Merge branch 'perfcounters-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30
31 /*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
107 */
108
109 #ifdef CONFIG_SLUB_DEBUG
110 #define SLABDEBUG 1
111 #else
112 #define SLABDEBUG 0
113 #endif
114
115 /*
116 * Issues still to be resolved:
117 *
118 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
119 *
120 * - Variable sizing of the per node arrays
121 */
122
123 /* Enable to test recovery from slab corruption on boot */
124 #undef SLUB_RESILIENCY_TEST
125
126 /*
127 * Mininum number of partial slabs. These will be left on the partial
128 * lists even if they are empty. kmem_cache_shrink may reclaim them.
129 */
130 #define MIN_PARTIAL 5
131
132 /*
133 * Maximum number of desirable partial slabs.
134 * The existence of more partial slabs makes kmem_cache_shrink
135 * sort the partial list by the number of objects in the.
136 */
137 #define MAX_PARTIAL 10
138
139 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
140 SLAB_POISON | SLAB_STORE_USER)
141
142 /*
143 * Set of flags that will prevent slab merging
144 */
145 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
146 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
147
148 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
149 SLAB_CACHE_DMA)
150
151 #ifndef ARCH_KMALLOC_MINALIGN
152 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
153 #endif
154
155 #ifndef ARCH_SLAB_MINALIGN
156 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
157 #endif
158
159 #define OO_SHIFT 16
160 #define OO_MASK ((1 << OO_SHIFT) - 1)
161 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
162
163 /* Internal SLUB flags */
164 #define __OBJECT_POISON 0x80000000 /* Poison object */
165 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
166
167 static int kmem_size = sizeof(struct kmem_cache);
168
169 #ifdef CONFIG_SMP
170 static struct notifier_block slab_notifier;
171 #endif
172
173 static enum {
174 DOWN, /* No slab functionality available */
175 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
176 UP, /* Everything works but does not show up in sysfs */
177 SYSFS /* Sysfs up */
178 } slab_state = DOWN;
179
180 /* A list of all slab caches on the system */
181 static DECLARE_RWSEM(slub_lock);
182 static LIST_HEAD(slab_caches);
183
184 /*
185 * Tracking user of a slab.
186 */
187 struct track {
188 unsigned long addr; /* Called from address */
189 int cpu; /* Was running on cpu */
190 int pid; /* Pid context */
191 unsigned long when; /* When did the operation occur */
192 };
193
194 enum track_item { TRACK_ALLOC, TRACK_FREE };
195
196 #ifdef CONFIG_SLUB_DEBUG
197 static int sysfs_slab_add(struct kmem_cache *);
198 static int sysfs_slab_alias(struct kmem_cache *, const char *);
199 static void sysfs_slab_remove(struct kmem_cache *);
200
201 #else
202 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
203 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
204 { return 0; }
205 static inline void sysfs_slab_remove(struct kmem_cache *s)
206 {
207 kfree(s);
208 }
209
210 #endif
211
212 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 c->stat[si]++;
216 #endif
217 }
218
219 /********************************************************************
220 * Core slab cache functions
221 *******************************************************************/
222
223 int slab_is_available(void)
224 {
225 return slab_state >= UP;
226 }
227
228 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
229 {
230 #ifdef CONFIG_NUMA
231 return s->node[node];
232 #else
233 return &s->local_node;
234 #endif
235 }
236
237 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
238 {
239 #ifdef CONFIG_SMP
240 return s->cpu_slab[cpu];
241 #else
242 return &s->cpu_slab;
243 #endif
244 }
245
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache *s,
248 struct page *page, const void *object)
249 {
250 void *base;
251
252 if (!object)
253 return 1;
254
255 base = page_address(page);
256 if (object < base || object >= base + page->objects * s->size ||
257 (object - base) % s->size) {
258 return 0;
259 }
260
261 return 1;
262 }
263
264 /*
265 * Slow version of get and set free pointer.
266 *
267 * This version requires touching the cache lines of kmem_cache which
268 * we avoid to do in the fast alloc free paths. There we obtain the offset
269 * from the page struct.
270 */
271 static inline void *get_freepointer(struct kmem_cache *s, void *object)
272 {
273 return *(void **)(object + s->offset);
274 }
275
276 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277 {
278 *(void **)(object + s->offset) = fp;
279 }
280
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 __p += (__s)->size)
285
286 /* Scan freelist */
287 #define for_each_free_object(__p, __s, __free) \
288 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline struct kmem_cache_order_objects oo_make(int order,
297 unsigned long size)
298 {
299 struct kmem_cache_order_objects x = {
300 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
301 };
302
303 return x;
304 }
305
306 static inline int oo_order(struct kmem_cache_order_objects x)
307 {
308 return x.x >> OO_SHIFT;
309 }
310
311 static inline int oo_objects(struct kmem_cache_order_objects x)
312 {
313 return x.x & OO_MASK;
314 }
315
316 #ifdef CONFIG_SLUB_DEBUG
317 /*
318 * Debug settings:
319 */
320 #ifdef CONFIG_SLUB_DEBUG_ON
321 static int slub_debug = DEBUG_DEFAULT_FLAGS;
322 #else
323 static int slub_debug;
324 #endif
325
326 static char *slub_debug_slabs;
327
328 /*
329 * Object debugging
330 */
331 static void print_section(char *text, u8 *addr, unsigned int length)
332 {
333 int i, offset;
334 int newline = 1;
335 char ascii[17];
336
337 ascii[16] = 0;
338
339 for (i = 0; i < length; i++) {
340 if (newline) {
341 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
342 newline = 0;
343 }
344 printk(KERN_CONT " %02x", addr[i]);
345 offset = i % 16;
346 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
347 if (offset == 15) {
348 printk(KERN_CONT " %s\n", ascii);
349 newline = 1;
350 }
351 }
352 if (!newline) {
353 i %= 16;
354 while (i < 16) {
355 printk(KERN_CONT " ");
356 ascii[i] = ' ';
357 i++;
358 }
359 printk(KERN_CONT " %s\n", ascii);
360 }
361 }
362
363 static struct track *get_track(struct kmem_cache *s, void *object,
364 enum track_item alloc)
365 {
366 struct track *p;
367
368 if (s->offset)
369 p = object + s->offset + sizeof(void *);
370 else
371 p = object + s->inuse;
372
373 return p + alloc;
374 }
375
376 static void set_track(struct kmem_cache *s, void *object,
377 enum track_item alloc, unsigned long addr)
378 {
379 struct track *p = get_track(s, object, alloc);
380
381 if (addr) {
382 p->addr = addr;
383 p->cpu = smp_processor_id();
384 p->pid = current->pid;
385 p->when = jiffies;
386 } else
387 memset(p, 0, sizeof(struct track));
388 }
389
390 static void init_tracking(struct kmem_cache *s, void *object)
391 {
392 if (!(s->flags & SLAB_STORE_USER))
393 return;
394
395 set_track(s, object, TRACK_FREE, 0UL);
396 set_track(s, object, TRACK_ALLOC, 0UL);
397 }
398
399 static void print_track(const char *s, struct track *t)
400 {
401 if (!t->addr)
402 return;
403
404 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
405 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
406 }
407
408 static void print_tracking(struct kmem_cache *s, void *object)
409 {
410 if (!(s->flags & SLAB_STORE_USER))
411 return;
412
413 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
414 print_track("Freed", get_track(s, object, TRACK_FREE));
415 }
416
417 static void print_page_info(struct page *page)
418 {
419 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
420 page, page->objects, page->inuse, page->freelist, page->flags);
421
422 }
423
424 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
425 {
426 va_list args;
427 char buf[100];
428
429 va_start(args, fmt);
430 vsnprintf(buf, sizeof(buf), fmt, args);
431 va_end(args);
432 printk(KERN_ERR "========================================"
433 "=====================================\n");
434 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
435 printk(KERN_ERR "----------------------------------------"
436 "-------------------------------------\n\n");
437 }
438
439 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
440 {
441 va_list args;
442 char buf[100];
443
444 va_start(args, fmt);
445 vsnprintf(buf, sizeof(buf), fmt, args);
446 va_end(args);
447 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
448 }
449
450 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
451 {
452 unsigned int off; /* Offset of last byte */
453 u8 *addr = page_address(page);
454
455 print_tracking(s, p);
456
457 print_page_info(page);
458
459 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
460 p, p - addr, get_freepointer(s, p));
461
462 if (p > addr + 16)
463 print_section("Bytes b4", p - 16, 16);
464
465 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
466
467 if (s->flags & SLAB_RED_ZONE)
468 print_section("Redzone", p + s->objsize,
469 s->inuse - s->objsize);
470
471 if (s->offset)
472 off = s->offset + sizeof(void *);
473 else
474 off = s->inuse;
475
476 if (s->flags & SLAB_STORE_USER)
477 off += 2 * sizeof(struct track);
478
479 if (off != s->size)
480 /* Beginning of the filler is the free pointer */
481 print_section("Padding", p + off, s->size - off);
482
483 dump_stack();
484 }
485
486 static void object_err(struct kmem_cache *s, struct page *page,
487 u8 *object, char *reason)
488 {
489 slab_bug(s, "%s", reason);
490 print_trailer(s, page, object);
491 }
492
493 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
494 {
495 va_list args;
496 char buf[100];
497
498 va_start(args, fmt);
499 vsnprintf(buf, sizeof(buf), fmt, args);
500 va_end(args);
501 slab_bug(s, "%s", buf);
502 print_page_info(page);
503 dump_stack();
504 }
505
506 static void init_object(struct kmem_cache *s, void *object, int active)
507 {
508 u8 *p = object;
509
510 if (s->flags & __OBJECT_POISON) {
511 memset(p, POISON_FREE, s->objsize - 1);
512 p[s->objsize - 1] = POISON_END;
513 }
514
515 if (s->flags & SLAB_RED_ZONE)
516 memset(p + s->objsize,
517 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
518 s->inuse - s->objsize);
519 }
520
521 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
522 {
523 while (bytes) {
524 if (*start != (u8)value)
525 return start;
526 start++;
527 bytes--;
528 }
529 return NULL;
530 }
531
532 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
533 void *from, void *to)
534 {
535 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
536 memset(from, data, to - from);
537 }
538
539 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
540 u8 *object, char *what,
541 u8 *start, unsigned int value, unsigned int bytes)
542 {
543 u8 *fault;
544 u8 *end;
545
546 fault = check_bytes(start, value, bytes);
547 if (!fault)
548 return 1;
549
550 end = start + bytes;
551 while (end > fault && end[-1] == value)
552 end--;
553
554 slab_bug(s, "%s overwritten", what);
555 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
556 fault, end - 1, fault[0], value);
557 print_trailer(s, page, object);
558
559 restore_bytes(s, what, value, fault, end);
560 return 0;
561 }
562
563 /*
564 * Object layout:
565 *
566 * object address
567 * Bytes of the object to be managed.
568 * If the freepointer may overlay the object then the free
569 * pointer is the first word of the object.
570 *
571 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
572 * 0xa5 (POISON_END)
573 *
574 * object + s->objsize
575 * Padding to reach word boundary. This is also used for Redzoning.
576 * Padding is extended by another word if Redzoning is enabled and
577 * objsize == inuse.
578 *
579 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
580 * 0xcc (RED_ACTIVE) for objects in use.
581 *
582 * object + s->inuse
583 * Meta data starts here.
584 *
585 * A. Free pointer (if we cannot overwrite object on free)
586 * B. Tracking data for SLAB_STORE_USER
587 * C. Padding to reach required alignment boundary or at mininum
588 * one word if debugging is on to be able to detect writes
589 * before the word boundary.
590 *
591 * Padding is done using 0x5a (POISON_INUSE)
592 *
593 * object + s->size
594 * Nothing is used beyond s->size.
595 *
596 * If slabcaches are merged then the objsize and inuse boundaries are mostly
597 * ignored. And therefore no slab options that rely on these boundaries
598 * may be used with merged slabcaches.
599 */
600
601 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
602 {
603 unsigned long off = s->inuse; /* The end of info */
604
605 if (s->offset)
606 /* Freepointer is placed after the object. */
607 off += sizeof(void *);
608
609 if (s->flags & SLAB_STORE_USER)
610 /* We also have user information there */
611 off += 2 * sizeof(struct track);
612
613 if (s->size == off)
614 return 1;
615
616 return check_bytes_and_report(s, page, p, "Object padding",
617 p + off, POISON_INUSE, s->size - off);
618 }
619
620 /* Check the pad bytes at the end of a slab page */
621 static int slab_pad_check(struct kmem_cache *s, struct page *page)
622 {
623 u8 *start;
624 u8 *fault;
625 u8 *end;
626 int length;
627 int remainder;
628
629 if (!(s->flags & SLAB_POISON))
630 return 1;
631
632 start = page_address(page);
633 length = (PAGE_SIZE << compound_order(page));
634 end = start + length;
635 remainder = length % s->size;
636 if (!remainder)
637 return 1;
638
639 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
640 if (!fault)
641 return 1;
642 while (end > fault && end[-1] == POISON_INUSE)
643 end--;
644
645 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
646 print_section("Padding", end - remainder, remainder);
647
648 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
649 return 0;
650 }
651
652 static int check_object(struct kmem_cache *s, struct page *page,
653 void *object, int active)
654 {
655 u8 *p = object;
656 u8 *endobject = object + s->objsize;
657
658 if (s->flags & SLAB_RED_ZONE) {
659 unsigned int red =
660 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
661
662 if (!check_bytes_and_report(s, page, object, "Redzone",
663 endobject, red, s->inuse - s->objsize))
664 return 0;
665 } else {
666 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
667 check_bytes_and_report(s, page, p, "Alignment padding",
668 endobject, POISON_INUSE, s->inuse - s->objsize);
669 }
670 }
671
672 if (s->flags & SLAB_POISON) {
673 if (!active && (s->flags & __OBJECT_POISON) &&
674 (!check_bytes_and_report(s, page, p, "Poison", p,
675 POISON_FREE, s->objsize - 1) ||
676 !check_bytes_and_report(s, page, p, "Poison",
677 p + s->objsize - 1, POISON_END, 1)))
678 return 0;
679 /*
680 * check_pad_bytes cleans up on its own.
681 */
682 check_pad_bytes(s, page, p);
683 }
684
685 if (!s->offset && active)
686 /*
687 * Object and freepointer overlap. Cannot check
688 * freepointer while object is allocated.
689 */
690 return 1;
691
692 /* Check free pointer validity */
693 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
694 object_err(s, page, p, "Freepointer corrupt");
695 /*
696 * No choice but to zap it and thus lose the remainder
697 * of the free objects in this slab. May cause
698 * another error because the object count is now wrong.
699 */
700 set_freepointer(s, p, NULL);
701 return 0;
702 }
703 return 1;
704 }
705
706 static int check_slab(struct kmem_cache *s, struct page *page)
707 {
708 int maxobj;
709
710 VM_BUG_ON(!irqs_disabled());
711
712 if (!PageSlab(page)) {
713 slab_err(s, page, "Not a valid slab page");
714 return 0;
715 }
716
717 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
718 if (page->objects > maxobj) {
719 slab_err(s, page, "objects %u > max %u",
720 s->name, page->objects, maxobj);
721 return 0;
722 }
723 if (page->inuse > page->objects) {
724 slab_err(s, page, "inuse %u > max %u",
725 s->name, page->inuse, page->objects);
726 return 0;
727 }
728 /* Slab_pad_check fixes things up after itself */
729 slab_pad_check(s, page);
730 return 1;
731 }
732
733 /*
734 * Determine if a certain object on a page is on the freelist. Must hold the
735 * slab lock to guarantee that the chains are in a consistent state.
