slub: Separate out kmem_cache_cpu processing from deactivate_slab
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 #include <linux/prefetch.h>
33
34 #include <trace/events/kmem.h>
35
36 /*
37 * Lock order:
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
41 *
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81 * freed then the slab will show up again on the partial lists.
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
103 * freelist that allows lockless access to
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
109 * the fast path and disables lockless freelists.
110 */
111
112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115 static inline int kmem_cache_debug(struct kmem_cache *s)
116 {
117 #ifdef CONFIG_SLUB_DEBUG
118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119 #else
120 return 0;
121 #endif
122 }
123
124 /*
125 * Issues still to be resolved:
126 *
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
129 * - Variable sizing of the per node arrays
130 */
131
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
134
135 /* Enable to log cmpxchg failures */
136 #undef SLUB_DEBUG_CMPXCHG
137
138 /*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
142 #define MIN_PARTIAL 5
143
144 /*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149 #define MAX_PARTIAL 10
150
151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
153
154 /*
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
158 */
159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160
161 /*
162 * Set of flags that will prevent slab merging
163 */
164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
167
168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169 SLAB_CACHE_DMA | SLAB_NOTRACK)
170
171 #define OO_SHIFT 16
172 #define OO_MASK ((1 << OO_SHIFT) - 1)
173 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174
175 /* Internal SLUB flags */
176 #define __OBJECT_POISON 0x80000000UL /* Poison object */
177 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178
179 static int kmem_size = sizeof(struct kmem_cache);
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 static enum {
186 DOWN, /* No slab functionality available */
187 PARTIAL, /* Kmem_cache_node works */
188 UP, /* Everything works but does not show up in sysfs */
189 SYSFS /* Sysfs up */
190 } slab_state = DOWN;
191
192 /* A list of all slab caches on the system */
193 static DECLARE_RWSEM(slub_lock);
194 static LIST_HEAD(slab_caches);
195
196 /*
197 * Tracking user of a slab.
198 */
199 #define TRACK_ADDRS_COUNT 16
200 struct track {
201 unsigned long addr; /* Called from address */
202 #ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204 #endif
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208 };
209
210 enum track_item { TRACK_ALLOC, TRACK_FREE };
211
212 #ifdef CONFIG_SYSFS
213 static int sysfs_slab_add(struct kmem_cache *);
214 static int sysfs_slab_alias(struct kmem_cache *, const char *);
215 static void sysfs_slab_remove(struct kmem_cache *);
216
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221 static inline void sysfs_slab_remove(struct kmem_cache *s)
222 {
223 kfree(s->name);
224 kfree(s);
225 }
226
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 __this_cpu_inc(s->cpu_slab->stat[si]);
233 #endif
234 }
235
236 /********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240 int slab_is_available(void)
241 {
242 return slab_state >= UP;
243 }
244
245 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246 {
247 return s->node[node];
248 }
249
250 /* Verify that a pointer has an address that is valid within a slab page */
251 static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253 {
254 void *base;
255
256 if (!object)
257 return 1;
258
259 base = page_address(page);
260 if (object < base || object >= base + page->objects * s->size ||
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266 }
267
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 {
270 return *(void **)(object + s->offset);
271 }
272
273 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274 {
275 prefetch(object + s->offset);
276 }
277
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 void *p;
281
282 #ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284 #else
285 p = get_freepointer(s, object);
286 #endif
287 return p;
288 }
289
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291 {
292 *(void **)(object + s->offset) = fp;
293 }
294
295 /* Loop over all objects in a slab */
296 #define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
298 __p += (__s)->size)
299
300 /* Determine object index from a given position */
301 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302 {
303 return (p - addr) / s->size;
304 }
305
306 static inline size_t slab_ksize(const struct kmem_cache *s)
307 {
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
315
316 #endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328 }
329
330 static inline int order_objects(int order, unsigned long size, int reserved)
331 {
332 return ((PAGE_SIZE << order) - reserved) / size;
333 }
334
335 static inline struct kmem_cache_order_objects oo_make(int order,
336 unsigned long size, int reserved)
337 {
338 struct kmem_cache_order_objects x = {
339 (order << OO_SHIFT) + order_objects(order, size, reserved)
340 };
341
342 return x;
343 }
344
345 static inline int oo_order(struct kmem_cache_order_objects x)
346 {
347 return x.x >> OO_SHIFT;
348 }
349
350 static inline int oo_objects(struct kmem_cache_order_objects x)
351 {
352 return x.x & OO_MASK;
353 }
354
355 /*
356 * Per slab locking using the pagelock
357 */
358 static __always_inline void slab_lock(struct page *page)
359 {
360 bit_spin_lock(PG_locked, &page->flags);
361 }
362
363 static __always_inline void slab_unlock(struct page *page)
364 {
365 __bit_spin_unlock(PG_locked, &page->flags);
366 }
367
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373 {
374 VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 if (s->flags & __CMPXCHG_DOUBLE) {
378 if (cmpxchg_double(&page->freelist, &page->counters,
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383 #endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398 #ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400 #endif
401
402 return 0;
403 }
404
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409 {
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 if (s->flags & __CMPXCHG_DOUBLE) {
413 if (cmpxchg_double(&page->freelist, &page->counters,
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418 #endif
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 slab_lock(page);
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
427 slab_unlock(page);
428 local_irq_restore(flags);
429 return 1;
430 }
431 slab_unlock(page);
432 local_irq_restore(flags);
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438 #ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440 #endif
441
442 return 0;
443 }
444
445 #ifdef CONFIG_SLUB_DEBUG
446 /*
447 * Determine a map of object in use on a page.
448 *
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
451 */
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 {
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459 }
460
461 /*
462 * Debug settings:
463 */
464 #ifdef CONFIG_SLUB_DEBUG_ON
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #else
467 static int slub_debug;
468 #endif
469
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472
473 /*
474 * Object debugging
475 */
476 static void print_section(char *text, u8 *addr, unsigned int length)
477 {
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
480 }
481
482 static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484 {
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493 }
494
495 static void set_track(struct kmem_cache *s, void *object,
496 enum track_item alloc, unsigned long addr)
497 {
498 struct track *p = get_track(s, object, alloc);
499
500 if (addr) {
501 #ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518 #endif
519 p->addr = addr;
520 p->cpu = smp_processor_id();
521 p->pid = current->pid;
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525 }
526
527 static void init_tracking(struct kmem_cache *s, void *object)
528 {
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
534 }
535
536 static void print_track(const char *s, struct track *t)
537 {
538 if (!t->addr)
539 return;
540
541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
543 #ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552 #endif
553 }
554
555 static void print_tracking(struct kmem_cache *s, void *object)
556 {
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562 }
563
564 static void print_page_info(struct page *page)
565 {
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
568
569 }
570
571 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572 {
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
584 }
585
586 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587 {
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595 }
596
597 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
598 {
599 unsigned int off; /* Offset of last byte */
600 u8 *addr = page_address(page);
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
610 print_section("Bytes b4 ", p - 16, 16);
611
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
614 if (s->flags & SLAB_RED_ZONE)
615 print_section("Redzone ", p + s->objsize,
616 s->inuse - s->objsize);
617
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
623 if (s->flags & SLAB_STORE_USER)
624 off += 2 * sizeof(struct track);
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
628 print_section("Padding ", p + off, s->size - off);
629
630 dump_stack();
631 }
632
633 static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635 {
636 slab_bug(s, "%s", reason);
637 print_trailer(s, page, object);
638 }
639
640 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
659 p[s->objsize - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->objsize, val, s->inuse - s->objsize);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->objsize))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
800 }
801 }
802
803 if (s->flags & SLAB_POISON) {
804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
808 p + s->objsize - 1, POISON_END, 1)))
809 return 0;
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
816 if (!s->offset && val == SLUB_RED_ACTIVE)
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
827 * No choice but to zap it and thus lose the remainder
828 * of the free objects in this slab. May cause
829 * another error because the object count is now wrong.
830 */
831 set_freepointer(s, p, NULL);
832 return 0;
833 }
834 return 1;
835 }
836
837 static int check_slab(struct kmem_cache *s, struct page *page)
838 {
839 int maxobj;
840
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
844 slab_err(s, page, "Not a valid slab page");
845 return 0;
846 }
847
848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
855 slab_err(s, page, "inuse %u > max %u",
856 s->name, page->inuse, page->objects);
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862 }
863
864 /*
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
867 */
868 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869 {
870 int nr = 0;
871 void *fp;
872 void *object = NULL;
873 unsigned long max_objects;
874
875 fp = page->freelist;
876 while (fp && nr <= page->objects) {
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
883 set_freepointer(s, object, NULL);
884 break;
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object, s->objsize);
930
931 dump_stack();
932 }
933 }
934
935 /*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940 {
941 flags &= gfp_allowed_mask;
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->objsize, flags, s->flags);
946 }
947
948 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949 {
950 flags &= gfp_allowed_mask;
951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953 }
954
955 static inline void slab_free_hook(struct kmem_cache *s, void *x)
956 {
957 kmemleak_free_recursive(x, s->flags);
958
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
971 local_irq_restore(flags);
972 }
973 #endif
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
976 }
977
978 /*
979 * Tracking of fully allocated slabs for debugging purposes.
980 *
981 * list_lock must be held.
982 */
983 static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
985 {
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
989 list_add(&page->lru, &n->full);
990 }
991
992 /*
993 * list_lock must be held.
994 */
995 static void remove_full(struct kmem_cache *s, struct page *page)
996 {
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
1000 list_del(&page->lru);
1001 }
1002
1003 /* Tracking of the number of slabs for debugging purposes */
1004 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005 {
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009 }
1010
1011 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012 {
1013 return atomic_long_read(&n->nr_slabs);
1014 }
1015
1016 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1017 {
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
1026 if (n) {
1027 atomic_long_inc(&n->nr_slabs);
1028 atomic_long_add(objects, &n->total_objects);
1029 }
1030 }
1031 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1032 {
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
1036 atomic_long_sub(objects, &n->total_objects);
1037 }
1038
1039 /* Object debug checks for alloc/free paths */
1040 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042 {
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
1046 init_object(s, object, SLUB_RED_INACTIVE);
1047 init_tracking(s, object);
1048 }
1049
1050 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051 void *object, unsigned long addr)
1052 {
1053 if (!check_slab(s, page))
1054 goto bad;
1055
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
1058 goto bad;
1059 }
1060
1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062 goto bad;
1063
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
1068 init_object(s, object, SLUB_RED_ACTIVE);
1069 return 1;
1070
1071 bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
1076 * as used avoids touching the remaining objects.
1077 */
1078 slab_fix(s, "Marking all objects used");
1079 page->inuse = page->objects;
1080 page->freelist = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
1087 {
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
1092 slab_lock(page);
1093
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
1103 object_err(s, page, object, "Object already free");
1104 goto fail;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108 goto out;
1109
1110 if (unlikely(s != page->slab)) {
1111 if (!PageSlab(page)) {
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
1114 } else if (!page->slab) {
1115 printk(KERN_ERR
1116 "SLUB <none>: no slab for object 0x%p.\n",
1117 object);
1118 dump_stack();
1119 } else
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
1122 goto fail;
1123 }
1124
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
1128 init_object(s, object, SLUB_RED_INACTIVE);
1129 rc = 1;
1130 out:
1131 slab_unlock(page);
1132 local_irq_restore(flags);
1133 return rc;
1134
1135 fail:
1136 slab_fix(s, "Object at 0x%p not freed", object);
1137 goto out;
1138 }
1139
1140 static int __init setup_slub_debug(char *str)
1141 {
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
1175 for (; *str && *str != ','; str++) {
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
1197 "unknown. skipped\n", *str);
1198 }
1199 }
1200
1201 check_slabs:
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
1204 out:
1205 return 1;
1206 }
1207
1208 __setup("slub_debug", setup_slub_debug);
1209
1210 static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
1212 void (*ctor)(void *))
1213 {
1214 /*
1215 * Enable debugging if selected on the kernel commandline.
1216 */
1217 if (slub_debug && (!slub_debug_slabs ||
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
1220
1221 return flags;
1222 }
1223 #else
1224 static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
1226
1227 static inline int alloc_debug_processing(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr) { return 0; }
1229
1230 static inline int free_debug_processing(struct kmem_cache *s,
1231 struct page *page, void *object, unsigned long addr) { return 0; }
1232
1233 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235 static inline int check_object(struct kmem_cache *s, struct page *page,
1236 void *object, u8 val) { return 1; }
1237 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
1239 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
1242 void (*ctor)(void *))
1243 {
1244 return flags;
1245 }
1246 #define slub_debug 0
1247
1248 #define disable_higher_order_debug 0
1249
1250 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
1252 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
1254 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
1258
1259 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
1267 #endif /* CONFIG_SLUB_DEBUG */
1268
1269 /*
1270 * Slab allocation and freeing
1271 */
1272 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274 {
1275 int order = oo_order(oo);
1276
1277 flags |= __GFP_NOTRACK;
1278
1279 if (node == NUMA_NO_NODE)
1280 return alloc_pages(flags, order);
1281 else
1282 return alloc_pages_exact_node(node, flags, order);
1283 }
1284
1285 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286 {
1287 struct page *page;
1288 struct kmem_cache_order_objects oo = s->oo;
1289 gfp_t alloc_gfp;
1290
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
1296 flags |= s->allocflags;
1297
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
1312
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
1315 }
1316
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
1323 if (kmemcheck_enabled
1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
1337 }
1338
1339 page->objects = oo_objects(oo);
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343 1 << oo_order(oo));
1344
1345 return page;
1346 }
1347
1348 static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350 {
1351 setup_object_debug(s, page, object);
1352 if (unlikely(s->ctor))
1353 s->ctor(object);
1354 }
1355
1356 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357 {
1358 struct page *page;
1359 void *start;
1360 void *last;
1361 void *p;
1362
1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1364
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367 if (!page)
1368 goto out;
1369
1370 inc_slabs_node(s, page_to_nid(page), page->objects);
1371 page->slab = s;
1372 page->flags |= 1 << PG_slab;
1373
1374 start = page_address(page);
1375
1376 if (unlikely(s->flags & SLAB_POISON))
1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1378
1379 last = start;
1380 for_each_object(p, s, start, page->objects) {
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
1386 set_freepointer(s, last, NULL);
1387
1388 page->freelist = start;
1389 page->inuse = page->objects;
1390 page->frozen = 1;
1391 out:
1392 return page;
1393 }
1394
1395 static void __free_slab(struct kmem_cache *s, struct page *page)
1396 {
1397 int order = compound_order(page);
1398 int pages = 1 << order;
1399
1400 if (kmem_cache_debug(s)) {
1401 void *p;
1402
1403 slab_pad_check(s, page);
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
1406 check_object(s, page, p, SLUB_RED_INACTIVE);
1407 }
1408
1409 kmemcheck_free_shadow(page, compound_order(page));
1410
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414 -pages);
1415
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
1420 __free_pages(page, order);
1421 }
1422
1423 #define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
1426 static void rcu_free_slab(struct rcu_head *h)
1427 {
1428 struct page *page;
1429
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
1435 __free_slab(page->slab, page);
1436 }
1437
1438 static void free_slab(struct kmem_cache *s, struct page *page)
1439 {
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459 }
1460
1461 static void discard_slab(struct kmem_cache *s, struct page *page)
1462 {
1463 dec_slabs_node(s, page_to_nid(page), page->objects);
1464 free_slab(s, page);
1465 }
1466
1467 /*
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
1471 */
1472 static inline void add_partial(struct kmem_cache_node *n,
1473 struct page *page, int tail)
1474 {
1475 n->nr_partial++;
1476 if (tail == DEACTIVATE_TO_TAIL)
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
1480 }
1481
1482 /*
1483 * list_lock must be held.
1484 */
1485 static inline void remove_partial(struct kmem_cache_node *n,
1486 struct page *page)
1487 {
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490 }
1491
1492 /*
1493 * Remove slab from the partial list, freeze it and
1494 * return the pointer to the freelist.
1495 *
1496 * Returns a list of objects or NULL if it fails.
1497 *
1498 * Must hold list_lock since we modify the partial list.
1499 */
1500 static inline void *acquire_slab(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct page *page,
1502 int mode)
1503 {
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
1513 freelist = page->freelist;
1514 counters = page->counters;
1515 new.counters = counters;
1516 if (mode)
1517 new.inuse = page->objects;
1518
1519 VM_BUG_ON(new.frozen);
1520 new.frozen = 1;
1521
1522 if (!__cmpxchg_double_slab(s, page,
1523 freelist, counters,
1524 NULL, new.counters,
1525 "acquire_slab"))
1526
1527 return NULL;
1528
1529 remove_partial(n, page);
1530 WARN_ON(!freelist);
1531 return freelist;
1532 }
1533
1534 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1535
1536 /*
1537 * Try to allocate a partial slab from a specific node.
