Merge branch 'core-fixes-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/kmemleak.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32
33 /*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #ifdef CONFIG_SLUB_DEBUG
112 #define SLABDEBUG 1
113 #else
114 #define SLABDEBUG 0
115 #endif
116
117 /*
118 * Issues still to be resolved:
119 *
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 *
122 * - Variable sizing of the per node arrays
123 */
124
125 /* Enable to test recovery from slab corruption on boot */
126 #undef SLUB_RESILIENCY_TEST
127
128 /*
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 */
132 #define MIN_PARTIAL 5
133
134 /*
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
138 */
139 #define MAX_PARTIAL 10
140
141 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
143
144 /*
145 * Set of flags that will prevent slab merging
146 */
147 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
148 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
149
150 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
151 SLAB_CACHE_DMA | SLAB_NOTRACK)
152
153 #ifndef ARCH_KMALLOC_MINALIGN
154 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
155 #endif
156
157 #ifndef ARCH_SLAB_MINALIGN
158 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
159 #endif
160
161 #define OO_SHIFT 16
162 #define OO_MASK ((1 << OO_SHIFT) - 1)
163 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164
165 /* Internal SLUB flags */
166 #define __OBJECT_POISON 0x80000000 /* Poison object */
167 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
168
169 static int kmem_size = sizeof(struct kmem_cache);
170
171 #ifdef CONFIG_SMP
172 static struct notifier_block slab_notifier;
173 #endif
174
175 static enum {
176 DOWN, /* No slab functionality available */
177 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
178 UP, /* Everything works but does not show up in sysfs */
179 SYSFS /* Sysfs up */
180 } slab_state = DOWN;
181
182 /* A list of all slab caches on the system */
183 static DECLARE_RWSEM(slub_lock);
184 static LIST_HEAD(slab_caches);
185
186 /*
187 * Tracking user of a slab.
188 */
189 struct track {
190 unsigned long addr; /* Called from address */
191 int cpu; /* Was running on cpu */
192 int pid; /* Pid context */
193 unsigned long when; /* When did the operation occur */
194 };
195
196 enum track_item { TRACK_ALLOC, TRACK_FREE };
197
198 #ifdef CONFIG_SLUB_DEBUG
199 static int sysfs_slab_add(struct kmem_cache *);
200 static int sysfs_slab_alias(struct kmem_cache *, const char *);
201 static void sysfs_slab_remove(struct kmem_cache *);
202
203 #else
204 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
205 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
206 { return 0; }
207 static inline void sysfs_slab_remove(struct kmem_cache *s)
208 {
209 kfree(s);
210 }
211
212 #endif
213
214 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
215 {
216 #ifdef CONFIG_SLUB_STATS
217 c->stat[si]++;
218 #endif
219 }
220
221 /********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
225 int slab_is_available(void)
226 {
227 return slab_state >= UP;
228 }
229
230 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
231 {
232 #ifdef CONFIG_NUMA
233 return s->node[node];
234 #else
235 return &s->local_node;
236 #endif
237 }
238
239 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
240 {
241 #ifdef CONFIG_SMP
242 return s->cpu_slab[cpu];
243 #else
244 return &s->cpu_slab;
245 #endif
246 }
247
248 /* Verify that a pointer has an address that is valid within a slab page */
249 static inline int check_valid_pointer(struct kmem_cache *s,
250 struct page *page, const void *object)
251 {
252 void *base;
253
254 if (!object)
255 return 1;
256
257 base = page_address(page);
258 if (object < base || object >= base + page->objects * s->size ||
259 (object - base) % s->size) {
260 return 0;
261 }
262
263 return 1;
264 }
265
266 /*
267 * Slow version of get and set free pointer.
268 *
269 * This version requires touching the cache lines of kmem_cache which
270 * we avoid to do in the fast alloc free paths. There we obtain the offset
271 * from the page struct.
272 */
273 static inline void *get_freepointer(struct kmem_cache *s, void *object)
274 {
275 return *(void **)(object + s->offset);
276 }
277
278 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
279 {
280 *(void **)(object + s->offset) = fp;
281 }
282
283 /* Loop over all objects in a slab */
284 #define for_each_object(__p, __s, __addr, __objects) \
285 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
286 __p += (__s)->size)
287
288 /* Scan freelist */
289 #define for_each_free_object(__p, __s, __free) \
290 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
291
292 /* Determine object index from a given position */
293 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
294 {
295 return (p - addr) / s->size;
296 }
297
298 static inline struct kmem_cache_order_objects oo_make(int order,
299 unsigned long size)
300 {
301 struct kmem_cache_order_objects x = {
302 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
303 };
304
305 return x;
306 }
307
308 static inline int oo_order(struct kmem_cache_order_objects x)
309 {
310 return x.x >> OO_SHIFT;
311 }
312
313 static inline int oo_objects(struct kmem_cache_order_objects x)
314 {
315 return x.x & OO_MASK;
316 }
317
318 #ifdef CONFIG_SLUB_DEBUG
319 /*
320 * Debug settings:
321 */
322 #ifdef CONFIG_SLUB_DEBUG_ON
323 static int slub_debug = DEBUG_DEFAULT_FLAGS;
324 #else
325 static int slub_debug;
326 #endif
327
328 static char *slub_debug_slabs;
329
330 /*
331 * Object debugging
332 */
333 static void print_section(char *text, u8 *addr, unsigned int length)
334 {
335 int i, offset;
336 int newline = 1;
337 char ascii[17];
338
339 ascii[16] = 0;
340
341 for (i = 0; i < length; i++) {
342 if (newline) {
343 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
344 newline = 0;
345 }
346 printk(KERN_CONT " %02x", addr[i]);
347 offset = i % 16;
348 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
349 if (offset == 15) {
350 printk(KERN_CONT " %s\n", ascii);
351 newline = 1;
352 }
353 }
354 if (!newline) {
355 i %= 16;
356 while (i < 16) {
357 printk(KERN_CONT " ");
358 ascii[i] = ' ';
359 i++;
360 }
361 printk(KERN_CONT " %s\n", ascii);
362 }
363 }
364
365 static struct track *get_track(struct kmem_cache *s, void *object,
366 enum track_item alloc)
367 {
368 struct track *p;
369
370 if (s->offset)
371 p = object + s->offset + sizeof(void *);
372 else
373 p = object + s->inuse;
374
375 return p + alloc;
376 }
377
378 static void set_track(struct kmem_cache *s, void *object,
379 enum track_item alloc, unsigned long addr)
380 {
381 struct track *p = get_track(s, object, alloc);
382
383 if (addr) {
384 p->addr = addr;
385 p->cpu = smp_processor_id();
386 p->pid = current->pid;
387 p->when = jiffies;
388 } else
389 memset(p, 0, sizeof(struct track));
390 }
391
392 static void init_tracking(struct kmem_cache *s, void *object)
393 {
394 if (!(s->flags & SLAB_STORE_USER))
395 return;
396
397 set_track(s, object, TRACK_FREE, 0UL);
398 set_track(s, object, TRACK_ALLOC, 0UL);
399 }
400
401 static void print_track(const char *s, struct track *t)
402 {
403 if (!t->addr)
404 return;
405
406 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
407 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
408 }
409
410 static void print_tracking(struct kmem_cache *s, void *object)
411 {
412 if (!(s->flags & SLAB_STORE_USER))
413 return;
414
415 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
416 print_track("Freed", get_track(s, object, TRACK_FREE));
417 }
418
419 static void print_page_info(struct page *page)
420 {
421 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
422 page, page->objects, page->inuse, page->freelist, page->flags);
423
424 }
425
426 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
427 {
428 va_list args;
429 char buf[100];
430
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "========================================"
435 "=====================================\n");
436 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
437 printk(KERN_ERR "----------------------------------------"
438 "-------------------------------------\n\n");
439 }
440
441 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
442 {
443 va_list args;
444 char buf[100];
445
446 va_start(args, fmt);
447 vsnprintf(buf, sizeof(buf), fmt, args);
448 va_end(args);
449 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
450 }
451
452 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
453 {
454 unsigned int off; /* Offset of last byte */
455 u8 *addr = page_address(page);
456
457 print_tracking(s, p);
458
459 print_page_info(page);
460
461 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
462 p, p - addr, get_freepointer(s, p));
463
464 if (p > addr + 16)
465 print_section("Bytes b4", p - 16, 16);
466
467 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
468
469 if (s->flags & SLAB_RED_ZONE)
470 print_section("Redzone", p + s->objsize,
471 s->inuse - s->objsize);
472
473 if (s->offset)
474 off = s->offset + sizeof(void *);
475 else
476 off = s->inuse;
477
478 if (s->flags & SLAB_STORE_USER)
479 off += 2 * sizeof(struct track);
480
481 if (off != s->size)
482 /* Beginning of the filler is the free pointer */
483 print_section("Padding", p + off, s->size - off);
484
485 dump_stack();
486 }
487
488 static void object_err(struct kmem_cache *s, struct page *page,
489 u8 *object, char *reason)
490 {
491 slab_bug(s, "%s", reason);
492 print_trailer(s, page, object);
493 }
494
495 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
496 {
497 va_list args;
498 char buf[100];
499
500 va_start(args, fmt);
501 vsnprintf(buf, sizeof(buf), fmt, args);
502 va_end(args);
503 slab_bug(s, "%s", buf);
504 print_page_info(page);
505 dump_stack();
506 }
507
508 static void init_object(struct kmem_cache *s, void *object, int active)
509 {
510 u8 *p = object;
511
512 if (s->flags & __OBJECT_POISON) {
513 memset(p, POISON_FREE, s->objsize - 1);
514 p[s->objsize - 1] = POISON_END;
515 }
516
517 if (s->flags & SLAB_RED_ZONE)
518 memset(p + s->objsize,
519 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
520 s->inuse - s->objsize);
521 }
522
523 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
524 {
525 while (bytes) {
526 if (*start != (u8)value)
527 return start;
528 start++;
529 bytes--;
530 }
531 return NULL;
532 }
533
534 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
535 void *from, void *to)
536 {
537 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
538 memset(from, data, to - from);
539 }
540
541 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
542 u8 *object, char *what,
543 u8 *start, unsigned int value, unsigned int bytes)
544 {
545 u8 *fault;
546 u8 *end;
547
548 fault = check_bytes(start, value, bytes);
549 if (!fault)
550 return 1;
551
552 end = start + bytes;
553 while (end > fault && end[-1] == value)
554 end--;
555
556 slab_bug(s, "%s overwritten", what);
557 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
558 fault, end - 1, fault[0], value);
559 print_trailer(s, page, object);
560
561 restore_bytes(s, what, value, fault, end);
562 return 0;
563 }
564
565 /*
566 * Object layout:
567 *
568 * object address
569 * Bytes of the object to be managed.
570 * If the freepointer may overlay the object then the free
571 * pointer is the first word of the object.
572 *
573 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
574 * 0xa5 (POISON_END)
575 *
576 * object + s->objsize
577 * Padding to reach word boundary. This is also used for Redzoning.
578 * Padding is extended by another word if Redzoning is enabled and
579 * objsize == inuse.
580 *
581 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
582 * 0xcc (RED_ACTIVE) for objects in use.
583 *
584 * object + s->inuse
585 * Meta data starts here.
586 *
587 * A. Free pointer (if we cannot overwrite object on free)
588 * B. Tracking data for SLAB_STORE_USER
589 * C. Padding to reach required alignment boundary or at mininum
590 * one word if debugging is on to be able to detect writes
591 * before the word boundary.
592 *
593 * Padding is done using 0x5a (POISON_INUSE)
594 *
595 * object + s->size
596 * Nothing is used beyond s->size.
597 *
598 * If slabcaches are merged then the objsize and inuse boundaries are mostly
599 * ignored. And therefore no slab options that rely on these boundaries
600 * may be used with merged slabcaches.
601 */
602
603 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
604 {
605 unsigned long off = s->inuse; /* The end of info */
606
607 if (s->offset)
608 /* Freepointer is placed after the object. */
609 off += sizeof(void *);
610
611 if (s->flags & SLAB_STORE_USER)
612 /* We also have user information there */
613 off += 2 * sizeof(struct track);
614
615 if (s->size == off)
616 return 1;
617
618 return check_bytes_and_report(s, page, p, "Object padding",
619 p + off, POISON_INUSE, s->size - off);
620 }
621
622 /* Check the pad bytes at the end of a slab page */
623 static int slab_pad_check(struct kmem_cache *s, struct page *page)
624 {
625 u8 *start;
626 u8 *fault;
627 u8 *end;
628 int length;
629 int remainder;
630
631 if (!(s->flags & SLAB_POISON))
632 return 1;
633
634 start = page_address(page);
635 length = (PAGE_SIZE << compound_order(page));
636 end = start + length;
637 remainder = length % s->size;
638 if (!remainder)
639 return 1;
640
641 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
642 if (!fault)
643 return 1;
644 while (end > fault && end[-1] == POISON_INUSE)
645 end--;
646
647 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
648 print_section("Padding", end - remainder, remainder);
649
650 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
651 return 0;
652 }
653
654 static int check_object(struct kmem_cache *s, struct page *page,
655 void *object, int active)
656 {
657 u8 *p = object;
658 u8 *endobject = object + s->objsize;
659
660 if (s->flags & SLAB_RED_ZONE) {
661 unsigned int red =
662 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
663
664 if (!check_bytes_and_report(s, page, object, "Redzone",
665 endobject, red, s->inuse - s->objsize))
666 return 0;
667 } else {
668 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
669 check_bytes_and_report(s, page, p, "Alignment padding",
670 endobject, POISON_INUSE, s->inuse - s->objsize);
671 }
672 }
673
674 if (s->flags & SLAB_POISON) {
675 if (!active && (s->flags & __OBJECT_POISON) &&
676 (!check_bytes_and_report(s, page, p, "Poison", p,
677 POISON_FREE, s->objsize - 1) ||
678 !check_bytes_and_report(s, page, p, "Poison",
679 p + s->objsize - 1, POISON_END, 1)))
680 return 0;
681 /*
682 * check_pad_bytes cleans up on its own.
683 */
684 check_pad_bytes(s, page, p);
685 }
686
687 if (!s->offset && active)
688 /*
689 * Object and freepointer overlap. Cannot check
690 * freepointer while object is allocated.
691 */
692 return 1;
693
694 /* Check free pointer validity */
695 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
696 object_err(s, page, p, "Freepointer corrupt");
697 /*
698 * No choice but to zap it and thus lose the remainder
699 * of the free objects in this slab. May cause
700 * another error because the object count is now wrong.
701 */
702 set_freepointer(s, p, NULL);
703 return 0;
704 }
705 return 1;
706 }
707
708 static int check_slab(struct kmem_cache *s, struct page *page)
709 {
710 int maxobj;
711
712 VM_BUG_ON(!irqs_disabled());
713
714 if (!PageSlab(page)) {
715 slab_err(s, page, "Not a valid slab page");
716 return 0;
717 }
718
719 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
720 if (page->objects > maxobj) {
721 slab_err(s, page, "objects %u > max %u",
722 s->name, page->objects, maxobj);
723 return 0;
724 }
725 if (page->inuse > page->objects) {
726 slab_err(s, page, "inuse %u > max %u",
727 s->name, page->inuse, page->objects);
728 return 0;
729 }
730 /* Slab_pad_check fixes things up after itself */
731 slab_pad_check(s, page);
732 return 1;
733 }
734
735 /*
736 * Determine if a certain object on a page is on the freelist. Must hold the
737 * slab lock to guarantee that the chains are in a consistent state.
