Merge tag 'ktest-v3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
34
35 #include <trace/events/kmem.h>
36
37 /*
38 * Lock order:
39 * 1. slab_mutex (Global Mutex)
40 * 2. node->list_lock
41 * 3. slab_lock(page) (Only on some arches and for debugging)
42 *
43 * slab_mutex
44 *
45 * The role of the slab_mutex is to protect the list of all the slabs
46 * and to synchronize major metadata changes to slab cache structures.
47 *
48 * The slab_lock is only used for debugging and on arches that do not
49 * have the ability to do a cmpxchg_double. It only protects the second
50 * double word in the page struct. Meaning
51 * A. page->freelist -> List of object free in a page
52 * B. page->counters -> Counters of objects
53 * C. page->frozen -> frozen state
54 *
55 * If a slab is frozen then it is exempt from list management. It is not
56 * on any list. The processor that froze the slab is the one who can
57 * perform list operations on the page. Other processors may put objects
58 * onto the freelist but the processor that froze the slab is the only
59 * one that can retrieve the objects from the page's freelist.
60 *
61 * The list_lock protects the partial and full list on each node and
62 * the partial slab counter. If taken then no new slabs may be added or
63 * removed from the lists nor make the number of partial slabs be modified.
64 * (Note that the total number of slabs is an atomic value that may be
65 * modified without taking the list lock).
66 *
67 * The list_lock is a centralized lock and thus we avoid taking it as
68 * much as possible. As long as SLUB does not have to handle partial
69 * slabs, operations can continue without any centralized lock. F.e.
70 * allocating a long series of objects that fill up slabs does not require
71 * the list lock.
72 * Interrupts are disabled during allocation and deallocation in order to
73 * make the slab allocator safe to use in the context of an irq. In addition
74 * interrupts are disabled to ensure that the processor does not change
75 * while handling per_cpu slabs, due to kernel preemption.
76 *
77 * SLUB assigns one slab for allocation to each processor.
78 * Allocations only occur from these slabs called cpu slabs.
79 *
80 * Slabs with free elements are kept on a partial list and during regular
81 * operations no list for full slabs is used. If an object in a full slab is
82 * freed then the slab will show up again on the partial lists.
83 * We track full slabs for debugging purposes though because otherwise we
84 * cannot scan all objects.
85 *
86 * Slabs are freed when they become empty. Teardown and setup is
87 * minimal so we rely on the page allocators per cpu caches for
88 * fast frees and allocs.
89 *
90 * Overloading of page flags that are otherwise used for LRU management.
91 *
92 * PageActive The slab is frozen and exempt from list processing.
93 * This means that the slab is dedicated to a purpose
94 * such as satisfying allocations for a specific
95 * processor. Objects may be freed in the slab while
96 * it is frozen but slab_free will then skip the usual
97 * list operations. It is up to the processor holding
98 * the slab to integrate the slab into the slab lists
99 * when the slab is no longer needed.
100 *
101 * One use of this flag is to mark slabs that are
102 * used for allocations. Then such a slab becomes a cpu
103 * slab. The cpu slab may be equipped with an additional
104 * freelist that allows lockless access to
105 * free objects in addition to the regular freelist
106 * that requires the slab lock.
107 *
108 * PageError Slab requires special handling due to debug
109 * options set. This moves slab handling out of
110 * the fast path and disables lockless freelists.
111 */
112
113 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
114 SLAB_TRACE | SLAB_DEBUG_FREE)
115
116 static inline int kmem_cache_debug(struct kmem_cache *s)
117 {
118 #ifdef CONFIG_SLUB_DEBUG
119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120 #else
121 return 0;
122 #endif
123 }
124
125 /*
126 * Issues still to be resolved:
127 *
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
130 * - Variable sizing of the per node arrays
131 */
132
133 /* Enable to test recovery from slab corruption on boot */
134 #undef SLUB_RESILIENCY_TEST
135
136 /* Enable to log cmpxchg failures */
137 #undef SLUB_DEBUG_CMPXCHG
138
139 /*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
143 #define MIN_PARTIAL 5
144
145 /*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150 #define MAX_PARTIAL 10
151
152 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
159 */
160 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
161
162 /*
163 * Set of flags that will prevent slab merging
164 */
165 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
168
169 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
170 SLAB_CACHE_DMA | SLAB_NOTRACK)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 static int kmem_size = sizeof(struct kmem_cache);
181
182 #ifdef CONFIG_SMP
183 static struct notifier_block slab_notifier;
184 #endif
185
186 /*
187 * Tracking user of a slab.
188 */
189 #define TRACK_ADDRS_COUNT 16
190 struct track {
191 unsigned long addr; /* Called from address */
192 #ifdef CONFIG_STACKTRACE
193 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
194 #endif
195 int cpu; /* Was running on cpu */
196 int pid; /* Pid context */
197 unsigned long when; /* When did the operation occur */
198 };
199
200 enum track_item { TRACK_ALLOC, TRACK_FREE };
201
202 #ifdef CONFIG_SYSFS
203 static int sysfs_slab_add(struct kmem_cache *);
204 static int sysfs_slab_alias(struct kmem_cache *, const char *);
205 static void sysfs_slab_remove(struct kmem_cache *);
206
207 #else
208 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
209 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
210 { return 0; }
211 static inline void sysfs_slab_remove(struct kmem_cache *s)
212 {
213 kfree(s->name);
214 kfree(s);
215 }
216
217 #endif
218
219 static inline void stat(const struct kmem_cache *s, enum stat_item si)
220 {
221 #ifdef CONFIG_SLUB_STATS
222 __this_cpu_inc(s->cpu_slab->stat[si]);
223 #endif
224 }
225
226 /********************************************************************
227 * Core slab cache functions
228 *******************************************************************/
229
230 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
231 {
232 return s->node[node];
233 }
234
235 /* Verify that a pointer has an address that is valid within a slab page */
236 static inline int check_valid_pointer(struct kmem_cache *s,
237 struct page *page, const void *object)
238 {
239 void *base;
240
241 if (!object)
242 return 1;
243
244 base = page_address(page);
245 if (object < base || object >= base + page->objects * s->size ||
246 (object - base) % s->size) {
247 return 0;
248 }
249
250 return 1;
251 }
252
253 static inline void *get_freepointer(struct kmem_cache *s, void *object)
254 {
255 return *(void **)(object + s->offset);
256 }
257
258 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
259 {
260 prefetch(object + s->offset);
261 }
262
263 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
264 {
265 void *p;
266
267 #ifdef CONFIG_DEBUG_PAGEALLOC
268 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
269 #else
270 p = get_freepointer(s, object);
271 #endif
272 return p;
273 }
274
275 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276 {
277 *(void **)(object + s->offset) = fp;
278 }
279
280 /* Loop over all objects in a slab */
281 #define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
283 __p += (__s)->size)
284
285 /* Determine object index from a given position */
286 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
287 {
288 return (p - addr) / s->size;
289 }
290
291 static inline size_t slab_ksize(const struct kmem_cache *s)
292 {
293 #ifdef CONFIG_SLUB_DEBUG
294 /*
295 * Debugging requires use of the padding between object
296 * and whatever may come after it.
297 */
298 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
299 return s->object_size;
300
301 #endif
302 /*
303 * If we have the need to store the freelist pointer
304 * back there or track user information then we can
305 * only use the space before that information.
306 */
307 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
308 return s->inuse;
309 /*
310 * Else we can use all the padding etc for the allocation
311 */
312 return s->size;
313 }
314
315 static inline int order_objects(int order, unsigned long size, int reserved)
316 {
317 return ((PAGE_SIZE << order) - reserved) / size;
318 }
319
320 static inline struct kmem_cache_order_objects oo_make(int order,
321 unsigned long size, int reserved)
322 {
323 struct kmem_cache_order_objects x = {
324 (order << OO_SHIFT) + order_objects(order, size, reserved)
325 };
326
327 return x;
328 }
329
330 static inline int oo_order(struct kmem_cache_order_objects x)
331 {
332 return x.x >> OO_SHIFT;
333 }
334
335 static inline int oo_objects(struct kmem_cache_order_objects x)
336 {
337 return x.x & OO_MASK;
338 }
339
340 /*
341 * Per slab locking using the pagelock
342 */
343 static __always_inline void slab_lock(struct page *page)
344 {
345 bit_spin_lock(PG_locked, &page->flags);
346 }
347
348 static __always_inline void slab_unlock(struct page *page)
349 {
350 __bit_spin_unlock(PG_locked, &page->flags);
351 }
352
353 /* Interrupts must be disabled (for the fallback code to work right) */
354 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
355 void *freelist_old, unsigned long counters_old,
356 void *freelist_new, unsigned long counters_new,
357 const char *n)
358 {
359 VM_BUG_ON(!irqs_disabled());
360 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
361 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
362 if (s->flags & __CMPXCHG_DOUBLE) {
363 if (cmpxchg_double(&page->freelist, &page->counters,
364 freelist_old, counters_old,
365 freelist_new, counters_new))
366 return 1;
367 } else
368 #endif
369 {
370 slab_lock(page);
371 if (page->freelist == freelist_old && page->counters == counters_old) {
372 page->freelist = freelist_new;
373 page->counters = counters_new;
374 slab_unlock(page);
375 return 1;
376 }
377 slab_unlock(page);
378 }
379
380 cpu_relax();
381 stat(s, CMPXCHG_DOUBLE_FAIL);
382
383 #ifdef SLUB_DEBUG_CMPXCHG
384 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
385 #endif
386
387 return 0;
388 }
389
390 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
391 void *freelist_old, unsigned long counters_old,
392 void *freelist_new, unsigned long counters_new,
393 const char *n)
394 {
395 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
396 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
397 if (s->flags & __CMPXCHG_DOUBLE) {
398 if (cmpxchg_double(&page->freelist, &page->counters,
399 freelist_old, counters_old,
400 freelist_new, counters_new))
401 return 1;
402 } else
403 #endif
404 {
405 unsigned long flags;
406
407 local_irq_save(flags);
408 slab_lock(page);
409 if (page->freelist == freelist_old && page->counters == counters_old) {
410 page->freelist = freelist_new;
411 page->counters = counters_new;
412 slab_unlock(page);
413 local_irq_restore(flags);
414 return 1;
415 }
416 slab_unlock(page);
417 local_irq_restore(flags);
418 }
419
420 cpu_relax();
421 stat(s, CMPXCHG_DOUBLE_FAIL);
422
423 #ifdef SLUB_DEBUG_CMPXCHG
424 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
425 #endif
426
427 return 0;
428 }
429
430 #ifdef CONFIG_SLUB_DEBUG
431 /*
432 * Determine a map of object in use on a page.
433 *
434 * Node listlock must be held to guarantee that the page does
435 * not vanish from under us.
436 */
437 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
438 {
439 void *p;
440 void *addr = page_address(page);
441
442 for (p = page->freelist; p; p = get_freepointer(s, p))
443 set_bit(slab_index(p, s, addr), map);
444 }
445
446 /*
447 * Debug settings:
448 */
449 #ifdef CONFIG_SLUB_DEBUG_ON
450 static int slub_debug = DEBUG_DEFAULT_FLAGS;
451 #else
452 static int slub_debug;
453 #endif
454
455 static char *slub_debug_slabs;
456 static int disable_higher_order_debug;
457
458 /*
459 * Object debugging
460 */
461 static void print_section(char *text, u8 *addr, unsigned int length)
462 {
463 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
464 length, 1);
465 }
466
467 static struct track *get_track(struct kmem_cache *s, void *object,
468 enum track_item alloc)
469 {
470 struct track *p;
471
472 if (s->offset)
473 p = object + s->offset + sizeof(void *);
474 else
475 p = object + s->inuse;
476
477 return p + alloc;
478 }
479
480 static void set_track(struct kmem_cache *s, void *object,
481 enum track_item alloc, unsigned long addr)
482 {
483 struct track *p = get_track(s, object, alloc);
484
485 if (addr) {
486 #ifdef CONFIG_STACKTRACE
487 struct stack_trace trace;
488 int i;
489
490 trace.nr_entries = 0;
491 trace.max_entries = TRACK_ADDRS_COUNT;
492 trace.entries = p->addrs;
493 trace.skip = 3;
494 save_stack_trace(&trace);
495
496 /* See rant in lockdep.c */
497 if (trace.nr_entries != 0 &&
498 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
499 trace.nr_entries--;
500
501 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
502 p->addrs[i] = 0;
503 #endif
504 p->addr = addr;
505 p->cpu = smp_processor_id();
506 p->pid = current->pid;
507 p->when = jiffies;
508 } else
509 memset(p, 0, sizeof(struct track));
510 }
511
512 static void init_tracking(struct kmem_cache *s, void *object)
513 {
514 if (!(s->flags & SLAB_STORE_USER))
515 return;
516
517 set_track(s, object, TRACK_FREE, 0UL);
518 set_track(s, object, TRACK_ALLOC, 0UL);
519 }
520
521 static void print_track(const char *s, struct track *t)
522 {
523 if (!t->addr)
524 return;
525
526 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
527 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
528 #ifdef CONFIG_STACKTRACE
529 {
530 int i;
531 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
532 if (t->addrs[i])
533 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
534 else
535 break;
536 }
537 #endif
538 }
539
540 static void print_tracking(struct kmem_cache *s, void *object)
541 {
542 if (!(s->flags & SLAB_STORE_USER))
543 return;
544
545 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
546 print_track("Freed", get_track(s, object, TRACK_FREE));
547 }
548
549 static void print_page_info(struct page *page)
550 {
551 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
552 page, page->objects, page->inuse, page->freelist, page->flags);
553
554 }
555
556 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
557 {
558 va_list args;
559 char buf[100];
560
561 va_start(args, fmt);
562 vsnprintf(buf, sizeof(buf), fmt, args);
563 va_end(args);
564 printk(KERN_ERR "========================================"
565 "=====================================\n");
566 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
567 printk(KERN_ERR "----------------------------------------"
568 "-------------------------------------\n\n");
569 }
570
571 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
572 {
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
580 }
581
582 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
583 {
584 unsigned int off; /* Offset of last byte */
585 u8 *addr = page_address(page);
586
587 print_tracking(s, p);
588
589 print_page_info(page);
590
591 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
592 p, p - addr, get_freepointer(s, p));
593
594 if (p > addr + 16)
595 print_section("Bytes b4 ", p - 16, 16);
596
597 print_section("Object ", p, min_t(unsigned long, s->object_size,
598 PAGE_SIZE));
599 if (s->flags & SLAB_RED_ZONE)
600 print_section("Redzone ", p + s->object_size,
601 s->inuse - s->object_size);
602
603 if (s->offset)
604 off = s->offset + sizeof(void *);
605 else
606 off = s->inuse;
607
608 if (s->flags & SLAB_STORE_USER)
609 off += 2 * sizeof(struct track);
610
611 if (off != s->size)
612 /* Beginning of the filler is the free pointer */
613 print_section("Padding ", p + off, s->size - off);
614
615 dump_stack();
616 }
617
618 static void object_err(struct kmem_cache *s, struct page *page,
619 u8 *object, char *reason)
620 {
621 slab_bug(s, "%s", reason);
622 print_trailer(s, page, object);
623 }
624
625 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
626 {
627 va_list args;
628 char buf[100];
629
630 va_start(args, fmt);
631 vsnprintf(buf, sizeof(buf), fmt, args);
632 va_end(args);
633 slab_bug(s, "%s", buf);
634 print_page_info(page);
635 dump_stack();
636 }
637
638 static void init_object(struct kmem_cache *s, void *object, u8 val)
639 {
640 u8 *p = object;
641
642 if (s->flags & __OBJECT_POISON) {
643 memset(p, POISON_FREE, s->object_size - 1);
644 p[s->object_size - 1] = POISON_END;
645 }
646
647 if (s->flags & SLAB_RED_ZONE)
648 memset(p + s->object_size, val, s->inuse - s->object_size);
649 }
650
651 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
652 void *from, void *to)
653 {
654 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
655 memset(from, data, to - from);
656 }
657
658 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
659 u8 *object, char *what,
660 u8 *start, unsigned int value, unsigned int bytes)
661 {
662 u8 *fault;
663 u8 *end;
664
665 fault = memchr_inv(start, value, bytes);
666 if (!fault)
667 return 1;
668
669 end = start + bytes;
670 while (end > fault && end[-1] == value)
671 end--;
672
673 slab_bug(s, "%s overwritten", what);
674 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
675 fault, end - 1, fault[0], value);
676 print_trailer(s, page, object);
677
678 restore_bytes(s, what, value, fault, end);
679 return 0;
680 }
681
682 /*
683 * Object layout:
684 *
685 * object address
686 * Bytes of the object to be managed.
687 * If the freepointer may overlay the object then the free
688 * pointer is the first word of the object.
689 *
690 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
691 * 0xa5 (POISON_END)
692 *
693 * object + s->object_size
694 * Padding to reach word boundary. This is also used for Redzoning.
695 * Padding is extended by another word if Redzoning is enabled and
696 * object_size == inuse.
697 *
698 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
699 * 0xcc (RED_ACTIVE) for objects in use.
700 *
701 * object + s->inuse
702 * Meta data starts here.
703 *
704 * A. Free pointer (if we cannot overwrite object on free)
705 * B. Tracking data for SLAB_STORE_USER
706 * C. Padding to reach required alignment boundary or at mininum
707 * one word if debugging is on to be able to detect writes
708 * before the word boundary.
709 *
710 * Padding is done using 0x5a (POISON_INUSE)
711 *
712 * object + s->size
713 * Nothing is used beyond s->size.
714 *
715 * If slabcaches are merged then the object_size and inuse boundaries are mostly
716 * ignored. And therefore no slab options that rely on these boundaries
717 * may be used with merged slabcaches.
718 */
719
720 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
721 {
722 unsigned long off = s->inuse; /* The end of info */
723
724 if (s->offset)
725 /* Freepointer is placed after the object. */
726 off += sizeof(void *);
727
728 if (s->flags & SLAB_STORE_USER)
729 /* We also have user information there */
730 off += 2 * sizeof(struct track);
731
732 if (s->size == off)
733 return 1;
734
735 return check_bytes_and_report(s, page, p, "Object padding",
736 p + off, POISON_INUSE, s->size - off);
737 }
738
739 /* Check the pad bytes at the end of a slab page */
740 static int slab_pad_check(struct kmem_cache *s, struct page *page)
741 {
742 u8 *start;
743 u8 *fault;
744 u8 *end;
745 int length;
746 int remainder;
747
748 if (!(s->flags & SLAB_POISON))
749 return 1;
750
751 start = page_address(page);
752 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
753 end = start + length;
754 remainder = length % s->size;
755 if (!remainder)
756 return 1;
757
758 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
759 if (!fault)
760 return 1;
761 while (end > fault && end[-1] == POISON_INUSE)
762 end--;
763
764 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
765 print_section("Padding ", end - remainder, remainder);
766
767 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
768 return 0;
769 }
770
771 static int check_object(struct kmem_cache *s, struct page *page,
772 void *object, u8 val)
773 {
774 u8 *p = object;
775 u8 *endobject = object + s->object_size;
776
777 if (s->flags & SLAB_RED_ZONE) {
778 if (!check_bytes_and_report(s, page, object, "Redzone",
779 endobject, val, s->inuse - s->object_size))
780 return 0;
781 } else {
782 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
783 check_bytes_and_report(s, page, p, "Alignment padding",
784 endobject, POISON_INUSE, s->inuse - s->object_size);
785 }
786 }
787
788 if (s->flags & SLAB_POISON) {
789 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
790 (!check_bytes_and_report(s, page, p, "Poison", p,
791 POISON_FREE, s->object_size - 1) ||
792 !check_bytes_and_report(s, page, p, "Poison",
793 p + s->object_size - 1, POISON_END, 1)))
794 return 0;
795 /*
796 * check_pad_bytes cleans up on its own.
