slub: only IPI CPUs that have per cpu obj to flush
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32
33 #include <trace/events/kmem.h>
34
35 /*
36 * Lock order:
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
40 *
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
121 }
122
123 /*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
136
137 /*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
141 #define MIN_PARTIAL 5
142
143 /*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148 #define MAX_PARTIAL 10
149
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
152
153 /*
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
157 */
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159
160 /*
161 * Set of flags that will prevent slab merging
162 */
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
166
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
169
170 #define OO_SHIFT 16
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
173
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
177
178 static int kmem_size = sizeof(struct kmem_cache);
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 static enum {
185 DOWN, /* No slab functionality available */
186 PARTIAL, /* Kmem_cache_node works */
187 UP, /* Everything works but does not show up in sysfs */
188 SYSFS /* Sysfs up */
189 } slab_state = DOWN;
190
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
194
195 /*
196 * Tracking user of a slab.
197 */
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 unsigned long addr; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203 #endif
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207 };
208
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
210
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
215
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
221 {
222 kfree(s->name);
223 kfree(s);
224 }
225
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239 int slab_is_available(void)
240 {
241 return slab_state >= UP;
242 }
243
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245 {
246 return s->node[node];
247 }
248
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252 {
253 void *base;
254
255 if (!object)
256 return 1;
257
258 base = page_address(page);
259 if (object < base || object >= base + page->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265 }
266
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 return *(void **)(object + s->offset);
270 }
271
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273 {
274 void *p;
275
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 p = get_freepointer(s, object);
280 #endif
281 return p;
282 }
283
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 *(void **)(object + s->offset) = fp;
287 }
288
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
293
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296 {
297 return (p - addr) / s->size;
298 }
299
300 static inline size_t slab_ksize(const struct kmem_cache *s)
301 {
302 #ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310 #endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322 }
323
324 static inline int order_objects(int order, unsigned long size, int reserved)
325 {
326 return ((PAGE_SIZE << order) - reserved) / size;
327 }
328
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 unsigned long size, int reserved)
331 {
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size, reserved)
334 };
335
336 return x;
337 }
338
339 static inline int oo_order(struct kmem_cache_order_objects x)
340 {
341 return x.x >> OO_SHIFT;
342 }
343
344 static inline int oo_objects(struct kmem_cache_order_objects x)
345 {
346 return x.x & OO_MASK;
347 }
348
349 /*
350 * Per slab locking using the pagelock
351 */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 bit_spin_lock(PG_locked, &page->flags);
355 }
356
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 __bit_spin_unlock(PG_locked, &page->flags);
360 }
361
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367 {
368 VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s->flags & __CMPXCHG_DOUBLE) {
372 if (cmpxchg_double(&page->freelist, &page->counters,
373 freelist_old, counters_old,
374 freelist_new, counters_new))
375 return 1;
376 } else
377 #endif
378 {
379 slab_lock(page);
380 if (page->freelist == freelist_old && page->counters == counters_old) {
381 page->freelist = freelist_new;
382 page->counters = counters_new;
383 slab_unlock(page);
384 return 1;
385 }
386 slab_unlock(page);
387 }
388
389 cpu_relax();
390 stat(s, CMPXCHG_DOUBLE_FAIL);
391
392 #ifdef SLUB_DEBUG_CMPXCHG
393 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
394 #endif
395
396 return 0;
397 }
398
399 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
400 void *freelist_old, unsigned long counters_old,
401 void *freelist_new, unsigned long counters_new,
402 const char *n)
403 {
404 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
405 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
406 if (s->flags & __CMPXCHG_DOUBLE) {
407 if (cmpxchg_double(&page->freelist, &page->counters,
408 freelist_old, counters_old,
409 freelist_new, counters_new))
410 return 1;
411 } else
412 #endif
413 {
414 unsigned long flags;
415
416 local_irq_save(flags);
417 slab_lock(page);
418 if (page->freelist == freelist_old && page->counters == counters_old) {
419 page->freelist = freelist_new;
420 page->counters = counters_new;
421 slab_unlock(page);
422 local_irq_restore(flags);
423 return 1;
424 }
425 slab_unlock(page);
426 local_irq_restore(flags);
427 }
428
429 cpu_relax();
430 stat(s, CMPXCHG_DOUBLE_FAIL);
431
432 #ifdef SLUB_DEBUG_CMPXCHG
433 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
434 #endif
435
436 return 0;
437 }
438
439 #ifdef CONFIG_SLUB_DEBUG
440 /*
441 * Determine a map of object in use on a page.
442 *
443 * Node listlock must be held to guarantee that the page does
444 * not vanish from under us.
445 */
446 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
447 {
448 void *p;
449 void *addr = page_address(page);
450
451 for (p = page->freelist; p; p = get_freepointer(s, p))
452 set_bit(slab_index(p, s, addr), map);
453 }
454
455 /*
456 * Debug settings:
457 */
458 #ifdef CONFIG_SLUB_DEBUG_ON
459 static int slub_debug = DEBUG_DEFAULT_FLAGS;
460 #else
461 static int slub_debug;
462 #endif
463
464 static char *slub_debug_slabs;
465 static int disable_higher_order_debug;
466
467 /*
468 * Object debugging
469 */
470 static void print_section(char *text, u8 *addr, unsigned int length)
471 {
472 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
473 length, 1);
474 }
475
476 static struct track *get_track(struct kmem_cache *s, void *object,
477 enum track_item alloc)
478 {
479 struct track *p;
480
481 if (s->offset)
482 p = object + s->offset + sizeof(void *);
483 else
484 p = object + s->inuse;
485
486 return p + alloc;
487 }
488
489 static void set_track(struct kmem_cache *s, void *object,
490 enum track_item alloc, unsigned long addr)
491 {
492 struct track *p = get_track(s, object, alloc);
493
494 if (addr) {
495 #ifdef CONFIG_STACKTRACE
496 struct stack_trace trace;
497 int i;
498
499 trace.nr_entries = 0;
500 trace.max_entries = TRACK_ADDRS_COUNT;
501 trace.entries = p->addrs;
502 trace.skip = 3;
503 save_stack_trace(&trace);
504
505 /* See rant in lockdep.c */
506 if (trace.nr_entries != 0 &&
507 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
508 trace.nr_entries--;
509
510 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
511 p->addrs[i] = 0;
512 #endif
513 p->addr = addr;
514 p->cpu = smp_processor_id();
515 p->pid = current->pid;
516 p->when = jiffies;
517 } else
518 memset(p, 0, sizeof(struct track));
519 }
520
521 static void init_tracking(struct kmem_cache *s, void *object)
522 {
523 if (!(s->flags & SLAB_STORE_USER))
524 return;
525
526 set_track(s, object, TRACK_FREE, 0UL);
527 set_track(s, object, TRACK_ALLOC, 0UL);
528 }
529
530 static void print_track(const char *s, struct track *t)
531 {
532 if (!t->addr)
533 return;
534
535 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
536 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
537 #ifdef CONFIG_STACKTRACE
538 {
539 int i;
540 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
541 if (t->addrs[i])
542 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
543 else
544 break;
545 }
546 #endif
547 }
548
549 static void print_tracking(struct kmem_cache *s, void *object)
550 {
551 if (!(s->flags & SLAB_STORE_USER))
552 return;
553
554 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
555 print_track("Freed", get_track(s, object, TRACK_FREE));
556 }
557
558 static void print_page_info(struct page *page)
559 {
560 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
561 page, page->objects, page->inuse, page->freelist, page->flags);
562
563 }
564
565 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
566 {
567 va_list args;
568 char buf[100];
569
570 va_start(args, fmt);
571 vsnprintf(buf, sizeof(buf), fmt, args);
572 va_end(args);
573 printk(KERN_ERR "========================================"
574 "=====================================\n");
575 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
576 printk(KERN_ERR "----------------------------------------"
577 "-------------------------------------\n\n");
578 }
579
580 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
581 {
582 va_list args;
583 char buf[100];
584
585 va_start(args, fmt);
586 vsnprintf(buf, sizeof(buf), fmt, args);
587 va_end(args);
588 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
589 }
590
591 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
592 {
593 unsigned int off; /* Offset of last byte */
594 u8 *addr = page_address(page);
595
596 print_tracking(s, p);
597
598 print_page_info(page);
599
600 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
601 p, p - addr, get_freepointer(s, p));
602
603 if (p > addr + 16)
604 print_section("Bytes b4 ", p - 16, 16);
605
606 print_section("Object ", p, min_t(unsigned long, s->objsize,
607 PAGE_SIZE));
608 if (s->flags & SLAB_RED_ZONE)
609 print_section("Redzone ", p + s->objsize,
610 s->inuse - s->objsize);
611
612 if (s->offset)
613 off = s->offset + sizeof(void *);
614 else
615 off = s->inuse;
616
617 if (s->flags & SLAB_STORE_USER)
618 off += 2 * sizeof(struct track);
619
620 if (off != s->size)
621 /* Beginning of the filler is the free pointer */
622 print_section("Padding ", p + off, s->size - off);
623
624 dump_stack();
625 }
626
627 static void object_err(struct kmem_cache *s, struct page *page,
628 u8 *object, char *reason)
629 {
630 slab_bug(s, "%s", reason);
631 print_trailer(s, page, object);
632 }
633
634 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
635 {
636 va_list args;
637 char buf[100];
638
639 va_start(args, fmt);
640 vsnprintf(buf, sizeof(buf), fmt, args);
641 va_end(args);
642 slab_bug(s, "%s", buf);
643 print_page_info(page);
644 dump_stack();
645 }
646
647 static void init_object(struct kmem_cache *s, void *object, u8 val)
648 {
649 u8 *p = object;
650
651 if (s->flags & __OBJECT_POISON) {
652 memset(p, POISON_FREE, s->objsize - 1);
653 p[s->objsize - 1] = POISON_END;
654 }
655
656 if (s->flags & SLAB_RED_ZONE)
657 memset(p + s->objsize, val, s->inuse - s->objsize);
658 }
659
660 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
661 void *from, void *to)
662 {
663 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
664 memset(from, data, to - from);
665 }
666
667 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
668 u8 *object, char *what,
669 u8 *start, unsigned int value, unsigned int bytes)
670 {
671 u8 *fault;
672 u8 *end;
673
674 fault = memchr_inv(start, value, bytes);
675 if (!fault)
676 return 1;
677
678 end = start + bytes;
679 while (end > fault && end[-1] == value)
680 end--;
681
682 slab_bug(s, "%s overwritten", what);
683 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
684 fault, end - 1, fault[0], value);
685 print_trailer(s, page, object);
686
687 restore_bytes(s, what, value, fault, end);
688 return 0;
689 }
690
691 /*
692 * Object layout:
693 *
694 * object address
695 * Bytes of the object to be managed.
696 * If the freepointer may overlay the object then the free
697 * pointer is the first word of the object.
698 *
699 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
700 * 0xa5 (POISON_END)
701 *
702 * object + s->objsize
703 * Padding to reach word boundary. This is also used for Redzoning.
704 * Padding is extended by another word if Redzoning is enabled and
705 * objsize == inuse.
706 *
707 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
708 * 0xcc (RED_ACTIVE) for objects in use.
709 *
710 * object + s->inuse
711 * Meta data starts here.
712 *
713 * A. Free pointer (if we cannot overwrite object on free)
714 * B. Tracking data for SLAB_STORE_USER
715 * C. Padding to reach required alignment boundary or at mininum
716 * one word if debugging is on to be able to detect writes
717 * before the word boundary.
718 *
719 * Padding is done using 0x5a (POISON_INUSE)
720 *
721 * object + s->size
722 * Nothing is used beyond s->size.
723 *
724 * If slabcaches are merged then the objsize and inuse boundaries are mostly
725 * ignored. And therefore no slab options that rely on these boundaries
726 * may be used with merged slabcaches.
727 */
728
729 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
730 {
731 unsigned long off = s->inuse; /* The end of info */
732
733 if (s->offset)
734 /* Freepointer is placed after the object. */
735 off += sizeof(void *);
736
737 if (s->flags & SLAB_STORE_USER)
738 /* We also have user information there */
739 off += 2 * sizeof(struct track);
740
741 if (s->size == off)
742 return 1;
743
744 return check_bytes_and_report(s, page, p, "Object padding",
745 p + off, POISON_INUSE, s->size - off);
746 }
747
748 /* Check the pad bytes at the end of a slab page */
749 static int slab_pad_check(struct kmem_cache *s, struct page *page)
750 {
751 u8 *start;
752 u8 *fault;
753 u8 *end;
754 int length;
755 int remainder;
756
757 if (!(s->flags & SLAB_POISON))
758 return 1;
759
760 start = page_address(page);
761 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
762 end = start + length;
763 remainder = length % s->size;
764 if (!remainder)
765 return 1;
766
767 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
768 if (!fault)
769 return 1;
770 while (end > fault && end[-1] == POISON_INUSE)
771 end--;
772
773 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
774 print_section("Padding ", end - remainder, remainder);
775
776 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
777 return 0;
778 }
779
780 static int check_object(struct kmem_cache *s, struct page *page,
781 void *object, u8 val)
782 {
783 u8 *p = object;
784 u8 *endobject = object + s->objsize;
785
786 if (s->flags & SLAB_RED_ZONE) {
787 if (!check_bytes_and_report(s, page, object, "Redzone",
788 endobject, val, s->inuse - s->objsize))
789 return 0;
790 } else {
791 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
792 check_bytes_and_report(s, page, p, "Alignment padding",
793 endobject, POISON_INUSE, s->inuse - s->objsize);
794 }
795 }
796
797 if (s->flags & SLAB_POISON) {
798 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
799 (!check_bytes_and_report(s, page, p, "Poison", p,
800 POISON_FREE, s->objsize - 1) ||
801 !check_bytes_and_report(s, page, p, "Poison",
802 p + s->objsize - 1, POISON_END, 1)))
803 return 0;
804 /*
805 * check_pad_bytes cleans up on its own.
806 */
807 check_pad_bytes(s, page, p);
808 }
809
810 if (!s->offset && val == SLUB_RED_ACTIVE)
811 /*
812 * Object and freepointer overlap. Cannot check
813 * freepointer while object is allocated.
814 */
815 return 1;
816
817 /* Check free pointer validity */
818 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
819 object_err(s, page, p, "Freepointer corrupt");
820 /*
821 * No choice but to zap it and thus lose the remainder
822 * of the free objects in this slab. May cause
823 * another error because the object count is now wrong.
824 */
825 set_freepointer(s, p, NULL);
826 return 0;
827 }
828 return 1;
829 }
830
831 static int check_slab(struct kmem_cache *s, struct page *page)
832 {
833 int maxobj;
834
835 VM_BUG_ON(!irqs_disabled());
836
837 if (!PageSlab(page)) {
838 slab_err(s, page, "Not a valid slab page");
839 return 0;
840 }
841
842 maxobj = order_objects(compound_order(page), s->size, s->reserved);
843 if (page->objects > maxobj) {
844 slab_err(s, page, "objects %u > max %u",
845 s->name, page->objects, maxobj);
846 return 0;
847 }
848 if (page->inuse > page->objects) {
849 slab_err(s, page, "inuse %u > max %u",
850 s->name, page->inuse, page->objects);
851 return 0;
852 }
853 /* Slab_pad_check fixes things up after itself */
854 slab_pad_check(s, page);
855 return 1;
856 }
857
858 /*
859 * Determine if a certain object on a page is on the freelist. Must hold the
860 * slab lock to guarantee that the chains are in a consistent state.
861 */
862 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
863 {
864 int nr = 0;
865 void *fp;
866 void *object = NULL;
867 unsigned long max_objects;
868
869 fp = page->freelist;
870 while (fp && nr <= page->objects) {
871 if (fp == search)
872 return 1;
873 if (!check_valid_pointer(s, page, fp)) {
874 if (object) {
875 object_err(s, page, object,
876 "Freechain corrupt");
877 set_freepointer(s, object, NULL);
878 break;
879 } else {
880 slab_err(s, page, "Freepointer corrupt");
881 page->freelist = NULL;
882 page->inuse = page->objects;
883 slab_fix(s, "Freelist cleared");
884 return 0;
885 }
886 break;
887 }
888 object = fp;
889 fp = get_freepointer(s, object);
890 nr++;
891 }
892
893 max_objects = order_objects(compound_order(page), s->size, s->reserved);
894 if (max_objects > MAX_OBJS_PER_PAGE)
895 max_objects = MAX_OBJS_PER_PAGE;
896
897 if (page->objects != max_objects) {
898 slab_err(s, page, "Wrong number of objects. Found %d but "
899 "should be %d", page->objects, max_objects);
900 page->objects = max_objects;
901 slab_fix(s, "Number of objects adjusted.");
902 }
903 if (page->inuse != page->objects - nr) {
904 slab_err(s, page, "Wrong object count. Counter is %d but "
905 "counted were %d", page->inuse, page->objects - nr);
906 page->inuse = page->objects - nr;
907 slab_fix(s, "Object count adjusted.");
908 }
909 return search == NULL;
910 }
911
912 static void trace(struct kmem_cache *s, struct page *page, void *object,
913 int alloc)
914 {
915 if (s->flags & SLAB_TRACE) {
916 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
917 s->name,
918 alloc ? "alloc" : "free",
919 object, page->inuse,
920 page->freelist);
921
922 if (!alloc)
923 print_section("Object ", (void *)object, s->objsize);
924
925 dump_stack();
926 }
927 }
928
929 /*
930 * Hooks for other subsystems that check memory allocations. In a typical
931 * production configuration these hooks all should produce no code at all.
932 */
933 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
934 {
935 flags &= gfp_allowed_mask;
936 lockdep_trace_alloc(flags);
937 might_sleep_if(flags & __GFP_WAIT);
938
939 return should_failslab(s->objsize, flags, s->flags);
940 }
941
942 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
943 {
944 flags &= gfp_allowed_mask;
945 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
946 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
947 }
948
949 static inline void slab_free_hook(struct kmem_cache *s, void *x)
950 {
951 kmemleak_free_recursive(x, s->flags);
952
953 /*
954 * Trouble is that we may no longer disable interupts in the fast path
955 * So in order to make the debug calls that expect irqs to be
956 * disabled we need to disable interrupts temporarily.