738 */
739 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
740 {
741 int nr = 0;
742 void *fp = page->freelist;
743 void *object = NULL;
744 unsigned long max_objects;
745
746 while (fp && nr <= page->objects) {
747 if (fp == search)
748 return 1;
749 if (!check_valid_pointer(s, page, fp)) {
750 if (object) {
751 object_err(s, page, object,
752 "Freechain corrupt");
753 set_freepointer(s, object, NULL);
754 break;
755 } else {
756 slab_err(s, page, "Freepointer corrupt");
757 page->freelist = NULL;
758 page->inuse = page->objects;
759 slab_fix(s, "Freelist cleared");
760 return 0;
761 }
762 break;
763 }
764 object = fp;
765 fp = get_freepointer(s, object);
766 nr++;
767 }
768
769 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
770 if (max_objects > MAX_OBJS_PER_PAGE)
771 max_objects = MAX_OBJS_PER_PAGE;
772
773 if (page->objects != max_objects) {
774 slab_err(s, page, "Wrong number of objects. Found %d but "
775 "should be %d", page->objects, max_objects);
776 page->objects = max_objects;
777 slab_fix(s, "Number of objects adjusted.");
778 }
779 if (page->inuse != page->objects - nr) {
780 slab_err(s, page, "Wrong object count. Counter is %d but "
781 "counted were %d", page->inuse, page->objects - nr);
782 page->inuse = page->objects - nr;
783 slab_fix(s, "Object count adjusted.");
784 }
785 return search == NULL;
786 }
787
788 static void trace(struct kmem_cache *s, struct page *page, void *object,
789 int alloc)
790 {
791 if (s->flags & SLAB_TRACE) {
792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 s->name,
794 alloc ? "alloc" : "free",
795 object, page->inuse,
796 page->freelist);
797
798 if (!alloc)
799 print_section("Object", (void *)object, s->objsize);
800
801 dump_stack();
802 }
803 }
804
805 /*
806 * Tracking of fully allocated slabs for debugging purposes.
807 */
808 static void add_full(struct kmem_cache_node *n, struct page *page)
809 {
810 spin_lock(&n->list_lock);
811 list_add(&page->lru, &n->full);
812 spin_unlock(&n->list_lock);
813 }
814
815 static void remove_full(struct kmem_cache *s, struct page *page)
816 {
817 struct kmem_cache_node *n;
818
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
822 n = get_node(s, page_to_nid(page));
823
824 spin_lock(&n->list_lock);
825 list_del(&page->lru);
826 spin_unlock(&n->list_lock);
827 }
828
829 /* Tracking of the number of slabs for debugging purposes */
830 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
831 {
832 struct kmem_cache_node *n = get_node(s, node);
833
834 return atomic_long_read(&n->nr_slabs);
835 }
836
837 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
838 {
839 return atomic_long_read(&n->nr_slabs);
840 }
841
842 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
843 {
844 struct kmem_cache_node *n = get_node(s, node);
845
846 /*
847 * May be called early in order to allocate a slab for the
848 * kmem_cache_node structure. Solve the chicken-egg
849 * dilemma by deferring the increment of the count during
850 * bootstrap (see early_kmem_cache_node_alloc).
851 */
852 if (!NUMA_BUILD || n) {
853 atomic_long_inc(&n->nr_slabs);
854 atomic_long_add(objects, &n->total_objects);
855 }
856 }
857 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
858 {
859 struct kmem_cache_node *n = get_node(s, node);
860
861 atomic_long_dec(&n->nr_slabs);
862 atomic_long_sub(objects, &n->total_objects);
863 }
864
865 /* Object debug checks for alloc/free paths */
866 static void setup_object_debug(struct kmem_cache *s, struct page *page,
867 void *object)
868 {
869 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
870 return;
871
872 init_object(s, object, 0);
873 init_tracking(s, object);
874 }
875
876 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
877 void *object, unsigned long addr)
878 {
879 if (!check_slab(s, page))
880 goto bad;
881
882 if (!on_freelist(s, page, object)) {
883 object_err(s, page, object, "Object already allocated");
884 goto bad;
885 }
886
887 if (!check_valid_pointer(s, page, object)) {
888 object_err(s, page, object, "Freelist Pointer check fails");
889 goto bad;
890 }
891
892 if (!check_object(s, page, object, 0))
893 goto bad;
894
895 /* Success perform special debug activities for allocs */
896 if (s->flags & SLAB_STORE_USER)
897 set_track(s, object, TRACK_ALLOC, addr);
898 trace(s, page, object, 1);
899 init_object(s, object, 1);
900 return 1;
901
902 bad:
903 if (PageSlab(page)) {
904 /*
905 * If this is a slab page then lets do the best we can
906 * to avoid issues in the future. Marking all objects
907 * as used avoids touching the remaining objects.
908 */
909 slab_fix(s, "Marking all objects used");
910 page->inuse = page->objects;
911 page->freelist = NULL;
912 }
913 return 0;
914 }
915
916 static int free_debug_processing(struct kmem_cache *s, struct page *page,
917 void *object, unsigned long addr)
918 {
919 if (!check_slab(s, page))
920 goto fail;
921
922 if (!check_valid_pointer(s, page, object)) {
923 slab_err(s, page, "Invalid object pointer 0x%p", object);
924 goto fail;
925 }
926
927 if (on_freelist(s, page, object)) {
928 object_err(s, page, object, "Object already free");
929 goto fail;
930 }
931
932 if (!check_object(s, page, object, 1))
933 return 0;
934
935 if (unlikely(s != page->slab)) {
936 if (!PageSlab(page)) {
937 slab_err(s, page, "Attempt to free object(0x%p) "
938 "outside of slab", object);
939 } else if (!page->slab) {
940 printk(KERN_ERR
941 "SLUB <none>: no slab for object 0x%p.\n",
942 object);
943 dump_stack();
944 } else
945 object_err(s, page, object,
946 "page slab pointer corrupt.");
947 goto fail;
948 }
949
950 /* Special debug activities for freeing objects */
951 if (!PageSlubFrozen(page) && !page->freelist)
952 remove_full(s, page);
953 if (s->flags & SLAB_STORE_USER)
954 set_track(s, object, TRACK_FREE, addr);
955 trace(s, page, object, 0);
956 init_object(s, object, 0);
957 return 1;
958
959 fail:
960 slab_fix(s, "Object at 0x%p not freed", object);
961 return 0;
962 }
963
964 static int __init setup_slub_debug(char *str)
965 {
966 slub_debug = DEBUG_DEFAULT_FLAGS;
967 if (*str++ != '=' || !*str)
968 /*
969 * No options specified. Switch on full debugging.
970 */
971 goto out;
972
973 if (*str == ',')
974 /*
975 * No options but restriction on slabs. This means full
976 * debugging for slabs matching a pattern.
977 */
978 goto check_slabs;
979
980 slub_debug = 0;
981 if (*str == '-')
982 /*
983 * Switch off all debugging measures.
984 */
985 goto out;
986
987 /*
988 * Determine which debug features should be switched on
989 */
990 for (; *str && *str != ','; str++) {
991 switch (tolower(*str)) {
992 case 'f':
993 slub_debug |= SLAB_DEBUG_FREE;
994 break;
995 case 'z':
996 slub_debug |= SLAB_RED_ZONE;
997 break;
998 case 'p':
999 slub_debug |= SLAB_POISON;
1000 break;
1001 case 'u':
1002 slub_debug |= SLAB_STORE_USER;
1003 break;
1004 case 't':
1005 slub_debug |= SLAB_TRACE;
1006 break;
1007 default:
1008 printk(KERN_ERR "slub_debug option '%c' "
1009 "unknown. skipped\n", *str);
1010 }
1011 }
1012
1013 check_slabs:
1014 if (*str == ',')
1015 slub_debug_slabs = str + 1;
1016 out:
1017 return 1;
1018 }
1019
1020 __setup("slub_debug", setup_slub_debug);
1021
1022 static unsigned long kmem_cache_flags(unsigned long objsize,
1023 unsigned long flags, const char *name,
1024 void (*ctor)(void *))
1025 {
1026 /*
1027 * Enable debugging if selected on the kernel commandline.
1028 */
1029 if (slub_debug && (!slub_debug_slabs ||
1030 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1031 flags |= slub_debug;
1032
1033 return flags;
1034 }
1035 #else
1036 static inline void setup_object_debug(struct kmem_cache *s,
1037 struct page *page, void *object) {}
1038
1039 static inline int alloc_debug_processing(struct kmem_cache *s,
1040 struct page *page, void *object, unsigned long addr) { return 0; }
1041
1042 static inline int free_debug_processing(struct kmem_cache *s,
1043 struct page *page, void *object, unsigned long addr) { return 0; }
1044
1045 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 { return 1; }
1047 static inline int check_object(struct kmem_cache *s, struct page *page,
1048 void *object, int active) { return 1; }
1049 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1050 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 unsigned long flags, const char *name,
1052 void (*ctor)(void *))
1053 {
1054 return flags;
1055 }
1056 #define slub_debug 0
1057
1058 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1059 { return 0; }
1060 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1061 { return 0; }
1062 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
1064 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1065 int objects) {}
1066 #endif
1067
1068 /*
1069 * Slab allocation and freeing
1070 */
1071 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1072 struct kmem_cache_order_objects oo)
1073 {
1074 int order = oo_order(oo);
1075
1076 flags |= __GFP_NOTRACK;
1077
1078 if (node == -1)
1079 return alloc_pages(flags, order);
1080 else
1081 return alloc_pages_node(node, flags, order);
1082 }
1083
1084 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1085 {
1086 struct page *page;
1087 struct kmem_cache_order_objects oo = s->oo;
1088 gfp_t alloc_gfp;
1089
1090 flags |= s->allocflags;
1091
1092 /*
1093 * Let the initial higher-order allocation fail under memory pressure
1094 * so we fall-back to the minimum order allocation.
1095 */
1096 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1097
1098 page = alloc_slab_page(alloc_gfp, node, oo);
1099 if (unlikely(!page)) {
1100 oo = s->min;
1101 /*
1102 * Allocation may have failed due to fragmentation.
1103 * Try a lower order alloc if possible
1104 */
1105 page = alloc_slab_page(flags, node, oo);
1106 if (!page)
1107 return NULL;
1108
1109 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1110 }
1111
1112 if (kmemcheck_enabled
1113 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1114 {
1115 int pages = 1 << oo_order(oo);
1116
1117 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1118
1119 /*
1120 * Objects from caches that have a constructor don't get
1121 * cleared when they're allocated, so we need to do it here.
1122 */
1123 if (s->ctor)
1124 kmemcheck_mark_uninitialized_pages(page, pages);
1125 else
1126 kmemcheck_mark_unallocated_pages(page, pages);
1127 }
1128
1129 page->objects = oo_objects(oo);
1130 mod_zone_page_state(page_zone(page),
1131 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1132 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1133 1 << oo_order(oo));
1134
1135 return page;
1136 }
1137
1138 static void setup_object(struct kmem_cache *s, struct page *page,
1139 void *object)
1140 {
1141 setup_object_debug(s, page, object);
1142 if (unlikely(s->ctor))
1143 s->ctor(object);
1144 }
1145
1146 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1147 {
1148 struct page *page;
1149 void *start;
1150 void *last;
1151 void *p;
1152
1153 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1154
1155 page = allocate_slab(s,
1156 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1157 if (!page)
1158 goto out;
1159
1160 inc_slabs_node(s, page_to_nid(page), page->objects);
1161 page->slab = s;
1162 page->flags |= 1 << PG_slab;
1163 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1164 SLAB_STORE_USER | SLAB_TRACE))
1165 __SetPageSlubDebug(page);
1166
1167 start = page_address(page);
1168
1169 if (unlikely(s->flags & SLAB_POISON))
1170 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1171
1172 last = start;
1173 for_each_object(p, s, start, page->objects) {
1174 setup_object(s, page, last);
1175 set_freepointer(s, last, p);
1176 last = p;
1177 }
1178 setup_object(s, page, last);
1179 set_freepointer(s, last, NULL);
1180
1181 page->freelist = start;
1182 page->inuse = 0;
1183 out:
1184 return page;
1185 }
1186
1187 static void __free_slab(struct kmem_cache *s, struct page *page)
1188 {
1189 int order = compound_order(page);
1190 int pages = 1 << order;
1191
1192 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1193 void *p;
1194
1195 slab_pad_check(s, page);
1196 for_each_object(p, s, page_address(page),
1197 page->objects)
1198 check_object(s, page, p, 0);
1199 __ClearPageSlubDebug(page);
1200 }
1201
1202 kmemcheck_free_shadow(page, compound_order(page));
1203
1204 mod_zone_page_state(page_zone(page),
1205 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1206 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1207 -pages);
1208
1209 __ClearPageSlab(page);
1210 reset_page_mapcount(page);
1211 if (current->reclaim_state)
1212 current->reclaim_state->reclaimed_slab += pages;
1213 __free_pages(page, order);
1214 }
1215
1216 static void rcu_free_slab(struct rcu_head *h)
1217 {
1218 struct page *page;
1219
1220 page = container_of((struct list_head *)h, struct page, lru);
1221 __free_slab(page->slab, page);
1222 }
1223
1224 static void free_slab(struct kmem_cache *s, struct page *page)
1225 {
1226 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1227 /*
1228 * RCU free overloads the RCU head over the LRU
1229 */
1230 struct rcu_head *head = (void *)&page->lru;
1231
1232 call_rcu(head, rcu_free_slab);
1233 } else
1234 __free_slab(s, page);
1235 }
1236
1237 static void discard_slab(struct kmem_cache *s, struct page *page)
1238 {
1239 dec_slabs_node(s, page_to_nid(page), page->objects);
1240 free_slab(s, page);
1241 }
1242
1243 /*
1244 * Per slab locking using the pagelock
1245 */
1246 static __always_inline void slab_lock(struct page *page)
1247 {
1248 bit_spin_lock(PG_locked, &page->flags);
1249 }
1250
1251 static __always_inline void slab_unlock(struct page *page)
1252 {
1253 __bit_spin_unlock(PG_locked, &page->flags);
1254 }
1255
1256 static __always_inline int slab_trylock(struct page *page)
1257 {
1258 int rc = 1;
1259
1260 rc = bit_spin_trylock(PG_locked, &page->flags);
1261 return rc;
1262 }
1263
1264 /*
1265 * Management of partially allocated slabs
1266 */
1267 static void add_partial(struct kmem_cache_node *n,
1268 struct page *page, int tail)
1269 {
1270 spin_lock(&n->list_lock);
1271 n->nr_partial++;
1272 if (tail)
1273 list_add_tail(&page->lru, &n->partial);
1274 else
1275 list_add(&page->lru, &n->partial);
1276 spin_unlock(&n->list_lock);
1277 }
1278
1279 static void remove_partial(struct kmem_cache *s, struct page *page)
1280 {
1281 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1282
1283 spin_lock(&n->list_lock);
1284 list_del(&page->lru);
1285 n->nr_partial--;
1286 spin_unlock(&n->list_lock);
1287 }
1288
1289 /*
1290 * Lock slab and remove from the partial list.
1291 *
1292 * Must hold list_lock.
1293 */
1294 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1295 struct page *page)
1296 {
1297 if (slab_trylock(page)) {
1298 list_del(&page->lru);
1299 n->nr_partial--;
1300 __SetPageSlubFrozen(page);
1301 return 1;
1302 }
1303 return 0;
1304 }
1305
1306 /*
1307 * Try to allocate a partial slab from a specific node.
1308 */
1309 static struct page *get_partial_node(struct kmem_cache_node *n)
1310 {
1311 struct page *page;
1312
1313 /*
1314 * Racy check. If we mistakenly see no partial slabs then we
1315 * just allocate an empty slab. If we mistakenly try to get a
1316 * partial slab and there is none available then get_partials()
1317 * will return NULL.
1318 */
1319 if (!n || !n->nr_partial)
1320 return NULL;
1321
1322 spin_lock(&n->list_lock);
1323 list_for_each_entry(page, &n->partial, lru)
1324 if (lock_and_freeze_slab(n, page))
1325 goto out;
1326 page = NULL;
1327 out:
1328 spin_unlock(&n->list_lock);
1329 return page;
1330 }
1331
1332 /*
1333 * Get a page from somewhere. Search in increasing NUMA distances.
1334 */
1335 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1336 {
1337 #ifdef CONFIG_NUMA
1338 struct zonelist *zonelist;
1339 struct zoneref *z;
1340 struct zone *zone;
1341 enum zone_type high_zoneidx = gfp_zone(flags);
1342 struct page *page;
1343
1344 /*
1345 * The defrag ratio allows a configuration of the tradeoffs between
1346 * inter node defragmentation and node local allocations. A lower
1347 * defrag_ratio increases the tendency to do local allocations
1348 * instead of attempting to obtain partial slabs from other nodes.