797 */
798 check_pad_bytes(s, page, p);
799 }
800
801 if (!s->offset && val == SLUB_RED_ACTIVE)
802 /*
803 * Object and freepointer overlap. Cannot check
804 * freepointer while object is allocated.
805 */
806 return 1;
807
808 /* Check free pointer validity */
809 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
810 object_err(s, page, p, "Freepointer corrupt");
811 /*
812 * No choice but to zap it and thus lose the remainder
813 * of the free objects in this slab. May cause
814 * another error because the object count is now wrong.
815 */
816 set_freepointer(s, p, NULL);
817 return 0;
818 }
819 return 1;
820 }
821
822 static int check_slab(struct kmem_cache *s, struct page *page)
823 {
824 int maxobj;
825
826 VM_BUG_ON(!irqs_disabled());
827
828 if (!PageSlab(page)) {
829 slab_err(s, page, "Not a valid slab page");
830 return 0;
831 }
832
833 maxobj = order_objects(compound_order(page), s->size, s->reserved);
834 if (page->objects > maxobj) {
835 slab_err(s, page, "objects %u > max %u",
836 s->name, page->objects, maxobj);
837 return 0;
838 }
839 if (page->inuse > page->objects) {
840 slab_err(s, page, "inuse %u > max %u",
841 s->name, page->inuse, page->objects);
842 return 0;
843 }
844 /* Slab_pad_check fixes things up after itself */
845 slab_pad_check(s, page);
846 return 1;
847 }
848
849 /*
850 * Determine if a certain object on a page is on the freelist. Must hold the
851 * slab lock to guarantee that the chains are in a consistent state.
852 */
853 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
854 {
855 int nr = 0;
856 void *fp;
857 void *object = NULL;
858 unsigned long max_objects;
859
860 fp = page->freelist;
861 while (fp && nr <= page->objects) {
862 if (fp == search)
863 return 1;
864 if (!check_valid_pointer(s, page, fp)) {
865 if (object) {
866 object_err(s, page, object,
867 "Freechain corrupt");
868 set_freepointer(s, object, NULL);
869 break;
870 } else {
871 slab_err(s, page, "Freepointer corrupt");
872 page->freelist = NULL;
873 page->inuse = page->objects;
874 slab_fix(s, "Freelist cleared");
875 return 0;
876 }
877 break;
878 }
879 object = fp;
880 fp = get_freepointer(s, object);
881 nr++;
882 }
883
884 max_objects = order_objects(compound_order(page), s->size, s->reserved);
885 if (max_objects > MAX_OBJS_PER_PAGE)
886 max_objects = MAX_OBJS_PER_PAGE;
887
888 if (page->objects != max_objects) {
889 slab_err(s, page, "Wrong number of objects. Found %d but "
890 "should be %d", page->objects, max_objects);
891 page->objects = max_objects;
892 slab_fix(s, "Number of objects adjusted.");
893 }
894 if (page->inuse != page->objects - nr) {
895 slab_err(s, page, "Wrong object count. Counter is %d but "
896 "counted were %d", page->inuse, page->objects - nr);
897 page->inuse = page->objects - nr;
898 slab_fix(s, "Object count adjusted.");
899 }
900 return search == NULL;
901 }
902
903 static void trace(struct kmem_cache *s, struct page *page, void *object,
904 int alloc)
905 {
906 if (s->flags & SLAB_TRACE) {
907 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
908 s->name,
909 alloc ? "alloc" : "free",
910 object, page->inuse,
911 page->freelist);
912
913 if (!alloc)
914 print_section("Object ", (void *)object, s->object_size);
915
916 dump_stack();
917 }
918 }
919
920 /*
921 * Hooks for other subsystems that check memory allocations. In a typical
922 * production configuration these hooks all should produce no code at all.
923 */
924 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
925 {
926 flags &= gfp_allowed_mask;
927 lockdep_trace_alloc(flags);
928 might_sleep_if(flags & __GFP_WAIT);
929
930 return should_failslab(s->object_size, flags, s->flags);
931 }
932
933 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
934 {
935 flags &= gfp_allowed_mask;
936 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
937 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
938 }
939
940 static inline void slab_free_hook(struct kmem_cache *s, void *x)
941 {
942 kmemleak_free_recursive(x, s->flags);
943
944 /*
945 * Trouble is that we may no longer disable interupts in the fast path
946 * So in order to make the debug calls that expect irqs to be
947 * disabled we need to disable interrupts temporarily.
948 */
949 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
950 {
951 unsigned long flags;
952
953 local_irq_save(flags);
954 kmemcheck_slab_free(s, x, s->object_size);
955 debug_check_no_locks_freed(x, s->object_size);
956 local_irq_restore(flags);
957 }
958 #endif
959 if (!(s->flags & SLAB_DEBUG_OBJECTS))
960 debug_check_no_obj_freed(x, s->object_size);
961 }
962
963 /*
964 * Tracking of fully allocated slabs for debugging purposes.
965 *
966 * list_lock must be held.
967 */
968 static void add_full(struct kmem_cache *s,
969 struct kmem_cache_node *n, struct page *page)
970 {
971 if (!(s->flags & SLAB_STORE_USER))
972 return;
973
974 list_add(&page->lru, &n->full);
975 }
976
977 /*
978 * list_lock must be held.
979 */
980 static void remove_full(struct kmem_cache *s, struct page *page)
981 {
982 if (!(s->flags & SLAB_STORE_USER))
983 return;
984
985 list_del(&page->lru);
986 }
987
988 /* Tracking of the number of slabs for debugging purposes */
989 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
990 {
991 struct kmem_cache_node *n = get_node(s, node);
992
993 return atomic_long_read(&n->nr_slabs);
994 }
995
996 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
997 {
998 return atomic_long_read(&n->nr_slabs);
999 }
1000
1001 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1002 {
1003 struct kmem_cache_node *n = get_node(s, node);
1004
1005 /*
1006 * May be called early in order to allocate a slab for the
1007 * kmem_cache_node structure. Solve the chicken-egg
1008 * dilemma by deferring the increment of the count during
1009 * bootstrap (see early_kmem_cache_node_alloc).
1010 */
1011 if (n) {
1012 atomic_long_inc(&n->nr_slabs);
1013 atomic_long_add(objects, &n->total_objects);
1014 }
1015 }
1016 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1017 {
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 atomic_long_dec(&n->nr_slabs);
1021 atomic_long_sub(objects, &n->total_objects);
1022 }
1023
1024 /* Object debug checks for alloc/free paths */
1025 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1026 void *object)
1027 {
1028 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1029 return;
1030
1031 init_object(s, object, SLUB_RED_INACTIVE);
1032 init_tracking(s, object);
1033 }
1034
1035 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1036 void *object, unsigned long addr)
1037 {
1038 if (!check_slab(s, page))
1039 goto bad;
1040
1041 if (!check_valid_pointer(s, page, object)) {
1042 object_err(s, page, object, "Freelist Pointer check fails");
1043 goto bad;
1044 }
1045
1046 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1047 goto bad;
1048
1049 /* Success perform special debug activities for allocs */
1050 if (s->flags & SLAB_STORE_USER)
1051 set_track(s, object, TRACK_ALLOC, addr);
1052 trace(s, page, object, 1);
1053 init_object(s, object, SLUB_RED_ACTIVE);
1054 return 1;
1055
1056 bad:
1057 if (PageSlab(page)) {
1058 /*
1059 * If this is a slab page then lets do the best we can
1060 * to avoid issues in the future. Marking all objects
1061 * as used avoids touching the remaining objects.
1062 */
1063 slab_fix(s, "Marking all objects used");
1064 page->inuse = page->objects;
1065 page->freelist = NULL;
1066 }
1067 return 0;
1068 }
1069
1070 static noinline int free_debug_processing(struct kmem_cache *s,
1071 struct page *page, void *object, unsigned long addr)
1072 {
1073 unsigned long flags;
1074 int rc = 0;
1075
1076 local_irq_save(flags);
1077 slab_lock(page);
1078
1079 if (!check_slab(s, page))
1080 goto fail;
1081
1082 if (!check_valid_pointer(s, page, object)) {
1083 slab_err(s, page, "Invalid object pointer 0x%p", object);
1084 goto fail;
1085 }
1086
1087 if (on_freelist(s, page, object)) {
1088 object_err(s, page, object, "Object already free");
1089 goto fail;
1090 }
1091
1092 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1093 goto out;
1094
1095 if (unlikely(s != page->slab)) {
1096 if (!PageSlab(page)) {
1097 slab_err(s, page, "Attempt to free object(0x%p) "
1098 "outside of slab", object);
1099 } else if (!page->slab) {
1100 printk(KERN_ERR
1101 "SLUB <none>: no slab for object 0x%p.\n",
1102 object);
1103 dump_stack();
1104 } else
1105 object_err(s, page, object,
1106 "page slab pointer corrupt.");
1107 goto fail;
1108 }
1109
1110 if (s->flags & SLAB_STORE_USER)
1111 set_track(s, object, TRACK_FREE, addr);
1112 trace(s, page, object, 0);
1113 init_object(s, object, SLUB_RED_INACTIVE);
1114 rc = 1;
1115 out:
1116 slab_unlock(page);
1117 local_irq_restore(flags);
1118 return rc;
1119
1120 fail:
1121 slab_fix(s, "Object at 0x%p not freed", object);
1122 goto out;
1123 }
1124
1125 static int __init setup_slub_debug(char *str)
1126 {
1127 slub_debug = DEBUG_DEFAULT_FLAGS;
1128 if (*str++ != '=' || !*str)
1129 /*
1130 * No options specified. Switch on full debugging.
1131 */
1132 goto out;
1133
1134 if (*str == ',')
1135 /*
1136 * No options but restriction on slabs. This means full
1137 * debugging for slabs matching a pattern.
1138 */
1139 goto check_slabs;
1140
1141 if (tolower(*str) == 'o') {
1142 /*
1143 * Avoid enabling debugging on caches if its minimum order
1144 * would increase as a result.
1145 */
1146 disable_higher_order_debug = 1;
1147 goto out;
1148 }
1149
1150 slub_debug = 0;
1151 if (*str == '-')
1152 /*
1153 * Switch off all debugging measures.
1154 */
1155 goto out;
1156
1157 /*
1158 * Determine which debug features should be switched on
1159 */
1160 for (; *str && *str != ','; str++) {
1161 switch (tolower(*str)) {
1162 case 'f':
1163 slub_debug |= SLAB_DEBUG_FREE;
1164 break;
1165 case 'z':
1166 slub_debug |= SLAB_RED_ZONE;
1167 break;
1168 case 'p':
1169 slub_debug |= SLAB_POISON;
1170 break;
1171 case 'u':
1172 slub_debug |= SLAB_STORE_USER;
1173 break;
1174 case 't':
1175 slub_debug |= SLAB_TRACE;
1176 break;
1177 case 'a':
1178 slub_debug |= SLAB_FAILSLAB;
1179 break;
1180 default:
1181 printk(KERN_ERR "slub_debug option '%c' "
1182 "unknown. skipped\n", *str);
1183 }
1184 }
1185
1186 check_slabs:
1187 if (*str == ',')
1188 slub_debug_slabs = str + 1;
1189 out:
1190 return 1;
1191 }
1192
1193 __setup("slub_debug", setup_slub_debug);
1194
1195 static unsigned long kmem_cache_flags(unsigned long object_size,
1196 unsigned long flags, const char *name,
1197 void (*ctor)(void *))
1198 {
1199 /*
1200 * Enable debugging if selected on the kernel commandline.
1201 */
1202 if (slub_debug && (!slub_debug_slabs ||
1203 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1204 flags |= slub_debug;
1205
1206 return flags;
1207 }
1208 #else
1209 static inline void setup_object_debug(struct kmem_cache *s,
1210 struct page *page, void *object) {}
1211
1212 static inline int alloc_debug_processing(struct kmem_cache *s,
1213 struct page *page, void *object, unsigned long addr) { return 0; }
1214
1215 static inline int free_debug_processing(struct kmem_cache *s,
1216 struct page *page, void *object, unsigned long addr) { return 0; }
1217
1218 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 { return 1; }
1220 static inline int check_object(struct kmem_cache *s, struct page *page,
1221 void *object, u8 val) { return 1; }
1222 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
1224 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1225 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1226 unsigned long flags, const char *name,
1227 void (*ctor)(void *))
1228 {
1229 return flags;
1230 }
1231 #define slub_debug 0
1232
1233 #define disable_higher_order_debug 0
1234
1235 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1236 { return 0; }
1237 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1238 { return 0; }
1239 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1240 int objects) {}
1241 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243
1244 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1245 { return 0; }
1246
1247 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1248 void *object) {}
1249
1250 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1251
1252 #endif /* CONFIG_SLUB_DEBUG */
1253
1254 /*
1255 * Slab allocation and freeing
1256 */
1257 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1258 struct kmem_cache_order_objects oo)
1259 {
1260 int order = oo_order(oo);
1261
1262 flags |= __GFP_NOTRACK;
1263
1264 if (node == NUMA_NO_NODE)
1265 return alloc_pages(flags, order);
1266 else
1267 return alloc_pages_exact_node(node, flags, order);
1268 }
1269
1270 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1271 {
1272 struct page *page;
1273 struct kmem_cache_order_objects oo = s->oo;
1274 gfp_t alloc_gfp;
1275
1276 flags &= gfp_allowed_mask;
1277
1278 if (flags & __GFP_WAIT)
1279 local_irq_enable();
1280
1281 flags |= s->allocflags;
1282
1283 /*
1284 * Let the initial higher-order allocation fail under memory pressure
1285 * so we fall-back to the minimum order allocation.
1286 */
1287 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1288
1289 page = alloc_slab_page(alloc_gfp, node, oo);
1290 if (unlikely(!page)) {
1291 oo = s->min;
1292 /*
1293 * Allocation may have failed due to fragmentation.
1294 * Try a lower order alloc if possible
1295 */
1296 page = alloc_slab_page(flags, node, oo);
1297
1298 if (page)
1299 stat(s, ORDER_FALLBACK);
1300 }
1301
1302 if (kmemcheck_enabled && page
1303 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1304 int pages = 1 << oo_order(oo);
1305
1306 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1307
1308 /*
1309 * Objects from caches that have a constructor don't get
1310 * cleared when they're allocated, so we need to do it here.
1311 */
1312 if (s->ctor)
1313 kmemcheck_mark_uninitialized_pages(page, pages);
1314 else
1315 kmemcheck_mark_unallocated_pages(page, pages);
1316 }
1317
1318 if (flags & __GFP_WAIT)
1319 local_irq_disable();
1320 if (!page)
1321 return NULL;
1322
1323 page->objects = oo_objects(oo);
1324 mod_zone_page_state(page_zone(page),
1325 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1326 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1327 1 << oo_order(oo));
1328
1329 return page;
1330 }
1331
1332 static void setup_object(struct kmem_cache *s, struct page *page,
1333 void *object)
1334 {
1335 setup_object_debug(s, page, object);
1336 if (unlikely(s->ctor))
1337 s->ctor(object);
1338 }
1339
1340 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1341 {
1342 struct page *page;
1343 void *start;
1344 void *last;
1345 void *p;
1346
1347 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1348
1349 page = allocate_slab(s,
1350 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1351 if (!page)
1352 goto out;
1353
1354 inc_slabs_node(s, page_to_nid(page), page->objects);
1355 page->slab = s;
1356 __SetPageSlab(page);
1357
1358 start = page_address(page);
1359
1360 if (unlikely(s->flags & SLAB_POISON))
1361 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1362
1363 last = start;
1364 for_each_object(p, s, start, page->objects) {
1365 setup_object(s, page, last);
1366 set_freepointer(s, last, p);
1367 last = p;
1368 }
1369 setup_object(s, page, last);
1370 set_freepointer(s, last, NULL);
1371
1372 page->freelist = start;
1373 page->inuse = page->objects;
1374 page->frozen = 1;
1375 out:
1376 return page;
1377 }
1378
1379 static void __free_slab(struct kmem_cache *s, struct page *page)
1380 {
1381 int order = compound_order(page);
1382 int pages = 1 << order;
1383
1384 if (kmem_cache_debug(s)) {
1385 void *p;
1386
1387 slab_pad_check(s, page);
1388 for_each_object(p, s, page_address(page),
1389 page->objects)
1390 check_object(s, page, p, SLUB_RED_INACTIVE);
1391 }
1392
1393 kmemcheck_free_shadow(page, compound_order(page));
1394
1395 mod_zone_page_state(page_zone(page),
1396 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1397 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1398 -pages);
1399
1400 __ClearPageSlab(page);
1401 reset_page_mapcount(page);
1402 if (current->reclaim_state)
1403 current->reclaim_state->reclaimed_slab += pages;
1404 __free_pages(page, order);
1405 }
1406
1407 #define need_reserve_slab_rcu \
1408 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1409
1410 static void rcu_free_slab(struct rcu_head *h)
1411 {
1412 struct page *page;
1413
1414 if (need_reserve_slab_rcu)
1415 page = virt_to_head_page(h);
1416 else
1417 page = container_of((struct list_head *)h, struct page, lru);
1418
1419 __free_slab(page->slab, page);
1420 }
1421
1422 static void free_slab(struct kmem_cache *s, struct page *page)
1423 {
1424 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1425 struct rcu_head *head;
1426
1427 if (need_reserve_slab_rcu) {
1428 int order = compound_order(page);
1429 int offset = (PAGE_SIZE << order) - s->reserved;
1430
1431 VM_BUG_ON(s->reserved != sizeof(*head));
1432 head = page_address(page) + offset;
1433 } else {
1434 /*
1435 * RCU free overloads the RCU head over the LRU
1436 */
1437 head = (void *)&page->lru;
1438 }
1439
1440 call_rcu(head, rcu_free_slab);
1441 } else
1442 __free_slab(s, page);
1443 }
1444
1445 static void discard_slab(struct kmem_cache *s, struct page *page)
1446 {
1447 dec_slabs_node(s, page_to_nid(page), page->objects);
1448 free_slab(s, page);
1449 }
1450
1451 /*
1452 * Management of partially allocated slabs.
1453 *
1454 * list_lock must be held.
1455 */
1456 static inline void add_partial(struct kmem_cache_node *n,
1457 struct page *page, int tail)
1458 {
1459 n->nr_partial++;
1460 if (tail == DEACTIVATE_TO_TAIL)
1461 list_add_tail(&page->lru, &n->partial);
1462 else
1463 list_add(&page->lru, &n->partial);
1464 }
1465
1466 /*
1467 * list_lock must be held.
1468 */
1469 static inline void remove_partial(struct kmem_cache_node *n,
1470 struct page *page)
1471 {
1472 list_del(&page->lru);
1473 n->nr_partial--;
1474 }
1475
1476 /*
1477 * Remove slab from the partial list, freeze it and
1478 * return the pointer to the freelist.