957 */
958 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
959 {
960 unsigned long flags;
961
962 local_irq_save(flags);
963 kmemcheck_slab_free(s, x, s->objsize);
964 debug_check_no_locks_freed(x, s->objsize);
965 local_irq_restore(flags);
966 }
967 #endif
968 if (!(s->flags & SLAB_DEBUG_OBJECTS))
969 debug_check_no_obj_freed(x, s->objsize);
970 }
971
972 /*
973 * Tracking of fully allocated slabs for debugging purposes.
974 *
975 * list_lock must be held.
976 */
977 static void add_full(struct kmem_cache *s,
978 struct kmem_cache_node *n, struct page *page)
979 {
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
982
983 list_add(&page->lru, &n->full);
984 }
985
986 /*
987 * list_lock must be held.
988 */
989 static void remove_full(struct kmem_cache *s, struct page *page)
990 {
991 if (!(s->flags & SLAB_STORE_USER))
992 return;
993
994 list_del(&page->lru);
995 }
996
997 /* Tracking of the number of slabs for debugging purposes */
998 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
999 {
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 return atomic_long_read(&n->nr_slabs);
1003 }
1004
1005 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1006 {
1007 return atomic_long_read(&n->nr_slabs);
1008 }
1009
1010 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1011 {
1012 struct kmem_cache_node *n = get_node(s, node);
1013
1014 /*
1015 * May be called early in order to allocate a slab for the
1016 * kmem_cache_node structure. Solve the chicken-egg
1017 * dilemma by deferring the increment of the count during
1018 * bootstrap (see early_kmem_cache_node_alloc).
1019 */
1020 if (n) {
1021 atomic_long_inc(&n->nr_slabs);
1022 atomic_long_add(objects, &n->total_objects);
1023 }
1024 }
1025 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1026 {
1027 struct kmem_cache_node *n = get_node(s, node);
1028
1029 atomic_long_dec(&n->nr_slabs);
1030 atomic_long_sub(objects, &n->total_objects);
1031 }
1032
1033 /* Object debug checks for alloc/free paths */
1034 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1035 void *object)
1036 {
1037 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1038 return;
1039
1040 init_object(s, object, SLUB_RED_INACTIVE);
1041 init_tracking(s, object);
1042 }
1043
1044 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1045 void *object, unsigned long addr)
1046 {
1047 if (!check_slab(s, page))
1048 goto bad;
1049
1050 if (!check_valid_pointer(s, page, object)) {
1051 object_err(s, page, object, "Freelist Pointer check fails");
1052 goto bad;
1053 }
1054
1055 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1056 goto bad;
1057
1058 /* Success perform special debug activities for allocs */
1059 if (s->flags & SLAB_STORE_USER)
1060 set_track(s, object, TRACK_ALLOC, addr);
1061 trace(s, page, object, 1);
1062 init_object(s, object, SLUB_RED_ACTIVE);
1063 return 1;
1064
1065 bad:
1066 if (PageSlab(page)) {
1067 /*
1068 * If this is a slab page then lets do the best we can
1069 * to avoid issues in the future. Marking all objects
1070 * as used avoids touching the remaining objects.
1071 */
1072 slab_fix(s, "Marking all objects used");
1073 page->inuse = page->objects;
1074 page->freelist = NULL;
1075 }
1076 return 0;
1077 }
1078
1079 static noinline int free_debug_processing(struct kmem_cache *s,
1080 struct page *page, void *object, unsigned long addr)
1081 {
1082 unsigned long flags;
1083 int rc = 0;
1084
1085 local_irq_save(flags);
1086 slab_lock(page);
1087
1088 if (!check_slab(s, page))
1089 goto fail;
1090
1091 if (!check_valid_pointer(s, page, object)) {
1092 slab_err(s, page, "Invalid object pointer 0x%p", object);
1093 goto fail;
1094 }
1095
1096 if (on_freelist(s, page, object)) {
1097 object_err(s, page, object, "Object already free");
1098 goto fail;
1099 }
1100
1101 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1102 goto out;
1103
1104 if (unlikely(s != page->slab)) {
1105 if (!PageSlab(page)) {
1106 slab_err(s, page, "Attempt to free object(0x%p) "
1107 "outside of slab", object);
1108 } else if (!page->slab) {
1109 printk(KERN_ERR
1110 "SLUB <none>: no slab for object 0x%p.\n",
1111 object);
1112 dump_stack();
1113 } else
1114 object_err(s, page, object,
1115 "page slab pointer corrupt.");
1116 goto fail;
1117 }
1118
1119 if (s->flags & SLAB_STORE_USER)
1120 set_track(s, object, TRACK_FREE, addr);
1121 trace(s, page, object, 0);
1122 init_object(s, object, SLUB_RED_INACTIVE);
1123 rc = 1;
1124 out:
1125 slab_unlock(page);
1126 local_irq_restore(flags);
1127 return rc;
1128
1129 fail:
1130 slab_fix(s, "Object at 0x%p not freed", object);
1131 goto out;
1132 }
1133
1134 static int __init setup_slub_debug(char *str)
1135 {
1136 slub_debug = DEBUG_DEFAULT_FLAGS;
1137 if (*str++ != '=' || !*str)
1138 /*
1139 * No options specified. Switch on full debugging.
1140 */
1141 goto out;
1142
1143 if (*str == ',')
1144 /*
1145 * No options but restriction on slabs. This means full
1146 * debugging for slabs matching a pattern.
1147 */
1148 goto check_slabs;
1149
1150 if (tolower(*str) == 'o') {
1151 /*
1152 * Avoid enabling debugging on caches if its minimum order
1153 * would increase as a result.
1154 */
1155 disable_higher_order_debug = 1;
1156 goto out;
1157 }
1158
1159 slub_debug = 0;
1160 if (*str == '-')
1161 /*
1162 * Switch off all debugging measures.
1163 */
1164 goto out;
1165
1166 /*
1167 * Determine which debug features should be switched on
1168 */
1169 for (; *str && *str != ','; str++) {
1170 switch (tolower(*str)) {
1171 case 'f':
1172 slub_debug |= SLAB_DEBUG_FREE;
1173 break;
1174 case 'z':
1175 slub_debug |= SLAB_RED_ZONE;
1176 break;
1177 case 'p':
1178 slub_debug |= SLAB_POISON;
1179 break;
1180 case 'u':
1181 slub_debug |= SLAB_STORE_USER;
1182 break;
1183 case 't':
1184 slub_debug |= SLAB_TRACE;
1185 break;
1186 case 'a':
1187 slub_debug |= SLAB_FAILSLAB;
1188 break;
1189 default:
1190 printk(KERN_ERR "slub_debug option '%c' "
1191 "unknown. skipped\n", *str);
1192 }
1193 }
1194
1195 check_slabs:
1196 if (*str == ',')
1197 slub_debug_slabs = str + 1;
1198 out:
1199 return 1;
1200 }
1201
1202 __setup("slub_debug", setup_slub_debug);
1203
1204 static unsigned long kmem_cache_flags(unsigned long objsize,
1205 unsigned long flags, const char *name,
1206 void (*ctor)(void *))
1207 {
1208 /*
1209 * Enable debugging if selected on the kernel commandline.
1210 */
1211 if (slub_debug && (!slub_debug_slabs ||
1212 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1213 flags |= slub_debug;
1214
1215 return flags;
1216 }
1217 #else
1218 static inline void setup_object_debug(struct kmem_cache *s,
1219 struct page *page, void *object) {}
1220
1221 static inline int alloc_debug_processing(struct kmem_cache *s,
1222 struct page *page, void *object, unsigned long addr) { return 0; }
1223
1224 static inline int free_debug_processing(struct kmem_cache *s,
1225 struct page *page, void *object, unsigned long addr) { return 0; }
1226
1227 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1228 { return 1; }
1229 static inline int check_object(struct kmem_cache *s, struct page *page,
1230 void *object, u8 val) { return 1; }
1231 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1232 struct page *page) {}
1233 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1234 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1235 unsigned long flags, const char *name,
1236 void (*ctor)(void *))
1237 {
1238 return flags;
1239 }
1240 #define slub_debug 0
1241
1242 #define disable_higher_order_debug 0
1243
1244 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1245 { return 0; }
1246 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1247 { return 0; }
1248 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
1250 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1251 int objects) {}
1252
1253 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1254 { return 0; }
1255
1256 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1257 void *object) {}
1258
1259 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1260
1261 #endif /* CONFIG_SLUB_DEBUG */
1262
1263 /*
1264 * Slab allocation and freeing
1265 */
1266 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1267 struct kmem_cache_order_objects oo)
1268 {
1269 int order = oo_order(oo);
1270
1271 flags |= __GFP_NOTRACK;
1272
1273 if (node == NUMA_NO_NODE)
1274 return alloc_pages(flags, order);
1275 else
1276 return alloc_pages_exact_node(node, flags, order);
1277 }
1278
1279 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1280 {
1281 struct page *page;
1282 struct kmem_cache_order_objects oo = s->oo;
1283 gfp_t alloc_gfp;
1284
1285 flags &= gfp_allowed_mask;
1286
1287 if (flags & __GFP_WAIT)
1288 local_irq_enable();
1289
1290 flags |= s->allocflags;
1291
1292 /*
1293 * Let the initial higher-order allocation fail under memory pressure
1294 * so we fall-back to the minimum order allocation.
1295 */
1296 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1297
1298 page = alloc_slab_page(alloc_gfp, node, oo);
1299 if (unlikely(!page)) {
1300 oo = s->min;
1301 /*
1302 * Allocation may have failed due to fragmentation.
1303 * Try a lower order alloc if possible
1304 */
1305 page = alloc_slab_page(flags, node, oo);
1306
1307 if (page)
1308 stat(s, ORDER_FALLBACK);
1309 }
1310
1311 if (flags & __GFP_WAIT)
1312 local_irq_disable();
1313
1314 if (!page)
1315 return NULL;
1316
1317 if (kmemcheck_enabled
1318 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1319 int pages = 1 << oo_order(oo);
1320
1321 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1322
1323 /*
1324 * Objects from caches that have a constructor don't get
1325 * cleared when they're allocated, so we need to do it here.
1326 */
1327 if (s->ctor)
1328 kmemcheck_mark_uninitialized_pages(page, pages);
1329 else
1330 kmemcheck_mark_unallocated_pages(page, pages);
1331 }
1332
1333 page->objects = oo_objects(oo);
1334 mod_zone_page_state(page_zone(page),
1335 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1336 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1337 1 << oo_order(oo));
1338
1339 return page;
1340 }
1341
1342 static void setup_object(struct kmem_cache *s, struct page *page,
1343 void *object)
1344 {
1345 setup_object_debug(s, page, object);
1346 if (unlikely(s->ctor))
1347 s->ctor(object);
1348 }
1349
1350 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1351 {
1352 struct page *page;
1353 void *start;
1354 void *last;
1355 void *p;
1356
1357 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1358
1359 page = allocate_slab(s,
1360 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1361 if (!page)
1362 goto out;
1363
1364 inc_slabs_node(s, page_to_nid(page), page->objects);
1365 page->slab = s;
1366 page->flags |= 1 << PG_slab;
1367
1368 start = page_address(page);
1369
1370 if (unlikely(s->flags & SLAB_POISON))
1371 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1372
1373 last = start;
1374 for_each_object(p, s, start, page->objects) {
1375 setup_object(s, page, last);
1376 set_freepointer(s, last, p);
1377 last = p;
1378 }
1379 setup_object(s, page, last);
1380 set_freepointer(s, last, NULL);
1381
1382 page->freelist = start;
1383 page->inuse = page->objects;
1384 page->frozen = 1;
1385 out:
1386 return page;
1387 }
1388
1389 static void __free_slab(struct kmem_cache *s, struct page *page)
1390 {
1391 int order = compound_order(page);
1392 int pages = 1 << order;
1393
1394 if (kmem_cache_debug(s)) {
1395 void *p;
1396
1397 slab_pad_check(s, page);
1398 for_each_object(p, s, page_address(page),
1399 page->objects)
1400 check_object(s, page, p, SLUB_RED_INACTIVE);
1401 }
1402
1403 kmemcheck_free_shadow(page, compound_order(page));
1404
1405 mod_zone_page_state(page_zone(page),
1406 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1407 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1408 -pages);
1409
1410 __ClearPageSlab(page);
1411 reset_page_mapcount(page);
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
1414 __free_pages(page, order);
1415 }
1416
1417 #define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
1420 static void rcu_free_slab(struct rcu_head *h)
1421 {
1422 struct page *page;
1423
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
1429 __free_slab(page->slab, page);
1430 }
1431
1432 static void free_slab(struct kmem_cache *s, struct page *page)
1433 {
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453 }
1454
1455 static void discard_slab(struct kmem_cache *s, struct page *page)
1456 {
1457 dec_slabs_node(s, page_to_nid(page), page->objects);
1458 free_slab(s, page);
1459 }
1460
1461 /*
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
1465 */
1466 static inline void add_partial(struct kmem_cache_node *n,
1467 struct page *page, int tail)
1468 {
1469 n->nr_partial++;
1470 if (tail == DEACTIVATE_TO_TAIL)
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
1474 }
1475
1476 /*
1477 * list_lock must be held.
1478 */
1479 static inline void remove_partial(struct kmem_cache_node *n,
1480 struct page *page)
1481 {
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484 }
1485
1486 /*
1487 * Lock slab, remove from the partial list and put the object into the
1488 * per cpu freelist.
1489 *
1490 * Returns a list of objects or NULL if it fails.
1491 *
1492 * Must hold list_lock.
1493 */
1494 static inline void *acquire_slab(struct kmem_cache *s,
1495 struct kmem_cache_node *n, struct page *page,
1496 int mode)
1497 {
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
1507 do {
1508 freelist = page->freelist;
1509 counters = page->counters;
1510 new.counters = counters;
1511 if (mode)
1512 new.inuse = page->objects;
1513
1514 VM_BUG_ON(new.frozen);
1515 new.frozen = 1;
1516
1517 } while (!__cmpxchg_double_slab(s, page,
1518 freelist, counters,
1519 NULL, new.counters,
1520 "lock and freeze"));
1521
1522 remove_partial(n, page);
1523 return freelist;
1524 }
1525
1526 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527
1528 /*
1529 * Try to allocate a partial slab from a specific node.
1530 */
1531 static void *get_partial_node(struct kmem_cache *s,
1532 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1533 {
1534 struct page *page, *page2;
1535 void *object = NULL;
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1548 void *t = acquire_slab(s, n, page, object == NULL);
1549 int available;
1550
1551 if (!t)
1552 break;
1553
1554 if (!object) {
1555 c->page = page;
1556 c->node = page_to_nid(page);
1557 stat(s, ALLOC_FROM_PARTIAL);
1558 object = t;
1559 available = page->objects - page->inuse;
1560 } else {
1561 page->freelist = t;
1562 available = put_cpu_partial(s, page, 0);
1563 }
1564 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1565 break;
1566
1567 }
1568 spin_unlock(&n->list_lock);
1569 return object;
1570 }
1571
1572 /*
1573 * Get a page from somewhere. Search in increasing NUMA distances.
1574 */
1575 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1576 struct kmem_cache_cpu *c)
1577 {
1578 #ifdef CONFIG_NUMA
1579 struct zonelist *zonelist;
1580 struct zoneref *z;
1581 struct zone *zone;
1582 enum zone_type high_zoneidx = gfp_zone(flags);
1583 void *object;
1584 unsigned int cpuset_mems_cookie;
1585
1586 /*
1587 * The defrag ratio allows a configuration of the tradeoffs between
1588 * inter node defragmentation and node local allocations. A lower
1589 * defrag_ratio increases the tendency to do local allocations
1590 * instead of attempting to obtain partial slabs from other nodes.
1591 *
1592 * If the defrag_ratio is set to 0 then kmalloc() always
1593 * returns node local objects. If the ratio is higher then kmalloc()
1594 * may return off node objects because partial slabs are obtained
1595 * from other nodes and filled up.
1596 *
1597 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1598 * defrag_ratio = 1000) then every (well almost) allocation will
1599 * first attempt to defrag slab caches on other nodes. This means
1600 * scanning over all nodes to look for partial slabs which may be
1601 * expensive if we do it every time we are trying to find a slab
1602 * with available objects.
1603 */
1604 if (!s->remote_node_defrag_ratio ||
1605 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1606 return NULL;
1607
1608 do {
1609 cpuset_mems_cookie = get_mems_allowed();
1610 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1611 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1612 struct kmem_cache_node *n;
1613
1614 n = get_node(s, zone_to_nid(zone));
1615
1616 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1617 n->nr_partial > s->min_partial) {
1618 object = get_partial_node(s, n, c);
1619 if (object) {
1620 /*
1621 * Return the object even if
1622 * put_mems_allowed indicated that
1623 * the cpuset mems_allowed was
1624 * updated in parallel. It's a
1625 * harmless race between the alloc
1626 * and the cpuset update.
1627 */
1628 put_mems_allowed(cpuset_mems_cookie);
1629 return object;
1630 }
1631 }
1632 }
1633 } while (!put_mems_allowed(cpuset_mems_cookie));
1634 #endif
1635 return NULL;
1636 }
1637
1638 /*
1639 * Get a partial page, lock it and return it.
1640 */
1641 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1642 struct kmem_cache_cpu *c)
1643 {
1644 void *object;
1645 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1646
1647 object = get_partial_node(s, get_node(s, searchnode), c);
1648 if (object || node != NUMA_NO_NODE)
1649 return object;
1650
1651 return get_any_partial(s, flags, c);
1652 }
1653
1654 #ifdef CONFIG_PREEMPT
1655 /*
1656 * Calculate the next globally unique transaction for disambiguiation
1657 * during cmpxchg. The transactions start with the cpu number and are then
1658 * incremented by CONFIG_NR_CPUS.
1659 */
1660 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1661 #else
1662 /*
1663 * No preemption supported therefore also no need to check for
1664 * different cpus.