1538 */
1539 static void *get_partial_node(struct kmem_cache *s,
1540 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1541 {
1542 struct page *page, *page2;
1543 void *object = NULL;
1544
1545 /*
1546 * Racy check. If we mistakenly see no partial slabs then we
1547 * just allocate an empty slab. If we mistakenly try to get a
1548 * partial slab and there is none available then get_partials()
1549 * will return NULL.
1550 */
1551 if (!n || !n->nr_partial)
1552 return NULL;
1553
1554 spin_lock(&n->list_lock);
1555 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1556 void *t = acquire_slab(s, n, page, object == NULL);
1557 int available;
1558
1559 if (!t)
1560 break;
1561
1562 if (!object) {
1563 c->page = page;
1564 stat(s, ALLOC_FROM_PARTIAL);
1565 object = t;
1566 available = page->objects - page->inuse;
1567 } else {
1568 page->freelist = t;
1569 available = put_cpu_partial(s, page, 0);
1570 stat(s, CPU_PARTIAL_NODE);
1571 }
1572 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1573 break;
1574
1575 }
1576 spin_unlock(&n->list_lock);
1577 return object;
1578 }
1579
1580 /*
1581 * Get a page from somewhere. Search in increasing NUMA distances.
1582 */
1583 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1584 struct kmem_cache_cpu *c)
1585 {
1586 #ifdef CONFIG_NUMA
1587 struct zonelist *zonelist;
1588 struct zoneref *z;
1589 struct zone *zone;
1590 enum zone_type high_zoneidx = gfp_zone(flags);
1591 void *object;
1592 unsigned int cpuset_mems_cookie;
1593
1594 /*
1595 * The defrag ratio allows a configuration of the tradeoffs between
1596 * inter node defragmentation and node local allocations. A lower
1597 * defrag_ratio increases the tendency to do local allocations
1598 * instead of attempting to obtain partial slabs from other nodes.
1599 *
1600 * If the defrag_ratio is set to 0 then kmalloc() always
1601 * returns node local objects. If the ratio is higher then kmalloc()
1602 * may return off node objects because partial slabs are obtained
1603 * from other nodes and filled up.
1604 *
1605 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1606 * defrag_ratio = 1000) then every (well almost) allocation will
1607 * first attempt to defrag slab caches on other nodes. This means
1608 * scanning over all nodes to look for partial slabs which may be
1609 * expensive if we do it every time we are trying to find a slab
1610 * with available objects.
1611 */
1612 if (!s->remote_node_defrag_ratio ||
1613 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1614 return NULL;
1615
1616 do {
1617 cpuset_mems_cookie = get_mems_allowed();
1618 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1619 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1620 struct kmem_cache_node *n;
1621
1622 n = get_node(s, zone_to_nid(zone));
1623
1624 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1625 n->nr_partial > s->min_partial) {
1626 object = get_partial_node(s, n, c);
1627 if (object) {
1628 /*
1629 * Return the object even if
1630 * put_mems_allowed indicated that
1631 * the cpuset mems_allowed was
1632 * updated in parallel. It's a
1633 * harmless race between the alloc
1634 * and the cpuset update.
1635 */
1636 put_mems_allowed(cpuset_mems_cookie);
1637 return object;
1638 }
1639 }
1640 }
1641 } while (!put_mems_allowed(cpuset_mems_cookie));
1642 #endif
1643 return NULL;
1644 }
1645
1646 /*
1647 * Get a partial page, lock it and return it.
1648 */
1649 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1650 struct kmem_cache_cpu *c)
1651 {
1652 void *object;
1653 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1654
1655 object = get_partial_node(s, get_node(s, searchnode), c);
1656 if (object || node != NUMA_NO_NODE)
1657 return object;
1658
1659 return get_any_partial(s, flags, c);
1660 }
1661
1662 #ifdef CONFIG_PREEMPT
1663 /*
1664 * Calculate the next globally unique transaction for disambiguiation
1665 * during cmpxchg. The transactions start with the cpu number and are then
1666 * incremented by CONFIG_NR_CPUS.
1667 */
1668 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1669 #else
1670 /*
1671 * No preemption supported therefore also no need to check for
1672 * different cpus.
1673 */
1674 #define TID_STEP 1
1675 #endif
1676
1677 static inline unsigned long next_tid(unsigned long tid)
1678 {
1679 return tid + TID_STEP;
1680 }
1681
1682 static inline unsigned int tid_to_cpu(unsigned long tid)
1683 {
1684 return tid % TID_STEP;
1685 }
1686
1687 static inline unsigned long tid_to_event(unsigned long tid)
1688 {
1689 return tid / TID_STEP;
1690 }
1691
1692 static inline unsigned int init_tid(int cpu)
1693 {
1694 return cpu;
1695 }
1696
1697 static inline void note_cmpxchg_failure(const char *n,
1698 const struct kmem_cache *s, unsigned long tid)
1699 {
1700 #ifdef SLUB_DEBUG_CMPXCHG
1701 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1702
1703 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1704
1705 #ifdef CONFIG_PREEMPT
1706 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1707 printk("due to cpu change %d -> %d\n",
1708 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1709 else
1710 #endif
1711 if (tid_to_event(tid) != tid_to_event(actual_tid))
1712 printk("due to cpu running other code. Event %ld->%ld\n",
1713 tid_to_event(tid), tid_to_event(actual_tid));
1714 else
1715 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1716 actual_tid, tid, next_tid(tid));
1717 #endif
1718 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1719 }
1720
1721 void init_kmem_cache_cpus(struct kmem_cache *s)
1722 {
1723 int cpu;
1724
1725 for_each_possible_cpu(cpu)
1726 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1727 }
1728
1729 /*
1730 * Remove the cpu slab
1731 */
1732 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1733 {
1734 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1735 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1736 int lock = 0;
1737 enum slab_modes l = M_NONE, m = M_NONE;
1738 void *nextfree;
1739 int tail = DEACTIVATE_TO_HEAD;
1740 struct page new;
1741 struct page old;
1742
1743 if (page->freelist) {
1744 stat(s, DEACTIVATE_REMOTE_FREES);
1745 tail = DEACTIVATE_TO_TAIL;
1746 }
1747
1748 /*
1749 * Stage one: Free all available per cpu objects back
1750 * to the page freelist while it is still frozen. Leave the
1751 * last one.
1752 *
1753 * There is no need to take the list->lock because the page
1754 * is still frozen.
1755 */
1756 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1757 void *prior;
1758 unsigned long counters;
1759
1760 do {
1761 prior = page->freelist;
1762 counters = page->counters;
1763 set_freepointer(s, freelist, prior);
1764 new.counters = counters;
1765 new.inuse--;
1766 VM_BUG_ON(!new.frozen);
1767
1768 } while (!__cmpxchg_double_slab(s, page,
1769 prior, counters,
1770 freelist, new.counters,
1771 "drain percpu freelist"));
1772
1773 freelist = nextfree;
1774 }
1775
1776 /*
1777 * Stage two: Ensure that the page is unfrozen while the
1778 * list presence reflects the actual number of objects
1779 * during unfreeze.
1780 *
1781 * We setup the list membership and then perform a cmpxchg
1782 * with the count. If there is a mismatch then the page
1783 * is not unfrozen but the page is on the wrong list.
1784 *
1785 * Then we restart the process which may have to remove
1786 * the page from the list that we just put it on again
1787 * because the number of objects in the slab may have
1788 * changed.
1789 */
1790 redo:
1791
1792 old.freelist = page->freelist;
1793 old.counters = page->counters;
1794 VM_BUG_ON(!old.frozen);
1795
1796 /* Determine target state of the slab */
1797 new.counters = old.counters;
1798 if (freelist) {
1799 new.inuse--;
1800 set_freepointer(s, freelist, old.freelist);
1801 new.freelist = freelist;
1802 } else
1803 new.freelist = old.freelist;
1804
1805 new.frozen = 0;
1806
1807 if (!new.inuse && n->nr_partial > s->min_partial)
1808 m = M_FREE;
1809 else if (new.freelist) {
1810 m = M_PARTIAL;
1811 if (!lock) {
1812 lock = 1;
1813 /*
1814 * Taking the spinlock removes the possiblity
1815 * that acquire_slab() will see a slab page that
1816 * is frozen
1817 */
1818 spin_lock(&n->list_lock);
1819 }
1820 } else {
1821 m = M_FULL;
1822 if (kmem_cache_debug(s) && !lock) {
1823 lock = 1;
1824 /*
1825 * This also ensures that the scanning of full
1826 * slabs from diagnostic functions will not see
1827 * any frozen slabs.
1828 */
1829 spin_lock(&n->list_lock);
1830 }
1831 }
1832
1833 if (l != m) {
1834
1835 if (l == M_PARTIAL)
1836
1837 remove_partial(n, page);
1838
1839 else if (l == M_FULL)
1840
1841 remove_full(s, page);
1842
1843 if (m == M_PARTIAL) {
1844
1845 add_partial(n, page, tail);
1846 stat(s, tail);
1847
1848 } else if (m == M_FULL) {
1849
1850 stat(s, DEACTIVATE_FULL);
1851 add_full(s, n, page);
1852
1853 }
1854 }
1855
1856 l = m;
1857 if (!__cmpxchg_double_slab(s, page,
1858 old.freelist, old.counters,
1859 new.freelist, new.counters,
1860 "unfreezing slab"))
1861 goto redo;
1862
1863 if (lock)
1864 spin_unlock(&n->list_lock);
1865
1866 if (m == M_FREE) {
1867 stat(s, DEACTIVATE_EMPTY);
1868 discard_slab(s, page);
1869 stat(s, FREE_SLAB);
1870 }
1871 }
1872
1873 /* Unfreeze all the cpu partial slabs */
1874 static void unfreeze_partials(struct kmem_cache *s)
1875 {
1876 struct kmem_cache_node *n = NULL;
1877 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1878 struct page *page, *discard_page = NULL;
1879
1880 while ((page = c->partial)) {
1881 enum slab_modes { M_PARTIAL, M_FREE };
1882 enum slab_modes l, m;
1883 struct page new;
1884 struct page old;
1885
1886 c->partial = page->next;
1887 l = M_FREE;
1888
1889 do {
1890
1891 old.freelist = page->freelist;
1892 old.counters = page->counters;
1893 VM_BUG_ON(!old.frozen);
1894
1895 new.counters = old.counters;
1896 new.freelist = old.freelist;
1897
1898 new.frozen = 0;
1899
1900 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1901 m = M_FREE;
1902 else {
1903 struct kmem_cache_node *n2 = get_node(s,
1904 page_to_nid(page));
1905
1906 m = M_PARTIAL;
1907 if (n != n2) {
1908 if (n)
1909 spin_unlock(&n->list_lock);
1910
1911 n = n2;
1912 spin_lock(&n->list_lock);
1913 }
1914 }
1915
1916 if (l != m) {
1917 if (l == M_PARTIAL) {
1918 remove_partial(n, page);
1919 stat(s, FREE_REMOVE_PARTIAL);
1920 } else {
1921 add_partial(n, page,
1922 DEACTIVATE_TO_TAIL);
1923 stat(s, FREE_ADD_PARTIAL);
1924 }
1925
1926 l = m;
1927 }
1928
1929 } while (!cmpxchg_double_slab(s, page,
1930 old.freelist, old.counters,
1931 new.freelist, new.counters,
1932 "unfreezing slab"));
1933
1934 if (m == M_FREE) {
1935 page->next = discard_page;
1936 discard_page = page;
1937 }
1938 }
1939
1940 if (n)
1941 spin_unlock(&n->list_lock);
1942
1943 while (discard_page) {
1944 page = discard_page;
1945 discard_page = discard_page->next;
1946
1947 stat(s, DEACTIVATE_EMPTY);
1948 discard_slab(s, page);
1949 stat(s, FREE_SLAB);
1950 }
1951 }
1952
1953 /*
1954 * Put a page that was just frozen (in __slab_free) into a partial page
1955 * slot if available. This is done without interrupts disabled and without
1956 * preemption disabled. The cmpxchg is racy and may put the partial page
1957 * onto a random cpus partial slot.
1958 *
1959 * If we did not find a slot then simply move all the partials to the
1960 * per node partial list.
1961 */
1962 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1963 {
1964 struct page *oldpage;
1965 int pages;
1966 int pobjects;
1967
1968 do {
1969 pages = 0;
1970 pobjects = 0;
1971 oldpage = this_cpu_read(s->cpu_slab->partial);
1972
1973 if (oldpage) {
1974 pobjects = oldpage->pobjects;
1975 pages = oldpage->pages;
1976 if (drain && pobjects > s->cpu_partial) {
1977 unsigned long flags;
1978 /*
1979 * partial array is full. Move the existing
1980 * set to the per node partial list.
1981 */
1982 local_irq_save(flags);
1983 unfreeze_partials(s);
1984 local_irq_restore(flags);
1985 pobjects = 0;
1986 pages = 0;
1987 stat(s, CPU_PARTIAL_DRAIN);
1988 }
1989 }
1990
1991 pages++;
1992 pobjects += page->objects - page->inuse;
1993
1994 page->pages = pages;
1995 page->pobjects = pobjects;
1996 page->next = oldpage;
1997
1998 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1999 return pobjects;
2000 }
2001
2002 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2003 {
2004 stat(s, CPUSLAB_FLUSH);
2005 deactivate_slab(s, c->page, c->freelist);
2006
2007 c->tid = next_tid(c->tid);
2008 c->page = NULL;
2009 c->freelist = NULL;
2010 }
2011
2012 /*
2013 * Flush cpu slab.
2014 *
2015 * Called from IPI handler with interrupts disabled.
2016 */
2017 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2018 {
2019 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2020
2021 if (likely(c)) {
2022 if (c->page)
2023 flush_slab(s, c);
2024
2025 unfreeze_partials(s);
2026 }
2027 }
2028
2029 static void flush_cpu_slab(void *d)
2030 {
2031 struct kmem_cache *s = d;
2032
2033 __flush_cpu_slab(s, smp_processor_id());
2034 }
2035
2036 static bool has_cpu_slab(int cpu, void *info)
2037 {
2038 struct kmem_cache *s = info;
2039 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2040
2041 return c->page || c->partial;
2042 }
2043
2044 static void flush_all(struct kmem_cache *s)
2045 {
2046 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2047 }
2048
2049 /*
2050 * Check if the objects in a per cpu structure fit numa
2051 * locality expectations.
2052 */
2053 static inline int node_match(struct kmem_cache_cpu *c, int node)
2054 {
2055 #ifdef CONFIG_NUMA
2056 if (node != NUMA_NO_NODE && page_to_nid(c->page) != node)
2057 return 0;
2058 #endif
2059 return 1;
2060 }
2061
2062 static int count_free(struct page *page)
2063 {
2064 return page->objects - page->inuse;
2065 }
2066
2067 static unsigned long count_partial(struct kmem_cache_node *n,
2068 int (*get_count)(struct page *))
2069 {
2070 unsigned long flags;
2071 unsigned long x = 0;
2072 struct page *page;
2073
2074 spin_lock_irqsave(&n->list_lock, flags);
2075 list_for_each_entry(page, &n->partial, lru)
2076 x += get_count(page);
2077 spin_unlock_irqrestore(&n->list_lock, flags);
2078 return x;
2079 }
2080
2081 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2082 {
2083 #ifdef CONFIG_SLUB_DEBUG
2084 return atomic_long_read(&n->total_objects);
2085 #else
2086 return 0;
2087 #endif
2088 }
2089
2090 static noinline void
2091 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2092 {
2093 int node;
2094
2095 printk(KERN_WARNING
2096 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2097 nid, gfpflags);
2098 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2099 "default order: %d, min order: %d\n", s->name, s->objsize,
2100 s->size, oo_order(s->oo), oo_order(s->min));
2101
2102 if (oo_order(s->min) > get_order(s->objsize))
2103 printk(KERN_WARNING " %s debugging increased min order, use "
2104 "slub_debug=O to disable.\n", s->name);
2105
2106 for_each_online_node(node) {
2107 struct kmem_cache_node *n = get_node(s, node);
2108 unsigned long nr_slabs;
2109 unsigned long nr_objs;
2110 unsigned long nr_free;
2111
2112 if (!n)
2113 continue;
2114
2115 nr_free = count_partial(n, count_free);
2116 nr_slabs = node_nr_slabs(n);
2117 nr_objs = node_nr_objs(n);
2118
2119 printk(KERN_WARNING
2120 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2121 node, nr_slabs, nr_objs, nr_free);
2122 }
2123 }
2124
2125 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2126 int node, struct kmem_cache_cpu **pc)
2127 {
2128 void *freelist;
2129 struct kmem_cache_cpu *c = *pc;
2130 struct page *page;
2131
2132 freelist = get_partial(s, flags, node, c);
2133
2134 if (freelist)
2135 return freelist;
2136
2137 page = new_slab(s, flags, node);
2138 if (page) {
2139 c = __this_cpu_ptr(s->cpu_slab);
2140 if (c->page)
2141 flush_slab(s, c);
2142
2143 /*
2144 * No other reference to the page yet so we can
2145 * muck around with it freely without cmpxchg
2146 */
2147 freelist = page->freelist;
2148 page->freelist = NULL;
2149
2150 stat(s, ALLOC_SLAB);
2151 c->page = page;
2152 *pc = c;
2153 } else
2154 freelist = NULL;
2155
2156 return freelist;
2157 }
2158
2159 /*
2160 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2161 * or deactivate the page.
