Merge branches 'for-32/i2c/omap-v4', 'for-32/i2c/imx-dt', 'for-32/i2c/eg20t-v4',...
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32
33 #include <trace/events/kmem.h>
34
35 /*
36 * Lock order:
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
40 *
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
80 * freed then the slab will show up again on the partial lists.
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
102 * freelist that allows lockless access to
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
108 * the fast path and disables lockless freelists.
109 */
110
111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114 static inline int kmem_cache_debug(struct kmem_cache *s)
115 {
116 #ifdef CONFIG_SLUB_DEBUG
117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118 #else
119 return 0;
120 #endif
121 }
122
123 /*
124 * Issues still to be resolved:
125 *
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
128 * - Variable sizing of the per node arrays
129 */
130
131 /* Enable to test recovery from slab corruption on boot */
132 #undef SLUB_RESILIENCY_TEST
133
134 /* Enable to log cmpxchg failures */
135 #undef SLUB_DEBUG_CMPXCHG
136
137 /*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
141 #define MIN_PARTIAL 5
142
143 /*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148 #define MAX_PARTIAL 10
149
150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
152
153 /*
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
157 */
158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159
160 /*
161 * Set of flags that will prevent slab merging
162 */
163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
166
167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168 SLAB_CACHE_DMA | SLAB_NOTRACK)
169
170 #define OO_SHIFT 16
171 #define OO_MASK ((1 << OO_SHIFT) - 1)
172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
173
174 /* Internal SLUB flags */
175 #define __OBJECT_POISON 0x80000000UL /* Poison object */
176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
177
178 static int kmem_size = sizeof(struct kmem_cache);
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 static enum {
185 DOWN, /* No slab functionality available */
186 PARTIAL, /* Kmem_cache_node works */
187 UP, /* Everything works but does not show up in sysfs */
188 SYSFS /* Sysfs up */
189 } slab_state = DOWN;
190
191 /* A list of all slab caches on the system */
192 static DECLARE_RWSEM(slub_lock);
193 static LIST_HEAD(slab_caches);
194
195 /*
196 * Tracking user of a slab.
197 */
198 #define TRACK_ADDRS_COUNT 16
199 struct track {
200 unsigned long addr; /* Called from address */
201 #ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203 #endif
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207 };
208
209 enum track_item { TRACK_ALLOC, TRACK_FREE };
210
211 #ifdef CONFIG_SYSFS
212 static int sysfs_slab_add(struct kmem_cache *);
213 static int sysfs_slab_alias(struct kmem_cache *, const char *);
214 static void sysfs_slab_remove(struct kmem_cache *);
215
216 #else
217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
220 static inline void sysfs_slab_remove(struct kmem_cache *s)
221 {
222 kfree(s->name);
223 kfree(s);
224 }
225
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 __this_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
233 }
234
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239 int slab_is_available(void)
240 {
241 return slab_state >= UP;
242 }
243
244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245 {
246 return s->node[node];
247 }
248
249 /* Verify that a pointer has an address that is valid within a slab page */
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252 {
253 void *base;
254
255 if (!object)
256 return 1;
257
258 base = page_address(page);
259 if (object < base || object >= base + page->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265 }
266
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 return *(void **)(object + s->offset);
270 }
271
272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273 {
274 void *p;
275
276 #ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278 #else
279 p = get_freepointer(s, object);
280 #endif
281 return p;
282 }
283
284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285 {
286 *(void **)(object + s->offset) = fp;
287 }
288
289 /* Loop over all objects in a slab */
290 #define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 __p += (__s)->size)
293
294 /* Determine object index from a given position */
295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296 {
297 return (p - addr) / s->size;
298 }
299
300 static inline size_t slab_ksize(const struct kmem_cache *s)
301 {
302 #ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310 #endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322 }
323
324 static inline int order_objects(int order, unsigned long size, int reserved)
325 {
326 return ((PAGE_SIZE << order) - reserved) / size;
327 }
328
329 static inline struct kmem_cache_order_objects oo_make(int order,
330 unsigned long size, int reserved)
331 {
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size, reserved)
334 };
335
336 return x;
337 }
338
339 static inline int oo_order(struct kmem_cache_order_objects x)
340 {
341 return x.x >> OO_SHIFT;
342 }
343
344 static inline int oo_objects(struct kmem_cache_order_objects x)
345 {
346 return x.x & OO_MASK;
347 }
348
349 /*
350 * Per slab locking using the pagelock
351 */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 bit_spin_lock(PG_locked, &page->flags);
355 }
356
357 static __always_inline void slab_unlock(struct page *page)
358 {
359 __bit_spin_unlock(PG_locked, &page->flags);
360 }
361
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367 {
368 VM_BUG_ON(!irqs_disabled());
369 #ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376 #endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391 #ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393 #endif
394
395 return 0;
396 }
397
398 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402 {
403 #ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410 #endif
411 {
412 unsigned long flags;
413
414 local_irq_save(flags);
415 slab_lock(page);
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
419 slab_unlock(page);
420 local_irq_restore(flags);
421 return 1;
422 }
423 slab_unlock(page);
424 local_irq_restore(flags);
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430 #ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433
434 return 0;
435 }
436
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439 * Determine a map of object in use on a page.