736 */
737 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
738 {
739 int nr = 0;
740 void *fp = page->freelist;
741 void *object = NULL;
742 unsigned long max_objects;
743
744 while (fp && nr <= page->objects) {
745 if (fp == search)
746 return 1;
747 if (!check_valid_pointer(s, page, fp)) {
748 if (object) {
749 object_err(s, page, object,
750 "Freechain corrupt");
751 set_freepointer(s, object, NULL);
752 break;
753 } else {
754 slab_err(s, page, "Freepointer corrupt");
755 page->freelist = NULL;
756 page->inuse = page->objects;
757 slab_fix(s, "Freelist cleared");
758 return 0;
759 }
760 break;
761 }
762 object = fp;
763 fp = get_freepointer(s, object);
764 nr++;
765 }
766
767 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
768 if (max_objects > MAX_OBJS_PER_PAGE)
769 max_objects = MAX_OBJS_PER_PAGE;
770
771 if (page->objects != max_objects) {
772 slab_err(s, page, "Wrong number of objects. Found %d but "
773 "should be %d", page->objects, max_objects);
774 page->objects = max_objects;
775 slab_fix(s, "Number of objects adjusted.");
776 }
777 if (page->inuse != page->objects - nr) {
778 slab_err(s, page, "Wrong object count. Counter is %d but "
779 "counted were %d", page->inuse, page->objects - nr);
780 page->inuse = page->objects - nr;
781 slab_fix(s, "Object count adjusted.");
782 }
783 return search == NULL;
784 }
785
786 static void trace(struct kmem_cache *s, struct page *page, void *object,
787 int alloc)
788 {
789 if (s->flags & SLAB_TRACE) {
790 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791 s->name,
792 alloc ? "alloc" : "free",
793 object, page->inuse,
794 page->freelist);
795
796 if (!alloc)
797 print_section("Object", (void *)object, s->objsize);
798
799 dump_stack();
800 }
801 }
802
803 /*
804 * Tracking of fully allocated slabs for debugging purposes.
805 */
806 static void add_full(struct kmem_cache_node *n, struct page *page)
807 {
808 spin_lock(&n->list_lock);
809 list_add(&page->lru, &n->full);
810 spin_unlock(&n->list_lock);
811 }
812
813 static void remove_full(struct kmem_cache *s, struct page *page)
814 {
815 struct kmem_cache_node *n;
816
817 if (!(s->flags & SLAB_STORE_USER))
818 return;
819
820 n = get_node(s, page_to_nid(page));
821
822 spin_lock(&n->list_lock);
823 list_del(&page->lru);
824 spin_unlock(&n->list_lock);
825 }
826
827 /* Tracking of the number of slabs for debugging purposes */
828 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
829 {
830 struct kmem_cache_node *n = get_node(s, node);
831
832 return atomic_long_read(&n->nr_slabs);
833 }
834
835 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
836 {
837 struct kmem_cache_node *n = get_node(s, node);
838
839 /*
840 * May be called early in order to allocate a slab for the
841 * kmem_cache_node structure. Solve the chicken-egg
842 * dilemma by deferring the increment of the count during
843 * bootstrap (see early_kmem_cache_node_alloc).
844 */
845 if (!NUMA_BUILD || n) {
846 atomic_long_inc(&n->nr_slabs);
847 atomic_long_add(objects, &n->total_objects);
848 }
849 }
850 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
851 {
852 struct kmem_cache_node *n = get_node(s, node);
853
854 atomic_long_dec(&n->nr_slabs);
855 atomic_long_sub(objects, &n->total_objects);
856 }
857
858 /* Object debug checks for alloc/free paths */
859 static void setup_object_debug(struct kmem_cache *s, struct page *page,
860 void *object)
861 {
862 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
863 return;
864
865 init_object(s, object, 0);
866 init_tracking(s, object);
867 }
868
869 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
870 void *object, unsigned long addr)
871 {
872 if (!check_slab(s, page))
873 goto bad;
874
875 if (!on_freelist(s, page, object)) {
876 object_err(s, page, object, "Object already allocated");
877 goto bad;
878 }
879
880 if (!check_valid_pointer(s, page, object)) {
881 object_err(s, page, object, "Freelist Pointer check fails");
882 goto bad;
883 }
884
885 if (!check_object(s, page, object, 0))
886 goto bad;
887
888 /* Success perform special debug activities for allocs */
889 if (s->flags & SLAB_STORE_USER)
890 set_track(s, object, TRACK_ALLOC, addr);
891 trace(s, page, object, 1);
892 init_object(s, object, 1);
893 return 1;
894
895 bad:
896 if (PageSlab(page)) {
897 /*
898 * If this is a slab page then lets do the best we can
899 * to avoid issues in the future. Marking all objects
900 * as used avoids touching the remaining objects.
901 */
902 slab_fix(s, "Marking all objects used");
903 page->inuse = page->objects;
904 page->freelist = NULL;
905 }
906 return 0;
907 }
908
909 static int free_debug_processing(struct kmem_cache *s, struct page *page,
910 void *object, unsigned long addr)
911 {
912 if (!check_slab(s, page))
913 goto fail;
914
915 if (!check_valid_pointer(s, page, object)) {
916 slab_err(s, page, "Invalid object pointer 0x%p", object);
917 goto fail;
918 }
919
920 if (on_freelist(s, page, object)) {
921 object_err(s, page, object, "Object already free");
922 goto fail;
923 }
924
925 if (!check_object(s, page, object, 1))
926 return 0;
927
928 if (unlikely(s != page->slab)) {
929 if (!PageSlab(page)) {
930 slab_err(s, page, "Attempt to free object(0x%p) "
931 "outside of slab", object);
932 } else if (!page->slab) {
933 printk(KERN_ERR
934 "SLUB <none>: no slab for object 0x%p.\n",
935 object);
936 dump_stack();
937 } else
938 object_err(s, page, object,
939 "page slab pointer corrupt.");
940 goto fail;
941 }
942
943 /* Special debug activities for freeing objects */
944 if (!PageSlubFrozen(page) && !page->freelist)
945 remove_full(s, page);
946 if (s->flags & SLAB_STORE_USER)
947 set_track(s, object, TRACK_FREE, addr);
948 trace(s, page, object, 0);
949 init_object(s, object, 0);
950 return 1;
951
952 fail:
953 slab_fix(s, "Object at 0x%p not freed", object);
954 return 0;
955 }
956
957 static int __init setup_slub_debug(char *str)
958 {
959 slub_debug = DEBUG_DEFAULT_FLAGS;
960 if (*str++ != '=' || !*str)
961 /*
962 * No options specified. Switch on full debugging.
963 */
964 goto out;
965
966 if (*str == ',')
967 /*
968 * No options but restriction on slabs. This means full
969 * debugging for slabs matching a pattern.
970 */
971 goto check_slabs;
972
973 slub_debug = 0;
974 if (*str == '-')
975 /*
976 * Switch off all debugging measures.
977 */
978 goto out;
979
980 /*
981 * Determine which debug features should be switched on
982 */
983 for (; *str && *str != ','; str++) {
984 switch (tolower(*str)) {
985 case 'f':
986 slub_debug |= SLAB_DEBUG_FREE;
987 break;
988 case 'z':
989 slub_debug |= SLAB_RED_ZONE;
990 break;
991 case 'p':
992 slub_debug |= SLAB_POISON;
993 break;
994 case 'u':
995 slub_debug |= SLAB_STORE_USER;
996 break;
997 case 't':
998 slub_debug |= SLAB_TRACE;
999 break;
1000 default:
1001 printk(KERN_ERR "slub_debug option '%c' "
1002 "unknown. skipped\n", *str);
1003 }
1004 }
1005
1006 check_slabs:
1007 if (*str == ',')
1008 slub_debug_slabs = str + 1;
1009 out:
1010 return 1;
1011 }
1012
1013 __setup("slub_debug", setup_slub_debug);
1014
1015 static unsigned long kmem_cache_flags(unsigned long objsize,
1016 unsigned long flags, const char *name,
1017 void (*ctor)(void *))
1018 {
1019 /*
1020 * Enable debugging if selected on the kernel commandline.
1021 */
1022 if (slub_debug && (!slub_debug_slabs ||
1023 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1024 flags |= slub_debug;
1025
1026 return flags;
1027 }
1028 #else
1029 static inline void setup_object_debug(struct kmem_cache *s,
1030 struct page *page, void *object) {}
1031
1032 static inline int alloc_debug_processing(struct kmem_cache *s,
1033 struct page *page, void *object, unsigned long addr) { return 0; }
1034
1035 static inline int free_debug_processing(struct kmem_cache *s,
1036 struct page *page, void *object, unsigned long addr) { return 0; }
1037
1038 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1039 { return 1; }
1040 static inline int check_object(struct kmem_cache *s, struct page *page,
1041 void *object, int active) { return 1; }
1042 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1043 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1044 unsigned long flags, const char *name,
1045 void (*ctor)(void *))
1046 {
1047 return flags;
1048 }
1049 #define slub_debug 0
1050
1051 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1052 { return 0; }
1053 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1054 int objects) {}
1055 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1056 int objects) {}
1057 #endif
1058
1059 /*
1060 * Slab allocation and freeing
1061 */
1062 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1063 struct kmem_cache_order_objects oo)
1064 {
1065 int order = oo_order(oo);
1066
1067 if (node == -1)
1068 return alloc_pages(flags, order);
1069 else
1070 return alloc_pages_node(node, flags, order);
1071 }
1072
1073 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1074 {
1075 struct page *page;
1076 struct kmem_cache_order_objects oo = s->oo;
1077
1078 flags |= s->allocflags;
1079
1080 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1081 oo);
1082 if (unlikely(!page)) {
1083 oo = s->min;
1084 /*
1085 * Allocation may have failed due to fragmentation.
1086 * Try a lower order alloc if possible
1087 */
1088 page = alloc_slab_page(flags, node, oo);
1089 if (!page)
1090 return NULL;
1091
1092 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1093 }
1094 page->objects = oo_objects(oo);
1095 mod_zone_page_state(page_zone(page),
1096 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1097 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1098 1 << oo_order(oo));
1099
1100 return page;
1101 }
1102
1103 static void setup_object(struct kmem_cache *s, struct page *page,
1104 void *object)
1105 {
1106 setup_object_debug(s, page, object);
1107 if (unlikely(s->ctor))
1108 s->ctor(object);
1109 }
1110
1111 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1112 {
1113 struct page *page;
1114 void *start;
1115 void *last;
1116 void *p;
1117
1118 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1119
1120 page = allocate_slab(s,
1121 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1122 if (!page)
1123 goto out;
1124
1125 inc_slabs_node(s, page_to_nid(page), page->objects);
1126 page->slab = s;
1127 page->flags |= 1 << PG_slab;
1128 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1129 SLAB_STORE_USER | SLAB_TRACE))
1130 __SetPageSlubDebug(page);
1131
1132 start = page_address(page);
1133
1134 if (unlikely(s->flags & SLAB_POISON))
1135 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1136
1137 last = start;
1138 for_each_object(p, s, start, page->objects) {
1139 setup_object(s, page, last);
1140 set_freepointer(s, last, p);
1141 last = p;
1142 }
1143 setup_object(s, page, last);
1144 set_freepointer(s, last, NULL);
1145
1146 page->freelist = start;
1147 page->inuse = 0;
1148 out:
1149 return page;
1150 }
1151
1152 static void __free_slab(struct kmem_cache *s, struct page *page)
1153 {
1154 int order = compound_order(page);
1155 int pages = 1 << order;
1156
1157 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1158 void *p;
1159
1160 slab_pad_check(s, page);
1161 for_each_object(p, s, page_address(page),
1162 page->objects)
1163 check_object(s, page, p, 0);
1164 __ClearPageSlubDebug(page);
1165 }
1166
1167 mod_zone_page_state(page_zone(page),
1168 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1169 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1170 -pages);
1171
1172 __ClearPageSlab(page);
1173 reset_page_mapcount(page);
1174 if (current->reclaim_state)
1175 current->reclaim_state->reclaimed_slab += pages;
1176 __free_pages(page, order);
1177 }
1178
1179 static void rcu_free_slab(struct rcu_head *h)
1180 {
1181 struct page *page;
1182
1183 page = container_of((struct list_head *)h, struct page, lru);
1184 __free_slab(page->slab, page);
1185 }
1186
1187 static void free_slab(struct kmem_cache *s, struct page *page)
1188 {
1189 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1190 /*
1191 * RCU free overloads the RCU head over the LRU
1192 */
1193 struct rcu_head *head = (void *)&page->lru;
1194
1195 call_rcu(head, rcu_free_slab);
1196 } else
1197 __free_slab(s, page);
1198 }
1199
1200 static void discard_slab(struct kmem_cache *s, struct page *page)
1201 {
1202 dec_slabs_node(s, page_to_nid(page), page->objects);
1203 free_slab(s, page);
1204 }
1205
1206 /*
1207 * Per slab locking using the pagelock
1208 */
1209 static __always_inline void slab_lock(struct page *page)
1210 {
1211 bit_spin_lock(PG_locked, &page->flags);
1212 }
1213
1214 static __always_inline void slab_unlock(struct page *page)
1215 {
1216 __bit_spin_unlock(PG_locked, &page->flags);
1217 }
1218
1219 static __always_inline int slab_trylock(struct page *page)
1220 {
1221 int rc = 1;
1222
1223 rc = bit_spin_trylock(PG_locked, &page->flags);
1224 return rc;
1225 }
1226
1227 /*
1228 * Management of partially allocated slabs
1229 */
1230 static void add_partial(struct kmem_cache_node *n,
1231 struct page *page, int tail)
1232 {
1233 spin_lock(&n->list_lock);
1234 n->nr_partial++;
1235 if (tail)
1236 list_add_tail(&page->lru, &n->partial);
1237 else
1238 list_add(&page->lru, &n->partial);
1239 spin_unlock(&n->list_lock);
1240 }
1241
1242 static void remove_partial(struct kmem_cache *s, struct page *page)
1243 {
1244 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1245
1246 spin_lock(&n->list_lock);
1247 list_del(&page->lru);
1248 n->nr_partial--;
1249 spin_unlock(&n->list_lock);
1250 }
1251
1252 /*
1253 * Lock slab and remove from the partial list.
1254 *
1255 * Must hold list_lock.
1256 */
1257 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1258 struct page *page)
1259 {
1260 if (slab_trylock(page)) {
1261 list_del(&page->lru);
1262 n->nr_partial--;
1263 __SetPageSlubFrozen(page);
1264 return 1;
1265 }
1266 return 0;
1267 }
1268
1269 /*
1270 * Try to allocate a partial slab from a specific node.
1271 */
1272 static struct page *get_partial_node(struct kmem_cache_node *n)
1273 {
1274 struct page *page;
1275
1276 /*
1277 * Racy check. If we mistakenly see no partial slabs then we
1278 * just allocate an empty slab. If we mistakenly try to get a
1279 * partial slab and there is none available then get_partials()
1280 * will return NULL.
1281 */
1282 if (!n || !n->nr_partial)
1283 return NULL;
1284
1285 spin_lock(&n->list_lock);
1286 list_for_each_entry(page, &n->partial, lru)
1287 if (lock_and_freeze_slab(n, page))
1288 goto out;
1289 page = NULL;
1290 out:
1291 spin_unlock(&n->list_lock);
1292 return page;
1293 }
1294
1295 /*
1296 * Get a page from somewhere. Search in increasing NUMA distances.
1297 */
1298 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1299 {
1300 #ifdef CONFIG_NUMA
1301 struct zonelist *zonelist;
1302 struct zoneref *z;
1303 struct zone *zone;
1304 enum zone_type high_zoneidx = gfp_zone(flags);
1305 struct page *page;
1306
1307 /*
1308 * The defrag ratio allows a configuration of the tradeoffs between
1309 * inter node defragmentation and node local allocations. A lower
1310 * defrag_ratio increases the tendency to do local allocations
1311 * instead of attempting to obtain partial slabs from other nodes.