1665 */
1666 #define TID_STEP 1
1667 #endif
1668
1669 static inline unsigned long next_tid(unsigned long tid)
1670 {
1671 return tid + TID_STEP;
1672 }
1673
1674 static inline unsigned int tid_to_cpu(unsigned long tid)
1675 {
1676 return tid % TID_STEP;
1677 }
1678
1679 static inline unsigned long tid_to_event(unsigned long tid)
1680 {
1681 return tid / TID_STEP;
1682 }
1683
1684 static inline unsigned int init_tid(int cpu)
1685 {
1686 return cpu;
1687 }
1688
1689 static inline void note_cmpxchg_failure(const char *n,
1690 const struct kmem_cache *s, unsigned long tid)
1691 {
1692 #ifdef SLUB_DEBUG_CMPXCHG
1693 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1694
1695 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1696
1697 #ifdef CONFIG_PREEMPT
1698 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1699 printk("due to cpu change %d -> %d\n",
1700 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1701 else
1702 #endif
1703 if (tid_to_event(tid) != tid_to_event(actual_tid))
1704 printk("due to cpu running other code. Event %ld->%ld\n",
1705 tid_to_event(tid), tid_to_event(actual_tid));
1706 else
1707 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1708 actual_tid, tid, next_tid(tid));
1709 #endif
1710 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1711 }
1712
1713 void init_kmem_cache_cpus(struct kmem_cache *s)
1714 {
1715 int cpu;
1716
1717 for_each_possible_cpu(cpu)
1718 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1719 }
1720
1721 /*
1722 * Remove the cpu slab
1723 */
1724 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1725 {
1726 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1727 struct page *page = c->page;
1728 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1729 int lock = 0;
1730 enum slab_modes l = M_NONE, m = M_NONE;
1731 void *freelist;
1732 void *nextfree;
1733 int tail = DEACTIVATE_TO_HEAD;
1734 struct page new;
1735 struct page old;
1736
1737 if (page->freelist) {
1738 stat(s, DEACTIVATE_REMOTE_FREES);
1739 tail = DEACTIVATE_TO_TAIL;
1740 }
1741
1742 c->tid = next_tid(c->tid);
1743 c->page = NULL;
1744 freelist = c->freelist;
1745 c->freelist = NULL;
1746
1747 /*
1748 * Stage one: Free all available per cpu objects back
1749 * to the page freelist while it is still frozen. Leave the
1750 * last one.
1751 *
1752 * There is no need to take the list->lock because the page
1753 * is still frozen.
1754 */
1755 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1756 void *prior;
1757 unsigned long counters;
1758
1759 do {
1760 prior = page->freelist;
1761 counters = page->counters;
1762 set_freepointer(s, freelist, prior);
1763 new.counters = counters;
1764 new.inuse--;
1765 VM_BUG_ON(!new.frozen);
1766
1767 } while (!__cmpxchg_double_slab(s, page,
1768 prior, counters,
1769 freelist, new.counters,
1770 "drain percpu freelist"));
1771
1772 freelist = nextfree;
1773 }
1774
1775 /*
1776 * Stage two: Ensure that the page is unfrozen while the
1777 * list presence reflects the actual number of objects
1778 * during unfreeze.
1779 *
1780 * We setup the list membership and then perform a cmpxchg
1781 * with the count. If there is a mismatch then the page
1782 * is not unfrozen but the page is on the wrong list.
1783 *
1784 * Then we restart the process which may have to remove
1785 * the page from the list that we just put it on again
1786 * because the number of objects in the slab may have
1787 * changed.
1788 */
1789 redo:
1790
1791 old.freelist = page->freelist;
1792 old.counters = page->counters;
1793 VM_BUG_ON(!old.frozen);
1794
1795 /* Determine target state of the slab */
1796 new.counters = old.counters;
1797 if (freelist) {
1798 new.inuse--;
1799 set_freepointer(s, freelist, old.freelist);
1800 new.freelist = freelist;
1801 } else
1802 new.freelist = old.freelist;
1803
1804 new.frozen = 0;
1805
1806 if (!new.inuse && n->nr_partial > s->min_partial)
1807 m = M_FREE;
1808 else if (new.freelist) {
1809 m = M_PARTIAL;
1810 if (!lock) {
1811 lock = 1;
1812 /*
1813 * Taking the spinlock removes the possiblity
1814 * that acquire_slab() will see a slab page that
1815 * is frozen
1816 */
1817 spin_lock(&n->list_lock);
1818 }
1819 } else {
1820 m = M_FULL;
1821 if (kmem_cache_debug(s) && !lock) {
1822 lock = 1;
1823 /*
1824 * This also ensures that the scanning of full
1825 * slabs from diagnostic functions will not see
1826 * any frozen slabs.
1827 */
1828 spin_lock(&n->list_lock);
1829 }
1830 }
1831
1832 if (l != m) {
1833
1834 if (l == M_PARTIAL)
1835
1836 remove_partial(n, page);
1837
1838 else if (l == M_FULL)
1839
1840 remove_full(s, page);
1841
1842 if (m == M_PARTIAL) {
1843
1844 add_partial(n, page, tail);
1845 stat(s, tail);
1846
1847 } else if (m == M_FULL) {
1848
1849 stat(s, DEACTIVATE_FULL);
1850 add_full(s, n, page);
1851
1852 }
1853 }
1854
1855 l = m;
1856 if (!__cmpxchg_double_slab(s, page,
1857 old.freelist, old.counters,
1858 new.freelist, new.counters,
1859 "unfreezing slab"))
1860 goto redo;
1861
1862 if (lock)
1863 spin_unlock(&n->list_lock);
1864
1865 if (m == M_FREE) {
1866 stat(s, DEACTIVATE_EMPTY);
1867 discard_slab(s, page);
1868 stat(s, FREE_SLAB);
1869 }
1870 }
1871
1872 /* Unfreeze all the cpu partial slabs */
1873 static void unfreeze_partials(struct kmem_cache *s)
1874 {
1875 struct kmem_cache_node *n = NULL;
1876 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1877 struct page *page, *discard_page = NULL;
1878
1879 while ((page = c->partial)) {
1880 enum slab_modes { M_PARTIAL, M_FREE };
1881 enum slab_modes l, m;
1882 struct page new;
1883 struct page old;
1884
1885 c->partial = page->next;
1886 l = M_FREE;
1887
1888 do {
1889
1890 old.freelist = page->freelist;
1891 old.counters = page->counters;
1892 VM_BUG_ON(!old.frozen);
1893
1894 new.counters = old.counters;
1895 new.freelist = old.freelist;
1896
1897 new.frozen = 0;
1898
1899 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1900 m = M_FREE;
1901 else {
1902 struct kmem_cache_node *n2 = get_node(s,
1903 page_to_nid(page));
1904
1905 m = M_PARTIAL;
1906 if (n != n2) {
1907 if (n)
1908 spin_unlock(&n->list_lock);
1909
1910 n = n2;
1911 spin_lock(&n->list_lock);
1912 }
1913 }
1914
1915 if (l != m) {
1916 if (l == M_PARTIAL) {
1917 remove_partial(n, page);
1918 stat(s, FREE_REMOVE_PARTIAL);
1919 } else {
1920 add_partial(n, page,
1921 DEACTIVATE_TO_TAIL);
1922 stat(s, FREE_ADD_PARTIAL);
1923 }
1924
1925 l = m;
1926 }
1927
1928 } while (!cmpxchg_double_slab(s, page,
1929 old.freelist, old.counters,
1930 new.freelist, new.counters,
1931 "unfreezing slab"));
1932
1933 if (m == M_FREE) {
1934 page->next = discard_page;
1935 discard_page = page;
1936 }
1937 }
1938
1939 if (n)
1940 spin_unlock(&n->list_lock);
1941
1942 while (discard_page) {
1943 page = discard_page;
1944 discard_page = discard_page->next;
1945
1946 stat(s, DEACTIVATE_EMPTY);
1947 discard_slab(s, page);
1948 stat(s, FREE_SLAB);
1949 }
1950 }
1951
1952 /*
1953 * Put a page that was just frozen (in __slab_free) into a partial page
1954 * slot if available. This is done without interrupts disabled and without
1955 * preemption disabled. The cmpxchg is racy and may put the partial page
1956 * onto a random cpus partial slot.
1957 *
1958 * If we did not find a slot then simply move all the partials to the
1959 * per node partial list.
1960 */
1961 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1962 {
1963 struct page *oldpage;
1964 int pages;
1965 int pobjects;
1966
1967 do {
1968 pages = 0;
1969 pobjects = 0;
1970 oldpage = this_cpu_read(s->cpu_slab->partial);
1971
1972 if (oldpage) {
1973 pobjects = oldpage->pobjects;
1974 pages = oldpage->pages;
1975 if (drain && pobjects > s->cpu_partial) {
1976 unsigned long flags;
1977 /*
1978 * partial array is full. Move the existing
1979 * set to the per node partial list.
1980 */
1981 local_irq_save(flags);
1982 unfreeze_partials(s);
1983 local_irq_restore(flags);
1984 pobjects = 0;
1985 pages = 0;
1986 }
1987 }
1988
1989 pages++;
1990 pobjects += page->objects - page->inuse;
1991
1992 page->pages = pages;
1993 page->pobjects = pobjects;
1994 page->next = oldpage;
1995
1996 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1997 stat(s, CPU_PARTIAL_FREE);
1998 return pobjects;
1999 }
2000
2001 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2002 {
2003 stat(s, CPUSLAB_FLUSH);
2004 deactivate_slab(s, c);
2005 }
2006
2007 /*
2008 * Flush cpu slab.
2009 *
2010 * Called from IPI handler with interrupts disabled.
2011 */
2012 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2013 {
2014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2015
2016 if (likely(c)) {
2017 if (c->page)
2018 flush_slab(s, c);
2019
2020 unfreeze_partials(s);
2021 }
2022 }
2023
2024 static void flush_cpu_slab(void *d)
2025 {
2026 struct kmem_cache *s = d;
2027
2028 __flush_cpu_slab(s, smp_processor_id());
2029 }
2030
2031 static bool has_cpu_slab(int cpu, void *info)
2032 {
2033 struct kmem_cache *s = info;
2034 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2035
2036 return !!(c->page);
2037 }
2038
2039 static void flush_all(struct kmem_cache *s)
2040 {
2041 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2042 }
2043
2044 /*
2045 * Check if the objects in a per cpu structure fit numa
2046 * locality expectations.
2047 */
2048 static inline int node_match(struct kmem_cache_cpu *c, int node)
2049 {
2050 #ifdef CONFIG_NUMA
2051 if (node != NUMA_NO_NODE && c->node != node)
2052 return 0;
2053 #endif
2054 return 1;
2055 }
2056
2057 static int count_free(struct page *page)
2058 {
2059 return page->objects - page->inuse;
2060 }
2061
2062 static unsigned long count_partial(struct kmem_cache_node *n,
2063 int (*get_count)(struct page *))
2064 {
2065 unsigned long flags;
2066 unsigned long x = 0;
2067 struct page *page;
2068
2069 spin_lock_irqsave(&n->list_lock, flags);
2070 list_for_each_entry(page, &n->partial, lru)
2071 x += get_count(page);
2072 spin_unlock_irqrestore(&n->list_lock, flags);
2073 return x;
2074 }
2075
2076 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2077 {
2078 #ifdef CONFIG_SLUB_DEBUG
2079 return atomic_long_read(&n->total_objects);
2080 #else
2081 return 0;
2082 #endif
2083 }
2084
2085 static noinline void
2086 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2087 {
2088 int node;
2089
2090 printk(KERN_WARNING
2091 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2092 nid, gfpflags);
2093 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2094 "default order: %d, min order: %d\n", s->name, s->objsize,
2095 s->size, oo_order(s->oo), oo_order(s->min));
2096
2097 if (oo_order(s->min) > get_order(s->objsize))
2098 printk(KERN_WARNING " %s debugging increased min order, use "
2099 "slub_debug=O to disable.\n", s->name);
2100
2101 for_each_online_node(node) {
2102 struct kmem_cache_node *n = get_node(s, node);
2103 unsigned long nr_slabs;
2104 unsigned long nr_objs;
2105 unsigned long nr_free;
2106
2107 if (!n)
2108 continue;
2109
2110 nr_free = count_partial(n, count_free);
2111 nr_slabs = node_nr_slabs(n);
2112 nr_objs = node_nr_objs(n);
2113
2114 printk(KERN_WARNING
2115 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2116 node, nr_slabs, nr_objs, nr_free);
2117 }
2118 }
2119
2120 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2121 int node, struct kmem_cache_cpu **pc)
2122 {
2123 void *object;
2124 struct kmem_cache_cpu *c;
2125 struct page *page = new_slab(s, flags, node);
2126
2127 if (page) {
2128 c = __this_cpu_ptr(s->cpu_slab);
2129 if (c->page)
2130 flush_slab(s, c);
2131
2132 /*
2133 * No other reference to the page yet so we can
2134 * muck around with it freely without cmpxchg
2135 */
2136 object = page->freelist;
2137 page->freelist = NULL;
2138
2139 stat(s, ALLOC_SLAB);
2140 c->node = page_to_nid(page);
2141 c->page = page;
2142 *pc = c;
2143 } else
2144 object = NULL;
2145
2146 return object;
2147 }
2148
2149 /*
2150 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2151 * or deactivate the page.
2152 *
2153 * The page is still frozen if the return value is not NULL.
2154 *
2155 * If this function returns NULL then the page has been unfrozen.
2156 */
2157 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2158 {
2159 struct page new;
2160 unsigned long counters;
2161 void *freelist;
2162
2163 do {
2164 freelist = page->freelist;
2165 counters = page->counters;
2166 new.counters = counters;
2167 VM_BUG_ON(!new.frozen);
2168
2169 new.inuse = page->objects;
2170 new.frozen = freelist != NULL;
2171
2172 } while (!cmpxchg_double_slab(s, page,
2173 freelist, counters,
2174 NULL, new.counters,
2175 "get_freelist"));
2176
2177 return freelist;
2178 }
2179
2180 /*
2181 * Slow path. The lockless freelist is empty or we need to perform
2182 * debugging duties.
2183 *
2184 * Processing is still very fast if new objects have been freed to the
2185 * regular freelist. In that case we simply take over the regular freelist
2186 * as the lockless freelist and zap the regular freelist.
2187 *
2188 * If that is not working then we fall back to the partial lists. We take the
2189 * first element of the freelist as the object to allocate now and move the
2190 * rest of the freelist to the lockless freelist.
2191 *
2192 * And if we were unable to get a new slab from the partial slab lists then
2193 * we need to allocate a new slab. This is the slowest path since it involves
2194 * a call to the page allocator and the setup of a new slab.
2195 */
2196 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2197 unsigned long addr, struct kmem_cache_cpu *c)
2198 {
2199 void **object;
2200 unsigned long flags;
2201
2202 local_irq_save(flags);
2203 #ifdef CONFIG_PREEMPT
2204 /*
2205 * We may have been preempted and rescheduled on a different
2206 * cpu before disabling interrupts. Need to reload cpu area
2207 * pointer.
2208 */
2209 c = this_cpu_ptr(s->cpu_slab);
2210 #endif
2211
2212 if (!c->page)
2213 goto new_slab;
2214 redo:
2215 if (unlikely(!node_match(c, node))) {
2216 stat(s, ALLOC_NODE_MISMATCH);
2217 deactivate_slab(s, c);
2218 goto new_slab;
2219 }
2220
2221 /* must check again c->freelist in case of cpu migration or IRQ */
2222 object = c->freelist;
2223 if (object)
2224 goto load_freelist;
2225
2226 stat(s, ALLOC_SLOWPATH);
2227
2228 object = get_freelist(s, c->page);
2229
2230 if (!object) {
2231 c->page = NULL;
2232 stat(s, DEACTIVATE_BYPASS);
2233 goto new_slab;
2234 }
2235
2236 stat(s, ALLOC_REFILL);
2237
2238 load_freelist:
2239 c->freelist = get_freepointer(s, object);
2240 c->tid = next_tid(c->tid);
2241 local_irq_restore(flags);
2242 return object;
2243
2244 new_slab:
2245
2246 if (c->partial) {
2247 c->page = c->partial;
2248 c->partial = c->page->next;
2249 c->node = page_to_nid(c->page);
2250 stat(s, CPU_PARTIAL_ALLOC);
2251 c->freelist = NULL;
2252 goto redo;
2253 }
2254
2255 /* Then do expensive stuff like retrieving pages from the partial lists */
2256 object = get_partial(s, gfpflags, node, c);
2257
2258 if (unlikely(!object)) {
2259
2260 object = new_slab_objects(s, gfpflags, node, &c);
2261
2262 if (unlikely(!object)) {
2263 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2264 slab_out_of_memory(s, gfpflags, node);
2265
2266 local_irq_restore(flags);
2267 return NULL;
2268 }
2269 }
2270
2271 if (likely(!kmem_cache_debug(s)))
2272 goto load_freelist;
2273
2274 /* Only entered in the debug case */
2275 if (!alloc_debug_processing(s, c->page, object, addr))
2276 goto new_slab; /* Slab failed checks. Next slab needed */
2277
2278 c->freelist = get_freepointer(s, object);
2279 deactivate_slab(s, c);
2280 c->node = NUMA_NO_NODE;
2281 local_irq_restore(flags);
2282 return object;
2283 }
2284
2285 /*
2286 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2287 * have the fastpath folded into their functions. So no function call
2288 * overhead for requests that can be satisfied on the fastpath.
2289 *
2290 * The fastpath works by first checking if the lockless freelist can be used.
2291 * If not then __slab_alloc is called for slow processing.
2292 *
2293 * Otherwise we can simply pick the next object from the lockless free list.
2294 */
2295 static __always_inline void *slab_alloc(struct kmem_cache *s,
2296 gfp_t gfpflags, int node, unsigned long addr)
2297 {
2298 void **object;
2299 struct kmem_cache_cpu *c;
2300 unsigned long tid;
2301
2302 if (slab_pre_alloc_hook(s, gfpflags))
2303 return NULL;
2304
2305 redo:
2306
2307 /*
2308 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2309 * enabled. We may switch back and forth between cpus while
2310 * reading from one cpu area. That does not matter as long
2311 * as we end up on the original cpu again when doing the cmpxchg.
2312 */
2313 c = __this_cpu_ptr(s->cpu_slab);
2314
2315 /*
2316 * The transaction ids are globally unique per cpu and per operation on
2317 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2318 * occurs on the right processor and that there was no operation on the
2319 * linked list in between.
2320 */
2321 tid = c->tid;
2322 barrier();
2323
2324 object = c->freelist;
2325 if (unlikely(!object || !node_match(c, node)))
2326
2327 object = __slab_alloc(s, gfpflags, node, addr, c);
2328
2329 else {
2330 /*
2331 * The cmpxchg will only match if there was no additional
2332 * operation and if we are on the right processor.