2162 *
2163 * The page is still frozen if the return value is not NULL.
2164 *
2165 * If this function returns NULL then the page has been unfrozen.
2166 */
2167 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2168 {
2169 struct page new;
2170 unsigned long counters;
2171 void *freelist;
2172
2173 do {
2174 freelist = page->freelist;
2175 counters = page->counters;
2176
2177 new.counters = counters;
2178 VM_BUG_ON(!new.frozen);
2179
2180 new.inuse = page->objects;
2181 new.frozen = freelist != NULL;
2182
2183 } while (!cmpxchg_double_slab(s, page,
2184 freelist, counters,
2185 NULL, new.counters,
2186 "get_freelist"));
2187
2188 return freelist;
2189 }
2190
2191 /*
2192 * Slow path. The lockless freelist is empty or we need to perform
2193 * debugging duties.
2194 *
2195 * Processing is still very fast if new objects have been freed to the
2196 * regular freelist. In that case we simply take over the regular freelist
2197 * as the lockless freelist and zap the regular freelist.
2198 *
2199 * If that is not working then we fall back to the partial lists. We take the
2200 * first element of the freelist as the object to allocate now and move the
2201 * rest of the freelist to the lockless freelist.
2202 *
2203 * And if we were unable to get a new slab from the partial slab lists then
2204 * we need to allocate a new slab. This is the slowest path since it involves
2205 * a call to the page allocator and the setup of a new slab.
2206 */
2207 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2208 unsigned long addr, struct kmem_cache_cpu *c)
2209 {
2210 void *freelist;
2211 unsigned long flags;
2212
2213 local_irq_save(flags);
2214 #ifdef CONFIG_PREEMPT
2215 /*
2216 * We may have been preempted and rescheduled on a different
2217 * cpu before disabling interrupts. Need to reload cpu area
2218 * pointer.
2219 */
2220 c = this_cpu_ptr(s->cpu_slab);
2221 #endif
2222
2223 if (!c->page)
2224 goto new_slab;
2225 redo:
2226
2227 if (unlikely(!node_match(c, node))) {
2228 stat(s, ALLOC_NODE_MISMATCH);
2229 deactivate_slab(s, c->page, c->freelist);
2230 c->page = NULL;
2231 c->freelist = NULL;
2232 goto new_slab;
2233 }
2234
2235 /* must check again c->freelist in case of cpu migration or IRQ */
2236 freelist = c->freelist;
2237 if (freelist)
2238 goto load_freelist;
2239
2240 stat(s, ALLOC_SLOWPATH);
2241
2242 freelist = get_freelist(s, c->page);
2243
2244 if (!freelist) {
2245 c->page = NULL;
2246 stat(s, DEACTIVATE_BYPASS);
2247 goto new_slab;
2248 }
2249
2250 stat(s, ALLOC_REFILL);
2251
2252 load_freelist:
2253 /*
2254 * freelist is pointing to the list of objects to be used.
2255 * page is pointing to the page from which the objects are obtained.
2256 * That page must be frozen for per cpu allocations to work.
2257 */
2258 VM_BUG_ON(!c->page->frozen);
2259 c->freelist = get_freepointer(s, freelist);
2260 c->tid = next_tid(c->tid);
2261 local_irq_restore(flags);
2262 return freelist;
2263
2264 new_slab:
2265
2266 if (c->partial) {
2267 c->page = c->partial;
2268 c->partial = c->page->next;
2269 stat(s, CPU_PARTIAL_ALLOC);
2270 c->freelist = NULL;
2271 goto redo;
2272 }
2273
2274 freelist = new_slab_objects(s, gfpflags, node, &c);
2275
2276 if (unlikely(!freelist)) {
2277 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2278 slab_out_of_memory(s, gfpflags, node);
2279
2280 local_irq_restore(flags);
2281 return NULL;
2282 }
2283
2284 if (likely(!kmem_cache_debug(s)))
2285 goto load_freelist;
2286
2287 /* Only entered in the debug case */
2288 if (!alloc_debug_processing(s, c->page, freelist, addr))
2289 goto new_slab; /* Slab failed checks. Next slab needed */
2290
2291 deactivate_slab(s, c->page, get_freepointer(s, freelist));
2292 c->page = NULL;
2293 c->freelist = NULL;
2294 local_irq_restore(flags);
2295 return freelist;
2296 }
2297
2298 /*
2299 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2300 * have the fastpath folded into their functions. So no function call
2301 * overhead for requests that can be satisfied on the fastpath.
2302 *
2303 * The fastpath works by first checking if the lockless freelist can be used.
2304 * If not then __slab_alloc is called for slow processing.
2305 *
2306 * Otherwise we can simply pick the next object from the lockless free list.
2307 */
2308 static __always_inline void *slab_alloc(struct kmem_cache *s,
2309 gfp_t gfpflags, int node, unsigned long addr)
2310 {
2311 void **object;
2312 struct kmem_cache_cpu *c;
2313 unsigned long tid;
2314
2315 if (slab_pre_alloc_hook(s, gfpflags))
2316 return NULL;
2317
2318 redo:
2319
2320 /*
2321 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2322 * enabled. We may switch back and forth between cpus while
2323 * reading from one cpu area. That does not matter as long
2324 * as we end up on the original cpu again when doing the cmpxchg.
2325 */
2326 c = __this_cpu_ptr(s->cpu_slab);
2327
2328 /*
2329 * The transaction ids are globally unique per cpu and per operation on
2330 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2331 * occurs on the right processor and that there was no operation on the
2332 * linked list in between.
2333 */
2334 tid = c->tid;
2335 barrier();
2336
2337 object = c->freelist;
2338 if (unlikely(!object || !node_match(c, node)))
2339
2340 object = __slab_alloc(s, gfpflags, node, addr, c);
2341
2342 else {
2343 void *next_object = get_freepointer_safe(s, object);
2344
2345 /*
2346 * The cmpxchg will only match if there was no additional
2347 * operation and if we are on the right processor.
2348 *
2349 * The cmpxchg does the following atomically (without lock semantics!)
2350 * 1. Relocate first pointer to the current per cpu area.
2351 * 2. Verify that tid and freelist have not been changed
2352 * 3. If they were not changed replace tid and freelist
2353 *
2354 * Since this is without lock semantics the protection is only against
2355 * code executing on this cpu *not* from access by other cpus.
2356 */
2357 if (unlikely(!this_cpu_cmpxchg_double(
2358 s->cpu_slab->freelist, s->cpu_slab->tid,
2359 object, tid,
2360 next_object, next_tid(tid)))) {
2361
2362 note_cmpxchg_failure("slab_alloc", s, tid);
2363 goto redo;
2364 }
2365 prefetch_freepointer(s, next_object);
2366 stat(s, ALLOC_FASTPATH);
2367 }
2368
2369 if (unlikely(gfpflags & __GFP_ZERO) && object)
2370 memset(object, 0, s->objsize);
2371
2372 slab_post_alloc_hook(s, gfpflags, object);
2373
2374 return object;
2375 }
2376
2377 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2378 {
2379 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2380
2381 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2382
2383 return ret;
2384 }
2385 EXPORT_SYMBOL(kmem_cache_alloc);
2386
2387 #ifdef CONFIG_TRACING
2388 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2389 {
2390 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2391 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2392 return ret;
2393 }
2394 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2395
2396 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2397 {
2398 void *ret = kmalloc_order(size, flags, order);
2399 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2400 return ret;
2401 }
2402 EXPORT_SYMBOL(kmalloc_order_trace);
2403 #endif
2404
2405 #ifdef CONFIG_NUMA
2406 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2407 {
2408 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2409
2410 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2411 s->objsize, s->size, gfpflags, node);
2412
2413 return ret;
2414 }
2415 EXPORT_SYMBOL(kmem_cache_alloc_node);
2416
2417 #ifdef CONFIG_TRACING
2418 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2419 gfp_t gfpflags,
2420 int node, size_t size)
2421 {
2422 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2423
2424 trace_kmalloc_node(_RET_IP_, ret,
2425 size, s->size, gfpflags, node);
2426 return ret;
2427 }
2428 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2429 #endif
2430 #endif
2431
2432 /*
2433 * Slow patch handling. This may still be called frequently since objects
2434 * have a longer lifetime than the cpu slabs in most processing loads.
2435 *
2436 * So we still attempt to reduce cache line usage. Just take the slab
2437 * lock and free the item. If there is no additional partial page
2438 * handling required then we can return immediately.
2439 */
2440 static void __slab_free(struct kmem_cache *s, struct page *page,
2441 void *x, unsigned long addr)
2442 {
2443 void *prior;
2444 void **object = (void *)x;
2445 int was_frozen;
2446 int inuse;
2447 struct page new;
2448 unsigned long counters;
2449 struct kmem_cache_node *n = NULL;
2450 unsigned long uninitialized_var(flags);
2451
2452 stat(s, FREE_SLOWPATH);
2453
2454 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2455 return;
2456
2457 do {
2458 prior = page->freelist;
2459 counters = page->counters;
2460 set_freepointer(s, object, prior);
2461 new.counters = counters;
2462 was_frozen = new.frozen;
2463 new.inuse--;
2464 if ((!new.inuse || !prior) && !was_frozen && !n) {
2465
2466 if (!kmem_cache_debug(s) && !prior)
2467
2468 /*
2469 * Slab was on no list before and will be partially empty
2470 * We can defer the list move and instead freeze it.
2471 */
2472 new.frozen = 1;
2473
2474 else { /* Needs to be taken off a list */
2475
2476 n = get_node(s, page_to_nid(page));
2477 /*
2478 * Speculatively acquire the list_lock.
2479 * If the cmpxchg does not succeed then we may
2480 * drop the list_lock without any processing.
2481 *
2482 * Otherwise the list_lock will synchronize with
2483 * other processors updating the list of slabs.
2484 */
2485 spin_lock_irqsave(&n->list_lock, flags);
2486
2487 }
2488 }
2489 inuse = new.inuse;
2490
2491 } while (!cmpxchg_double_slab(s, page,
2492 prior, counters,
2493 object, new.counters,
2494 "__slab_free"));
2495
2496 if (likely(!n)) {
2497
2498 /*
2499 * If we just froze the page then put it onto the
2500 * per cpu partial list.
2501 */
2502 if (new.frozen && !was_frozen) {
2503 put_cpu_partial(s, page, 1);
2504 stat(s, CPU_PARTIAL_FREE);
2505 }
2506 /*
2507 * The list lock was not taken therefore no list
2508 * activity can be necessary.
2509 */
2510 if (was_frozen)
2511 stat(s, FREE_FROZEN);
2512 return;
2513 }
2514
2515 /*
2516 * was_frozen may have been set after we acquired the list_lock in
2517 * an earlier loop. So we need to check it here again.
2518 */
2519 if (was_frozen)
2520 stat(s, FREE_FROZEN);
2521 else {
2522 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2523 goto slab_empty;
2524
2525 /*
2526 * Objects left in the slab. If it was not on the partial list before
2527 * then add it.
2528 */
2529 if (unlikely(!prior)) {
2530 remove_full(s, page);
2531 add_partial(n, page, DEACTIVATE_TO_TAIL);
2532 stat(s, FREE_ADD_PARTIAL);
2533 }
2534 }
2535 spin_unlock_irqrestore(&n->list_lock, flags);
2536 return;
2537
2538 slab_empty:
2539 if (prior) {
2540 /*
2541 * Slab on the partial list.
2542 */
2543 remove_partial(n, page);
2544 stat(s, FREE_REMOVE_PARTIAL);
2545 } else
2546 /* Slab must be on the full list */
2547 remove_full(s, page);
2548
2549 spin_unlock_irqrestore(&n->list_lock, flags);
2550 stat(s, FREE_SLAB);
2551 discard_slab(s, page);
2552 }
2553
2554 /*
2555 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2556 * can perform fastpath freeing without additional function calls.
2557 *
2558 * The fastpath is only possible if we are freeing to the current cpu slab
2559 * of this processor. This typically the case if we have just allocated
2560 * the item before.
2561 *
2562 * If fastpath is not possible then fall back to __slab_free where we deal
2563 * with all sorts of special processing.
2564 */
2565 static __always_inline void slab_free(struct kmem_cache *s,
2566 struct page *page, void *x, unsigned long addr)
2567 {
2568 void **object = (void *)x;
2569 struct kmem_cache_cpu *c;
2570 unsigned long tid;
2571
2572 slab_free_hook(s, x);
2573
2574 redo:
2575 /*
2576 * Determine the currently cpus per cpu slab.
2577 * The cpu may change afterward. However that does not matter since
2578 * data is retrieved via this pointer. If we are on the same cpu
2579 * during the cmpxchg then the free will succedd.
2580 */
2581 c = __this_cpu_ptr(s->cpu_slab);
2582
2583 tid = c->tid;
2584 barrier();
2585
2586 if (likely(page == c->page)) {
2587 set_freepointer(s, object, c->freelist);
2588
2589 if (unlikely(!this_cpu_cmpxchg_double(
2590 s->cpu_slab->freelist, s->cpu_slab->tid,
2591 c->freelist, tid,
2592 object, next_tid(tid)))) {
2593
2594 note_cmpxchg_failure("slab_free", s, tid);
2595 goto redo;
2596 }
2597 stat(s, FREE_FASTPATH);
2598 } else
2599 __slab_free(s, page, x, addr);
2600
2601 }
2602
2603 void kmem_cache_free(struct kmem_cache *s, void *x)
2604 {
2605 struct page *page;
2606
2607 page = virt_to_head_page(x);
2608
2609 slab_free(s, page, x, _RET_IP_);
2610
2611 trace_kmem_cache_free(_RET_IP_, x);
2612 }
2613 EXPORT_SYMBOL(kmem_cache_free);
2614
2615 /*
2616 * Object placement in a slab is made very easy because we always start at
2617 * offset 0. If we tune the size of the object to the alignment then we can
2618 * get the required alignment by putting one properly sized object after
2619 * another.
2620 *
2621 * Notice that the allocation order determines the sizes of the per cpu
2622 * caches. Each processor has always one slab available for allocations.
2623 * Increasing the allocation order reduces the number of times that slabs
2624 * must be moved on and off the partial lists and is therefore a factor in
2625 * locking overhead.
2626 */
2627
2628 /*
2629 * Mininum / Maximum order of slab pages. This influences locking overhead
2630 * and slab fragmentation. A higher order reduces the number of partial slabs
2631 * and increases the number of allocations possible without having to
2632 * take the list_lock.
2633 */
2634 static int slub_min_order;
2635 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2636 static int slub_min_objects;
2637
2638 /*
2639 * Merge control. If this is set then no merging of slab caches will occur.
2640 * (Could be removed. This was introduced to pacify the merge skeptics.)
2641 */
2642 static int slub_nomerge;
2643
2644 /*
2645 * Calculate the order of allocation given an slab object size.
2646 *
2647 * The order of allocation has significant impact on performance and other
2648 * system components. Generally order 0 allocations should be preferred since
2649 * order 0 does not cause fragmentation in the page allocator. Larger objects
2650 * be problematic to put into order 0 slabs because there may be too much
2651 * unused space left. We go to a higher order if more than 1/16th of the slab
2652 * would be wasted.