1349 *
1350 * If the defrag_ratio is set to 0 then kmalloc() always
1351 * returns node local objects. If the ratio is higher then kmalloc()
1352 * may return off node objects because partial slabs are obtained
1353 * from other nodes and filled up.
1354 *
1355 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1356 * defrag_ratio = 1000) then every (well almost) allocation will
1357 * first attempt to defrag slab caches on other nodes. This means
1358 * scanning over all nodes to look for partial slabs which may be
1359 * expensive if we do it every time we are trying to find a slab
1360 * with available objects.
1361 */
1362 if (!s->remote_node_defrag_ratio ||
1363 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1364 return NULL;
1365
1366 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1367 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1368 struct kmem_cache_node *n;
1369
1370 n = get_node(s, zone_to_nid(zone));
1371
1372 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1373 n->nr_partial > s->min_partial) {
1374 page = get_partial_node(n);
1375 if (page)
1376 return page;
1377 }
1378 }
1379 #endif
1380 return NULL;
1381 }
1382
1383 /*
1384 * Get a partial page, lock it and return it.
1385 */
1386 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1387 {
1388 struct page *page;
1389 int searchnode = (node == -1) ? numa_node_id() : node;
1390
1391 page = get_partial_node(get_node(s, searchnode));
1392 if (page || (flags & __GFP_THISNODE))
1393 return page;
1394
1395 return get_any_partial(s, flags);
1396 }
1397
1398 /*
1399 * Move a page back to the lists.
1400 *
1401 * Must be called with the slab lock held.
1402 *
1403 * On exit the slab lock will have been dropped.
1404 */
1405 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1406 {
1407 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1408 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1409
1410 __ClearPageSlubFrozen(page);
1411 if (page->inuse) {
1412
1413 if (page->freelist) {
1414 add_partial(n, page, tail);
1415 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1416 } else {
1417 stat(c, DEACTIVATE_FULL);
1418 if (SLABDEBUG && PageSlubDebug(page) &&
1419 (s->flags & SLAB_STORE_USER))
1420 add_full(n, page);
1421 }
1422 slab_unlock(page);
1423 } else {
1424 stat(c, DEACTIVATE_EMPTY);
1425 if (n->nr_partial < s->min_partial) {
1426 /*
1427 * Adding an empty slab to the partial slabs in order
1428 * to avoid page allocator overhead. This slab needs
1429 * to come after the other slabs with objects in
1430 * so that the others get filled first. That way the
1431 * size of the partial list stays small.
1432 *
1433 * kmem_cache_shrink can reclaim any empty slabs from
1434 * the partial list.
1435 */
1436 add_partial(n, page, 1);
1437 slab_unlock(page);
1438 } else {
1439 slab_unlock(page);
1440 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1441 discard_slab(s, page);
1442 }
1443 }
1444 }
1445
1446 /*
1447 * Remove the cpu slab
1448 */
1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 {
1451 struct page *page = c->page;
1452 int tail = 1;
1453
1454 if (page->freelist)
1455 stat(c, DEACTIVATE_REMOTE_FREES);
1456 /*
1457 * Merge cpu freelist into slab freelist. Typically we get here
1458 * because both freelists are empty. So this is unlikely
1459 * to occur.
1460 */
1461 while (unlikely(c->freelist)) {
1462 void **object;
1463
1464 tail = 0; /* Hot objects. Put the slab first */
1465
1466 /* Retrieve object from cpu_freelist */
1467 object = c->freelist;
1468 c->freelist = c->freelist[c->offset];
1469
1470 /* And put onto the regular freelist */
1471 object[c->offset] = page->freelist;
1472 page->freelist = object;
1473 page->inuse--;
1474 }
1475 c->page = NULL;
1476 unfreeze_slab(s, page, tail);
1477 }
1478
1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1480 {
1481 stat(c, CPUSLAB_FLUSH);
1482 slab_lock(c->page);
1483 deactivate_slab(s, c);
1484 }
1485
1486 /*
1487 * Flush cpu slab.
1488 *
1489 * Called from IPI handler with interrupts disabled.
1490 */
1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1492 {
1493 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1494
1495 if (likely(c && c->page))
1496 flush_slab(s, c);
1497 }
1498
1499 static void flush_cpu_slab(void *d)
1500 {
1501 struct kmem_cache *s = d;
1502
1503 __flush_cpu_slab(s, smp_processor_id());
1504 }
1505
1506 static void flush_all(struct kmem_cache *s)
1507 {
1508 on_each_cpu(flush_cpu_slab, s, 1);
1509 }
1510
1511 /*
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1514 */
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1516 {
1517 #ifdef CONFIG_NUMA
1518 if (node != -1 && c->node != node)
1519 return 0;
1520 #endif
1521 return 1;
1522 }
1523
1524 static int count_free(struct page *page)
1525 {
1526 return page->objects - page->inuse;
1527 }
1528
1529 static unsigned long count_partial(struct kmem_cache_node *n,
1530 int (*get_count)(struct page *))
1531 {
1532 unsigned long flags;
1533 unsigned long x = 0;
1534 struct page *page;
1535
1536 spin_lock_irqsave(&n->list_lock, flags);
1537 list_for_each_entry(page, &n->partial, lru)
1538 x += get_count(page);
1539 spin_unlock_irqrestore(&n->list_lock, flags);
1540 return x;
1541 }
1542
1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1544 {
1545 #ifdef CONFIG_SLUB_DEBUG
1546 return atomic_long_read(&n->total_objects);
1547 #else
1548 return 0;
1549 #endif
1550 }
1551
1552 static noinline void
1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554 {
1555 int node;
1556
1557 printk(KERN_WARNING
1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1559 nid, gfpflags);
1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1561 "default order: %d, min order: %d\n", s->name, s->objsize,
1562 s->size, oo_order(s->oo), oo_order(s->min));
1563
1564 for_each_online_node(node) {
1565 struct kmem_cache_node *n = get_node(s, node);
1566 unsigned long nr_slabs;
1567 unsigned long nr_objs;
1568 unsigned long nr_free;
1569
1570 if (!n)
1571 continue;
1572
1573 nr_free = count_partial(n, count_free);
1574 nr_slabs = node_nr_slabs(n);
1575 nr_objs = node_nr_objs(n);
1576
1577 printk(KERN_WARNING
1578 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1579 node, nr_slabs, nr_objs, nr_free);
1580 }
1581 }
1582
1583 /*
1584 * Slow path. The lockless freelist is empty or we need to perform
1585 * debugging duties.
1586 *
1587 * Interrupts are disabled.
1588 *
1589 * Processing is still very fast if new objects have been freed to the
1590 * regular freelist. In that case we simply take over the regular freelist
1591 * as the lockless freelist and zap the regular freelist.
1592 *
1593 * If that is not working then we fall back to the partial lists. We take the
1594 * first element of the freelist as the object to allocate now and move the
1595 * rest of the freelist to the lockless freelist.
1596 *
1597 * And if we were unable to get a new slab from the partial slab lists then
1598 * we need to allocate a new slab. This is the slowest path since it involves
1599 * a call to the page allocator and the setup of a new slab.
1600 */
1601 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1602 unsigned long addr, struct kmem_cache_cpu *c)
1603 {
1604 void **object;
1605 struct page *new;
1606
1607 /* We handle __GFP_ZERO in the caller */
1608 gfpflags &= ~__GFP_ZERO;
1609
1610 if (!c->page)
1611 goto new_slab;
1612
1613 slab_lock(c->page);
1614 if (unlikely(!node_match(c, node)))
1615 goto another_slab;
1616
1617 stat(c, ALLOC_REFILL);
1618
1619 load_freelist:
1620 object = c->page->freelist;
1621 if (unlikely(!object))
1622 goto another_slab;
1623 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1624 goto debug;
1625
1626 c->freelist = object[c->offset];
1627 c->page->inuse = c->page->objects;
1628 c->page->freelist = NULL;
1629 c->node = page_to_nid(c->page);
1630 unlock_out:
1631 slab_unlock(c->page);
1632 stat(c, ALLOC_SLOWPATH);
1633 return object;
1634
1635 another_slab:
1636 deactivate_slab(s, c);
1637
1638 new_slab:
1639 new = get_partial(s, gfpflags, node);
1640 if (new) {
1641 c->page = new;
1642 stat(c, ALLOC_FROM_PARTIAL);
1643 goto load_freelist;
1644 }
1645
1646 if (gfpflags & __GFP_WAIT)
1647 local_irq_enable();
1648
1649 new = new_slab(s, gfpflags, node);
1650
1651 if (gfpflags & __GFP_WAIT)
1652 local_irq_disable();
1653
1654 if (new) {
1655 c = get_cpu_slab(s, smp_processor_id());
1656 stat(c, ALLOC_SLAB);
1657 if (c->page)
1658 flush_slab(s, c);
1659 slab_lock(new);
1660 __SetPageSlubFrozen(new);
1661 c->page = new;
1662 goto load_freelist;
1663 }
1664 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1665 slab_out_of_memory(s, gfpflags, node);
1666 return NULL;
1667 debug:
1668 if (!alloc_debug_processing(s, c->page, object, addr))
1669 goto another_slab;
1670
1671 c->page->inuse++;
1672 c->page->freelist = object[c->offset];
1673 c->node = -1;
1674 goto unlock_out;
1675 }
1676
1677 /*
1678 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1679 * have the fastpath folded into their functions. So no function call
1680 * overhead for requests that can be satisfied on the fastpath.
1681 *
1682 * The fastpath works by first checking if the lockless freelist can be used.
1683 * If not then __slab_alloc is called for slow processing.
1684 *
1685 * Otherwise we can simply pick the next object from the lockless free list.
1686 */
1687 static __always_inline void *slab_alloc(struct kmem_cache *s,
1688 gfp_t gfpflags, int node, unsigned long addr)
1689 {
1690 void **object;
1691 struct kmem_cache_cpu *c;
1692 unsigned long flags;
1693 unsigned int objsize;
1694
1695 gfpflags &= gfp_allowed_mask;
1696
1697 lockdep_trace_alloc(gfpflags);
1698 might_sleep_if(gfpflags & __GFP_WAIT);
1699
1700 if (should_failslab(s->objsize, gfpflags))
1701 return NULL;
1702
1703 local_irq_save(flags);
1704 c = get_cpu_slab(s, smp_processor_id());
1705 objsize = c->objsize;
1706 if (unlikely(!c->freelist || !node_match(c, node)))
1707
1708 object = __slab_alloc(s, gfpflags, node, addr, c);
1709
1710 else {
1711 object = c->freelist;
1712 c->freelist = object[c->offset];
1713 stat(c, ALLOC_FASTPATH);
1714 }
1715 local_irq_restore(flags);
1716
1717 if (unlikely((gfpflags & __GFP_ZERO) && object))
1718 memset(object, 0, objsize);
1719
1720 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
1721 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1722
1723 return object;
1724 }
1725
1726 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1727 {
1728 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1729
1730 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1731
1732 return ret;
1733 }
1734 EXPORT_SYMBOL(kmem_cache_alloc);
1735
1736 #ifdef CONFIG_KMEMTRACE
1737 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1738 {
1739 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1740 }
1741 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1742 #endif
1743
1744 #ifdef CONFIG_NUMA
1745 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1746 {
1747 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1748
1749 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1750 s->objsize, s->size, gfpflags, node);
1751
1752 return ret;
1753 }
1754 EXPORT_SYMBOL(kmem_cache_alloc_node);
1755 #endif
1756
1757 #ifdef CONFIG_KMEMTRACE
1758 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1759 gfp_t gfpflags,
1760 int node)
1761 {
1762 return slab_alloc(s, gfpflags, node, _RET_IP_);
1763 }
1764 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1765 #endif
1766
1767 /*
1768 * Slow patch handling. This may still be called frequently since objects
1769 * have a longer lifetime than the cpu slabs in most processing loads.
1770 *
1771 * So we still attempt to reduce cache line usage. Just take the slab
1772 * lock and free the item. If there is no additional partial page
1773 * handling required then we can return immediately.
1774 */
1775 static void __slab_free(struct kmem_cache *s, struct page *page,
1776 void *x, unsigned long addr, unsigned int offset)
1777 {
1778 void *prior;
1779 void **object = (void *)x;
1780 struct kmem_cache_cpu *c;
1781
1782 c = get_cpu_slab(s, raw_smp_processor_id());
1783 stat(c, FREE_SLOWPATH);
1784 slab_lock(page);
1785
1786 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1787 goto debug;
1788
1789 checks_ok:
1790 prior = object[offset] = page->freelist;
1791 page->freelist = object;
1792 page->inuse--;
1793
1794 if (unlikely(PageSlubFrozen(page))) {
1795 stat(c, FREE_FROZEN);
1796 goto out_unlock;
1797 }
1798
1799 if (unlikely(!page->inuse))
1800 goto slab_empty;
1801
1802 /*
1803 * Objects left in the slab. If it was not on the partial list before
1804 * then add it.
1805 */
1806 if (unlikely(!prior)) {
1807 add_partial(get_node(s, page_to_nid(page)), page, 1);
1808 stat(c, FREE_ADD_PARTIAL);
1809 }
1810
1811 out_unlock:
1812 slab_unlock(page);
1813 return;
1814
1815 slab_empty:
1816 if (prior) {
1817 /*
1818 * Slab still on the partial list.
1819 */
1820 remove_partial(s, page);
1821 stat(c, FREE_REMOVE_PARTIAL);
1822 }
1823 slab_unlock(page);
1824 stat(c, FREE_SLAB);
1825 discard_slab(s, page);
1826 return;
1827
1828 debug:
1829 if (!free_debug_processing(s, page, x, addr))
1830 goto out_unlock;
1831 goto checks_ok;
1832 }
1833
1834 /*
1835 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1836 * can perform fastpath freeing without additional function calls.
1837 *
1838 * The fastpath is only possible if we are freeing to the current cpu slab
1839 * of this processor. This typically the case if we have just allocated
1840 * the item before.
1841 *
1842 * If fastpath is not possible then fall back to __slab_free where we deal
1843 * with all sorts of special processing.
1844 */
1845 static __always_inline void slab_free(struct kmem_cache *s,
1846 struct page *page, void *x, unsigned long addr)
1847 {
1848 void **object = (void *)x;
1849 struct kmem_cache_cpu *c;
1850 unsigned long flags;
1851
1852 kmemleak_free_recursive(x, s->flags);
1853 local_irq_save(flags);
1854 c = get_cpu_slab(s, smp_processor_id());
1855 kmemcheck_slab_free(s, object, c->objsize);
1856 debug_check_no_locks_freed(object, c->objsize);
1857 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1858 debug_check_no_obj_freed(object, c->objsize);
1859 if (likely(page == c->page && c->node >= 0)) {
1860 object[c->offset] = c->freelist;
1861 c->freelist = object;
1862 stat(c, FREE_FASTPATH);
1863 } else
1864 __slab_free(s, page, x, addr, c->offset);
1865
1866 local_irq_restore(flags);
1867 }
1868
1869 void kmem_cache_free(struct kmem_cache *s, void *x)
1870 {
1871 struct page *page;
1872
1873 page = virt_to_head_page(x);
1874
1875 slab_free(s, page, x, _RET_IP_);
1876
1877 trace_kmem_cache_free(_RET_IP_, x);
1878 }
1879 EXPORT_SYMBOL(kmem_cache_free);
1880
1881 /* Figure out on which slab page the object resides */
1882 static struct page *get_object_page(const void *x)
1883 {
1884 struct page *page = virt_to_head_page(x);
1885
1886 if (!PageSlab(page))
1887 return NULL;
1888
1889 return page;
1890 }
1891
1892 /*
1893 * Object placement in a slab is made very easy because we always start at
1894 * offset 0. If we tune the size of the object to the alignment then we can
1895 * get the required alignment by putting one properly sized object after
1896 * another.
1897 *
1898 * Notice that the allocation order determines the sizes of the per cpu
1899 * caches. Each processor has always one slab available for allocations.
1900 * Increasing the allocation order reduces the number of times that slabs
1901 * must be moved on and off the partial lists and is therefore a factor in
1902 * locking overhead.
