4083
4084 static void free_loc_track(struct loc_track *t)
4085 {
4086 if (t->max)
4087 free_pages((unsigned long)t->loc,
4088 get_order(sizeof(struct location) * t->max));
4089 }
4090
4091 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4092 {
4093 struct location *l;
4094 int order;
4095
4096 order = get_order(sizeof(struct location) * max);
4097
4098 l = (void *)__get_free_pages(flags, order);
4099 if (!l)
4100 return 0;
4101
4102 if (t->count) {
4103 memcpy(l, t->loc, sizeof(struct location) * t->count);
4104 free_loc_track(t);
4105 }
4106 t->max = max;
4107 t->loc = l;
4108 return 1;
4109 }
4110
4111 static int add_location(struct loc_track *t, struct kmem_cache *s,
4112 const struct track *track)
4113 {
4114 long start, end, pos;
4115 struct location *l;
4116 unsigned long caddr;
4117 unsigned long age = jiffies - track->when;
4118
4119 start = -1;
4120 end = t->count;
4121
4122 for ( ; ; ) {
4123 pos = start + (end - start + 1) / 2;
4124
4125 /*
4126 * There is nothing at "end". If we end up there
4127 * we need to add something to before end.
4128 */
4129 if (pos == end)
4130 break;
4131
4132 caddr = t->loc[pos].addr;
4133 if (track->addr == caddr) {
4134
4135 l = &t->loc[pos];
4136 l->count++;
4137 if (track->when) {
4138 l->sum_time += age;
4139 if (age < l->min_time)
4140 l->min_time = age;
4141 if (age > l->max_time)
4142 l->max_time = age;
4143
4144 if (track->pid < l->min_pid)
4145 l->min_pid = track->pid;
4146 if (track->pid > l->max_pid)
4147 l->max_pid = track->pid;
4148
4149 cpumask_set_cpu(track->cpu,
4150 to_cpumask(l->cpus));
4151 }
4152 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4153 return 1;
4154 }
4155
4156 if (track->addr < caddr)
4157 end = pos;
4158 else
4159 start = pos;
4160 }
4161
4162 /*
4163 * Not found. Insert new tracking element.
4164 */
4165 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4166 return 0;
4167
4168 l = t->loc + pos;
4169 if (pos < t->count)
4170 memmove(l + 1, l,
4171 (t->count - pos) * sizeof(struct location));
4172 t->count++;
4173 l->count = 1;
4174 l->addr = track->addr;
4175 l->sum_time = age;
4176 l->min_time = age;
4177 l->max_time = age;
4178 l->min_pid = track->pid;
4179 l->max_pid = track->pid;
4180 cpumask_clear(to_cpumask(l->cpus));
4181 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4182 nodes_clear(l->nodes);
4183 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4184 return 1;
4185 }
4186
4187 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4188 struct page *page, enum track_item alloc,
4189 unsigned long *map)
4190 {
4191 void *addr = page_address(page);
4192 void *p;
4193
4194 bitmap_zero(map, page->objects);
4195 get_map(s, page, map);
4196
4197 for_each_object(p, s, addr, page->objects)
4198 if (!test_bit(slab_index(p, s, addr), map))
4199 add_location(t, s, get_track(s, p, alloc));
4200 }
4201
4202 static int list_locations(struct kmem_cache *s, char *buf,
4203 enum track_item alloc)
4204 {
4205 int len = 0;
4206 unsigned long i;
4207 struct loc_track t = { 0, 0, NULL };
4208 int node;
4209 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4210 sizeof(unsigned long), GFP_KERNEL);
4211 struct kmem_cache_node *n;
4212
4213 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4214 GFP_TEMPORARY)) {
4215 kfree(map);
4216 return sprintf(buf, "Out of memory\n");
4217 }
4218 /* Push back cpu slabs */
4219 flush_all(s);
4220
4221 for_each_kmem_cache_node(s, node, n) {
4222 unsigned long flags;
4223 struct page *page;
4224
4225 if (!atomic_long_read(&n->nr_slabs))
4226 continue;
4227
4228 spin_lock_irqsave(&n->list_lock, flags);
4229 list_for_each_entry(page, &n->partial, lru)
4230 process_slab(&t, s, page, alloc, map);
4231 list_for_each_entry(page, &n->full, lru)
4232 process_slab(&t, s, page, alloc, map);
4233 spin_unlock_irqrestore(&n->list_lock, flags);
4234 }
4235
4236 for (i = 0; i < t.count; i++) {
4237 struct location *l = &t.loc[i];
4238
4239 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4240 break;
4241 len += sprintf(buf + len, "%7ld ", l->count);
4242
4243 if (l->addr)
4244 len += sprintf(buf + len, "%pS", (void *)l->addr);
4245 else
4246 len += sprintf(buf + len, "<not-available>");
4247