2653 *
2654 * In order to reach satisfactory performance we must ensure that a minimum
2655 * number of objects is in one slab. Otherwise we may generate too much
2656 * activity on the partial lists which requires taking the list_lock. This is
2657 * less a concern for large slabs though which are rarely used.
2658 *
2659 * slub_max_order specifies the order where we begin to stop considering the
2660 * number of objects in a slab as critical. If we reach slub_max_order then
2661 * we try to keep the page order as low as possible. So we accept more waste
2662 * of space in favor of a small page order.
2663 *
2664 * Higher order allocations also allow the placement of more objects in a
2665 * slab and thereby reduce object handling overhead. If the user has
2666 * requested a higher mininum order then we start with that one instead of
2667 * the smallest order which will fit the object.
2668 */
2669 static inline int slab_order(int size, int min_objects,
2670 int max_order, int fract_leftover, int reserved)
2671 {
2672 int order;
2673 int rem;
2674 int min_order = slub_min_order;
2675
2676 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2677 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2678
2679 for (order = max(min_order,
2680 fls(min_objects * size - 1) - PAGE_SHIFT);
2681 order <= max_order; order++) {
2682
2683 unsigned long slab_size = PAGE_SIZE << order;
2684
2685 if (slab_size < min_objects * size + reserved)
2686 continue;
2687
2688 rem = (slab_size - reserved) % size;
2689
2690 if (rem <= slab_size / fract_leftover)
2691 break;
2692
2693 }
2694
2695 return order;
2696 }
2697
2698 static inline int calculate_order(int size, int reserved)
2699 {
2700 int order;
2701 int min_objects;
2702 int fraction;
2703 int max_objects;
2704
2705 /*
2706 * Attempt to find best configuration for a slab. This
2707 * works by first attempting to generate a layout with
2708 * the best configuration and backing off gradually.
2709 *
2710 * First we reduce the acceptable waste in a slab. Then
2711 * we reduce the minimum objects required in a slab.
2712 */
2713 min_objects = slub_min_objects;
2714 if (!min_objects)
2715 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2716 max_objects = order_objects(slub_max_order, size, reserved);
2717 min_objects = min(min_objects, max_objects);
2718
2719 while (min_objects > 1) {
2720 fraction = 16;
2721 while (fraction >= 4) {
2722 order = slab_order(size, min_objects,
2723 slub_max_order, fraction, reserved);
2724 if (order <= slub_max_order)
2725 return order;
2726 fraction /= 2;
2727 }
2728 min_objects--;
2729 }
2730
2731 /*
2732 * We were unable to place multiple objects in a slab. Now
2733 * lets see if we can place a single object there.
2734 */
2735 order = slab_order(size, 1, slub_max_order, 1, reserved);
2736 if (order <= slub_max_order)
2737 return order;
2738
2739 /*
2740 * Doh this slab cannot be placed using slub_max_order.
2741 */
2742 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2743 if (order < MAX_ORDER)
2744 return order;
2745 return -ENOSYS;
2746 }
2747
2748 /*
2749 * Figure out what the alignment of the objects will be.
2750 */
2751 static unsigned long calculate_alignment(unsigned long flags,
2752 unsigned long align, unsigned long size)
2753 {
2754 /*
2755 * If the user wants hardware cache aligned objects then follow that
2756 * suggestion if the object is sufficiently large.
2757 *
2758 * The hardware cache alignment cannot override the specified
2759 * alignment though. If that is greater then use it.
2760 */
2761 if (flags & SLAB_HWCACHE_ALIGN) {
2762 unsigned long ralign = cache_line_size();
2763 while (size <= ralign / 2)
2764 ralign /= 2;
2765 align = max(align, ralign);
2766 }
2767
2768 if (align < ARCH_SLAB_MINALIGN)
2769 align = ARCH_SLAB_MINALIGN;
2770
2771 return ALIGN(align, sizeof(void *));
2772 }
2773
2774 static void
2775 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2776 {
2777 n->nr_partial = 0;
2778 spin_lock_init(&n->list_lock);
2779 INIT_LIST_HEAD(&n->partial);
2780 #ifdef CONFIG_SLUB_DEBUG
2781 atomic_long_set(&n->nr_slabs, 0);
2782 atomic_long_set(&n->total_objects, 0);
2783 INIT_LIST_HEAD(&n->full);
2784 #endif
2785 }
2786
2787 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2788 {
2789 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2790 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2791
2792 /*
2793 * Must align to double word boundary for the double cmpxchg
2794 * instructions to work; see __pcpu_double_call_return_bool().
2795 */
2796 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2797 2 * sizeof(void *));
2798
2799 if (!s->cpu_slab)
2800 return 0;
2801
2802 init_kmem_cache_cpus(s);
2803
2804 return 1;
2805 }
2806
2807 static struct kmem_cache *kmem_cache_node;
2808
2809 /*
2810 * No kmalloc_node yet so do it by hand. We know that this is the first
2811 * slab on the node for this slabcache. There are no concurrent accesses
2812 * possible.
2813 *
2814 * Note that this function only works on the kmalloc_node_cache
2815 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2816 * memory on a fresh node that has no slab structures yet.
2817 */
2818 static void early_kmem_cache_node_alloc(int node)
2819 {
2820 struct page *page;
2821 struct kmem_cache_node *n;
2822
2823 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2824
2825 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2826
2827 BUG_ON(!page);
2828 if (page_to_nid(page) != node) {
2829 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2830 "node %d\n", node);
2831 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2832 "in order to be able to continue\n");
2833 }
2834
2835 n = page->freelist;
2836 BUG_ON(!n);
2837 page->freelist = get_freepointer(kmem_cache_node, n);
2838 page->inuse = 1;
2839 page->frozen = 0;
2840 kmem_cache_node->node[node] = n;
2841 #ifdef CONFIG_SLUB_DEBUG
2842 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2843 init_tracking(kmem_cache_node, n);
2844 #endif
2845 init_kmem_cache_node(n, kmem_cache_node);
2846 inc_slabs_node(kmem_cache_node, node, page->objects);
2847
2848 add_partial(n, page, DEACTIVATE_TO_HEAD);
2849 }
2850
2851 static void free_kmem_cache_nodes(struct kmem_cache *s)
2852 {
2853 int node;
2854
2855 for_each_node_state(node, N_NORMAL_MEMORY) {
2856 struct kmem_cache_node *n = s->node[node];
2857
2858 if (n)
2859 kmem_cache_free(kmem_cache_node, n);
2860
2861 s->node[node] = NULL;
2862 }
2863 }
2864
2865 static int init_kmem_cache_nodes(struct kmem_cache *s)
2866 {
2867 int node;
2868
2869 for_each_node_state(node, N_NORMAL_MEMORY) {
2870 struct kmem_cache_node *n;
2871
2872 if (slab_state == DOWN) {
2873 early_kmem_cache_node_alloc(node);
2874 continue;
2875 }
2876 n = kmem_cache_alloc_node(kmem_cache_node,
2877 GFP_KERNEL, node);
2878
2879 if (!n) {
2880 free_kmem_cache_nodes(s);
2881 return 0;
2882 }
2883
2884 s->node[node] = n;
2885 init_kmem_cache_node(n, s);
2886 }
2887 return 1;
2888 }
2889
2890 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2891 {
2892 if (min < MIN_PARTIAL)
2893 min = MIN_PARTIAL;
2894 else if (min > MAX_PARTIAL)
2895 min = MAX_PARTIAL;
2896 s->min_partial = min;
2897 }
2898
2899 /*
2900 * calculate_sizes() determines the order and the distribution of data within
2901 * a slab object.
2902 */
2903 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2904 {
2905 unsigned long flags = s->flags;
2906 unsigned long size = s->objsize;
2907 unsigned long align = s->align;
2908 int order;
2909
2910 /*
2911 * Round up object size to the next word boundary. We can only
2912 * place the free pointer at word boundaries and this determines
2913 * the possible location of the free pointer.
2914 */
2915 size = ALIGN(size, sizeof(void *));
2916
2917 #ifdef CONFIG_SLUB_DEBUG
2918 /*
2919 * Determine if we can poison the object itself. If the user of
2920 * the slab may touch the object after free or before allocation
2921 * then we should never poison the object itself.
2922 */
2923 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2924 !s->ctor)
2925 s->flags |= __OBJECT_POISON;
2926 else
2927 s->flags &= ~__OBJECT_POISON;
2928
2929
2930 /*
2931 * If we are Redzoning then check if there is some space between the
2932 * end of the object and the free pointer. If not then add an
2933 * additional word to have some bytes to store Redzone information.
2934 */
2935 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2936 size += sizeof(void *);
2937 #endif
2938
2939 /*
2940 * With that we have determined the number of bytes in actual use
2941 * by the object. This is the potential offset to the free pointer.
2942 */
2943 s->inuse = size;
2944
2945 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2946 s->ctor)) {
2947 /*
2948 * Relocate free pointer after the object if it is not
2949 * permitted to overwrite the first word of the object on
2950 * kmem_cache_free.
2951 *
2952 * This is the case if we do RCU, have a constructor or
2953 * destructor or are poisoning the objects.
2954 */
2955 s->offset = size;
2956 size += sizeof(void *);
2957 }
2958
2959 #ifdef CONFIG_SLUB_DEBUG
2960 if (flags & SLAB_STORE_USER)
2961 /*
2962 * Need to store information about allocs and frees after
2963 * the object.
2964 */
2965 size += 2 * sizeof(struct track);
2966
2967 if (flags & SLAB_RED_ZONE)
2968 /*
2969 * Add some empty padding so that we can catch
2970 * overwrites from earlier objects rather than let
2971 * tracking information or the free pointer be
2972 * corrupted if a user writes before the start
2973 * of the object.
2974 */
2975 size += sizeof(void *);
2976 #endif
2977
2978 /*
2979 * Determine the alignment based on various parameters that the
2980 * user specified and the dynamic determination of cache line size
2981 * on bootup.
2982 */
2983 align = calculate_alignment(flags, align, s->objsize);
2984 s->align = align;
2985
2986 /*
2987 * SLUB stores one object immediately after another beginning from
2988 * offset 0. In order to align the objects we have to simply size
2989 * each object to conform to the alignment.
2990 */
2991 size = ALIGN(size, align);
2992 s->size = size;
2993 if (forced_order >= 0)
2994 order = forced_order;
2995 else
2996 order = calculate_order(size, s->reserved);
2997
2998 if (order < 0)
2999 return 0;
3000
3001 s->allocflags = 0;
3002 if (order)
3003 s->allocflags |= __GFP_COMP;
3004
3005 if (s->flags & SLAB_CACHE_DMA)
3006 s->allocflags |= SLUB_DMA;
3007
3008 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3009 s->allocflags |= __GFP_RECLAIMABLE;
3010
3011 /*
3012 * Determine the number of objects per slab
3013 */
3014 s->oo = oo_make(order, size, s->reserved);
3015 s->min = oo_make(get_order(size), size, s->reserved);
3016 if (oo_objects(s->oo) > oo_objects(s->max))
3017 s->max = s->oo;
3018
3019 return !!oo_objects(s->oo);
3020
3021 }
3022
3023 static int kmem_cache_open(struct kmem_cache *s,
3024 const char *name, size_t size,
3025 size_t align, unsigned long flags,
3026 void (*ctor)(void *))
3027 {
3028 memset(s, 0, kmem_size);
3029 s->name = name;
3030 s->ctor = ctor;
3031 s->objsize = size;
3032 s->align = align;
3033 s->flags = kmem_cache_flags(size, flags, name, ctor);
3034 s->reserved = 0;
3035
3036 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3037 s->reserved = sizeof(struct rcu_head);
3038
3039 if (!calculate_sizes(s, -1))
3040 goto error;
3041 if (disable_higher_order_debug) {
3042 /*
3043 * Disable debugging flags that store metadata if the min slab
3044 * order increased.
3045 */
3046 if (get_order(s->size) > get_order(s->objsize)) {
3047 s->flags &= ~DEBUG_METADATA_FLAGS;
3048 s->offset = 0;
3049 if (!calculate_sizes(s, -1))
3050 goto error;
3051 }
3052 }
3053
3054 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3055 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3056 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3057 /* Enable fast mode */
3058 s->flags |= __CMPXCHG_DOUBLE;
3059 #endif
3060
3061 /*
3062 * The larger the object size is, the more pages we want on the partial
3063 * list to avoid pounding the page allocator excessively.
3064 */
3065 set_min_partial(s, ilog2(s->size) / 2);
3066
3067 /*
3068 * cpu_partial determined the maximum number of objects kept in the
3069 * per cpu partial lists of a processor.
3070 *
3071 * Per cpu partial lists mainly contain slabs that just have one
3072 * object freed. If they are used for allocation then they can be
3073 * filled up again with minimal effort. The slab will never hit the
3074 * per node partial lists and therefore no locking will be required.
3075 *
3076 * This setting also determines
3077 *
3078 * A) The number of objects from per cpu partial slabs dumped to the
3079 * per node list when we reach the limit.
3080 * B) The number of objects in cpu partial slabs to extract from the
3081 * per node list when we run out of per cpu objects. We only fetch 50%
3082 * to keep some capacity around for frees.
3083 */
3084 if (kmem_cache_debug(s))
3085 s->cpu_partial = 0;
3086 else if (s->size >= PAGE_SIZE)
3087 s->cpu_partial = 2;
3088 else if (s->size >= 1024)
3089 s->cpu_partial = 6;
3090 else if (s->size >= 256)
3091 s->cpu_partial = 13;
3092 else
3093 s->cpu_partial = 30;
3094
3095 s->refcount = 1;
3096 #ifdef CONFIG_NUMA
3097 s->remote_node_defrag_ratio = 1000;
3098 #endif
3099 if (!init_kmem_cache_nodes(s))
3100 goto error;
3101
3102 if (alloc_kmem_cache_cpus(s))
3103 return 1;
3104
3105 free_kmem_cache_nodes(s);
3106 error:
3107 if (flags & SLAB_PANIC)
3108 panic("Cannot create slab %s size=%lu realsize=%u "
3109 "order=%u offset=%u flags=%lx\n",
3110 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3111 s->offset, flags);
3112 return 0;
3113 }
3114
3115 /*
3116 * Determine the size of a slab object
3117 */
3118 unsigned int kmem_cache_size(struct kmem_cache *s)
3119 {
3120 return s->objsize;
3121 }
3122 EXPORT_SYMBOL(kmem_cache_size);
3123
3124 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3125 const char *text)
3126 {
3127 #ifdef CONFIG_SLUB_DEBUG
3128 void *addr = page_address(page);
3129 void *p;
3130 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3131 sizeof(long), GFP_ATOMIC);
3132 if (!map)
3133 return;
3134 slab_err(s, page, "%s", text);
3135 slab_lock(page);
3136
3137 get_map(s, page, map);
3138 for_each_object(p, s, addr, page->objects) {
3139
3140 if (!test_bit(slab_index(p, s, addr), map)) {
3141 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3142 p, p - addr);
3143 print_tracking(s, p);
3144 }
3145 }
3146 slab_unlock(page);
3147 kfree(map);
3148 #endif
3149 }
3150
3151 /*
3152 * Attempt to free all partial slabs on a node.
3153 * This is called from kmem_cache_close(). We must be the last thread
3154 * using the cache and therefore we do not need to lock anymore.
3155 */
3156 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3157 {
3158 struct page *page, *h;
3159
3160 list_for_each_entry_safe(page, h, &n->partial, lru) {
3161 if (!page->inuse) {
3162 remove_partial(n, page);
3163 discard_slab(s, page);
3164 } else {
3165 list_slab_objects(s, page,
3166 "Objects remaining on kmem_cache_close()");
3167 }
3168 }
3169 }
3170
3171 /*
3172 * Release all resources used by a slab cache.