1903 */
1904
1905 /*
1906 * Mininum / Maximum order of slab pages. This influences locking overhead
1907 * and slab fragmentation. A higher order reduces the number of partial slabs
1908 * and increases the number of allocations possible without having to
1909 * take the list_lock.
1910 */
1911 static int slub_min_order;
1912 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1913 static int slub_min_objects;
1914
1915 /*
1916 * Merge control. If this is set then no merging of slab caches will occur.
1917 * (Could be removed. This was introduced to pacify the merge skeptics.)
1918 */
1919 static int slub_nomerge;
1920
1921 /*
1922 * Calculate the order of allocation given an slab object size.
1923 *
1924 * The order of allocation has significant impact on performance and other
1925 * system components. Generally order 0 allocations should be preferred since
1926 * order 0 does not cause fragmentation in the page allocator. Larger objects
1927 * be problematic to put into order 0 slabs because there may be too much
1928 * unused space left. We go to a higher order if more than 1/16th of the slab
1929 * would be wasted.
1930 *
1931 * In order to reach satisfactory performance we must ensure that a minimum
1932 * number of objects is in one slab. Otherwise we may generate too much
1933 * activity on the partial lists which requires taking the list_lock. This is
1934 * less a concern for large slabs though which are rarely used.
1935 *
1936 * slub_max_order specifies the order where we begin to stop considering the
1937 * number of objects in a slab as critical. If we reach slub_max_order then
1938 * we try to keep the page order as low as possible. So we accept more waste
1939 * of space in favor of a small page order.
1940 *
1941 * Higher order allocations also allow the placement of more objects in a
1942 * slab and thereby reduce object handling overhead. If the user has
1943 * requested a higher mininum order then we start with that one instead of
1944 * the smallest order which will fit the object.
1945 */
1946 static inline int slab_order(int size, int min_objects,
1947 int max_order, int fract_leftover)
1948 {
1949 int order;
1950 int rem;
1951 int min_order = slub_min_order;
1952
1953 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1954 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1955
1956 for (order = max(min_order,
1957 fls(min_objects * size - 1) - PAGE_SHIFT);
1958 order <= max_order; order++) {
1959
1960 unsigned long slab_size = PAGE_SIZE << order;
1961
1962 if (slab_size < min_objects * size)
1963 continue;
1964
1965 rem = slab_size % size;
1966
1967 if (rem <= slab_size / fract_leftover)
1968 break;
1969
1970 }
1971
1972 return order;
1973 }
1974
1975 static inline int calculate_order(int size)
1976 {
1977 int order;
1978 int min_objects;
1979 int fraction;
1980 int max_objects;
1981
1982 /*
1983 * Attempt to find best configuration for a slab. This
1984 * works by first attempting to generate a layout with
1985 * the best configuration and backing off gradually.
1986 *
1987 * First we reduce the acceptable waste in a slab. Then
1988 * we reduce the minimum objects required in a slab.
1989 */
1990 min_objects = slub_min_objects;
1991 if (!min_objects)
1992 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1993 max_objects = (PAGE_SIZE << slub_max_order)/size;
1994 min_objects = min(min_objects, max_objects);
1995
1996 while (min_objects > 1) {
1997 fraction = 16;
1998 while (fraction >= 4) {
1999 order = slab_order(size, min_objects,
2000 slub_max_order, fraction);
2001 if (order <= slub_max_order)
2002 return order;
2003 fraction /= 2;
2004 }
2005 min_objects --;
2006 }
2007
2008 /*
2009 * We were unable to place multiple objects in a slab. Now
2010 * lets see if we can place a single object there.
2011 */
2012 order = slab_order(size, 1, slub_max_order, 1);
2013 if (order <= slub_max_order)
2014 return order;
2015
2016 /*
2017 * Doh this slab cannot be placed using slub_max_order.
2018 */
2019 order = slab_order(size, 1, MAX_ORDER, 1);
2020 if (order < MAX_ORDER)
2021 return order;
2022 return -ENOSYS;
2023 }
2024
2025 /*
2026 * Figure out what the alignment of the objects will be.
2027 */
2028 static unsigned long calculate_alignment(unsigned long flags,
2029 unsigned long align, unsigned long size)
2030 {
2031 /*
2032 * If the user wants hardware cache aligned objects then follow that
2033 * suggestion if the object is sufficiently large.
2034 *
2035 * The hardware cache alignment cannot override the specified
2036 * alignment though. If that is greater then use it.
2037 */
2038 if (flags & SLAB_HWCACHE_ALIGN) {
2039 unsigned long ralign = cache_line_size();
2040 while (size <= ralign / 2)
2041 ralign /= 2;
2042 align = max(align, ralign);
2043 }
2044
2045 if (align < ARCH_SLAB_MINALIGN)
2046 align = ARCH_SLAB_MINALIGN;
2047
2048 return ALIGN(align, sizeof(void *));
2049 }
2050
2051 static void init_kmem_cache_cpu(struct kmem_cache *s,
2052 struct kmem_cache_cpu *c)
2053 {
2054 c->page = NULL;
2055 c->freelist = NULL;
2056 c->node = 0;
2057 c->offset = s->offset / sizeof(void *);
2058 c->objsize = s->objsize;
2059 #ifdef CONFIG_SLUB_STATS
2060 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2061 #endif
2062 }
2063
2064 static void
2065 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2066 {
2067 n->nr_partial = 0;
2068 spin_lock_init(&n->list_lock);
2069 INIT_LIST_HEAD(&n->partial);
2070 #ifdef CONFIG_SLUB_DEBUG
2071 atomic_long_set(&n->nr_slabs, 0);
2072 atomic_long_set(&n->total_objects, 0);
2073 INIT_LIST_HEAD(&n->full);
2074 #endif
2075 }
2076
2077 #ifdef CONFIG_SMP
2078 /*
2079 * Per cpu array for per cpu structures.
2080 *
2081 * The per cpu array places all kmem_cache_cpu structures from one processor
2082 * close together meaning that it becomes possible that multiple per cpu
2083 * structures are contained in one cacheline. This may be particularly
2084 * beneficial for the kmalloc caches.
2085 *
2086 * A desktop system typically has around 60-80 slabs. With 100 here we are
2087 * likely able to get per cpu structures for all caches from the array defined
2088 * here. We must be able to cover all kmalloc caches during bootstrap.
2089 *
2090 * If the per cpu array is exhausted then fall back to kmalloc
2091 * of individual cachelines. No sharing is possible then.
2092 */
2093 #define NR_KMEM_CACHE_CPU 100
2094
2095 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2096 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2097
2098 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2099 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2100
2101 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2102 int cpu, gfp_t flags)
2103 {
2104 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2105
2106 if (c)
2107 per_cpu(kmem_cache_cpu_free, cpu) =
2108 (void *)c->freelist;
2109 else {
2110 /* Table overflow: So allocate ourselves */
2111 c = kmalloc_node(
2112 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2113 flags, cpu_to_node(cpu));
2114 if (!c)
2115 return NULL;
2116 }
2117
2118 init_kmem_cache_cpu(s, c);
2119 return c;
2120 }
2121
2122 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2123 {
2124 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2125 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2126 kfree(c);
2127 return;
2128 }
2129 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2130 per_cpu(kmem_cache_cpu_free, cpu) = c;
2131 }
2132
2133 static void free_kmem_cache_cpus(struct kmem_cache *s)
2134 {
2135 int cpu;
2136
2137 for_each_online_cpu(cpu) {
2138 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2139
2140 if (c) {
2141 s->cpu_slab[cpu] = NULL;
2142 free_kmem_cache_cpu(c, cpu);
2143 }
2144 }
2145 }
2146
2147 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2148 {
2149 int cpu;
2150
2151 for_each_online_cpu(cpu) {
2152 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2153
2154 if (c)
2155 continue;
2156
2157 c = alloc_kmem_cache_cpu(s, cpu, flags);
2158 if (!c) {
2159 free_kmem_cache_cpus(s);
2160 return 0;
2161 }
2162 s->cpu_slab[cpu] = c;
2163 }
2164 return 1;
2165 }
2166
2167 /*
2168 * Initialize the per cpu array.
2169 */
2170 static void init_alloc_cpu_cpu(int cpu)
2171 {
2172 int i;
2173
2174 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2175 return;
2176
2177 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2178 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2179
2180 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2181 }
2182
2183 static void __init init_alloc_cpu(void)
2184 {
2185 int cpu;
2186
2187 for_each_online_cpu(cpu)
2188 init_alloc_cpu_cpu(cpu);
2189 }
2190
2191 #else
2192 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2193 static inline void init_alloc_cpu(void) {}
2194
2195 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2196 {
2197 init_kmem_cache_cpu(s, &s->cpu_slab);
2198 return 1;
2199 }
2200 #endif
2201
2202 #ifdef CONFIG_NUMA
2203 /*
2204 * No kmalloc_node yet so do it by hand. We know that this is the first
2205 * slab on the node for this slabcache. There are no concurrent accesses
2206 * possible.
2207 *
2208 * Note that this function only works on the kmalloc_node_cache
2209 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2210 * memory on a fresh node that has no slab structures yet.
2211 */
2212 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2213 {
2214 struct page *page;
2215 struct kmem_cache_node *n;
2216 unsigned long flags;
2217
2218 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2219
2220 page = new_slab(kmalloc_caches, gfpflags, node);
2221
2222 BUG_ON(!page);
2223 if (page_to_nid(page) != node) {
2224 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2225 "node %d\n", node);
2226 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2227 "in order to be able to continue\n");
2228 }
2229
2230 n = page->freelist;
2231 BUG_ON(!n);
2232 page->freelist = get_freepointer(kmalloc_caches, n);
2233 page->inuse++;
2234 kmalloc_caches->node[node] = n;
2235 #ifdef CONFIG_SLUB_DEBUG
2236 init_object(kmalloc_caches, n, 1);
2237 init_tracking(kmalloc_caches, n);
2238 #endif
2239 init_kmem_cache_node(n, kmalloc_caches);
2240 inc_slabs_node(kmalloc_caches, node, page->objects);
2241
2242 /*
2243 * lockdep requires consistent irq usage for each lock
2244 * so even though there cannot be a race this early in
2245 * the boot sequence, we still disable irqs.
2246 */
2247 local_irq_save(flags);
2248 add_partial(n, page, 0);
2249 local_irq_restore(flags);
2250 }
2251
2252 static void free_kmem_cache_nodes(struct kmem_cache *s)
2253 {
2254 int node;
2255
2256 for_each_node_state(node, N_NORMAL_MEMORY) {
2257 struct kmem_cache_node *n = s->node[node];
2258 if (n && n != &s->local_node)
2259 kmem_cache_free(kmalloc_caches, n);
2260 s->node[node] = NULL;
2261 }
2262 }
2263
2264 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2265 {
2266 int node;
2267 int local_node;
2268
2269 if (slab_state >= UP)
2270 local_node = page_to_nid(virt_to_page(s));
2271 else
2272 local_node = 0;
2273
2274 for_each_node_state(node, N_NORMAL_MEMORY) {
2275 struct kmem_cache_node *n;
2276
2277 if (local_node == node)
2278 n = &s->local_node;
2279 else {
2280 if (slab_state == DOWN) {
2281 early_kmem_cache_node_alloc(gfpflags, node);
2282 continue;
2283 }
2284 n = kmem_cache_alloc_node(kmalloc_caches,
2285 gfpflags, node);
2286
2287 if (!n) {
2288 free_kmem_cache_nodes(s);
2289 return 0;
2290 }
2291
2292 }
2293 s->node[node] = n;
2294 init_kmem_cache_node(n, s);
2295 }
2296 return 1;
2297 }
2298 #else
2299 static void free_kmem_cache_nodes(struct kmem_cache *s)
2300 {
2301 }
2302
2303 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2304 {
2305 init_kmem_cache_node(&s->local_node, s);
2306 return 1;
2307 }
2308 #endif
2309
2310 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2311 {
2312 if (min < MIN_PARTIAL)
2313 min = MIN_PARTIAL;
2314 else if (min > MAX_PARTIAL)
2315 min = MAX_PARTIAL;
2316 s->min_partial = min;
2317 }
2318
2319 /*
2320 * calculate_sizes() determines the order and the distribution of data within
2321 * a slab object.
2322 */
2323 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2324 {
2325 unsigned long flags = s->flags;
2326 unsigned long size = s->objsize;
2327 unsigned long align = s->align;
2328 int order;
2329
2330 /*
2331 * Round up object size to the next word boundary. We can only
2332 * place the free pointer at word boundaries and this determines
2333 * the possible location of the free pointer.
2334 */
2335 size = ALIGN(size, sizeof(void *));
2336
2337 #ifdef CONFIG_SLUB_DEBUG
2338 /*
2339 * Determine if we can poison the object itself. If the user of
2340 * the slab may touch the object after free or before allocation
2341 * then we should never poison the object itself.
2342 */
2343 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2344 !s->ctor)
2345 s->flags |= __OBJECT_POISON;
2346 else
2347 s->flags &= ~__OBJECT_POISON;
2348
2349
2350 /*
2351 * If we are Redzoning then check if there is some space between the
2352 * end of the object and the free pointer. If not then add an
2353 * additional word to have some bytes to store Redzone information.
2354 */
2355 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2356 size += sizeof(void *);
2357 #endif
2358
2359 /*
2360 * With that we have determined the number of bytes in actual use
2361 * by the object. This is the potential offset to the free pointer.
2362 */
2363 s->inuse = size;
2364
2365 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2366 s->ctor)) {
2367 /*
2368 * Relocate free pointer after the object if it is not
2369 * permitted to overwrite the first word of the object on
2370 * kmem_cache_free.
2371 *
2372 * This is the case if we do RCU, have a constructor or
2373 * destructor or are poisoning the objects.
2374 */
2375 s->offset = size;
2376 size += sizeof(void *);
2377 }
2378
2379 #ifdef CONFIG_SLUB_DEBUG
2380 if (flags & SLAB_STORE_USER)
2381 /*
2382 * Need to store information about allocs and frees after
2383 * the object.
2384 */
2385 size += 2 * sizeof(struct track);
2386
2387 if (flags & SLAB_RED_ZONE)
2388 /*
2389 * Add some empty padding so that we can catch
2390 * overwrites from earlier objects rather than let
2391 * tracking information or the free pointer be
2392 * corrupted if a user writes before the start
2393 * of the object.
2394 */
2395 size += sizeof(void *);
2396 #endif
2397
2398 /*
2399 * Determine the alignment based on various parameters that the
2400 * user specified and the dynamic determination of cache line size
2401 * on bootup.
2402 */
2403 align = calculate_alignment(flags, align, s->objsize);
2404
2405 /*
2406 * SLUB stores one object immediately after another beginning from
2407 * offset 0. In order to align the objects we have to simply size
2408 * each object to conform to the alignment.
2409 */
2410 size = ALIGN(size, align);
2411 s->size = size;
2412 if (forced_order >= 0)
2413 order = forced_order;
2414 else
2415 order = calculate_order(size);
2416
2417 if (order < 0)
2418 return 0;
2419
2420 s->allocflags = 0;
2421 if (order)
2422 s->allocflags |= __GFP_COMP;
2423
2424 if (s->flags & SLAB_CACHE_DMA)
2425 s->allocflags |= SLUB_DMA;
2426
2427 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2428 s->allocflags |= __GFP_RECLAIMABLE;
2429
2430 /*
2431 * Determine the number of objects per slab
2432 */
2433 s->oo = oo_make(order, size);
2434 s->min = oo_make(get_order(size), size);
2435 if (oo_objects(s->oo) > oo_objects(s->max))
2436 s->max = s->oo;
2437
2438 return !!oo_objects(s->oo);
2439
2440 }
2441
2442 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2443 const char *name, size_t size,
2444 size_t align, unsigned long flags,
2445 void (*ctor)(void *))
2446 {
2447 memset(s, 0, kmem_size);
2448 s->name = name;
2449 s->ctor = ctor;
2450 s->objsize = size;
2451 s->align = align;
2452 s->flags = kmem_cache_flags(size, flags, name, ctor);
2453
2454 if (!calculate_sizes(s, -1))
2455 goto error;
2456
2457 /*
2458 * The larger the object size is, the more pages we want on the partial
2459 * list to avoid pounding the page allocator excessively.