2333 *
2334 * The cmpxchg does the following atomically (without lock semantics!)
2335 * 1. Relocate first pointer to the current per cpu area.
2336 * 2. Verify that tid and freelist have not been changed
2337 * 3. If they were not changed replace tid and freelist
2338 *
2339 * Since this is without lock semantics the protection is only against
2340 * code executing on this cpu *not* from access by other cpus.
2341 */
2342 if (unlikely(!this_cpu_cmpxchg_double(
2343 s->cpu_slab->freelist, s->cpu_slab->tid,
2344 object, tid,
2345 get_freepointer_safe(s, object), next_tid(tid)))) {
2346
2347 note_cmpxchg_failure("slab_alloc", s, tid);
2348 goto redo;
2349 }
2350 stat(s, ALLOC_FASTPATH);
2351 }
2352
2353 if (unlikely(gfpflags & __GFP_ZERO) && object)
2354 memset(object, 0, s->objsize);
2355
2356 slab_post_alloc_hook(s, gfpflags, object);
2357
2358 return object;
2359 }
2360
2361 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2362 {
2363 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2364
2365 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2366
2367 return ret;
2368 }
2369 EXPORT_SYMBOL(kmem_cache_alloc);
2370
2371 #ifdef CONFIG_TRACING
2372 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2373 {
2374 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2375 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2376 return ret;
2377 }
2378 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2379
2380 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2381 {
2382 void *ret = kmalloc_order(size, flags, order);
2383 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2384 return ret;
2385 }
2386 EXPORT_SYMBOL(kmalloc_order_trace);
2387 #endif
2388
2389 #ifdef CONFIG_NUMA
2390 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2391 {
2392 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2393
2394 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2395 s->objsize, s->size, gfpflags, node);
2396
2397 return ret;
2398 }
2399 EXPORT_SYMBOL(kmem_cache_alloc_node);
2400
2401 #ifdef CONFIG_TRACING
2402 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2403 gfp_t gfpflags,
2404 int node, size_t size)
2405 {
2406 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2407
2408 trace_kmalloc_node(_RET_IP_, ret,
2409 size, s->size, gfpflags, node);
2410 return ret;
2411 }
2412 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2413 #endif
2414 #endif
2415
2416 /*
2417 * Slow patch handling. This may still be called frequently since objects
2418 * have a longer lifetime than the cpu slabs in most processing loads.
2419 *
2420 * So we still attempt to reduce cache line usage. Just take the slab
2421 * lock and free the item. If there is no additional partial page
2422 * handling required then we can return immediately.
2423 */
2424 static void __slab_free(struct kmem_cache *s, struct page *page,
2425 void *x, unsigned long addr)
2426 {
2427 void *prior;
2428 void **object = (void *)x;
2429 int was_frozen;
2430 int inuse;
2431 struct page new;
2432 unsigned long counters;
2433 struct kmem_cache_node *n = NULL;
2434 unsigned long uninitialized_var(flags);
2435
2436 stat(s, FREE_SLOWPATH);
2437
2438 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2439 return;
2440
2441 do {
2442 prior = page->freelist;
2443 counters = page->counters;
2444 set_freepointer(s, object, prior);
2445 new.counters = counters;
2446 was_frozen = new.frozen;
2447 new.inuse--;
2448 if ((!new.inuse || !prior) && !was_frozen && !n) {
2449
2450 if (!kmem_cache_debug(s) && !prior)
2451
2452 /*
2453 * Slab was on no list before and will be partially empty
2454 * We can defer the list move and instead freeze it.
2455 */
2456 new.frozen = 1;
2457
2458 else { /* Needs to be taken off a list */
2459
2460 n = get_node(s, page_to_nid(page));
2461 /*
2462 * Speculatively acquire the list_lock.
2463 * If the cmpxchg does not succeed then we may
2464 * drop the list_lock without any processing.
2465 *
2466 * Otherwise the list_lock will synchronize with
2467 * other processors updating the list of slabs.
2468 */
2469 spin_lock_irqsave(&n->list_lock, flags);
2470
2471 }
2472 }
2473 inuse = new.inuse;
2474
2475 } while (!cmpxchg_double_slab(s, page,
2476 prior, counters,
2477 object, new.counters,
2478 "__slab_free"));
2479
2480 if (likely(!n)) {
2481
2482 /*
2483 * If we just froze the page then put it onto the
2484 * per cpu partial list.
2485 */
2486 if (new.frozen && !was_frozen)
2487 put_cpu_partial(s, page, 1);
2488
2489 /*
2490 * The list lock was not taken therefore no list
2491 * activity can be necessary.
2492 */
2493 if (was_frozen)
2494 stat(s, FREE_FROZEN);
2495 return;
2496 }
2497
2498 /*
2499 * was_frozen may have been set after we acquired the list_lock in
2500 * an earlier loop. So we need to check it here again.
2501 */
2502 if (was_frozen)
2503 stat(s, FREE_FROZEN);
2504 else {
2505 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2506 goto slab_empty;
2507
2508 /*
2509 * Objects left in the slab. If it was not on the partial list before
2510 * then add it.
2511 */
2512 if (unlikely(!prior)) {
2513 remove_full(s, page);
2514 add_partial(n, page, DEACTIVATE_TO_TAIL);
2515 stat(s, FREE_ADD_PARTIAL);
2516 }
2517 }
2518 spin_unlock_irqrestore(&n->list_lock, flags);
2519 return;
2520
2521 slab_empty:
2522 if (prior) {
2523 /*
2524 * Slab on the partial list.
2525 */
2526 remove_partial(n, page);
2527 stat(s, FREE_REMOVE_PARTIAL);
2528 } else
2529 /* Slab must be on the full list */
2530 remove_full(s, page);
2531
2532 spin_unlock_irqrestore(&n->list_lock, flags);
2533 stat(s, FREE_SLAB);
2534 discard_slab(s, page);
2535 }
2536
2537 /*
2538 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2539 * can perform fastpath freeing without additional function calls.
2540 *
2541 * The fastpath is only possible if we are freeing to the current cpu slab
2542 * of this processor. This typically the case if we have just allocated
2543 * the item before.
2544 *
2545 * If fastpath is not possible then fall back to __slab_free where we deal
2546 * with all sorts of special processing.
2547 */
2548 static __always_inline void slab_free(struct kmem_cache *s,
2549 struct page *page, void *x, unsigned long addr)
2550 {
2551 void **object = (void *)x;
2552 struct kmem_cache_cpu *c;
2553 unsigned long tid;
2554
2555 slab_free_hook(s, x);
2556
2557 redo:
2558 /*
2559 * Determine the currently cpus per cpu slab.
2560 * The cpu may change afterward. However that does not matter since
2561 * data is retrieved via this pointer. If we are on the same cpu
2562 * during the cmpxchg then the free will succedd.
2563 */
2564 c = __this_cpu_ptr(s->cpu_slab);
2565
2566 tid = c->tid;
2567 barrier();
2568
2569 if (likely(page == c->page)) {
2570 set_freepointer(s, object, c->freelist);
2571
2572 if (unlikely(!this_cpu_cmpxchg_double(
2573 s->cpu_slab->freelist, s->cpu_slab->tid,
2574 c->freelist, tid,
2575 object, next_tid(tid)))) {
2576
2577 note_cmpxchg_failure("slab_free", s, tid);
2578 goto redo;
2579 }
2580 stat(s, FREE_FASTPATH);
2581 } else
2582 __slab_free(s, page, x, addr);
2583
2584 }
2585
2586 void kmem_cache_free(struct kmem_cache *s, void *x)
2587 {
2588 struct page *page;
2589
2590 page = virt_to_head_page(x);
2591
2592 slab_free(s, page, x, _RET_IP_);
2593
2594 trace_kmem_cache_free(_RET_IP_, x);
2595 }
2596 EXPORT_SYMBOL(kmem_cache_free);
2597
2598 /*
2599 * Object placement in a slab is made very easy because we always start at
2600 * offset 0. If we tune the size of the object to the alignment then we can
2601 * get the required alignment by putting one properly sized object after
2602 * another.
2603 *
2604 * Notice that the allocation order determines the sizes of the per cpu
2605 * caches. Each processor has always one slab available for allocations.
2606 * Increasing the allocation order reduces the number of times that slabs
2607 * must be moved on and off the partial lists and is therefore a factor in
2608 * locking overhead.
2609 */
2610
2611 /*
2612 * Mininum / Maximum order of slab pages. This influences locking overhead
2613 * and slab fragmentation. A higher order reduces the number of partial slabs
2614 * and increases the number of allocations possible without having to
2615 * take the list_lock.
2616 */
2617 static int slub_min_order;
2618 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2619 static int slub_min_objects;
2620
2621 /*
2622 * Merge control. If this is set then no merging of slab caches will occur.
2623 * (Could be removed. This was introduced to pacify the merge skeptics.)
2624 */
2625 static int slub_nomerge;
2626
2627 /*
2628 * Calculate the order of allocation given an slab object size.
2629 *
2630 * The order of allocation has significant impact on performance and other
2631 * system components. Generally order 0 allocations should be preferred since
2632 * order 0 does not cause fragmentation in the page allocator. Larger objects
2633 * be problematic to put into order 0 slabs because there may be too much
2634 * unused space left. We go to a higher order if more than 1/16th of the slab
2635 * would be wasted.
2636 *
2637 * In order to reach satisfactory performance we must ensure that a minimum
2638 * number of objects is in one slab. Otherwise we may generate too much
2639 * activity on the partial lists which requires taking the list_lock. This is
2640 * less a concern for large slabs though which are rarely used.
2641 *
2642 * slub_max_order specifies the order where we begin to stop considering the
2643 * number of objects in a slab as critical. If we reach slub_max_order then
2644 * we try to keep the page order as low as possible. So we accept more waste
2645 * of space in favor of a small page order.
2646 *
2647 * Higher order allocations also allow the placement of more objects in a
2648 * slab and thereby reduce object handling overhead. If the user has
2649 * requested a higher mininum order then we start with that one instead of
2650 * the smallest order which will fit the object.
2651 */
2652 static inline int slab_order(int size, int min_objects,
2653 int max_order, int fract_leftover, int reserved)
2654 {
2655 int order;
2656 int rem;
2657 int min_order = slub_min_order;
2658
2659 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2660 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2661
2662 for (order = max(min_order,
2663 fls(min_objects * size - 1) - PAGE_SHIFT);
2664 order <= max_order; order++) {
2665
2666 unsigned long slab_size = PAGE_SIZE << order;
2667
2668 if (slab_size < min_objects * size + reserved)
2669 continue;
2670
2671 rem = (slab_size - reserved) % size;
2672
2673 if (rem <= slab_size / fract_leftover)
2674 break;
2675
2676 }
2677
2678 return order;
2679 }
2680
2681 static inline int calculate_order(int size, int reserved)
2682 {
2683 int order;
2684 int min_objects;
2685 int fraction;
2686 int max_objects;
2687
2688 /*
2689 * Attempt to find best configuration for a slab. This
2690 * works by first attempting to generate a layout with
2691 * the best configuration and backing off gradually.
2692 *
2693 * First we reduce the acceptable waste in a slab. Then
2694 * we reduce the minimum objects required in a slab.
2695 */
2696 min_objects = slub_min_objects;
2697 if (!min_objects)
2698 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2699 max_objects = order_objects(slub_max_order, size, reserved);
2700 min_objects = min(min_objects, max_objects);
2701
2702 while (min_objects > 1) {
2703 fraction = 16;
2704 while (fraction >= 4) {
2705 order = slab_order(size, min_objects,
2706 slub_max_order, fraction, reserved);
2707 if (order <= slub_max_order)
2708 return order;
2709 fraction /= 2;
2710 }
2711 min_objects--;
2712 }
2713
2714 /*
2715 * We were unable to place multiple objects in a slab. Now
2716 * lets see if we can place a single object there.
2717 */
2718 order = slab_order(size, 1, slub_max_order, 1, reserved);
2719 if (order <= slub_max_order)
2720 return order;
2721
2722 /*
2723 * Doh this slab cannot be placed using slub_max_order.
2724 */
2725 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2726 if (order < MAX_ORDER)
2727 return order;
2728 return -ENOSYS;
2729 }
2730
2731 /*
2732 * Figure out what the alignment of the objects will be.
2733 */
2734 static unsigned long calculate_alignment(unsigned long flags,
2735 unsigned long align, unsigned long size)
2736 {
2737 /*
2738 * If the user wants hardware cache aligned objects then follow that
2739 * suggestion if the object is sufficiently large.
2740 *
2741 * The hardware cache alignment cannot override the specified
2742 * alignment though. If that is greater then use it.
2743 */
2744 if (flags & SLAB_HWCACHE_ALIGN) {
2745 unsigned long ralign = cache_line_size();
2746 while (size <= ralign / 2)
2747 ralign /= 2;
2748 align = max(align, ralign);
2749 }
2750
2751 if (align < ARCH_SLAB_MINALIGN)
2752 align = ARCH_SLAB_MINALIGN;
2753
2754 return ALIGN(align, sizeof(void *));
2755 }
2756
2757 static void
2758 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2759 {
2760 n->nr_partial = 0;
2761 spin_lock_init(&n->list_lock);
2762 INIT_LIST_HEAD(&n->partial);
2763 #ifdef CONFIG_SLUB_DEBUG
2764 atomic_long_set(&n->nr_slabs, 0);
2765 atomic_long_set(&n->total_objects, 0);
2766 INIT_LIST_HEAD(&n->full);
2767 #endif
2768 }
2769
2770 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2771 {
2772 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2773 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2774
2775 /*
2776 * Must align to double word boundary for the double cmpxchg
2777 * instructions to work; see __pcpu_double_call_return_bool().
2778 */
2779 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2780 2 * sizeof(void *));
2781
2782 if (!s->cpu_slab)
2783 return 0;
2784
2785 init_kmem_cache_cpus(s);
2786
2787 return 1;
2788 }
2789
2790 static struct kmem_cache *kmem_cache_node;
2791
2792 /*
2793 * No kmalloc_node yet so do it by hand. We know that this is the first
2794 * slab on the node for this slabcache. There are no concurrent accesses
2795 * possible.
2796 *
2797 * Note that this function only works on the kmalloc_node_cache
2798 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2799 * memory on a fresh node that has no slab structures yet.
2800 */
2801 static void early_kmem_cache_node_alloc(int node)
2802 {
2803 struct page *page;
2804 struct kmem_cache_node *n;
2805
2806 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2807
2808 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2809
2810 BUG_ON(!page);
2811 if (page_to_nid(page) != node) {
2812 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2813 "node %d\n", node);
2814 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2815 "in order to be able to continue\n");
2816 }
2817
2818 n = page->freelist;
2819 BUG_ON(!n);
2820 page->freelist = get_freepointer(kmem_cache_node, n);
2821 page->inuse = 1;
2822 page->frozen = 0;
2823 kmem_cache_node->node[node] = n;
2824 #ifdef CONFIG_SLUB_DEBUG
2825 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2826 init_tracking(kmem_cache_node, n);
2827 #endif
2828 init_kmem_cache_node(n, kmem_cache_node);
2829 inc_slabs_node(kmem_cache_node, node, page->objects);
2830
2831 add_partial(n, page, DEACTIVATE_TO_HEAD);
2832 }
2833
2834 static void free_kmem_cache_nodes(struct kmem_cache *s)
2835 {
2836 int node;
2837
2838 for_each_node_state(node, N_NORMAL_MEMORY) {
2839 struct kmem_cache_node *n = s->node[node];
2840
2841 if (n)
2842 kmem_cache_free(kmem_cache_node, n);
2843
2844 s->node[node] = NULL;
2845 }
2846 }
2847
2848 static int init_kmem_cache_nodes(struct kmem_cache *s)
2849 {
2850 int node;
2851
2852 for_each_node_state(node, N_NORMAL_MEMORY) {
2853 struct kmem_cache_node *n;
2854
2855 if (slab_state == DOWN) {
2856 early_kmem_cache_node_alloc(node);
2857 continue;
2858 }
2859 n = kmem_cache_alloc_node(kmem_cache_node,
2860 GFP_KERNEL, node);
2861
2862 if (!n) {
2863 free_kmem_cache_nodes(s);
2864 return 0;
2865 }
2866
2867 s->node[node] = n;
2868 init_kmem_cache_node(n, s);
2869 }
2870 return 1;
2871 }
2872
2873 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2874 {
2875 if (min < MIN_PARTIAL)
2876 min = MIN_PARTIAL;
2877 else if (min > MAX_PARTIAL)
2878 min = MAX_PARTIAL;
2879 s->min_partial = min;
2880 }
2881
2882 /*
2883 * calculate_sizes() determines the order and the distribution of data within
2884 * a slab object.
2885 */
2886 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2887 {
2888 unsigned long flags = s->flags;
2889 unsigned long size = s->objsize;
2890 unsigned long align = s->align;
2891 int order;
2892
2893 /*
2894 * Round up object size to the next word boundary. We can only
2895 * place the free pointer at word boundaries and this determines
2896 * the possible location of the free pointer.
2897 */
2898 size = ALIGN(size, sizeof(void *));
2899
2900 #ifdef CONFIG_SLUB_DEBUG
2901 /*
2902 * Determine if we can poison the object itself. If the user of
2903 * the slab may touch the object after free or before allocation
2904 * then we should never poison the object itself.
2905 */
2906 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2907 !s->ctor)
2908 s->flags |= __OBJECT_POISON;
2909 else
2910 s->flags &= ~__OBJECT_POISON;
2911
2912
2913 /*
2914 * If we are Redzoning then check if there is some space between the
2915 * end of the object and the free pointer. If not then add an
2916 * additional word to have some bytes to store Redzone information.
2917 */
2918 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2919 size += sizeof(void *);
2920 #endif
2921
2922 /*
2923 * With that we have determined the number of bytes in actual use
2924 * by the object. This is the potential offset to the free pointer.
2925 */
2926 s->inuse = size;
2927
2928 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2929 s->ctor)) {
2930 /*
2931 * Relocate free pointer after the object if it is not
2932 * permitted to overwrite the first word of the object on
2933 * kmem_cache_free.