3173 */
3174 static inline int kmem_cache_close(struct kmem_cache *s)
3175 {
3176 int node;
3177
3178 flush_all(s);
3179 free_percpu(s->cpu_slab);
3180 /* Attempt to free all objects */
3181 for_each_node_state(node, N_NORMAL_MEMORY) {
3182 struct kmem_cache_node *n = get_node(s, node);
3183
3184 free_partial(s, n);
3185 if (n->nr_partial || slabs_node(s, node))
3186 return 1;
3187 }
3188 free_kmem_cache_nodes(s);
3189 return 0;
3190 }
3191
3192 /*
3193 * Close a cache and release the kmem_cache structure
3194 * (must be used for caches created using kmem_cache_create)
3195 */
3196 void kmem_cache_destroy(struct kmem_cache *s)
3197 {
3198 down_write(&slub_lock);
3199 s->refcount--;
3200 if (!s->refcount) {
3201 list_del(&s->list);
3202 up_write(&slub_lock);
3203 if (kmem_cache_close(s)) {
3204 printk(KERN_ERR "SLUB %s: %s called for cache that "
3205 "still has objects.\n", s->name, __func__);
3206 dump_stack();
3207 }
3208 if (s->flags & SLAB_DESTROY_BY_RCU)
3209 rcu_barrier();
3210 sysfs_slab_remove(s);
3211 } else
3212 up_write(&slub_lock);
3213 }
3214 EXPORT_SYMBOL(kmem_cache_destroy);
3215
3216 /********************************************************************
3217 * Kmalloc subsystem
3218 *******************************************************************/
3219
3220 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3221 EXPORT_SYMBOL(kmalloc_caches);
3222
3223 static struct kmem_cache *kmem_cache;
3224
3225 #ifdef CONFIG_ZONE_DMA
3226 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3227 #endif
3228
3229 static int __init setup_slub_min_order(char *str)
3230 {
3231 get_option(&str, &slub_min_order);
3232
3233 return 1;
3234 }
3235
3236 __setup("slub_min_order=", setup_slub_min_order);
3237
3238 static int __init setup_slub_max_order(char *str)
3239 {
3240 get_option(&str, &slub_max_order);
3241 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3242
3243 return 1;
3244 }
3245
3246 __setup("slub_max_order=", setup_slub_max_order);
3247
3248 static int __init setup_slub_min_objects(char *str)
3249 {
3250 get_option(&str, &slub_min_objects);
3251
3252 return 1;
3253 }
3254
3255 __setup("slub_min_objects=", setup_slub_min_objects);
3256
3257 static int __init setup_slub_nomerge(char *str)
3258 {
3259 slub_nomerge = 1;
3260 return 1;
3261 }
3262
3263 __setup("slub_nomerge", setup_slub_nomerge);
3264
3265 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3266 int size, unsigned int flags)
3267 {
3268 struct kmem_cache *s;
3269
3270 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3271
3272 /*
3273 * This function is called with IRQs disabled during early-boot on
3274 * single CPU so there's no need to take slub_lock here.
3275 */
3276 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3277 flags, NULL))
3278 goto panic;
3279
3280 list_add(&s->list, &slab_caches);
3281 return s;
3282
3283 panic:
3284 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3285 return NULL;
3286 }
3287
3288 /*
3289 * Conversion table for small slabs sizes / 8 to the index in the
3290 * kmalloc array. This is necessary for slabs < 192 since we have non power
3291 * of two cache sizes there. The size of larger slabs can be determined using
3292 * fls.
3293 */
3294 static s8 size_index[24] = {
3295 3, /* 8 */
3296 4, /* 16 */
3297 5, /* 24 */
3298 5, /* 32 */
3299 6, /* 40 */
3300 6, /* 48 */
3301 6, /* 56 */
3302 6, /* 64 */
3303 1, /* 72 */
3304 1, /* 80 */
3305 1, /* 88 */
3306 1, /* 96 */
3307 7, /* 104 */
3308 7, /* 112 */
3309 7, /* 120 */
3310 7, /* 128 */
3311 2, /* 136 */
3312 2, /* 144 */
3313 2, /* 152 */
3314 2, /* 160 */
3315 2, /* 168 */
3316 2, /* 176 */
3317 2, /* 184 */
3318 2 /* 192 */
3319 };
3320
3321 static inline int size_index_elem(size_t bytes)
3322 {
3323 return (bytes - 1) / 8;
3324 }
3325
3326 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3327 {
3328 int index;
3329
3330 if (size <= 192) {
3331 if (!size)
3332 return ZERO_SIZE_PTR;
3333
3334 index = size_index[size_index_elem(size)];
3335 } else
3336 index = fls(size - 1);
3337
3338 #ifdef CONFIG_ZONE_DMA
3339 if (unlikely((flags & SLUB_DMA)))
3340 return kmalloc_dma_caches[index];
3341
3342 #endif
3343 return kmalloc_caches[index];
3344 }
3345
3346 void *__kmalloc(size_t size, gfp_t flags)
3347 {
3348 struct kmem_cache *s;
3349 void *ret;
3350
3351 if (unlikely(size > SLUB_MAX_SIZE))
3352 return kmalloc_large(size, flags);
3353
3354 s = get_slab(size, flags);
3355
3356 if (unlikely(ZERO_OR_NULL_PTR(s)))
3357 return s;
3358
3359 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3360
3361 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3362
3363 return ret;
3364 }
3365 EXPORT_SYMBOL(__kmalloc);
3366
3367 #ifdef CONFIG_NUMA
3368 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3369 {
3370 struct page *page;
3371 void *ptr = NULL;
3372
3373 flags |= __GFP_COMP | __GFP_NOTRACK;
3374 page = alloc_pages_node(node, flags, get_order(size));
3375 if (page)
3376 ptr = page_address(page);
3377
3378 kmemleak_alloc(ptr, size, 1, flags);
3379 return ptr;
3380 }
3381
3382 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3383 {
3384 struct kmem_cache *s;
3385 void *ret;
3386
3387 if (unlikely(size > SLUB_MAX_SIZE)) {
3388 ret = kmalloc_large_node(size, flags, node);
3389
3390 trace_kmalloc_node(_RET_IP_, ret,
3391 size, PAGE_SIZE << get_order(size),
3392 flags, node);
3393
3394 return ret;
3395 }
3396
3397 s = get_slab(size, flags);
3398
3399 if (unlikely(ZERO_OR_NULL_PTR(s)))
3400 return s;
3401
3402 ret = slab_alloc(s, flags, node, _RET_IP_);
3403
3404 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3405
3406 return ret;
3407 }
3408 EXPORT_SYMBOL(__kmalloc_node);
3409 #endif
3410
3411 size_t ksize(const void *object)
3412 {
3413 struct page *page;
3414
3415 if (unlikely(object == ZERO_SIZE_PTR))
3416 return 0;
3417
3418 page = virt_to_head_page(object);
3419
3420 if (unlikely(!PageSlab(page))) {
3421 WARN_ON(!PageCompound(page));
3422 return PAGE_SIZE << compound_order(page);
3423 }
3424
3425 return slab_ksize(page->slab);
3426 }
3427 EXPORT_SYMBOL(ksize);
3428
3429 #ifdef CONFIG_SLUB_DEBUG
3430 bool verify_mem_not_deleted(const void *x)
3431 {
3432 struct page *page;
3433 void *object = (void *)x;
3434 unsigned long flags;
3435 bool rv;
3436
3437 if (unlikely(ZERO_OR_NULL_PTR(x)))
3438 return false;
3439
3440 local_irq_save(flags);
3441
3442 page = virt_to_head_page(x);
3443 if (unlikely(!PageSlab(page))) {
3444 /* maybe it was from stack? */
3445 rv = true;
3446 goto out_unlock;
3447 }
3448
3449 slab_lock(page);
3450 if (on_freelist(page->slab, page, object)) {
3451 object_err(page->slab, page, object, "Object is on free-list");
3452 rv = false;
3453 } else {
3454 rv = true;
3455 }
3456 slab_unlock(page);
3457
3458 out_unlock:
3459 local_irq_restore(flags);
3460 return rv;
3461 }
3462 EXPORT_SYMBOL(verify_mem_not_deleted);
3463 #endif
3464
3465 void kfree(const void *x)
3466 {
3467 struct page *page;
3468 void *object = (void *)x;
3469
3470 trace_kfree(_RET_IP_, x);
3471
3472 if (unlikely(ZERO_OR_NULL_PTR(x)))
3473 return;
3474
3475 page = virt_to_head_page(x);
3476 if (unlikely(!PageSlab(page))) {
3477 BUG_ON(!PageCompound(page));
3478 kmemleak_free(x);
3479 put_page(page);
3480 return;
3481 }
3482 slab_free(page->slab, page, object, _RET_IP_);
3483 }
3484 EXPORT_SYMBOL(kfree);
3485
3486 /*
3487 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3488 * the remaining slabs by the number of items in use. The slabs with the
3489 * most items in use come first. New allocations will then fill those up
3490 * and thus they can be removed from the partial lists.
3491 *
3492 * The slabs with the least items are placed last. This results in them
3493 * being allocated from last increasing the chance that the last objects
3494 * are freed in them.
3495 */
3496 int kmem_cache_shrink(struct kmem_cache *s)
3497 {
3498 int node;
3499 int i;
3500 struct kmem_cache_node *n;
3501 struct page *page;
3502 struct page *t;
3503 int objects = oo_objects(s->max);
3504 struct list_head *slabs_by_inuse =
3505 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3506 unsigned long flags;
3507
3508 if (!slabs_by_inuse)
3509 return -ENOMEM;
3510
3511 flush_all(s);
3512 for_each_node_state(node, N_NORMAL_MEMORY) {
3513 n = get_node(s, node);
3514
3515 if (!n->nr_partial)
3516 continue;
3517
3518 for (i = 0; i < objects; i++)
3519 INIT_LIST_HEAD(slabs_by_inuse + i);
3520
3521 spin_lock_irqsave(&n->list_lock, flags);
3522
3523 /*
3524 * Build lists indexed by the items in use in each slab.
3525 *
3526 * Note that concurrent frees may occur while we hold the
3527 * list_lock. page->inuse here is the upper limit.
3528 */
3529 list_for_each_entry_safe(page, t, &n->partial, lru) {
3530 list_move(&page->lru, slabs_by_inuse + page->inuse);
3531 if (!page->inuse)
3532 n->nr_partial--;
3533 }
3534
3535 /*
3536 * Rebuild the partial list with the slabs filled up most
3537 * first and the least used slabs at the end.
3538 */
3539 for (i = objects - 1; i > 0; i--)
3540 list_splice(slabs_by_inuse + i, n->partial.prev);
3541
3542 spin_unlock_irqrestore(&n->list_lock, flags);
3543
3544 /* Release empty slabs */
3545 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3546 discard_slab(s, page);
3547 }
3548
3549 kfree(slabs_by_inuse);
3550 return 0;
3551 }
3552 EXPORT_SYMBOL(kmem_cache_shrink);
3553
3554 #if defined(CONFIG_MEMORY_HOTPLUG)
3555 static int slab_mem_going_offline_callback(void *arg)
3556 {
3557 struct kmem_cache *s;
3558
3559 down_read(&slub_lock);
3560 list_for_each_entry(s, &slab_caches, list)
3561 kmem_cache_shrink(s);
3562 up_read(&slub_lock);
3563
3564 return 0;
3565 }
3566
3567 static void slab_mem_offline_callback(void *arg)
3568 {
3569 struct kmem_cache_node *n;
3570 struct kmem_cache *s;
3571 struct memory_notify *marg = arg;
3572 int offline_node;
3573
3574 offline_node = marg->status_change_nid;
3575
3576 /*
3577 * If the node still has available memory. we need kmem_cache_node
3578 * for it yet.
3579 */
3580 if (offline_node < 0)
3581 return;
3582
3583 down_read(&slub_lock);
3584 list_for_each_entry(s, &slab_caches, list) {
3585 n = get_node(s, offline_node);
3586 if (n) {
3587 /*
3588 * if n->nr_slabs > 0, slabs still exist on the node
3589 * that is going down. We were unable to free them,
3590 * and offline_pages() function shouldn't call this
3591 * callback. So, we must fail.
3592 */
3593 BUG_ON(slabs_node(s, offline_node));
3594
3595 s->node[offline_node] = NULL;
3596 kmem_cache_free(kmem_cache_node, n);
3597 }
3598 }
3599 up_read(&slub_lock);
3600 }
3601
3602 static int slab_mem_going_online_callback(void *arg)
3603 {
3604 struct kmem_cache_node *n;
3605 struct kmem_cache *s;
3606 struct memory_notify *marg = arg;
3607 int nid = marg->status_change_nid;
3608 int ret = 0;
3609
3610 /*
3611 * If the node's memory is already available, then kmem_cache_node is
3612 * already created. Nothing to do.
3613 */
3614 if (nid < 0)
3615 return 0;
3616
3617 /*
3618 * We are bringing a node online. No memory is available yet. We must
3619 * allocate a kmem_cache_node structure in order to bring the node
3620 * online.
3621 */
3622 down_read(&slub_lock);
3623 list_for_each_entry(s, &slab_caches, list) {
3624 /*
3625 * XXX: kmem_cache_alloc_node will fallback to other nodes
3626 * since memory is not yet available from the node that
3627 * is brought up.
3628 */
3629 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3630 if (!n) {
3631 ret = -ENOMEM;
3632 goto out;
3633 }
3634 init_kmem_cache_node(n, s);
3635 s->node[nid] = n;
3636 }
3637 out:
3638 up_read(&slub_lock);
3639 return ret;
3640 }
3641
3642 static int slab_memory_callback(struct notifier_block *self,
3643 unsigned long action, void *arg)
3644 {
3645 int ret = 0;
3646
3647 switch (action) {
3648 case MEM_GOING_ONLINE:
3649 ret = slab_mem_going_online_callback(arg);
3650 break;
3651 case MEM_GOING_OFFLINE:
3652 ret = slab_mem_going_offline_callback(arg);
3653 break;
3654 case MEM_OFFLINE:
3655 case MEM_CANCEL_ONLINE:
3656 slab_mem_offline_callback(arg);
3657 break;
3658 case MEM_ONLINE:
3659 case MEM_CANCEL_OFFLINE:
3660 break;
3661 }
3662 if (ret)
3663 ret = notifier_from_errno(ret);
3664 else
3665 ret = NOTIFY_OK;
3666 return ret;
3667 }
3668
3669 #endif /* CONFIG_MEMORY_HOTPLUG */
3670
3671 /********************************************************************
3672 * Basic setup of slabs
3673 *******************************************************************/
3674
3675 /*
3676 * Used for early kmem_cache structures that were allocated using
3677 * the page allocator
3678 */
3679
3680 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3681 {
3682 int node;
3683
3684 list_add(&s->list, &slab_caches);
3685 s->refcount = -1;
3686
3687 for_each_node_state(node, N_NORMAL_MEMORY) {
3688 struct kmem_cache_node *n = get_node(s, node);
3689 struct page *p;
3690
3691 if (n) {
3692 list_for_each_entry(p, &n->partial, lru)
3693 p->slab = s;
3694
3695 #ifdef CONFIG_SLUB_DEBUG
3696 list_for_each_entry(p, &n->full, lru)
3697 p->slab = s;
3698 #endif
3699 }
3700 }
3701 }
3702
3703 void __init kmem_cache_init(void)
3704 {
3705 int i;
3706 int caches = 0;
3707 struct kmem_cache *temp_kmem_cache;
3708 int order;
3709 struct kmem_cache *temp_kmem_cache_node;
3710 unsigned long kmalloc_size;
3711
3712 if (debug_guardpage_minorder())
3713 slub_max_order = 0;
3714
3715 kmem_size = offsetof(struct kmem_cache, node) +
3716 nr_node_ids * sizeof(struct kmem_cache_node *);
3717
3718 /* Allocate two kmem_caches from the page allocator */
3719 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3720 order = get_order(2 * kmalloc_size);
3721 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3722
3723 /*
3724 * Must first have the slab cache available for the allocations of the
3725 * struct kmem_cache_node's. There is special bootstrap code in
3726 * kmem_cache_open for slab_state == DOWN.
3727 */
3728 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3729
3730 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3731 sizeof(struct kmem_cache_node),
3732 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3733
3734 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3735
3736 /* Able to allocate the per node structures */
3737 slab_state = PARTIAL;
3738
3739 temp_kmem_cache = kmem_cache;
3740 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3741 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3742 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3743 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3744
3745 /*
3746 * Allocate kmem_cache_node properly from the kmem_cache slab.
3747 * kmem_cache_node is separately allocated so no need to
3748 * update any list pointers.
3749 */
3750 temp_kmem_cache_node = kmem_cache_node;
3751
3752 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3753 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3754
3755 kmem_cache_bootstrap_fixup(kmem_cache_node);
3756
3757 caches++;
3758 kmem_cache_bootstrap_fixup(kmem_cache);
3759 caches++;
3760 /* Free temporary boot structure */
3761 free_pages((unsigned long)temp_kmem_cache, order);
3762
3763 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3764
3765 /*
3766 * Patch up the size_index table if we have strange large alignment
3767 * requirements for the kmalloc array. This is only the case for
3768 * MIPS it seems. The standard arches will not generate any code here.