440 *
441 * Node listlock must be held to guarantee that the page does
442 * not vanish from under us.
443 */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451 }
452
453 /*
454 * Debug settings:
455 */
456 #ifdef CONFIG_SLUB_DEBUG_ON
457 static int slub_debug = DEBUG_DEFAULT_FLAGS;
458 #else
459 static int slub_debug;
460 #endif
461
462 static char *slub_debug_slabs;
463 static int disable_higher_order_debug;
464
465 /*
466 * Object debugging
467 */
468 static void print_section(char *text, u8 *addr, unsigned int length)
469 {
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
472 }
473
474 static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
476 {
477 struct track *p;
478
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
483
484 return p + alloc;
485 }
486
487 static void set_track(struct kmem_cache *s, void *object,
488 enum track_item alloc, unsigned long addr)
489 {
490 struct track *p = get_track(s, object, alloc);
491
492 if (addr) {
493 #ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
496
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
502
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
507
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510 #endif
511 p->addr = addr;
512 p->cpu = smp_processor_id();
513 p->pid = current->pid;
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
517 }
518
519 static void init_tracking(struct kmem_cache *s, void *object)
520 {
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
523
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
526 }
527
528 static void print_track(const char *s, struct track *t)
529 {
530 if (!t->addr)
531 return;
532
533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 #ifdef CONFIG_STACKTRACE
536 {
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
543 }
544 #endif
545 }
546
547 static void print_tracking(struct kmem_cache *s, void *object)
548 {
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
554 }
555
556 static void print_page_info(struct page *page)
557 {
558 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
559 page, page->objects, page->inuse, page->freelist, page->flags);
560
561 }
562
563 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
564 {
565 va_list args;
566 char buf[100];
567
568 va_start(args, fmt);
569 vsnprintf(buf, sizeof(buf), fmt, args);
570 va_end(args);
571 printk(KERN_ERR "========================================"
572 "=====================================\n");
573 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
574 printk(KERN_ERR "----------------------------------------"
575 "-------------------------------------\n\n");
576 }
577
578 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579 {
580 va_list args;
581 char buf[100];
582
583 va_start(args, fmt);
584 vsnprintf(buf, sizeof(buf), fmt, args);
585 va_end(args);
586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587 }
588
589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
590 {
591 unsigned int off; /* Offset of last byte */
592 u8 *addr = page_address(page);
593
594 print_tracking(s, p);
595
596 print_page_info(page);
597
598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p, p - addr, get_freepointer(s, p));
600
601 if (p > addr + 16)
602 print_section("Bytes b4 ", p - 16, 16);
603
604 print_section("Object ", p, min_t(unsigned long, s->objsize,
605 PAGE_SIZE));
606 if (s->flags & SLAB_RED_ZONE)
607 print_section("Redzone ", p + s->objsize,
608 s->inuse - s->objsize);
609
610 if (s->offset)
611 off = s->offset + sizeof(void *);
612 else
613 off = s->inuse;
614
615 if (s->flags & SLAB_STORE_USER)
616 off += 2 * sizeof(struct track);
617
618 if (off != s->size)
619 /* Beginning of the filler is the free pointer */
620 print_section("Padding ", p + off, s->size - off);
621
622 dump_stack();
623 }
624
625 static void object_err(struct kmem_cache *s, struct page *page,
626 u8 *object, char *reason)
627 {
628 slab_bug(s, "%s", reason);
629 print_trailer(s, page, object);
630 }
631
632 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
633 {
634 va_list args;
635 char buf[100];
636
637 va_start(args, fmt);
638 vsnprintf(buf, sizeof(buf), fmt, args);
639 va_end(args);
640 slab_bug(s, "%s", buf);
641 print_page_info(page);
642 dump_stack();
643 }
644
645 static void init_object(struct kmem_cache *s, void *object, u8 val)
646 {
647 u8 *p = object;
648
649 if (s->flags & __OBJECT_POISON) {
650 memset(p, POISON_FREE, s->objsize - 1);
651 p[s->objsize - 1] = POISON_END;
652 }
653
654 if (s->flags & SLAB_RED_ZONE)
655 memset(p + s->objsize, val, s->inuse - s->objsize);
656 }
657
658 static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
659 {
660 while (bytes) {
661 if (*start != value)
662 return start;
663 start++;
664 bytes--;
665 }
666 return NULL;
667 }
668
669 static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
670 {
671 u64 value64;