4248 if (l->sum_time != l->min_time) {
4249 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4250 l->min_time,
4251 (long)div_u64(l->sum_time, l->count),
4252 l->max_time);
4253 } else
4254 len += sprintf(buf + len, " age=%ld",
4255 l->min_time);
4256
4257 if (l->min_pid != l->max_pid)
4258 len += sprintf(buf + len, " pid=%ld-%ld",
4259 l->min_pid, l->max_pid);
4260 else
4261 len += sprintf(buf + len, " pid=%ld",
4262 l->min_pid);
4263
4264 if (num_online_cpus() > 1 &&
4265 !cpumask_empty(to_cpumask(l->cpus)) &&
4266 len < PAGE_SIZE - 60)
4267 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4268 " cpus=%*pbl",
4269 cpumask_pr_args(to_cpumask(l->cpus)));
4270
4271 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4272 len < PAGE_SIZE - 60)
4273 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4274 " nodes=%*pbl",
4275 nodemask_pr_args(&l->nodes));
4276
4277 len += sprintf(buf + len, "\n");
4278 }
4279
4280 free_loc_track(&t);
4281 kfree(map);
4282 if (!t.count)
4283 len += sprintf(buf, "No data\n");
4284 return len;
4285 }
4286 #endif
4287
4288 #ifdef SLUB_RESILIENCY_TEST
4289 static void __init resiliency_test(void)
4290 {
4291 u8 *p;
4292
4293 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4294
4295 pr_err("SLUB resiliency testing\n");
4296 pr_err("-----------------------\n");
4297 pr_err("A. Corruption after allocation\n");
4298
4299 p = kzalloc(16, GFP_KERNEL);
4300 p[16] = 0x12;
4301 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4302 p + 16);
4303
4304 validate_slab_cache(kmalloc_caches[4]);
4305
4306 /* Hmmm... The next two are dangerous */
4307 p = kzalloc(32, GFP_KERNEL);
4308 p[32 + sizeof(void *)] = 0x34;
4309 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4310 p);
4311 pr_err("If allocated object is overwritten then not detectable\n\n");
4312
4313 validate_slab_cache(kmalloc_caches[5]);
4314 p = kzalloc(64, GFP_KERNEL);
4315 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4316 *p = 0x56;
4317 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4318 p);
4319 pr_err("If allocated object is overwritten then not detectable\n\n");
4320 validate_slab_cache(kmalloc_caches[6]);
4321
4322 pr_err("\nB. Corruption after free\n");
4323 p = kzalloc(128, GFP_KERNEL);
4324 kfree(p);
4325 *p = 0x78;
4326 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4327 validate_slab_cache(kmalloc_caches[7]);
4328
4329 p = kzalloc(256, GFP_KERNEL);
4330 kfree(p);
4331 p[50] = 0x9a;
4332 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4333 validate_slab_cache(kmalloc_caches[8]);
4334
4335 p = kzalloc(512, GFP_KERNEL);
4336 kfree(p);
4337 p[512] = 0xab;
4338 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4339 validate_slab_cache(kmalloc_caches[9]);
4340 }
4341 #else
4342 #ifdef CONFIG_SYSFS
4343 static void resiliency_test(void) {};
4344 #endif
4345 #endif
4346
4347 #ifdef CONFIG_SYSFS
4348 enum slab_stat_type {
4349 SL_ALL, /* All slabs */
4350 SL_PARTIAL, /* Only partially allocated slabs */
4351 SL_CPU, /* Only slabs used for cpu caches */
4352 SL_OBJECTS, /* Determine allocated objects not slabs */
4353 SL_TOTAL /* Determine object capacity not slabs */
4354 };
4355
4356 #define SO_ALL (1 << SL_ALL)
4357 #define SO_PARTIAL (1 << SL_PARTIAL)
4358 #define SO_CPU (1 << SL_CPU)
4359 #define SO_OBJECTS (1 << SL_OBJECTS)
4360 #define SO_TOTAL (1 << SL_TOTAL)
4361
4362 static ssize_t show_slab_objects(struct kmem_cache *s,
4363 char *buf, unsigned long flags)
4364 {
4365 unsigned long total = 0;
4366 int node;
4367 int x;
4368 unsigned long *nodes;
4369
4370 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4371 if (!nodes)
4372 return -ENOMEM;
4373
4374 if (flags & SO_CPU) {
4375 int cpu;
4376
4377 for_each_possible_cpu(cpu) {
4378 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4379 cpu);
4380 int node;
4381 struct page *page;
4382
4383 page = READ_ONCE(c->page);
4384 if (!page)
4385 continue;
4386
4387 node = page_to_nid(page);
4388 if (flags & SO_TOTAL)
4389 x = page->objects;
4390 else if (flags & SO_OBJECTS)
4391 x = page->inuse;
4392 else
4393 x = 1;
4394
4395 total += x;
4396 nodes[node] += x;
4397
4398 page = READ_ONCE(c->partial);
4399 if (page) {