2460 */
2461 set_min_partial(s, ilog2(s->size));
2462 s->refcount = 1;
2463 #ifdef CONFIG_NUMA
2464 s->remote_node_defrag_ratio = 1000;
2465 #endif
2466 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2467 goto error;
2468
2469 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2470 return 1;
2471 free_kmem_cache_nodes(s);
2472 error:
2473 if (flags & SLAB_PANIC)
2474 panic("Cannot create slab %s size=%lu realsize=%u "
2475 "order=%u offset=%u flags=%lx\n",
2476 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2477 s->offset, flags);
2478 return 0;
2479 }
2480
2481 /*
2482 * Check if a given pointer is valid
2483 */
2484 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2485 {
2486 struct page *page;
2487
2488 page = get_object_page(object);
2489
2490 if (!page || s != page->slab)
2491 /* No slab or wrong slab */
2492 return 0;
2493
2494 if (!check_valid_pointer(s, page, object))
2495 return 0;
2496
2497 /*
2498 * We could also check if the object is on the slabs freelist.
2499 * But this would be too expensive and it seems that the main
2500 * purpose of kmem_ptr_valid() is to check if the object belongs
2501 * to a certain slab.
2502 */
2503 return 1;
2504 }
2505 EXPORT_SYMBOL(kmem_ptr_validate);
2506
2507 /*
2508 * Determine the size of a slab object
2509 */
2510 unsigned int kmem_cache_size(struct kmem_cache *s)
2511 {
2512 return s->objsize;
2513 }
2514 EXPORT_SYMBOL(kmem_cache_size);
2515
2516 const char *kmem_cache_name(struct kmem_cache *s)
2517 {
2518 return s->name;
2519 }
2520 EXPORT_SYMBOL(kmem_cache_name);
2521
2522 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2523 const char *text)
2524 {
2525 #ifdef CONFIG_SLUB_DEBUG
2526 void *addr = page_address(page);
2527 void *p;
2528 DECLARE_BITMAP(map, page->objects);
2529
2530 bitmap_zero(map, page->objects);
2531 slab_err(s, page, "%s", text);
2532 slab_lock(page);
2533 for_each_free_object(p, s, page->freelist)
2534 set_bit(slab_index(p, s, addr), map);
2535
2536 for_each_object(p, s, addr, page->objects) {
2537
2538 if (!test_bit(slab_index(p, s, addr), map)) {
2539 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2540 p, p - addr);
2541 print_tracking(s, p);
2542 }
2543 }
2544 slab_unlock(page);
2545 #endif
2546 }
2547
2548 /*
2549 * Attempt to free all partial slabs on a node.
2550 */
2551 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2552 {
2553 unsigned long flags;
2554 struct page *page, *h;
2555
2556 spin_lock_irqsave(&n->list_lock, flags);
2557 list_for_each_entry_safe(page, h, &n->partial, lru) {
2558 if (!page->inuse) {
2559 list_del(&page->lru);
2560 discard_slab(s, page);
2561 n->nr_partial--;
2562 } else {
2563 list_slab_objects(s, page,
2564 "Objects remaining on kmem_cache_close()");
2565 }
2566 }
2567 spin_unlock_irqrestore(&n->list_lock, flags);
2568 }
2569
2570 /*
2571 * Release all resources used by a slab cache.
2572 */
2573 static inline int kmem_cache_close(struct kmem_cache *s)
2574 {
2575 int node;
2576
2577 flush_all(s);
2578
2579 /* Attempt to free all objects */
2580 free_kmem_cache_cpus(s);
2581 for_each_node_state(node, N_NORMAL_MEMORY) {
2582 struct kmem_cache_node *n = get_node(s, node);
2583
2584 free_partial(s, n);
2585 if (n->nr_partial || slabs_node(s, node))
2586 return 1;
2587 }
2588 free_kmem_cache_nodes(s);
2589 return 0;
2590 }
2591
2592 /*
2593 * Close a cache and release the kmem_cache structure
2594 * (must be used for caches created using kmem_cache_create)
2595 */
2596 void kmem_cache_destroy(struct kmem_cache *s)
2597 {
2598 if (s->flags & SLAB_DESTROY_BY_RCU)
2599 rcu_barrier();
2600 down_write(&slub_lock);
2601 s->refcount--;
2602 if (!s->refcount) {
2603 list_del(&s->list);
2604 up_write(&slub_lock);
2605 if (kmem_cache_close(s)) {
2606 printk(KERN_ERR "SLUB %s: %s called for cache that "
2607 "still has objects.\n", s->name, __func__);
2608 dump_stack();
2609 }
2610 sysfs_slab_remove(s);
2611 } else
2612 up_write(&slub_lock);
2613 }
2614 EXPORT_SYMBOL(kmem_cache_destroy);
2615
2616 /********************************************************************
2617 * Kmalloc subsystem
2618 *******************************************************************/
2619
2620 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2621 EXPORT_SYMBOL(kmalloc_caches);
2622
2623 static int __init setup_slub_min_order(char *str)
2624 {
2625 get_option(&str, &slub_min_order);
2626
2627 return 1;
2628 }
2629
2630 __setup("slub_min_order=", setup_slub_min_order);
2631
2632 static int __init setup_slub_max_order(char *str)
2633 {
2634 get_option(&str, &slub_max_order);
2635 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2636
2637 return 1;
2638 }
2639
2640 __setup("slub_max_order=", setup_slub_max_order);
2641
2642 static int __init setup_slub_min_objects(char *str)
2643 {
2644 get_option(&str, &slub_min_objects);
2645
2646 return 1;
2647 }
2648
2649 __setup("slub_min_objects=", setup_slub_min_objects);
2650
2651 static int __init setup_slub_nomerge(char *str)
2652 {
2653 slub_nomerge = 1;
2654 return 1;
2655 }
2656
2657 __setup("slub_nomerge", setup_slub_nomerge);
2658
2659 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2660 const char *name, int size, gfp_t gfp_flags)
2661 {
2662 unsigned int flags = 0;
2663
2664 if (gfp_flags & SLUB_DMA)
2665 flags = SLAB_CACHE_DMA;
2666
2667 /*
2668 * This function is called with IRQs disabled during early-boot on
2669 * single CPU so there's no need to take slub_lock here.
2670 */
2671 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2672 flags, NULL))
2673 goto panic;
2674
2675 list_add(&s->list, &slab_caches);
2676
2677 if (sysfs_slab_add(s))
2678 goto panic;
2679 return s;
2680
2681 panic:
2682 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2683 }
2684
2685 #ifdef CONFIG_ZONE_DMA
2686 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2687
2688 static void sysfs_add_func(struct work_struct *w)
2689 {
2690 struct kmem_cache *s;
2691
2692 down_write(&slub_lock);
2693 list_for_each_entry(s, &slab_caches, list) {
2694 if (s->flags & __SYSFS_ADD_DEFERRED) {
2695 s->flags &= ~__SYSFS_ADD_DEFERRED;
2696 sysfs_slab_add(s);
2697 }
2698 }
2699 up_write(&slub_lock);
2700 }
2701
2702 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2703
2704 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2705 {
2706 struct kmem_cache *s;
2707 char *text;
2708 size_t realsize;
2709 unsigned long slabflags;
2710
2711 s = kmalloc_caches_dma[index];
2712 if (s)
2713 return s;
2714
2715 /* Dynamically create dma cache */
2716 if (flags & __GFP_WAIT)
2717 down_write(&slub_lock);
2718 else {
2719 if (!down_write_trylock(&slub_lock))
2720 goto out;
2721 }
2722
2723 if (kmalloc_caches_dma[index])
2724 goto unlock_out;
2725
2726 realsize = kmalloc_caches[index].objsize;
2727 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2728 (unsigned int)realsize);
2729 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2730
2731 /*
2732 * Must defer sysfs creation to a workqueue because we don't know
2733 * what context we are called from. Before sysfs comes up, we don't
2734 * need to do anything because our sysfs initcall will start by
2735 * adding all existing slabs to sysfs.
2736 */
2737 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2738 if (slab_state >= SYSFS)
2739 slabflags |= __SYSFS_ADD_DEFERRED;
2740
2741 if (!s || !text || !kmem_cache_open(s, flags, text,
2742 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2743 kfree(s);
2744 kfree(text);
2745 goto unlock_out;
2746 }
2747
2748 list_add(&s->list, &slab_caches);
2749 kmalloc_caches_dma[index] = s;
2750
2751 if (slab_state >= SYSFS)
2752 schedule_work(&sysfs_add_work);
2753
2754 unlock_out:
2755 up_write(&slub_lock);
2756 out:
2757 return kmalloc_caches_dma[index];
2758 }
2759 #endif
2760
2761 /*
2762 * Conversion table for small slabs sizes / 8 to the index in the
2763 * kmalloc array. This is necessary for slabs < 192 since we have non power
2764 * of two cache sizes there. The size of larger slabs can be determined using
2765 * fls.
2766 */
2767 static s8 size_index[24] = {
2768 3, /* 8 */
2769 4, /* 16 */
2770 5, /* 24 */
2771 5, /* 32 */
2772 6, /* 40 */
2773 6, /* 48 */
2774 6, /* 56 */
2775 6, /* 64 */
2776 1, /* 72 */
2777 1, /* 80 */
2778 1, /* 88 */
2779 1, /* 96 */
2780 7, /* 104 */
2781 7, /* 112 */
2782 7, /* 120 */
2783 7, /* 128 */
2784 2, /* 136 */
2785 2, /* 144 */
2786 2, /* 152 */
2787 2, /* 160 */
2788 2, /* 168 */
2789 2, /* 176 */
2790 2, /* 184 */
2791 2 /* 192 */
2792 };
2793
2794 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2795 {
2796 int index;
2797
2798 if (size <= 192) {
2799 if (!size)
2800 return ZERO_SIZE_PTR;
2801
2802 index = size_index[(size - 1) / 8];
2803 } else
2804 index = fls(size - 1);
2805
2806 #ifdef CONFIG_ZONE_DMA
2807 if (unlikely((flags & SLUB_DMA)))
2808 return dma_kmalloc_cache(index, flags);
2809
2810 #endif
2811 return &kmalloc_caches[index];
2812 }
2813
2814 void *__kmalloc(size_t size, gfp_t flags)
2815 {
2816 struct kmem_cache *s;
2817 void *ret;
2818
2819 if (unlikely(size > SLUB_MAX_SIZE))
2820 return kmalloc_large(size, flags);
2821
2822 s = get_slab(size, flags);
2823
2824 if (unlikely(ZERO_OR_NULL_PTR(s)))
2825 return s;
2826
2827 ret = slab_alloc(s, flags, -1, _RET_IP_);
2828
2829 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2830
2831 return ret;
2832 }
2833 EXPORT_SYMBOL(__kmalloc);
2834
2835 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2836 {
2837 struct page *page;
2838
2839 flags |= __GFP_COMP | __GFP_NOTRACK;
2840 page = alloc_pages_node(node, flags, get_order(size));
2841 if (page)
2842 return page_address(page);
2843 else
2844 return NULL;
2845 }
2846
2847 #ifdef CONFIG_NUMA
2848 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2849 {
2850 struct kmem_cache *s;
2851 void *ret;
2852
2853 if (unlikely(size > SLUB_MAX_SIZE)) {
2854 ret = kmalloc_large_node(size, flags, node);
2855
2856 trace_kmalloc_node(_RET_IP_, ret,
2857 size, PAGE_SIZE << get_order(size),
2858 flags, node);
2859
2860 return ret;
2861 }
2862
2863 s = get_slab(size, flags);
2864
2865 if (unlikely(ZERO_OR_NULL_PTR(s)))
2866 return s;
2867
2868 ret = slab_alloc(s, flags, node, _RET_IP_);
2869
2870 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2871
2872 return ret;
2873 }
2874 EXPORT_SYMBOL(__kmalloc_node);
2875 #endif
2876
2877 size_t ksize(const void *object)
2878 {
2879 struct page *page;
2880 struct kmem_cache *s;
2881
2882 if (unlikely(object == ZERO_SIZE_PTR))
2883 return 0;
2884
2885 page = virt_to_head_page(object);
2886
2887 if (unlikely(!PageSlab(page))) {
2888 WARN_ON(!PageCompound(page));
2889 return PAGE_SIZE << compound_order(page);
2890 }
2891 s = page->slab;
2892
2893 #ifdef CONFIG_SLUB_DEBUG
2894 /*
2895 * Debugging requires use of the padding between object
2896 * and whatever may come after it.
2897 */
2898 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2899 return s->objsize;
2900
2901 #endif
2902 /*
2903 * If we have the need to store the freelist pointer
2904 * back there or track user information then we can
2905 * only use the space before that information.
2906 */
2907 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2908 return s->inuse;
2909 /*
2910 * Else we can use all the padding etc for the allocation
2911 */
2912 return s->size;
2913 }
2914 EXPORT_SYMBOL(ksize);
2915
2916 void kfree(const void *x)
2917 {
2918 struct page *page;
2919 void *object = (void *)x;
2920
2921 trace_kfree(_RET_IP_, x);
2922
2923 if (unlikely(ZERO_OR_NULL_PTR(x)))
2924 return;
2925
2926 page = virt_to_head_page(x);
2927 if (unlikely(!PageSlab(page))) {
2928 BUG_ON(!PageCompound(page));
2929 put_page(page);
2930 return;
2931 }
2932 slab_free(page->slab, page, object, _RET_IP_);
2933 }
2934 EXPORT_SYMBOL(kfree);
2935
2936 /*
2937 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2938 * the remaining slabs by the number of items in use. The slabs with the
2939 * most items in use come first. New allocations will then fill those up
2940 * and thus they can be removed from the partial lists.
2941 *
2942 * The slabs with the least items are placed last. This results in them
2943 * being allocated from last increasing the chance that the last objects
2944 * are freed in them.
2945 */
2946 int kmem_cache_shrink(struct kmem_cache *s)
2947 {
2948 int node;
2949 int i;
2950 struct kmem_cache_node *n;
2951 struct page *page;
2952 struct page *t;
2953 int objects = oo_objects(s->max);
2954 struct list_head *slabs_by_inuse =
2955 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2956 unsigned long flags;
2957
2958 if (!slabs_by_inuse)
2959 return -ENOMEM;
2960
2961 flush_all(s);
2962 for_each_node_state(node, N_NORMAL_MEMORY) {
2963 n = get_node(s, node);
2964
2965 if (!n->nr_partial)
2966 continue;
2967
2968 for (i = 0; i < objects; i++)
2969 INIT_LIST_HEAD(slabs_by_inuse + i);
2970
2971 spin_lock_irqsave(&n->list_lock, flags);
2972
2973 /*
2974 * Build lists indexed by the items in use in each slab.
2975 *
2976 * Note that concurrent frees may occur while we hold the
2977 * list_lock. page->inuse here is the upper limit.
2978 */
2979 list_for_each_entry_safe(page, t, &n->partial, lru) {
2980 if (!page->inuse && slab_trylock(page)) {
2981 /*
2982 * Must hold slab lock here because slab_free
2983 * may have freed the last object and be
2984 * waiting to release the slab.
2985 */
2986 list_del(&page->lru);
2987 n->nr_partial--;
2988 slab_unlock(page);
2989 discard_slab(s, page);
2990 } else {
2991 list_move(&page->lru,
2992 slabs_by_inuse + page->inuse);
2993 }
2994 }
2995
2996 /*
2997 * Rebuild the partial list with the slabs filled up most
2998 * first and the least used slabs at the end.
2999 */
3000 for (i = objects - 1; i >= 0; i--)
3001 list_splice(slabs_by_inuse + i, n->partial.prev);
3002
3003 spin_unlock_irqrestore(&n->list_lock, flags);
3004 }
3005
3006 kfree(slabs_by_inuse);
3007 return 0;
3008 }
3009 EXPORT_SYMBOL(kmem_cache_shrink);
3010
3011 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3012 static int slab_mem_going_offline_callback(void *arg)
3013 {
3014 struct kmem_cache *s;
3015
3016 down_read(&slub_lock);
3017 list_for_each_entry(s, &slab_caches, list)
3018 kmem_cache_shrink(s);
3019 up_read(&slub_lock);
3020
3021 return 0;
3022 }
3023
3024 static void slab_mem_offline_callback(void *arg)
3025 {
3026 struct kmem_cache_node *n;
3027 struct kmem_cache *s;
3028 struct memory_notify *marg = arg;
3029 int offline_node;
3030
3031 offline_node = marg->status_change_nid;
3032
3033 /*
3034 * If the node still has available memory. we need kmem_cache_node
3035 * for it yet.