1312 *
1313 * If the defrag_ratio is set to 0 then kmalloc() always
1314 * returns node local objects. If the ratio is higher then kmalloc()
1315 * may return off node objects because partial slabs are obtained
1316 * from other nodes and filled up.
1317 *
1318 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1319 * defrag_ratio = 1000) then every (well almost) allocation will
1320 * first attempt to defrag slab caches on other nodes. This means
1321 * scanning over all nodes to look for partial slabs which may be
1322 * expensive if we do it every time we are trying to find a slab
1323 * with available objects.
1324 */
1325 if (!s->remote_node_defrag_ratio ||
1326 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1327 return NULL;
1328
1329 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1330 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1331 struct kmem_cache_node *n;
1332
1333 n = get_node(s, zone_to_nid(zone));
1334
1335 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1336 n->nr_partial > s->min_partial) {
1337 page = get_partial_node(n);
1338 if (page)
1339 return page;
1340 }
1341 }
1342 #endif
1343 return NULL;
1344 }
1345
1346 /*
1347 * Get a partial page, lock it and return it.
1348 */
1349 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1350 {
1351 struct page *page;
1352 int searchnode = (node == -1) ? numa_node_id() : node;
1353
1354 page = get_partial_node(get_node(s, searchnode));
1355 if (page || (flags & __GFP_THISNODE))
1356 return page;
1357
1358 return get_any_partial(s, flags);
1359 }
1360
1361 /*
1362 * Move a page back to the lists.
1363 *
1364 * Must be called with the slab lock held.
1365 *
1366 * On exit the slab lock will have been dropped.
1367 */
1368 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1369 {
1370 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1371 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1372
1373 __ClearPageSlubFrozen(page);
1374 if (page->inuse) {
1375
1376 if (page->freelist) {
1377 add_partial(n, page, tail);
1378 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1379 } else {
1380 stat(c, DEACTIVATE_FULL);
1381 if (SLABDEBUG && PageSlubDebug(page) &&
1382 (s->flags & SLAB_STORE_USER))
1383 add_full(n, page);
1384 }
1385 slab_unlock(page);
1386 } else {
1387 stat(c, DEACTIVATE_EMPTY);
1388 if (n->nr_partial < s->min_partial) {
1389 /*
1390 * Adding an empty slab to the partial slabs in order
1391 * to avoid page allocator overhead. This slab needs
1392 * to come after the other slabs with objects in
1393 * so that the others get filled first. That way the
1394 * size of the partial list stays small.
1395 *
1396 * kmem_cache_shrink can reclaim any empty slabs from
1397 * the partial list.
1398 */
1399 add_partial(n, page, 1);
1400 slab_unlock(page);
1401 } else {
1402 slab_unlock(page);
1403 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1404 discard_slab(s, page);
1405 }
1406 }
1407 }
1408
1409 /*
1410 * Remove the cpu slab
1411 */
1412 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1413 {
1414 struct page *page = c->page;
1415 int tail = 1;
1416
1417 if (page->freelist)
1418 stat(c, DEACTIVATE_REMOTE_FREES);
1419 /*
1420 * Merge cpu freelist into slab freelist. Typically we get here
1421 * because both freelists are empty. So this is unlikely
1422 * to occur.
1423 */
1424 while (unlikely(c->freelist)) {
1425 void **object;
1426
1427 tail = 0; /* Hot objects. Put the slab first */
1428
1429 /* Retrieve object from cpu_freelist */
1430 object = c->freelist;
1431 c->freelist = c->freelist[c->offset];
1432
1433 /* And put onto the regular freelist */
1434 object[c->offset] = page->freelist;
1435 page->freelist = object;
1436 page->inuse--;
1437 }
1438 c->page = NULL;
1439 unfreeze_slab(s, page, tail);
1440 }
1441
1442 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1443 {
1444 stat(c, CPUSLAB_FLUSH);
1445 slab_lock(c->page);
1446 deactivate_slab(s, c);
1447 }
1448
1449 /*
1450 * Flush cpu slab.
1451 *
1452 * Called from IPI handler with interrupts disabled.
1453 */
1454 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1455 {
1456 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1457
1458 if (likely(c && c->page))
1459 flush_slab(s, c);
1460 }
1461
1462 static void flush_cpu_slab(void *d)
1463 {
1464 struct kmem_cache *s = d;
1465
1466 __flush_cpu_slab(s, smp_processor_id());
1467 }
1468
1469 static void flush_all(struct kmem_cache *s)
1470 {
1471 on_each_cpu(flush_cpu_slab, s, 1);
1472 }
1473
1474 /*
1475 * Check if the objects in a per cpu structure fit numa
1476 * locality expectations.
1477 */
1478 static inline int node_match(struct kmem_cache_cpu *c, int node)
1479 {
1480 #ifdef CONFIG_NUMA
1481 if (node != -1 && c->node != node)
1482 return 0;
1483 #endif
1484 return 1;
1485 }
1486
1487 /*
1488 * Slow path. The lockless freelist is empty or we need to perform
1489 * debugging duties.
1490 *
1491 * Interrupts are disabled.
1492 *
1493 * Processing is still very fast if new objects have been freed to the
1494 * regular freelist. In that case we simply take over the regular freelist
1495 * as the lockless freelist and zap the regular freelist.
1496 *
1497 * If that is not working then we fall back to the partial lists. We take the
1498 * first element of the freelist as the object to allocate now and move the
1499 * rest of the freelist to the lockless freelist.
1500 *
1501 * And if we were unable to get a new slab from the partial slab lists then
1502 * we need to allocate a new slab. This is the slowest path since it involves
1503 * a call to the page allocator and the setup of a new slab.
1504 */
1505 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1506 unsigned long addr, struct kmem_cache_cpu *c)
1507 {
1508 void **object;
1509 struct page *new;
1510
1511 /* We handle __GFP_ZERO in the caller */
1512 gfpflags &= ~__GFP_ZERO;
1513
1514 if (!c->page)
1515 goto new_slab;
1516
1517 slab_lock(c->page);
1518 if (unlikely(!node_match(c, node)))
1519 goto another_slab;
1520
1521 stat(c, ALLOC_REFILL);
1522
1523 load_freelist:
1524 object = c->page->freelist;
1525 if (unlikely(!object))
1526 goto another_slab;
1527 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1528 goto debug;
1529
1530 c->freelist = object[c->offset];
1531 c->page->inuse = c->page->objects;
1532 c->page->freelist = NULL;
1533 c->node = page_to_nid(c->page);
1534 unlock_out:
1535 slab_unlock(c->page);
1536 stat(c, ALLOC_SLOWPATH);
1537 return object;
1538
1539 another_slab:
1540 deactivate_slab(s, c);
1541
1542 new_slab:
1543 new = get_partial(s, gfpflags, node);
1544 if (new) {
1545 c->page = new;
1546 stat(c, ALLOC_FROM_PARTIAL);
1547 goto load_freelist;
1548 }
1549
1550 if (gfpflags & __GFP_WAIT)
1551 local_irq_enable();
1552
1553 new = new_slab(s, gfpflags, node);
1554
1555 if (gfpflags & __GFP_WAIT)
1556 local_irq_disable();
1557
1558 if (new) {
1559 c = get_cpu_slab(s, smp_processor_id());
1560 stat(c, ALLOC_SLAB);
1561 if (c->page)
1562 flush_slab(s, c);
1563 slab_lock(new);
1564 __SetPageSlubFrozen(new);
1565 c->page = new;
1566 goto load_freelist;
1567 }
1568 return NULL;
1569 debug:
1570 if (!alloc_debug_processing(s, c->page, object, addr))
1571 goto another_slab;
1572
1573 c->page->inuse++;
1574 c->page->freelist = object[c->offset];
1575 c->node = -1;
1576 goto unlock_out;
1577 }
1578
1579 /*
1580 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1581 * have the fastpath folded into their functions. So no function call
1582 * overhead for requests that can be satisfied on the fastpath.
1583 *
1584 * The fastpath works by first checking if the lockless freelist can be used.
1585 * If not then __slab_alloc is called for slow processing.
1586 *
1587 * Otherwise we can simply pick the next object from the lockless free list.
1588 */
1589 static __always_inline void *slab_alloc(struct kmem_cache *s,
1590 gfp_t gfpflags, int node, unsigned long addr)
1591 {
1592 void **object;
1593 struct kmem_cache_cpu *c;
1594 unsigned long flags;
1595 unsigned int objsize;
1596
1597 lockdep_trace_alloc(gfpflags);
1598 might_sleep_if(gfpflags & __GFP_WAIT);
1599
1600 if (should_failslab(s->objsize, gfpflags))
1601 return NULL;
1602
1603 local_irq_save(flags);
1604 c = get_cpu_slab(s, smp_processor_id());
1605 objsize = c->objsize;
1606 if (unlikely(!c->freelist || !node_match(c, node)))
1607
1608 object = __slab_alloc(s, gfpflags, node, addr, c);
1609
1610 else {
1611 object = c->freelist;
1612 c->freelist = object[c->offset];
1613 stat(c, ALLOC_FASTPATH);
1614 }
1615 local_irq_restore(flags);
1616
1617 if (unlikely((gfpflags & __GFP_ZERO) && object))
1618 memset(object, 0, objsize);
1619
1620 return object;
1621 }
1622
1623 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1624 {
1625 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1626
1627 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1628
1629 return ret;
1630 }
1631 EXPORT_SYMBOL(kmem_cache_alloc);
1632
1633 #ifdef CONFIG_KMEMTRACE
1634 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1635 {
1636 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1637 }
1638 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1639 #endif
1640
1641 #ifdef CONFIG_NUMA
1642 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1643 {
1644 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1645
1646 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1647 s->objsize, s->size, gfpflags, node);
1648
1649 return ret;
1650 }
1651 EXPORT_SYMBOL(kmem_cache_alloc_node);
1652 #endif
1653
1654 #ifdef CONFIG_KMEMTRACE
1655 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1656 gfp_t gfpflags,
1657 int node)
1658 {
1659 return slab_alloc(s, gfpflags, node, _RET_IP_);
1660 }
1661 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1662 #endif
1663
1664 /*
1665 * Slow patch handling. This may still be called frequently since objects
1666 * have a longer lifetime than the cpu slabs in most processing loads.
1667 *
1668 * So we still attempt to reduce cache line usage. Just take the slab
1669 * lock and free the item. If there is no additional partial page
1670 * handling required then we can return immediately.
1671 */
1672 static void __slab_free(struct kmem_cache *s, struct page *page,
1673 void *x, unsigned long addr, unsigned int offset)
1674 {
1675 void *prior;
1676 void **object = (void *)x;
1677 struct kmem_cache_cpu *c;
1678
1679 c = get_cpu_slab(s, raw_smp_processor_id());
1680 stat(c, FREE_SLOWPATH);
1681 slab_lock(page);
1682
1683 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1684 goto debug;
1685
1686 checks_ok:
1687 prior = object[offset] = page->freelist;
1688 page->freelist = object;
1689 page->inuse--;
1690
1691 if (unlikely(PageSlubFrozen(page))) {
1692 stat(c, FREE_FROZEN);
1693 goto out_unlock;
1694 }
1695
1696 if (unlikely(!page->inuse))
1697 goto slab_empty;
1698
1699 /*
1700 * Objects left in the slab. If it was not on the partial list before
1701 * then add it.
1702 */
1703 if (unlikely(!prior)) {
1704 add_partial(get_node(s, page_to_nid(page)), page, 1);
1705 stat(c, FREE_ADD_PARTIAL);
1706 }
1707
1708 out_unlock:
1709 slab_unlock(page);
1710 return;
1711
1712 slab_empty:
1713 if (prior) {
1714 /*
1715 * Slab still on the partial list.
1716 */
1717 remove_partial(s, page);
1718 stat(c, FREE_REMOVE_PARTIAL);
1719 }
1720 slab_unlock(page);
1721 stat(c, FREE_SLAB);
1722 discard_slab(s, page);
1723 return;
1724
1725 debug:
1726 if (!free_debug_processing(s, page, x, addr))
1727 goto out_unlock;
1728 goto checks_ok;
1729 }
1730
1731 /*
1732 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1733 * can perform fastpath freeing without additional function calls.
1734 *
1735 * The fastpath is only possible if we are freeing to the current cpu slab
1736 * of this processor. This typically the case if we have just allocated
1737 * the item before.
1738 *
1739 * If fastpath is not possible then fall back to __slab_free where we deal
1740 * with all sorts of special processing.
1741 */
1742 static __always_inline void slab_free(struct kmem_cache *s,
1743 struct page *page, void *x, unsigned long addr)
1744 {
1745 void **object = (void *)x;
1746 struct kmem_cache_cpu *c;
1747 unsigned long flags;
1748
1749 local_irq_save(flags);
1750 c = get_cpu_slab(s, smp_processor_id());
1751 debug_check_no_locks_freed(object, c->objsize);
1752 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1753 debug_check_no_obj_freed(object, c->objsize);
1754 if (likely(page == c->page && c->node >= 0)) {
1755 object[c->offset] = c->freelist;
1756 c->freelist = object;
1757 stat(c, FREE_FASTPATH);
1758 } else
1759 __slab_free(s, page, x, addr, c->offset);
1760
1761 local_irq_restore(flags);
1762 }
1763
1764 void kmem_cache_free(struct kmem_cache *s, void *x)
1765 {
1766 struct page *page;
1767
1768 page = virt_to_head_page(x);
1769
1770 slab_free(s, page, x, _RET_IP_);
1771
1772 trace_kmem_cache_free(_RET_IP_, x);
1773 }
1774 EXPORT_SYMBOL(kmem_cache_free);
1775
1776 /* Figure out on which slab page the object resides */
1777 static struct page *get_object_page(const void *x)
1778 {
1779 struct page *page = virt_to_head_page(x);
1780
1781 if (!PageSlab(page))
1782 return NULL;
1783
1784 return page;
1785 }
1786
1787 /*
1788 * Object placement in a slab is made very easy because we always start at
1789 * offset 0. If we tune the size of the object to the alignment then we can
1790 * get the required alignment by putting one properly sized object after
1791 * another.
1792 *
1793 * Notice that the allocation order determines the sizes of the per cpu
1794 * caches. Each processor has always one slab available for allocations.
1795 * Increasing the allocation order reduces the number of times that slabs
1796 * must be moved on and off the partial lists and is therefore a factor in
1797 * locking overhead.
1798 */
1799
1800 /*
1801 * Mininum / Maximum order of slab pages. This influences locking overhead
1802 * and slab fragmentation. A higher order reduces the number of partial slabs
1803 * and increases the number of allocations possible without having to
1804 * take the list_lock.
1805 */
1806 static int slub_min_order;
1807 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1808 static int slub_min_objects;
1809
1810 /*
1811 * Merge control. If this is set then no merging of slab caches will occur.
1812 * (Could be removed. This was introduced to pacify the merge skeptics.)
1813 */
1814 static int slub_nomerge;
1815
1816 /*
1817 * Calculate the order of allocation given an slab object size.
1818 *
1819 * The order of allocation has significant impact on performance and other
1820 * system components. Generally order 0 allocations should be preferred since
1821 * order 0 does not cause fragmentation in the page allocator. Larger objects
1822 * be problematic to put into order 0 slabs because there may be too much
1823 * unused space left. We go to a higher order if more than 1/16th of the slab
1824 * would be wasted.
1825 *
1826 * In order to reach satisfactory performance we must ensure that a minimum
1827 * number of objects is in one slab. Otherwise we may generate too much
1828 * activity on the partial lists which requires taking the list_lock. This is
1829 * less a concern for large slabs though which are rarely used.
1830 *
1831 * slub_max_order specifies the order where we begin to stop considering the
1832 * number of objects in a slab as critical. If we reach slub_max_order then
1833 * we try to keep the page order as low as possible. So we accept more waste
1834 * of space in favor of a small page order.