2934 *
2935 * This is the case if we do RCU, have a constructor or
2936 * destructor or are poisoning the objects.
2937 */
2938 s->offset = size;
2939 size += sizeof(void *);
2940 }
2941
2942 #ifdef CONFIG_SLUB_DEBUG
2943 if (flags & SLAB_STORE_USER)
2944 /*
2945 * Need to store information about allocs and frees after
2946 * the object.
2947 */
2948 size += 2 * sizeof(struct track);
2949
2950 if (flags & SLAB_RED_ZONE)
2951 /*
2952 * Add some empty padding so that we can catch
2953 * overwrites from earlier objects rather than let
2954 * tracking information or the free pointer be
2955 * corrupted if a user writes before the start
2956 * of the object.
2957 */
2958 size += sizeof(void *);
2959 #endif
2960
2961 /*
2962 * Determine the alignment based on various parameters that the
2963 * user specified and the dynamic determination of cache line size
2964 * on bootup.
2965 */
2966 align = calculate_alignment(flags, align, s->objsize);
2967 s->align = align;
2968
2969 /*
2970 * SLUB stores one object immediately after another beginning from
2971 * offset 0. In order to align the objects we have to simply size
2972 * each object to conform to the alignment.
2973 */
2974 size = ALIGN(size, align);
2975 s->size = size;
2976 if (forced_order >= 0)
2977 order = forced_order;
2978 else
2979 order = calculate_order(size, s->reserved);
2980
2981 if (order < 0)
2982 return 0;
2983
2984 s->allocflags = 0;
2985 if (order)
2986 s->allocflags |= __GFP_COMP;
2987
2988 if (s->flags & SLAB_CACHE_DMA)
2989 s->allocflags |= SLUB_DMA;
2990
2991 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2992 s->allocflags |= __GFP_RECLAIMABLE;
2993
2994 /*
2995 * Determine the number of objects per slab
2996 */
2997 s->oo = oo_make(order, size, s->reserved);
2998 s->min = oo_make(get_order(size), size, s->reserved);
2999 if (oo_objects(s->oo) > oo_objects(s->max))
3000 s->max = s->oo;
3001
3002 return !!oo_objects(s->oo);
3003
3004 }
3005
3006 static int kmem_cache_open(struct kmem_cache *s,
3007 const char *name, size_t size,
3008 size_t align, unsigned long flags,
3009 void (*ctor)(void *))
3010 {
3011 memset(s, 0, kmem_size);
3012 s->name = name;
3013 s->ctor = ctor;
3014 s->objsize = size;
3015 s->align = align;
3016 s->flags = kmem_cache_flags(size, flags, name, ctor);
3017 s->reserved = 0;
3018
3019 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3020 s->reserved = sizeof(struct rcu_head);
3021
3022 if (!calculate_sizes(s, -1))
3023 goto error;
3024 if (disable_higher_order_debug) {
3025 /*
3026 * Disable debugging flags that store metadata if the min slab
3027 * order increased.
3028 */
3029 if (get_order(s->size) > get_order(s->objsize)) {
3030 s->flags &= ~DEBUG_METADATA_FLAGS;
3031 s->offset = 0;
3032 if (!calculate_sizes(s, -1))
3033 goto error;
3034 }
3035 }
3036
3037 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3038 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3039 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3040 /* Enable fast mode */
3041 s->flags |= __CMPXCHG_DOUBLE;
3042 #endif
3043
3044 /*
3045 * The larger the object size is, the more pages we want on the partial
3046 * list to avoid pounding the page allocator excessively.
3047 */
3048 set_min_partial(s, ilog2(s->size) / 2);
3049
3050 /*
3051 * cpu_partial determined the maximum number of objects kept in the
3052 * per cpu partial lists of a processor.
3053 *
3054 * Per cpu partial lists mainly contain slabs that just have one
3055 * object freed. If they are used for allocation then they can be
3056 * filled up again with minimal effort. The slab will never hit the
3057 * per node partial lists and therefore no locking will be required.
3058 *
3059 * This setting also determines
3060 *
3061 * A) The number of objects from per cpu partial slabs dumped to the
3062 * per node list when we reach the limit.
3063 * B) The number of objects in cpu partial slabs to extract from the
3064 * per node list when we run out of per cpu objects. We only fetch 50%
3065 * to keep some capacity around for frees.
3066 */
3067 if (kmem_cache_debug(s))
3068 s->cpu_partial = 0;
3069 else if (s->size >= PAGE_SIZE)
3070 s->cpu_partial = 2;
3071 else if (s->size >= 1024)
3072 s->cpu_partial = 6;
3073 else if (s->size >= 256)
3074 s->cpu_partial = 13;
3075 else
3076 s->cpu_partial = 30;
3077
3078 s->refcount = 1;
3079 #ifdef CONFIG_NUMA
3080 s->remote_node_defrag_ratio = 1000;
3081 #endif
3082 if (!init_kmem_cache_nodes(s))
3083 goto error;
3084
3085 if (alloc_kmem_cache_cpus(s))
3086 return 1;
3087
3088 free_kmem_cache_nodes(s);
3089 error:
3090 if (flags & SLAB_PANIC)
3091 panic("Cannot create slab %s size=%lu realsize=%u "
3092 "order=%u offset=%u flags=%lx\n",
3093 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3094 s->offset, flags);
3095 return 0;
3096 }
3097
3098 /*
3099 * Determine the size of a slab object
3100 */
3101 unsigned int kmem_cache_size(struct kmem_cache *s)
3102 {
3103 return s->objsize;
3104 }
3105 EXPORT_SYMBOL(kmem_cache_size);
3106
3107 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3108 const char *text)
3109 {
3110 #ifdef CONFIG_SLUB_DEBUG
3111 void *addr = page_address(page);
3112 void *p;
3113 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3114 sizeof(long), GFP_ATOMIC);
3115 if (!map)
3116 return;
3117 slab_err(s, page, "%s", text);
3118 slab_lock(page);
3119
3120 get_map(s, page, map);
3121 for_each_object(p, s, addr, page->objects) {
3122
3123 if (!test_bit(slab_index(p, s, addr), map)) {
3124 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3125 p, p - addr);
3126 print_tracking(s, p);
3127 }
3128 }
3129 slab_unlock(page);
3130 kfree(map);
3131 #endif
3132 }
3133
3134 /*
3135 * Attempt to free all partial slabs on a node.
3136 * This is called from kmem_cache_close(). We must be the last thread
3137 * using the cache and therefore we do not need to lock anymore.
3138 */
3139 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3140 {
3141 struct page *page, *h;
3142
3143 list_for_each_entry_safe(page, h, &n->partial, lru) {
3144 if (!page->inuse) {
3145 remove_partial(n, page);
3146 discard_slab(s, page);
3147 } else {
3148 list_slab_objects(s, page,
3149 "Objects remaining on kmem_cache_close()");
3150 }
3151 }
3152 }
3153
3154 /*
3155 * Release all resources used by a slab cache.
3156 */
3157 static inline int kmem_cache_close(struct kmem_cache *s)
3158 {
3159 int node;
3160
3161 flush_all(s);
3162 free_percpu(s->cpu_slab);
3163 /* Attempt to free all objects */
3164 for_each_node_state(node, N_NORMAL_MEMORY) {
3165 struct kmem_cache_node *n = get_node(s, node);
3166
3167 free_partial(s, n);
3168 if (n->nr_partial || slabs_node(s, node))
3169 return 1;
3170 }
3171 free_kmem_cache_nodes(s);
3172 return 0;
3173 }
3174
3175 /*
3176 * Close a cache and release the kmem_cache structure
3177 * (must be used for caches created using kmem_cache_create)
3178 */
3179 void kmem_cache_destroy(struct kmem_cache *s)
3180 {
3181 down_write(&slub_lock);
3182 s->refcount--;
3183 if (!s->refcount) {
3184 list_del(&s->list);
3185 up_write(&slub_lock);
3186 if (kmem_cache_close(s)) {
3187 printk(KERN_ERR "SLUB %s: %s called for cache that "
3188 "still has objects.\n", s->name, __func__);
3189 dump_stack();
3190 }
3191 if (s->flags & SLAB_DESTROY_BY_RCU)
3192 rcu_barrier();
3193 sysfs_slab_remove(s);
3194 } else
3195 up_write(&slub_lock);
3196 }
3197 EXPORT_SYMBOL(kmem_cache_destroy);
3198
3199 /********************************************************************
3200 * Kmalloc subsystem
3201 *******************************************************************/
3202
3203 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3204 EXPORT_SYMBOL(kmalloc_caches);
3205
3206 static struct kmem_cache *kmem_cache;
3207
3208 #ifdef CONFIG_ZONE_DMA
3209 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3210 #endif
3211
3212 static int __init setup_slub_min_order(char *str)
3213 {
3214 get_option(&str, &slub_min_order);
3215
3216 return 1;
3217 }
3218
3219 __setup("slub_min_order=", setup_slub_min_order);
3220
3221 static int __init setup_slub_max_order(char *str)
3222 {
3223 get_option(&str, &slub_max_order);
3224 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3225
3226 return 1;
3227 }
3228
3229 __setup("slub_max_order=", setup_slub_max_order);
3230
3231 static int __init setup_slub_min_objects(char *str)
3232 {
3233 get_option(&str, &slub_min_objects);
3234
3235 return 1;
3236 }
3237
3238 __setup("slub_min_objects=", setup_slub_min_objects);
3239
3240 static int __init setup_slub_nomerge(char *str)
3241 {
3242 slub_nomerge = 1;
3243 return 1;
3244 }
3245
3246 __setup("slub_nomerge", setup_slub_nomerge);
3247
3248 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3249 int size, unsigned int flags)
3250 {
3251 struct kmem_cache *s;
3252
3253 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3254
3255 /*
3256 * This function is called with IRQs disabled during early-boot on
3257 * single CPU so there's no need to take slub_lock here.
3258 */
3259 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3260 flags, NULL))
3261 goto panic;
3262
3263 list_add(&s->list, &slab_caches);
3264 return s;
3265
3266 panic:
3267 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3268 return NULL;
3269 }
3270
3271 /*
3272 * Conversion table for small slabs sizes / 8 to the index in the
3273 * kmalloc array. This is necessary for slabs < 192 since we have non power
3274 * of two cache sizes there. The size of larger slabs can be determined using
3275 * fls.
3276 */
3277 static s8 size_index[24] = {
3278 3, /* 8 */
3279 4, /* 16 */
3280 5, /* 24 */
3281 5, /* 32 */
3282 6, /* 40 */
3283 6, /* 48 */
3284 6, /* 56 */
3285 6, /* 64 */
3286 1, /* 72 */
3287 1, /* 80 */
3288 1, /* 88 */
3289 1, /* 96 */
3290 7, /* 104 */
3291 7, /* 112 */
3292 7, /* 120 */
3293 7, /* 128 */
3294 2, /* 136 */
3295 2, /* 144 */
3296 2, /* 152 */
3297 2, /* 160 */
3298 2, /* 168 */
3299 2, /* 176 */
3300 2, /* 184 */
3301 2 /* 192 */
3302 };
3303
3304 static inline int size_index_elem(size_t bytes)
3305 {
3306 return (bytes - 1) / 8;
3307 }
3308
3309 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3310 {
3311 int index;
3312
3313 if (size <= 192) {
3314 if (!size)
3315 return ZERO_SIZE_PTR;
3316
3317 index = size_index[size_index_elem(size)];
3318 } else
3319 index = fls(size - 1);
3320
3321 #ifdef CONFIG_ZONE_DMA
3322 if (unlikely((flags & SLUB_DMA)))
3323 return kmalloc_dma_caches[index];
3324
3325 #endif
3326 return kmalloc_caches[index];
3327 }
3328
3329 void *__kmalloc(size_t size, gfp_t flags)
3330 {
3331 struct kmem_cache *s;
3332 void *ret;
3333
3334 if (unlikely(size > SLUB_MAX_SIZE))
3335 return kmalloc_large(size, flags);
3336
3337 s = get_slab(size, flags);
3338
3339 if (unlikely(ZERO_OR_NULL_PTR(s)))
3340 return s;
3341
3342 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3343
3344 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3345
3346 return ret;
3347 }
3348 EXPORT_SYMBOL(__kmalloc);
3349
3350 #ifdef CONFIG_NUMA
3351 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3352 {
3353 struct page *page;
3354 void *ptr = NULL;
3355
3356 flags |= __GFP_COMP | __GFP_NOTRACK;
3357 page = alloc_pages_node(node, flags, get_order(size));
3358 if (page)
3359 ptr = page_address(page);
3360
3361 kmemleak_alloc(ptr, size, 1, flags);
3362 return ptr;
3363 }
3364
3365 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3366 {
3367 struct kmem_cache *s;
3368 void *ret;
3369
3370 if (unlikely(size > SLUB_MAX_SIZE)) {
3371 ret = kmalloc_large_node(size, flags, node);
3372
3373 trace_kmalloc_node(_RET_IP_, ret,
3374 size, PAGE_SIZE << get_order(size),
3375 flags, node);
3376
3377 return ret;
3378 }
3379
3380 s = get_slab(size, flags);
3381
3382 if (unlikely(ZERO_OR_NULL_PTR(s)))
3383 return s;
3384
3385 ret = slab_alloc(s, flags, node, _RET_IP_);
3386
3387 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3388
3389 return ret;
3390 }
3391 EXPORT_SYMBOL(__kmalloc_node);
3392 #endif
3393
3394 size_t ksize(const void *object)
3395 {
3396 struct page *page;
3397
3398 if (unlikely(object == ZERO_SIZE_PTR))
3399 return 0;
3400
3401 page = virt_to_head_page(object);
3402
3403 if (unlikely(!PageSlab(page))) {
3404 WARN_ON(!PageCompound(page));
3405 return PAGE_SIZE << compound_order(page);
3406 }
3407
3408 return slab_ksize(page->slab);
3409 }
3410 EXPORT_SYMBOL(ksize);
3411
3412 #ifdef CONFIG_SLUB_DEBUG
3413 bool verify_mem_not_deleted(const void *x)
3414 {
3415 struct page *page;
3416 void *object = (void *)x;
3417 unsigned long flags;
3418 bool rv;
3419
3420 if (unlikely(ZERO_OR_NULL_PTR(x)))
3421 return false;
3422
3423 local_irq_save(flags);
3424
3425 page = virt_to_head_page(x);
3426 if (unlikely(!PageSlab(page))) {
3427 /* maybe it was from stack? */
3428 rv = true;
3429 goto out_unlock;
3430 }
3431
3432 slab_lock(page);
3433 if (on_freelist(page->slab, page, object)) {
3434 object_err(page->slab, page, object, "Object is on free-list");
3435 rv = false;
3436 } else {
3437 rv = true;
3438 }
3439 slab_unlock(page);
3440
3441 out_unlock:
3442 local_irq_restore(flags);
3443 return rv;
3444 }
3445 EXPORT_SYMBOL(verify_mem_not_deleted);
3446 #endif
3447
3448 void kfree(const void *x)
3449 {
3450 struct page *page;
3451 void *object = (void *)x;
3452
3453 trace_kfree(_RET_IP_, x);
3454
3455 if (unlikely(ZERO_OR_NULL_PTR(x)))
3456 return;
3457
3458 page = virt_to_head_page(x);
3459 if (unlikely(!PageSlab(page))) {
3460 BUG_ON(!PageCompound(page));
3461 kmemleak_free(x);
3462 put_page(page);
3463 return;
3464 }
3465 slab_free(page->slab, page, object, _RET_IP_);
3466 }
3467 EXPORT_SYMBOL(kfree);
3468
3469 /*
3470 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3471 * the remaining slabs by the number of items in use. The slabs with the
3472 * most items in use come first. New allocations will then fill those up
3473 * and thus they can be removed from the partial lists.
3474 *
3475 * The slabs with the least items are placed last. This results in them
3476 * being allocated from last increasing the chance that the last objects
3477 * are freed in them.
3478 */
3479 int kmem_cache_shrink(struct kmem_cache *s)
3480 {
3481 int node;
3482 int i;
3483 struct kmem_cache_node *n;
3484 struct page *page;
3485 struct page *t;
3486 int objects = oo_objects(s->max);
3487 struct list_head *slabs_by_inuse =
3488 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3489 unsigned long flags;
3490
3491 if (!slabs_by_inuse)
3492 return -ENOMEM;
3493
3494 flush_all(s);
3495 for_each_node_state(node, N_NORMAL_MEMORY) {
3496 n = get_node(s, node);
3497
3498 if (!n->nr_partial)
3499 continue;
3500
3501 for (i = 0; i < objects; i++)
3502 INIT_LIST_HEAD(slabs_by_inuse + i);
3503
3504 spin_lock_irqsave(&n->list_lock, flags);
3505
3506 /*
3507 * Build lists indexed by the items in use in each slab.
3508 *
3509 * Note that concurrent frees may occur while we hold the
3510 * list_lock. page->inuse here is the upper limit.
3511 */
3512 list_for_each_entry_safe(page, t, &n->partial, lru) {
3513 list_move(&page->lru, slabs_by_inuse + page->inuse);
3514 if (!page->inuse)
3515 n->nr_partial--;
3516 }
3517
3518 /*
3519 * Rebuild the partial list with the slabs filled up most
3520 * first and the least used slabs at the end.
3521 */
3522 for (i = objects - 1; i > 0; i--)
3523 list_splice(slabs_by_inuse + i, n->partial.prev);
3524
3525 spin_unlock_irqrestore(&n->list_lock, flags);
3526
3527 /* Release empty slabs */
3528 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3529 discard_slab(s, page);
3530 }
3531
3532 kfree(slabs_by_inuse);
3533 return 0;
3534 }
3535 EXPORT_SYMBOL(kmem_cache_shrink);
3536
3537 #if defined(CONFIG_MEMORY_HOTPLUG)
3538 static int slab_mem_going_offline_callback(void *arg)
3539 {
3540 struct kmem_cache *s;
3541
3542 down_read(&slub_lock);
3543 list_for_each_entry(s, &slab_caches, list)
3544 kmem_cache_shrink(s);
3545 up_read(&slub_lock);
3546
3547 return 0;
3548 }
3549
3550 static void slab_mem_offline_callback(void *arg)
3551 {
3552 struct kmem_cache_node *n;
3553 struct kmem_cache *s;
3554 struct memory_notify *marg = arg;
3555 int offline_node;
3556
3557 offline_node = marg->status_change_nid;
3558
3559 /*
3560 * If the node still has available memory. we need kmem_cache_node
3561 * for it yet.