3769 *
3770 * Largest permitted alignment is 256 bytes due to the way we
3771 * handle the index determination for the smaller caches.
3772 *
3773 * Make sure that nothing crazy happens if someone starts tinkering
3774 * around with ARCH_KMALLOC_MINALIGN
3775 */
3776 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3777 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3778
3779 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3780 int elem = size_index_elem(i);
3781 if (elem >= ARRAY_SIZE(size_index))
3782 break;
3783 size_index[elem] = KMALLOC_SHIFT_LOW;
3784 }
3785
3786 if (KMALLOC_MIN_SIZE == 64) {
3787 /*
3788 * The 96 byte size cache is not used if the alignment
3789 * is 64 byte.
3790 */
3791 for (i = 64 + 8; i <= 96; i += 8)
3792 size_index[size_index_elem(i)] = 7;
3793 } else if (KMALLOC_MIN_SIZE == 128) {
3794 /*
3795 * The 192 byte sized cache is not used if the alignment
3796 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3797 * instead.
3798 */
3799 for (i = 128 + 8; i <= 192; i += 8)
3800 size_index[size_index_elem(i)] = 8;
3801 }
3802
3803 /* Caches that are not of the two-to-the-power-of size */
3804 if (KMALLOC_MIN_SIZE <= 32) {
3805 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3806 caches++;
3807 }
3808
3809 if (KMALLOC_MIN_SIZE <= 64) {
3810 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3811 caches++;
3812 }
3813
3814 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3815 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3816 caches++;
3817 }
3818
3819 slab_state = UP;
3820
3821 /* Provide the correct kmalloc names now that the caches are up */
3822 if (KMALLOC_MIN_SIZE <= 32) {
3823 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3824 BUG_ON(!kmalloc_caches[1]->name);
3825 }
3826
3827 if (KMALLOC_MIN_SIZE <= 64) {
3828 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3829 BUG_ON(!kmalloc_caches[2]->name);
3830 }
3831
3832 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3833 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3834
3835 BUG_ON(!s);
3836 kmalloc_caches[i]->name = s;
3837 }
3838
3839 #ifdef CONFIG_SMP
3840 register_cpu_notifier(&slab_notifier);
3841 #endif
3842
3843 #ifdef CONFIG_ZONE_DMA
3844 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3845 struct kmem_cache *s = kmalloc_caches[i];
3846
3847 if (s && s->size) {
3848 char *name = kasprintf(GFP_NOWAIT,
3849 "dma-kmalloc-%d", s->objsize);
3850
3851 BUG_ON(!name);
3852 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3853 s->objsize, SLAB_CACHE_DMA);
3854 }
3855 }
3856 #endif
3857 printk(KERN_INFO
3858 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3859 " CPUs=%d, Nodes=%d\n",
3860 caches, cache_line_size(),
3861 slub_min_order, slub_max_order, slub_min_objects,
3862 nr_cpu_ids, nr_node_ids);
3863 }
3864
3865 void __init kmem_cache_init_late(void)
3866 {
3867 }
3868
3869 /*
3870 * Find a mergeable slab cache
3871 */
3872 static int slab_unmergeable(struct kmem_cache *s)
3873 {
3874 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3875 return 1;
3876
3877 if (s->ctor)
3878 return 1;
3879
3880 /*
3881 * We may have set a slab to be unmergeable during bootstrap.
3882 */
3883 if (s->refcount < 0)
3884 return 1;
3885
3886 return 0;
3887 }
3888
3889 static struct kmem_cache *find_mergeable(size_t size,
3890 size_t align, unsigned long flags, const char *name,
3891 void (*ctor)(void *))
3892 {
3893 struct kmem_cache *s;
3894
3895 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3896 return NULL;
3897
3898 if (ctor)
3899 return NULL;
3900
3901 size = ALIGN(size, sizeof(void *));
3902 align = calculate_alignment(flags, align, size);
3903 size = ALIGN(size, align);
3904 flags = kmem_cache_flags(size, flags, name, NULL);
3905
3906 list_for_each_entry(s, &slab_caches, list) {
3907 if (slab_unmergeable(s))
3908 continue;
3909
3910 if (size > s->size)
3911 continue;
3912
3913 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3914 continue;
3915 /*
3916 * Check if alignment is compatible.
3917 * Courtesy of Adrian Drzewiecki
3918 */
3919 if ((s->size & ~(align - 1)) != s->size)
3920 continue;
3921
3922 if (s->size - size >= sizeof(void *))
3923 continue;
3924
3925 return s;
3926 }
3927 return NULL;
3928 }
3929
3930 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3931 size_t align, unsigned long flags, void (*ctor)(void *))
3932 {
3933 struct kmem_cache *s;
3934 char *n;
3935
3936 if (WARN_ON(!name))
3937 return NULL;
3938
3939 down_write(&slub_lock);
3940 s = find_mergeable(size, align, flags, name, ctor);
3941 if (s) {
3942 s->refcount++;
3943 /*
3944 * Adjust the object sizes so that we clear
3945 * the complete object on kzalloc.
3946 */
3947 s->objsize = max(s->objsize, (int)size);
3948 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3949
3950 if (sysfs_slab_alias(s, name)) {
3951 s->refcount--;
3952 goto err;
3953 }
3954 up_write(&slub_lock);
3955 return s;
3956 }
3957
3958 n = kstrdup(name, GFP_KERNEL);
3959 if (!n)
3960 goto err;
3961
3962 s = kmalloc(kmem_size, GFP_KERNEL);
3963 if (s) {
3964 if (kmem_cache_open(s, n,
3965 size, align, flags, ctor)) {
3966 list_add(&s->list, &slab_caches);
3967 up_write(&slub_lock);
3968 if (sysfs_slab_add(s)) {
3969 down_write(&slub_lock);
3970 list_del(&s->list);
3971 kfree(n);
3972 kfree(s);
3973 goto err;
3974 }
3975 return s;
3976 }
3977 kfree(n);
3978 kfree(s);
3979 }
3980 err:
3981 up_write(&slub_lock);
3982
3983 if (flags & SLAB_PANIC)
3984 panic("Cannot create slabcache %s\n", name);
3985 else
3986 s = NULL;
3987 return s;
3988 }
3989 EXPORT_SYMBOL(kmem_cache_create);
3990
3991 #ifdef CONFIG_SMP
3992 /*
3993 * Use the cpu notifier to insure that the cpu slabs are flushed when
3994 * necessary.
3995 */
3996 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3997 unsigned long action, void *hcpu)
3998 {
3999 long cpu = (long)hcpu;
4000 struct kmem_cache *s;
4001 unsigned long flags;
4002
4003 switch (action) {
4004 case CPU_UP_CANCELED:
4005 case CPU_UP_CANCELED_FROZEN:
4006 case CPU_DEAD:
4007 case CPU_DEAD_FROZEN:
4008 down_read(&slub_lock);
4009 list_for_each_entry(s, &slab_caches, list) {
4010 local_irq_save(flags);
4011 __flush_cpu_slab(s, cpu);
4012 local_irq_restore(flags);
4013 }
4014 up_read(&slub_lock);
4015 break;
4016 default:
4017 break;
4018 }
4019 return NOTIFY_OK;
4020 }
4021
4022 static struct notifier_block __cpuinitdata slab_notifier = {
4023 .notifier_call = slab_cpuup_callback
4024 };
4025
4026 #endif
4027
4028 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4029 {
4030 struct kmem_cache *s;
4031 void *ret;
4032
4033 if (unlikely(size > SLUB_MAX_SIZE))
4034 return kmalloc_large(size, gfpflags);
4035
4036 s = get_slab(size, gfpflags);
4037
4038 if (unlikely(ZERO_OR_NULL_PTR(s)))
4039 return s;
4040
4041 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4042
4043 /* Honor the call site pointer we received. */
4044 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4045
4046 return ret;
4047 }
4048
4049 #ifdef CONFIG_NUMA
4050 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4051 int node, unsigned long caller)
4052 {
4053 struct kmem_cache *s;
4054 void *ret;
4055
4056 if (unlikely(size > SLUB_MAX_SIZE)) {
4057 ret = kmalloc_large_node(size, gfpflags, node);
4058
4059 trace_kmalloc_node(caller, ret,
4060 size, PAGE_SIZE << get_order(size),
4061 gfpflags, node);
4062
4063 return ret;
4064 }
4065
4066 s = get_slab(size, gfpflags);
4067
4068 if (unlikely(ZERO_OR_NULL_PTR(s)))
4069 return s;
4070
4071 ret = slab_alloc(s, gfpflags, node, caller);
4072
4073 /* Honor the call site pointer we received. */
4074 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4075
4076 return ret;
4077 }
4078 #endif
4079
4080 #ifdef CONFIG_SYSFS
4081 static int count_inuse(struct page *page)
4082 {
4083 return page->inuse;
4084 }
4085
4086 static int count_total(struct page *page)
4087 {
4088 return page->objects;
4089 }
4090 #endif
4091
4092 #ifdef CONFIG_SLUB_DEBUG
4093 static int validate_slab(struct kmem_cache *s, struct page *page,
4094 unsigned long *map)
4095 {
4096 void *p;
4097 void *addr = page_address(page);
4098
4099 if (!check_slab(s, page) ||
4100 !on_freelist(s, page, NULL))
4101 return 0;
4102
4103 /* Now we know that a valid freelist exists */
4104 bitmap_zero(map, page->objects);
4105
4106 get_map(s, page, map);
4107 for_each_object(p, s, addr, page->objects) {
4108 if (test_bit(slab_index(p, s, addr), map))
4109 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4110 return 0;
4111 }
4112
4113 for_each_object(p, s, addr, page->objects)
4114 if (!test_bit(slab_index(p, s, addr), map))
4115 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4116 return 0;
4117 return 1;
4118 }
4119
4120 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4121 unsigned long *map)
4122 {
4123 slab_lock(page);
4124 validate_slab(s, page, map);
4125 slab_unlock(page);
4126 }
4127
4128 static int validate_slab_node(struct kmem_cache *s,
4129 struct kmem_cache_node *n, unsigned long *map)
4130 {
4131 unsigned long count = 0;
4132 struct page *page;
4133 unsigned long flags;
4134
4135 spin_lock_irqsave(&n->list_lock, flags);
4136
4137 list_for_each_entry(page, &n->partial, lru) {
4138 validate_slab_slab(s, page, map);
4139 count++;
4140 }
4141 if (count != n->nr_partial)
4142 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4143 "counter=%ld\n", s->name, count, n->nr_partial);
4144
4145 if (!(s->flags & SLAB_STORE_USER))
4146 goto out;
4147
4148 list_for_each_entry(page, &n->full, lru) {
4149 validate_slab_slab(s, page, map);
4150 count++;
4151 }
4152 if (count != atomic_long_read(&n->nr_slabs))
4153 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4154 "counter=%ld\n", s->name, count,
4155 atomic_long_read(&n->nr_slabs));
4156
4157 out:
4158 spin_unlock_irqrestore(&n->list_lock, flags);
4159 return count;
4160 }
4161
4162 static long validate_slab_cache(struct kmem_cache *s)
4163 {
4164 int node;
4165 unsigned long count = 0;
4166 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4167 sizeof(unsigned long), GFP_KERNEL);
4168
4169 if (!map)
4170 return -ENOMEM;
4171
4172 flush_all(s);
4173 for_each_node_state(node, N_NORMAL_MEMORY) {
4174 struct kmem_cache_node *n = get_node(s, node);
4175
4176 count += validate_slab_node(s, n, map);
4177 }
4178 kfree(map);
4179 return count;
4180 }
4181 /*
4182 * Generate lists of code addresses where slabcache objects are allocated
4183 * and freed.
4184 */
4185
4186 struct location {
4187 unsigned long count;
4188 unsigned long addr;
4189 long long sum_time;
4190 long min_time;
4191 long max_time;
4192 long min_pid;
4193 long max_pid;
4194 DECLARE_BITMAP(cpus, NR_CPUS);
4195 nodemask_t nodes;
4196 };
4197
4198 struct loc_track {
4199 unsigned long max;
4200 unsigned long count;
4201 struct location *loc;
4202 };
4203
4204 static void free_loc_track(struct loc_track *t)
4205 {
4206 if (t->max)
4207 free_pages((unsigned long)t->loc,
4208 get_order(sizeof(struct location) * t->max));
4209 }
4210
4211 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4212 {
4213 struct location *l;
4214 int order;
4215
4216 order = get_order(sizeof(struct location) * max);
4217
4218 l = (void *)__get_free_pages(flags, order);
4219 if (!l)
4220 return 0;
4221
4222 if (t->count) {
4223 memcpy(l, t->loc, sizeof(struct location) * t->count);
4224 free_loc_track(t);
4225 }
4226 t->max = max;
4227 t->loc = l;
4228 return 1;
4229 }
4230
4231 static int add_location(struct loc_track *t, struct kmem_cache *s,
4232 const struct track *track)
4233 {
4234 long start, end, pos;
4235 struct location *l;
4236 unsigned long caddr;
4237 unsigned long age = jiffies - track->when;
4238
4239 start = -1;
4240 end = t->count;
4241
4242 for ( ; ; ) {
4243 pos = start + (end - start + 1) / 2;
4244
4245 /*
4246 * There is nothing at "end". If we end up there
4247 * we need to add something to before end.
4248 */
4249 if (pos == end)
4250 break;
4251
4252 caddr = t->loc[pos].addr;
4253 if (track->addr == caddr) {
4254
4255 l = &t->loc[pos];
4256 l->count++;
4257 if (track->when) {
4258 l->sum_time += age;
4259 if (age < l->min_time)
4260 l->min_time = age;
4261 if (age > l->max_time)
4262 l->max_time = age;
4263
4264 if (track->pid < l->min_pid)
4265 l->min_pid = track->pid;
4266 if (track->pid > l->max_pid)
4267 l->max_pid = track->pid;
4268
4269 cpumask_set_cpu(track->cpu,
4270 to_cpumask(l->cpus));
4271 }
4272 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4273 return 1;
4274 }
4275
4276 if (track->addr < caddr)
4277 end = pos;
4278 else
4279 start = pos;
4280 }
4281
4282 /*
4283 * Not found. Insert new tracking element.