3036 */
3037 if (offline_node < 0)
3038 return;
3039
3040 down_read(&slub_lock);
3041 list_for_each_entry(s, &slab_caches, list) {
3042 n = get_node(s, offline_node);
3043 if (n) {
3044 /*
3045 * if n->nr_slabs > 0, slabs still exist on the node
3046 * that is going down. We were unable to free them,
3047 * and offline_pages() function shoudn't call this
3048 * callback. So, we must fail.
3049 */
3050 BUG_ON(slabs_node(s, offline_node));
3051
3052 s->node[offline_node] = NULL;
3053 kmem_cache_free(kmalloc_caches, n);
3054 }
3055 }
3056 up_read(&slub_lock);
3057 }
3058
3059 static int slab_mem_going_online_callback(void *arg)
3060 {
3061 struct kmem_cache_node *n;
3062 struct kmem_cache *s;
3063 struct memory_notify *marg = arg;
3064 int nid = marg->status_change_nid;
3065 int ret = 0;
3066
3067 /*
3068 * If the node's memory is already available, then kmem_cache_node is
3069 * already created. Nothing to do.
3070 */
3071 if (nid < 0)
3072 return 0;
3073
3074 /*
3075 * We are bringing a node online. No memory is available yet. We must
3076 * allocate a kmem_cache_node structure in order to bring the node
3077 * online.
3078 */
3079 down_read(&slub_lock);
3080 list_for_each_entry(s, &slab_caches, list) {
3081 /*
3082 * XXX: kmem_cache_alloc_node will fallback to other nodes
3083 * since memory is not yet available from the node that
3084 * is brought up.
3085 */
3086 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3087 if (!n) {
3088 ret = -ENOMEM;
3089 goto out;
3090 }
3091 init_kmem_cache_node(n, s);
3092 s->node[nid] = n;
3093 }
3094 out:
3095 up_read(&slub_lock);
3096 return ret;
3097 }
3098
3099 static int slab_memory_callback(struct notifier_block *self,
3100 unsigned long action, void *arg)
3101 {
3102 int ret = 0;
3103
3104 switch (action) {
3105 case MEM_GOING_ONLINE:
3106 ret = slab_mem_going_online_callback(arg);
3107 break;
3108 case MEM_GOING_OFFLINE:
3109 ret = slab_mem_going_offline_callback(arg);
3110 break;
3111 case MEM_OFFLINE:
3112 case MEM_CANCEL_ONLINE:
3113 slab_mem_offline_callback(arg);
3114 break;
3115 case MEM_ONLINE:
3116 case MEM_CANCEL_OFFLINE:
3117 break;
3118 }
3119 if (ret)
3120 ret = notifier_from_errno(ret);
3121 else
3122 ret = NOTIFY_OK;
3123 return ret;
3124 }
3125
3126 #endif /* CONFIG_MEMORY_HOTPLUG */
3127
3128 /********************************************************************
3129 * Basic setup of slabs
3130 *******************************************************************/
3131
3132 void __init kmem_cache_init(void)
3133 {
3134 int i;
3135 int caches = 0;
3136
3137 init_alloc_cpu();
3138
3139 #ifdef CONFIG_NUMA
3140 /*
3141 * Must first have the slab cache available for the allocations of the
3142 * struct kmem_cache_node's. There is special bootstrap code in
3143 * kmem_cache_open for slab_state == DOWN.
3144 */
3145 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3146 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3147 kmalloc_caches[0].refcount = -1;
3148 caches++;
3149
3150 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3151 #endif
3152
3153 /* Able to allocate the per node structures */
3154 slab_state = PARTIAL;
3155
3156 /* Caches that are not of the two-to-the-power-of size */
3157 if (KMALLOC_MIN_SIZE <= 64) {
3158 create_kmalloc_cache(&kmalloc_caches[1],
3159 "kmalloc-96", 96, GFP_NOWAIT);
3160 caches++;
3161 create_kmalloc_cache(&kmalloc_caches[2],
3162 "kmalloc-192", 192, GFP_NOWAIT);
3163 caches++;
3164 }
3165
3166 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3167 create_kmalloc_cache(&kmalloc_caches[i],
3168 "kmalloc", 1 << i, GFP_NOWAIT);
3169 caches++;
3170 }
3171
3172
3173 /*
3174 * Patch up the size_index table if we have strange large alignment
3175 * requirements for the kmalloc array. This is only the case for
3176 * MIPS it seems. The standard arches will not generate any code here.
3177 *
3178 * Largest permitted alignment is 256 bytes due to the way we
3179 * handle the index determination for the smaller caches.
3180 *
3181 * Make sure that nothing crazy happens if someone starts tinkering
3182 * around with ARCH_KMALLOC_MINALIGN
3183 */
3184 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3185 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3186
3187 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3188 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3189
3190 if (KMALLOC_MIN_SIZE == 128) {
3191 /*
3192 * The 192 byte sized cache is not used if the alignment
3193 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3194 * instead.
3195 */
3196 for (i = 128 + 8; i <= 192; i += 8)
3197 size_index[(i - 1) / 8] = 8;
3198 }
3199
3200 slab_state = UP;
3201
3202 /* Provide the correct kmalloc names now that the caches are up */
3203 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3204 kmalloc_caches[i]. name =
3205 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3206
3207 #ifdef CONFIG_SMP
3208 register_cpu_notifier(&slab_notifier);
3209 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3210 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3211 #else
3212 kmem_size = sizeof(struct kmem_cache);
3213 #endif
3214
3215 printk(KERN_INFO
3216 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3217 " CPUs=%d, Nodes=%d\n",
3218 caches, cache_line_size(),
3219 slub_min_order, slub_max_order, slub_min_objects,
3220 nr_cpu_ids, nr_node_ids);
3221 }
3222
3223 void __init kmem_cache_init_late(void)
3224 {
3225 }
3226
3227 /*
3228 * Find a mergeable slab cache
3229 */
3230 static int slab_unmergeable(struct kmem_cache *s)
3231 {
3232 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3233 return 1;
3234
3235 if (s->ctor)
3236 return 1;
3237
3238 /*
3239 * We may have set a slab to be unmergeable during bootstrap.
3240 */
3241 if (s->refcount < 0)
3242 return 1;
3243
3244 return 0;
3245 }
3246
3247 static struct kmem_cache *find_mergeable(size_t size,
3248 size_t align, unsigned long flags, const char *name,
3249 void (*ctor)(void *))
3250 {
3251 struct kmem_cache *s;
3252
3253 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3254 return NULL;
3255
3256 if (ctor)
3257 return NULL;
3258
3259 size = ALIGN(size, sizeof(void *));
3260 align = calculate_alignment(flags, align, size);
3261 size = ALIGN(size, align);
3262 flags = kmem_cache_flags(size, flags, name, NULL);
3263
3264 list_for_each_entry(s, &slab_caches, list) {
3265 if (slab_unmergeable(s))
3266 continue;
3267
3268 if (size > s->size)
3269 continue;
3270
3271 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3272 continue;
3273 /*
3274 * Check if alignment is compatible.
3275 * Courtesy of Adrian Drzewiecki
3276 */
3277 if ((s->size & ~(align - 1)) != s->size)
3278 continue;
3279
3280 if (s->size - size >= sizeof(void *))
3281 continue;
3282
3283 return s;
3284 }
3285 return NULL;
3286 }
3287
3288 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3289 size_t align, unsigned long flags, void (*ctor)(void *))
3290 {
3291 struct kmem_cache *s;
3292
3293 down_write(&slub_lock);
3294 s = find_mergeable(size, align, flags, name, ctor);
3295 if (s) {
3296 int cpu;
3297
3298 s->refcount++;
3299 /*
3300 * Adjust the object sizes so that we clear
3301 * the complete object on kzalloc.
3302 */
3303 s->objsize = max(s->objsize, (int)size);
3304
3305 /*
3306 * And then we need to update the object size in the
3307 * per cpu structures
3308 */
3309 for_each_online_cpu(cpu)
3310 get_cpu_slab(s, cpu)->objsize = s->objsize;
3311
3312 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3313 up_write(&slub_lock);
3314
3315 if (sysfs_slab_alias(s, name)) {
3316 down_write(&slub_lock);
3317 s->refcount--;
3318 up_write(&slub_lock);
3319 goto err;
3320 }
3321 return s;
3322 }
3323
3324 s = kmalloc(kmem_size, GFP_KERNEL);
3325 if (s) {
3326 if (kmem_cache_open(s, GFP_KERNEL, name,
3327 size, align, flags, ctor)) {
3328 list_add(&s->list, &slab_caches);
3329 up_write(&slub_lock);
3330 if (sysfs_slab_add(s)) {
3331 down_write(&slub_lock);
3332 list_del(&s->list);
3333 up_write(&slub_lock);
3334 kfree(s);
3335 goto err;
3336 }
3337 return s;
3338 }
3339 kfree(s);
3340 }
3341 up_write(&slub_lock);
3342
3343 err:
3344 if (flags & SLAB_PANIC)
3345 panic("Cannot create slabcache %s\n", name);
3346 else
3347 s = NULL;
3348 return s;
3349 }
3350 EXPORT_SYMBOL(kmem_cache_create);
3351
3352 #ifdef CONFIG_SMP
3353 /*
3354 * Use the cpu notifier to insure that the cpu slabs are flushed when
3355 * necessary.
3356 */
3357 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3358 unsigned long action, void *hcpu)
3359 {
3360 long cpu = (long)hcpu;
3361 struct kmem_cache *s;
3362 unsigned long flags;
3363
3364 switch (action) {
3365 case CPU_UP_PREPARE:
3366 case CPU_UP_PREPARE_FROZEN:
3367 init_alloc_cpu_cpu(cpu);
3368 down_read(&slub_lock);
3369 list_for_each_entry(s, &slab_caches, list)
3370 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3371 GFP_KERNEL);
3372 up_read(&slub_lock);
3373 break;
3374
3375 case CPU_UP_CANCELED:
3376 case CPU_UP_CANCELED_FROZEN:
3377 case CPU_DEAD:
3378 case CPU_DEAD_FROZEN:
3379 down_read(&slub_lock);
3380 list_for_each_entry(s, &slab_caches, list) {
3381 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3382
3383 local_irq_save(flags);
3384 __flush_cpu_slab(s, cpu);
3385 local_irq_restore(flags);
3386 free_kmem_cache_cpu(c, cpu);
3387 s->cpu_slab[cpu] = NULL;
3388 }
3389 up_read(&slub_lock);
3390 break;
3391 default:
3392 break;
3393 }
3394 return NOTIFY_OK;
3395 }
3396
3397 static struct notifier_block __cpuinitdata slab_notifier = {
3398 .notifier_call = slab_cpuup_callback
3399 };
3400
3401 #endif
3402
3403 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3404 {
3405 struct kmem_cache *s;
3406 void *ret;
3407
3408 if (unlikely(size > SLUB_MAX_SIZE))
3409 return kmalloc_large(size, gfpflags);
3410
3411 s = get_slab(size, gfpflags);
3412
3413 if (unlikely(ZERO_OR_NULL_PTR(s)))
3414 return s;
3415
3416 ret = slab_alloc(s, gfpflags, -1, caller);
3417
3418 /* Honor the call site pointer we recieved. */
3419 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3420
3421 return ret;
3422 }
3423
3424 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3425 int node, unsigned long caller)
3426 {
3427 struct kmem_cache *s;
3428 void *ret;
3429
3430 if (unlikely(size > SLUB_MAX_SIZE))
3431 return kmalloc_large_node(size, gfpflags, node);
3432
3433 s = get_slab(size, gfpflags);
3434
3435 if (unlikely(ZERO_OR_NULL_PTR(s)))
3436 return s;
3437
3438 ret = slab_alloc(s, gfpflags, node, caller);
3439
3440 /* Honor the call site pointer we recieved. */
3441 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3442
3443 return ret;
3444 }
3445
3446 #ifdef CONFIG_SLUB_DEBUG
3447 static int count_inuse(struct page *page)
3448 {
3449 return page->inuse;
3450 }
3451
3452 static int count_total(struct page *page)
3453 {
3454 return page->objects;
3455 }
3456
3457 static int validate_slab(struct kmem_cache *s, struct page *page,
3458 unsigned long *map)
3459 {
3460 void *p;
3461 void *addr = page_address(page);
3462
3463 if (!check_slab(s, page) ||
3464 !on_freelist(s, page, NULL))
3465 return 0;
3466
3467 /* Now we know that a valid freelist exists */
3468 bitmap_zero(map, page->objects);
3469
3470 for_each_free_object(p, s, page->freelist) {
3471 set_bit(slab_index(p, s, addr), map);
3472 if (!check_object(s, page, p, 0))
3473 return 0;
3474 }
3475
3476 for_each_object(p, s, addr, page->objects)
3477 if (!test_bit(slab_index(p, s, addr), map))
3478 if (!check_object(s, page, p, 1))
3479 return 0;
3480 return 1;
3481 }
3482
3483 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3484 unsigned long *map)
3485 {
3486 if (slab_trylock(page)) {
3487 validate_slab(s, page, map);
3488 slab_unlock(page);
3489 } else
3490 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3491 s->name, page);
3492
3493 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3494 if (!PageSlubDebug(page))
3495 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3496 "on slab 0x%p\n", s->name, page);
3497 } else {
3498 if (PageSlubDebug(page))
3499 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3500 "slab 0x%p\n", s->name, page);
3501 }
3502 }
3503
3504 static int validate_slab_node(struct kmem_cache *s,
3505 struct kmem_cache_node *n, unsigned long *map)
3506 {
3507 unsigned long count = 0;
3508 struct page *page;
3509 unsigned long flags;
3510
3511 spin_lock_irqsave(&n->list_lock, flags);
3512
3513 list_for_each_entry(page, &n->partial, lru) {
3514 validate_slab_slab(s, page, map);
3515 count++;
3516 }
3517 if (count != n->nr_partial)
3518 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3519 "counter=%ld\n", s->name, count, n->nr_partial);
3520
3521 if (!(s->flags & SLAB_STORE_USER))
3522 goto out;
3523
3524 list_for_each_entry(page, &n->full, lru) {
3525 validate_slab_slab(s, page, map);
3526 count++;
3527 }
3528 if (count != atomic_long_read(&n->nr_slabs))
3529 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3530 "counter=%ld\n", s->name, count,
3531 atomic_long_read(&n->nr_slabs));
3532
3533 out:
3534 spin_unlock_irqrestore(&n->list_lock, flags);
3535 return count;
3536 }
3537
3538 static long validate_slab_cache(struct kmem_cache *s)
3539 {
3540 int node;
3541 unsigned long count = 0;
3542 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3543 sizeof(unsigned long), GFP_KERNEL);
3544
3545 if (!map)
3546 return -ENOMEM;
3547
3548 flush_all(s);
3549 for_each_node_state(node, N_NORMAL_MEMORY) {
3550 struct kmem_cache_node *n = get_node(s, node);
3551
3552 count += validate_slab_node(s, n, map);
3553 }
3554 kfree(map);
3555 return count;
3556 }
3557
3558 #ifdef SLUB_RESILIENCY_TEST
3559 static void resiliency_test(void)
3560 {
3561 u8 *p;
3562
3563 printk(KERN_ERR "SLUB resiliency testing\n");
3564 printk(KERN_ERR "-----------------------\n");
3565 printk(KERN_ERR "A. Corruption after allocation\n");
3566
3567 p = kzalloc(16, GFP_KERNEL);
3568 p[16] = 0x12;
3569 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3570 " 0x12->0x%p\n\n", p + 16);
3571
3572 validate_slab_cache(kmalloc_caches + 4);
3573
3574 /* Hmmm... The next two are dangerous */
3575 p = kzalloc(32, GFP_KERNEL);
3576 p[32 + sizeof(void *)] = 0x34;
3577 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3578 " 0x34 -> -0x%p\n", p);
3579 printk(KERN_ERR
3580 "If allocated object is overwritten then not detectable\n\n");
3581
3582 validate_slab_cache(kmalloc_caches + 5);
3583 p = kzalloc(64, GFP_KERNEL);
3584 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3585 *p = 0x56;
3586 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3587 p);
3588 printk(KERN_ERR
3589 "If allocated object is overwritten then not detectable\n\n");
3590 validate_slab_cache(kmalloc_caches + 6);
3591
3592 printk(KERN_ERR "\nB. Corruption after free\n");
3593 p = kzalloc(128, GFP_KERNEL);
3594 kfree(p);
3595 *p = 0x78;
3596 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3597 validate_slab_cache(kmalloc_caches + 7);
3598
3599 p = kzalloc(256, GFP_KERNEL);
3600 kfree(p);
3601 p[50] = 0x9a;
3602 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3603 p);
3604 validate_slab_cache(kmalloc_caches + 8);
3605
3606 p = kzalloc(512, GFP_KERNEL);
3607 kfree(p);
3608 p[512] = 0xab;
3609 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3610 validate_slab_cache(kmalloc_caches + 9);
3611 }
3612 #else
3613 static void resiliency_test(void) {};
3614 #endif
3615
3616 /*
3617 * Generate lists of code addresses where slabcache objects are allocated
3618 * and freed.