3562 */
3563 if (offline_node < 0)
3564 return;
3565
3566 down_read(&slub_lock);
3567 list_for_each_entry(s, &slab_caches, list) {
3568 n = get_node(s, offline_node);
3569 if (n) {
3570 /*
3571 * if n->nr_slabs > 0, slabs still exist on the node
3572 * that is going down. We were unable to free them,
3573 * and offline_pages() function shouldn't call this
3574 * callback. So, we must fail.
3575 */
3576 BUG_ON(slabs_node(s, offline_node));
3577
3578 s->node[offline_node] = NULL;
3579 kmem_cache_free(kmem_cache_node, n);
3580 }
3581 }
3582 up_read(&slub_lock);
3583 }
3584
3585 static int slab_mem_going_online_callback(void *arg)
3586 {
3587 struct kmem_cache_node *n;
3588 struct kmem_cache *s;
3589 struct memory_notify *marg = arg;
3590 int nid = marg->status_change_nid;
3591 int ret = 0;
3592
3593 /*
3594 * If the node's memory is already available, then kmem_cache_node is
3595 * already created. Nothing to do.
3596 */
3597 if (nid < 0)
3598 return 0;
3599
3600 /*
3601 * We are bringing a node online. No memory is available yet. We must
3602 * allocate a kmem_cache_node structure in order to bring the node
3603 * online.
3604 */
3605 down_read(&slub_lock);
3606 list_for_each_entry(s, &slab_caches, list) {
3607 /*
3608 * XXX: kmem_cache_alloc_node will fallback to other nodes
3609 * since memory is not yet available from the node that
3610 * is brought up.
3611 */
3612 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3613 if (!n) {
3614 ret = -ENOMEM;
3615 goto out;
3616 }
3617 init_kmem_cache_node(n, s);
3618 s->node[nid] = n;
3619 }
3620 out:
3621 up_read(&slub_lock);
3622 return ret;
3623 }
3624
3625 static int slab_memory_callback(struct notifier_block *self,
3626 unsigned long action, void *arg)
3627 {
3628 int ret = 0;
3629
3630 switch (action) {
3631 case MEM_GOING_ONLINE:
3632 ret = slab_mem_going_online_callback(arg);
3633 break;
3634 case MEM_GOING_OFFLINE:
3635 ret = slab_mem_going_offline_callback(arg);
3636 break;
3637 case MEM_OFFLINE:
3638 case MEM_CANCEL_ONLINE:
3639 slab_mem_offline_callback(arg);
3640 break;
3641 case MEM_ONLINE:
3642 case MEM_CANCEL_OFFLINE:
3643 break;
3644 }
3645 if (ret)
3646 ret = notifier_from_errno(ret);
3647 else
3648 ret = NOTIFY_OK;
3649 return ret;
3650 }
3651
3652 #endif /* CONFIG_MEMORY_HOTPLUG */
3653
3654 /********************************************************************
3655 * Basic setup of slabs
3656 *******************************************************************/
3657
3658 /*
3659 * Used for early kmem_cache structures that were allocated using
3660 * the page allocator
3661 */
3662
3663 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3664 {
3665 int node;
3666
3667 list_add(&s->list, &slab_caches);
3668 s->refcount = -1;
3669
3670 for_each_node_state(node, N_NORMAL_MEMORY) {
3671 struct kmem_cache_node *n = get_node(s, node);
3672 struct page *p;
3673
3674 if (n) {
3675 list_for_each_entry(p, &n->partial, lru)
3676 p->slab = s;
3677
3678 #ifdef CONFIG_SLUB_DEBUG
3679 list_for_each_entry(p, &n->full, lru)
3680 p->slab = s;
3681 #endif
3682 }
3683 }
3684 }
3685
3686 void __init kmem_cache_init(void)
3687 {
3688 int i;
3689 int caches = 0;
3690 struct kmem_cache *temp_kmem_cache;
3691 int order;
3692 struct kmem_cache *temp_kmem_cache_node;
3693 unsigned long kmalloc_size;
3694
3695 if (debug_guardpage_minorder())
3696 slub_max_order = 0;
3697
3698 kmem_size = offsetof(struct kmem_cache, node) +
3699 nr_node_ids * sizeof(struct kmem_cache_node *);
3700
3701 /* Allocate two kmem_caches from the page allocator */
3702 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3703 order = get_order(2 * kmalloc_size);
3704 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3705
3706 /*
3707 * Must first have the slab cache available for the allocations of the
3708 * struct kmem_cache_node's. There is special bootstrap code in
3709 * kmem_cache_open for slab_state == DOWN.
3710 */
3711 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3712
3713 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3714 sizeof(struct kmem_cache_node),
3715 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3716
3717 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3718
3719 /* Able to allocate the per node structures */
3720 slab_state = PARTIAL;
3721
3722 temp_kmem_cache = kmem_cache;
3723 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3724 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3725 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3726 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3727
3728 /*
3729 * Allocate kmem_cache_node properly from the kmem_cache slab.
3730 * kmem_cache_node is separately allocated so no need to
3731 * update any list pointers.
3732 */
3733 temp_kmem_cache_node = kmem_cache_node;
3734
3735 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3736 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3737
3738 kmem_cache_bootstrap_fixup(kmem_cache_node);
3739
3740 caches++;
3741 kmem_cache_bootstrap_fixup(kmem_cache);
3742 caches++;
3743 /* Free temporary boot structure */
3744 free_pages((unsigned long)temp_kmem_cache, order);
3745
3746 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3747
3748 /*
3749 * Patch up the size_index table if we have strange large alignment
3750 * requirements for the kmalloc array. This is only the case for
3751 * MIPS it seems. The standard arches will not generate any code here.
3752 *
3753 * Largest permitted alignment is 256 bytes due to the way we
3754 * handle the index determination for the smaller caches.
3755 *
3756 * Make sure that nothing crazy happens if someone starts tinkering
3757 * around with ARCH_KMALLOC_MINALIGN
3758 */
3759 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3760 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3761
3762 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3763 int elem = size_index_elem(i);
3764 if (elem >= ARRAY_SIZE(size_index))
3765 break;
3766 size_index[elem] = KMALLOC_SHIFT_LOW;
3767 }
3768
3769 if (KMALLOC_MIN_SIZE == 64) {
3770 /*
3771 * The 96 byte size cache is not used if the alignment
3772 * is 64 byte.
3773 */
3774 for (i = 64 + 8; i <= 96; i += 8)
3775 size_index[size_index_elem(i)] = 7;
3776 } else if (KMALLOC_MIN_SIZE == 128) {
3777 /*
3778 * The 192 byte sized cache is not used if the alignment
3779 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3780 * instead.
3781 */
3782 for (i = 128 + 8; i <= 192; i += 8)
3783 size_index[size_index_elem(i)] = 8;
3784 }
3785
3786 /* Caches that are not of the two-to-the-power-of size */
3787 if (KMALLOC_MIN_SIZE <= 32) {
3788 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3789 caches++;
3790 }
3791
3792 if (KMALLOC_MIN_SIZE <= 64) {
3793 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3794 caches++;
3795 }
3796
3797 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3798 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3799 caches++;
3800 }
3801
3802 slab_state = UP;
3803
3804 /* Provide the correct kmalloc names now that the caches are up */
3805 if (KMALLOC_MIN_SIZE <= 32) {
3806 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3807 BUG_ON(!kmalloc_caches[1]->name);
3808 }
3809
3810 if (KMALLOC_MIN_SIZE <= 64) {
3811 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3812 BUG_ON(!kmalloc_caches[2]->name);
3813 }
3814
3815 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3816 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3817
3818 BUG_ON(!s);
3819 kmalloc_caches[i]->name = s;
3820 }
3821
3822 #ifdef CONFIG_SMP
3823 register_cpu_notifier(&slab_notifier);
3824 #endif
3825
3826 #ifdef CONFIG_ZONE_DMA
3827 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3828 struct kmem_cache *s = kmalloc_caches[i];
3829
3830 if (s && s->size) {
3831 char *name = kasprintf(GFP_NOWAIT,
3832 "dma-kmalloc-%d", s->objsize);
3833
3834 BUG_ON(!name);
3835 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3836 s->objsize, SLAB_CACHE_DMA);
3837 }
3838 }
3839 #endif
3840 printk(KERN_INFO
3841 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3842 " CPUs=%d, Nodes=%d\n",
3843 caches, cache_line_size(),
3844 slub_min_order, slub_max_order, slub_min_objects,
3845 nr_cpu_ids, nr_node_ids);
3846 }
3847
3848 void __init kmem_cache_init_late(void)
3849 {
3850 }
3851
3852 /*
3853 * Find a mergeable slab cache
3854 */
3855 static int slab_unmergeable(struct kmem_cache *s)
3856 {
3857 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3858 return 1;
3859
3860 if (s->ctor)
3861 return 1;
3862
3863 /*
3864 * We may have set a slab to be unmergeable during bootstrap.
3865 */
3866 if (s->refcount < 0)
3867 return 1;
3868
3869 return 0;
3870 }
3871
3872 static struct kmem_cache *find_mergeable(size_t size,
3873 size_t align, unsigned long flags, const char *name,
3874 void (*ctor)(void *))
3875 {
3876 struct kmem_cache *s;
3877
3878 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3879 return NULL;
3880
3881 if (ctor)
3882 return NULL;
3883
3884 size = ALIGN(size, sizeof(void *));
3885 align = calculate_alignment(flags, align, size);
3886 size = ALIGN(size, align);
3887 flags = kmem_cache_flags(size, flags, name, NULL);
3888
3889 list_for_each_entry(s, &slab_caches, list) {
3890 if (slab_unmergeable(s))
3891 continue;
3892
3893 if (size > s->size)
3894 continue;
3895
3896 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3897 continue;
3898 /*
3899 * Check if alignment is compatible.
3900 * Courtesy of Adrian Drzewiecki
3901 */
3902 if ((s->size & ~(align - 1)) != s->size)
3903 continue;
3904
3905 if (s->size - size >= sizeof(void *))
3906 continue;
3907
3908 return s;
3909 }
3910 return NULL;
3911 }
3912
3913 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3914 size_t align, unsigned long flags, void (*ctor)(void *))
3915 {
3916 struct kmem_cache *s;
3917 char *n;
3918
3919 if (WARN_ON(!name))
3920 return NULL;
3921
3922 down_write(&slub_lock);
3923 s = find_mergeable(size, align, flags, name, ctor);
3924 if (s) {
3925 s->refcount++;
3926 /*
3927 * Adjust the object sizes so that we clear
3928 * the complete object on kzalloc.
3929 */
3930 s->objsize = max(s->objsize, (int)size);
3931 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3932
3933 if (sysfs_slab_alias(s, name)) {
3934 s->refcount--;
3935 goto err;
3936 }
3937 up_write(&slub_lock);
3938 return s;
3939 }
3940
3941 n = kstrdup(name, GFP_KERNEL);
3942 if (!n)
3943 goto err;
3944
3945 s = kmalloc(kmem_size, GFP_KERNEL);
3946 if (s) {
3947 if (kmem_cache_open(s, n,
3948 size, align, flags, ctor)) {
3949 list_add(&s->list, &slab_caches);
3950 if (sysfs_slab_add(s)) {
3951 list_del(&s->list);
3952 kfree(n);
3953 kfree(s);
3954 goto err;
3955 }
3956 up_write(&slub_lock);
3957 return s;
3958 }
3959 kfree(n);
3960 kfree(s);
3961 }
3962 err:
3963 up_write(&slub_lock);
3964
3965 if (flags & SLAB_PANIC)
3966 panic("Cannot create slabcache %s\n", name);
3967 else
3968 s = NULL;
3969 return s;
3970 }
3971 EXPORT_SYMBOL(kmem_cache_create);
3972
3973 #ifdef CONFIG_SMP
3974 /*
3975 * Use the cpu notifier to insure that the cpu slabs are flushed when
3976 * necessary.
3977 */
3978 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3979 unsigned long action, void *hcpu)
3980 {
3981 long cpu = (long)hcpu;
3982 struct kmem_cache *s;
3983 unsigned long flags;
3984
3985 switch (action) {
3986 case CPU_UP_CANCELED:
3987 case CPU_UP_CANCELED_FROZEN:
3988 case CPU_DEAD:
3989 case CPU_DEAD_FROZEN:
3990 down_read(&slub_lock);
3991 list_for_each_entry(s, &slab_caches, list) {
3992 local_irq_save(flags);
3993 __flush_cpu_slab(s, cpu);
3994 local_irq_restore(flags);
3995 }
3996 up_read(&slub_lock);
3997 break;
3998 default:
3999 break;
4000 }
4001 return NOTIFY_OK;
4002 }
4003
4004 static struct notifier_block __cpuinitdata slab_notifier = {
4005 .notifier_call = slab_cpuup_callback
4006 };
4007
4008 #endif
4009
4010 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4011 {
4012 struct kmem_cache *s;
4013 void *ret;
4014
4015 if (unlikely(size > SLUB_MAX_SIZE))
4016 return kmalloc_large(size, gfpflags);
4017
4018 s = get_slab(size, gfpflags);
4019
4020 if (unlikely(ZERO_OR_NULL_PTR(s)))
4021 return s;
4022
4023 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4024
4025 /* Honor the call site pointer we received. */
4026 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4027
4028 return ret;
4029 }
4030
4031 #ifdef CONFIG_NUMA
4032 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4033 int node, unsigned long caller)
4034 {
4035 struct kmem_cache *s;
4036 void *ret;
4037
4038 if (unlikely(size > SLUB_MAX_SIZE)) {
4039 ret = kmalloc_large_node(size, gfpflags, node);
4040
4041 trace_kmalloc_node(caller, ret,
4042 size, PAGE_SIZE << get_order(size),
4043 gfpflags, node);
4044
4045 return ret;
4046 }
4047
4048 s = get_slab(size, gfpflags);
4049
4050 if (unlikely(ZERO_OR_NULL_PTR(s)))
4051 return s;
4052
4053 ret = slab_alloc(s, gfpflags, node, caller);
4054
4055 /* Honor the call site pointer we received. */
4056 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4057
4058 return ret;
4059 }
4060 #endif
4061
4062 #ifdef CONFIG_SYSFS
4063 static int count_inuse(struct page *page)
4064 {
4065 return page->inuse;
4066 }
4067
4068 static int count_total(struct page *page)
4069 {
4070 return page->objects;
4071 }
4072 #endif
4073
4074 #ifdef CONFIG_SLUB_DEBUG
4075 static int validate_slab(struct kmem_cache *s, struct page *page,
4076 unsigned long *map)
4077 {
4078 void *p;
4079 void *addr = page_address(page);
4080
4081 if (!check_slab(s, page) ||
4082 !on_freelist(s, page, NULL))
4083 return 0;
4084
4085 /* Now we know that a valid freelist exists */
4086 bitmap_zero(map, page->objects);
4087
4088 get_map(s, page, map);
4089 for_each_object(p, s, addr, page->objects) {
4090 if (test_bit(slab_index(p, s, addr), map))
4091 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4092 return 0;
4093 }
4094
4095 for_each_object(p, s, addr, page->objects)
4096 if (!test_bit(slab_index(p, s, addr), map))
4097 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4098 return 0;
4099 return 1;
4100 }
4101
4102 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4103 unsigned long *map)
4104 {
4105 slab_lock(page);
4106 validate_slab(s, page, map);
4107 slab_unlock(page);
4108 }
4109
4110 static int validate_slab_node(struct kmem_cache *s,
4111 struct kmem_cache_node *n, unsigned long *map)
4112 {
4113 unsigned long count = 0;
4114 struct page *page;
4115 unsigned long flags;
4116
4117 spin_lock_irqsave(&n->list_lock, flags);
4118
4119 list_for_each_entry(page, &n->partial, lru) {
4120 validate_slab_slab(s, page, map);
4121 count++;
4122 }
4123 if (count != n->nr_partial)
4124 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4125 "counter=%ld\n", s->name, count, n->nr_partial);
4126
4127 if (!(s->flags & SLAB_STORE_USER))
4128 goto out;
4129
4130 list_for_each_entry(page, &n->full, lru) {
4131 validate_slab_slab(s, page, map);
4132 count++;
4133 }
4134 if (count != atomic_long_read(&n->nr_slabs))
4135 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4136 "counter=%ld\n", s->name, count,
4137 atomic_long_read(&n->nr_slabs));
4138
4139 out:
4140 spin_unlock_irqrestore(&n->list_lock, flags);
4141 return count;
4142 }
4143
4144 static long validate_slab_cache(struct kmem_cache *s)
4145 {
4146 int node;
4147 unsigned long count = 0;
4148 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4149 sizeof(unsigned long), GFP_KERNEL);
4150
4151 if (!map)
4152 return -ENOMEM;
4153
4154 flush_all(s);
4155 for_each_node_state(node, N_NORMAL_MEMORY) {
4156 struct kmem_cache_node *n = get_node(s, node);
4157
4158 count += validate_slab_node(s, n, map);
4159 }
4160 kfree(map);
4161 return count;
4162 }
4163 /*
4164 * Generate lists of code addresses where slabcache objects are allocated
4165 * and freed.
4166 */
4167
4168 struct location {
4169 unsigned long count;
4170 unsigned long addr;
4171 long long sum_time;
4172 long min_time;
4173 long max_time;
4174 long min_pid;
4175 long max_pid;
4176 DECLARE_BITMAP(cpus, NR_CPUS);
4177 nodemask_t nodes;
4178 };
4179
4180 struct loc_track {
4181 unsigned long max;
4182 unsigned long count;
4183 struct location *loc;
4184 };
4185
4186 static void free_loc_track(struct loc_track *t)
4187 {
4188 if (t->max)
4189 free_pages((unsigned long)t->loc,
4190 get_order(sizeof(struct location) * t->max));
4191 }
4192
4193 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4194 {
4195 struct location *l;
4196 int order;
4197
4198 order = get_order(sizeof(struct location) * max);
4199
4200 l = (void *)__get_free_pages(flags, order);
4201 if (!l)
4202 return 0;
4203
4204 if (t->count) {
4205 memcpy(l, t->loc, sizeof(struct location) * t->count);
4206 free_loc_track(t);
4207 }
4208 t->max = max;
4209 t->loc = l;
4210 return 1;
4211 }
4212
4213 static int add_location(struct loc_track *t, struct kmem_cache *s,
4214 const struct track *track)
4215 {
4216 long start, end, pos;
4217 struct location *l;
4218 unsigned long caddr;
4219 unsigned long age = jiffies - track->when;
4220
4221 start = -1;
4222 end = t->count;
4223
4224 for ( ; ; ) {
4225 pos = start + (end - start + 1) / 2;
4226
4227 /*
4228 * There is nothing at "end". If we end up there
4229 * we need to add something to before end.