4284 */
4285 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4286 return 0;
4287
4288 l = t->loc + pos;
4289 if (pos < t->count)
4290 memmove(l + 1, l,
4291 (t->count - pos) * sizeof(struct location));
4292 t->count++;
4293 l->count = 1;
4294 l->addr = track->addr;
4295 l->sum_time = age;
4296 l->min_time = age;
4297 l->max_time = age;
4298 l->min_pid = track->pid;
4299 l->max_pid = track->pid;
4300 cpumask_clear(to_cpumask(l->cpus));
4301 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4302 nodes_clear(l->nodes);
4303 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4304 return 1;
4305 }
4306
4307 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4308 struct page *page, enum track_item alloc,
4309 unsigned long *map)
4310 {
4311 void *addr = page_address(page);
4312 void *p;
4313
4314 bitmap_zero(map, page->objects);
4315 get_map(s, page, map);
4316
4317 for_each_object(p, s, addr, page->objects)
4318 if (!test_bit(slab_index(p, s, addr), map))
4319 add_location(t, s, get_track(s, p, alloc));
4320 }
4321
4322 static int list_locations(struct kmem_cache *s, char *buf,
4323 enum track_item alloc)
4324 {
4325 int len = 0;
4326 unsigned long i;
4327 struct loc_track t = { 0, 0, NULL };
4328 int node;
4329 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4330 sizeof(unsigned long), GFP_KERNEL);
4331
4332 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4333 GFP_TEMPORARY)) {
4334 kfree(map);
4335 return sprintf(buf, "Out of memory\n");
4336 }
4337 /* Push back cpu slabs */
4338 flush_all(s);
4339
4340 for_each_node_state(node, N_NORMAL_MEMORY) {
4341 struct kmem_cache_node *n = get_node(s, node);
4342 unsigned long flags;
4343 struct page *page;
4344
4345 if (!atomic_long_read(&n->nr_slabs))
4346 continue;
4347
4348 spin_lock_irqsave(&n->list_lock, flags);
4349 list_for_each_entry(page, &n->partial, lru)
4350 process_slab(&t, s, page, alloc, map);
4351 list_for_each_entry(page, &n->full, lru)
4352 process_slab(&t, s, page, alloc, map);
4353 spin_unlock_irqrestore(&n->list_lock, flags);
4354 }
4355
4356 for (i = 0; i < t.count; i++) {
4357 struct location *l = &t.loc[i];
4358
4359 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4360 break;
4361 len += sprintf(buf + len, "%7ld ", l->count);
4362
4363 if (l->addr)
4364 len += sprintf(buf + len, "%pS", (void *)l->addr);
4365 else
4366 len += sprintf(buf + len, "<not-available>");
4367
4368 if (l->sum_time != l->min_time) {
4369 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4370 l->min_time,
4371 (long)div_u64(l->sum_time, l->count),
4372 l->max_time);
4373 } else
4374 len += sprintf(buf + len, " age=%ld",
4375 l->min_time);
4376
4377 if (l->min_pid != l->max_pid)
4378 len += sprintf(buf + len, " pid=%ld-%ld",
4379 l->min_pid, l->max_pid);
4380 else
4381 len += sprintf(buf + len, " pid=%ld",
4382 l->min_pid);
4383
4384 if (num_online_cpus() > 1 &&
4385 !cpumask_empty(to_cpumask(l->cpus)) &&
4386 len < PAGE_SIZE - 60) {
4387 len += sprintf(buf + len, " cpus=");
4388 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4389 to_cpumask(l->cpus));
4390 }
4391
4392 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4393 len < PAGE_SIZE - 60) {
4394 len += sprintf(buf + len, " nodes=");
4395 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4396 l->nodes);
4397 }
4398
4399 len += sprintf(buf + len, "\n");
4400 }
4401
4402 free_loc_track(&t);
4403 kfree(map);
4404 if (!t.count)
4405 len += sprintf(buf, "No data\n");
4406 return len;
4407 }
4408 #endif
4409
4410 #ifdef SLUB_RESILIENCY_TEST
4411 static void resiliency_test(void)
4412 {
4413 u8 *p;
4414
4415 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4416
4417 printk(KERN_ERR "SLUB resiliency testing\n");
4418 printk(KERN_ERR "-----------------------\n");
4419 printk(KERN_ERR "A. Corruption after allocation\n");
4420
4421 p = kzalloc(16, GFP_KERNEL);
4422 p[16] = 0x12;
4423 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4424 " 0x12->0x%p\n\n", p + 16);
4425
4426 validate_slab_cache(kmalloc_caches[4]);
4427
4428 /* Hmmm... The next two are dangerous */
4429 p = kzalloc(32, GFP_KERNEL);
4430 p[32 + sizeof(void *)] = 0x34;
4431 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4432 " 0x34 -> -0x%p\n", p);
4433 printk(KERN_ERR
4434 "If allocated object is overwritten then not detectable\n\n");
4435
4436 validate_slab_cache(kmalloc_caches[5]);
4437 p = kzalloc(64, GFP_KERNEL);
4438 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4439 *p = 0x56;
4440 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4441 p);
4442 printk(KERN_ERR
4443 "If allocated object is overwritten then not detectable\n\n");
4444 validate_slab_cache(kmalloc_caches[6]);
4445
4446 printk(KERN_ERR "\nB. Corruption after free\n");
4447 p = kzalloc(128, GFP_KERNEL);
4448 kfree(p);
4449 *p = 0x78;
4450 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4451 validate_slab_cache(kmalloc_caches[7]);
4452
4453 p = kzalloc(256, GFP_KERNEL);
4454 kfree(p);
4455 p[50] = 0x9a;
4456 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4457 p);
4458 validate_slab_cache(kmalloc_caches[8]);
4459
4460 p = kzalloc(512, GFP_KERNEL);
4461 kfree(p);
4462 p[512] = 0xab;
4463 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4464 validate_slab_cache(kmalloc_caches[9]);
4465 }
4466 #else
4467 #ifdef CONFIG_SYSFS
4468 static void resiliency_test(void) {};
4469 #endif
4470 #endif
4471
4472 #ifdef CONFIG_SYSFS
4473 enum slab_stat_type {
4474 SL_ALL, /* All slabs */
4475 SL_PARTIAL, /* Only partially allocated slabs */
4476 SL_CPU, /* Only slabs used for cpu caches */
4477 SL_OBJECTS, /* Determine allocated objects not slabs */
4478 SL_TOTAL /* Determine object capacity not slabs */
4479 };
4480
4481 #define SO_ALL (1 << SL_ALL)
4482 #define SO_PARTIAL (1 << SL_PARTIAL)
4483 #define SO_CPU (1 << SL_CPU)
4484 #define SO_OBJECTS (1 << SL_OBJECTS)
4485 #define SO_TOTAL (1 << SL_TOTAL)
4486
4487 static ssize_t show_slab_objects(struct kmem_cache *s,
4488 char *buf, unsigned long flags)
4489 {
4490 unsigned long total = 0;
4491 int node;
4492 int x;
4493 unsigned long *nodes;
4494 unsigned long *per_cpu;
4495
4496 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4497 if (!nodes)
4498 return -ENOMEM;
4499 per_cpu = nodes + nr_node_ids;
4500
4501 if (flags & SO_CPU) {
4502 int cpu;
4503
4504 for_each_possible_cpu(cpu) {
4505 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4506 int node;
4507 struct page *page;
4508
4509 page = ACCESS_ONCE(c->page);
4510 if (!page)
4511 continue;
4512
4513 node = page_to_nid(page);
4514 if (flags & SO_TOTAL)
4515 x = page->objects;
4516 else if (flags & SO_OBJECTS)
4517 x = page->inuse;
4518 else
4519 x = 1;
4520
4521 total += x;
4522 nodes[node] += x;
4523
4524 page = ACCESS_ONCE(c->partial);
4525 if (page) {
4526 x = page->pobjects;
4527 total += x;
4528 nodes[node] += x;
4529 }
4530
4531 per_cpu[node]++;
4532 }
4533 }
4534
4535 lock_memory_hotplug();
4536 #ifdef CONFIG_SLUB_DEBUG
4537 if (flags & SO_ALL) {
4538 for_each_node_state(node, N_NORMAL_MEMORY) {
4539 struct kmem_cache_node *n = get_node(s, node);
4540
4541 if (flags & SO_TOTAL)
4542 x = atomic_long_read(&n->total_objects);
4543 else if (flags & SO_OBJECTS)
4544 x = atomic_long_read(&n->total_objects) -
4545 count_partial(n, count_free);
4546
4547 else
4548 x = atomic_long_read(&n->nr_slabs);
4549 total += x;
4550 nodes[node] += x;
4551 }
4552
4553 } else
4554 #endif
4555 if (flags & SO_PARTIAL) {
4556 for_each_node_state(node, N_NORMAL_MEMORY) {
4557 struct kmem_cache_node *n = get_node(s, node);
4558
4559 if (flags & SO_TOTAL)
4560 x = count_partial(n, count_total);
4561 else if (flags & SO_OBJECTS)
4562 x = count_partial(n, count_inuse);
4563 else
4564 x = n->nr_partial;
4565 total += x;
4566 nodes[node] += x;
4567 }
4568 }
4569 x = sprintf(buf, "%lu", total);
4570 #ifdef CONFIG_NUMA
4571 for_each_node_state(node, N_NORMAL_MEMORY)
4572 if (nodes[node])
4573 x += sprintf(buf + x, " N%d=%lu",
4574 node, nodes[node]);
4575 #endif
4576 unlock_memory_hotplug();
4577 kfree(nodes);
4578 return x + sprintf(buf + x, "\n");
4579 }
4580
4581 #ifdef CONFIG_SLUB_DEBUG
4582 static int any_slab_objects(struct kmem_cache *s)
4583 {
4584 int node;
4585
4586 for_each_online_node(node) {
4587 struct kmem_cache_node *n = get_node(s, node);
4588
4589 if (!n)
4590 continue;
4591
4592 if (atomic_long_read(&n->total_objects))
4593 return 1;
4594 }
4595 return 0;
4596 }
4597 #endif
4598
4599 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4600 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4601
4602 struct slab_attribute {
4603 struct attribute attr;
4604 ssize_t (*show)(struct kmem_cache *s, char *buf);
4605 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4606 };
4607
4608 #define SLAB_ATTR_RO(_name) \
4609 static struct slab_attribute _name##_attr = \
4610 __ATTR(_name, 0400, _name##_show, NULL)
4611
4612 #define SLAB_ATTR(_name) \
4613 static struct slab_attribute _name##_attr = \
4614 __ATTR(_name, 0600, _name##_show, _name##_store)
4615
4616 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4617 {
4618 return sprintf(buf, "%d\n", s->size);
4619 }
4620 SLAB_ATTR_RO(slab_size);
4621
4622 static ssize_t align_show(struct kmem_cache *s, char *buf)
4623 {
4624 return sprintf(buf, "%d\n", s->align);
4625 }
4626 SLAB_ATTR_RO(align);
4627
4628 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4629 {
4630 return sprintf(buf, "%d\n", s->objsize);
4631 }
4632 SLAB_ATTR_RO(object_size);
4633
4634 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4635 {
4636 return sprintf(buf, "%d\n", oo_objects(s->oo));
4637 }
4638 SLAB_ATTR_RO(objs_per_slab);
4639
4640 static ssize_t order_store(struct kmem_cache *s,
4641 const char *buf, size_t length)
4642 {
4643 unsigned long order;
4644 int err;
4645
4646 err = strict_strtoul(buf, 10, &order);
4647 if (err)
4648 return err;
4649
4650 if (order > slub_max_order || order < slub_min_order)
4651 return -EINVAL;
4652
4653 calculate_sizes(s, order);
4654 return length;
4655 }
4656
4657 static ssize_t order_show(struct kmem_cache *s, char *buf)
4658 {
4659 return sprintf(buf, "%d\n", oo_order(s->oo));
4660 }
4661 SLAB_ATTR(order);
4662
4663 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4664 {
4665 return sprintf(buf, "%lu\n", s->min_partial);
4666 }
4667
4668 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4669 size_t length)
4670 {
4671 unsigned long min;
4672 int err;
4673
4674 err = strict_strtoul(buf, 10, &min);
4675 if (err)
4676 return err;
4677
4678 set_min_partial(s, min);
4679 return length;
4680 }
4681 SLAB_ATTR(min_partial);
4682
4683 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4684 {
4685 return sprintf(buf, "%u\n", s->cpu_partial);
4686 }
4687
4688 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4689 size_t length)
4690 {
4691 unsigned long objects;
4692 int err;
4693
4694 err = strict_strtoul(buf, 10, &objects);
4695 if (err)
4696 return err;
4697 if (objects && kmem_cache_debug(s))
4698 return -EINVAL;
4699
4700 s->cpu_partial = objects;
4701 flush_all(s);
4702 return length;
4703 }
4704 SLAB_ATTR(cpu_partial);
4705
4706 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4707 {
4708 if (!s->ctor)
4709 return 0;
4710 return sprintf(buf, "%pS\n", s->ctor);
4711 }
4712 SLAB_ATTR_RO(ctor);
4713
4714 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4715 {
4716 return sprintf(buf, "%d\n", s->refcount - 1);
4717 }
4718 SLAB_ATTR_RO(aliases);
4719
4720 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4721 {
4722 return show_slab_objects(s, buf, SO_PARTIAL);
4723 }
4724 SLAB_ATTR_RO(partial);
4725
4726 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4727 {
4728 return show_slab_objects(s, buf, SO_CPU);
4729 }
4730 SLAB_ATTR_RO(cpu_slabs);
4731
4732 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4733 {
4734 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4735 }
4736 SLAB_ATTR_RO(objects);
4737
4738 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4739 {
4740 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4741 }
4742 SLAB_ATTR_RO(objects_partial);
4743
4744 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4745 {
4746 int objects = 0;
4747 int pages = 0;
4748 int cpu;
4749 int len;
4750
4751 for_each_online_cpu(cpu) {
4752 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4753
4754 if (page) {
4755 pages += page->pages;
4756 objects += page->pobjects;
4757 }
4758 }
4759
4760 len = sprintf(buf, "%d(%d)", objects, pages);
4761
4762 #ifdef CONFIG_SMP
4763 for_each_online_cpu(cpu) {
4764 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4765
4766 if (page && len < PAGE_SIZE - 20)
4767 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4768 page->pobjects, page->pages);
4769 }
4770 #endif
4771 return len + sprintf(buf + len, "\n");
4772 }
4773 SLAB_ATTR_RO(slabs_cpu_partial);
4774
4775 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4776 {
4777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4778 }
4779
4780 static ssize_t reclaim_account_store(struct kmem_cache *s,
4781 const char *buf, size_t length)
4782 {
4783 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4784 if (buf[0] == '1')
4785 s->flags |= SLAB_RECLAIM_ACCOUNT;
4786 return length;
4787 }
4788 SLAB_ATTR(reclaim_account);
4789
4790 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4791 {
4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4793 }
4794 SLAB_ATTR_RO(hwcache_align);
4795
4796 #ifdef CONFIG_ZONE_DMA
4797 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4798 {
4799 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4800 }
4801 SLAB_ATTR_RO(cache_dma);
4802 #endif
4803
4804 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4805 {
4806 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4807 }
4808 SLAB_ATTR_RO(destroy_by_rcu);
4809
4810 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4811 {
4812 return sprintf(buf, "%d\n", s->reserved);
4813 }
4814 SLAB_ATTR_RO(reserved);
4815
4816 #ifdef CONFIG_SLUB_DEBUG
4817 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4818 {
4819 return show_slab_objects(s, buf, SO_ALL);
4820 }
4821 SLAB_ATTR_RO(slabs);
4822
4823 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4824 {
4825 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4826 }
4827 SLAB_ATTR_RO(total_objects);
4828
4829 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4830 {
4831 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4832 }
4833
4834 static ssize_t sanity_checks_store(struct kmem_cache *s,
4835 const char *buf, size_t length)
4836 {
4837 s->flags &= ~SLAB_DEBUG_FREE;
4838 if (buf[0] == '1') {
4839 s->flags &= ~__CMPXCHG_DOUBLE;
4840 s->flags |= SLAB_DEBUG_FREE;
4841 }
4842 return length;
4843 }
4844 SLAB_ATTR(sanity_checks);
4845
4846 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4847 {
4848 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4849 }
4850
4851 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4852 size_t length)
4853 {
4854 s->flags &= ~SLAB_TRACE;
4855 if (buf[0] == '1') {
4856 s->flags &= ~__CMPXCHG_DOUBLE;
4857 s->flags |= SLAB_TRACE;
4858 }
4859 return length;
4860 }
4861 SLAB_ATTR(trace);
4862
4863 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4864 {
4865 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4866 }
4867
4868 static ssize_t red_zone_store(struct kmem_cache *s,
4869 const char *buf, size_t length)
4870 {
4871 if (any_slab_objects(s))
4872 return -EBUSY;
4873
4874 s->flags &= ~SLAB_RED_ZONE;
4875 if (buf[0] == '1') {
4876 s->flags &= ~__CMPXCHG_DOUBLE;
4877 s->flags |= SLAB_RED_ZONE;
4878 }
4879 calculate_sizes(s, -1);
4880 return length;
4881 }
4882 SLAB_ATTR(red_zone);
4883
4884 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4885 {
4886 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4887 }
4888
4889 static ssize_t poison_store(struct kmem_cache *s,
4890 const char *buf, size_t length)
4891 {
4892 if (any_slab_objects(s))
4893 return -EBUSY;
4894
4895 s->flags &= ~SLAB_POISON;
4896 if (buf[0] == '1') {
4897 s->flags &= ~__CMPXCHG_DOUBLE;
4898 s->flags |= SLAB_POISON;
4899 }
4900 calculate_sizes(s, -1);
4901 return length;
4902 }