1479 *
1480 * Returns a list of objects or NULL if it fails.
1481 *
1482 * Must hold list_lock since we modify the partial list.
1483 */
1484 static inline void *acquire_slab(struct kmem_cache *s,
1485 struct kmem_cache_node *n, struct page *page,
1486 int mode)
1487 {
1488 void *freelist;
1489 unsigned long counters;
1490 struct page new;
1491
1492 /*
1493 * Zap the freelist and set the frozen bit.
1494 * The old freelist is the list of objects for the
1495 * per cpu allocation list.
1496 */
1497 freelist = page->freelist;
1498 counters = page->counters;
1499 new.counters = counters;
1500 if (mode) {
1501 new.inuse = page->objects;
1502 new.freelist = NULL;
1503 } else {
1504 new.freelist = freelist;
1505 }
1506
1507 VM_BUG_ON(new.frozen);
1508 new.frozen = 1;
1509
1510 if (!__cmpxchg_double_slab(s, page,
1511 freelist, counters,
1512 new.freelist, new.counters,
1513 "acquire_slab"))
1514 return NULL;
1515
1516 remove_partial(n, page);
1517 WARN_ON(!freelist);
1518 return freelist;
1519 }
1520
1521 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1522
1523 /*
1524 * Try to allocate a partial slab from a specific node.
1525 */
1526 static void *get_partial_node(struct kmem_cache *s,
1527 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1528 {
1529 struct page *page, *page2;
1530 void *object = NULL;
1531
1532 /*
1533 * Racy check. If we mistakenly see no partial slabs then we
1534 * just allocate an empty slab. If we mistakenly try to get a
1535 * partial slab and there is none available then get_partials()
1536 * will return NULL.
1537 */
1538 if (!n || !n->nr_partial)
1539 return NULL;
1540
1541 spin_lock(&n->list_lock);
1542 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1543 void *t = acquire_slab(s, n, page, object == NULL);
1544 int available;
1545
1546 if (!t)
1547 break;
1548
1549 if (!object) {
1550 c->page = page;
1551 stat(s, ALLOC_FROM_PARTIAL);
1552 object = t;
1553 available = page->objects - page->inuse;
1554 } else {
1555 available = put_cpu_partial(s, page, 0);
1556 stat(s, CPU_PARTIAL_NODE);
1557 }
1558 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1559 break;
1560
1561 }
1562 spin_unlock(&n->list_lock);
1563 return object;
1564 }
1565
1566 /*
1567 * Get a page from somewhere. Search in increasing NUMA distances.
1568 */
1569 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1570 struct kmem_cache_cpu *c)
1571 {
1572 #ifdef CONFIG_NUMA
1573 struct zonelist *zonelist;
1574 struct zoneref *z;
1575 struct zone *zone;
1576 enum zone_type high_zoneidx = gfp_zone(flags);
1577 void *object;
1578 unsigned int cpuset_mems_cookie;
1579
1580 /*
1581 * The defrag ratio allows a configuration of the tradeoffs between
1582 * inter node defragmentation and node local allocations. A lower
1583 * defrag_ratio increases the tendency to do local allocations
1584 * instead of attempting to obtain partial slabs from other nodes.
1585 *
1586 * If the defrag_ratio is set to 0 then kmalloc() always
1587 * returns node local objects. If the ratio is higher then kmalloc()
1588 * may return off node objects because partial slabs are obtained
1589 * from other nodes and filled up.
1590 *
1591 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1592 * defrag_ratio = 1000) then every (well almost) allocation will
1593 * first attempt to defrag slab caches on other nodes. This means
1594 * scanning over all nodes to look for partial slabs which may be
1595 * expensive if we do it every time we are trying to find a slab
1596 * with available objects.
1597 */
1598 if (!s->remote_node_defrag_ratio ||
1599 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1600 return NULL;
1601
1602 do {
1603 cpuset_mems_cookie = get_mems_allowed();
1604 zonelist = node_zonelist(slab_node(), flags);
1605 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1606 struct kmem_cache_node *n;
1607
1608 n = get_node(s, zone_to_nid(zone));
1609
1610 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1611 n->nr_partial > s->min_partial) {
1612 object = get_partial_node(s, n, c);
1613 if (object) {
1614 /*
1615 * Return the object even if
1616 * put_mems_allowed indicated that
1617 * the cpuset mems_allowed was
1618 * updated in parallel. It's a
1619 * harmless race between the alloc
1620 * and the cpuset update.
1621 */
1622 put_mems_allowed(cpuset_mems_cookie);
1623 return object;
1624 }
1625 }
1626 }
1627 } while (!put_mems_allowed(cpuset_mems_cookie));
1628 #endif
1629 return NULL;
1630 }
1631
1632 /*
1633 * Get a partial page, lock it and return it.
1634 */
1635 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1636 struct kmem_cache_cpu *c)
1637 {
1638 void *object;
1639 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1640
1641 object = get_partial_node(s, get_node(s, searchnode), c);
1642 if (object || node != NUMA_NO_NODE)
1643 return object;
1644
1645 return get_any_partial(s, flags, c);
1646 }
1647
1648 #ifdef CONFIG_PREEMPT
1649 /*
1650 * Calculate the next globally unique transaction for disambiguiation
1651 * during cmpxchg. The transactions start with the cpu number and are then
1652 * incremented by CONFIG_NR_CPUS.
1653 */
1654 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1655 #else
1656 /*
1657 * No preemption supported therefore also no need to check for
1658 * different cpus.
1659 */
1660 #define TID_STEP 1
1661 #endif
1662
1663 static inline unsigned long next_tid(unsigned long tid)
1664 {
1665 return tid + TID_STEP;
1666 }
1667
1668 static inline unsigned int tid_to_cpu(unsigned long tid)
1669 {
1670 return tid % TID_STEP;
1671 }
1672
1673 static inline unsigned long tid_to_event(unsigned long tid)
1674 {
1675 return tid / TID_STEP;
1676 }
1677
1678 static inline unsigned int init_tid(int cpu)
1679 {
1680 return cpu;
1681 }
1682
1683 static inline void note_cmpxchg_failure(const char *n,
1684 const struct kmem_cache *s, unsigned long tid)
1685 {
1686 #ifdef SLUB_DEBUG_CMPXCHG
1687 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1688
1689 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1690
1691 #ifdef CONFIG_PREEMPT
1692 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1693 printk("due to cpu change %d -> %d\n",
1694 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1695 else
1696 #endif
1697 if (tid_to_event(tid) != tid_to_event(actual_tid))
1698 printk("due to cpu running other code. Event %ld->%ld\n",
1699 tid_to_event(tid), tid_to_event(actual_tid));
1700 else
1701 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1702 actual_tid, tid, next_tid(tid));
1703 #endif
1704 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1705 }
1706
1707 void init_kmem_cache_cpus(struct kmem_cache *s)
1708 {
1709 int cpu;
1710
1711 for_each_possible_cpu(cpu)
1712 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1713 }
1714
1715 /*
1716 * Remove the cpu slab
1717 */
1718 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1719 {
1720 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1721 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1722 int lock = 0;
1723 enum slab_modes l = M_NONE, m = M_NONE;
1724 void *nextfree;
1725 int tail = DEACTIVATE_TO_HEAD;
1726 struct page new;
1727 struct page old;
1728
1729 if (page->freelist) {
1730 stat(s, DEACTIVATE_REMOTE_FREES);
1731 tail = DEACTIVATE_TO_TAIL;
1732 }
1733
1734 /*
1735 * Stage one: Free all available per cpu objects back
1736 * to the page freelist while it is still frozen. Leave the
1737 * last one.
1738 *
1739 * There is no need to take the list->lock because the page
1740 * is still frozen.
1741 */
1742 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1743 void *prior;
1744 unsigned long counters;
1745
1746 do {
1747 prior = page->freelist;
1748 counters = page->counters;
1749 set_freepointer(s, freelist, prior);
1750 new.counters = counters;
1751 new.inuse--;
1752 VM_BUG_ON(!new.frozen);
1753
1754 } while (!__cmpxchg_double_slab(s, page,
1755 prior, counters,
1756 freelist, new.counters,
1757 "drain percpu freelist"));
1758
1759 freelist = nextfree;
1760 }
1761
1762 /*
1763 * Stage two: Ensure that the page is unfrozen while the
1764 * list presence reflects the actual number of objects
1765 * during unfreeze.
1766 *
1767 * We setup the list membership and then perform a cmpxchg
1768 * with the count. If there is a mismatch then the page
1769 * is not unfrozen but the page is on the wrong list.
1770 *
1771 * Then we restart the process which may have to remove
1772 * the page from the list that we just put it on again
1773 * because the number of objects in the slab may have
1774 * changed.
1775 */
1776 redo:
1777
1778 old.freelist = page->freelist;
1779 old.counters = page->counters;
1780 VM_BUG_ON(!old.frozen);
1781
1782 /* Determine target state of the slab */
1783 new.counters = old.counters;
1784 if (freelist) {
1785 new.inuse--;
1786 set_freepointer(s, freelist, old.freelist);
1787 new.freelist = freelist;
1788 } else
1789 new.freelist = old.freelist;
1790
1791 new.frozen = 0;
1792
1793 if (!new.inuse && n->nr_partial > s->min_partial)
1794 m = M_FREE;
1795 else if (new.freelist) {
1796 m = M_PARTIAL;
1797 if (!lock) {
1798 lock = 1;
1799 /*
1800 * Taking the spinlock removes the possiblity
1801 * that acquire_slab() will see a slab page that
1802 * is frozen
1803 */
1804 spin_lock(&n->list_lock);
1805 }
1806 } else {
1807 m = M_FULL;
1808 if (kmem_cache_debug(s) && !lock) {
1809 lock = 1;
1810 /*
1811 * This also ensures that the scanning of full
1812 * slabs from diagnostic functions will not see
1813 * any frozen slabs.
1814 */
1815 spin_lock(&n->list_lock);
1816 }
1817 }
1818
1819 if (l != m) {
1820
1821 if (l == M_PARTIAL)
1822
1823 remove_partial(n, page);
1824
1825 else if (l == M_FULL)
1826
1827 remove_full(s, page);
1828
1829 if (m == M_PARTIAL) {
1830
1831 add_partial(n, page, tail);
1832 stat(s, tail);
1833
1834 } else if (m == M_FULL) {
1835
1836 stat(s, DEACTIVATE_FULL);
1837 add_full(s, n, page);
1838
1839 }
1840 }
1841
1842 l = m;
1843 if (!__cmpxchg_double_slab(s, page,
1844 old.freelist, old.counters,
1845 new.freelist, new.counters,
1846 "unfreezing slab"))
1847 goto redo;
1848
1849 if (lock)
1850 spin_unlock(&n->list_lock);
1851
1852 if (m == M_FREE) {
1853 stat(s, DEACTIVATE_EMPTY);
1854 discard_slab(s, page);
1855 stat(s, FREE_SLAB);
1856 }
1857 }
1858
1859 /*
1860 * Unfreeze all the cpu partial slabs.
1861 *
1862 * This function must be called with interrupt disabled.
1863 */
1864 static void unfreeze_partials(struct kmem_cache *s)
1865 {
1866 struct kmem_cache_node *n = NULL, *n2 = NULL;
1867 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1868 struct page *page, *discard_page = NULL;
1869
1870 while ((page = c->partial)) {
1871 struct page new;
1872 struct page old;
1873
1874 c->partial = page->next;
1875
1876 n2 = get_node(s, page_to_nid(page));
1877 if (n != n2) {
1878 if (n)
1879 spin_unlock(&n->list_lock);
1880
1881 n = n2;
1882 spin_lock(&n->list_lock);
1883 }
1884
1885 do {
1886
1887 old.freelist = page->freelist;
1888 old.counters = page->counters;
1889 VM_BUG_ON(!old.frozen);
1890
1891 new.counters = old.counters;
1892 new.freelist = old.freelist;
1893
1894 new.frozen = 0;
1895
1896 } while (!__cmpxchg_double_slab(s, page,
1897 old.freelist, old.counters,
1898 new.freelist, new.counters,
1899 "unfreezing slab"));
1900
1901 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1902 page->next = discard_page;
1903 discard_page = page;
1904 } else {
1905 add_partial(n, page, DEACTIVATE_TO_TAIL);
1906 stat(s, FREE_ADD_PARTIAL);
1907 }
1908 }
1909
1910 if (n)
1911 spin_unlock(&n->list_lock);
1912
1913 while (discard_page) {
1914 page = discard_page;
1915 discard_page = discard_page->next;
1916
1917 stat(s, DEACTIVATE_EMPTY);
1918 discard_slab(s, page);
1919 stat(s, FREE_SLAB);
1920 }
1921 }
1922
1923 /*
1924 * Put a page that was just frozen (in __slab_free) into a partial page
1925 * slot if available. This is done without interrupts disabled and without
1926 * preemption disabled. The cmpxchg is racy and may put the partial page
1927 * onto a random cpus partial slot.
1928 *
1929 * If we did not find a slot then simply move all the partials to the
1930 * per node partial list.
1931 */
1932 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1933 {
1934 struct page *oldpage;
1935 int pages;
1936 int pobjects;
1937
1938 do {
1939 pages = 0;
1940 pobjects = 0;
1941 oldpage = this_cpu_read(s->cpu_slab->partial);
1942
1943 if (oldpage) {
1944 pobjects = oldpage->pobjects;
1945 pages = oldpage->pages;
1946 if (drain && pobjects > s->cpu_partial) {
1947 unsigned long flags;
1948 /*
1949 * partial array is full. Move the existing
1950 * set to the per node partial list.
1951 */
1952 local_irq_save(flags);
1953 unfreeze_partials(s);
1954 local_irq_restore(flags);
1955 pobjects = 0;
1956 pages = 0;
1957 stat(s, CPU_PARTIAL_DRAIN);
1958 }
1959 }
1960
1961 pages++;
1962 pobjects += page->objects - page->inuse;
1963
1964 page->pages = pages;
1965 page->pobjects = pobjects;
1966 page->next = oldpage;
1967
1968 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1969 return pobjects;
1970 }
1971
1972 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1973 {
1974 stat(s, CPUSLAB_FLUSH);
1975 deactivate_slab(s, c->page, c->freelist);
1976
1977 c->tid = next_tid(c->tid);
1978 c->page = NULL;
1979 c->freelist = NULL;
1980 }
1981
1982 /*
1983 * Flush cpu slab.
1984 *
1985 * Called from IPI handler with interrupts disabled.
1986 */
1987 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1988 {
1989 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1990
1991 if (likely(c)) {
1992 if (c->page)
1993 flush_slab(s, c);
1994
1995 unfreeze_partials(s);
1996 }
1997 }
1998
1999 static void flush_cpu_slab(void *d)
2000 {
2001 struct kmem_cache *s = d;
2002
2003 __flush_cpu_slab(s, smp_processor_id());
2004 }
2005
2006 static bool has_cpu_slab(int cpu, void *info)
2007 {
2008 struct kmem_cache *s = info;
2009 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2010
2011 return c->page || c->partial;
2012 }
2013
2014 static void flush_all(struct kmem_cache *s)
2015 {
2016 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2017 }
2018
2019 /*
2020 * Check if the objects in a per cpu structure fit numa
2021 * locality expectations.
2022 */
2023 static inline int node_match(struct page *page, int node)
2024 {
2025 #ifdef CONFIG_NUMA
2026 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2027 return 0;
2028 #endif
2029 return 1;
2030 }
2031
2032 static int count_free(struct page *page)
2033 {
2034 return page->objects - page->inuse;
2035 }
2036
2037 static unsigned long count_partial(struct kmem_cache_node *n,
2038 int (*get_count)(struct page *))
2039 {
2040 unsigned long flags;
2041 unsigned long x = 0;
2042 struct page *page;
2043
2044 spin_lock_irqsave(&n->list_lock, flags);
2045 list_for_each_entry(page, &n->partial, lru)
2046 x += get_count(page);
2047 spin_unlock_irqrestore(&n->list_lock, flags);
2048 return x;
2049 }
2050
2051 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2052 {
2053 #ifdef CONFIG_SLUB_DEBUG
2054 return atomic_long_read(&n->total_objects);
2055 #else
2056 return 0;
2057 #endif
2058 }
2059
2060 static noinline void
2061 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2062 {
2063 int node;
2064
2065 printk(KERN_WARNING
2066 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2067 nid, gfpflags);
2068 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2069 "default order: %d, min order: %d\n", s->name, s->object_size,
2070 s->size, oo_order(s->oo), oo_order(s->min));
2071
2072 if (oo_order(s->min) > get_order(s->object_size))
2073 printk(KERN_WARNING " %s debugging increased min order, use "
2074 "slub_debug=O to disable.\n", s->name);
2075
2076 for_each_online_node(node) {
2077 struct kmem_cache_node *n = get_node(s, node);
2078 unsigned long nr_slabs;
2079 unsigned long nr_objs;
2080 unsigned long nr_free;
2081
2082 if (!n)
2083 continue;
2084
2085 nr_free = count_partial(n, count_free);
2086 nr_slabs = node_nr_slabs(n);
2087 nr_objs = node_nr_objs(n);
2088
2089 printk(KERN_WARNING
2090 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2091 node, nr_slabs, nr_objs, nr_free);
2092 }
2093 }
2094
2095 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2096 int node, struct kmem_cache_cpu **pc)
2097 {
2098 void *freelist;
2099 struct kmem_cache_cpu *c = *pc;
2100 struct page *page;
2101
2102 freelist = get_partial(s, flags, node, c);
2103
2104 if (freelist)
2105 return freelist;
2106
2107 page = new_slab(s, flags, node);
2108 if (page) {
2109 c = __this_cpu_ptr(s->cpu_slab);
2110 if (c->page)
2111 flush_slab(s, c);
2112
2113 /*
2114 * No other reference to the page yet so we can
2115 * muck around with it freely without cmpxchg
2116 */
2117 freelist = page->freelist;
2118 page->freelist = NULL;
2119
2120 stat(s, ALLOC_SLAB);
2121 c->page = page;
2122 *pc = c;
2123 } else
2124 freelist = NULL;
2125
2126 return freelist;
2127 }
2128
2129 /*
2130 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2131 * or deactivate the page.
2132 *
2133 * The page is still frozen if the return value is not NULL.
2134 *
2135 * If this function returns NULL then the page has been unfrozen.
2136 *
2137 * This function must be called with interrupt disabled.
2138 */
2139 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2140 {
2141 struct page new;
2142 unsigned long counters;
2143 void *freelist;
2144
2145 do {
2146 freelist = page->freelist;
2147 counters = page->counters;
2148
2149 new.counters = counters;
2150 VM_BUG_ON(!new.frozen);
2151
2152 new.inuse = page->objects;
2153 new.frozen = freelist != NULL;
2154
2155 } while (!__cmpxchg_double_slab(s, page,
2156 freelist, counters,
2157 NULL, new.counters,
2158 "get_freelist"));
2159
2160 return freelist;
2161 }
2162
2163 /*
2164 * Slow path. The lockless freelist is empty or we need to perform
2165 * debugging duties.