1835 *
1836 * Higher order allocations also allow the placement of more objects in a
1837 * slab and thereby reduce object handling overhead. If the user has
1838 * requested a higher mininum order then we start with that one instead of
1839 * the smallest order which will fit the object.
1840 */
1841 static inline int slab_order(int size, int min_objects,
1842 int max_order, int fract_leftover)
1843 {
1844 int order;
1845 int rem;
1846 int min_order = slub_min_order;
1847
1848 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1849 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1850
1851 for (order = max(min_order,
1852 fls(min_objects * size - 1) - PAGE_SHIFT);
1853 order <= max_order; order++) {
1854
1855 unsigned long slab_size = PAGE_SIZE << order;
1856
1857 if (slab_size < min_objects * size)
1858 continue;
1859
1860 rem = slab_size % size;
1861
1862 if (rem <= slab_size / fract_leftover)
1863 break;
1864
1865 }
1866
1867 return order;
1868 }
1869
1870 static inline int calculate_order(int size)
1871 {
1872 int order;
1873 int min_objects;
1874 int fraction;
1875 int max_objects;
1876
1877 /*
1878 * Attempt to find best configuration for a slab. This
1879 * works by first attempting to generate a layout with
1880 * the best configuration and backing off gradually.
1881 *
1882 * First we reduce the acceptable waste in a slab. Then
1883 * we reduce the minimum objects required in a slab.
1884 */
1885 min_objects = slub_min_objects;
1886 if (!min_objects)
1887 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1888 max_objects = (PAGE_SIZE << slub_max_order)/size;
1889 min_objects = min(min_objects, max_objects);
1890
1891 while (min_objects > 1) {
1892 fraction = 16;
1893 while (fraction >= 4) {
1894 order = slab_order(size, min_objects,
1895 slub_max_order, fraction);
1896 if (order <= slub_max_order)
1897 return order;
1898 fraction /= 2;
1899 }
1900 min_objects --;
1901 }
1902
1903 /*
1904 * We were unable to place multiple objects in a slab. Now
1905 * lets see if we can place a single object there.
1906 */
1907 order = slab_order(size, 1, slub_max_order, 1);
1908 if (order <= slub_max_order)
1909 return order;
1910
1911 /*
1912 * Doh this slab cannot be placed using slub_max_order.
1913 */
1914 order = slab_order(size, 1, MAX_ORDER, 1);
1915 if (order < MAX_ORDER)
1916 return order;
1917 return -ENOSYS;
1918 }
1919
1920 /*
1921 * Figure out what the alignment of the objects will be.
1922 */
1923 static unsigned long calculate_alignment(unsigned long flags,
1924 unsigned long align, unsigned long size)
1925 {
1926 /*
1927 * If the user wants hardware cache aligned objects then follow that
1928 * suggestion if the object is sufficiently large.
1929 *
1930 * The hardware cache alignment cannot override the specified
1931 * alignment though. If that is greater then use it.
1932 */
1933 if (flags & SLAB_HWCACHE_ALIGN) {
1934 unsigned long ralign = cache_line_size();
1935 while (size <= ralign / 2)
1936 ralign /= 2;
1937 align = max(align, ralign);
1938 }
1939
1940 if (align < ARCH_SLAB_MINALIGN)
1941 align = ARCH_SLAB_MINALIGN;
1942
1943 return ALIGN(align, sizeof(void *));
1944 }
1945
1946 static void init_kmem_cache_cpu(struct kmem_cache *s,
1947 struct kmem_cache_cpu *c)
1948 {
1949 c->page = NULL;
1950 c->freelist = NULL;
1951 c->node = 0;
1952 c->offset = s->offset / sizeof(void *);
1953 c->objsize = s->objsize;
1954 #ifdef CONFIG_SLUB_STATS
1955 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1956 #endif
1957 }
1958
1959 static void
1960 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1961 {
1962 n->nr_partial = 0;
1963 spin_lock_init(&n->list_lock);
1964 INIT_LIST_HEAD(&n->partial);
1965 #ifdef CONFIG_SLUB_DEBUG
1966 atomic_long_set(&n->nr_slabs, 0);
1967 atomic_long_set(&n->total_objects, 0);
1968 INIT_LIST_HEAD(&n->full);
1969 #endif
1970 }
1971
1972 #ifdef CONFIG_SMP
1973 /*
1974 * Per cpu array for per cpu structures.
1975 *
1976 * The per cpu array places all kmem_cache_cpu structures from one processor
1977 * close together meaning that it becomes possible that multiple per cpu
1978 * structures are contained in one cacheline. This may be particularly
1979 * beneficial for the kmalloc caches.
1980 *
1981 * A desktop system typically has around 60-80 slabs. With 100 here we are
1982 * likely able to get per cpu structures for all caches from the array defined
1983 * here. We must be able to cover all kmalloc caches during bootstrap.
1984 *
1985 * If the per cpu array is exhausted then fall back to kmalloc
1986 * of individual cachelines. No sharing is possible then.
1987 */
1988 #define NR_KMEM_CACHE_CPU 100
1989
1990 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1991 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1992
1993 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1994 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1995
1996 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1997 int cpu, gfp_t flags)
1998 {
1999 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2000
2001 if (c)
2002 per_cpu(kmem_cache_cpu_free, cpu) =
2003 (void *)c->freelist;
2004 else {
2005 /* Table overflow: So allocate ourselves */
2006 c = kmalloc_node(
2007 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2008 flags, cpu_to_node(cpu));
2009 if (!c)
2010 return NULL;
2011 }
2012
2013 init_kmem_cache_cpu(s, c);
2014 return c;
2015 }
2016
2017 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2018 {
2019 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2020 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2021 kfree(c);
2022 return;
2023 }
2024 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2025 per_cpu(kmem_cache_cpu_free, cpu) = c;
2026 }
2027
2028 static void free_kmem_cache_cpus(struct kmem_cache *s)
2029 {
2030 int cpu;
2031
2032 for_each_online_cpu(cpu) {
2033 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2034
2035 if (c) {
2036 s->cpu_slab[cpu] = NULL;
2037 free_kmem_cache_cpu(c, cpu);
2038 }
2039 }
2040 }
2041
2042 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2043 {
2044 int cpu;
2045
2046 for_each_online_cpu(cpu) {
2047 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2048
2049 if (c)
2050 continue;
2051
2052 c = alloc_kmem_cache_cpu(s, cpu, flags);
2053 if (!c) {
2054 free_kmem_cache_cpus(s);
2055 return 0;
2056 }
2057 s->cpu_slab[cpu] = c;
2058 }
2059 return 1;
2060 }
2061
2062 /*
2063 * Initialize the per cpu array.
2064 */
2065 static void init_alloc_cpu_cpu(int cpu)
2066 {
2067 int i;
2068
2069 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2070 return;
2071
2072 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2073 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2074
2075 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2076 }
2077
2078 static void __init init_alloc_cpu(void)
2079 {
2080 int cpu;
2081
2082 for_each_online_cpu(cpu)
2083 init_alloc_cpu_cpu(cpu);
2084 }
2085
2086 #else
2087 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2088 static inline void init_alloc_cpu(void) {}
2089
2090 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2091 {
2092 init_kmem_cache_cpu(s, &s->cpu_slab);
2093 return 1;
2094 }
2095 #endif
2096
2097 #ifdef CONFIG_NUMA
2098 /*
2099 * No kmalloc_node yet so do it by hand. We know that this is the first
2100 * slab on the node for this slabcache. There are no concurrent accesses
2101 * possible.
2102 *
2103 * Note that this function only works on the kmalloc_node_cache
2104 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2105 * memory on a fresh node that has no slab structures yet.
2106 */
2107 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2108 {
2109 struct page *page;
2110 struct kmem_cache_node *n;
2111 unsigned long flags;
2112
2113 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2114
2115 page = new_slab(kmalloc_caches, gfpflags, node);
2116
2117 BUG_ON(!page);
2118 if (page_to_nid(page) != node) {
2119 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2120 "node %d\n", node);
2121 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2122 "in order to be able to continue\n");
2123 }
2124
2125 n = page->freelist;
2126 BUG_ON(!n);
2127 page->freelist = get_freepointer(kmalloc_caches, n);
2128 page->inuse++;
2129 kmalloc_caches->node[node] = n;
2130 #ifdef CONFIG_SLUB_DEBUG
2131 init_object(kmalloc_caches, n, 1);
2132 init_tracking(kmalloc_caches, n);
2133 #endif
2134 init_kmem_cache_node(n, kmalloc_caches);
2135 inc_slabs_node(kmalloc_caches, node, page->objects);
2136
2137 /*
2138 * lockdep requires consistent irq usage for each lock
2139 * so even though there cannot be a race this early in
2140 * the boot sequence, we still disable irqs.
2141 */
2142 local_irq_save(flags);
2143 add_partial(n, page, 0);
2144 local_irq_restore(flags);
2145 }
2146
2147 static void free_kmem_cache_nodes(struct kmem_cache *s)
2148 {
2149 int node;
2150
2151 for_each_node_state(node, N_NORMAL_MEMORY) {
2152 struct kmem_cache_node *n = s->node[node];
2153 if (n && n != &s->local_node)
2154 kmem_cache_free(kmalloc_caches, n);
2155 s->node[node] = NULL;
2156 }
2157 }
2158
2159 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2160 {
2161 int node;
2162 int local_node;
2163
2164 if (slab_state >= UP)
2165 local_node = page_to_nid(virt_to_page(s));
2166 else
2167 local_node = 0;
2168
2169 for_each_node_state(node, N_NORMAL_MEMORY) {
2170 struct kmem_cache_node *n;
2171
2172 if (local_node == node)
2173 n = &s->local_node;
2174 else {
2175 if (slab_state == DOWN) {
2176 early_kmem_cache_node_alloc(gfpflags, node);
2177 continue;
2178 }
2179 n = kmem_cache_alloc_node(kmalloc_caches,
2180 gfpflags, node);
2181
2182 if (!n) {
2183 free_kmem_cache_nodes(s);
2184 return 0;
2185 }
2186
2187 }
2188 s->node[node] = n;
2189 init_kmem_cache_node(n, s);
2190 }
2191 return 1;
2192 }
2193 #else
2194 static void free_kmem_cache_nodes(struct kmem_cache *s)
2195 {
2196 }
2197
2198 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2199 {
2200 init_kmem_cache_node(&s->local_node, s);
2201 return 1;
2202 }
2203 #endif
2204
2205 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2206 {
2207 if (min < MIN_PARTIAL)
2208 min = MIN_PARTIAL;
2209 else if (min > MAX_PARTIAL)
2210 min = MAX_PARTIAL;
2211 s->min_partial = min;
2212 }
2213
2214 /*
2215 * calculate_sizes() determines the order and the distribution of data within
2216 * a slab object.
2217 */
2218 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2219 {
2220 unsigned long flags = s->flags;
2221 unsigned long size = s->objsize;
2222 unsigned long align = s->align;
2223 int order;
2224
2225 /*
2226 * Round up object size to the next word boundary. We can only
2227 * place the free pointer at word boundaries and this determines
2228 * the possible location of the free pointer.
2229 */
2230 size = ALIGN(size, sizeof(void *));
2231
2232 #ifdef CONFIG_SLUB_DEBUG
2233 /*
2234 * Determine if we can poison the object itself. If the user of
2235 * the slab may touch the object after free or before allocation
2236 * then we should never poison the object itself.
2237 */
2238 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2239 !s->ctor)
2240 s->flags |= __OBJECT_POISON;
2241 else
2242 s->flags &= ~__OBJECT_POISON;
2243
2244
2245 /*
2246 * If we are Redzoning then check if there is some space between the
2247 * end of the object and the free pointer. If not then add an
2248 * additional word to have some bytes to store Redzone information.
2249 */
2250 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2251 size += sizeof(void *);
2252 #endif
2253
2254 /*
2255 * With that we have determined the number of bytes in actual use
2256 * by the object. This is the potential offset to the free pointer.
2257 */
2258 s->inuse = size;
2259
2260 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2261 s->ctor)) {
2262 /*
2263 * Relocate free pointer after the object if it is not
2264 * permitted to overwrite the first word of the object on
2265 * kmem_cache_free.
2266 *
2267 * This is the case if we do RCU, have a constructor or
2268 * destructor or are poisoning the objects.
2269 */
2270 s->offset = size;
2271 size += sizeof(void *);
2272 }
2273
2274 #ifdef CONFIG_SLUB_DEBUG
2275 if (flags & SLAB_STORE_USER)
2276 /*
2277 * Need to store information about allocs and frees after
2278 * the object.
2279 */
2280 size += 2 * sizeof(struct track);
2281
2282 if (flags & SLAB_RED_ZONE)
2283 /*
2284 * Add some empty padding so that we can catch
2285 * overwrites from earlier objects rather than let
2286 * tracking information or the free pointer be
2287 * corrupted if a user writes before the start
2288 * of the object.
2289 */
2290 size += sizeof(void *);
2291 #endif
2292
2293 /*
2294 * Determine the alignment based on various parameters that the
2295 * user specified and the dynamic determination of cache line size
2296 * on bootup.
2297 */
2298 align = calculate_alignment(flags, align, s->objsize);
2299
2300 /*
2301 * SLUB stores one object immediately after another beginning from
2302 * offset 0. In order to align the objects we have to simply size
2303 * each object to conform to the alignment.
2304 */
2305 size = ALIGN(size, align);
2306 s->size = size;
2307 if (forced_order >= 0)
2308 order = forced_order;
2309 else
2310 order = calculate_order(size);
2311
2312 if (order < 0)
2313 return 0;
2314
2315 s->allocflags = 0;
2316 if (order)
2317 s->allocflags |= __GFP_COMP;
2318
2319 if (s->flags & SLAB_CACHE_DMA)
2320 s->allocflags |= SLUB_DMA;
2321
2322 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2323 s->allocflags |= __GFP_RECLAIMABLE;
2324
2325 /*
2326 * Determine the number of objects per slab
2327 */
2328 s->oo = oo_make(order, size);
2329 s->min = oo_make(get_order(size), size);
2330 if (oo_objects(s->oo) > oo_objects(s->max))
2331 s->max = s->oo;
2332
2333 return !!oo_objects(s->oo);
2334
2335 }
2336
2337 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2338 const char *name, size_t size,
2339 size_t align, unsigned long flags,
2340 void (*ctor)(void *))
2341 {
2342 memset(s, 0, kmem_size);
2343 s->name = name;
2344 s->ctor = ctor;
2345 s->objsize = size;
2346 s->align = align;
2347 s->flags = kmem_cache_flags(size, flags, name, ctor);
2348
2349 if (!calculate_sizes(s, -1))
2350 goto error;
2351
2352 /*
2353 * The larger the object size is, the more pages we want on the partial
2354 * list to avoid pounding the page allocator excessively.
2355 */
2356 set_min_partial(s, ilog2(s->size));
2357 s->refcount = 1;
2358 #ifdef CONFIG_NUMA
2359 s->remote_node_defrag_ratio = 1000;
2360 #endif
2361 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2362 goto error;
2363
2364 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2365 return 1;
2366 free_kmem_cache_nodes(s);
2367 error:
2368 if (flags & SLAB_PANIC)
2369 panic("Cannot create slab %s size=%lu realsize=%u "
2370 "order=%u offset=%u flags=%lx\n",
2371 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2372 s->offset, flags);
2373 return 0;
2374 }
2375
2376 /*
2377 * Check if a given pointer is valid
2378 */
2379 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2380 {
2381 struct page *page;
2382
2383 page = get_object_page(object);
2384
2385 if (!page || s != page->slab)
2386 /* No slab or wrong slab */
2387 return 0;
2388
2389 if (!check_valid_pointer(s, page, object))
2390 return 0;
2391
2392 /*
2393 * We could also check if the object is on the slabs freelist.