4903 SLAB_ATTR(poison);
4904
4905 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4906 {
4907 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4908 }
4909
4910 static ssize_t store_user_store(struct kmem_cache *s,
4911 const char *buf, size_t length)
4912 {
4913 if (any_slab_objects(s))
4914 return -EBUSY;
4915
4916 s->flags &= ~SLAB_STORE_USER;
4917 if (buf[0] == '1') {
4918 s->flags &= ~__CMPXCHG_DOUBLE;
4919 s->flags |= SLAB_STORE_USER;
4920 }
4921 calculate_sizes(s, -1);
4922 return length;
4923 }
4924 SLAB_ATTR(store_user);
4925
4926 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4927 {
4928 return 0;
4929 }
4930
4931 static ssize_t validate_store(struct kmem_cache *s,
4932 const char *buf, size_t length)
4933 {
4934 int ret = -EINVAL;
4935
4936 if (buf[0] == '1') {
4937 ret = validate_slab_cache(s);
4938 if (ret >= 0)
4939 ret = length;
4940 }
4941 return ret;
4942 }
4943 SLAB_ATTR(validate);
4944
4945 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4946 {
4947 if (!(s->flags & SLAB_STORE_USER))
4948 return -ENOSYS;
4949 return list_locations(s, buf, TRACK_ALLOC);
4950 }
4951 SLAB_ATTR_RO(alloc_calls);
4952
4953 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4954 {
4955 if (!(s->flags & SLAB_STORE_USER))
4956 return -ENOSYS;
4957 return list_locations(s, buf, TRACK_FREE);
4958 }
4959 SLAB_ATTR_RO(free_calls);
4960 #endif /* CONFIG_SLUB_DEBUG */
4961
4962 #ifdef CONFIG_FAILSLAB
4963 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4964 {
4965 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4966 }
4967
4968 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4969 size_t length)
4970 {
4971 s->flags &= ~SLAB_FAILSLAB;
4972 if (buf[0] == '1')
4973 s->flags |= SLAB_FAILSLAB;
4974 return length;
4975 }
4976 SLAB_ATTR(failslab);
4977 #endif
4978
4979 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4980 {
4981 return 0;
4982 }
4983
4984 static ssize_t shrink_store(struct kmem_cache *s,
4985 const char *buf, size_t length)
4986 {
4987 if (buf[0] == '1') {
4988 int rc = kmem_cache_shrink(s);
4989
4990 if (rc)
4991 return rc;
4992 } else
4993 return -EINVAL;
4994 return length;
4995 }
4996 SLAB_ATTR(shrink);
4997
4998 #ifdef CONFIG_NUMA
4999 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5000 {
5001 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5002 }
5003
5004 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5005 const char *buf, size_t length)
5006 {
5007 unsigned long ratio;
5008 int err;
5009
5010 err = strict_strtoul(buf, 10, &ratio);
5011 if (err)
5012 return err;
5013
5014 if (ratio <= 100)
5015 s->remote_node_defrag_ratio = ratio * 10;
5016
5017 return length;
5018 }
5019 SLAB_ATTR(remote_node_defrag_ratio);
5020 #endif
5021
5022 #ifdef CONFIG_SLUB_STATS
5023 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5024 {
5025 unsigned long sum = 0;
5026 int cpu;
5027 int len;
5028 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5029
5030 if (!data)
5031 return -ENOMEM;
5032
5033 for_each_online_cpu(cpu) {
5034 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5035
5036 data[cpu] = x;
5037 sum += x;
5038 }
5039
5040 len = sprintf(buf, "%lu", sum);
5041
5042 #ifdef CONFIG_SMP
5043 for_each_online_cpu(cpu) {
5044 if (data[cpu] && len < PAGE_SIZE - 20)
5045 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5046 }
5047 #endif
5048 kfree(data);
5049 return len + sprintf(buf + len, "\n");
5050 }
5051
5052 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5053 {
5054 int cpu;
5055
5056 for_each_online_cpu(cpu)
5057 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5058 }
5059
5060 #define STAT_ATTR(si, text) \
5061 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5062 { \
5063 return show_stat(s, buf, si); \
5064 } \
5065 static ssize_t text##_store(struct kmem_cache *s, \
5066 const char *buf, size_t length) \
5067 { \
5068 if (buf[0] != '0') \
5069 return -EINVAL; \
5070 clear_stat(s, si); \
5071 return length; \
5072 } \
5073 SLAB_ATTR(text); \
5074
5075 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5076 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5077 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5078 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5079 STAT_ATTR(FREE_FROZEN, free_frozen);
5080 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5081 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5082 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5083 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5084 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5085 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5086 STAT_ATTR(FREE_SLAB, free_slab);
5087 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5088 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5089 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5090 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5091 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5092 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5093 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5094 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5095 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5096 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5097 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5098 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5099 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5100 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5101 #endif
5102
5103 static struct attribute *slab_attrs[] = {
5104 &slab_size_attr.attr,
5105 &object_size_attr.attr,
5106 &objs_per_slab_attr.attr,
5107 &order_attr.attr,
5108 &min_partial_attr.attr,
5109 &cpu_partial_attr.attr,
5110 &objects_attr.attr,
5111 &objects_partial_attr.attr,
5112 &partial_attr.attr,
5113 &cpu_slabs_attr.attr,
5114 &ctor_attr.attr,
5115 &aliases_attr.attr,
5116 &align_attr.attr,
5117 &hwcache_align_attr.attr,
5118 &reclaim_account_attr.attr,
5119 &destroy_by_rcu_attr.attr,
5120 &shrink_attr.attr,
5121 &reserved_attr.attr,
5122 &slabs_cpu_partial_attr.attr,
5123 #ifdef CONFIG_SLUB_DEBUG
5124 &total_objects_attr.attr,
5125 &slabs_attr.attr,
5126 &sanity_checks_attr.attr,
5127 &trace_attr.attr,
5128 &red_zone_attr.attr,
5129 &poison_attr.attr,
5130 &store_user_attr.attr,
5131 &validate_attr.attr,
5132 &alloc_calls_attr.attr,
5133 &free_calls_attr.attr,
5134 #endif
5135 #ifdef CONFIG_ZONE_DMA
5136 &cache_dma_attr.attr,
5137 #endif
5138 #ifdef CONFIG_NUMA
5139 &remote_node_defrag_ratio_attr.attr,
5140 #endif
5141 #ifdef CONFIG_SLUB_STATS
5142 &alloc_fastpath_attr.attr,
5143 &alloc_slowpath_attr.attr,
5144 &free_fastpath_attr.attr,
5145 &free_slowpath_attr.attr,
5146 &free_frozen_attr.attr,
5147 &free_add_partial_attr.attr,
5148 &free_remove_partial_attr.attr,
5149 &alloc_from_partial_attr.attr,
5150 &alloc_slab_attr.attr,
5151 &alloc_refill_attr.attr,
5152 &alloc_node_mismatch_attr.attr,
5153 &free_slab_attr.attr,
5154 &cpuslab_flush_attr.attr,
5155 &deactivate_full_attr.attr,
5156 &deactivate_empty_attr.attr,
5157 &deactivate_to_head_attr.attr,
5158 &deactivate_to_tail_attr.attr,
5159 &deactivate_remote_frees_attr.attr,
5160 &deactivate_bypass_attr.attr,
5161 &order_fallback_attr.attr,
5162 &cmpxchg_double_fail_attr.attr,
5163 &cmpxchg_double_cpu_fail_attr.attr,
5164 &cpu_partial_alloc_attr.attr,
5165 &cpu_partial_free_attr.attr,
5166 &cpu_partial_node_attr.attr,
5167 &cpu_partial_drain_attr.attr,
5168 #endif
5169 #ifdef CONFIG_FAILSLAB
5170 &failslab_attr.attr,
5171 #endif
5172
5173 NULL
5174 };
5175
5176 static struct attribute_group slab_attr_group = {
5177 .attrs = slab_attrs,
5178 };
5179
5180 static ssize_t slab_attr_show(struct kobject *kobj,
5181 struct attribute *attr,
5182 char *buf)
5183 {
5184 struct slab_attribute *attribute;
5185 struct kmem_cache *s;
5186 int err;
5187
5188 attribute = to_slab_attr(attr);
5189 s = to_slab(kobj);
5190
5191 if (!attribute->show)
5192 return -EIO;
5193
5194 err = attribute->show(s, buf);
5195
5196 return err;
5197 }
5198
5199 static ssize_t slab_attr_store(struct kobject *kobj,
5200 struct attribute *attr,
5201 const char *buf, size_t len)
5202 {
5203 struct slab_attribute *attribute;
5204 struct kmem_cache *s;
5205 int err;
5206
5207 attribute = to_slab_attr(attr);
5208 s = to_slab(kobj);
5209
5210 if (!attribute->store)
5211 return -EIO;
5212
5213 err = attribute->store(s, buf, len);
5214
5215 return err;
5216 }
5217
5218 static void kmem_cache_release(struct kobject *kobj)
5219 {
5220 struct kmem_cache *s = to_slab(kobj);
5221
5222 kfree(s->name);
5223 kfree(s);
5224 }
5225
5226 static const struct sysfs_ops slab_sysfs_ops = {
5227 .show = slab_attr_show,
5228 .store = slab_attr_store,
5229 };
5230
5231 static struct kobj_type slab_ktype = {
5232 .sysfs_ops = &slab_sysfs_ops,
5233 .release = kmem_cache_release
5234 };
5235
5236 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5237 {
5238 struct kobj_type *ktype = get_ktype(kobj);
5239
5240 if (ktype == &slab_ktype)
5241 return 1;
5242 return 0;
5243 }
5244
5245 static const struct kset_uevent_ops slab_uevent_ops = {
5246 .filter = uevent_filter,
5247 };
5248
5249 static struct kset *slab_kset;
5250
5251 #define ID_STR_LENGTH 64
5252
5253 /* Create a unique string id for a slab cache:
5254 *
5255 * Format :[flags-]size
5256 */
5257 static char *create_unique_id(struct kmem_cache *s)
5258 {
5259 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5260 char *p = name;
5261
5262 BUG_ON(!name);
5263
5264 *p++ = ':';
5265 /*
5266 * First flags affecting slabcache operations. We will only
5267 * get here for aliasable slabs so we do not need to support
5268 * too many flags. The flags here must cover all flags that
5269 * are matched during merging to guarantee that the id is
5270 * unique.
5271 */
5272 if (s->flags & SLAB_CACHE_DMA)
5273 *p++ = 'd';
5274 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5275 *p++ = 'a';
5276 if (s->flags & SLAB_DEBUG_FREE)
5277 *p++ = 'F';
5278 if (!(s->flags & SLAB_NOTRACK))
5279 *p++ = 't';
5280 if (p != name + 1)
5281 *p++ = '-';
5282 p += sprintf(p, "%07d", s->size);
5283 BUG_ON(p > name + ID_STR_LENGTH - 1);
5284 return name;
5285 }
5286
5287 static int sysfs_slab_add(struct kmem_cache *s)
5288 {
5289 int err;
5290 const char *name;
5291 int unmergeable;
5292
5293 if (slab_state < SYSFS)
5294 /* Defer until later */
5295 return 0;
5296
5297 unmergeable = slab_unmergeable(s);
5298 if (unmergeable) {
5299 /*
5300 * Slabcache can never be merged so we can use the name proper.
5301 * This is typically the case for debug situations. In that
5302 * case we can catch duplicate names easily.
5303 */
5304 sysfs_remove_link(&slab_kset->kobj, s->name);
5305 name = s->name;
5306 } else {
5307 /*
5308 * Create a unique name for the slab as a target
5309 * for the symlinks.
5310 */
5311 name = create_unique_id(s);
5312 }
5313
5314 s->kobj.kset = slab_kset;
5315 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5316 if (err) {
5317 kobject_put(&s->kobj);
5318 return err;
5319 }
5320
5321 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5322 if (err) {
5323 kobject_del(&s->kobj);
5324 kobject_put(&s->kobj);
5325 return err;
5326 }
5327 kobject_uevent(&s->kobj, KOBJ_ADD);
5328 if (!unmergeable) {
5329 /* Setup first alias */
5330 sysfs_slab_alias(s, s->name);
5331 kfree(name);
5332 }
5333 return 0;
5334 }
5335
5336 static void sysfs_slab_remove(struct kmem_cache *s)
5337 {
5338 if (slab_state < SYSFS)
5339 /*
5340 * Sysfs has not been setup yet so no need to remove the
5341 * cache from sysfs.
5342 */
5343 return;
5344
5345 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5346 kobject_del(&s->kobj);
5347 kobject_put(&s->kobj);
5348 }
5349
5350 /*
5351 * Need to buffer aliases during bootup until sysfs becomes
5352 * available lest we lose that information.
5353 */
5354 struct saved_alias {
5355 struct kmem_cache *s;
5356 const char *name;
5357 struct saved_alias *next;
5358 };
5359
5360 static struct saved_alias *alias_list;
5361
5362 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5363 {
5364 struct saved_alias *al;
5365
5366 if (slab_state == SYSFS) {
5367 /*
5368 * If we have a leftover link then remove it.
5369 */
5370 sysfs_remove_link(&slab_kset->kobj, name);
5371 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5372 }
5373
5374 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5375 if (!al)
5376 return -ENOMEM;
5377
5378 al->s = s;
5379 al->name = name;
5380 al->next = alias_list;
5381 alias_list = al;
5382 return 0;
5383 }
5384
5385 static int __init slab_sysfs_init(void)
5386 {
5387 struct kmem_cache *s;
5388 int err;
5389
5390 down_write(&slub_lock);
5391
5392 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5393 if (!slab_kset) {
5394 up_write(&slub_lock);
5395 printk(KERN_ERR "Cannot register slab subsystem.\n");
5396 return -ENOSYS;
5397 }
5398
5399 slab_state = SYSFS;
5400
5401 list_for_each_entry(s, &slab_caches, list) {
5402 err = sysfs_slab_add(s);
5403 if (err)
5404 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5405 " to sysfs\n", s->name);
5406 }
5407
5408 while (alias_list) {
5409 struct saved_alias *al = alias_list;
5410
5411 alias_list = alias_list->next;
5412 err = sysfs_slab_alias(al->s, al->name);
5413 if (err)
5414 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5415 " %s to sysfs\n", s->name);
5416 kfree(al);
5417 }
5418
5419 up_write(&slub_lock);
5420 resiliency_test();
5421 return 0;
5422 }
5423
5424 __initcall(slab_sysfs_init);
5425 #endif /* CONFIG_SYSFS */
5426
5427 /*
5428 * The /proc/slabinfo ABI
5429 */
5430 #ifdef CONFIG_SLABINFO
5431 static void print_slabinfo_header(struct seq_file *m)
5432 {
5433 seq_puts(m, "slabinfo - version: 2.1\n");
5434 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5435 "<objperslab> <pagesperslab>");
5436 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5437 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5438 seq_putc(m, '\n');
5439 }
5440
5441 static void *s_start(struct seq_file *m, loff_t *pos)
5442 {
5443 loff_t n = *pos;
5444
5445 down_read(&slub_lock);
5446 if (!n)
5447 print_slabinfo_header(m);
5448
5449 return seq_list_start(&slab_caches, *pos);
5450 }
5451
5452 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5453 {
5454 return seq_list_next(p, &slab_caches, pos);
5455 }
5456
5457 static void s_stop(struct seq_file *m, void *p)
5458 {
5459 up_read(&slub_lock);
5460 }
5461
5462 static int s_show(struct seq_file *m, void *p)
5463 {
5464 unsigned long nr_partials = 0;
5465 unsigned long nr_slabs = 0;
5466 unsigned long nr_inuse = 0;
5467 unsigned long nr_objs = 0;
5468 unsigned long nr_free = 0;
5469 struct kmem_cache *s;
5470 int node;
5471
5472 s = list_entry(p, struct kmem_cache, list);
5473
5474 for_each_online_node(node) {
5475 struct kmem_cache_node *n = get_node(s, node);
5476
5477 if (!n)
5478 continue;
5479
5480 nr_partials += n->nr_partial;
5481 nr_slabs += atomic_long_read(&n->nr_slabs);
5482 nr_objs += atomic_long_read(&n->total_objects);
5483 nr_free += count_partial(n, count_free);
5484 }
5485
5486 nr_inuse = nr_objs - nr_free;
5487
5488 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5489 nr_objs, s->size, oo_objects(s->oo),
5490 (1 << oo_order(s->oo)));
5491 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5492 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5493 0UL);
5494 seq_putc(m, '\n');
5495 return 0;
5496 }
5497
5498 static const struct seq_operations slabinfo_op = {
5499 .start = s_start,
5500 .next = s_next,
5501 .stop = s_stop,
5502 .show = s_show,
5503 };
5504
5505 static int slabinfo_open(struct inode *inode, struct file *file)
5506 {
5507 return seq_open(file, &slabinfo_op);
5508 }
5509
5510 static const struct file_operations proc_slabinfo_operations = {
5511 .open = slabinfo_open,
5512 .read = seq_read,
5513 .llseek = seq_lseek,
5514 .release = seq_release,
5515 };
5516
5517 static int __init slab_proc_init(void)
5518 {
5519 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5520 return 0;
5521 }
5522 module_init(slab_proc_init);
5523 #endif /* CONFIG_SLABINFO */
This page took 0.203995 seconds and 6 git commands to generate.