4400 node = page_to_nid(page);
4401 if (flags & SO_TOTAL)
4402 WARN_ON_ONCE(1);
4403 else if (flags & SO_OBJECTS)
4404 WARN_ON_ONCE(1);
4405 else
4406 x = page->pages;
4407 total += x;
4408 nodes[node] += x;
4409 }
4410 }
4411 }
4412
4413 get_online_mems();
4414 #ifdef CONFIG_SLUB_DEBUG
4415 if (flags & SO_ALL) {
4416 struct kmem_cache_node *n;
4417
4418 for_each_kmem_cache_node(s, node, n) {
4419
4420 if (flags & SO_TOTAL)
4421 x = atomic_long_read(&n->total_objects);
4422 else if (flags & SO_OBJECTS)
4423 x = atomic_long_read(&n->total_objects) -
4424 count_partial(n, count_free);
4425 else
4426 x = atomic_long_read(&n->nr_slabs);
4427 total += x;
4428 nodes[node] += x;
4429 }
4430
4431 } else
4432 #endif
4433 if (flags & SO_PARTIAL) {
4434 struct kmem_cache_node *n;
4435
4436 for_each_kmem_cache_node(s, node, n) {
4437 if (flags & SO_TOTAL)
4438 x = count_partial(n, count_total);
4439 else if (flags & SO_OBJECTS)
4440 x = count_partial(n, count_inuse);
4441 else
4442 x = n->nr_partial;
4443 total += x;
4444 nodes[node] += x;
4445 }
4446 }
4447 x = sprintf(buf, "%lu", total);
4448 #ifdef CONFIG_NUMA
4449 for (node = 0; node < nr_node_ids; node++)
4450 if (nodes[node])
4451 x += sprintf(buf + x, " N%d=%lu",
4452 node, nodes[node]);
4453 #endif
4454 put_online_mems();
4455 kfree(nodes);
4456 return x + sprintf(buf + x, "\n");
4457 }
4458
4459 #ifdef CONFIG_SLUB_DEBUG
4460 static int any_slab_objects(struct kmem_cache *s)
4461 {
4462 int node;
4463 struct kmem_cache_node *n;
4464
4465 for_each_kmem_cache_node(s, node, n)
4466 if (atomic_long_read(&n->total_objects))
4467 return 1;
4468
4469 return 0;
4470 }
4471 #endif
4472
4473 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4474 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4475
4476 struct slab_attribute {
4477 struct attribute attr;
4478 ssize_t (*show)(struct kmem_cache *s, char *buf);
4479 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4480 };
4481
4482 #define SLAB_ATTR_RO(_name) \
4483 static struct slab_attribute _name##_attr = \
4484 __ATTR(_name, 0400, _name##_show, NULL)
4485
4486 #define SLAB_ATTR(_name) \
4487 static struct slab_attribute _name##_attr = \
4488 __ATTR(_name, 0600, _name##_show, _name##_store)
4489
4490 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4491 {
4492 return sprintf(buf, "%d\n", s->size);
4493 }
4494 SLAB_ATTR_RO(slab_size);
4495
4496 static ssize_t align_show(struct kmem_cache *s, char *buf)
4497 {
4498 return sprintf(buf, "%d\n", s->align);
4499 }
4500 SLAB_ATTR_RO(align);
4501
4502 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4503 {
4504 return sprintf(buf, "%d\n", s->object_size);
4505 }
4506 SLAB_ATTR_RO(object_size);
4507
4508 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4509 {
4510 return sprintf(buf, "%d\n", oo_objects(s->oo));
4511 }
4512 SLAB_ATTR_RO(objs_per_slab);
4513
4514 static ssize_t order_store(struct kmem_cache *s,
4515 const char *buf, size_t length)
4516 {
4517 unsigned long order;
4518 int err;
4519
4520 err = kstrtoul(buf, 10, &order);
4521 if (err)
4522 return err;
4523
4524 if (order > slub_max_order || order < slub_min_order)
4525 return -EINVAL;
4526
4527 calculate_sizes(s, order);
4528 return length;
4529 }
4530
4531 static ssize_t order_show(struct kmem_cache *s, char *buf)
4532 {
4533 return sprintf(buf, "%d\n", oo_order(s->oo));
4534 }
4535 SLAB_ATTR(order);
4536
4537 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4538 {
4539 return sprintf(buf, "%lu\n", s->min_partial);
4540 }
4541
4542 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4543 size_t length)
4544 {
4545 unsigned long min;
4546 int err;
4547
4548 err = kstrtoul(buf, 10, &min);
4549 if (err)
4550 return err;
4551
4552 set_min_partial(s, min);
4553 return length;
4554 }
4555 SLAB_ATTR(min_partial);
4556
4557 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4558 {
4559 return sprintf(buf, "%u\n", s->cpu_partial);
4560 }
4561
4562 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4563 size_t length)
4564 {
4565 unsigned long objects;
4566 int err;
4567
4568 err = kstrtoul(buf, 10, &objects);
4569 if (err)
4570 return err;
4571 if (objects && !kmem_cache_has_cpu_partial(s))