4230 */
4231 if (pos == end)
4232 break;
4233
4234 caddr = t->loc[pos].addr;
4235 if (track->addr == caddr) {
4236
4237 l = &t->loc[pos];
4238 l->count++;
4239 if (track->when) {
4240 l->sum_time += age;
4241 if (age < l->min_time)
4242 l->min_time = age;
4243 if (age > l->max_time)
4244 l->max_time = age;
4245
4246 if (track->pid < l->min_pid)
4247 l->min_pid = track->pid;
4248 if (track->pid > l->max_pid)
4249 l->max_pid = track->pid;
4250
4251 cpumask_set_cpu(track->cpu,
4252 to_cpumask(l->cpus));
4253 }
4254 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4255 return 1;
4256 }
4257
4258 if (track->addr < caddr)
4259 end = pos;
4260 else
4261 start = pos;
4262 }
4263
4264 /*
4265 * Not found. Insert new tracking element.
4266 */
4267 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4268 return 0;
4269
4270 l = t->loc + pos;
4271 if (pos < t->count)
4272 memmove(l + 1, l,
4273 (t->count - pos) * sizeof(struct location));
4274 t->count++;
4275 l->count = 1;
4276 l->addr = track->addr;
4277 l->sum_time = age;
4278 l->min_time = age;
4279 l->max_time = age;
4280 l->min_pid = track->pid;
4281 l->max_pid = track->pid;
4282 cpumask_clear(to_cpumask(l->cpus));
4283 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4284 nodes_clear(l->nodes);
4285 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4286 return 1;
4287 }
4288
4289 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4290 struct page *page, enum track_item alloc,
4291 unsigned long *map)
4292 {
4293 void *addr = page_address(page);
4294 void *p;
4295
4296 bitmap_zero(map, page->objects);
4297 get_map(s, page, map);
4298
4299 for_each_object(p, s, addr, page->objects)
4300 if (!test_bit(slab_index(p, s, addr), map))
4301 add_location(t, s, get_track(s, p, alloc));
4302 }
4303
4304 static int list_locations(struct kmem_cache *s, char *buf,
4305 enum track_item alloc)
4306 {
4307 int len = 0;
4308 unsigned long i;
4309 struct loc_track t = { 0, 0, NULL };
4310 int node;
4311 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4312 sizeof(unsigned long), GFP_KERNEL);
4313
4314 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4315 GFP_TEMPORARY)) {
4316 kfree(map);
4317 return sprintf(buf, "Out of memory\n");
4318 }
4319 /* Push back cpu slabs */
4320 flush_all(s);
4321
4322 for_each_node_state(node, N_NORMAL_MEMORY) {
4323 struct kmem_cache_node *n = get_node(s, node);
4324 unsigned long flags;
4325 struct page *page;
4326
4327 if (!atomic_long_read(&n->nr_slabs))
4328 continue;
4329
4330 spin_lock_irqsave(&n->list_lock, flags);
4331 list_for_each_entry(page, &n->partial, lru)
4332 process_slab(&t, s, page, alloc, map);
4333 list_for_each_entry(page, &n->full, lru)
4334 process_slab(&t, s, page, alloc, map);
4335 spin_unlock_irqrestore(&n->list_lock, flags);
4336 }
4337
4338 for (i = 0; i < t.count; i++) {
4339 struct location *l = &t.loc[i];
4340
4341 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4342 break;
4343 len += sprintf(buf + len, "%7ld ", l->count);
4344
4345 if (l->addr)
4346 len += sprintf(buf + len, "%pS", (void *)l->addr);
4347 else
4348 len += sprintf(buf + len, "<not-available>");
4349
4350 if (l->sum_time != l->min_time) {
4351 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4352 l->min_time,
4353 (long)div_u64(l->sum_time, l->count),
4354 l->max_time);
4355 } else
4356 len += sprintf(buf + len, " age=%ld",
4357 l->min_time);
4358
4359 if (l->min_pid != l->max_pid)
4360 len += sprintf(buf + len, " pid=%ld-%ld",
4361 l->min_pid, l->max_pid);
4362 else
4363 len += sprintf(buf + len, " pid=%ld",
4364 l->min_pid);
4365
4366 if (num_online_cpus() > 1 &&
4367 !cpumask_empty(to_cpumask(l->cpus)) &&
4368 len < PAGE_SIZE - 60) {
4369 len += sprintf(buf + len, " cpus=");
4370 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4371 to_cpumask(l->cpus));
4372 }
4373
4374 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4375 len < PAGE_SIZE - 60) {
4376 len += sprintf(buf + len, " nodes=");
4377 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4378 l->nodes);
4379 }
4380
4381 len += sprintf(buf + len, "\n");
4382 }
4383
4384 free_loc_track(&t);
4385 kfree(map);
4386 if (!t.count)
4387 len += sprintf(buf, "No data\n");
4388 return len;
4389 }
4390 #endif
4391
4392 #ifdef SLUB_RESILIENCY_TEST
4393 static void resiliency_test(void)
4394 {
4395 u8 *p;
4396
4397 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4398
4399 printk(KERN_ERR "SLUB resiliency testing\n");
4400 printk(KERN_ERR "-----------------------\n");
4401 printk(KERN_ERR "A. Corruption after allocation\n");
4402
4403 p = kzalloc(16, GFP_KERNEL);
4404 p[16] = 0x12;
4405 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4406 " 0x12->0x%p\n\n", p + 16);
4407
4408 validate_slab_cache(kmalloc_caches[4]);
4409
4410 /* Hmmm... The next two are dangerous */
4411 p = kzalloc(32, GFP_KERNEL);
4412 p[32 + sizeof(void *)] = 0x34;
4413 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4414 " 0x34 -> -0x%p\n", p);
4415 printk(KERN_ERR
4416 "If allocated object is overwritten then not detectable\n\n");
4417
4418 validate_slab_cache(kmalloc_caches[5]);
4419 p = kzalloc(64, GFP_KERNEL);
4420 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4421 *p = 0x56;
4422 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4423 p);
4424 printk(KERN_ERR
4425 "If allocated object is overwritten then not detectable\n\n");
4426 validate_slab_cache(kmalloc_caches[6]);
4427
4428 printk(KERN_ERR "\nB. Corruption after free\n");
4429 p = kzalloc(128, GFP_KERNEL);
4430 kfree(p);
4431 *p = 0x78;
4432 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4433 validate_slab_cache(kmalloc_caches[7]);
4434
4435 p = kzalloc(256, GFP_KERNEL);
4436 kfree(p);
4437 p[50] = 0x9a;
4438 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4439 p);
4440 validate_slab_cache(kmalloc_caches[8]);
4441
4442 p = kzalloc(512, GFP_KERNEL);
4443 kfree(p);
4444 p[512] = 0xab;
4445 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4446 validate_slab_cache(kmalloc_caches[9]);
4447 }
4448 #else
4449 #ifdef CONFIG_SYSFS
4450 static void resiliency_test(void) {};
4451 #endif
4452 #endif
4453
4454 #ifdef CONFIG_SYSFS
4455 enum slab_stat_type {
4456 SL_ALL, /* All slabs */
4457 SL_PARTIAL, /* Only partially allocated slabs */
4458 SL_CPU, /* Only slabs used for cpu caches */
4459 SL_OBJECTS, /* Determine allocated objects not slabs */
4460 SL_TOTAL /* Determine object capacity not slabs */
4461 };
4462
4463 #define SO_ALL (1 << SL_ALL)
4464 #define SO_PARTIAL (1 << SL_PARTIAL)
4465 #define SO_CPU (1 << SL_CPU)
4466 #define SO_OBJECTS (1 << SL_OBJECTS)
4467 #define SO_TOTAL (1 << SL_TOTAL)
4468
4469 static ssize_t show_slab_objects(struct kmem_cache *s,
4470 char *buf, unsigned long flags)
4471 {
4472 unsigned long total = 0;
4473 int node;
4474 int x;
4475 unsigned long *nodes;
4476 unsigned long *per_cpu;
4477
4478 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4479 if (!nodes)
4480 return -ENOMEM;
4481 per_cpu = nodes + nr_node_ids;
4482
4483 if (flags & SO_CPU) {
4484 int cpu;
4485
4486 for_each_possible_cpu(cpu) {
4487 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4488 int node = ACCESS_ONCE(c->node);
4489 struct page *page;
4490
4491 if (node < 0)
4492 continue;
4493 page = ACCESS_ONCE(c->page);
4494 if (page) {
4495 if (flags & SO_TOTAL)
4496 x = page->objects;
4497 else if (flags & SO_OBJECTS)
4498 x = page->inuse;
4499 else
4500 x = 1;
4501
4502 total += x;
4503 nodes[node] += x;
4504 }
4505 page = c->partial;
4506
4507 if (page) {
4508 x = page->pobjects;
4509 total += x;
4510 nodes[node] += x;
4511 }
4512 per_cpu[node]++;
4513 }
4514 }
4515
4516 lock_memory_hotplug();
4517 #ifdef CONFIG_SLUB_DEBUG
4518 if (flags & SO_ALL) {
4519 for_each_node_state(node, N_NORMAL_MEMORY) {
4520 struct kmem_cache_node *n = get_node(s, node);
4521
4522 if (flags & SO_TOTAL)
4523 x = atomic_long_read(&n->total_objects);
4524 else if (flags & SO_OBJECTS)
4525 x = atomic_long_read(&n->total_objects) -
4526 count_partial(n, count_free);
4527
4528 else
4529 x = atomic_long_read(&n->nr_slabs);
4530 total += x;
4531 nodes[node] += x;
4532 }
4533
4534 } else
4535 #endif
4536 if (flags & SO_PARTIAL) {
4537 for_each_node_state(node, N_NORMAL_MEMORY) {
4538 struct kmem_cache_node *n = get_node(s, node);
4539
4540 if (flags & SO_TOTAL)
4541 x = count_partial(n, count_total);
4542 else if (flags & SO_OBJECTS)
4543 x = count_partial(n, count_inuse);
4544 else
4545 x = n->nr_partial;
4546 total += x;
4547 nodes[node] += x;
4548 }
4549 }
4550 x = sprintf(buf, "%lu", total);
4551 #ifdef CONFIG_NUMA
4552 for_each_node_state(node, N_NORMAL_MEMORY)
4553 if (nodes[node])
4554 x += sprintf(buf + x, " N%d=%lu",
4555 node, nodes[node]);
4556 #endif
4557 unlock_memory_hotplug();
4558 kfree(nodes);
4559 return x + sprintf(buf + x, "\n");
4560 }
4561
4562 #ifdef CONFIG_SLUB_DEBUG
4563 static int any_slab_objects(struct kmem_cache *s)
4564 {
4565 int node;
4566
4567 for_each_online_node(node) {
4568 struct kmem_cache_node *n = get_node(s, node);
4569
4570 if (!n)
4571 continue;
4572
4573 if (atomic_long_read(&n->total_objects))
4574 return 1;
4575 }
4576 return 0;
4577 }
4578 #endif
4579
4580 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4581 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4582
4583 struct slab_attribute {
4584 struct attribute attr;
4585 ssize_t (*show)(struct kmem_cache *s, char *buf);
4586 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4587 };
4588
4589 #define SLAB_ATTR_RO(_name) \
4590 static struct slab_attribute _name##_attr = \
4591 __ATTR(_name, 0400, _name##_show, NULL)
4592
4593 #define SLAB_ATTR(_name) \
4594 static struct slab_attribute _name##_attr = \
4595 __ATTR(_name, 0600, _name##_show, _name##_store)
4596
4597 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4598 {
4599 return sprintf(buf, "%d\n", s->size);
4600 }
4601 SLAB_ATTR_RO(slab_size);
4602
4603 static ssize_t align_show(struct kmem_cache *s, char *buf)
4604 {
4605 return sprintf(buf, "%d\n", s->align);
4606 }
4607 SLAB_ATTR_RO(align);
4608
4609 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4610 {
4611 return sprintf(buf, "%d\n", s->objsize);
4612 }
4613 SLAB_ATTR_RO(object_size);
4614
4615 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4616 {
4617 return sprintf(buf, "%d\n", oo_objects(s->oo));
4618 }
4619 SLAB_ATTR_RO(objs_per_slab);
4620
4621 static ssize_t order_store(struct kmem_cache *s,
4622 const char *buf, size_t length)
4623 {
4624 unsigned long order;
4625 int err;
4626
4627 err = strict_strtoul(buf, 10, &order);
4628 if (err)
4629 return err;
4630
4631 if (order > slub_max_order || order < slub_min_order)
4632 return -EINVAL;
4633
4634 calculate_sizes(s, order);
4635 return length;
4636 }
4637
4638 static ssize_t order_show(struct kmem_cache *s, char *buf)
4639 {
4640 return sprintf(buf, "%d\n", oo_order(s->oo));
4641 }
4642 SLAB_ATTR(order);
4643
4644 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4645 {
4646 return sprintf(buf, "%lu\n", s->min_partial);
4647 }
4648
4649 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4650 size_t length)
4651 {
4652 unsigned long min;
4653 int err;
4654
4655 err = strict_strtoul(buf, 10, &min);
4656 if (err)
4657 return err;
4658
4659 set_min_partial(s, min);
4660 return length;
4661 }
4662 SLAB_ATTR(min_partial);
4663
4664 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4665 {
4666 return sprintf(buf, "%u\n", s->cpu_partial);
4667 }
4668
4669 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4670 size_t length)
4671 {
4672 unsigned long objects;
4673 int err;
4674
4675 err = strict_strtoul(buf, 10, &objects);
4676 if (err)
4677 return err;
4678 if (objects && kmem_cache_debug(s))
4679 return -EINVAL;
4680
4681 s->cpu_partial = objects;
4682 flush_all(s);
4683 return length;
4684 }
4685 SLAB_ATTR(cpu_partial);
4686
4687 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4688 {
4689 if (!s->ctor)
4690 return 0;
4691 return sprintf(buf, "%pS\n", s->ctor);
4692 }
4693 SLAB_ATTR_RO(ctor);
4694
4695 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4696 {
4697 return sprintf(buf, "%d\n", s->refcount - 1);
4698 }
4699 SLAB_ATTR_RO(aliases);
4700
4701 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4702 {
4703 return show_slab_objects(s, buf, SO_PARTIAL);
4704 }
4705 SLAB_ATTR_RO(partial);
4706
4707 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4708 {
4709 return show_slab_objects(s, buf, SO_CPU);
4710 }
4711 SLAB_ATTR_RO(cpu_slabs);
4712
4713 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4714 {
4715 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4716 }
4717 SLAB_ATTR_RO(objects);
4718
4719 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4720 {
4721 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4722 }
4723 SLAB_ATTR_RO(objects_partial);
4724
4725 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4726 {
4727 int objects = 0;
4728 int pages = 0;
4729 int cpu;
4730 int len;
4731
4732 for_each_online_cpu(cpu) {
4733 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4734
4735 if (page) {
4736 pages += page->pages;
4737 objects += page->pobjects;
4738 }
4739 }
4740
4741 len = sprintf(buf, "%d(%d)", objects, pages);
4742
4743 #ifdef CONFIG_SMP
4744 for_each_online_cpu(cpu) {
4745 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4746
4747 if (page && len < PAGE_SIZE - 20)
4748 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4749 page->pobjects, page->pages);
4750 }
4751 #endif
4752 return len + sprintf(buf + len, "\n");
4753 }
4754 SLAB_ATTR_RO(slabs_cpu_partial);
4755
4756 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4757 {
4758 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4759 }
4760
4761 static ssize_t reclaim_account_store(struct kmem_cache *s,
4762 const char *buf, size_t length)
4763 {
4764 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4765 if (buf[0] == '1')
4766 s->flags |= SLAB_RECLAIM_ACCOUNT;
4767 return length;
4768 }
4769 SLAB_ATTR(reclaim_account);
4770
4771 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4772 {
4773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4774 }
4775 SLAB_ATTR_RO(hwcache_align);
4776
4777 #ifdef CONFIG_ZONE_DMA
4778 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4779 {
4780 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4781 }
4782 SLAB_ATTR_RO(cache_dma);
4783 #endif
4784
4785 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4786 {
4787 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4788 }
4789 SLAB_ATTR_RO(destroy_by_rcu);
4790
4791 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4792 {
4793 return sprintf(buf, "%d\n", s->reserved);
4794 }
4795 SLAB_ATTR_RO(reserved);
4796
4797 #ifdef CONFIG_SLUB_DEBUG
4798 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4799 {
4800 return show_slab_objects(s, buf, SO_ALL);
4801 }
4802 SLAB_ATTR_RO(slabs);
4803
4804 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4805 {
4806 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4807 }
4808 SLAB_ATTR_RO(total_objects);
4809
4810 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4811 {
4812 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4813 }
4814
4815 static ssize_t sanity_checks_store(struct kmem_cache *s,
4816 const char *buf, size_t length)
4817 {
4818 s->flags &= ~SLAB_DEBUG_FREE;
4819 if (buf[0] == '1') {
4820 s->flags &= ~__CMPXCHG_DOUBLE;
4821 s->flags |= SLAB_DEBUG_FREE;
4822 }
4823 return length;
4824 }
4825 SLAB_ATTR(sanity_checks);
4826
4827 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4828 {
4829 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4830 }
4831
4832 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4833 size_t length)
4834 {
4835 s->flags &= ~SLAB_TRACE;
4836 if (buf[0] == '1') {
4837 s->flags &= ~__CMPXCHG_DOUBLE;
4838 s->flags |= SLAB_TRACE;
4839 }
4840 return length;
4841 }
4842 SLAB_ATTR(trace);
4843
4844 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4845 {
4846 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4847 }
4848
4849 static ssize_t red_zone_store(struct kmem_cache *s,
4850 const char *buf, size_t length)
4851 {
4852 if (any_slab_objects(s))
4853 return -EBUSY;
4854
4855 s->flags &= ~SLAB_RED_ZONE;
4856 if (buf[0] == '1') {
4857 s->flags &= ~__CMPXCHG_DOUBLE;
4858 s->flags |= SLAB_RED_ZONE;
4859 }
4860 calculate_sizes(s, -1);
4861 return length;
4862 }
4863 SLAB_ATTR(red_zone);
4864