2394 * But this would be too expensive and it seems that the main
2395 * purpose of kmem_ptr_valid() is to check if the object belongs
2396 * to a certain slab.
2397 */
2398 return 1;
2399 }
2400 EXPORT_SYMBOL(kmem_ptr_validate);
2401
2402 /*
2403 * Determine the size of a slab object
2404 */
2405 unsigned int kmem_cache_size(struct kmem_cache *s)
2406 {
2407 return s->objsize;
2408 }
2409 EXPORT_SYMBOL(kmem_cache_size);
2410
2411 const char *kmem_cache_name(struct kmem_cache *s)
2412 {
2413 return s->name;
2414 }
2415 EXPORT_SYMBOL(kmem_cache_name);
2416
2417 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2418 const char *text)
2419 {
2420 #ifdef CONFIG_SLUB_DEBUG
2421 void *addr = page_address(page);
2422 void *p;
2423 DECLARE_BITMAP(map, page->objects);
2424
2425 bitmap_zero(map, page->objects);
2426 slab_err(s, page, "%s", text);
2427 slab_lock(page);
2428 for_each_free_object(p, s, page->freelist)
2429 set_bit(slab_index(p, s, addr), map);
2430
2431 for_each_object(p, s, addr, page->objects) {
2432
2433 if (!test_bit(slab_index(p, s, addr), map)) {
2434 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2435 p, p - addr);
2436 print_tracking(s, p);
2437 }
2438 }
2439 slab_unlock(page);
2440 #endif
2441 }
2442
2443 /*
2444 * Attempt to free all partial slabs on a node.
2445 */
2446 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2447 {
2448 unsigned long flags;
2449 struct page *page, *h;
2450
2451 spin_lock_irqsave(&n->list_lock, flags);
2452 list_for_each_entry_safe(page, h, &n->partial, lru) {
2453 if (!page->inuse) {
2454 list_del(&page->lru);
2455 discard_slab(s, page);
2456 n->nr_partial--;
2457 } else {
2458 list_slab_objects(s, page,
2459 "Objects remaining on kmem_cache_close()");
2460 }
2461 }
2462 spin_unlock_irqrestore(&n->list_lock, flags);
2463 }
2464
2465 /*
2466 * Release all resources used by a slab cache.
2467 */
2468 static inline int kmem_cache_close(struct kmem_cache *s)
2469 {
2470 int node;
2471
2472 flush_all(s);
2473
2474 /* Attempt to free all objects */
2475 free_kmem_cache_cpus(s);
2476 for_each_node_state(node, N_NORMAL_MEMORY) {
2477 struct kmem_cache_node *n = get_node(s, node);
2478
2479 free_partial(s, n);
2480 if (n->nr_partial || slabs_node(s, node))
2481 return 1;
2482 }
2483 free_kmem_cache_nodes(s);
2484 return 0;
2485 }
2486
2487 /*
2488 * Close a cache and release the kmem_cache structure
2489 * (must be used for caches created using kmem_cache_create)
2490 */
2491 void kmem_cache_destroy(struct kmem_cache *s)
2492 {
2493 down_write(&slub_lock);
2494 s->refcount--;
2495 if (!s->refcount) {
2496 list_del(&s->list);
2497 up_write(&slub_lock);
2498 if (kmem_cache_close(s)) {
2499 printk(KERN_ERR "SLUB %s: %s called for cache that "
2500 "still has objects.\n", s->name, __func__);
2501 dump_stack();
2502 }
2503 sysfs_slab_remove(s);
2504 } else
2505 up_write(&slub_lock);
2506 }
2507 EXPORT_SYMBOL(kmem_cache_destroy);
2508
2509 /********************************************************************
2510 * Kmalloc subsystem
2511 *******************************************************************/
2512
2513 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2514 EXPORT_SYMBOL(kmalloc_caches);
2515
2516 static int __init setup_slub_min_order(char *str)
2517 {
2518 get_option(&str, &slub_min_order);
2519
2520 return 1;
2521 }
2522
2523 __setup("slub_min_order=", setup_slub_min_order);
2524
2525 static int __init setup_slub_max_order(char *str)
2526 {
2527 get_option(&str, &slub_max_order);
2528 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2529
2530 return 1;
2531 }
2532
2533 __setup("slub_max_order=", setup_slub_max_order);
2534
2535 static int __init setup_slub_min_objects(char *str)
2536 {
2537 get_option(&str, &slub_min_objects);
2538
2539 return 1;
2540 }
2541
2542 __setup("slub_min_objects=", setup_slub_min_objects);
2543
2544 static int __init setup_slub_nomerge(char *str)
2545 {
2546 slub_nomerge = 1;
2547 return 1;
2548 }
2549
2550 __setup("slub_nomerge", setup_slub_nomerge);
2551
2552 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2553 const char *name, int size, gfp_t gfp_flags)
2554 {
2555 unsigned int flags = 0;
2556
2557 if (gfp_flags & SLUB_DMA)
2558 flags = SLAB_CACHE_DMA;
2559
2560 /*
2561 * This function is called with IRQs disabled during early-boot on
2562 * single CPU so there's no need to take slub_lock here.
2563 */
2564 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2565 flags, NULL))
2566 goto panic;
2567
2568 list_add(&s->list, &slab_caches);
2569
2570 if (sysfs_slab_add(s))
2571 goto panic;
2572 return s;
2573
2574 panic:
2575 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2576 }
2577
2578 #ifdef CONFIG_ZONE_DMA
2579 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2580
2581 static void sysfs_add_func(struct work_struct *w)
2582 {
2583 struct kmem_cache *s;
2584
2585 down_write(&slub_lock);
2586 list_for_each_entry(s, &slab_caches, list) {
2587 if (s->flags & __SYSFS_ADD_DEFERRED) {
2588 s->flags &= ~__SYSFS_ADD_DEFERRED;
2589 sysfs_slab_add(s);
2590 }
2591 }
2592 up_write(&slub_lock);
2593 }
2594
2595 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2596
2597 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2598 {
2599 struct kmem_cache *s;
2600 char *text;
2601 size_t realsize;
2602
2603 s = kmalloc_caches_dma[index];
2604 if (s)
2605 return s;
2606
2607 /* Dynamically create dma cache */
2608 if (flags & __GFP_WAIT)
2609 down_write(&slub_lock);
2610 else {
2611 if (!down_write_trylock(&slub_lock))
2612 goto out;
2613 }
2614
2615 if (kmalloc_caches_dma[index])
2616 goto unlock_out;
2617
2618 realsize = kmalloc_caches[index].objsize;
2619 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2620 (unsigned int)realsize);
2621 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2622
2623 if (!s || !text || !kmem_cache_open(s, flags, text,
2624 realsize, ARCH_KMALLOC_MINALIGN,
2625 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2626 kfree(s);
2627 kfree(text);
2628 goto unlock_out;
2629 }
2630
2631 list_add(&s->list, &slab_caches);
2632 kmalloc_caches_dma[index] = s;
2633
2634 schedule_work(&sysfs_add_work);
2635
2636 unlock_out:
2637 up_write(&slub_lock);
2638 out:
2639 return kmalloc_caches_dma[index];
2640 }
2641 #endif
2642
2643 /*
2644 * Conversion table for small slabs sizes / 8 to the index in the
2645 * kmalloc array. This is necessary for slabs < 192 since we have non power
2646 * of two cache sizes there. The size of larger slabs can be determined using
2647 * fls.
2648 */
2649 static s8 size_index[24] = {
2650 3, /* 8 */
2651 4, /* 16 */
2652 5, /* 24 */
2653 5, /* 32 */
2654 6, /* 40 */
2655 6, /* 48 */
2656 6, /* 56 */
2657 6, /* 64 */
2658 1, /* 72 */
2659 1, /* 80 */
2660 1, /* 88 */
2661 1, /* 96 */
2662 7, /* 104 */
2663 7, /* 112 */
2664 7, /* 120 */
2665 7, /* 128 */
2666 2, /* 136 */
2667 2, /* 144 */
2668 2, /* 152 */
2669 2, /* 160 */
2670 2, /* 168 */
2671 2, /* 176 */
2672 2, /* 184 */
2673 2 /* 192 */
2674 };
2675
2676 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2677 {
2678 int index;
2679
2680 if (size <= 192) {
2681 if (!size)
2682 return ZERO_SIZE_PTR;
2683
2684 index = size_index[(size - 1) / 8];
2685 } else
2686 index = fls(size - 1);
2687
2688 #ifdef CONFIG_ZONE_DMA
2689 if (unlikely((flags & SLUB_DMA)))
2690 return dma_kmalloc_cache(index, flags);
2691
2692 #endif
2693 return &kmalloc_caches[index];
2694 }
2695
2696 void *__kmalloc(size_t size, gfp_t flags)
2697 {
2698 struct kmem_cache *s;
2699 void *ret;
2700
2701 if (unlikely(size > SLUB_MAX_SIZE))
2702 return kmalloc_large(size, flags);
2703
2704 s = get_slab(size, flags);
2705
2706 if (unlikely(ZERO_OR_NULL_PTR(s)))
2707 return s;
2708
2709 ret = slab_alloc(s, flags, -1, _RET_IP_);
2710
2711 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2712
2713 return ret;
2714 }
2715 EXPORT_SYMBOL(__kmalloc);
2716
2717 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2718 {
2719 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2720 get_order(size));
2721
2722 if (page)
2723 return page_address(page);
2724 else
2725 return NULL;
2726 }
2727
2728 #ifdef CONFIG_NUMA
2729 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2730 {
2731 struct kmem_cache *s;
2732 void *ret;
2733
2734 if (unlikely(size > SLUB_MAX_SIZE)) {
2735 ret = kmalloc_large_node(size, flags, node);
2736
2737 trace_kmalloc_node(_RET_IP_, ret,
2738 size, PAGE_SIZE << get_order(size),
2739 flags, node);
2740
2741 return ret;
2742 }
2743
2744 s = get_slab(size, flags);
2745
2746 if (unlikely(ZERO_OR_NULL_PTR(s)))
2747 return s;
2748
2749 ret = slab_alloc(s, flags, node, _RET_IP_);
2750
2751 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2752
2753 return ret;
2754 }
2755 EXPORT_SYMBOL(__kmalloc_node);
2756 #endif
2757
2758 size_t ksize(const void *object)
2759 {
2760 struct page *page;
2761 struct kmem_cache *s;
2762
2763 if (unlikely(object == ZERO_SIZE_PTR))
2764 return 0;
2765
2766 page = virt_to_head_page(object);
2767
2768 if (unlikely(!PageSlab(page))) {
2769 WARN_ON(!PageCompound(page));
2770 return PAGE_SIZE << compound_order(page);
2771 }
2772 s = page->slab;
2773
2774 #ifdef CONFIG_SLUB_DEBUG
2775 /*
2776 * Debugging requires use of the padding between object
2777 * and whatever may come after it.
2778 */
2779 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2780 return s->objsize;
2781
2782 #endif
2783 /*
2784 * If we have the need to store the freelist pointer
2785 * back there or track user information then we can
2786 * only use the space before that information.
2787 */
2788 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2789 return s->inuse;
2790 /*
2791 * Else we can use all the padding etc for the allocation
2792 */
2793 return s->size;
2794 }
2795 EXPORT_SYMBOL(ksize);
2796
2797 void kfree(const void *x)
2798 {
2799 struct page *page;
2800 void *object = (void *)x;
2801
2802 trace_kfree(_RET_IP_, x);
2803
2804 if (unlikely(ZERO_OR_NULL_PTR(x)))
2805 return;
2806
2807 page = virt_to_head_page(x);
2808 if (unlikely(!PageSlab(page))) {
2809 BUG_ON(!PageCompound(page));
2810 put_page(page);
2811 return;
2812 }
2813 slab_free(page->slab, page, object, _RET_IP_);
2814 }
2815 EXPORT_SYMBOL(kfree);
2816
2817 /*
2818 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2819 * the remaining slabs by the number of items in use. The slabs with the
2820 * most items in use come first. New allocations will then fill those up
2821 * and thus they can be removed from the partial lists.
2822 *
2823 * The slabs with the least items are placed last. This results in them
2824 * being allocated from last increasing the chance that the last objects
2825 * are freed in them.
2826 */
2827 int kmem_cache_shrink(struct kmem_cache *s)
2828 {
2829 int node;
2830 int i;
2831 struct kmem_cache_node *n;
2832 struct page *page;
2833 struct page *t;
2834 int objects = oo_objects(s->max);
2835 struct list_head *slabs_by_inuse =
2836 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2837 unsigned long flags;
2838
2839 if (!slabs_by_inuse)
2840 return -ENOMEM;
2841
2842 flush_all(s);
2843 for_each_node_state(node, N_NORMAL_MEMORY) {
2844 n = get_node(s, node);
2845
2846 if (!n->nr_partial)
2847 continue;
2848
2849 for (i = 0; i < objects; i++)
2850 INIT_LIST_HEAD(slabs_by_inuse + i);
2851
2852 spin_lock_irqsave(&n->list_lock, flags);
2853
2854 /*
2855 * Build lists indexed by the items in use in each slab.
2856 *
2857 * Note that concurrent frees may occur while we hold the
2858 * list_lock. page->inuse here is the upper limit.
2859 */
2860 list_for_each_entry_safe(page, t, &n->partial, lru) {
2861 if (!page->inuse && slab_trylock(page)) {
2862 /*
2863 * Must hold slab lock here because slab_free
2864 * may have freed the last object and be
2865 * waiting to release the slab.
2866 */
2867 list_del(&page->lru);
2868 n->nr_partial--;
2869 slab_unlock(page);
2870 discard_slab(s, page);
2871 } else {
2872 list_move(&page->lru,
2873 slabs_by_inuse + page->inuse);
2874 }
2875 }
2876
2877 /*
2878 * Rebuild the partial list with the slabs filled up most
2879 * first and the least used slabs at the end.
2880 */
2881 for (i = objects - 1; i >= 0; i--)
2882 list_splice(slabs_by_inuse + i, n->partial.prev);
2883
2884 spin_unlock_irqrestore(&n->list_lock, flags);
2885 }
2886
2887 kfree(slabs_by_inuse);
2888 return 0;
2889 }
2890 EXPORT_SYMBOL(kmem_cache_shrink);
2891
2892 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2893 static int slab_mem_going_offline_callback(void *arg)
2894 {
2895 struct kmem_cache *s;
2896
2897 down_read(&slub_lock);
2898 list_for_each_entry(s, &slab_caches, list)
2899 kmem_cache_shrink(s);
2900 up_read(&slub_lock);
2901
2902 return 0;
2903 }
2904
2905 static void slab_mem_offline_callback(void *arg)
2906 {
2907 struct kmem_cache_node *n;
2908 struct kmem_cache *s;
2909 struct memory_notify *marg = arg;
2910 int offline_node;
2911
2912 offline_node = marg->status_change_nid;
2913
2914 /*
2915 * If the node still has available memory. we need kmem_cache_node
2916 * for it yet.
2917 */
2918 if (offline_node < 0)
2919 return;
2920
2921 down_read(&slub_lock);
2922 list_for_each_entry(s, &slab_caches, list) {
2923 n = get_node(s, offline_node);
2924 if (n) {
2925 /*
2926 * if n->nr_slabs > 0, slabs still exist on the node
2927 * that is going down. We were unable to free them,
2928 * and offline_pages() function shoudn't call this
2929 * callback. So, we must fail.
2930 */
2931 BUG_ON(slabs_node(s, offline_node));
2932
2933 s->node[offline_node] = NULL;
2934 kmem_cache_free(kmalloc_caches, n);
2935 }
2936 }
2937 up_read(&slub_lock);
2938 }
2939
2940 static int slab_mem_going_online_callback(void *arg)
2941 {
2942 struct kmem_cache_node *n;
2943 struct kmem_cache *s;
2944 struct memory_notify *marg = arg;
2945 int nid = marg->status_change_nid;
2946 int ret = 0;
2947
2948 /*
2949 * If the node's memory is already available, then kmem_cache_node is
2950 * already created. Nothing to do.