4572 return -EINVAL;
4573
4574 s->cpu_partial = objects;
4575 flush_all(s);
4576 return length;
4577 }
4578 SLAB_ATTR(cpu_partial);
4579
4580 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4581 {
4582 if (!s->ctor)
4583 return 0;
4584 return sprintf(buf, "%pS\n", s->ctor);
4585 }
4586 SLAB_ATTR_RO(ctor);
4587
4588 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4589 {
4590 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4591 }
4592 SLAB_ATTR_RO(aliases);
4593
4594 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4595 {
4596 return show_slab_objects(s, buf, SO_PARTIAL);
4597 }
4598 SLAB_ATTR_RO(partial);
4599
4600 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4601 {
4602 return show_slab_objects(s, buf, SO_CPU);
4603 }
4604 SLAB_ATTR_RO(cpu_slabs);
4605
4606 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4607 {
4608 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4609 }
4610 SLAB_ATTR_RO(objects);
4611
4612 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4613 {
4614 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4615 }
4616 SLAB_ATTR_RO(objects_partial);
4617
4618 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4619 {
4620 int objects = 0;
4621 int pages = 0;
4622 int cpu;
4623 int len;
4624
4625 for_each_online_cpu(cpu) {
4626 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4627
4628 if (page) {
4629 pages += page->pages;
4630 objects += page->pobjects;
4631 }
4632 }
4633
4634 len = sprintf(buf, "%d(%d)", objects, pages);
4635
4636 #ifdef CONFIG_SMP
4637 for_each_online_cpu(cpu) {
4638 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4639
4640 if (page && len < PAGE_SIZE - 20)
4641 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4642 page->pobjects, page->pages);
4643 }
4644 #endif
4645 return len + sprintf(buf + len, "\n");
4646 }
4647 SLAB_ATTR_RO(slabs_cpu_partial);
4648
4649 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4650 {
4651 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4652 }
4653
4654 static ssize_t reclaim_account_store(struct kmem_cache *s,
4655 const char *buf, size_t length)
4656 {
4657 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4658 if (buf[0] == '1')
4659 s->flags |= SLAB_RECLAIM_ACCOUNT;
4660 return length;
4661 }
4662 SLAB_ATTR(reclaim_account);
4663
4664 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4665 {
4666 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4667 }
4668 SLAB_ATTR_RO(hwcache_align);
4669
4670 #ifdef CONFIG_ZONE_DMA
4671 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4672 {
4673 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4674 }
4675 SLAB_ATTR_RO(cache_dma);
4676 #endif
4677
4678 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4679 {
4680 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4681 }
4682 SLAB_ATTR_RO(destroy_by_rcu);
4683
4684 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4685 {
4686 return sprintf(buf, "%d\n", s->reserved);
4687 }
4688 SLAB_ATTR_RO(reserved);
4689
4690 #ifdef CONFIG_SLUB_DEBUG
4691 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4692 {
4693 return show_slab_objects(s, buf, SO_ALL);
4694 }
4695 SLAB_ATTR_RO(slabs);
4696
4697 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4698 {
4699 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4700 }
4701 SLAB_ATTR_RO(total_objects);
4702
4703 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4704 {
4705 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4706 }
4707
4708 static ssize_t sanity_checks_store(struct kmem_cache *s,
4709 const char *buf, size_t length)
4710 {
4711 s->flags &= ~SLAB_DEBUG_FREE;
4712 if (buf[0] == '1') {
4713 s->flags &= ~__CMPXCHG_DOUBLE;
4714 s->flags |= SLAB_DEBUG_FREE;
4715 }
4716 return length;
4717 }
4718 SLAB_ATTR(sanity_checks);
4719
4720 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4721 {
4722 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4723 }
4724
4725 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4726 size_t length)
4727 {
4728 /*
4729 * Tracing a merged cache is going to give confusing results
4730 * as well as cause other issues like converting a mergeable
4731 * cache into an umergeable one.