672 unsigned int words, prefix;
673
674 if (bytes <= 16)
675 return check_bytes8(start, value, bytes);
676
677 value64 = value | value << 8 | value << 16 | value << 24;
678 value64 = (value64 & 0xffffffff) | value64 << 32;
679 prefix = 8 - ((unsigned long)start) % 8;
680
681 if (prefix) {
682 u8 *r = check_bytes8(start, value, prefix);
683 if (r)
684 return r;
685 start += prefix;
686 bytes -= prefix;
687 }
688
689 words = bytes / 8;
690
691 while (words) {
692 if (*(u64 *)start != value64)
693 return check_bytes8(start, value, 8);
694 start += 8;
695 words--;
696 }
697
698 return check_bytes8(start, value, bytes % 8);
699 }
700
701 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
702 void *from, void *to)
703 {
704 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
705 memset(from, data, to - from);
706 }
707
708 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
709 u8 *object, char *what,
710 u8 *start, unsigned int value, unsigned int bytes)
711 {
712 u8 *fault;
713 u8 *end;
714
715 fault = check_bytes(start, value, bytes);
716 if (!fault)
717 return 1;
718
719 end = start + bytes;
720 while (end > fault && end[-1] == value)
721 end--;
722
723 slab_bug(s, "%s overwritten", what);
724 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
725 fault, end - 1, fault[0], value);
726 print_trailer(s, page, object);
727
728 restore_bytes(s, what, value, fault, end);
729 return 0;
730 }
731
732 /*
733 * Object layout:
734 *
735 * object address
736 * Bytes of the object to be managed.
737 * If the freepointer may overlay the object then the free
738 * pointer is the first word of the object.
739 *
740 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
741 * 0xa5 (POISON_END)
742 *
743 * object + s->objsize
744 * Padding to reach word boundary. This is also used for Redzoning.
745 * Padding is extended by another word if Redzoning is enabled and
746 * objsize == inuse.
747 *
748 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
749 * 0xcc (RED_ACTIVE) for objects in use.
750 *
751 * object + s->inuse
752 * Meta data starts here.
753 *
754 * A. Free pointer (if we cannot overwrite object on free)
755 * B. Tracking data for SLAB_STORE_USER
756 * C. Padding to reach required alignment boundary or at mininum
757 * one word if debugging is on to be able to detect writes
758 * before the word boundary.
759 *
760 * Padding is done using 0x5a (POISON_INUSE)
761 *
762 * object + s->size
763 * Nothing is used beyond s->size.
764 *
765 * If slabcaches are merged then the objsize and inuse boundaries are mostly
766 * ignored. And therefore no slab options that rely on these boundaries
767 * may be used with merged slabcaches.
768 */
769
770 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
771 {
772 unsigned long off = s->inuse; /* The end of info */
773
774 if (s->offset)
775 /* Freepointer is placed after the object. */
776 off += sizeof(void *);
777
778 if (s->flags & SLAB_STORE_USER)
779 /* We also have user information there */
780 off += 2 * sizeof(struct track);
781
782 if (s->size == off)
783 return 1;
784
785 return check_bytes_and_report(s, page, p, "Object padding",
786 p + off, POISON_INUSE, s->size - off);
787 }
788
789 /* Check the pad bytes at the end of a slab page */
790 static int slab_pad_check(struct kmem_cache *s, struct page *page)
791 {
792 u8 *start;
793 u8 *fault;
794 u8 *end;
795 int length;
796 int remainder;
797
798 if (!(s->flags & SLAB_POISON))
799 return 1;
800
801 start = page_address(page);
802 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
803 end = start + length;
804 remainder = length % s->size;
805 if (!remainder)
806 return 1;
807
808 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
809 if (!fault)
810 return 1;
811 while (end > fault && end[-1] == POISON_INUSE)
812 end--;
813
814 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
815 print_section("Padding ", end - remainder, remainder);
816
817 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
818 return 0;
819 }
820
821 static int check_object(struct kmem_cache *s, struct page *page,
822 void *object, u8 val)
823 {
824 u8 *p = object;
825 u8 *endobject = object + s->objsize;
826
827 if (s->flags & SLAB_RED_ZONE) {
828 if (!check_bytes_and_report(s, page, object, "Redzone",
829 endobject, val, s->inuse - s->objsize))
830 return 0;
831 } else {
832 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
833 check_bytes_and_report(s, page, p, "Alignment padding",
834 endobject, POISON_INUSE, s->inuse - s->objsize);
835 }
836 }
837
838 if (s->flags & SLAB_POISON) {
839 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
840 (!check_bytes_and_report(s, page, p, "Poison", p,
841 POISON_FREE, s->objsize - 1) ||
842 !check_bytes_and_report(s, page, p, "Poison",
843 p + s->objsize - 1, POISON_END, 1)))
844 return 0;
845 /*
846 * check_pad_bytes cleans up on its own.