2166 *
2167 * Processing is still very fast if new objects have been freed to the
2168 * regular freelist. In that case we simply take over the regular freelist
2169 * as the lockless freelist and zap the regular freelist.
2170 *
2171 * If that is not working then we fall back to the partial lists. We take the
2172 * first element of the freelist as the object to allocate now and move the
2173 * rest of the freelist to the lockless freelist.
2174 *
2175 * And if we were unable to get a new slab from the partial slab lists then
2176 * we need to allocate a new slab. This is the slowest path since it involves
2177 * a call to the page allocator and the setup of a new slab.
2178 */
2179 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2180 unsigned long addr, struct kmem_cache_cpu *c)
2181 {
2182 void *freelist;
2183 struct page *page;
2184 unsigned long flags;
2185
2186 local_irq_save(flags);
2187 #ifdef CONFIG_PREEMPT
2188 /*
2189 * We may have been preempted and rescheduled on a different
2190 * cpu before disabling interrupts. Need to reload cpu area
2191 * pointer.
2192 */
2193 c = this_cpu_ptr(s->cpu_slab);
2194 #endif
2195
2196 page = c->page;
2197 if (!page)
2198 goto new_slab;
2199 redo:
2200
2201 if (unlikely(!node_match(page, node))) {
2202 stat(s, ALLOC_NODE_MISMATCH);
2203 deactivate_slab(s, page, c->freelist);
2204 c->page = NULL;
2205 c->freelist = NULL;
2206 goto new_slab;
2207 }
2208
2209 /* must check again c->freelist in case of cpu migration or IRQ */
2210 freelist = c->freelist;
2211 if (freelist)
2212 goto load_freelist;
2213
2214 stat(s, ALLOC_SLOWPATH);
2215
2216 freelist = get_freelist(s, page);
2217
2218 if (!freelist) {
2219 c->page = NULL;
2220 stat(s, DEACTIVATE_BYPASS);
2221 goto new_slab;
2222 }
2223
2224 stat(s, ALLOC_REFILL);
2225
2226 load_freelist:
2227 /*
2228 * freelist is pointing to the list of objects to be used.
2229 * page is pointing to the page from which the objects are obtained.
2230 * That page must be frozen for per cpu allocations to work.
2231 */
2232 VM_BUG_ON(!c->page->frozen);
2233 c->freelist = get_freepointer(s, freelist);
2234 c->tid = next_tid(c->tid);
2235 local_irq_restore(flags);
2236 return freelist;
2237
2238 new_slab:
2239
2240 if (c->partial) {
2241 page = c->page = c->partial;
2242 c->partial = page->next;
2243 stat(s, CPU_PARTIAL_ALLOC);
2244 c->freelist = NULL;
2245 goto redo;
2246 }
2247
2248 freelist = new_slab_objects(s, gfpflags, node, &c);
2249
2250 if (unlikely(!freelist)) {
2251 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2252 slab_out_of_memory(s, gfpflags, node);
2253
2254 local_irq_restore(flags);
2255 return NULL;
2256 }
2257
2258 page = c->page;
2259 if (likely(!kmem_cache_debug(s)))
2260 goto load_freelist;
2261
2262 /* Only entered in the debug case */
2263 if (!alloc_debug_processing(s, page, freelist, addr))
2264 goto new_slab; /* Slab failed checks. Next slab needed */
2265
2266 deactivate_slab(s, page, get_freepointer(s, freelist));
2267 c->page = NULL;
2268 c->freelist = NULL;
2269 local_irq_restore(flags);
2270 return freelist;
2271 }
2272
2273 /*
2274 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2275 * have the fastpath folded into their functions. So no function call
2276 * overhead for requests that can be satisfied on the fastpath.
2277 *
2278 * The fastpath works by first checking if the lockless freelist can be used.
2279 * If not then __slab_alloc is called for slow processing.
2280 *
2281 * Otherwise we can simply pick the next object from the lockless free list.
2282 */
2283 static __always_inline void *slab_alloc(struct kmem_cache *s,
2284 gfp_t gfpflags, int node, unsigned long addr)
2285 {
2286 void **object;
2287 struct kmem_cache_cpu *c;
2288 struct page *page;
2289 unsigned long tid;
2290
2291 if (slab_pre_alloc_hook(s, gfpflags))
2292 return NULL;
2293
2294 redo:
2295
2296 /*
2297 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2298 * enabled. We may switch back and forth between cpus while
2299 * reading from one cpu area. That does not matter as long
2300 * as we end up on the original cpu again when doing the cmpxchg.
2301 */
2302 c = __this_cpu_ptr(s->cpu_slab);
2303
2304 /*
2305 * The transaction ids are globally unique per cpu and per operation on
2306 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2307 * occurs on the right processor and that there was no operation on the
2308 * linked list in between.
2309 */
2310 tid = c->tid;
2311 barrier();
2312
2313 object = c->freelist;
2314 page = c->page;
2315 if (unlikely(!object || !node_match(page, node)))
2316
2317 object = __slab_alloc(s, gfpflags, node, addr, c);
2318
2319 else {
2320 void *next_object = get_freepointer_safe(s, object);
2321
2322 /*
2323 * The cmpxchg will only match if there was no additional
2324 * operation and if we are on the right processor.
2325 *
2326 * The cmpxchg does the following atomically (without lock semantics!)
2327 * 1. Relocate first pointer to the current per cpu area.
2328 * 2. Verify that tid and freelist have not been changed
2329 * 3. If they were not changed replace tid and freelist
2330 *
2331 * Since this is without lock semantics the protection is only against
2332 * code executing on this cpu *not* from access by other cpus.
2333 */
2334 if (unlikely(!this_cpu_cmpxchg_double(
2335 s->cpu_slab->freelist, s->cpu_slab->tid,
2336 object, tid,
2337 next_object, next_tid(tid)))) {
2338
2339 note_cmpxchg_failure("slab_alloc", s, tid);
2340 goto redo;
2341 }
2342 prefetch_freepointer(s, next_object);
2343 stat(s, ALLOC_FASTPATH);
2344 }
2345
2346 if (unlikely(gfpflags & __GFP_ZERO) && object)
2347 memset(object, 0, s->object_size);
2348
2349 slab_post_alloc_hook(s, gfpflags, object);
2350
2351 return object;
2352 }
2353
2354 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2355 {
2356 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2357
2358 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2359
2360 return ret;
2361 }
2362 EXPORT_SYMBOL(kmem_cache_alloc);
2363
2364 #ifdef CONFIG_TRACING
2365 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2366 {
2367 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2368 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2369 return ret;
2370 }
2371 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2372
2373 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2374 {
2375 void *ret = kmalloc_order(size, flags, order);
2376 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2377 return ret;
2378 }
2379 EXPORT_SYMBOL(kmalloc_order_trace);
2380 #endif
2381
2382 #ifdef CONFIG_NUMA
2383 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2384 {
2385 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2386
2387 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2388 s->object_size, s->size, gfpflags, node);
2389
2390 return ret;
2391 }
2392 EXPORT_SYMBOL(kmem_cache_alloc_node);
2393
2394 #ifdef CONFIG_TRACING
2395 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2396 gfp_t gfpflags,
2397 int node, size_t size)
2398 {
2399 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2400
2401 trace_kmalloc_node(_RET_IP_, ret,
2402 size, s->size, gfpflags, node);
2403 return ret;
2404 }
2405 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2406 #endif
2407 #endif
2408
2409 /*
2410 * Slow patch handling. This may still be called frequently since objects
2411 * have a longer lifetime than the cpu slabs in most processing loads.
2412 *
2413 * So we still attempt to reduce cache line usage. Just take the slab
2414 * lock and free the item. If there is no additional partial page
2415 * handling required then we can return immediately.
2416 */
2417 static void __slab_free(struct kmem_cache *s, struct page *page,
2418 void *x, unsigned long addr)
2419 {
2420 void *prior;
2421 void **object = (void *)x;
2422 int was_frozen;
2423 int inuse;
2424 struct page new;
2425 unsigned long counters;
2426 struct kmem_cache_node *n = NULL;
2427 unsigned long uninitialized_var(flags);
2428
2429 stat(s, FREE_SLOWPATH);
2430
2431 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2432 return;
2433
2434 do {
2435 prior = page->freelist;
2436 counters = page->counters;
2437 set_freepointer(s, object, prior);
2438 new.counters = counters;
2439 was_frozen = new.frozen;
2440 new.inuse--;
2441 if ((!new.inuse || !prior) && !was_frozen && !n) {
2442
2443 if (!kmem_cache_debug(s) && !prior)
2444
2445 /*
2446 * Slab was on no list before and will be partially empty
2447 * We can defer the list move and instead freeze it.
2448 */
2449 new.frozen = 1;
2450
2451 else { /* Needs to be taken off a list */
2452
2453 n = get_node(s, page_to_nid(page));
2454 /*
2455 * Speculatively acquire the list_lock.
2456 * If the cmpxchg does not succeed then we may
2457 * drop the list_lock without any processing.
2458 *
2459 * Otherwise the list_lock will synchronize with
2460 * other processors updating the list of slabs.
2461 */
2462 spin_lock_irqsave(&n->list_lock, flags);
2463
2464 }
2465 }
2466 inuse = new.inuse;
2467
2468 } while (!cmpxchg_double_slab(s, page,
2469 prior, counters,
2470 object, new.counters,
2471 "__slab_free"));
2472
2473 if (likely(!n)) {
2474
2475 /*
2476 * If we just froze the page then put it onto the
2477 * per cpu partial list.
2478 */
2479 if (new.frozen && !was_frozen) {
2480 put_cpu_partial(s, page, 1);
2481 stat(s, CPU_PARTIAL_FREE);
2482 }
2483 /*
2484 * The list lock was not taken therefore no list
2485 * activity can be necessary.
2486 */
2487 if (was_frozen)
2488 stat(s, FREE_FROZEN);
2489 return;
2490 }
2491
2492 /*
2493 * was_frozen may have been set after we acquired the list_lock in
2494 * an earlier loop. So we need to check it here again.
2495 */
2496 if (was_frozen)
2497 stat(s, FREE_FROZEN);
2498 else {
2499 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2500 goto slab_empty;
2501
2502 /*
2503 * Objects left in the slab. If it was not on the partial list before
2504 * then add it.
2505 */
2506 if (unlikely(!prior)) {
2507 remove_full(s, page);
2508 add_partial(n, page, DEACTIVATE_TO_TAIL);
2509 stat(s, FREE_ADD_PARTIAL);
2510 }
2511 }
2512 spin_unlock_irqrestore(&n->list_lock, flags);
2513 return;
2514
2515 slab_empty:
2516 if (prior) {
2517 /*
2518 * Slab on the partial list.
2519 */
2520 remove_partial(n, page);
2521 stat(s, FREE_REMOVE_PARTIAL);
2522 } else
2523 /* Slab must be on the full list */
2524 remove_full(s, page);
2525
2526 spin_unlock_irqrestore(&n->list_lock, flags);
2527 stat(s, FREE_SLAB);
2528 discard_slab(s, page);
2529 }
2530
2531 /*
2532 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2533 * can perform fastpath freeing without additional function calls.
2534 *
2535 * The fastpath is only possible if we are freeing to the current cpu slab
2536 * of this processor. This typically the case if we have just allocated
2537 * the item before.
2538 *
2539 * If fastpath is not possible then fall back to __slab_free where we deal
2540 * with all sorts of special processing.
2541 */
2542 static __always_inline void slab_free(struct kmem_cache *s,
2543 struct page *page, void *x, unsigned long addr)
2544 {
2545 void **object = (void *)x;
2546 struct kmem_cache_cpu *c;
2547 unsigned long tid;
2548
2549 slab_free_hook(s, x);
2550
2551 redo:
2552 /*
2553 * Determine the currently cpus per cpu slab.
2554 * The cpu may change afterward. However that does not matter since
2555 * data is retrieved via this pointer. If we are on the same cpu
2556 * during the cmpxchg then the free will succedd.
2557 */
2558 c = __this_cpu_ptr(s->cpu_slab);
2559
2560 tid = c->tid;
2561 barrier();
2562
2563 if (likely(page == c->page)) {
2564 set_freepointer(s, object, c->freelist);
2565
2566 if (unlikely(!this_cpu_cmpxchg_double(
2567 s->cpu_slab->freelist, s->cpu_slab->tid,
2568 c->freelist, tid,
2569 object, next_tid(tid)))) {
2570
2571 note_cmpxchg_failure("slab_free", s, tid);
2572 goto redo;
2573 }
2574 stat(s, FREE_FASTPATH);
2575 } else
2576 __slab_free(s, page, x, addr);
2577
2578 }
2579
2580 void kmem_cache_free(struct kmem_cache *s, void *x)
2581 {
2582 struct page *page;
2583
2584 page = virt_to_head_page(x);
2585
2586 slab_free(s, page, x, _RET_IP_);
2587
2588 trace_kmem_cache_free(_RET_IP_, x);
2589 }
2590 EXPORT_SYMBOL(kmem_cache_free);
2591
2592 /*
2593 * Object placement in a slab is made very easy because we always start at
2594 * offset 0. If we tune the size of the object to the alignment then we can
2595 * get the required alignment by putting one properly sized object after
2596 * another.
2597 *
2598 * Notice that the allocation order determines the sizes of the per cpu
2599 * caches. Each processor has always one slab available for allocations.
2600 * Increasing the allocation order reduces the number of times that slabs
2601 * must be moved on and off the partial lists and is therefore a factor in
2602 * locking overhead.
2603 */
2604
2605 /*
2606 * Mininum / Maximum order of slab pages. This influences locking overhead
2607 * and slab fragmentation. A higher order reduces the number of partial slabs
2608 * and increases the number of allocations possible without having to
2609 * take the list_lock.
2610 */
2611 static int slub_min_order;
2612 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2613 static int slub_min_objects;
2614
2615 /*
2616 * Merge control. If this is set then no merging of slab caches will occur.
2617 * (Could be removed. This was introduced to pacify the merge skeptics.)
2618 */
2619 static int slub_nomerge;
2620
2621 /*
2622 * Calculate the order of allocation given an slab object size.
2623 *
2624 * The order of allocation has significant impact on performance and other
2625 * system components. Generally order 0 allocations should be preferred since
2626 * order 0 does not cause fragmentation in the page allocator. Larger objects
2627 * be problematic to put into order 0 slabs because there may be too much
2628 * unused space left. We go to a higher order if more than 1/16th of the slab
2629 * would be wasted.
2630 *
2631 * In order to reach satisfactory performance we must ensure that a minimum
2632 * number of objects is in one slab. Otherwise we may generate too much
2633 * activity on the partial lists which requires taking the list_lock. This is
2634 * less a concern for large slabs though which are rarely used.
2635 *
2636 * slub_max_order specifies the order where we begin to stop considering the
2637 * number of objects in a slab as critical. If we reach slub_max_order then
2638 * we try to keep the page order as low as possible. So we accept more waste
2639 * of space in favor of a small page order.
2640 *
2641 * Higher order allocations also allow the placement of more objects in a
2642 * slab and thereby reduce object handling overhead. If the user has
2643 * requested a higher mininum order then we start with that one instead of
2644 * the smallest order which will fit the object.
2645 */
2646 static inline int slab_order(int size, int min_objects,
2647 int max_order, int fract_leftover, int reserved)
2648 {
2649 int order;
2650 int rem;
2651 int min_order = slub_min_order;
2652
2653 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2654 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2655
2656 for (order = max(min_order,
2657 fls(min_objects * size - 1) - PAGE_SHIFT);
2658 order <= max_order; order++) {
2659
2660 unsigned long slab_size = PAGE_SIZE << order;
2661
2662 if (slab_size < min_objects * size + reserved)
2663 continue;
2664
2665 rem = (slab_size - reserved) % size;
2666
2667 if (rem <= slab_size / fract_leftover)
2668 break;
2669
2670 }
2671
2672 return order;
2673 }
2674
2675 static inline int calculate_order(int size, int reserved)
2676 {
2677 int order;
2678 int min_objects;
2679 int fraction;
2680 int max_objects;
2681
2682 /*
2683 * Attempt to find best configuration for a slab. This
2684 * works by first attempting to generate a layout with
2685 * the best configuration and backing off gradually.
2686 *
2687 * First we reduce the acceptable waste in a slab. Then
2688 * we reduce the minimum objects required in a slab.
2689 */
2690 min_objects = slub_min_objects;
2691 if (!min_objects)
2692 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2693 max_objects = order_objects(slub_max_order, size, reserved);
2694 min_objects = min(min_objects, max_objects);
2695
2696 while (min_objects > 1) {
2697 fraction = 16;
2698 while (fraction >= 4) {
2699 order = slab_order(size, min_objects,
2700 slub_max_order, fraction, reserved);
2701 if (order <= slub_max_order)
2702 return order;
2703 fraction /= 2;
2704 }
2705 min_objects--;
2706 }
2707
2708 /*
2709 * We were unable to place multiple objects in a slab. Now
2710 * lets see if we can place a single object there.
2711 */
2712 order = slab_order(size, 1, slub_max_order, 1, reserved);
2713 if (order <= slub_max_order)
2714 return order;
2715
2716 /*
2717 * Doh this slab cannot be placed using slub_max_order.
2718 */
2719 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2720 if (order < MAX_ORDER)
2721 return order;
2722 return -ENOSYS;
2723 }
2724
2725 /*
2726 * Figure out what the alignment of the objects will be.
2727 */
2728 static unsigned long calculate_alignment(unsigned long flags,
2729 unsigned long align, unsigned long size)
2730 {
2731 /*
2732 * If the user wants hardware cache aligned objects then follow that
2733 * suggestion if the object is sufficiently large.
2734 *
2735 * The hardware cache alignment cannot override the specified
2736 * alignment though. If that is greater then use it.
2737 */
2738 if (flags & SLAB_HWCACHE_ALIGN) {
2739 unsigned long ralign = cache_line_size();
2740 while (size <= ralign / 2)
2741 ralign /= 2;
2742 align = max(align, ralign);
2743 }
2744
2745 if (align < ARCH_SLAB_MINALIGN)
2746 align = ARCH_SLAB_MINALIGN;
2747
2748 return ALIGN(align, sizeof(void *));
2749 }
2750
2751 static void
2752 init_kmem_cache_node(struct kmem_cache_node *n)
2753 {
2754 n->nr_partial = 0;
2755 spin_lock_init(&n->list_lock);
2756 INIT_LIST_HEAD(&n->partial);
2757 #ifdef CONFIG_SLUB_DEBUG
2758 atomic_long_set(&n->nr_slabs, 0);
2759 atomic_long_set(&n->total_objects, 0);
2760 INIT_LIST_HEAD(&n->full);
2761 #endif
2762 }
2763
2764 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2765 {
2766 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2767 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2768
2769 /*
2770 * Must align to double word boundary for the double cmpxchg
2771 * instructions to work; see __pcpu_double_call_return_bool().
2772 */
2773 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2774 2 * sizeof(void *));
2775
2776 if (!s->cpu_slab)
2777 return 0;
2778
2779 init_kmem_cache_cpus(s);
2780
2781 return 1;
2782 }
2783
2784 static struct kmem_cache *kmem_cache_node;
2785
2786 /*
2787 * No kmalloc_node yet so do it by hand. We know that this is the first
2788 * slab on the node for this slabcache. There are no concurrent accesses
2789 * possible.