4732 */
4733 if (s->refcount > 1)
4734 return -EINVAL;
4735
4736 s->flags &= ~SLAB_TRACE;
4737 if (buf[0] == '1') {
4738 s->flags &= ~__CMPXCHG_DOUBLE;
4739 s->flags |= SLAB_TRACE;
4740 }
4741 return length;
4742 }
4743 SLAB_ATTR(trace);
4744
4745 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4746 {
4747 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4748 }
4749
4750 static ssize_t red_zone_store(struct kmem_cache *s,
4751 const char *buf, size_t length)
4752 {
4753 if (any_slab_objects(s))
4754 return -EBUSY;
4755
4756 s->flags &= ~SLAB_RED_ZONE;
4757 if (buf[0] == '1') {
4758 s->flags &= ~__CMPXCHG_DOUBLE;
4759 s->flags |= SLAB_RED_ZONE;
4760 }
4761 calculate_sizes(s, -1);
4762 return length;
4763 }
4764 SLAB_ATTR(red_zone);
4765
4766 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4767 {
4768 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4769 }
4770
4771 static ssize_t poison_store(struct kmem_cache *s,
4772 const char *buf, size_t length)
4773 {
4774 if (any_slab_objects(s))
4775 return -EBUSY;
4776
4777 s->flags &= ~SLAB_POISON;
4778 if (buf[0] == '1') {
4779 s->flags &= ~__CMPXCHG_DOUBLE;
4780 s->flags |= SLAB_POISON;
4781 }
4782 calculate_sizes(s, -1);
4783 return length;
4784 }
4785 SLAB_ATTR(poison);
4786
4787 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4788 {
4789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4790 }
4791
4792 static ssize_t store_user_store(struct kmem_cache *s,
4793 const char *buf, size_t length)
4794 {
4795 if (any_slab_objects(s))
4796 return -EBUSY;
4797
4798 s->flags &= ~SLAB_STORE_USER;
4799 if (buf[0] == '1') {
4800 s->flags &= ~__CMPXCHG_DOUBLE;
4801 s->flags |= SLAB_STORE_USER;
4802 }
4803 calculate_sizes(s, -1);
4804 return length;
4805 }
4806 SLAB_ATTR(store_user);
4807
4808 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4809 {
4810 return 0;
4811 }
4812
4813 static ssize_t validate_store(struct kmem_cache *s,
4814 const char *buf, size_t length)
4815 {
4816 int ret = -EINVAL;
4817
4818 if (buf[0] == '1') {
4819 ret = validate_slab_cache(s);
4820 if (ret >= 0)
4821 ret = length;
4822 }
4823 return ret;
4824 }
4825 SLAB_ATTR(validate);
4826
4827 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4828 {
4829 if (!(s->flags & SLAB_STORE_USER))
4830 return -ENOSYS;
4831 return list_locations(s, buf, TRACK_ALLOC);
4832 }
4833 SLAB_ATTR_RO(alloc_calls);
4834
4835 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4836 {
4837 if (!(s->flags & SLAB_STORE_USER))
4838 return -ENOSYS;
4839 return list_locations(s, buf, TRACK_FREE);
4840 }
4841 SLAB_ATTR_RO(free_calls);
4842 #endif /* CONFIG_SLUB_DEBUG */
4843
4844 #ifdef CONFIG_FAILSLAB
4845 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4846 {
4847 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4848 }
4849
4850 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4851 size_t length)
4852 {
4853 if (s->refcount > 1)
4854 return -EINVAL;
4855
4856 s->flags &= ~SLAB_FAILSLAB;
4857 if (buf[0] == '1')
4858 s->flags |= SLAB_FAILSLAB;
4859 return length;
4860 }
4861 SLAB_ATTR(failslab);
4862 #endif
4863
4864 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4865 {
4866 return 0;
4867 }
4868
4869 static ssize_t shrink_store(struct kmem_cache *s,
4870 const char *buf, size_t length)
4871 {
4872 if (buf[0] == '1')
4873 kmem_cache_shrink(s);
4874 else
4875 return -EINVAL;
4876 return length;
4877 }
4878 SLAB_ATTR(shrink);
4879
4880 #ifdef CONFIG_NUMA
4881 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4882 {
4883 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4884 }
4885
4886 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4887 const char *buf, size_t length)
4888 {
4889 unsigned long ratio;
4890 int err;
4891
4892 err = kstrtoul(buf, 10, &ratio);
4893 if (err)
4894 return err;
4895
4896 if (ratio <= 100)
4897 s->remote_node_defrag_ratio = ratio * 10;
4898
4899 return length;
4900 }
4901 SLAB_ATTR(remote_node_defrag_ratio);
4902 #endif
4903
4904 #ifdef CONFIG_SLUB_STATS
4905 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4906 {
4907 unsigned long sum = 0;
4908 int cpu;
4909 int len;
4910 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4911
4912 if (!data)
4913 return -ENOMEM;
4914
4915 for_each_online_cpu(cpu) {
4916 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4917
4918 data[cpu] = x;
4919 sum += x;
4920 }
4921
4922 len = sprintf(buf, "%lu", sum);
4923
4924 #ifdef CONFIG_SMP
4925 for_each_online_cpu(cpu) {
4926 if (data[cpu] && len < PAGE_SIZE - 20)
4927 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4928 }
4929 #endif
4930 kfree(data);
4931 return len + sprintf(buf + len, "\n");
4932 }
4933
4934 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4935 {
4936 int cpu;
4937
4938 for_each_online_cpu(cpu)
4939 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4940 }
4941
4942 #define STAT_ATTR(si, text) \
4943 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4944 { \
4945 return show_stat(s, buf, si); \
4946 } \
4947 static ssize_t text##_store(struct kmem_cache *s, \
4948 const char *buf, size_t length) \