3619 */
3620
3621 struct location {
3622 unsigned long count;
3623 unsigned long addr;
3624 long long sum_time;
3625 long min_time;
3626 long max_time;
3627 long min_pid;
3628 long max_pid;
3629 DECLARE_BITMAP(cpus, NR_CPUS);
3630 nodemask_t nodes;
3631 };
3632
3633 struct loc_track {
3634 unsigned long max;
3635 unsigned long count;
3636 struct location *loc;
3637 };
3638
3639 static void free_loc_track(struct loc_track *t)
3640 {
3641 if (t->max)
3642 free_pages((unsigned long)t->loc,
3643 get_order(sizeof(struct location) * t->max));
3644 }
3645
3646 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3647 {
3648 struct location *l;
3649 int order;
3650
3651 order = get_order(sizeof(struct location) * max);
3652
3653 l = (void *)__get_free_pages(flags, order);
3654 if (!l)
3655 return 0;
3656
3657 if (t->count) {
3658 memcpy(l, t->loc, sizeof(struct location) * t->count);
3659 free_loc_track(t);
3660 }
3661 t->max = max;
3662 t->loc = l;
3663 return 1;
3664 }
3665
3666 static int add_location(struct loc_track *t, struct kmem_cache *s,
3667 const struct track *track)
3668 {
3669 long start, end, pos;
3670 struct location *l;
3671 unsigned long caddr;
3672 unsigned long age = jiffies - track->when;
3673
3674 start = -1;
3675 end = t->count;
3676
3677 for ( ; ; ) {
3678 pos = start + (end - start + 1) / 2;
3679
3680 /*
3681 * There is nothing at "end". If we end up there
3682 * we need to add something to before end.
3683 */
3684 if (pos == end)
3685 break;
3686
3687 caddr = t->loc[pos].addr;
3688 if (track->addr == caddr) {
3689
3690 l = &t->loc[pos];
3691 l->count++;
3692 if (track->when) {
3693 l->sum_time += age;
3694 if (age < l->min_time)
3695 l->min_time = age;
3696 if (age > l->max_time)
3697 l->max_time = age;
3698
3699 if (track->pid < l->min_pid)
3700 l->min_pid = track->pid;
3701 if (track->pid > l->max_pid)
3702 l->max_pid = track->pid;
3703
3704 cpumask_set_cpu(track->cpu,
3705 to_cpumask(l->cpus));
3706 }
3707 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3708 return 1;
3709 }
3710
3711 if (track->addr < caddr)
3712 end = pos;
3713 else
3714 start = pos;
3715 }
3716
3717 /*
3718 * Not found. Insert new tracking element.
3719 */
3720 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3721 return 0;
3722
3723 l = t->loc + pos;
3724 if (pos < t->count)
3725 memmove(l + 1, l,
3726 (t->count - pos) * sizeof(struct location));
3727 t->count++;
3728 l->count = 1;
3729 l->addr = track->addr;
3730 l->sum_time = age;
3731 l->min_time = age;
3732 l->max_time = age;
3733 l->min_pid = track->pid;
3734 l->max_pid = track->pid;
3735 cpumask_clear(to_cpumask(l->cpus));
3736 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3737 nodes_clear(l->nodes);
3738 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3739 return 1;
3740 }
3741
3742 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3743 struct page *page, enum track_item alloc)
3744 {
3745 void *addr = page_address(page);
3746 DECLARE_BITMAP(map, page->objects);
3747 void *p;
3748
3749 bitmap_zero(map, page->objects);
3750 for_each_free_object(p, s, page->freelist)
3751 set_bit(slab_index(p, s, addr), map);
3752
3753 for_each_object(p, s, addr, page->objects)
3754 if (!test_bit(slab_index(p, s, addr), map))
3755 add_location(t, s, get_track(s, p, alloc));
3756 }
3757
3758 static int list_locations(struct kmem_cache *s, char *buf,
3759 enum track_item alloc)
3760 {
3761 int len = 0;
3762 unsigned long i;
3763 struct loc_track t = { 0, 0, NULL };
3764 int node;
3765
3766 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3767 GFP_TEMPORARY))
3768 return sprintf(buf, "Out of memory\n");
3769
3770 /* Push back cpu slabs */
3771 flush_all(s);
3772
3773 for_each_node_state(node, N_NORMAL_MEMORY) {
3774 struct kmem_cache_node *n = get_node(s, node);
3775 unsigned long flags;
3776 struct page *page;
3777
3778 if (!atomic_long_read(&n->nr_slabs))
3779 continue;
3780
3781 spin_lock_irqsave(&n->list_lock, flags);
3782 list_for_each_entry(page, &n->partial, lru)
3783 process_slab(&t, s, page, alloc);
3784 list_for_each_entry(page, &n->full, lru)
3785 process_slab(&t, s, page, alloc);
3786 spin_unlock_irqrestore(&n->list_lock, flags);
3787 }
3788
3789 for (i = 0; i < t.count; i++) {
3790 struct location *l = &t.loc[i];
3791
3792 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3793 break;
3794 len += sprintf(buf + len, "%7ld ", l->count);
3795
3796 if (l->addr)
3797 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3798 else
3799 len += sprintf(buf + len, "<not-available>");
3800
3801 if (l->sum_time != l->min_time) {
3802 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3803 l->min_time,
3804 (long)div_u64(l->sum_time, l->count),
3805 l->max_time);
3806 } else
3807 len += sprintf(buf + len, " age=%ld",
3808 l->min_time);
3809
3810 if (l->min_pid != l->max_pid)
3811 len += sprintf(buf + len, " pid=%ld-%ld",
3812 l->min_pid, l->max_pid);
3813 else
3814 len += sprintf(buf + len, " pid=%ld",
3815 l->min_pid);
3816
3817 if (num_online_cpus() > 1 &&
3818 !cpumask_empty(to_cpumask(l->cpus)) &&
3819 len < PAGE_SIZE - 60) {
3820 len += sprintf(buf + len, " cpus=");
3821 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3822 to_cpumask(l->cpus));
3823 }
3824
3825 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3826 len < PAGE_SIZE - 60) {
3827 len += sprintf(buf + len, " nodes=");
3828 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3829 l->nodes);
3830 }
3831
3832 len += sprintf(buf + len, "\n");
3833 }
3834
3835 free_loc_track(&t);
3836 if (!t.count)
3837 len += sprintf(buf, "No data\n");
3838 return len;
3839 }
3840
3841 enum slab_stat_type {
3842 SL_ALL, /* All slabs */
3843 SL_PARTIAL, /* Only partially allocated slabs */
3844 SL_CPU, /* Only slabs used for cpu caches */
3845 SL_OBJECTS, /* Determine allocated objects not slabs */
3846 SL_TOTAL /* Determine object capacity not slabs */
3847 };
3848
3849 #define SO_ALL (1 << SL_ALL)
3850 #define SO_PARTIAL (1 << SL_PARTIAL)
3851 #define SO_CPU (1 << SL_CPU)
3852 #define SO_OBJECTS (1 << SL_OBJECTS)
3853 #define SO_TOTAL (1 << SL_TOTAL)
3854
3855 static ssize_t show_slab_objects(struct kmem_cache *s,
3856 char *buf, unsigned long flags)
3857 {
3858 unsigned long total = 0;
3859 int node;
3860 int x;
3861 unsigned long *nodes;
3862 unsigned long *per_cpu;
3863
3864 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3865 if (!nodes)
3866 return -ENOMEM;
3867 per_cpu = nodes + nr_node_ids;
3868
3869 if (flags & SO_CPU) {
3870 int cpu;
3871
3872 for_each_possible_cpu(cpu) {
3873 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3874
3875 if (!c || c->node < 0)
3876 continue;
3877
3878 if (c->page) {
3879 if (flags & SO_TOTAL)
3880 x = c->page->objects;
3881 else if (flags & SO_OBJECTS)
3882 x = c->page->inuse;
3883 else
3884 x = 1;
3885
3886 total += x;
3887 nodes[c->node] += x;
3888 }
3889 per_cpu[c->node]++;
3890 }
3891 }
3892
3893 if (flags & SO_ALL) {
3894 for_each_node_state(node, N_NORMAL_MEMORY) {
3895 struct kmem_cache_node *n = get_node(s, node);
3896
3897 if (flags & SO_TOTAL)
3898 x = atomic_long_read(&n->total_objects);
3899 else if (flags & SO_OBJECTS)
3900 x = atomic_long_read(&n->total_objects) -
3901 count_partial(n, count_free);
3902
3903 else
3904 x = atomic_long_read(&n->nr_slabs);
3905 total += x;
3906 nodes[node] += x;
3907 }
3908
3909 } else if (flags & SO_PARTIAL) {
3910 for_each_node_state(node, N_NORMAL_MEMORY) {
3911 struct kmem_cache_node *n = get_node(s, node);
3912
3913 if (flags & SO_TOTAL)
3914 x = count_partial(n, count_total);
3915 else if (flags & SO_OBJECTS)
3916 x = count_partial(n, count_inuse);
3917 else
3918 x = n->nr_partial;
3919 total += x;
3920 nodes[node] += x;
3921 }
3922 }
3923 x = sprintf(buf, "%lu", total);
3924 #ifdef CONFIG_NUMA
3925 for_each_node_state(node, N_NORMAL_MEMORY)
3926 if (nodes[node])
3927 x += sprintf(buf + x, " N%d=%lu",
3928 node, nodes[node]);
3929 #endif
3930 kfree(nodes);
3931 return x + sprintf(buf + x, "\n");
3932 }
3933
3934 static int any_slab_objects(struct kmem_cache *s)
3935 {
3936 int node;
3937
3938 for_each_online_node(node) {
3939 struct kmem_cache_node *n = get_node(s, node);
3940
3941 if (!n)
3942 continue;
3943
3944 if (atomic_long_read(&n->total_objects))
3945 return 1;
3946 }
3947 return 0;
3948 }
3949
3950 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3951 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3952
3953 struct slab_attribute {
3954 struct attribute attr;
3955 ssize_t (*show)(struct kmem_cache *s, char *buf);
3956 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3957 };
3958
3959 #define SLAB_ATTR_RO(_name) \
3960 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3961
3962 #define SLAB_ATTR(_name) \
3963 static struct slab_attribute _name##_attr = \
3964 __ATTR(_name, 0644, _name##_show, _name##_store)
3965
3966 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3967 {
3968 return sprintf(buf, "%d\n", s->size);
3969 }
3970 SLAB_ATTR_RO(slab_size);
3971
3972 static ssize_t align_show(struct kmem_cache *s, char *buf)
3973 {
3974 return sprintf(buf, "%d\n", s->align);
3975 }
3976 SLAB_ATTR_RO(align);
3977
3978 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3979 {
3980 return sprintf(buf, "%d\n", s->objsize);
3981 }
3982 SLAB_ATTR_RO(object_size);
3983
3984 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3985 {
3986 return sprintf(buf, "%d\n", oo_objects(s->oo));
3987 }
3988 SLAB_ATTR_RO(objs_per_slab);
3989
3990 static ssize_t order_store(struct kmem_cache *s,
3991 const char *buf, size_t length)
3992 {
3993 unsigned long order;
3994 int err;
3995
3996 err = strict_strtoul(buf, 10, &order);
3997 if (err)
3998 return err;
3999
4000 if (order > slub_max_order || order < slub_min_order)
4001 return -EINVAL;
4002
4003 calculate_sizes(s, order);
4004 return length;
4005 }
4006
4007 static ssize_t order_show(struct kmem_cache *s, char *buf)
4008 {
4009 return sprintf(buf, "%d\n", oo_order(s->oo));
4010 }
4011 SLAB_ATTR(order);
4012
4013 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4014 {
4015 return sprintf(buf, "%lu\n", s->min_partial);
4016 }
4017
4018 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4019 size_t length)
4020 {
4021 unsigned long min;
4022 int err;
4023
4024 err = strict_strtoul(buf, 10, &min);
4025 if (err)
4026 return err;
4027
4028 set_min_partial(s, min);
4029 return length;
4030 }
4031 SLAB_ATTR(min_partial);
4032
4033 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4034 {
4035 if (s->ctor) {
4036 int n = sprint_symbol(buf, (unsigned long)s->ctor);
4037
4038 return n + sprintf(buf + n, "\n");
4039 }
4040 return 0;
4041 }
4042 SLAB_ATTR_RO(ctor);
4043
4044 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4045 {
4046 return sprintf(buf, "%d\n", s->refcount - 1);
4047 }
4048 SLAB_ATTR_RO(aliases);
4049
4050 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4051 {
4052 return show_slab_objects(s, buf, SO_ALL);
4053 }
4054 SLAB_ATTR_RO(slabs);
4055
4056 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4057 {
4058 return show_slab_objects(s, buf, SO_PARTIAL);
4059 }
4060 SLAB_ATTR_RO(partial);
4061
4062 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4063 {
4064 return show_slab_objects(s, buf, SO_CPU);
4065 }
4066 SLAB_ATTR_RO(cpu_slabs);
4067
4068 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4069 {
4070 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4071 }
4072 SLAB_ATTR_RO(objects);
4073
4074 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4075 {
4076 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4077 }
4078 SLAB_ATTR_RO(objects_partial);
4079
4080 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4081 {
4082 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4083 }
4084 SLAB_ATTR_RO(total_objects);
4085
4086 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4087 {
4088 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4089 }
4090
4091 static ssize_t sanity_checks_store(struct kmem_cache *s,
4092 const char *buf, size_t length)
4093 {
4094 s->flags &= ~SLAB_DEBUG_FREE;
4095 if (buf[0] == '1')
4096 s->flags |= SLAB_DEBUG_FREE;
4097 return length;
4098 }
4099 SLAB_ATTR(sanity_checks);
4100
4101 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4102 {
4103 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4104 }
4105
4106 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4107 size_t length)
4108 {
4109 s->flags &= ~SLAB_TRACE;
4110 if (buf[0] == '1')
4111 s->flags |= SLAB_TRACE;
4112 return length;
4113 }
4114 SLAB_ATTR(trace);
4115
4116 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4117 {
4118 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4119 }
4120
4121 static ssize_t reclaim_account_store(struct kmem_cache *s,
4122 const char *buf, size_t length)
4123 {
4124 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4125 if (buf[0] == '1')
4126 s->flags |= SLAB_RECLAIM_ACCOUNT;
4127 return length;
4128 }
4129 SLAB_ATTR(reclaim_account);
4130
4131 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4132 {
4133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4134 }
4135 SLAB_ATTR_RO(hwcache_align);
4136
4137 #ifdef CONFIG_ZONE_DMA
4138 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4139 {
4140 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4141 }
4142 SLAB_ATTR_RO(cache_dma);
4143 #endif
4144
4145 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4146 {
4147 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4148 }
4149 SLAB_ATTR_RO(destroy_by_rcu);
4150
4151 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4152 {
4153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4154 }
4155
4156 static ssize_t red_zone_store(struct kmem_cache *s,
4157 const char *buf, size_t length)
4158 {
4159 if (any_slab_objects(s))
4160 return -EBUSY;
4161
4162 s->flags &= ~SLAB_RED_ZONE;
4163 if (buf[0] == '1')
4164 s->flags |= SLAB_RED_ZONE;
4165 calculate_sizes(s, -1);
4166 return length;
4167 }
4168 SLAB_ATTR(red_zone);
4169
4170 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4171 {
4172 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4173 }
4174
4175 static ssize_t poison_store(struct kmem_cache *s,