2790 *
2791 * Note that this function only works on the kmalloc_node_cache
2792 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2793 * memory on a fresh node that has no slab structures yet.
2794 */
2795 static void early_kmem_cache_node_alloc(int node)
2796 {
2797 struct page *page;
2798 struct kmem_cache_node *n;
2799
2800 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2801
2802 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2803
2804 BUG_ON(!page);
2805 if (page_to_nid(page) != node) {
2806 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2807 "node %d\n", node);
2808 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2809 "in order to be able to continue\n");
2810 }
2811
2812 n = page->freelist;
2813 BUG_ON(!n);
2814 page->freelist = get_freepointer(kmem_cache_node, n);
2815 page->inuse = 1;
2816 page->frozen = 0;
2817 kmem_cache_node->node[node] = n;
2818 #ifdef CONFIG_SLUB_DEBUG
2819 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2820 init_tracking(kmem_cache_node, n);
2821 #endif
2822 init_kmem_cache_node(n);
2823 inc_slabs_node(kmem_cache_node, node, page->objects);
2824
2825 add_partial(n, page, DEACTIVATE_TO_HEAD);
2826 }
2827
2828 static void free_kmem_cache_nodes(struct kmem_cache *s)
2829 {
2830 int node;
2831
2832 for_each_node_state(node, N_NORMAL_MEMORY) {
2833 struct kmem_cache_node *n = s->node[node];
2834
2835 if (n)
2836 kmem_cache_free(kmem_cache_node, n);
2837
2838 s->node[node] = NULL;
2839 }
2840 }
2841
2842 static int init_kmem_cache_nodes(struct kmem_cache *s)
2843 {
2844 int node;
2845
2846 for_each_node_state(node, N_NORMAL_MEMORY) {
2847 struct kmem_cache_node *n;
2848
2849 if (slab_state == DOWN) {
2850 early_kmem_cache_node_alloc(node);
2851 continue;
2852 }
2853 n = kmem_cache_alloc_node(kmem_cache_node,
2854 GFP_KERNEL, node);
2855
2856 if (!n) {
2857 free_kmem_cache_nodes(s);
2858 return 0;
2859 }
2860
2861 s->node[node] = n;
2862 init_kmem_cache_node(n);
2863 }
2864 return 1;
2865 }
2866
2867 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2868 {
2869 if (min < MIN_PARTIAL)
2870 min = MIN_PARTIAL;
2871 else if (min > MAX_PARTIAL)
2872 min = MAX_PARTIAL;
2873 s->min_partial = min;
2874 }
2875
2876 /*
2877 * calculate_sizes() determines the order and the distribution of data within
2878 * a slab object.
2879 */
2880 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2881 {
2882 unsigned long flags = s->flags;
2883 unsigned long size = s->object_size;
2884 unsigned long align = s->align;
2885 int order;
2886
2887 /*
2888 * Round up object size to the next word boundary. We can only
2889 * place the free pointer at word boundaries and this determines
2890 * the possible location of the free pointer.
2891 */
2892 size = ALIGN(size, sizeof(void *));
2893
2894 #ifdef CONFIG_SLUB_DEBUG
2895 /*
2896 * Determine if we can poison the object itself. If the user of
2897 * the slab may touch the object after free or before allocation
2898 * then we should never poison the object itself.
2899 */
2900 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2901 !s->ctor)
2902 s->flags |= __OBJECT_POISON;
2903 else
2904 s->flags &= ~__OBJECT_POISON;
2905
2906
2907 /*
2908 * If we are Redzoning then check if there is some space between the
2909 * end of the object and the free pointer. If not then add an
2910 * additional word to have some bytes to store Redzone information.
2911 */
2912 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2913 size += sizeof(void *);
2914 #endif
2915
2916 /*
2917 * With that we have determined the number of bytes in actual use
2918 * by the object. This is the potential offset to the free pointer.
2919 */
2920 s->inuse = size;
2921
2922 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2923 s->ctor)) {
2924 /*
2925 * Relocate free pointer after the object if it is not
2926 * permitted to overwrite the first word of the object on
2927 * kmem_cache_free.
2928 *
2929 * This is the case if we do RCU, have a constructor or
2930 * destructor or are poisoning the objects.
2931 */
2932 s->offset = size;
2933 size += sizeof(void *);
2934 }
2935
2936 #ifdef CONFIG_SLUB_DEBUG
2937 if (flags & SLAB_STORE_USER)
2938 /*
2939 * Need to store information about allocs and frees after
2940 * the object.
2941 */
2942 size += 2 * sizeof(struct track);
2943
2944 if (flags & SLAB_RED_ZONE)
2945 /*
2946 * Add some empty padding so that we can catch
2947 * overwrites from earlier objects rather than let
2948 * tracking information or the free pointer be
2949 * corrupted if a user writes before the start
2950 * of the object.
2951 */
2952 size += sizeof(void *);
2953 #endif
2954
2955 /*
2956 * Determine the alignment based on various parameters that the
2957 * user specified and the dynamic determination of cache line size
2958 * on bootup.
2959 */
2960 align = calculate_alignment(flags, align, s->object_size);
2961 s->align = align;
2962
2963 /*
2964 * SLUB stores one object immediately after another beginning from
2965 * offset 0. In order to align the objects we have to simply size
2966 * each object to conform to the alignment.
2967 */
2968 size = ALIGN(size, align);
2969 s->size = size;
2970 if (forced_order >= 0)
2971 order = forced_order;
2972 else
2973 order = calculate_order(size, s->reserved);
2974
2975 if (order < 0)
2976 return 0;
2977
2978 s->allocflags = 0;
2979 if (order)
2980 s->allocflags |= __GFP_COMP;
2981
2982 if (s->flags & SLAB_CACHE_DMA)
2983 s->allocflags |= SLUB_DMA;
2984
2985 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2986 s->allocflags |= __GFP_RECLAIMABLE;
2987
2988 /*
2989 * Determine the number of objects per slab
2990 */
2991 s->oo = oo_make(order, size, s->reserved);
2992 s->min = oo_make(get_order(size), size, s->reserved);
2993 if (oo_objects(s->oo) > oo_objects(s->max))
2994 s->max = s->oo;
2995
2996 return !!oo_objects(s->oo);
2997
2998 }
2999
3000 static int kmem_cache_open(struct kmem_cache *s,
3001 const char *name, size_t size,
3002 size_t align, unsigned long flags,
3003 void (*ctor)(void *))
3004 {
3005 memset(s, 0, kmem_size);
3006 s->name = name;
3007 s->ctor = ctor;
3008 s->object_size = size;
3009 s->align = align;
3010 s->flags = kmem_cache_flags(size, flags, name, ctor);
3011 s->reserved = 0;
3012
3013 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3014 s->reserved = sizeof(struct rcu_head);
3015
3016 if (!calculate_sizes(s, -1))
3017 goto error;
3018 if (disable_higher_order_debug) {
3019 /*
3020 * Disable debugging flags that store metadata if the min slab
3021 * order increased.
3022 */
3023 if (get_order(s->size) > get_order(s->object_size)) {
3024 s->flags &= ~DEBUG_METADATA_FLAGS;
3025 s->offset = 0;
3026 if (!calculate_sizes(s, -1))
3027 goto error;
3028 }
3029 }
3030
3031 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3032 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3033 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3034 /* Enable fast mode */
3035 s->flags |= __CMPXCHG_DOUBLE;
3036 #endif
3037
3038 /*
3039 * The larger the object size is, the more pages we want on the partial
3040 * list to avoid pounding the page allocator excessively.
3041 */
3042 set_min_partial(s, ilog2(s->size) / 2);
3043
3044 /*
3045 * cpu_partial determined the maximum number of objects kept in the
3046 * per cpu partial lists of a processor.
3047 *
3048 * Per cpu partial lists mainly contain slabs that just have one
3049 * object freed. If they are used for allocation then they can be
3050 * filled up again with minimal effort. The slab will never hit the
3051 * per node partial lists and therefore no locking will be required.
3052 *
3053 * This setting also determines
3054 *
3055 * A) The number of objects from per cpu partial slabs dumped to the
3056 * per node list when we reach the limit.
3057 * B) The number of objects in cpu partial slabs to extract from the
3058 * per node list when we run out of per cpu objects. We only fetch 50%
3059 * to keep some capacity around for frees.
3060 */
3061 if (kmem_cache_debug(s))
3062 s->cpu_partial = 0;
3063 else if (s->size >= PAGE_SIZE)
3064 s->cpu_partial = 2;
3065 else if (s->size >= 1024)
3066 s->cpu_partial = 6;
3067 else if (s->size >= 256)
3068 s->cpu_partial = 13;
3069 else
3070 s->cpu_partial = 30;
3071
3072 s->refcount = 1;
3073 #ifdef CONFIG_NUMA
3074 s->remote_node_defrag_ratio = 1000;
3075 #endif
3076 if (!init_kmem_cache_nodes(s))
3077 goto error;
3078
3079 if (alloc_kmem_cache_cpus(s))
3080 return 1;
3081
3082 free_kmem_cache_nodes(s);
3083 error:
3084 if (flags & SLAB_PANIC)
3085 panic("Cannot create slab %s size=%lu realsize=%u "
3086 "order=%u offset=%u flags=%lx\n",
3087 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3088 s->offset, flags);
3089 return 0;
3090 }
3091
3092 /*
3093 * Determine the size of a slab object
3094 */
3095 unsigned int kmem_cache_size(struct kmem_cache *s)
3096 {
3097 return s->object_size;
3098 }
3099 EXPORT_SYMBOL(kmem_cache_size);
3100
3101 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3102 const char *text)
3103 {
3104 #ifdef CONFIG_SLUB_DEBUG
3105 void *addr = page_address(page);
3106 void *p;
3107 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3108 sizeof(long), GFP_ATOMIC);
3109 if (!map)
3110 return;
3111 slab_err(s, page, "%s", text);
3112 slab_lock(page);
3113
3114 get_map(s, page, map);
3115 for_each_object(p, s, addr, page->objects) {
3116
3117 if (!test_bit(slab_index(p, s, addr), map)) {
3118 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3119 p, p - addr);
3120 print_tracking(s, p);
3121 }
3122 }
3123 slab_unlock(page);
3124 kfree(map);
3125 #endif
3126 }
3127
3128 /*
3129 * Attempt to free all partial slabs on a node.
3130 * This is called from kmem_cache_close(). We must be the last thread
3131 * using the cache and therefore we do not need to lock anymore.
3132 */
3133 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3134 {
3135 struct page *page, *h;
3136
3137 list_for_each_entry_safe(page, h, &n->partial, lru) {
3138 if (!page->inuse) {
3139 remove_partial(n, page);
3140 discard_slab(s, page);
3141 } else {
3142 list_slab_objects(s, page,
3143 "Objects remaining on kmem_cache_close()");
3144 }
3145 }
3146 }
3147
3148 /*
3149 * Release all resources used by a slab cache.
3150 */
3151 static inline int kmem_cache_close(struct kmem_cache *s)
3152 {
3153 int node;
3154
3155 flush_all(s);
3156 free_percpu(s->cpu_slab);
3157 /* Attempt to free all objects */
3158 for_each_node_state(node, N_NORMAL_MEMORY) {
3159 struct kmem_cache_node *n = get_node(s, node);
3160
3161 free_partial(s, n);
3162 if (n->nr_partial || slabs_node(s, node))
3163 return 1;
3164 }
3165 free_kmem_cache_nodes(s);
3166 return 0;
3167 }
3168
3169 /*
3170 * Close a cache and release the kmem_cache structure
3171 * (must be used for caches created using kmem_cache_create)
3172 */
3173 void kmem_cache_destroy(struct kmem_cache *s)
3174 {
3175 mutex_lock(&slab_mutex);
3176 s->refcount--;
3177 if (!s->refcount) {
3178 list_del(&s->list);
3179 mutex_unlock(&slab_mutex);
3180 if (kmem_cache_close(s)) {
3181 printk(KERN_ERR "SLUB %s: %s called for cache that "
3182 "still has objects.\n", s->name, __func__);
3183 dump_stack();
3184 }
3185 if (s->flags & SLAB_DESTROY_BY_RCU)
3186 rcu_barrier();
3187 sysfs_slab_remove(s);
3188 } else
3189 mutex_unlock(&slab_mutex);
3190 }
3191 EXPORT_SYMBOL(kmem_cache_destroy);
3192
3193 /********************************************************************
3194 * Kmalloc subsystem
3195 *******************************************************************/
3196
3197 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3198 EXPORT_SYMBOL(kmalloc_caches);
3199
3200 static struct kmem_cache *kmem_cache;
3201
3202 #ifdef CONFIG_ZONE_DMA
3203 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3204 #endif
3205
3206 static int __init setup_slub_min_order(char *str)
3207 {
3208 get_option(&str, &slub_min_order);
3209
3210 return 1;
3211 }
3212
3213 __setup("slub_min_order=", setup_slub_min_order);
3214
3215 static int __init setup_slub_max_order(char *str)
3216 {
3217 get_option(&str, &slub_max_order);
3218 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3219
3220 return 1;
3221 }
3222
3223 __setup("slub_max_order=", setup_slub_max_order);
3224
3225 static int __init setup_slub_min_objects(char *str)
3226 {
3227 get_option(&str, &slub_min_objects);
3228
3229 return 1;
3230 }
3231
3232 __setup("slub_min_objects=", setup_slub_min_objects);
3233
3234 static int __init setup_slub_nomerge(char *str)
3235 {
3236 slub_nomerge = 1;
3237 return 1;
3238 }
3239
3240 __setup("slub_nomerge", setup_slub_nomerge);
3241
3242 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3243 int size, unsigned int flags)
3244 {
3245 struct kmem_cache *s;
3246
3247 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3248
3249 /*
3250 * This function is called with IRQs disabled during early-boot on
3251 * single CPU so there's no need to take slab_mutex here.
3252 */
3253 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3254 flags, NULL))
3255 goto panic;
3256
3257 list_add(&s->list, &slab_caches);
3258 return s;
3259
3260 panic:
3261 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3262 return NULL;
3263 }
3264
3265 /*
3266 * Conversion table for small slabs sizes / 8 to the index in the
3267 * kmalloc array. This is necessary for slabs < 192 since we have non power
3268 * of two cache sizes there. The size of larger slabs can be determined using
3269 * fls.
3270 */
3271 static s8 size_index[24] = {
3272 3, /* 8 */
3273 4, /* 16 */
3274 5, /* 24 */
3275 5, /* 32 */
3276 6, /* 40 */
3277 6, /* 48 */
3278 6, /* 56 */
3279 6, /* 64 */
3280 1, /* 72 */
3281 1, /* 80 */
3282 1, /* 88 */
3283 1, /* 96 */
3284 7, /* 104 */
3285 7, /* 112 */
3286 7, /* 120 */
3287 7, /* 128 */
3288 2, /* 136 */
3289 2, /* 144 */
3290 2, /* 152 */
3291 2, /* 160 */
3292 2, /* 168 */
3293 2, /* 176 */
3294 2, /* 184 */
3295 2 /* 192 */
3296 };
3297
3298 static inline int size_index_elem(size_t bytes)
3299 {
3300 return (bytes - 1) / 8;
3301 }
3302
3303 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3304 {
3305 int index;
3306
3307 if (size <= 192) {
3308 if (!size)
3309 return ZERO_SIZE_PTR;
3310
3311 index = size_index[size_index_elem(size)];
3312 } else
3313 index = fls(size - 1);
3314
3315 #ifdef CONFIG_ZONE_DMA
3316 if (unlikely((flags & SLUB_DMA)))
3317 return kmalloc_dma_caches[index];
3318
3319 #endif
3320 return kmalloc_caches[index];
3321 }
3322
3323 void *__kmalloc(size_t size, gfp_t flags)
3324 {
3325 struct kmem_cache *s;
3326 void *ret;
3327
3328 if (unlikely(size > SLUB_MAX_SIZE))
3329 return kmalloc_large(size, flags);
3330
3331 s = get_slab(size, flags);
3332
3333 if (unlikely(ZERO_OR_NULL_PTR(s)))
3334 return s;
3335
3336 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3337
3338 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3339
3340 return ret;
3341 }
3342 EXPORT_SYMBOL(__kmalloc);
3343
3344 #ifdef CONFIG_NUMA
3345 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3346 {
3347 struct page *page;
3348 void *ptr = NULL;
3349
3350 flags |= __GFP_COMP | __GFP_NOTRACK;
3351 page = alloc_pages_node(node, flags, get_order(size));
3352 if (page)
3353 ptr = page_address(page);
3354
3355 kmemleak_alloc(ptr, size, 1, flags);
3356 return ptr;
3357 }
3358
3359 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3360 {
3361 struct kmem_cache *s;
3362 void *ret;
3363
3364 if (unlikely(size > SLUB_MAX_SIZE)) {
3365 ret = kmalloc_large_node(size, flags, node);
3366
3367 trace_kmalloc_node(_RET_IP_, ret,
3368 size, PAGE_SIZE << get_order(size),
3369 flags, node);
3370
3371 return ret;
3372 }
3373
3374 s = get_slab(size, flags);
3375
3376 if (unlikely(ZERO_OR_NULL_PTR(s)))
3377 return s;
3378
3379 ret = slab_alloc(s, flags, node, _RET_IP_);
3380
3381 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3382
3383 return ret;
3384 }
3385 EXPORT_SYMBOL(__kmalloc_node);
3386 #endif
3387
3388 size_t ksize(const void *object)
3389 {
3390 struct page *page;
3391
3392 if (unlikely(object == ZERO_SIZE_PTR))
3393 return 0;
3394
3395 page = virt_to_head_page(object);
3396
3397 if (unlikely(!PageSlab(page))) {
3398 WARN_ON(!PageCompound(page));
3399 return PAGE_SIZE << compound_order(page);
3400 }
3401
3402 return slab_ksize(page->slab);
3403 }
3404 EXPORT_SYMBOL(ksize);
3405
3406 #ifdef CONFIG_SLUB_DEBUG
3407 bool verify_mem_not_deleted(const void *x)
3408 {
3409 struct page *page;
3410 void *object = (void *)x;
3411 unsigned long flags;
3412 bool rv;
3413
3414 if (unlikely(ZERO_OR_NULL_PTR(x)))
3415 return false;
3416
3417 local_irq_save(flags);
3418
3419 page = virt_to_head_page(x);
3420 if (unlikely(!PageSlab(page))) {
3421 /* maybe it was from stack? */
3422 rv = true;
3423 goto out_unlock;
3424 }
3425
3426 slab_lock(page);
3427 if (on_freelist(page->slab, page, object)) {
3428 object_err(page->slab, page, object, "Object is on free-list");
3429 rv = false;
3430 } else {
3431 rv = true;
3432 }
3433 slab_unlock(page);
3434
3435 out_unlock:
3436 local_irq_restore(flags);
3437 return rv;
3438 }
3439 EXPORT_SYMBOL(verify_mem_not_deleted);
3440 #endif
3441
3442 void kfree(const void *x)
3443 {
3444 struct page *page;
3445 void *object = (void *)x;
3446
3447 trace_kfree(_RET_IP_, x);
3448
3449 if (unlikely(ZERO_OR_NULL_PTR(x)))
3450 return;
3451
3452 page = virt_to_head_page(x);
3453 if (unlikely(!PageSlab(page))) {
3454 BUG_ON(!PageCompound(page));
3455 kmemleak_free(x);
3456 put_page(page);
3457 return;
3458 }
3459 slab_free(page->slab, page, object, _RET_IP_);
3460 }
3461 EXPORT_SYMBOL(kfree);
3462
3463 /*
3464 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3465 * the remaining slabs by the number of items in use. The slabs with the
3466 * most items in use come first. New allocations will then fill those up
3467 * and thus they can be removed from the partial lists.