2951 */
2952 if (nid < 0)
2953 return 0;
2954
2955 /*
2956 * We are bringing a node online. No memory is available yet. We must
2957 * allocate a kmem_cache_node structure in order to bring the node
2958 * online.
2959 */
2960 down_read(&slub_lock);
2961 list_for_each_entry(s, &slab_caches, list) {
2962 /*
2963 * XXX: kmem_cache_alloc_node will fallback to other nodes
2964 * since memory is not yet available from the node that
2965 * is brought up.
2966 */
2967 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2968 if (!n) {
2969 ret = -ENOMEM;
2970 goto out;
2971 }
2972 init_kmem_cache_node(n, s);
2973 s->node[nid] = n;
2974 }
2975 out:
2976 up_read(&slub_lock);
2977 return ret;
2978 }
2979
2980 static int slab_memory_callback(struct notifier_block *self,
2981 unsigned long action, void *arg)
2982 {
2983 int ret = 0;
2984
2985 switch (action) {
2986 case MEM_GOING_ONLINE:
2987 ret = slab_mem_going_online_callback(arg);
2988 break;
2989 case MEM_GOING_OFFLINE:
2990 ret = slab_mem_going_offline_callback(arg);
2991 break;
2992 case MEM_OFFLINE:
2993 case MEM_CANCEL_ONLINE:
2994 slab_mem_offline_callback(arg);
2995 break;
2996 case MEM_ONLINE:
2997 case MEM_CANCEL_OFFLINE:
2998 break;
2999 }
3000 if (ret)
3001 ret = notifier_from_errno(ret);
3002 else
3003 ret = NOTIFY_OK;
3004 return ret;
3005 }
3006
3007 #endif /* CONFIG_MEMORY_HOTPLUG */
3008
3009 /********************************************************************
3010 * Basic setup of slabs
3011 *******************************************************************/
3012
3013 void __init kmem_cache_init(void)
3014 {
3015 int i;
3016 int caches = 0;
3017
3018 init_alloc_cpu();
3019
3020 #ifdef CONFIG_NUMA
3021 /*
3022 * Must first have the slab cache available for the allocations of the
3023 * struct kmem_cache_node's. There is special bootstrap code in
3024 * kmem_cache_open for slab_state == DOWN.
3025 */
3026 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3027 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3028 kmalloc_caches[0].refcount = -1;
3029 caches++;
3030
3031 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3032 #endif
3033
3034 /* Able to allocate the per node structures */
3035 slab_state = PARTIAL;
3036
3037 /* Caches that are not of the two-to-the-power-of size */
3038 if (KMALLOC_MIN_SIZE <= 64) {
3039 create_kmalloc_cache(&kmalloc_caches[1],
3040 "kmalloc-96", 96, GFP_NOWAIT);
3041 caches++;
3042 create_kmalloc_cache(&kmalloc_caches[2],
3043 "kmalloc-192", 192, GFP_NOWAIT);
3044 caches++;
3045 }
3046
3047 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3048 create_kmalloc_cache(&kmalloc_caches[i],
3049 "kmalloc", 1 << i, GFP_NOWAIT);
3050 caches++;
3051 }
3052
3053
3054 /*
3055 * Patch up the size_index table if we have strange large alignment
3056 * requirements for the kmalloc array. This is only the case for
3057 * MIPS it seems. The standard arches will not generate any code here.
3058 *
3059 * Largest permitted alignment is 256 bytes due to the way we
3060 * handle the index determination for the smaller caches.
3061 *
3062 * Make sure that nothing crazy happens if someone starts tinkering
3063 * around with ARCH_KMALLOC_MINALIGN
3064 */
3065 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3066 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3067
3068 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3069 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3070
3071 if (KMALLOC_MIN_SIZE == 128) {
3072 /*
3073 * The 192 byte sized cache is not used if the alignment
3074 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3075 * instead.
3076 */
3077 for (i = 128 + 8; i <= 192; i += 8)
3078 size_index[(i - 1) / 8] = 8;
3079 }
3080
3081 slab_state = UP;
3082
3083 /* Provide the correct kmalloc names now that the caches are up */
3084 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3085 kmalloc_caches[i]. name =
3086 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3087
3088 #ifdef CONFIG_SMP
3089 register_cpu_notifier(&slab_notifier);
3090 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3091 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3092 #else
3093 kmem_size = sizeof(struct kmem_cache);
3094 #endif
3095
3096 printk(KERN_INFO
3097 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3098 " CPUs=%d, Nodes=%d\n",
3099 caches, cache_line_size(),
3100 slub_min_order, slub_max_order, slub_min_objects,
3101 nr_cpu_ids, nr_node_ids);
3102 }
3103
3104 /*
3105 * Find a mergeable slab cache
3106 */
3107 static int slab_unmergeable(struct kmem_cache *s)
3108 {
3109 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3110 return 1;
3111
3112 if (s->ctor)
3113 return 1;
3114
3115 /*
3116 * We may have set a slab to be unmergeable during bootstrap.
3117 */
3118 if (s->refcount < 0)
3119 return 1;
3120
3121 return 0;
3122 }
3123
3124 static struct kmem_cache *find_mergeable(size_t size,
3125 size_t align, unsigned long flags, const char *name,
3126 void (*ctor)(void *))
3127 {
3128 struct kmem_cache *s;
3129
3130 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3131 return NULL;
3132
3133 if (ctor)
3134 return NULL;
3135
3136 size = ALIGN(size, sizeof(void *));
3137 align = calculate_alignment(flags, align, size);
3138 size = ALIGN(size, align);
3139 flags = kmem_cache_flags(size, flags, name, NULL);
3140
3141 list_for_each_entry(s, &slab_caches, list) {
3142 if (slab_unmergeable(s))
3143 continue;
3144
3145 if (size > s->size)
3146 continue;
3147
3148 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3149 continue;
3150 /*
3151 * Check if alignment is compatible.
3152 * Courtesy of Adrian Drzewiecki
3153 */
3154 if ((s->size & ~(align - 1)) != s->size)
3155 continue;
3156
3157 if (s->size - size >= sizeof(void *))
3158 continue;
3159
3160 return s;
3161 }
3162 return NULL;
3163 }
3164
3165 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3166 size_t align, unsigned long flags, void (*ctor)(void *))
3167 {
3168 struct kmem_cache *s;
3169
3170 down_write(&slub_lock);
3171 s = find_mergeable(size, align, flags, name, ctor);
3172 if (s) {
3173 int cpu;
3174
3175 s->refcount++;
3176 /*
3177 * Adjust the object sizes so that we clear
3178 * the complete object on kzalloc.
3179 */
3180 s->objsize = max(s->objsize, (int)size);
3181
3182 /*
3183 * And then we need to update the object size in the
3184 * per cpu structures
3185 */
3186 for_each_online_cpu(cpu)
3187 get_cpu_slab(s, cpu)->objsize = s->objsize;
3188
3189 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3190 up_write(&slub_lock);
3191
3192 if (sysfs_slab_alias(s, name)) {
3193 down_write(&slub_lock);
3194 s->refcount--;
3195 up_write(&slub_lock);
3196 goto err;
3197 }
3198 return s;
3199 }
3200
3201 s = kmalloc(kmem_size, GFP_KERNEL);
3202 if (s) {
3203 if (kmem_cache_open(s, GFP_KERNEL, name,
3204 size, align, flags, ctor)) {
3205 list_add(&s->list, &slab_caches);
3206 up_write(&slub_lock);
3207 if (sysfs_slab_add(s)) {
3208 down_write(&slub_lock);
3209 list_del(&s->list);
3210 up_write(&slub_lock);
3211 kfree(s);
3212 goto err;
3213 }
3214 return s;
3215 }
3216 kfree(s);
3217 }
3218 up_write(&slub_lock);
3219
3220 err:
3221 if (flags & SLAB_PANIC)
3222 panic("Cannot create slabcache %s\n", name);
3223 else
3224 s = NULL;
3225 return s;
3226 }
3227 EXPORT_SYMBOL(kmem_cache_create);
3228
3229 #ifdef CONFIG_SMP
3230 /*
3231 * Use the cpu notifier to insure that the cpu slabs are flushed when
3232 * necessary.
3233 */
3234 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3235 unsigned long action, void *hcpu)
3236 {
3237 long cpu = (long)hcpu;
3238 struct kmem_cache *s;
3239 unsigned long flags;
3240
3241 switch (action) {
3242 case CPU_UP_PREPARE:
3243 case CPU_UP_PREPARE_FROZEN:
3244 init_alloc_cpu_cpu(cpu);
3245 down_read(&slub_lock);
3246 list_for_each_entry(s, &slab_caches, list)
3247 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3248 GFP_KERNEL);
3249 up_read(&slub_lock);
3250 break;
3251
3252 case CPU_UP_CANCELED:
3253 case CPU_UP_CANCELED_FROZEN:
3254 case CPU_DEAD:
3255 case CPU_DEAD_FROZEN:
3256 down_read(&slub_lock);
3257 list_for_each_entry(s, &slab_caches, list) {
3258 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3259
3260 local_irq_save(flags);
3261 __flush_cpu_slab(s, cpu);
3262 local_irq_restore(flags);
3263 free_kmem_cache_cpu(c, cpu);
3264 s->cpu_slab[cpu] = NULL;
3265 }
3266 up_read(&slub_lock);
3267 break;
3268 default:
3269 break;
3270 }
3271 return NOTIFY_OK;
3272 }
3273
3274 static struct notifier_block __cpuinitdata slab_notifier = {
3275 .notifier_call = slab_cpuup_callback
3276 };
3277
3278 #endif
3279
3280 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3281 {
3282 struct kmem_cache *s;
3283 void *ret;
3284
3285 if (unlikely(size > SLUB_MAX_SIZE))
3286 return kmalloc_large(size, gfpflags);
3287
3288 s = get_slab(size, gfpflags);
3289
3290 if (unlikely(ZERO_OR_NULL_PTR(s)))
3291 return s;
3292
3293 ret = slab_alloc(s, gfpflags, -1, caller);
3294
3295 /* Honor the call site pointer we recieved. */
3296 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3297
3298 return ret;
3299 }
3300
3301 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3302 int node, unsigned long caller)
3303 {
3304 struct kmem_cache *s;
3305 void *ret;
3306
3307 if (unlikely(size > SLUB_MAX_SIZE))
3308 return kmalloc_large_node(size, gfpflags, node);
3309
3310 s = get_slab(size, gfpflags);
3311
3312 if (unlikely(ZERO_OR_NULL_PTR(s)))
3313 return s;
3314
3315 ret = slab_alloc(s, gfpflags, node, caller);
3316
3317 /* Honor the call site pointer we recieved. */
3318 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3319
3320 return ret;
3321 }
3322
3323 #ifdef CONFIG_SLUB_DEBUG
3324 static unsigned long count_partial(struct kmem_cache_node *n,
3325 int (*get_count)(struct page *))
3326 {
3327 unsigned long flags;
3328 unsigned long x = 0;
3329 struct page *page;
3330
3331 spin_lock_irqsave(&n->list_lock, flags);
3332 list_for_each_entry(page, &n->partial, lru)
3333 x += get_count(page);
3334 spin_unlock_irqrestore(&n->list_lock, flags);
3335 return x;
3336 }
3337
3338 static int count_inuse(struct page *page)
3339 {
3340 return page->inuse;
3341 }
3342
3343 static int count_total(struct page *page)
3344 {
3345 return page->objects;
3346 }
3347
3348 static int count_free(struct page *page)
3349 {
3350 return page->objects - page->inuse;
3351 }
3352
3353 static int validate_slab(struct kmem_cache *s, struct page *page,
3354 unsigned long *map)
3355 {
3356 void *p;
3357 void *addr = page_address(page);
3358
3359 if (!check_slab(s, page) ||
3360 !on_freelist(s, page, NULL))
3361 return 0;
3362
3363 /* Now we know that a valid freelist exists */
3364 bitmap_zero(map, page->objects);
3365
3366 for_each_free_object(p, s, page->freelist) {
3367 set_bit(slab_index(p, s, addr), map);
3368 if (!check_object(s, page, p, 0))
3369 return 0;
3370 }
3371
3372 for_each_object(p, s, addr, page->objects)
3373 if (!test_bit(slab_index(p, s, addr), map))
3374 if (!check_object(s, page, p, 1))
3375 return 0;
3376 return 1;
3377 }
3378
3379 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3380 unsigned long *map)
3381 {
3382 if (slab_trylock(page)) {
3383 validate_slab(s, page, map);
3384 slab_unlock(page);
3385 } else
3386 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3387 s->name, page);
3388
3389 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3390 if (!PageSlubDebug(page))
3391 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3392 "on slab 0x%p\n", s->name, page);
3393 } else {
3394 if (PageSlubDebug(page))
3395 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3396 "slab 0x%p\n", s->name, page);
3397 }
3398 }
3399
3400 static int validate_slab_node(struct kmem_cache *s,
3401 struct kmem_cache_node *n, unsigned long *map)
3402 {
3403 unsigned long count = 0;
3404 struct page *page;
3405 unsigned long flags;
3406
3407 spin_lock_irqsave(&n->list_lock, flags);
3408
3409 list_for_each_entry(page, &n->partial, lru) {
3410 validate_slab_slab(s, page, map);
3411 count++;
3412 }
3413 if (count != n->nr_partial)
3414 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3415 "counter=%ld\n", s->name, count, n->nr_partial);
3416
3417 if (!(s->flags & SLAB_STORE_USER))
3418 goto out;
3419
3420 list_for_each_entry(page, &n->full, lru) {
3421 validate_slab_slab(s, page, map);
3422 count++;
3423 }
3424 if (count != atomic_long_read(&n->nr_slabs))
3425 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3426 "counter=%ld\n", s->name, count,
3427 atomic_long_read(&n->nr_slabs));
3428
3429 out:
3430 spin_unlock_irqrestore(&n->list_lock, flags);
3431 return count;
3432 }
3433
3434 static long validate_slab_cache(struct kmem_cache *s)
3435 {
3436 int node;
3437 unsigned long count = 0;
3438 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3439 sizeof(unsigned long), GFP_KERNEL);
3440
3441 if (!map)
3442 return -ENOMEM;
3443
3444 flush_all(s);
3445 for_each_node_state(node, N_NORMAL_MEMORY) {
3446 struct kmem_cache_node *n = get_node(s, node);
3447
3448 count += validate_slab_node(s, n, map);
3449 }
3450 kfree(map);
3451 return count;
3452 }
3453
3454 #ifdef SLUB_RESILIENCY_TEST
3455 static void resiliency_test(void)
3456 {
3457 u8 *p;
3458
3459 printk(KERN_ERR "SLUB resiliency testing\n");
3460 printk(KERN_ERR "-----------------------\n");
3461 printk(KERN_ERR "A. Corruption after allocation\n");
3462
3463 p = kzalloc(16, GFP_KERNEL);
3464 p[16] = 0x12;
3465 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3466 " 0x12->0x%p\n\n", p + 16);
3467
3468 validate_slab_cache(kmalloc_caches + 4);
3469
3470 /* Hmmm... The next two are dangerous */
3471 p = kzalloc(32, GFP_KERNEL);
3472 p[32 + sizeof(void *)] = 0x34;
3473 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3474 " 0x34 -> -0x%p\n", p);
3475 printk(KERN_ERR
3476 "If allocated object is overwritten then not detectable\n\n");
3477
3478 validate_slab_cache(kmalloc_caches + 5);
3479 p = kzalloc(64, GFP_KERNEL);
3480 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3481 *p = 0x56;
3482 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3483 p);
3484 printk(KERN_ERR
3485 "If allocated object is overwritten then not detectable\n\n");
3486 validate_slab_cache(kmalloc_caches + 6);
3487
3488 printk(KERN_ERR "\nB. Corruption after free\n");
3489 p = kzalloc(128, GFP_KERNEL);
3490 kfree(p);
3491 *p = 0x78;
3492 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3493 validate_slab_cache(kmalloc_caches + 7);
3494
3495 p = kzalloc(256, GFP_KERNEL);
3496 kfree(p);
3497 p[50] = 0x9a;
3498 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3499 p);
3500 validate_slab_cache(kmalloc_caches + 8);
3501
3502 p = kzalloc(512, GFP_KERNEL);
3503 kfree(p);
3504 p[512] = 0xab;
3505 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3506 validate_slab_cache(kmalloc_caches + 9);
3507 }
3508 #else
3509 static void resiliency_test(void) {};
3510 #endif
3511
3512 /*
3513 * Generate lists of code addresses where slabcache objects are allocated
3514 * and freed.