4949 { \
4950 if (buf[0] != '0') \
4951 return -EINVAL; \
4952 clear_stat(s, si); \
4953 return length; \
4954 } \
4955 SLAB_ATTR(text); \
4956
4957 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4958 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4959 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4960 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4961 STAT_ATTR(FREE_FROZEN, free_frozen);
4962 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4963 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4964 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4965 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4966 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4967 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4968 STAT_ATTR(FREE_SLAB, free_slab);
4969 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4970 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4971 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4972 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4973 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4974 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4975 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4976 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4977 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4978 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4979 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4980 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4981 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4982 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4983 #endif
4984
4985 static struct attribute *slab_attrs[] = {
4986 &slab_size_attr.attr,
4987 &object_size_attr.attr,
4988 &objs_per_slab_attr.attr,
4989 &order_attr.attr,
4990 &min_partial_attr.attr,
4991 &cpu_partial_attr.attr,
4992 &objects_attr.attr,
4993 &objects_partial_attr.attr,
4994 &partial_attr.attr,
4995 &cpu_slabs_attr.attr,
4996 &ctor_attr.attr,
4997 &aliases_attr.attr,
4998 &align_attr.attr,
4999 &hwcache_align_attr.attr,
5000 &reclaim_account_attr.attr,
5001 &destroy_by_rcu_attr.attr,
5002 &shrink_attr.attr,
5003 &reserved_attr.attr,
5004 &slabs_cpu_partial_attr.attr,
5005 #ifdef CONFIG_SLUB_DEBUG
5006 &total_objects_attr.attr,
5007 &slabs_attr.attr,
5008 &sanity_checks_attr.attr,
5009 &trace_attr.attr,
5010 &red_zone_attr.attr,
5011 &poison_attr.attr,
5012 &store_user_attr.attr,
5013 &validate_attr.attr,
5014 &alloc_calls_attr.attr,
5015 &free_calls_attr.attr,
5016 #endif
5017 #ifdef CONFIG_ZONE_DMA
5018 &cache_dma_attr.attr,
5019 #endif
5020 #ifdef CONFIG_NUMA
5021 &remote_node_defrag_ratio_attr.attr,
5022 #endif
5023 #ifdef CONFIG_SLUB_STATS
5024 &alloc_fastpath_attr.attr,
5025 &alloc_slowpath_attr.attr,
5026 &free_fastpath_attr.attr,
5027 &free_slowpath_attr.attr,
5028 &free_frozen_attr.attr,
5029 &free_add_partial_attr.attr,
5030 &free_remove_partial_attr.attr,
5031 &alloc_from_partial_attr.attr,
5032 &alloc_slab_attr.attr,
5033 &alloc_refill_attr.attr,
5034 &alloc_node_mismatch_attr.attr,
5035 &free_slab_attr.attr,
5036 &cpuslab_flush_attr.attr,
5037 &deactivate_full_attr.attr,
5038 &deactivate_empty_attr.attr,
5039 &deactivate_to_head_attr.attr,
5040 &deactivate_to_tail_attr.attr,
5041 &deactivate_remote_frees_attr.attr,
5042 &deactivate_bypass_attr.attr,
5043 &order_fallback_attr.attr,
5044 &cmpxchg_double_fail_attr.attr,
5045 &cmpxchg_double_cpu_fail_attr.attr,
5046 &cpu_partial_alloc_attr.attr,
5047 &cpu_partial_free_attr.attr,
5048 &cpu_partial_node_attr.attr,
5049 &cpu_partial_drain_attr.attr,
5050 #endif
5051 #ifdef CONFIG_FAILSLAB
5052 &failslab_attr.attr,
5053 #endif
5054
5055 NULL
5056 };
5057
5058 static struct attribute_group slab_attr_group = {
5059 .attrs = slab_attrs,
5060 };
5061
5062 static ssize_t slab_attr_show(struct kobject *kobj,
5063 struct attribute *attr,
5064 char *buf)
5065 {
5066 struct slab_attribute *attribute;
5067 struct kmem_cache *s;
5068 int err;
5069
5070 attribute = to_slab_attr(attr);
5071 s = to_slab(kobj);
5072
5073 if (!attribute->show)
5074 return -EIO;
5075
5076 err = attribute->show(s, buf);
5077
5078 return err;
5079 }
5080
5081 static ssize_t slab_attr_store(struct kobject *kobj,
5082 struct attribute *attr,
5083 const char *buf, size_t len)
5084 {
5085 struct slab_attribute *attribute;
5086 struct kmem_cache *s;
5087 int err;
5088
5089 attribute = to_slab_attr(attr);
5090 s = to_slab(kobj);
5091
5092 if (!attribute->store)
5093 return -EIO;
5094
5095 err = attribute->store(s, buf, len);
5096 #ifdef CONFIG_MEMCG_KMEM
5097 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5098 struct kmem_cache *c;
5099
5100 mutex_lock(&slab_mutex);
5101 if (s->max_attr_size < len)
5102 s->max_attr_size = len;
5103
5104 /*
5105 * This is a best effort propagation, so this function's return
5106 * value will be determined by the parent cache only. This is
5107 * basically because not all attributes will have a well
5108 * defined semantics for rollbacks - most of the actions will
5109 * have permanent effects.