3468 *
3469 * The slabs with the least items are placed last. This results in them
3470 * being allocated from last increasing the chance that the last objects
3471 * are freed in them.
3472 */
3473 int kmem_cache_shrink(struct kmem_cache *s)
3474 {
3475 int node;
3476 int i;
3477 struct kmem_cache_node *n;
3478 struct page *page;
3479 struct page *t;
3480 int objects = oo_objects(s->max);
3481 struct list_head *slabs_by_inuse =
3482 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3483 unsigned long flags;
3484
3485 if (!slabs_by_inuse)
3486 return -ENOMEM;
3487
3488 flush_all(s);
3489 for_each_node_state(node, N_NORMAL_MEMORY) {
3490 n = get_node(s, node);
3491
3492 if (!n->nr_partial)
3493 continue;
3494
3495 for (i = 0; i < objects; i++)
3496 INIT_LIST_HEAD(slabs_by_inuse + i);
3497
3498 spin_lock_irqsave(&n->list_lock, flags);
3499
3500 /*
3501 * Build lists indexed by the items in use in each slab.
3502 *
3503 * Note that concurrent frees may occur while we hold the
3504 * list_lock. page->inuse here is the upper limit.
3505 */
3506 list_for_each_entry_safe(page, t, &n->partial, lru) {
3507 list_move(&page->lru, slabs_by_inuse + page->inuse);
3508 if (!page->inuse)
3509 n->nr_partial--;
3510 }
3511
3512 /*
3513 * Rebuild the partial list with the slabs filled up most
3514 * first and the least used slabs at the end.
3515 */
3516 for (i = objects - 1; i > 0; i--)
3517 list_splice(slabs_by_inuse + i, n->partial.prev);
3518
3519 spin_unlock_irqrestore(&n->list_lock, flags);
3520
3521 /* Release empty slabs */
3522 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3523 discard_slab(s, page);
3524 }
3525
3526 kfree(slabs_by_inuse);
3527 return 0;
3528 }
3529 EXPORT_SYMBOL(kmem_cache_shrink);
3530
3531 #if defined(CONFIG_MEMORY_HOTPLUG)
3532 static int slab_mem_going_offline_callback(void *arg)
3533 {
3534 struct kmem_cache *s;
3535
3536 mutex_lock(&slab_mutex);
3537 list_for_each_entry(s, &slab_caches, list)
3538 kmem_cache_shrink(s);
3539 mutex_unlock(&slab_mutex);
3540
3541 return 0;
3542 }
3543
3544 static void slab_mem_offline_callback(void *arg)
3545 {
3546 struct kmem_cache_node *n;
3547 struct kmem_cache *s;
3548 struct memory_notify *marg = arg;
3549 int offline_node;
3550
3551 offline_node = marg->status_change_nid;
3552
3553 /*
3554 * If the node still has available memory. we need kmem_cache_node
3555 * for it yet.
3556 */
3557 if (offline_node < 0)
3558 return;
3559
3560 mutex_lock(&slab_mutex);
3561 list_for_each_entry(s, &slab_caches, list) {
3562 n = get_node(s, offline_node);
3563 if (n) {
3564 /*
3565 * if n->nr_slabs > 0, slabs still exist on the node
3566 * that is going down. We were unable to free them,
3567 * and offline_pages() function shouldn't call this
3568 * callback. So, we must fail.
3569 */
3570 BUG_ON(slabs_node(s, offline_node));
3571
3572 s->node[offline_node] = NULL;
3573 kmem_cache_free(kmem_cache_node, n);
3574 }
3575 }
3576 mutex_unlock(&slab_mutex);
3577 }
3578
3579 static int slab_mem_going_online_callback(void *arg)
3580 {
3581 struct kmem_cache_node *n;
3582 struct kmem_cache *s;
3583 struct memory_notify *marg = arg;
3584 int nid = marg->status_change_nid;
3585 int ret = 0;
3586
3587 /*
3588 * If the node's memory is already available, then kmem_cache_node is
3589 * already created. Nothing to do.
3590 */
3591 if (nid < 0)
3592 return 0;
3593
3594 /*
3595 * We are bringing a node online. No memory is available yet. We must
3596 * allocate a kmem_cache_node structure in order to bring the node
3597 * online.
3598 */
3599 mutex_lock(&slab_mutex);
3600 list_for_each_entry(s, &slab_caches, list) {
3601 /*
3602 * XXX: kmem_cache_alloc_node will fallback to other nodes
3603 * since memory is not yet available from the node that
3604 * is brought up.
3605 */
3606 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3607 if (!n) {
3608 ret = -ENOMEM;
3609 goto out;
3610 }
3611 init_kmem_cache_node(n);
3612 s->node[nid] = n;
3613 }
3614 out:
3615 mutex_unlock(&slab_mutex);
3616 return ret;
3617 }
3618
3619 static int slab_memory_callback(struct notifier_block *self,
3620 unsigned long action, void *arg)
3621 {
3622 int ret = 0;
3623
3624 switch (action) {
3625 case MEM_GOING_ONLINE:
3626 ret = slab_mem_going_online_callback(arg);
3627 break;
3628 case MEM_GOING_OFFLINE:
3629 ret = slab_mem_going_offline_callback(arg);
3630 break;
3631 case MEM_OFFLINE:
3632 case MEM_CANCEL_ONLINE:
3633 slab_mem_offline_callback(arg);
3634 break;
3635 case MEM_ONLINE:
3636 case MEM_CANCEL_OFFLINE:
3637 break;
3638 }
3639 if (ret)
3640 ret = notifier_from_errno(ret);
3641 else
3642 ret = NOTIFY_OK;
3643 return ret;
3644 }
3645
3646 #endif /* CONFIG_MEMORY_HOTPLUG */
3647
3648 /********************************************************************
3649 * Basic setup of slabs
3650 *******************************************************************/
3651
3652 /*
3653 * Used for early kmem_cache structures that were allocated using
3654 * the page allocator
3655 */
3656
3657 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3658 {
3659 int node;
3660
3661 list_add(&s->list, &slab_caches);
3662 s->refcount = -1;
3663
3664 for_each_node_state(node, N_NORMAL_MEMORY) {
3665 struct kmem_cache_node *n = get_node(s, node);
3666 struct page *p;
3667
3668 if (n) {
3669 list_for_each_entry(p, &n->partial, lru)
3670 p->slab = s;
3671
3672 #ifdef CONFIG_SLUB_DEBUG
3673 list_for_each_entry(p, &n->full, lru)
3674 p->slab = s;
3675 #endif
3676 }
3677 }
3678 }
3679
3680 void __init kmem_cache_init(void)
3681 {
3682 int i;
3683 int caches = 0;
3684 struct kmem_cache *temp_kmem_cache;
3685 int order;
3686 struct kmem_cache *temp_kmem_cache_node;
3687 unsigned long kmalloc_size;
3688
3689 if (debug_guardpage_minorder())
3690 slub_max_order = 0;
3691
3692 kmem_size = offsetof(struct kmem_cache, node) +
3693 nr_node_ids * sizeof(struct kmem_cache_node *);
3694
3695 /* Allocate two kmem_caches from the page allocator */
3696 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3697 order = get_order(2 * kmalloc_size);
3698 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3699
3700 /*
3701 * Must first have the slab cache available for the allocations of the
3702 * struct kmem_cache_node's. There is special bootstrap code in
3703 * kmem_cache_open for slab_state == DOWN.
3704 */
3705 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3706
3707 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3708 sizeof(struct kmem_cache_node),
3709 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3710
3711 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3712
3713 /* Able to allocate the per node structures */
3714 slab_state = PARTIAL;
3715
3716 temp_kmem_cache = kmem_cache;
3717 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3718 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3719 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3720 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3721
3722 /*
3723 * Allocate kmem_cache_node properly from the kmem_cache slab.
3724 * kmem_cache_node is separately allocated so no need to
3725 * update any list pointers.
3726 */
3727 temp_kmem_cache_node = kmem_cache_node;
3728
3729 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3730 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3731
3732 kmem_cache_bootstrap_fixup(kmem_cache_node);
3733
3734 caches++;
3735 kmem_cache_bootstrap_fixup(kmem_cache);
3736 caches++;
3737 /* Free temporary boot structure */
3738 free_pages((unsigned long)temp_kmem_cache, order);
3739
3740 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3741
3742 /*
3743 * Patch up the size_index table if we have strange large alignment
3744 * requirements for the kmalloc array. This is only the case for
3745 * MIPS it seems. The standard arches will not generate any code here.
3746 *
3747 * Largest permitted alignment is 256 bytes due to the way we
3748 * handle the index determination for the smaller caches.
3749 *
3750 * Make sure that nothing crazy happens if someone starts tinkering
3751 * around with ARCH_KMALLOC_MINALIGN
3752 */
3753 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3754 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3755
3756 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3757 int elem = size_index_elem(i);
3758 if (elem >= ARRAY_SIZE(size_index))
3759 break;
3760 size_index[elem] = KMALLOC_SHIFT_LOW;
3761 }
3762
3763 if (KMALLOC_MIN_SIZE == 64) {
3764 /*
3765 * The 96 byte size cache is not used if the alignment
3766 * is 64 byte.
3767 */
3768 for (i = 64 + 8; i <= 96; i += 8)
3769 size_index[size_index_elem(i)] = 7;
3770 } else if (KMALLOC_MIN_SIZE == 128) {
3771 /*
3772 * The 192 byte sized cache is not used if the alignment
3773 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3774 * instead.
3775 */
3776 for (i = 128 + 8; i <= 192; i += 8)
3777 size_index[size_index_elem(i)] = 8;
3778 }
3779
3780 /* Caches that are not of the two-to-the-power-of size */
3781 if (KMALLOC_MIN_SIZE <= 32) {
3782 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3783 caches++;
3784 }
3785
3786 if (KMALLOC_MIN_SIZE <= 64) {
3787 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3788 caches++;
3789 }
3790
3791 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3792 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3793 caches++;
3794 }
3795
3796 slab_state = UP;
3797
3798 /* Provide the correct kmalloc names now that the caches are up */
3799 if (KMALLOC_MIN_SIZE <= 32) {
3800 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3801 BUG_ON(!kmalloc_caches[1]->name);
3802 }
3803
3804 if (KMALLOC_MIN_SIZE <= 64) {
3805 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3806 BUG_ON(!kmalloc_caches[2]->name);
3807 }
3808
3809 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3810 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3811
3812 BUG_ON(!s);
3813 kmalloc_caches[i]->name = s;
3814 }
3815
3816 #ifdef CONFIG_SMP
3817 register_cpu_notifier(&slab_notifier);
3818 #endif
3819
3820 #ifdef CONFIG_ZONE_DMA
3821 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3822 struct kmem_cache *s = kmalloc_caches[i];
3823
3824 if (s && s->size) {
3825 char *name = kasprintf(GFP_NOWAIT,
3826 "dma-kmalloc-%d", s->object_size);
3827
3828 BUG_ON(!name);
3829 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3830 s->object_size, SLAB_CACHE_DMA);
3831 }
3832 }
3833 #endif
3834 printk(KERN_INFO
3835 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3836 " CPUs=%d, Nodes=%d\n",
3837 caches, cache_line_size(),
3838 slub_min_order, slub_max_order, slub_min_objects,
3839 nr_cpu_ids, nr_node_ids);
3840 }
3841
3842 void __init kmem_cache_init_late(void)
3843 {
3844 }
3845
3846 /*
3847 * Find a mergeable slab cache
3848 */
3849 static int slab_unmergeable(struct kmem_cache *s)
3850 {
3851 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3852 return 1;
3853
3854 if (s->ctor)
3855 return 1;
3856
3857 /*
3858 * We may have set a slab to be unmergeable during bootstrap.
3859 */
3860 if (s->refcount < 0)
3861 return 1;
3862
3863 return 0;
3864 }
3865
3866 static struct kmem_cache *find_mergeable(size_t size,
3867 size_t align, unsigned long flags, const char *name,
3868 void (*ctor)(void *))
3869 {
3870 struct kmem_cache *s;
3871
3872 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3873 return NULL;
3874
3875 if (ctor)
3876 return NULL;
3877
3878 size = ALIGN(size, sizeof(void *));
3879 align = calculate_alignment(flags, align, size);
3880 size = ALIGN(size, align);
3881 flags = kmem_cache_flags(size, flags, name, NULL);
3882
3883 list_for_each_entry(s, &slab_caches, list) {
3884 if (slab_unmergeable(s))
3885 continue;
3886
3887 if (size > s->size)
3888 continue;
3889
3890 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3891 continue;
3892 /*
3893 * Check if alignment is compatible.
3894 * Courtesy of Adrian Drzewiecki
3895 */
3896 if ((s->size & ~(align - 1)) != s->size)
3897 continue;
3898
3899 if (s->size - size >= sizeof(void *))
3900 continue;
3901
3902 return s;
3903 }
3904 return NULL;
3905 }
3906
3907 struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
3908 size_t align, unsigned long flags, void (*ctor)(void *))
3909 {
3910 struct kmem_cache *s;
3911 char *n;
3912
3913 s = find_mergeable(size, align, flags, name, ctor);
3914 if (s) {
3915 s->refcount++;
3916 /*
3917 * Adjust the object sizes so that we clear
3918 * the complete object on kzalloc.
3919 */
3920 s->object_size = max(s->object_size, (int)size);
3921 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3922
3923 if (sysfs_slab_alias(s, name)) {
3924 s->refcount--;
3925 return NULL;
3926 }
3927 return s;
3928 }
3929
3930 n = kstrdup(name, GFP_KERNEL);
3931 if (!n)
3932 return NULL;
3933
3934 s = kmalloc(kmem_size, GFP_KERNEL);
3935 if (s) {
3936 if (kmem_cache_open(s, n,
3937 size, align, flags, ctor)) {
3938 int r;
3939
3940 list_add(&s->list, &slab_caches);
3941 mutex_unlock(&slab_mutex);
3942 r = sysfs_slab_add(s);
3943 mutex_lock(&slab_mutex);
3944
3945 if (!r)
3946 return s;
3947
3948 list_del(&s->list);
3949 kmem_cache_close(s);
3950 }
3951 kfree(s);
3952 }
3953 kfree(n);
3954 return NULL;
3955 }
3956
3957 #ifdef CONFIG_SMP
3958 /*
3959 * Use the cpu notifier to insure that the cpu slabs are flushed when
3960 * necessary.
3961 */
3962 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3963 unsigned long action, void *hcpu)
3964 {
3965 long cpu = (long)hcpu;
3966 struct kmem_cache *s;
3967 unsigned long flags;
3968
3969 switch (action) {
3970 case CPU_UP_CANCELED:
3971 case CPU_UP_CANCELED_FROZEN:
3972 case CPU_DEAD:
3973 case CPU_DEAD_FROZEN:
3974 mutex_lock(&slab_mutex);
3975 list_for_each_entry(s, &slab_caches, list) {
3976 local_irq_save(flags);
3977 __flush_cpu_slab(s, cpu);
3978 local_irq_restore(flags);
3979 }
3980 mutex_unlock(&slab_mutex);
3981 break;
3982 default:
3983 break;
3984 }
3985 return NOTIFY_OK;
3986 }
3987
3988 static struct notifier_block __cpuinitdata slab_notifier = {
3989 .notifier_call = slab_cpuup_callback
3990 };
3991
3992 #endif
3993
3994 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3995 {
3996 struct kmem_cache *s;
3997 void *ret;
3998
3999 if (unlikely(size > SLUB_MAX_SIZE))
4000 return kmalloc_large(size, gfpflags);
4001
4002 s = get_slab(size, gfpflags);
4003
4004 if (unlikely(ZERO_OR_NULL_PTR(s)))
4005 return s;
4006
4007 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4008
4009 /* Honor the call site pointer we received. */
4010 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4011
4012 return ret;
4013 }
4014
4015 #ifdef CONFIG_NUMA
4016 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4017 int node, unsigned long caller)
4018 {
4019 struct kmem_cache *s;
4020 void *ret;
4021
4022 if (unlikely(size > SLUB_MAX_SIZE)) {
4023 ret = kmalloc_large_node(size, gfpflags, node);
4024
4025 trace_kmalloc_node(caller, ret,
4026 size, PAGE_SIZE << get_order(size),
4027 gfpflags, node);
4028
4029 return ret;
4030 }
4031
4032 s = get_slab(size, gfpflags);
4033
4034 if (unlikely(ZERO_OR_NULL_PTR(s)))
4035 return s;
4036
4037 ret = slab_alloc(s, gfpflags, node, caller);
4038
4039 /* Honor the call site pointer we received. */
4040 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4041
4042 return ret;
4043 }
4044 #endif
4045
4046 #ifdef CONFIG_SYSFS
4047 static int count_inuse(struct page *page)
4048 {
4049 return page->inuse;
4050 }
4051
4052 static int count_total(struct page *page)
4053 {
4054 return page->objects;
4055 }
4056 #endif
4057
4058 #ifdef CONFIG_SLUB_DEBUG
4059 static int validate_slab(struct kmem_cache *s, struct page *page,
4060 unsigned long *map)
4061 {
4062 void *p;
4063 void *addr = page_address(page);
4064
4065 if (!check_slab(s, page) ||
4066 !on_freelist(s, page, NULL))
4067 return 0;
4068
4069 /* Now we know that a valid freelist exists */
4070 bitmap_zero(map, page->objects);
4071
4072 get_map(s, page, map);
4073 for_each_object(p, s, addr, page->objects) {
4074 if (test_bit(slab_index(p, s, addr), map))
4075 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4076 return 0;
4077 }
4078
4079 for_each_object(p, s, addr, page->objects)
4080 if (!test_bit(slab_index(p, s, addr), map))
4081 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4082 return 0;
4083 return 1;
4084 }
4085
4086 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4087 unsigned long *map)
4088 {
4089 slab_lock(page);
4090 validate_slab(s, page, map);
4091 slab_unlock(page);
4092 }
4093
4094 static int validate_slab_node(struct kmem_cache *s,
4095 struct kmem_cache_node *n, unsigned long *map)
4096 {
4097 unsigned long count = 0;
4098 struct page *page;
4099 unsigned long flags;
4100
4101 spin_lock_irqsave(&n->list_lock, flags);
4102
4103 list_for_each_entry(page, &n->partial, lru) {
4104 validate_slab_slab(s, page, map);
4105 count++;
4106 }
4107 if (count != n->nr_partial)
4108 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4109 "counter=%ld\n", s->name, count, n->nr_partial);
4110
4111 if (!(s->flags & SLAB_STORE_USER))
4112 goto out;
4113
4114 list_for_each_entry(page, &n->full, lru) {
4115 validate_slab_slab(s, page, map);
4116 count++;
4117 }
4118 if (count != atomic_long_read(&n->nr_slabs))
4119 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4120 "counter=%ld\n", s->name, count,
4121 atomic_long_read(&n->nr_slabs));
4122
4123 out:
4124 spin_unlock_irqrestore(&n->list_lock, flags);
4125 return count;
4126 }
4127
4128 static long validate_slab_cache(struct kmem_cache *s)
4129 {
4130 int node;
4131 unsigned long count = 0;
4132 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4133 sizeof(unsigned long), GFP_KERNEL);
4134
4135 if (!map)
4136 return -ENOMEM;
4137
4138 flush_all(s);
4139 for_each_node_state(node, N_NORMAL_MEMORY) {
4140 struct kmem_cache_node *n = get_node(s, node);
4141
4142 count += validate_slab_node(s, n, map);
4143 }
4144 kfree(map);
4145 return count;
4146 }
4147 /*
4148 * Generate lists of code addresses where slabcache objects are allocated
4149 * and freed.