3515 */
3516
3517 struct location {
3518 unsigned long count;
3519 unsigned long addr;
3520 long long sum_time;
3521 long min_time;
3522 long max_time;
3523 long min_pid;
3524 long max_pid;
3525 DECLARE_BITMAP(cpus, NR_CPUS);
3526 nodemask_t nodes;
3527 };
3528
3529 struct loc_track {
3530 unsigned long max;
3531 unsigned long count;
3532 struct location *loc;
3533 };
3534
3535 static void free_loc_track(struct loc_track *t)
3536 {
3537 if (t->max)
3538 free_pages((unsigned long)t->loc,
3539 get_order(sizeof(struct location) * t->max));
3540 }
3541
3542 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3543 {
3544 struct location *l;
3545 int order;
3546
3547 order = get_order(sizeof(struct location) * max);
3548
3549 l = (void *)__get_free_pages(flags, order);
3550 if (!l)
3551 return 0;
3552
3553 if (t->count) {
3554 memcpy(l, t->loc, sizeof(struct location) * t->count);
3555 free_loc_track(t);
3556 }
3557 t->max = max;
3558 t->loc = l;
3559 return 1;
3560 }
3561
3562 static int add_location(struct loc_track *t, struct kmem_cache *s,
3563 const struct track *track)
3564 {
3565 long start, end, pos;
3566 struct location *l;
3567 unsigned long caddr;
3568 unsigned long age = jiffies - track->when;
3569
3570 start = -1;
3571 end = t->count;
3572
3573 for ( ; ; ) {
3574 pos = start + (end - start + 1) / 2;
3575
3576 /*
3577 * There is nothing at "end". If we end up there
3578 * we need to add something to before end.
3579 */
3580 if (pos == end)
3581 break;
3582
3583 caddr = t->loc[pos].addr;
3584 if (track->addr == caddr) {
3585
3586 l = &t->loc[pos];
3587 l->count++;
3588 if (track->when) {
3589 l->sum_time += age;
3590 if (age < l->min_time)
3591 l->min_time = age;
3592 if (age > l->max_time)
3593 l->max_time = age;
3594
3595 if (track->pid < l->min_pid)
3596 l->min_pid = track->pid;
3597 if (track->pid > l->max_pid)
3598 l->max_pid = track->pid;
3599
3600 cpumask_set_cpu(track->cpu,
3601 to_cpumask(l->cpus));
3602 }
3603 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3604 return 1;
3605 }
3606
3607 if (track->addr < caddr)
3608 end = pos;
3609 else
3610 start = pos;
3611 }
3612
3613 /*
3614 * Not found. Insert new tracking element.
3615 */
3616 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3617 return 0;
3618
3619 l = t->loc + pos;
3620 if (pos < t->count)
3621 memmove(l + 1, l,
3622 (t->count - pos) * sizeof(struct location));
3623 t->count++;
3624 l->count = 1;
3625 l->addr = track->addr;
3626 l->sum_time = age;
3627 l->min_time = age;
3628 l->max_time = age;
3629 l->min_pid = track->pid;
3630 l->max_pid = track->pid;
3631 cpumask_clear(to_cpumask(l->cpus));
3632 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3633 nodes_clear(l->nodes);
3634 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3635 return 1;
3636 }
3637
3638 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3639 struct page *page, enum track_item alloc)
3640 {
3641 void *addr = page_address(page);
3642 DECLARE_BITMAP(map, page->objects);
3643 void *p;
3644
3645 bitmap_zero(map, page->objects);
3646 for_each_free_object(p, s, page->freelist)
3647 set_bit(slab_index(p, s, addr), map);
3648
3649 for_each_object(p, s, addr, page->objects)
3650 if (!test_bit(slab_index(p, s, addr), map))
3651 add_location(t, s, get_track(s, p, alloc));
3652 }
3653
3654 static int list_locations(struct kmem_cache *s, char *buf,
3655 enum track_item alloc)
3656 {
3657 int len = 0;
3658 unsigned long i;
3659 struct loc_track t = { 0, 0, NULL };
3660 int node;
3661
3662 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3663 GFP_TEMPORARY))
3664 return sprintf(buf, "Out of memory\n");
3665
3666 /* Push back cpu slabs */
3667 flush_all(s);
3668
3669 for_each_node_state(node, N_NORMAL_MEMORY) {
3670 struct kmem_cache_node *n = get_node(s, node);
3671 unsigned long flags;
3672 struct page *page;
3673
3674 if (!atomic_long_read(&n->nr_slabs))
3675 continue;
3676
3677 spin_lock_irqsave(&n->list_lock, flags);
3678 list_for_each_entry(page, &n->partial, lru)
3679 process_slab(&t, s, page, alloc);
3680 list_for_each_entry(page, &n->full, lru)
3681 process_slab(&t, s, page, alloc);
3682 spin_unlock_irqrestore(&n->list_lock, flags);
3683 }
3684
3685 for (i = 0; i < t.count; i++) {
3686 struct location *l = &t.loc[i];
3687
3688 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3689 break;
3690 len += sprintf(buf + len, "%7ld ", l->count);
3691
3692 if (l->addr)
3693 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3694 else
3695 len += sprintf(buf + len, "<not-available>");
3696
3697 if (l->sum_time != l->min_time) {
3698 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3699 l->min_time,
3700 (long)div_u64(l->sum_time, l->count),
3701 l->max_time);
3702 } else
3703 len += sprintf(buf + len, " age=%ld",
3704 l->min_time);
3705
3706 if (l->min_pid != l->max_pid)
3707 len += sprintf(buf + len, " pid=%ld-%ld",
3708 l->min_pid, l->max_pid);
3709 else
3710 len += sprintf(buf + len, " pid=%ld",
3711 l->min_pid);
3712
3713 if (num_online_cpus() > 1 &&
3714 !cpumask_empty(to_cpumask(l->cpus)) &&
3715 len < PAGE_SIZE - 60) {
3716 len += sprintf(buf + len, " cpus=");
3717 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3718 to_cpumask(l->cpus));
3719 }
3720
3721 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3722 len < PAGE_SIZE - 60) {
3723 len += sprintf(buf + len, " nodes=");
3724 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3725 l->nodes);
3726 }
3727
3728 len += sprintf(buf + len, "\n");
3729 }
3730
3731 free_loc_track(&t);
3732 if (!t.count)
3733 len += sprintf(buf, "No data\n");
3734 return len;
3735 }
3736
3737 enum slab_stat_type {
3738 SL_ALL, /* All slabs */
3739 SL_PARTIAL, /* Only partially allocated slabs */
3740 SL_CPU, /* Only slabs used for cpu caches */
3741 SL_OBJECTS, /* Determine allocated objects not slabs */
3742 SL_TOTAL /* Determine object capacity not slabs */
3743 };
3744
3745 #define SO_ALL (1 << SL_ALL)
3746 #define SO_PARTIAL (1 << SL_PARTIAL)
3747 #define SO_CPU (1 << SL_CPU)
3748 #define SO_OBJECTS (1 << SL_OBJECTS)
3749 #define SO_TOTAL (1 << SL_TOTAL)
3750
3751 static ssize_t show_slab_objects(struct kmem_cache *s,
3752 char *buf, unsigned long flags)
3753 {
3754 unsigned long total = 0;
3755 int node;
3756 int x;
3757 unsigned long *nodes;
3758 unsigned long *per_cpu;
3759
3760 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3761 if (!nodes)
3762 return -ENOMEM;
3763 per_cpu = nodes + nr_node_ids;
3764
3765 if (flags & SO_CPU) {
3766 int cpu;
3767
3768 for_each_possible_cpu(cpu) {
3769 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3770
3771 if (!c || c->node < 0)
3772 continue;
3773
3774 if (c->page) {
3775 if (flags & SO_TOTAL)
3776 x = c->page->objects;
3777 else if (flags & SO_OBJECTS)
3778 x = c->page->inuse;
3779 else
3780 x = 1;
3781
3782 total += x;
3783 nodes[c->node] += x;
3784 }
3785 per_cpu[c->node]++;
3786 }
3787 }
3788
3789 if (flags & SO_ALL) {
3790 for_each_node_state(node, N_NORMAL_MEMORY) {
3791 struct kmem_cache_node *n = get_node(s, node);
3792
3793 if (flags & SO_TOTAL)
3794 x = atomic_long_read(&n->total_objects);
3795 else if (flags & SO_OBJECTS)
3796 x = atomic_long_read(&n->total_objects) -
3797 count_partial(n, count_free);
3798
3799 else
3800 x = atomic_long_read(&n->nr_slabs);
3801 total += x;
3802 nodes[node] += x;
3803 }
3804
3805 } else if (flags & SO_PARTIAL) {
3806 for_each_node_state(node, N_NORMAL_MEMORY) {
3807 struct kmem_cache_node *n = get_node(s, node);
3808
3809 if (flags & SO_TOTAL)
3810 x = count_partial(n, count_total);
3811 else if (flags & SO_OBJECTS)
3812 x = count_partial(n, count_inuse);
3813 else
3814 x = n->nr_partial;
3815 total += x;
3816 nodes[node] += x;
3817 }
3818 }
3819 x = sprintf(buf, "%lu", total);
3820 #ifdef CONFIG_NUMA
3821 for_each_node_state(node, N_NORMAL_MEMORY)
3822 if (nodes[node])
3823 x += sprintf(buf + x, " N%d=%lu",
3824 node, nodes[node]);
3825 #endif
3826 kfree(nodes);
3827 return x + sprintf(buf + x, "\n");
3828 }
3829
3830 static int any_slab_objects(struct kmem_cache *s)
3831 {
3832 int node;
3833
3834 for_each_online_node(node) {
3835 struct kmem_cache_node *n = get_node(s, node);
3836
3837 if (!n)
3838 continue;
3839
3840 if (atomic_long_read(&n->total_objects))
3841 return 1;
3842 }
3843 return 0;
3844 }
3845
3846 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3847 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3848
3849 struct slab_attribute {
3850 struct attribute attr;
3851 ssize_t (*show)(struct kmem_cache *s, char *buf);
3852 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3853 };
3854
3855 #define SLAB_ATTR_RO(_name) \
3856 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3857
3858 #define SLAB_ATTR(_name) \
3859 static struct slab_attribute _name##_attr = \
3860 __ATTR(_name, 0644, _name##_show, _name##_store)
3861
3862 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3863 {
3864 return sprintf(buf, "%d\n", s->size);
3865 }
3866 SLAB_ATTR_RO(slab_size);
3867
3868 static ssize_t align_show(struct kmem_cache *s, char *buf)
3869 {
3870 return sprintf(buf, "%d\n", s->align);
3871 }
3872 SLAB_ATTR_RO(align);
3873
3874 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3875 {
3876 return sprintf(buf, "%d\n", s->objsize);
3877 }
3878 SLAB_ATTR_RO(object_size);
3879
3880 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3881 {
3882 return sprintf(buf, "%d\n", oo_objects(s->oo));
3883 }
3884 SLAB_ATTR_RO(objs_per_slab);
3885
3886 static ssize_t order_store(struct kmem_cache *s,
3887 const char *buf, size_t length)
3888 {
3889 unsigned long order;
3890 int err;
3891
3892 err = strict_strtoul(buf, 10, &order);
3893 if (err)
3894 return err;
3895
3896 if (order > slub_max_order || order < slub_min_order)
3897 return -EINVAL;
3898
3899 calculate_sizes(s, order);
3900 return length;
3901 }
3902
3903 static ssize_t order_show(struct kmem_cache *s, char *buf)
3904 {
3905 return sprintf(buf, "%d\n", oo_order(s->oo));
3906 }
3907 SLAB_ATTR(order);
3908
3909 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3910 {
3911 return sprintf(buf, "%lu\n", s->min_partial);
3912 }
3913
3914 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3915 size_t length)
3916 {
3917 unsigned long min;
3918 int err;
3919
3920 err = strict_strtoul(buf, 10, &min);
3921 if (err)
3922 return err;
3923
3924 set_min_partial(s, min);
3925 return length;
3926 }
3927 SLAB_ATTR(min_partial);
3928
3929 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3930 {
3931 if (s->ctor) {
3932 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3933
3934 return n + sprintf(buf + n, "\n");
3935 }
3936 return 0;
3937 }
3938 SLAB_ATTR_RO(ctor);
3939
3940 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3941 {
3942 return sprintf(buf, "%d\n", s->refcount - 1);
3943 }
3944 SLAB_ATTR_RO(aliases);
3945
3946 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3947 {
3948 return show_slab_objects(s, buf, SO_ALL);
3949 }
3950 SLAB_ATTR_RO(slabs);
3951
3952 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3953 {
3954 return show_slab_objects(s, buf, SO_PARTIAL);
3955 }
3956 SLAB_ATTR_RO(partial);
3957
3958 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3959 {
3960 return show_slab_objects(s, buf, SO_CPU);
3961 }
3962 SLAB_ATTR_RO(cpu_slabs);
3963
3964 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3965 {
3966 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3967 }
3968 SLAB_ATTR_RO(objects);
3969
3970 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3971 {
3972 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3973 }
3974 SLAB_ATTR_RO(objects_partial);
3975
3976 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3977 {
3978 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3979 }
3980 SLAB_ATTR_RO(total_objects);
3981
3982 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3983 {
3984 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3985 }
3986
3987 static ssize_t sanity_checks_store(struct kmem_cache *s,
3988 const char *buf, size_t length)
3989 {
3990 s->flags &= ~SLAB_DEBUG_FREE;
3991 if (buf[0] == '1')
3992 s->flags |= SLAB_DEBUG_FREE;
3993 return length;
3994 }
3995 SLAB_ATTR(sanity_checks);
3996
3997 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3998 {
3999 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4000 }
4001
4002 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4003 size_t length)
4004 {
4005 s->flags &= ~SLAB_TRACE;
4006 if (buf[0] == '1')
4007 s->flags |= SLAB_TRACE;
4008 return length;
4009 }
4010 SLAB_ATTR(trace);
4011
4012 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4013 {
4014 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4015 }
4016
4017 static ssize_t reclaim_account_store(struct kmem_cache *s,
4018 const char *buf, size_t length)
4019 {
4020 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4021 if (buf[0] == '1')
4022 s->flags |= SLAB_RECLAIM_ACCOUNT;
4023 return length;
4024 }
4025 SLAB_ATTR(reclaim_account);
4026
4027 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4028 {
4029 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4030 }
4031 SLAB_ATTR_RO(hwcache_align);
4032
4033 #ifdef CONFIG_ZONE_DMA
4034 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4035 {
4036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4037 }
4038 SLAB_ATTR_RO(cache_dma);
4039 #endif
4040
4041 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4042 {
4043 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4044 }
4045 SLAB_ATTR_RO(destroy_by_rcu);
4046
4047 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4048 {
4049 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4050 }
4051
4052 static ssize_t red_zone_store(struct kmem_cache *s,
4053 const char *buf, size_t length)
4054 {
4055 if (any_slab_objects(s))
4056 return -EBUSY;
4057
4058 s->flags &= ~SLAB_RED_ZONE;
4059 if (buf[0] == '1')
4060 s->flags |= SLAB_RED_ZONE;
4061 calculate_sizes(s, -1);
4062 return length;
4063 }
4064 SLAB_ATTR(red_zone);
4065
4066 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4067 {
4068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4069 }
4070
4071 static ssize_t poison_store(struct kmem_cache *s,