5110 *
5111 * Returning the error value of any of the children that fail
5112 * is not 100 % defined, in the sense that users seeing the
5113 * error code won't be able to know anything about the state of
5114 * the cache.
5115 *
5116 * Only returning the error code for the parent cache at least
5117 * has well defined semantics. The cache being written to
5118 * directly either failed or succeeded, in which case we loop
5119 * through the descendants with best-effort propagation.
5120 */
5121 for_each_memcg_cache(c, s)
5122 attribute->store(c, buf, len);
5123 mutex_unlock(&slab_mutex);
5124 }
5125 #endif
5126 return err;
5127 }
5128
5129 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5130 {
5131 #ifdef CONFIG_MEMCG_KMEM
5132 int i;
5133 char *buffer = NULL;
5134 struct kmem_cache *root_cache;
5135
5136 if (is_root_cache(s))
5137 return;
5138
5139 root_cache = s->memcg_params.root_cache;
5140
5141 /*
5142 * This mean this cache had no attribute written. Therefore, no point
5143 * in copying default values around
5144 */
5145 if (!root_cache->max_attr_size)
5146 return;
5147
5148 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5149 char mbuf[64];
5150 char *buf;
5151 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5152
5153 if (!attr || !attr->store || !attr->show)
5154 continue;
5155
5156 /*
5157 * It is really bad that we have to allocate here, so we will
5158 * do it only as a fallback. If we actually allocate, though,
5159 * we can just use the allocated buffer until the end.
5160 *
5161 * Most of the slub attributes will tend to be very small in
5162 * size, but sysfs allows buffers up to a page, so they can
5163 * theoretically happen.
5164 */
5165 if (buffer)
5166 buf = buffer;
5167 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5168 buf = mbuf;
5169 else {
5170 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5171 if (WARN_ON(!buffer))
5172 continue;
5173 buf = buffer;
5174 }
5175
5176 attr->show(root_cache, buf);
5177 attr->store(s, buf, strlen(buf));
5178 }
5179
5180 if (buffer)
5181 free_page((unsigned long)buffer);
5182 #endif
5183 }
5184
5185 static void kmem_cache_release(struct kobject *k)
5186 {
5187 slab_kmem_cache_release(to_slab(k));
5188 }
5189
5190 static const struct sysfs_ops slab_sysfs_ops = {
5191 .show = slab_attr_show,
5192 .store = slab_attr_store,
5193 };
5194
5195 static struct kobj_type slab_ktype = {
5196 .sysfs_ops = &slab_sysfs_ops,
5197 .release = kmem_cache_release,
5198 };
5199
5200 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5201 {
5202 struct kobj_type *ktype = get_ktype(kobj);
5203
5204 if (ktype == &slab_ktype)
5205 return 1;
5206 return 0;
5207 }
5208
5209 static const struct kset_uevent_ops slab_uevent_ops = {
5210 .filter = uevent_filter,
5211 };
5212
5213 static struct kset *slab_kset;
5214
5215 static inline struct kset *cache_kset(struct kmem_cache *s)
5216 {
5217 #ifdef CONFIG_MEMCG_KMEM
5218 if (!is_root_cache(s))
5219 return s->memcg_params.root_cache->memcg_kset;
5220 #endif
5221 return slab_kset;
5222 }
5223
5224 #define ID_STR_LENGTH 64
5225
5226 /* Create a unique string id for a slab cache:
5227 *
5228 * Format :[flags-]size
5229 */
5230 static char *create_unique_id(struct kmem_cache *s)
5231 {
5232 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5233 char *p = name;
5234
5235 BUG_ON(!name);
5236
5237 *p++ = ':';
5238 /*
5239 * First flags affecting slabcache operations. We will only
5240 * get here for aliasable slabs so we do not need to support
5241 * too many flags. The flags here must cover all flags that
5242 * are matched during merging to guarantee that the id is
5243 * unique.
5244 */
5245 if (s->flags & SLAB_CACHE_DMA)
5246 *p++ = 'd';
5247 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5248 *p++ = 'a';
5249 if (s->flags & SLAB_DEBUG_FREE)
5250 *p++ = 'F';
5251 if (!(s->flags & SLAB_NOTRACK))
5252 *p++ = 't';
5253 if (p != name + 1)
5254 *p++ = '-';
5255 p += sprintf(p, "%07d", s->size);
5256
5257 BUG_ON(p > name + ID_STR_LENGTH - 1);
5258 return name;
5259 }
5260
5261 static int sysfs_slab_add(struct kmem_cache *s)
5262 {
5263 int err;
5264 const char *name;
5265 int unmergeable = slab_unmergeable(s);
5266
5267 if (unmergeable) {
5268 /*
5269 * Slabcache can never be merged so we can use the name proper.