4150 */
4151
4152 struct location {
4153 unsigned long count;
4154 unsigned long addr;
4155 long long sum_time;
4156 long min_time;
4157 long max_time;
4158 long min_pid;
4159 long max_pid;
4160 DECLARE_BITMAP(cpus, NR_CPUS);
4161 nodemask_t nodes;
4162 };
4163
4164 struct loc_track {
4165 unsigned long max;
4166 unsigned long count;
4167 struct location *loc;
4168 };
4169
4170 static void free_loc_track(struct loc_track *t)
4171 {
4172 if (t->max)
4173 free_pages((unsigned long)t->loc,
4174 get_order(sizeof(struct location) * t->max));
4175 }
4176
4177 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4178 {
4179 struct location *l;
4180 int order;
4181
4182 order = get_order(sizeof(struct location) * max);
4183
4184 l = (void *)__get_free_pages(flags, order);
4185 if (!l)
4186 return 0;
4187
4188 if (t->count) {
4189 memcpy(l, t->loc, sizeof(struct location) * t->count);
4190 free_loc_track(t);
4191 }
4192 t->max = max;
4193 t->loc = l;
4194 return 1;
4195 }
4196
4197 static int add_location(struct loc_track *t, struct kmem_cache *s,
4198 const struct track *track)
4199 {
4200 long start, end, pos;
4201 struct location *l;
4202 unsigned long caddr;
4203 unsigned long age = jiffies - track->when;
4204
4205 start = -1;
4206 end = t->count;
4207
4208 for ( ; ; ) {
4209 pos = start + (end - start + 1) / 2;
4210
4211 /*
4212 * There is nothing at "end". If we end up there
4213 * we need to add something to before end.
4214 */
4215 if (pos == end)
4216 break;
4217
4218 caddr = t->loc[pos].addr;
4219 if (track->addr == caddr) {
4220
4221 l = &t->loc[pos];
4222 l->count++;
4223 if (track->when) {
4224 l->sum_time += age;
4225 if (age < l->min_time)
4226 l->min_time = age;
4227 if (age > l->max_time)
4228 l->max_time = age;
4229
4230 if (track->pid < l->min_pid)
4231 l->min_pid = track->pid;
4232 if (track->pid > l->max_pid)
4233 l->max_pid = track->pid;
4234
4235 cpumask_set_cpu(track->cpu,
4236 to_cpumask(l->cpus));
4237 }
4238 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4239 return 1;
4240 }
4241
4242 if (track->addr < caddr)
4243 end = pos;
4244 else
4245 start = pos;
4246 }
4247
4248 /*
4249 * Not found. Insert new tracking element.
4250 */
4251 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4252 return 0;
4253
4254 l = t->loc + pos;
4255 if (pos < t->count)
4256 memmove(l + 1, l,
4257 (t->count - pos) * sizeof(struct location));
4258 t->count++;
4259 l->count = 1;
4260 l->addr = track->addr;
4261 l->sum_time = age;
4262 l->min_time = age;
4263 l->max_time = age;
4264 l->min_pid = track->pid;
4265 l->max_pid = track->pid;
4266 cpumask_clear(to_cpumask(l->cpus));
4267 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4268 nodes_clear(l->nodes);
4269 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4270 return 1;
4271 }
4272
4273 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4274 struct page *page, enum track_item alloc,
4275 unsigned long *map)
4276 {
4277 void *addr = page_address(page);
4278 void *p;
4279
4280 bitmap_zero(map, page->objects);
4281 get_map(s, page, map);
4282
4283 for_each_object(p, s, addr, page->objects)
4284 if (!test_bit(slab_index(p, s, addr), map))
4285 add_location(t, s, get_track(s, p, alloc));
4286 }
4287
4288 static int list_locations(struct kmem_cache *s, char *buf,
4289 enum track_item alloc)
4290 {
4291 int len = 0;
4292 unsigned long i;
4293 struct loc_track t = { 0, 0, NULL };
4294 int node;
4295 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4296 sizeof(unsigned long), GFP_KERNEL);
4297
4298 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4299 GFP_TEMPORARY)) {
4300 kfree(map);
4301 return sprintf(buf, "Out of memory\n");
4302 }
4303 /* Push back cpu slabs */
4304 flush_all(s);
4305
4306 for_each_node_state(node, N_NORMAL_MEMORY) {
4307 struct kmem_cache_node *n = get_node(s, node);
4308 unsigned long flags;
4309 struct page *page;
4310
4311 if (!atomic_long_read(&n->nr_slabs))
4312 continue;
4313
4314 spin_lock_irqsave(&n->list_lock, flags);
4315 list_for_each_entry(page, &n->partial, lru)
4316 process_slab(&t, s, page, alloc, map);
4317 list_for_each_entry(page, &n->full, lru)
4318 process_slab(&t, s, page, alloc, map);
4319 spin_unlock_irqrestore(&n->list_lock, flags);
4320 }
4321
4322 for (i = 0; i < t.count; i++) {
4323 struct location *l = &t.loc[i];
4324
4325 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4326 break;
4327 len += sprintf(buf + len, "%7ld ", l->count);
4328
4329 if (l->addr)
4330 len += sprintf(buf + len, "%pS", (void *)l->addr);
4331 else
4332 len += sprintf(buf + len, "<not-available>");
4333
4334 if (l->sum_time != l->min_time) {
4335 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4336 l->min_time,
4337 (long)div_u64(l->sum_time, l->count),
4338 l->max_time);
4339 } else
4340 len += sprintf(buf + len, " age=%ld",
4341 l->min_time);
4342
4343 if (l->min_pid != l->max_pid)
4344 len += sprintf(buf + len, " pid=%ld-%ld",
4345 l->min_pid, l->max_pid);
4346 else
4347 len += sprintf(buf + len, " pid=%ld",
4348 l->min_pid);
4349
4350 if (num_online_cpus() > 1 &&
4351 !cpumask_empty(to_cpumask(l->cpus)) &&
4352 len < PAGE_SIZE - 60) {
4353 len += sprintf(buf + len, " cpus=");
4354 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4355 to_cpumask(l->cpus));
4356 }
4357
4358 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4359 len < PAGE_SIZE - 60) {
4360 len += sprintf(buf + len, " nodes=");
4361 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4362 l->nodes);
4363 }
4364
4365 len += sprintf(buf + len, "\n");
4366 }
4367
4368 free_loc_track(&t);
4369 kfree(map);
4370 if (!t.count)
4371 len += sprintf(buf, "No data\n");
4372 return len;
4373 }
4374 #endif
4375
4376 #ifdef SLUB_RESILIENCY_TEST
4377 static void resiliency_test(void)
4378 {
4379 u8 *p;
4380
4381 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4382
4383 printk(KERN_ERR "SLUB resiliency testing\n");
4384 printk(KERN_ERR "-----------------------\n");
4385 printk(KERN_ERR "A. Corruption after allocation\n");
4386
4387 p = kzalloc(16, GFP_KERNEL);
4388 p[16] = 0x12;
4389 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4390 " 0x12->0x%p\n\n", p + 16);
4391
4392 validate_slab_cache(kmalloc_caches[4]);
4393
4394 /* Hmmm... The next two are dangerous */
4395 p = kzalloc(32, GFP_KERNEL);
4396 p[32 + sizeof(void *)] = 0x34;
4397 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4398 " 0x34 -> -0x%p\n", p);
4399 printk(KERN_ERR
4400 "If allocated object is overwritten then not detectable\n\n");
4401
4402 validate_slab_cache(kmalloc_caches[5]);
4403 p = kzalloc(64, GFP_KERNEL);
4404 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4405 *p = 0x56;
4406 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4407 p);
4408 printk(KERN_ERR
4409 "If allocated object is overwritten then not detectable\n\n");
4410 validate_slab_cache(kmalloc_caches[6]);
4411
4412 printk(KERN_ERR "\nB. Corruption after free\n");
4413 p = kzalloc(128, GFP_KERNEL);
4414 kfree(p);
4415 *p = 0x78;
4416 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4417 validate_slab_cache(kmalloc_caches[7]);
4418
4419 p = kzalloc(256, GFP_KERNEL);
4420 kfree(p);
4421 p[50] = 0x9a;
4422 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4423 p);
4424 validate_slab_cache(kmalloc_caches[8]);
4425
4426 p = kzalloc(512, GFP_KERNEL);
4427 kfree(p);
4428 p[512] = 0xab;
4429 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4430 validate_slab_cache(kmalloc_caches[9]);
4431 }
4432 #else
4433 #ifdef CONFIG_SYSFS
4434 static void resiliency_test(void) {};
4435 #endif
4436 #endif
4437
4438 #ifdef CONFIG_SYSFS
4439 enum slab_stat_type {
4440 SL_ALL, /* All slabs */
4441 SL_PARTIAL, /* Only partially allocated slabs */
4442 SL_CPU, /* Only slabs used for cpu caches */
4443 SL_OBJECTS, /* Determine allocated objects not slabs */
4444 SL_TOTAL /* Determine object capacity not slabs */
4445 };
4446
4447 #define SO_ALL (1 << SL_ALL)
4448 #define SO_PARTIAL (1 << SL_PARTIAL)
4449 #define SO_CPU (1 << SL_CPU)
4450 #define SO_OBJECTS (1 << SL_OBJECTS)
4451 #define SO_TOTAL (1 << SL_TOTAL)
4452
4453 static ssize_t show_slab_objects(struct kmem_cache *s,
4454 char *buf, unsigned long flags)
4455 {
4456 unsigned long total = 0;
4457 int node;
4458 int x;
4459 unsigned long *nodes;
4460 unsigned long *per_cpu;
4461
4462 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4463 if (!nodes)
4464 return -ENOMEM;
4465 per_cpu = nodes + nr_node_ids;
4466
4467 if (flags & SO_CPU) {
4468 int cpu;
4469
4470 for_each_possible_cpu(cpu) {
4471 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4472 int node;
4473 struct page *page;
4474
4475 page = ACCESS_ONCE(c->page);
4476 if (!page)
4477 continue;
4478
4479 node = page_to_nid(page);
4480 if (flags & SO_TOTAL)
4481 x = page->objects;
4482 else if (flags & SO_OBJECTS)
4483 x = page->inuse;
4484 else
4485 x = 1;
4486
4487 total += x;
4488 nodes[node] += x;
4489
4490 page = ACCESS_ONCE(c->partial);
4491 if (page) {
4492 x = page->pobjects;
4493 total += x;
4494 nodes[node] += x;
4495 }
4496
4497 per_cpu[node]++;
4498 }
4499 }
4500
4501 lock_memory_hotplug();
4502 #ifdef CONFIG_SLUB_DEBUG
4503 if (flags & SO_ALL) {
4504 for_each_node_state(node, N_NORMAL_MEMORY) {
4505 struct kmem_cache_node *n = get_node(s, node);
4506
4507 if (flags & SO_TOTAL)
4508 x = atomic_long_read(&n->total_objects);
4509 else if (flags & SO_OBJECTS)
4510 x = atomic_long_read(&n->total_objects) -
4511 count_partial(n, count_free);
4512
4513 else
4514 x = atomic_long_read(&n->nr_slabs);
4515 total += x;
4516 nodes[node] += x;
4517 }
4518
4519 } else
4520 #endif
4521 if (flags & SO_PARTIAL) {
4522 for_each_node_state(node, N_NORMAL_MEMORY) {
4523 struct kmem_cache_node *n = get_node(s, node);
4524
4525 if (flags & SO_TOTAL)
4526 x = count_partial(n, count_total);
4527 else if (flags & SO_OBJECTS)
4528 x = count_partial(n, count_inuse);
4529 else
4530 x = n->nr_partial;
4531 total += x;
4532 nodes[node] += x;
4533 }
4534 }
4535 x = sprintf(buf, "%lu", total);
4536 #ifdef CONFIG_NUMA
4537 for_each_node_state(node, N_NORMAL_MEMORY)
4538 if (nodes[node])
4539 x += sprintf(buf + x, " N%d=%lu",
4540 node, nodes[node]);
4541 #endif
4542 unlock_memory_hotplug();
4543 kfree(nodes);
4544 return x + sprintf(buf + x, "\n");
4545 }
4546
4547 #ifdef CONFIG_SLUB_DEBUG
4548 static int any_slab_objects(struct kmem_cache *s)
4549 {
4550 int node;
4551
4552 for_each_online_node(node) {
4553 struct kmem_cache_node *n = get_node(s, node);
4554
4555 if (!n)
4556 continue;
4557
4558 if (atomic_long_read(&n->total_objects))
4559 return 1;
4560 }
4561 return 0;
4562 }
4563 #endif
4564
4565 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4566 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4567
4568 struct slab_attribute {
4569 struct attribute attr;
4570 ssize_t (*show)(struct kmem_cache *s, char *buf);
4571 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4572 };
4573
4574 #define SLAB_ATTR_RO(_name) \
4575 static struct slab_attribute _name##_attr = \
4576 __ATTR(_name, 0400, _name##_show, NULL)
4577
4578 #define SLAB_ATTR(_name) \
4579 static struct slab_attribute _name##_attr = \
4580 __ATTR(_name, 0600, _name##_show, _name##_store)
4581
4582 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4583 {
4584 return sprintf(buf, "%d\n", s->size);
4585 }
4586 SLAB_ATTR_RO(slab_size);
4587
4588 static ssize_t align_show(struct kmem_cache *s, char *buf)
4589 {
4590 return sprintf(buf, "%d\n", s->align);
4591 }
4592 SLAB_ATTR_RO(align);
4593
4594 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4595 {
4596 return sprintf(buf, "%d\n", s->object_size);
4597 }
4598 SLAB_ATTR_RO(object_size);
4599
4600 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4601 {
4602 return sprintf(buf, "%d\n", oo_objects(s->oo));
4603 }
4604 SLAB_ATTR_RO(objs_per_slab);
4605
4606 static ssize_t order_store(struct kmem_cache *s,
4607 const char *buf, size_t length)
4608 {
4609 unsigned long order;
4610 int err;
4611
4612 err = strict_strtoul(buf, 10, &order);
4613 if (err)
4614 return err;
4615
4616 if (order > slub_max_order || order < slub_min_order)
4617 return -EINVAL;
4618
4619 calculate_sizes(s, order);
4620 return length;
4621 }
4622
4623 static ssize_t order_show(struct kmem_cache *s, char *buf)
4624 {
4625 return sprintf(buf, "%d\n", oo_order(s->oo));
4626 }
4627 SLAB_ATTR(order);
4628
4629 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4630 {
4631 return sprintf(buf, "%lu\n", s->min_partial);
4632 }
4633
4634 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4635 size_t length)
4636 {
4637 unsigned long min;
4638 int err;
4639
4640 err = strict_strtoul(buf, 10, &min);
4641 if (err)
4642 return err;
4643
4644 set_min_partial(s, min);
4645 return length;
4646 }
4647 SLAB_ATTR(min_partial);
4648
4649 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4650 {
4651 return sprintf(buf, "%u\n", s->cpu_partial);
4652 }
4653
4654 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4655 size_t length)
4656 {
4657 unsigned long objects;
4658 int err;
4659
4660 err = strict_strtoul(buf, 10, &objects);
4661 if (err)
4662 return err;
4663 if (objects && kmem_cache_debug(s))
4664 return -EINVAL;
4665
4666 s->cpu_partial = objects;
4667 flush_all(s);
4668 return length;
4669 }
4670 SLAB_ATTR(cpu_partial);
4671
4672 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4673 {
4674 if (!s->ctor)
4675 return 0;
4676 return sprintf(buf, "%pS\n", s->ctor);
4677 }
4678 SLAB_ATTR_RO(ctor);
4679
4680 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4681 {
4682 return sprintf(buf, "%d\n", s->refcount - 1);
4683 }
4684 SLAB_ATTR_RO(aliases);
4685
4686 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4687 {
4688 return show_slab_objects(s, buf, SO_PARTIAL);
4689 }
4690 SLAB_ATTR_RO(partial);
4691
4692 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4693 {
4694 return show_slab_objects(s, buf, SO_CPU);
4695 }
4696 SLAB_ATTR_RO(cpu_slabs);
4697
4698 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4699 {
4700 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4701 }
4702 SLAB_ATTR_RO(objects);
4703
4704 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4705 {
4706 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4707 }
4708 SLAB_ATTR_RO(objects_partial);
4709
4710 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4711 {
4712 int objects = 0;
4713 int pages = 0;
4714 int cpu;
4715 int len;
4716
4717 for_each_online_cpu(cpu) {
4718 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4719
4720 if (page) {
4721 pages += page->pages;
4722 objects += page->pobjects;
4723 }
4724 }
4725
4726 len = sprintf(buf, "%d(%d)", objects, pages);
4727
4728 #ifdef CONFIG_SMP
4729 for_each_online_cpu(cpu) {
4730 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4731
4732 if (page && len < PAGE_SIZE - 20)
4733 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4734 page->pobjects, page->pages);
4735 }
4736 #endif
4737 return len + sprintf(buf + len, "\n");
4738 }
4739 SLAB_ATTR_RO(slabs_cpu_partial);
4740
4741 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4742 {
4743 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4744 }
4745
4746 static ssize_t reclaim_account_store(struct kmem_cache *s,
4747 const char *buf, size_t length)
4748 {
4749 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4750 if (buf[0] == '1')
4751 s->flags |= SLAB_RECLAIM_ACCOUNT;
4752 return length;
4753 }
4754 SLAB_ATTR(reclaim_account);
4755
4756 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4757 {
4758 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4759 }
4760 SLAB_ATTR_RO(hwcache_align);
4761
4762 #ifdef CONFIG_ZONE_DMA
4763 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4764 {
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4766 }
4767 SLAB_ATTR_RO(cache_dma);
4768 #endif
4769
4770 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4771 {
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4773 }
4774 SLAB_ATTR_RO(destroy_by_rcu);
4775
4776 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4777 {
4778 return sprintf(buf, "%d\n", s->reserved);
4779 }
4780 SLAB_ATTR_RO(reserved);
4781
4782 #ifdef CONFIG_SLUB_DEBUG
4783 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4784 {
4785 return show_slab_objects(s, buf, SO_ALL);
4786 }
4787 SLAB_ATTR_RO(slabs);
4788
4789 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4790 {
4791 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4792 }
4793 SLAB_ATTR_RO(total_objects);
4794
4795 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4796 {
4797 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4798 }
4799
4800 static ssize_t sanity_checks_store(struct kmem_cache *s,
4801 const char *buf, size_t length)
4802 {
4803 s->flags &= ~SLAB_DEBUG_FREE;
4804 if (buf[0] == '1') {
4805 s->flags &= ~__CMPXCHG_DOUBLE;
4806 s->flags |= SLAB_DEBUG_FREE;
4807 }
4808 return length;
4809 }
4810 SLAB_ATTR(sanity_checks);
4811
4812 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4813 {
4814 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4815 }
4816
4817 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4818 size_t length)
4819 {
4820 s->flags &= ~SLAB_TRACE;
4821 if (buf[0] == '1') {
4822 s->flags &= ~__CMPXCHG_DOUBLE;