4865 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4866 {
4867 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4868 }
4869
4870 static ssize_t poison_store(struct kmem_cache *s,
4871 const char *buf, size_t length)
4872 {
4873 if (any_slab_objects(s))
4874 return -EBUSY;
4875
4876 s->flags &= ~SLAB_POISON;
4877 if (buf[0] == '1') {
4878 s->flags &= ~__CMPXCHG_DOUBLE;
4879 s->flags |= SLAB_POISON;
4880 }
4881 calculate_sizes(s, -1);
4882 return length;
4883 }
4884 SLAB_ATTR(poison);
4885
4886 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4887 {
4888 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4889 }
4890
4891 static ssize_t store_user_store(struct kmem_cache *s,
4892 const char *buf, size_t length)
4893 {
4894 if (any_slab_objects(s))
4895 return -EBUSY;
4896
4897 s->flags &= ~SLAB_STORE_USER;
4898 if (buf[0] == '1') {
4899 s->flags &= ~__CMPXCHG_DOUBLE;
4900 s->flags |= SLAB_STORE_USER;
4901 }
4902 calculate_sizes(s, -1);
4903 return length;
4904 }
4905 SLAB_ATTR(store_user);
4906
4907 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4908 {
4909 return 0;
4910 }
4911
4912 static ssize_t validate_store(struct kmem_cache *s,
4913 const char *buf, size_t length)
4914 {
4915 int ret = -EINVAL;
4916
4917 if (buf[0] == '1') {
4918 ret = validate_slab_cache(s);
4919 if (ret >= 0)
4920 ret = length;
4921 }
4922 return ret;
4923 }
4924 SLAB_ATTR(validate);
4925
4926 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4927 {
4928 if (!(s->flags & SLAB_STORE_USER))
4929 return -ENOSYS;
4930 return list_locations(s, buf, TRACK_ALLOC);
4931 }
4932 SLAB_ATTR_RO(alloc_calls);
4933
4934 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4935 {
4936 if (!(s->flags & SLAB_STORE_USER))
4937 return -ENOSYS;
4938 return list_locations(s, buf, TRACK_FREE);
4939 }
4940 SLAB_ATTR_RO(free_calls);
4941 #endif /* CONFIG_SLUB_DEBUG */
4942
4943 #ifdef CONFIG_FAILSLAB
4944 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4945 {
4946 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4947 }
4948
4949 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4950 size_t length)
4951 {
4952 s->flags &= ~SLAB_FAILSLAB;
4953 if (buf[0] == '1')
4954 s->flags |= SLAB_FAILSLAB;
4955 return length;
4956 }
4957 SLAB_ATTR(failslab);
4958 #endif
4959
4960 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4961 {
4962 return 0;
4963 }
4964
4965 static ssize_t shrink_store(struct kmem_cache *s,
4966 const char *buf, size_t length)
4967 {
4968 if (buf[0] == '1') {
4969 int rc = kmem_cache_shrink(s);
4970
4971 if (rc)
4972 return rc;
4973 } else
4974 return -EINVAL;
4975 return length;
4976 }
4977 SLAB_ATTR(shrink);
4978
4979 #ifdef CONFIG_NUMA
4980 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4981 {
4982 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4983 }
4984
4985 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4986 const char *buf, size_t length)
4987 {
4988 unsigned long ratio;
4989 int err;
4990
4991 err = strict_strtoul(buf, 10, &ratio);
4992 if (err)
4993 return err;
4994
4995 if (ratio <= 100)
4996 s->remote_node_defrag_ratio = ratio * 10;
4997
4998 return length;
4999 }
5000 SLAB_ATTR(remote_node_defrag_ratio);
5001 #endif
5002
5003 #ifdef CONFIG_SLUB_STATS
5004 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5005 {
5006 unsigned long sum = 0;
5007 int cpu;
5008 int len;
5009 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5010
5011 if (!data)
5012 return -ENOMEM;
5013
5014 for_each_online_cpu(cpu) {
5015 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5016
5017 data[cpu] = x;
5018 sum += x;
5019 }
5020
5021 len = sprintf(buf, "%lu", sum);
5022
5023 #ifdef CONFIG_SMP
5024 for_each_online_cpu(cpu) {
5025 if (data[cpu] && len < PAGE_SIZE - 20)
5026 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5027 }
5028 #endif
5029 kfree(data);
5030 return len + sprintf(buf + len, "\n");
5031 }
5032
5033 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5034 {
5035 int cpu;
5036
5037 for_each_online_cpu(cpu)
5038 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5039 }
5040
5041 #define STAT_ATTR(si, text) \
5042 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5043 { \
5044 return show_stat(s, buf, si); \
5045 } \
5046 static ssize_t text##_store(struct kmem_cache *s, \
5047 const char *buf, size_t length) \
5048 { \
5049 if (buf[0] != '0') \
5050 return -EINVAL; \
5051 clear_stat(s, si); \
5052 return length; \
5053 } \
5054 SLAB_ATTR(text); \
5055
5056 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5057 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5058 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5059 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5060 STAT_ATTR(FREE_FROZEN, free_frozen);
5061 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5062 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5063 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5064 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5065 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5066 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5067 STAT_ATTR(FREE_SLAB, free_slab);
5068 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5069 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5070 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5071 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5072 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5073 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5074 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5075 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5076 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5077 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5078 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5079 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5080 #endif
5081
5082 static struct attribute *slab_attrs[] = {
5083 &slab_size_attr.attr,
5084 &object_size_attr.attr,
5085 &objs_per_slab_attr.attr,
5086 &order_attr.attr,
5087 &min_partial_attr.attr,
5088 &cpu_partial_attr.attr,
5089 &objects_attr.attr,
5090 &objects_partial_attr.attr,
5091 &partial_attr.attr,
5092 &cpu_slabs_attr.attr,
5093 &ctor_attr.attr,
5094 &aliases_attr.attr,
5095 &align_attr.attr,
5096 &hwcache_align_attr.attr,
5097 &reclaim_account_attr.attr,
5098 &destroy_by_rcu_attr.attr,
5099 &shrink_attr.attr,
5100 &reserved_attr.attr,
5101 &slabs_cpu_partial_attr.attr,
5102 #ifdef CONFIG_SLUB_DEBUG
5103 &total_objects_attr.attr,
5104 &slabs_attr.attr,
5105 &sanity_checks_attr.attr,
5106 &trace_attr.attr,
5107 &red_zone_attr.attr,
5108 &poison_attr.attr,
5109 &store_user_attr.attr,
5110 &validate_attr.attr,
5111 &alloc_calls_attr.attr,
5112 &free_calls_attr.attr,
5113 #endif
5114 #ifdef CONFIG_ZONE_DMA
5115 &cache_dma_attr.attr,
5116 #endif
5117 #ifdef CONFIG_NUMA
5118 &remote_node_defrag_ratio_attr.attr,
5119 #endif
5120 #ifdef CONFIG_SLUB_STATS
5121 &alloc_fastpath_attr.attr,
5122 &alloc_slowpath_attr.attr,
5123 &free_fastpath_attr.attr,
5124 &free_slowpath_attr.attr,
5125 &free_frozen_attr.attr,
5126 &free_add_partial_attr.attr,
5127 &free_remove_partial_attr.attr,
5128 &alloc_from_partial_attr.attr,
5129 &alloc_slab_attr.attr,
5130 &alloc_refill_attr.attr,
5131 &alloc_node_mismatch_attr.attr,
5132 &free_slab_attr.attr,
5133 &cpuslab_flush_attr.attr,
5134 &deactivate_full_attr.attr,
5135 &deactivate_empty_attr.attr,
5136 &deactivate_to_head_attr.attr,
5137 &deactivate_to_tail_attr.attr,
5138 &deactivate_remote_frees_attr.attr,
5139 &deactivate_bypass_attr.attr,
5140 &order_fallback_attr.attr,
5141 &cmpxchg_double_fail_attr.attr,
5142 &cmpxchg_double_cpu_fail_attr.attr,
5143 &cpu_partial_alloc_attr.attr,
5144 &cpu_partial_free_attr.attr,
5145 #endif
5146 #ifdef CONFIG_FAILSLAB
5147 &failslab_attr.attr,
5148 #endif
5149
5150 NULL
5151 };
5152
5153 static struct attribute_group slab_attr_group = {
5154 .attrs = slab_attrs,
5155 };
5156
5157 static ssize_t slab_attr_show(struct kobject *kobj,
5158 struct attribute *attr,
5159 char *buf)
5160 {
5161 struct slab_attribute *attribute;
5162 struct kmem_cache *s;
5163 int err;
5164
5165 attribute = to_slab_attr(attr);
5166 s = to_slab(kobj);
5167
5168 if (!attribute->show)
5169 return -EIO;
5170
5171 err = attribute->show(s, buf);
5172
5173 return err;
5174 }
5175
5176 static ssize_t slab_attr_store(struct kobject *kobj,
5177 struct attribute *attr,
5178 const char *buf, size_t len)
5179 {
5180 struct slab_attribute *attribute;
5181 struct kmem_cache *s;
5182 int err;
5183
5184 attribute = to_slab_attr(attr);
5185 s = to_slab(kobj);
5186
5187 if (!attribute->store)
5188 return -EIO;
5189
5190 err = attribute->store(s, buf, len);
5191
5192 return err;
5193 }
5194
5195 static void kmem_cache_release(struct kobject *kobj)
5196 {
5197 struct kmem_cache *s = to_slab(kobj);
5198
5199 kfree(s->name);
5200 kfree(s);
5201 }
5202
5203 static const struct sysfs_ops slab_sysfs_ops = {
5204 .show = slab_attr_show,
5205 .store = slab_attr_store,
5206 };
5207
5208 static struct kobj_type slab_ktype = {
5209 .sysfs_ops = &slab_sysfs_ops,
5210 .release = kmem_cache_release
5211 };
5212
5213 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5214 {
5215 struct kobj_type *ktype = get_ktype(kobj);
5216
5217 if (ktype == &slab_ktype)
5218 return 1;
5219 return 0;
5220 }
5221
5222 static const struct kset_uevent_ops slab_uevent_ops = {
5223 .filter = uevent_filter,
5224 };
5225
5226 static struct kset *slab_kset;
5227
5228 #define ID_STR_LENGTH 64
5229
5230 /* Create a unique string id for a slab cache:
5231 *
5232 * Format :[flags-]size
5233 */
5234 static char *create_unique_id(struct kmem_cache *s)
5235 {
5236 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5237 char *p = name;
5238
5239 BUG_ON(!name);
5240
5241 *p++ = ':';
5242 /*
5243 * First flags affecting slabcache operations. We will only
5244 * get here for aliasable slabs so we do not need to support
5245 * too many flags. The flags here must cover all flags that
5246 * are matched during merging to guarantee that the id is
5247 * unique.
5248 */
5249 if (s->flags & SLAB_CACHE_DMA)
5250 *p++ = 'd';
5251 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5252 *p++ = 'a';
5253 if (s->flags & SLAB_DEBUG_FREE)
5254 *p++ = 'F';
5255 if (!(s->flags & SLAB_NOTRACK))
5256 *p++ = 't';
5257 if (p != name + 1)
5258 *p++ = '-';
5259 p += sprintf(p, "%07d", s->size);
5260 BUG_ON(p > name + ID_STR_LENGTH - 1);
5261 return name;
5262 }
5263
5264 static int sysfs_slab_add(struct kmem_cache *s)
5265 {
5266 int err;
5267 const char *name;
5268 int unmergeable;
5269
5270 if (slab_state < SYSFS)
5271 /* Defer until later */
5272 return 0;
5273
5274 unmergeable = slab_unmergeable(s);
5275 if (unmergeable) {
5276 /*
5277 * Slabcache can never be merged so we can use the name proper.
5278 * This is typically the case for debug situations. In that
5279 * case we can catch duplicate names easily.
5280 */
5281 sysfs_remove_link(&slab_kset->kobj, s->name);
5282 name = s->name;
5283 } else {
5284 /*
5285 * Create a unique name for the slab as a target
5286 * for the symlinks.
5287 */
5288 name = create_unique_id(s);
5289 }
5290
5291 s->kobj.kset = slab_kset;
5292 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5293 if (err) {
5294 kobject_put(&s->kobj);
5295 return err;
5296 }
5297
5298 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5299 if (err) {
5300 kobject_del(&s->kobj);
5301 kobject_put(&s->kobj);
5302 return err;
5303 }
5304 kobject_uevent(&s->kobj, KOBJ_ADD);
5305 if (!unmergeable) {
5306 /* Setup first alias */
5307 sysfs_slab_alias(s, s->name);
5308 kfree(name);
5309 }
5310 return 0;
5311 }
5312
5313 static void sysfs_slab_remove(struct kmem_cache *s)
5314 {
5315 if (slab_state < SYSFS)
5316 /*
5317 * Sysfs has not been setup yet so no need to remove the
5318 * cache from sysfs.
5319 */
5320 return;
5321
5322 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5323 kobject_del(&s->kobj);
5324 kobject_put(&s->kobj);
5325 }
5326
5327 /*
5328 * Need to buffer aliases during bootup until sysfs becomes
5329 * available lest we lose that information.
5330 */
5331 struct saved_alias {
5332 struct kmem_cache *s;
5333 const char *name;
5334 struct saved_alias *next;
5335 };
5336
5337 static struct saved_alias *alias_list;
5338
5339 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5340 {
5341 struct saved_alias *al;
5342
5343 if (slab_state == SYSFS) {
5344 /*
5345 * If we have a leftover link then remove it.
5346 */
5347 sysfs_remove_link(&slab_kset->kobj, name);
5348 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5349 }
5350
5351 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5352 if (!al)
5353 return -ENOMEM;
5354
5355 al->s = s;
5356 al->name = name;
5357 al->next = alias_list;
5358 alias_list = al;
5359 return 0;
5360 }
5361
5362 static int __init slab_sysfs_init(void)
5363 {
5364 struct kmem_cache *s;
5365 int err;
5366
5367 down_write(&slub_lock);
5368
5369 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5370 if (!slab_kset) {
5371 up_write(&slub_lock);
5372 printk(KERN_ERR "Cannot register slab subsystem.\n");
5373 return -ENOSYS;
5374 }
5375
5376 slab_state = SYSFS;
5377
5378 list_for_each_entry(s, &slab_caches, list) {
5379 err = sysfs_slab_add(s);
5380 if (err)
5381 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5382 " to sysfs\n", s->name);
5383 }
5384
5385 while (alias_list) {
5386 struct saved_alias *al = alias_list;
5387
5388 alias_list = alias_list->next;
5389 err = sysfs_slab_alias(al->s, al->name);
5390 if (err)
5391 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5392 " %s to sysfs\n", s->name);
5393 kfree(al);
5394 }
5395
5396 up_write(&slub_lock);
5397 resiliency_test();
5398 return 0;
5399 }
5400
5401 __initcall(slab_sysfs_init);
5402 #endif /* CONFIG_SYSFS */
5403
5404 /*
5405 * The /proc/slabinfo ABI
5406 */
5407 #ifdef CONFIG_SLABINFO
5408 static void print_slabinfo_header(struct seq_file *m)
5409 {
5410 seq_puts(m, "slabinfo - version: 2.1\n");
5411 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5412 "<objperslab> <pagesperslab>");
5413 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5414 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5415 seq_putc(m, '\n');
5416 }
5417
5418 static void *s_start(struct seq_file *m, loff_t *pos)
5419 {
5420 loff_t n = *pos;
5421
5422 down_read(&slub_lock);
5423 if (!n)
5424 print_slabinfo_header(m);
5425
5426 return seq_list_start(&slab_caches, *pos);
5427 }
5428
5429 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5430 {
5431 return seq_list_next(p, &slab_caches, pos);
5432 }
5433
5434 static void s_stop(struct seq_file *m, void *p)
5435 {
5436 up_read(&slub_lock);
5437 }
5438
5439 static int s_show(struct seq_file *m, void *p)
5440 {
5441 unsigned long nr_partials = 0;
5442 unsigned long nr_slabs = 0;
5443 unsigned long nr_inuse = 0;
5444 unsigned long nr_objs = 0;
5445 unsigned long nr_free = 0;
5446 struct kmem_cache *s;
5447 int node;
5448
5449 s = list_entry(p, struct kmem_cache, list);
5450
5451 for_each_online_node(node) {
5452 struct kmem_cache_node *n = get_node(s, node);
5453
5454 if (!n)
5455 continue;
5456
5457 nr_partials += n->nr_partial;
5458 nr_slabs += atomic_long_read(&n->nr_slabs);
5459 nr_objs += atomic_long_read(&n->total_objects);
5460 nr_free += count_partial(n, count_free);
5461 }
5462
5463 nr_inuse = nr_objs - nr_free;
5464
5465 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5466 nr_objs, s->size, oo_objects(s->oo),
5467 (1 << oo_order(s->oo)));
5468 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5469 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5470 0UL);
5471 seq_putc(m, '\n');
5472 return 0;
5473 }
5474
5475 static const struct seq_operations slabinfo_op = {
5476 .start = s_start,
5477 .next = s_next,
5478 .stop = s_stop,
5479 .show = s_show,
5480 };
5481
5482 static int slabinfo_open(struct inode *inode, struct file *file)
5483 {
5484 return seq_open(file, &slabinfo_op);
5485 }
5486
5487 static const struct file_operations proc_slabinfo_operations = {
5488 .open = slabinfo_open,
5489 .read = seq_read,
5490 .llseek = seq_lseek,
5491 .release = seq_release,
5492 };
5493
5494 static int __init slab_proc_init(void)
5495 {
5496 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5497 return 0;
5498 }
5499 module_init(slab_proc_init);
5500 #endif /* CONFIG_SLABINFO */
This page took 0.134248 seconds and 6 git commands to generate.