5270 * This is typically the case for debug situations. In that
5271 * case we can catch duplicate names easily.
5272 */
5273 sysfs_remove_link(&slab_kset->kobj, s->name);
5274 name = s->name;
5275 } else {
5276 /*
5277 * Create a unique name for the slab as a target
5278 * for the symlinks.
5279 */
5280 name = create_unique_id(s);
5281 }
5282
5283 s->kobj.kset = cache_kset(s);
5284 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5285 if (err)
5286 goto out;
5287
5288 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5289 if (err)
5290 goto out_del_kobj;
5291
5292 #ifdef CONFIG_MEMCG_KMEM
5293 if (is_root_cache(s)) {
5294 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5295 if (!s->memcg_kset) {
5296 err = -ENOMEM;
5297 goto out_del_kobj;
5298 }
5299 }
5300 #endif
5301
5302 kobject_uevent(&s->kobj, KOBJ_ADD);
5303 if (!unmergeable) {
5304 /* Setup first alias */
5305 sysfs_slab_alias(s, s->name);
5306 }
5307 out:
5308 if (!unmergeable)
5309 kfree(name);
5310 return err;
5311 out_del_kobj:
5312 kobject_del(&s->kobj);
5313 goto out;
5314 }
5315
5316 void sysfs_slab_remove(struct kmem_cache *s)
5317 {
5318 if (slab_state < FULL)
5319 /*
5320 * Sysfs has not been setup yet so no need to remove the
5321 * cache from sysfs.
5322 */
5323 return;
5324
5325 #ifdef CONFIG_MEMCG_KMEM
5326 kset_unregister(s->memcg_kset);
5327 #endif
5328 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5329 kobject_del(&s->kobj);
5330 kobject_put(&s->kobj);
5331 }
5332
5333 /*
5334 * Need to buffer aliases during bootup until sysfs becomes
5335 * available lest we lose that information.
5336 */
5337 struct saved_alias {
5338 struct kmem_cache *s;
5339 const char *name;
5340 struct saved_alias *next;
5341 };
5342
5343 static struct saved_alias *alias_list;
5344
5345 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5346 {
5347 struct saved_alias *al;
5348
5349 if (slab_state == FULL) {
5350 /*
5351 * If we have a leftover link then remove it.
5352 */
5353 sysfs_remove_link(&slab_kset->kobj, name);
5354 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5355 }
5356
5357 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5358 if (!al)
5359 return -ENOMEM;
5360
5361 al->s = s;
5362 al->name = name;
5363 al->next = alias_list;
5364 alias_list = al;
5365 return 0;
5366 }
5367
5368 static int __init slab_sysfs_init(void)
5369 {
5370 struct kmem_cache *s;
5371 int err;
5372
5373 mutex_lock(&slab_mutex);
5374
5375 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5376 if (!slab_kset) {
5377 mutex_unlock(&slab_mutex);
5378 pr_err("Cannot register slab subsystem.\n");
5379 return -ENOSYS;
5380 }
5381
5382 slab_state = FULL;
5383
5384 list_for_each_entry(s, &slab_caches, list) {
5385 err = sysfs_slab_add(s);
5386 if (err)
5387 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5388 s->name);
5389 }
5390
5391 while (alias_list) {
5392 struct saved_alias *al = alias_list;
5393
5394 alias_list = alias_list->next;
5395 err = sysfs_slab_alias(al->s, al->name);
5396 if (err)
5397 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5398 al->name);
5399 kfree(al);
5400 }
5401
5402 mutex_unlock(&slab_mutex);
5403 resiliency_test();
5404 return 0;
5405 }
5406
5407 __initcall(slab_sysfs_init);
5408 #endif /* CONFIG_SYSFS */
5409
5410 /*
5411 * The /proc/slabinfo ABI
5412 */
5413 #ifdef CONFIG_SLABINFO
5414 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5415 {
5416 unsigned long nr_slabs = 0;
5417 unsigned long nr_objs = 0;
5418 unsigned long nr_free = 0;
5419 int node;
5420 struct kmem_cache_node *n;
5421
5422 for_each_kmem_cache_node(s, node, n) {
5423 nr_slabs += node_nr_slabs(n);
5424 nr_objs += node_nr_objs(n);
5425 nr_free += count_partial(n, count_free);
5426 }
5427
5428 sinfo->active_objs = nr_objs - nr_free;
5429 sinfo->num_objs = nr_objs;
5430 sinfo->active_slabs = nr_slabs;
5431 sinfo->num_slabs = nr_slabs;
5432 sinfo->objects_per_slab = oo_objects(s->oo);
5433 sinfo->cache_order = oo_order(s->oo);
5434 }
5435
5436 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5437 {
5438 }
5439
5440 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5441 size_t count, loff_t *ppos)
5442 {
5443 return -EIO;
5444 }
5445 #endif /* CONFIG_SLABINFO */
This page took 0.132799 seconds and 6 git commands to generate.