4823 s->flags |= SLAB_TRACE;
4824 }
4825 return length;
4826 }
4827 SLAB_ATTR(trace);
4828
4829 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4830 {
4831 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4832 }
4833
4834 static ssize_t red_zone_store(struct kmem_cache *s,
4835 const char *buf, size_t length)
4836 {
4837 if (any_slab_objects(s))
4838 return -EBUSY;
4839
4840 s->flags &= ~SLAB_RED_ZONE;
4841 if (buf[0] == '1') {
4842 s->flags &= ~__CMPXCHG_DOUBLE;
4843 s->flags |= SLAB_RED_ZONE;
4844 }
4845 calculate_sizes(s, -1);
4846 return length;
4847 }
4848 SLAB_ATTR(red_zone);
4849
4850 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4851 {
4852 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4853 }
4854
4855 static ssize_t poison_store(struct kmem_cache *s,
4856 const char *buf, size_t length)
4857 {
4858 if (any_slab_objects(s))
4859 return -EBUSY;
4860
4861 s->flags &= ~SLAB_POISON;
4862 if (buf[0] == '1') {
4863 s->flags &= ~__CMPXCHG_DOUBLE;
4864 s->flags |= SLAB_POISON;
4865 }
4866 calculate_sizes(s, -1);
4867 return length;
4868 }
4869 SLAB_ATTR(poison);
4870
4871 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4872 {
4873 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4874 }
4875
4876 static ssize_t store_user_store(struct kmem_cache *s,
4877 const char *buf, size_t length)
4878 {
4879 if (any_slab_objects(s))
4880 return -EBUSY;
4881
4882 s->flags &= ~SLAB_STORE_USER;
4883 if (buf[0] == '1') {
4884 s->flags &= ~__CMPXCHG_DOUBLE;
4885 s->flags |= SLAB_STORE_USER;
4886 }
4887 calculate_sizes(s, -1);
4888 return length;
4889 }
4890 SLAB_ATTR(store_user);
4891
4892 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4893 {
4894 return 0;
4895 }
4896
4897 static ssize_t validate_store(struct kmem_cache *s,
4898 const char *buf, size_t length)
4899 {
4900 int ret = -EINVAL;
4901
4902 if (buf[0] == '1') {
4903 ret = validate_slab_cache(s);
4904 if (ret >= 0)
4905 ret = length;
4906 }
4907 return ret;
4908 }
4909 SLAB_ATTR(validate);
4910
4911 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4912 {
4913 if (!(s->flags & SLAB_STORE_USER))
4914 return -ENOSYS;
4915 return list_locations(s, buf, TRACK_ALLOC);
4916 }
4917 SLAB_ATTR_RO(alloc_calls);
4918
4919 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4920 {
4921 if (!(s->flags & SLAB_STORE_USER))
4922 return -ENOSYS;
4923 return list_locations(s, buf, TRACK_FREE);
4924 }
4925 SLAB_ATTR_RO(free_calls);
4926 #endif /* CONFIG_SLUB_DEBUG */
4927
4928 #ifdef CONFIG_FAILSLAB
4929 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4930 {
4931 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4932 }
4933
4934 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4935 size_t length)
4936 {
4937 s->flags &= ~SLAB_FAILSLAB;
4938 if (buf[0] == '1')
4939 s->flags |= SLAB_FAILSLAB;
4940 return length;
4941 }
4942 SLAB_ATTR(failslab);
4943 #endif
4944
4945 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4946 {
4947 return 0;
4948 }
4949
4950 static ssize_t shrink_store(struct kmem_cache *s,
4951 const char *buf, size_t length)
4952 {
4953 if (buf[0] == '1') {
4954 int rc = kmem_cache_shrink(s);
4955
4956 if (rc)
4957 return rc;
4958 } else
4959 return -EINVAL;
4960 return length;
4961 }
4962 SLAB_ATTR(shrink);
4963
4964 #ifdef CONFIG_NUMA
4965 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4966 {
4967 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4968 }
4969
4970 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4971 const char *buf, size_t length)
4972 {
4973 unsigned long ratio;
4974 int err;
4975
4976 err = strict_strtoul(buf, 10, &ratio);
4977 if (err)
4978 return err;
4979
4980 if (ratio <= 100)
4981 s->remote_node_defrag_ratio = ratio * 10;
4982
4983 return length;
4984 }
4985 SLAB_ATTR(remote_node_defrag_ratio);
4986 #endif
4987
4988 #ifdef CONFIG_SLUB_STATS
4989 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4990 {
4991 unsigned long sum = 0;
4992 int cpu;
4993 int len;
4994 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4995
4996 if (!data)
4997 return -ENOMEM;
4998
4999 for_each_online_cpu(cpu) {
5000 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5001
5002 data[cpu] = x;
5003 sum += x;
5004 }
5005
5006 len = sprintf(buf, "%lu", sum);
5007
5008 #ifdef CONFIG_SMP
5009 for_each_online_cpu(cpu) {
5010 if (data[cpu] && len < PAGE_SIZE - 20)
5011 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5012 }
5013 #endif
5014 kfree(data);
5015 return len + sprintf(buf + len, "\n");
5016 }
5017
5018 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5019 {
5020 int cpu;
5021
5022 for_each_online_cpu(cpu)
5023 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5024 }
5025
5026 #define STAT_ATTR(si, text) \
5027 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5028 { \
5029 return show_stat(s, buf, si); \
5030 } \
5031 static ssize_t text##_store(struct kmem_cache *s, \
5032 const char *buf, size_t length) \
5033 { \
5034 if (buf[0] != '0') \
5035 return -EINVAL; \
5036 clear_stat(s, si); \
5037 return length; \
5038 } \
5039 SLAB_ATTR(text); \
5040
5041 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5042 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5043 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5044 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5045 STAT_ATTR(FREE_FROZEN, free_frozen);
5046 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5047 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5048 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5049 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5050 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5051 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5052 STAT_ATTR(FREE_SLAB, free_slab);
5053 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5054 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5055 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5056 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5057 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5058 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5059 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5060 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5061 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5062 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5063 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5064 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5065 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5066 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5067 #endif
5068
5069 static struct attribute *slab_attrs[] = {
5070 &slab_size_attr.attr,
5071 &object_size_attr.attr,
5072 &objs_per_slab_attr.attr,
5073 &order_attr.attr,
5074 &min_partial_attr.attr,
5075 &cpu_partial_attr.attr,
5076 &objects_attr.attr,
5077 &objects_partial_attr.attr,
5078 &partial_attr.attr,
5079 &cpu_slabs_attr.attr,
5080 &ctor_attr.attr,
5081 &aliases_attr.attr,
5082 &align_attr.attr,
5083 &hwcache_align_attr.attr,
5084 &reclaim_account_attr.attr,
5085 &destroy_by_rcu_attr.attr,
5086 &shrink_attr.attr,
5087 &reserved_attr.attr,
5088 &slabs_cpu_partial_attr.attr,
5089 #ifdef CONFIG_SLUB_DEBUG
5090 &total_objects_attr.attr,
5091 &slabs_attr.attr,
5092 &sanity_checks_attr.attr,
5093 &trace_attr.attr,
5094 &red_zone_attr.attr,
5095 &poison_attr.attr,
5096 &store_user_attr.attr,
5097 &validate_attr.attr,
5098 &alloc_calls_attr.attr,
5099 &free_calls_attr.attr,
5100 #endif
5101 #ifdef CONFIG_ZONE_DMA
5102 &cache_dma_attr.attr,
5103 #endif
5104 #ifdef CONFIG_NUMA
5105 &remote_node_defrag_ratio_attr.attr,
5106 #endif
5107 #ifdef CONFIG_SLUB_STATS
5108 &alloc_fastpath_attr.attr,
5109 &alloc_slowpath_attr.attr,
5110 &free_fastpath_attr.attr,
5111 &free_slowpath_attr.attr,
5112 &free_frozen_attr.attr,
5113 &free_add_partial_attr.attr,
5114 &free_remove_partial_attr.attr,
5115 &alloc_from_partial_attr.attr,
5116 &alloc_slab_attr.attr,
5117 &alloc_refill_attr.attr,
5118 &alloc_node_mismatch_attr.attr,
5119 &free_slab_attr.attr,
5120 &cpuslab_flush_attr.attr,
5121 &deactivate_full_attr.attr,
5122 &deactivate_empty_attr.attr,
5123 &deactivate_to_head_attr.attr,
5124 &deactivate_to_tail_attr.attr,
5125 &deactivate_remote_frees_attr.attr,
5126 &deactivate_bypass_attr.attr,
5127 &order_fallback_attr.attr,
5128 &cmpxchg_double_fail_attr.attr,
5129 &cmpxchg_double_cpu_fail_attr.attr,
5130 &cpu_partial_alloc_attr.attr,
5131 &cpu_partial_free_attr.attr,
5132 &cpu_partial_node_attr.attr,
5133 &cpu_partial_drain_attr.attr,
5134 #endif
5135 #ifdef CONFIG_FAILSLAB
5136 &failslab_attr.attr,
5137 #endif
5138
5139 NULL
5140 };
5141
5142 static struct attribute_group slab_attr_group = {
5143 .attrs = slab_attrs,
5144 };
5145
5146 static ssize_t slab_attr_show(struct kobject *kobj,
5147 struct attribute *attr,
5148 char *buf)
5149 {
5150 struct slab_attribute *attribute;
5151 struct kmem_cache *s;
5152 int err;
5153
5154 attribute = to_slab_attr(attr);
5155 s = to_slab(kobj);
5156
5157 if (!attribute->show)
5158 return -EIO;
5159
5160 err = attribute->show(s, buf);
5161
5162 return err;
5163 }
5164
5165 static ssize_t slab_attr_store(struct kobject *kobj,
5166 struct attribute *attr,
5167 const char *buf, size_t len)
5168 {
5169 struct slab_attribute *attribute;
5170 struct kmem_cache *s;
5171 int err;
5172
5173 attribute = to_slab_attr(attr);
5174 s = to_slab(kobj);
5175
5176 if (!attribute->store)
5177 return -EIO;
5178
5179 err = attribute->store(s, buf, len);
5180
5181 return err;
5182 }
5183
5184 static void kmem_cache_release(struct kobject *kobj)
5185 {
5186 struct kmem_cache *s = to_slab(kobj);
5187
5188 kfree(s->name);
5189 kfree(s);
5190 }
5191
5192 static const struct sysfs_ops slab_sysfs_ops = {
5193 .show = slab_attr_show,
5194 .store = slab_attr_store,
5195 };
5196
5197 static struct kobj_type slab_ktype = {
5198 .sysfs_ops = &slab_sysfs_ops,
5199 .release = kmem_cache_release
5200 };
5201
5202 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5203 {
5204 struct kobj_type *ktype = get_ktype(kobj);
5205
5206 if (ktype == &slab_ktype)
5207 return 1;
5208 return 0;
5209 }
5210
5211 static const struct kset_uevent_ops slab_uevent_ops = {
5212 .filter = uevent_filter,
5213 };
5214
5215 static struct kset *slab_kset;
5216
5217 #define ID_STR_LENGTH 64
5218
5219 /* Create a unique string id for a slab cache:
5220 *
5221 * Format :[flags-]size
5222 */
5223 static char *create_unique_id(struct kmem_cache *s)
5224 {
5225 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5226 char *p = name;
5227
5228 BUG_ON(!name);
5229
5230 *p++ = ':';
5231 /*
5232 * First flags affecting slabcache operations. We will only
5233 * get here for aliasable slabs so we do not need to support
5234 * too many flags. The flags here must cover all flags that
5235 * are matched during merging to guarantee that the id is
5236 * unique.
5237 */
5238 if (s->flags & SLAB_CACHE_DMA)
5239 *p++ = 'd';
5240 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5241 *p++ = 'a';
5242 if (s->flags & SLAB_DEBUG_FREE)
5243 *p++ = 'F';
5244 if (!(s->flags & SLAB_NOTRACK))
5245 *p++ = 't';
5246 if (p != name + 1)
5247 *p++ = '-';
5248 p += sprintf(p, "%07d", s->size);
5249 BUG_ON(p > name + ID_STR_LENGTH - 1);
5250 return name;
5251 }
5252
5253 static int sysfs_slab_add(struct kmem_cache *s)
5254 {
5255 int err;
5256 const char *name;
5257 int unmergeable;
5258
5259 if (slab_state < FULL)
5260 /* Defer until later */
5261 return 0;
5262
5263 unmergeable = slab_unmergeable(s);
5264 if (unmergeable) {
5265 /*
5266 * Slabcache can never be merged so we can use the name proper.
5267 * This is typically the case for debug situations. In that
5268 * case we can catch duplicate names easily.
5269 */
5270 sysfs_remove_link(&slab_kset->kobj, s->name);
5271 name = s->name;
5272 } else {
5273 /*
5274 * Create a unique name for the slab as a target
5275 * for the symlinks.
5276 */
5277 name = create_unique_id(s);
5278 }
5279
5280 s->kobj.kset = slab_kset;
5281 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5282 if (err) {
5283 kobject_put(&s->kobj);
5284 return err;
5285 }
5286
5287 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5288 if (err) {
5289 kobject_del(&s->kobj);
5290 kobject_put(&s->kobj);
5291 return err;
5292 }
5293 kobject_uevent(&s->kobj, KOBJ_ADD);
5294 if (!unmergeable) {
5295 /* Setup first alias */
5296 sysfs_slab_alias(s, s->name);
5297 kfree(name);
5298 }
5299 return 0;
5300 }
5301
5302 static void sysfs_slab_remove(struct kmem_cache *s)
5303 {
5304 if (slab_state < FULL)
5305 /*
5306 * Sysfs has not been setup yet so no need to remove the
5307 * cache from sysfs.
5308 */
5309 return;
5310
5311 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5312 kobject_del(&s->kobj);
5313 kobject_put(&s->kobj);
5314 }
5315
5316 /*
5317 * Need to buffer aliases during bootup until sysfs becomes
5318 * available lest we lose that information.
5319 */
5320 struct saved_alias {
5321 struct kmem_cache *s;
5322 const char *name;
5323 struct saved_alias *next;
5324 };
5325
5326 static struct saved_alias *alias_list;
5327
5328 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5329 {
5330 struct saved_alias *al;
5331
5332 if (slab_state == FULL) {
5333 /*
5334 * If we have a leftover link then remove it.
5335 */
5336 sysfs_remove_link(&slab_kset->kobj, name);
5337 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5338 }
5339
5340 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5341 if (!al)
5342 return -ENOMEM;
5343
5344 al->s = s;
5345 al->name = name;
5346 al->next = alias_list;
5347 alias_list = al;
5348 return 0;
5349 }
5350
5351 static int __init slab_sysfs_init(void)
5352 {
5353 struct kmem_cache *s;
5354 int err;
5355
5356 mutex_lock(&slab_mutex);
5357
5358 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5359 if (!slab_kset) {
5360 mutex_unlock(&slab_mutex);
5361 printk(KERN_ERR "Cannot register slab subsystem.\n");
5362 return -ENOSYS;
5363 }
5364
5365 slab_state = FULL;
5366
5367 list_for_each_entry(s, &slab_caches, list) {
5368 err = sysfs_slab_add(s);
5369 if (err)
5370 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5371 " to sysfs\n", s->name);
5372 }
5373
5374 while (alias_list) {
5375 struct saved_alias *al = alias_list;
5376
5377 alias_list = alias_list->next;
5378 err = sysfs_slab_alias(al->s, al->name);
5379 if (err)
5380 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5381 " %s to sysfs\n", al->name);
5382 kfree(al);
5383 }
5384
5385 mutex_unlock(&slab_mutex);
5386 resiliency_test();
5387 return 0;
5388 }
5389
5390 __initcall(slab_sysfs_init);
5391 #endif /* CONFIG_SYSFS */
5392
5393 /*
5394 * The /proc/slabinfo ABI
5395 */
5396 #ifdef CONFIG_SLABINFO
5397 static void print_slabinfo_header(struct seq_file *m)
5398 {
5399 seq_puts(m, "slabinfo - version: 2.1\n");
5400 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
5401 "<objperslab> <pagesperslab>");
5402 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5403 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5404 seq_putc(m, '\n');
5405 }
5406
5407 static void *s_start(struct seq_file *m, loff_t *pos)
5408 {
5409 loff_t n = *pos;
5410
5411 mutex_lock(&slab_mutex);
5412 if (!n)
5413 print_slabinfo_header(m);
5414
5415 return seq_list_start(&slab_caches, *pos);
5416 }
5417
5418 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5419 {
5420 return seq_list_next(p, &slab_caches, pos);
5421 }
5422
5423 static void s_stop(struct seq_file *m, void *p)
5424 {
5425 mutex_unlock(&slab_mutex);
5426 }
5427
5428 static int s_show(struct seq_file *m, void *p)
5429 {
5430 unsigned long nr_partials = 0;
5431 unsigned long nr_slabs = 0;
5432 unsigned long nr_inuse = 0;
5433 unsigned long nr_objs = 0;
5434 unsigned long nr_free = 0;
5435 struct kmem_cache *s;
5436 int node;
5437
5438 s = list_entry(p, struct kmem_cache, list);
5439
5440 for_each_online_node(node) {
5441 struct kmem_cache_node *n = get_node(s, node);
5442
5443 if (!n)
5444 continue;
5445
5446 nr_partials += n->nr_partial;
5447 nr_slabs += atomic_long_read(&n->nr_slabs);
5448 nr_objs += atomic_long_read(&n->total_objects);
5449 nr_free += count_partial(n, count_free);
5450 }
5451
5452 nr_inuse = nr_objs - nr_free;
5453
5454 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5455 nr_objs, s->size, oo_objects(s->oo),
5456 (1 << oo_order(s->oo)));
5457 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5458 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5459 0UL);
5460 seq_putc(m, '\n');
5461 return 0;
5462 }
5463
5464 static const struct seq_operations slabinfo_op = {
5465 .start = s_start,
5466 .next = s_next,
5467 .stop = s_stop,
5468 .show = s_show,
5469 };
5470
5471 static int slabinfo_open(struct inode *inode, struct file *file)
5472 {
5473 return seq_open(file, &slabinfo_op);
5474 }
5475
5476 static const struct file_operations proc_slabinfo_operations = {
5477 .open = slabinfo_open,
5478 .read = seq_read,
5479 .llseek = seq_lseek,
5480 .release = seq_release,
5481 };
5482
5483 static int __init slab_proc_init(void)
5484 {
5485 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5486 return 0;
5487 }
5488 module_init(slab_proc_init);
5489 #endif /* CONFIG_SLABINFO */
This page took 0.134324 seconds and 6 git commands to generate.