4072 const char *buf, size_t length)
4073 {
4074 if (any_slab_objects(s))
4075 return -EBUSY;
4076
4077 s->flags &= ~SLAB_POISON;
4078 if (buf[0] == '1')
4079 s->flags |= SLAB_POISON;
4080 calculate_sizes(s, -1);
4081 return length;
4082 }
4083 SLAB_ATTR(poison);
4084
4085 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4086 {
4087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4088 }
4089
4090 static ssize_t store_user_store(struct kmem_cache *s,
4091 const char *buf, size_t length)
4092 {
4093 if (any_slab_objects(s))
4094 return -EBUSY;
4095
4096 s->flags &= ~SLAB_STORE_USER;
4097 if (buf[0] == '1')
4098 s->flags |= SLAB_STORE_USER;
4099 calculate_sizes(s, -1);
4100 return length;
4101 }
4102 SLAB_ATTR(store_user);
4103
4104 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4105 {
4106 return 0;
4107 }
4108
4109 static ssize_t validate_store(struct kmem_cache *s,
4110 const char *buf, size_t length)
4111 {
4112 int ret = -EINVAL;
4113
4114 if (buf[0] == '1') {
4115 ret = validate_slab_cache(s);
4116 if (ret >= 0)
4117 ret = length;
4118 }
4119 return ret;
4120 }
4121 SLAB_ATTR(validate);
4122
4123 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4124 {
4125 return 0;
4126 }
4127
4128 static ssize_t shrink_store(struct kmem_cache *s,
4129 const char *buf, size_t length)
4130 {
4131 if (buf[0] == '1') {
4132 int rc = kmem_cache_shrink(s);
4133
4134 if (rc)
4135 return rc;
4136 } else
4137 return -EINVAL;
4138 return length;
4139 }
4140 SLAB_ATTR(shrink);
4141
4142 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4143 {
4144 if (!(s->flags & SLAB_STORE_USER))
4145 return -ENOSYS;
4146 return list_locations(s, buf, TRACK_ALLOC);
4147 }
4148 SLAB_ATTR_RO(alloc_calls);
4149
4150 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4151 {
4152 if (!(s->flags & SLAB_STORE_USER))
4153 return -ENOSYS;
4154 return list_locations(s, buf, TRACK_FREE);
4155 }
4156 SLAB_ATTR_RO(free_calls);
4157
4158 #ifdef CONFIG_NUMA
4159 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4160 {
4161 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4162 }
4163
4164 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4165 const char *buf, size_t length)
4166 {
4167 unsigned long ratio;
4168 int err;
4169
4170 err = strict_strtoul(buf, 10, &ratio);
4171 if (err)
4172 return err;
4173
4174 if (ratio <= 100)
4175 s->remote_node_defrag_ratio = ratio * 10;
4176
4177 return length;
4178 }
4179 SLAB_ATTR(remote_node_defrag_ratio);
4180 #endif
4181
4182 #ifdef CONFIG_SLUB_STATS
4183 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4184 {
4185 unsigned long sum = 0;
4186 int cpu;
4187 int len;
4188 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4189
4190 if (!data)
4191 return -ENOMEM;
4192
4193 for_each_online_cpu(cpu) {
4194 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4195
4196 data[cpu] = x;
4197 sum += x;
4198 }
4199
4200 len = sprintf(buf, "%lu", sum);
4201
4202 #ifdef CONFIG_SMP
4203 for_each_online_cpu(cpu) {
4204 if (data[cpu] && len < PAGE_SIZE - 20)
4205 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4206 }
4207 #endif
4208 kfree(data);
4209 return len + sprintf(buf + len, "\n");
4210 }
4211
4212 #define STAT_ATTR(si, text) \
4213 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4214 { \
4215 return show_stat(s, buf, si); \
4216 } \
4217 SLAB_ATTR_RO(text); \
4218
4219 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4220 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4221 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4222 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4223 STAT_ATTR(FREE_FROZEN, free_frozen);
4224 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4225 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4226 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4227 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4228 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4229 STAT_ATTR(FREE_SLAB, free_slab);
4230 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4231 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4232 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4233 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4234 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4235 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4236 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4237 #endif
4238
4239 static struct attribute *slab_attrs[] = {
4240 &slab_size_attr.attr,
4241 &object_size_attr.attr,
4242 &objs_per_slab_attr.attr,
4243 &order_attr.attr,
4244 &min_partial_attr.attr,
4245 &objects_attr.attr,
4246 &objects_partial_attr.attr,
4247 &total_objects_attr.attr,
4248 &slabs_attr.attr,
4249 &partial_attr.attr,
4250 &cpu_slabs_attr.attr,
4251 &ctor_attr.attr,
4252 &aliases_attr.attr,
4253 &align_attr.attr,
4254 &sanity_checks_attr.attr,
4255 &trace_attr.attr,
4256 &hwcache_align_attr.attr,
4257 &reclaim_account_attr.attr,
4258 &destroy_by_rcu_attr.attr,
4259 &red_zone_attr.attr,
4260 &poison_attr.attr,
4261 &store_user_attr.attr,
4262 &validate_attr.attr,
4263 &shrink_attr.attr,
4264 &alloc_calls_attr.attr,
4265 &free_calls_attr.attr,
4266 #ifdef CONFIG_ZONE_DMA
4267 &cache_dma_attr.attr,
4268 #endif
4269 #ifdef CONFIG_NUMA
4270 &remote_node_defrag_ratio_attr.attr,
4271 #endif
4272 #ifdef CONFIG_SLUB_STATS
4273 &alloc_fastpath_attr.attr,
4274 &alloc_slowpath_attr.attr,
4275 &free_fastpath_attr.attr,
4276 &free_slowpath_attr.attr,
4277 &free_frozen_attr.attr,
4278 &free_add_partial_attr.attr,
4279 &free_remove_partial_attr.attr,
4280 &alloc_from_partial_attr.attr,
4281 &alloc_slab_attr.attr,
4282 &alloc_refill_attr.attr,
4283 &free_slab_attr.attr,
4284 &cpuslab_flush_attr.attr,
4285 &deactivate_full_attr.attr,
4286 &deactivate_empty_attr.attr,
4287 &deactivate_to_head_attr.attr,
4288 &deactivate_to_tail_attr.attr,
4289 &deactivate_remote_frees_attr.attr,
4290 &order_fallback_attr.attr,
4291 #endif
4292 NULL
4293 };
4294
4295 static struct attribute_group slab_attr_group = {
4296 .attrs = slab_attrs,
4297 };
4298
4299 static ssize_t slab_attr_show(struct kobject *kobj,
4300 struct attribute *attr,
4301 char *buf)
4302 {
4303 struct slab_attribute *attribute;
4304 struct kmem_cache *s;
4305 int err;
4306
4307 attribute = to_slab_attr(attr);
4308 s = to_slab(kobj);
4309
4310 if (!attribute->show)
4311 return -EIO;
4312
4313 err = attribute->show(s, buf);
4314
4315 return err;
4316 }
4317
4318 static ssize_t slab_attr_store(struct kobject *kobj,
4319 struct attribute *attr,
4320 const char *buf, size_t len)
4321 {
4322 struct slab_attribute *attribute;
4323 struct kmem_cache *s;
4324 int err;
4325
4326 attribute = to_slab_attr(attr);
4327 s = to_slab(kobj);
4328
4329 if (!attribute->store)
4330 return -EIO;
4331
4332 err = attribute->store(s, buf, len);
4333
4334 return err;
4335 }
4336
4337 static void kmem_cache_release(struct kobject *kobj)
4338 {
4339 struct kmem_cache *s = to_slab(kobj);
4340
4341 kfree(s);
4342 }
4343
4344 static struct sysfs_ops slab_sysfs_ops = {
4345 .show = slab_attr_show,
4346 .store = slab_attr_store,
4347 };
4348
4349 static struct kobj_type slab_ktype = {
4350 .sysfs_ops = &slab_sysfs_ops,
4351 .release = kmem_cache_release
4352 };
4353
4354 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4355 {
4356 struct kobj_type *ktype = get_ktype(kobj);
4357
4358 if (ktype == &slab_ktype)
4359 return 1;
4360 return 0;
4361 }
4362
4363 static struct kset_uevent_ops slab_uevent_ops = {
4364 .filter = uevent_filter,
4365 };
4366
4367 static struct kset *slab_kset;
4368
4369 #define ID_STR_LENGTH 64
4370
4371 /* Create a unique string id for a slab cache:
4372 *
4373 * Format :[flags-]size
4374 */
4375 static char *create_unique_id(struct kmem_cache *s)
4376 {
4377 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4378 char *p = name;
4379
4380 BUG_ON(!name);
4381
4382 *p++ = ':';
4383 /*
4384 * First flags affecting slabcache operations. We will only
4385 * get here for aliasable slabs so we do not need to support
4386 * too many flags. The flags here must cover all flags that
4387 * are matched during merging to guarantee that the id is
4388 * unique.
4389 */
4390 if (s->flags & SLAB_CACHE_DMA)
4391 *p++ = 'd';
4392 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4393 *p++ = 'a';
4394 if (s->flags & SLAB_DEBUG_FREE)
4395 *p++ = 'F';
4396 if (p != name + 1)
4397 *p++ = '-';
4398 p += sprintf(p, "%07d", s->size);
4399 BUG_ON(p > name + ID_STR_LENGTH - 1);
4400 return name;
4401 }
4402
4403 static int sysfs_slab_add(struct kmem_cache *s)
4404 {
4405 int err;
4406 const char *name;
4407 int unmergeable;
4408
4409 if (slab_state < SYSFS)
4410 /* Defer until later */
4411 return 0;
4412
4413 unmergeable = slab_unmergeable(s);
4414 if (unmergeable) {
4415 /*
4416 * Slabcache can never be merged so we can use the name proper.
4417 * This is typically the case for debug situations. In that
4418 * case we can catch duplicate names easily.
4419 */
4420 sysfs_remove_link(&slab_kset->kobj, s->name);
4421 name = s->name;
4422 } else {
4423 /*
4424 * Create a unique name for the slab as a target
4425 * for the symlinks.
4426 */
4427 name = create_unique_id(s);
4428 }
4429
4430 s->kobj.kset = slab_kset;
4431 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4432 if (err) {
4433 kobject_put(&s->kobj);
4434 return err;
4435 }
4436
4437 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4438 if (err)
4439 return err;
4440 kobject_uevent(&s->kobj, KOBJ_ADD);
4441 if (!unmergeable) {
4442 /* Setup first alias */
4443 sysfs_slab_alias(s, s->name);
4444 kfree(name);
4445 }
4446 return 0;
4447 }
4448
4449 static void sysfs_slab_remove(struct kmem_cache *s)
4450 {
4451 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4452 kobject_del(&s->kobj);
4453 kobject_put(&s->kobj);
4454 }
4455
4456 /*
4457 * Need to buffer aliases during bootup until sysfs becomes
4458 * available lest we lose that information.
4459 */
4460 struct saved_alias {
4461 struct kmem_cache *s;
4462 const char *name;
4463 struct saved_alias *next;
4464 };
4465
4466 static struct saved_alias *alias_list;
4467
4468 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4469 {
4470 struct saved_alias *al;
4471
4472 if (slab_state == SYSFS) {
4473 /*
4474 * If we have a leftover link then remove it.
4475 */
4476 sysfs_remove_link(&slab_kset->kobj, name);
4477 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4478 }
4479
4480 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4481 if (!al)
4482 return -ENOMEM;
4483
4484 al->s = s;
4485 al->name = name;
4486 al->next = alias_list;
4487 alias_list = al;
4488 return 0;
4489 }
4490
4491 static int __init slab_sysfs_init(void)
4492 {
4493 struct kmem_cache *s;
4494 int err;
4495
4496 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4497 if (!slab_kset) {
4498 printk(KERN_ERR "Cannot register slab subsystem.\n");
4499 return -ENOSYS;
4500 }
4501
4502 slab_state = SYSFS;
4503
4504 list_for_each_entry(s, &slab_caches, list) {
4505 err = sysfs_slab_add(s);
4506 if (err)
4507 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4508 " to sysfs\n", s->name);
4509 }
4510
4511 while (alias_list) {
4512 struct saved_alias *al = alias_list;
4513
4514 alias_list = alias_list->next;
4515 err = sysfs_slab_alias(al->s, al->name);
4516 if (err)
4517 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4518 " %s to sysfs\n", s->name);
4519 kfree(al);
4520 }
4521
4522 resiliency_test();
4523 return 0;
4524 }
4525
4526 __initcall(slab_sysfs_init);
4527 #endif
4528
4529 /*
4530 * The /proc/slabinfo ABI
4531 */
4532 #ifdef CONFIG_SLABINFO
4533 static void print_slabinfo_header(struct seq_file *m)
4534 {
4535 seq_puts(m, "slabinfo - version: 2.1\n");
4536 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4537 "<objperslab> <pagesperslab>");
4538 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4539 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4540 seq_putc(m, '\n');
4541 }
4542
4543 static void *s_start(struct seq_file *m, loff_t *pos)
4544 {
4545 loff_t n = *pos;
4546
4547 down_read(&slub_lock);
4548 if (!n)
4549 print_slabinfo_header(m);
4550
4551 return seq_list_start(&slab_caches, *pos);
4552 }
4553
4554 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4555 {
4556 return seq_list_next(p, &slab_caches, pos);
4557 }
4558
4559 static void s_stop(struct seq_file *m, void *p)
4560 {
4561 up_read(&slub_lock);
4562 }
4563
4564 static int s_show(struct seq_file *m, void *p)
4565 {
4566 unsigned long nr_partials = 0;
4567 unsigned long nr_slabs = 0;
4568 unsigned long nr_inuse = 0;
4569 unsigned long nr_objs = 0;
4570 unsigned long nr_free = 0;
4571 struct kmem_cache *s;
4572 int node;
4573
4574 s = list_entry(p, struct kmem_cache, list);
4575
4576 for_each_online_node(node) {
4577 struct kmem_cache_node *n = get_node(s, node);
4578
4579 if (!n)
4580 continue;
4581
4582 nr_partials += n->nr_partial;
4583 nr_slabs += atomic_long_read(&n->nr_slabs);
4584 nr_objs += atomic_long_read(&n->total_objects);
4585 nr_free += count_partial(n, count_free);
4586 }
4587
4588 nr_inuse = nr_objs - nr_free;
4589
4590 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4591 nr_objs, s->size, oo_objects(s->oo),
4592 (1 << oo_order(s->oo)));
4593 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4594 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4595 0UL);
4596 seq_putc(m, '\n');
4597 return 0;
4598 }
4599
4600 static const struct seq_operations slabinfo_op = {
4601 .start = s_start,
4602 .next = s_next,
4603 .stop = s_stop,
4604 .show = s_show,
4605 };
4606
4607 static int slabinfo_open(struct inode *inode, struct file *file)
4608 {
4609 return seq_open(file, &slabinfo_op);
4610 }
4611
4612 static const struct file_operations proc_slabinfo_operations = {
4613 .open = slabinfo_open,
4614 .read = seq_read,
4615 .llseek = seq_lseek,
4616 .release = seq_release,
4617 };
4618
4619 static int __init slab_proc_init(void)
4620 {
4621 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4622 return 0;
4623 }
4624 module_init(slab_proc_init);
4625 #endif /* CONFIG_SLABINFO */
This page took 0.13026 seconds and 6 git commands to generate.