4176 const char *buf, size_t length)
4177 {
4178 if (any_slab_objects(s))
4179 return -EBUSY;
4180
4181 s->flags &= ~SLAB_POISON;
4182 if (buf[0] == '1')
4183 s->flags |= SLAB_POISON;
4184 calculate_sizes(s, -1);
4185 return length;
4186 }
4187 SLAB_ATTR(poison);
4188
4189 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4190 {
4191 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4192 }
4193
4194 static ssize_t store_user_store(struct kmem_cache *s,
4195 const char *buf, size_t length)
4196 {
4197 if (any_slab_objects(s))
4198 return -EBUSY;
4199
4200 s->flags &= ~SLAB_STORE_USER;
4201 if (buf[0] == '1')
4202 s->flags |= SLAB_STORE_USER;
4203 calculate_sizes(s, -1);
4204 return length;
4205 }
4206 SLAB_ATTR(store_user);
4207
4208 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4209 {
4210 return 0;
4211 }
4212
4213 static ssize_t validate_store(struct kmem_cache *s,
4214 const char *buf, size_t length)
4215 {
4216 int ret = -EINVAL;
4217
4218 if (buf[0] == '1') {
4219 ret = validate_slab_cache(s);
4220 if (ret >= 0)
4221 ret = length;
4222 }
4223 return ret;
4224 }
4225 SLAB_ATTR(validate);
4226
4227 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4228 {
4229 return 0;
4230 }
4231
4232 static ssize_t shrink_store(struct kmem_cache *s,
4233 const char *buf, size_t length)
4234 {
4235 if (buf[0] == '1') {
4236 int rc = kmem_cache_shrink(s);
4237
4238 if (rc)
4239 return rc;
4240 } else
4241 return -EINVAL;
4242 return length;
4243 }
4244 SLAB_ATTR(shrink);
4245
4246 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4247 {
4248 if (!(s->flags & SLAB_STORE_USER))
4249 return -ENOSYS;
4250 return list_locations(s, buf, TRACK_ALLOC);
4251 }
4252 SLAB_ATTR_RO(alloc_calls);
4253
4254 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4255 {
4256 if (!(s->flags & SLAB_STORE_USER))
4257 return -ENOSYS;
4258 return list_locations(s, buf, TRACK_FREE);
4259 }
4260 SLAB_ATTR_RO(free_calls);
4261
4262 #ifdef CONFIG_NUMA
4263 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4264 {
4265 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4266 }
4267
4268 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4269 const char *buf, size_t length)
4270 {
4271 unsigned long ratio;
4272 int err;
4273
4274 err = strict_strtoul(buf, 10, &ratio);
4275 if (err)
4276 return err;
4277
4278 if (ratio <= 100)
4279 s->remote_node_defrag_ratio = ratio * 10;
4280
4281 return length;
4282 }
4283 SLAB_ATTR(remote_node_defrag_ratio);
4284 #endif
4285
4286 #ifdef CONFIG_SLUB_STATS
4287 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4288 {
4289 unsigned long sum = 0;
4290 int cpu;
4291 int len;
4292 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4293
4294 if (!data)
4295 return -ENOMEM;
4296
4297 for_each_online_cpu(cpu) {
4298 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4299
4300 data[cpu] = x;
4301 sum += x;
4302 }
4303
4304 len = sprintf(buf, "%lu", sum);
4305
4306 #ifdef CONFIG_SMP
4307 for_each_online_cpu(cpu) {
4308 if (data[cpu] && len < PAGE_SIZE - 20)
4309 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4310 }
4311 #endif
4312 kfree(data);
4313 return len + sprintf(buf + len, "\n");
4314 }
4315
4316 #define STAT_ATTR(si, text) \
4317 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4318 { \
4319 return show_stat(s, buf, si); \
4320 } \
4321 SLAB_ATTR_RO(text); \
4322
4323 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4324 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4325 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4326 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4327 STAT_ATTR(FREE_FROZEN, free_frozen);
4328 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4329 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4330 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4331 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4332 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4333 STAT_ATTR(FREE_SLAB, free_slab);
4334 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4335 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4336 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4337 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4338 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4339 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4340 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4341 #endif
4342
4343 static struct attribute *slab_attrs[] = {
4344 &slab_size_attr.attr,
4345 &object_size_attr.attr,
4346 &objs_per_slab_attr.attr,
4347 &order_attr.attr,
4348 &min_partial_attr.attr,
4349 &objects_attr.attr,
4350 &objects_partial_attr.attr,
4351 &total_objects_attr.attr,
4352 &slabs_attr.attr,
4353 &partial_attr.attr,
4354 &cpu_slabs_attr.attr,
4355 &ctor_attr.attr,
4356 &aliases_attr.attr,
4357 &align_attr.attr,
4358 &sanity_checks_attr.attr,
4359 &trace_attr.attr,
4360 &hwcache_align_attr.attr,
4361 &reclaim_account_attr.attr,
4362 &destroy_by_rcu_attr.attr,
4363 &red_zone_attr.attr,
4364 &poison_attr.attr,
4365 &store_user_attr.attr,
4366 &validate_attr.attr,
4367 &shrink_attr.attr,
4368 &alloc_calls_attr.attr,
4369 &free_calls_attr.attr,
4370 #ifdef CONFIG_ZONE_DMA
4371 &cache_dma_attr.attr,
4372 #endif
4373 #ifdef CONFIG_NUMA
4374 &remote_node_defrag_ratio_attr.attr,
4375 #endif
4376 #ifdef CONFIG_SLUB_STATS
4377 &alloc_fastpath_attr.attr,
4378 &alloc_slowpath_attr.attr,
4379 &free_fastpath_attr.attr,
4380 &free_slowpath_attr.attr,
4381 &free_frozen_attr.attr,
4382 &free_add_partial_attr.attr,
4383 &free_remove_partial_attr.attr,
4384 &alloc_from_partial_attr.attr,
4385 &alloc_slab_attr.attr,
4386 &alloc_refill_attr.attr,
4387 &free_slab_attr.attr,
4388 &cpuslab_flush_attr.attr,
4389 &deactivate_full_attr.attr,
4390 &deactivate_empty_attr.attr,
4391 &deactivate_to_head_attr.attr,
4392 &deactivate_to_tail_attr.attr,
4393 &deactivate_remote_frees_attr.attr,
4394 &order_fallback_attr.attr,
4395 #endif
4396 NULL
4397 };
4398
4399 static struct attribute_group slab_attr_group = {
4400 .attrs = slab_attrs,
4401 };
4402
4403 static ssize_t slab_attr_show(struct kobject *kobj,
4404 struct attribute *attr,
4405 char *buf)
4406 {
4407 struct slab_attribute *attribute;
4408 struct kmem_cache *s;
4409 int err;
4410
4411 attribute = to_slab_attr(attr);
4412 s = to_slab(kobj);
4413
4414 if (!attribute->show)
4415 return -EIO;
4416
4417 err = attribute->show(s, buf);
4418
4419 return err;
4420 }
4421
4422 static ssize_t slab_attr_store(struct kobject *kobj,
4423 struct attribute *attr,
4424 const char *buf, size_t len)
4425 {
4426 struct slab_attribute *attribute;
4427 struct kmem_cache *s;
4428 int err;
4429
4430 attribute = to_slab_attr(attr);
4431 s = to_slab(kobj);
4432
4433 if (!attribute->store)
4434 return -EIO;
4435
4436 err = attribute->store(s, buf, len);
4437
4438 return err;
4439 }
4440
4441 static void kmem_cache_release(struct kobject *kobj)
4442 {
4443 struct kmem_cache *s = to_slab(kobj);
4444
4445 kfree(s);
4446 }
4447
4448 static struct sysfs_ops slab_sysfs_ops = {
4449 .show = slab_attr_show,
4450 .store = slab_attr_store,
4451 };
4452
4453 static struct kobj_type slab_ktype = {
4454 .sysfs_ops = &slab_sysfs_ops,
4455 .release = kmem_cache_release
4456 };
4457
4458 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4459 {
4460 struct kobj_type *ktype = get_ktype(kobj);
4461
4462 if (ktype == &slab_ktype)
4463 return 1;
4464 return 0;
4465 }
4466
4467 static struct kset_uevent_ops slab_uevent_ops = {
4468 .filter = uevent_filter,
4469 };
4470
4471 static struct kset *slab_kset;
4472
4473 #define ID_STR_LENGTH 64
4474
4475 /* Create a unique string id for a slab cache:
4476 *
4477 * Format :[flags-]size
4478 */
4479 static char *create_unique_id(struct kmem_cache *s)
4480 {
4481 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4482 char *p = name;
4483
4484 BUG_ON(!name);
4485
4486 *p++ = ':';
4487 /*
4488 * First flags affecting slabcache operations. We will only
4489 * get here for aliasable slabs so we do not need to support
4490 * too many flags. The flags here must cover all flags that
4491 * are matched during merging to guarantee that the id is
4492 * unique.
4493 */
4494 if (s->flags & SLAB_CACHE_DMA)
4495 *p++ = 'd';
4496 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4497 *p++ = 'a';
4498 if (s->flags & SLAB_DEBUG_FREE)
4499 *p++ = 'F';
4500 if (!(s->flags & SLAB_NOTRACK))
4501 *p++ = 't';
4502 if (p != name + 1)
4503 *p++ = '-';
4504 p += sprintf(p, "%07d", s->size);
4505 BUG_ON(p > name + ID_STR_LENGTH - 1);
4506 return name;
4507 }
4508
4509 static int sysfs_slab_add(struct kmem_cache *s)
4510 {
4511 int err;
4512 const char *name;
4513 int unmergeable;
4514
4515 if (slab_state < SYSFS)
4516 /* Defer until later */
4517 return 0;
4518
4519 unmergeable = slab_unmergeable(s);
4520 if (unmergeable) {
4521 /*
4522 * Slabcache can never be merged so we can use the name proper.
4523 * This is typically the case for debug situations. In that
4524 * case we can catch duplicate names easily.
4525 */
4526 sysfs_remove_link(&slab_kset->kobj, s->name);
4527 name = s->name;
4528 } else {
4529 /*
4530 * Create a unique name for the slab as a target
4531 * for the symlinks.
4532 */
4533 name = create_unique_id(s);
4534 }
4535
4536 s->kobj.kset = slab_kset;
4537 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4538 if (err) {
4539 kobject_put(&s->kobj);
4540 return err;
4541 }
4542
4543 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4544 if (err)
4545 return err;
4546 kobject_uevent(&s->kobj, KOBJ_ADD);
4547 if (!unmergeable) {
4548 /* Setup first alias */
4549 sysfs_slab_alias(s, s->name);
4550 kfree(name);
4551 }
4552 return 0;
4553 }
4554
4555 static void sysfs_slab_remove(struct kmem_cache *s)
4556 {
4557 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4558 kobject_del(&s->kobj);
4559 kobject_put(&s->kobj);
4560 }
4561
4562 /*
4563 * Need to buffer aliases during bootup until sysfs becomes
4564 * available lest we lose that information.
4565 */
4566 struct saved_alias {
4567 struct kmem_cache *s;
4568 const char *name;
4569 struct saved_alias *next;
4570 };
4571
4572 static struct saved_alias *alias_list;
4573
4574 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4575 {
4576 struct saved_alias *al;
4577
4578 if (slab_state == SYSFS) {
4579 /*
4580 * If we have a leftover link then remove it.
4581 */
4582 sysfs_remove_link(&slab_kset->kobj, name);
4583 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4584 }
4585
4586 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4587 if (!al)
4588 return -ENOMEM;
4589
4590 al->s = s;
4591 al->name = name;
4592 al->next = alias_list;
4593 alias_list = al;
4594 return 0;
4595 }
4596
4597 static int __init slab_sysfs_init(void)
4598 {
4599 struct kmem_cache *s;
4600 int err;
4601
4602 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4603 if (!slab_kset) {
4604 printk(KERN_ERR "Cannot register slab subsystem.\n");
4605 return -ENOSYS;
4606 }
4607
4608 slab_state = SYSFS;
4609
4610 list_for_each_entry(s, &slab_caches, list) {
4611 err = sysfs_slab_add(s);
4612 if (err)
4613 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4614 " to sysfs\n", s->name);
4615 }
4616
4617 while (alias_list) {
4618 struct saved_alias *al = alias_list;
4619
4620 alias_list = alias_list->next;
4621 err = sysfs_slab_alias(al->s, al->name);
4622 if (err)
4623 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4624 " %s to sysfs\n", s->name);
4625 kfree(al);
4626 }
4627
4628 resiliency_test();
4629 return 0;
4630 }
4631
4632 __initcall(slab_sysfs_init);
4633 #endif
4634
4635 /*
4636 * The /proc/slabinfo ABI
4637 */
4638 #ifdef CONFIG_SLABINFO
4639 static void print_slabinfo_header(struct seq_file *m)
4640 {
4641 seq_puts(m, "slabinfo - version: 2.1\n");
4642 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4643 "<objperslab> <pagesperslab>");
4644 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4645 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4646 seq_putc(m, '\n');
4647 }
4648
4649 static void *s_start(struct seq_file *m, loff_t *pos)
4650 {
4651 loff_t n = *pos;
4652
4653 down_read(&slub_lock);
4654 if (!n)
4655 print_slabinfo_header(m);
4656
4657 return seq_list_start(&slab_caches, *pos);
4658 }
4659
4660 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4661 {
4662 return seq_list_next(p, &slab_caches, pos);
4663 }
4664
4665 static void s_stop(struct seq_file *m, void *p)
4666 {
4667 up_read(&slub_lock);
4668 }
4669
4670 static int s_show(struct seq_file *m, void *p)
4671 {
4672 unsigned long nr_partials = 0;
4673 unsigned long nr_slabs = 0;
4674 unsigned long nr_inuse = 0;
4675 unsigned long nr_objs = 0;
4676 unsigned long nr_free = 0;
4677 struct kmem_cache *s;
4678 int node;
4679
4680 s = list_entry(p, struct kmem_cache, list);
4681
4682 for_each_online_node(node) {
4683 struct kmem_cache_node *n = get_node(s, node);
4684
4685 if (!n)
4686 continue;
4687
4688 nr_partials += n->nr_partial;
4689 nr_slabs += atomic_long_read(&n->nr_slabs);
4690 nr_objs += atomic_long_read(&n->total_objects);
4691 nr_free += count_partial(n, count_free);
4692 }
4693
4694 nr_inuse = nr_objs - nr_free;
4695
4696 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4697 nr_objs, s->size, oo_objects(s->oo),
4698 (1 << oo_order(s->oo)));
4699 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4700 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4701 0UL);
4702 seq_putc(m, '\n');
4703 return 0;
4704 }
4705
4706 static const struct seq_operations slabinfo_op = {
4707 .start = s_start,
4708 .next = s_next,
4709 .stop = s_stop,
4710 .show = s_show,
4711 };
4712
4713 static int slabinfo_open(struct inode *inode, struct file *file)
4714 {
4715 return seq_open(file, &slabinfo_op);
4716 }
4717
4718 static const struct file_operations proc_slabinfo_operations = {
4719 .open = slabinfo_open,
4720 .read = seq_read,
4721 .llseek = seq_lseek,
4722 .release = seq_release,
4723 };
4724
4725 static int __init slab_proc_init(void)
4726 {
4727 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4728 return 0;
4729 }
4730 module_init(slab_proc_init);
4731 #endif /* CONFIG_SLABINFO */
This page took 0.181666 seconds and 6 git commands to generate.