847 */
848 check_pad_bytes(s, page, p);
849 }
850
851 if (!s->offset && val == SLUB_RED_ACTIVE)
852 /*
853 * Object and freepointer overlap. Cannot check
854 * freepointer while object is allocated.
855 */
856 return 1;
857
858 /* Check free pointer validity */
859 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
860 object_err(s, page, p, "Freepointer corrupt");
861 /*
862 * No choice but to zap it and thus lose the remainder
863 * of the free objects in this slab. May cause
864 * another error because the object count is now wrong.
865 */
866 set_freepointer(s, p, NULL);
867 return 0;
868 }
869 return 1;
870 }
871
872 static int check_slab(struct kmem_cache *s, struct page *page)
873 {
874 int maxobj;
875
876 VM_BUG_ON(!irqs_disabled());
877
878 if (!PageSlab(page)) {
879 slab_err(s, page, "Not a valid slab page");
880 return 0;
881 }
882
883 maxobj = order_objects(compound_order(page), s->size, s->reserved);
884 if (page->objects > maxobj) {
885 slab_err(s, page, "objects %u > max %u",
886 s->name, page->objects, maxobj);
887 return 0;
888 }
889 if (page->inuse > page->objects) {
890 slab_err(s, page, "inuse %u > max %u",
891 s->name, page->inuse, page->objects);
892 return 0;
893 }
894 /* Slab_pad_check fixes things up after itself */
895 slab_pad_check(s, page);
896 return 1;
897 }
898
899 /*
900 * Determine if a certain object on a page is on the freelist. Must hold the
901 * slab lock to guarantee that the chains are in a consistent state.
902 */
903 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
904 {
905 int nr = 0;
906 void *fp;
907 void *object = NULL;
908 unsigned long max_objects;
909
910 fp = page->freelist;
911 while (fp && nr <= page->objects) {
912 if (fp == search)
913 return 1;
914 if (!check_valid_pointer(s, page, fp)) {
915 if (object) {
916 object_err(s, page, object,
917 "Freechain corrupt");
918 set_freepointer(s, object, NULL);
919 break;
920 } else {
921 slab_err(s, page, "Freepointer corrupt");
922 page->freelist = NULL;
923 page->inuse = page->objects;
924 slab_fix(s, "Freelist cleared");
925 return 0;
926 }
927 break;
928 }
929 object = fp;
930 fp = get_freepointer(s, object);
931 nr++;
932 }
933
934 max_objects = order_objects(compound_order(page), s->size, s->reserved);
935 if (max_objects > MAX_OBJS_PER_PAGE)
936 max_objects = MAX_OBJS_PER_PAGE;
937
938 if (page->objects != max_objects) {
939 slab_err(s, page, "Wrong number of objects. Found %d but "
940 "should be %d", page->objects, max_objects);
941 page->objects = max_objects;
942 slab_fix(s, "Number of objects adjusted.");
943 }
944 if (page->inuse != page->objects - nr) {
945 slab_err(s, page, "Wrong object count. Counter is %d but "
946 "counted were %d", page->inuse, page->objects - nr);
947 page->inuse = page->objects - nr;
948 slab_fix(s, "Object count adjusted.");
949 }
950 return search == NULL;
951 }
952
953 static void trace(struct kmem_cache *s, struct page *page, void *object,
954 int alloc)
955 {
956 if (s->flags & SLAB_TRACE) {
957 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
958 s->name,
959 alloc ? "alloc" : "free",
960 object, page->inuse,
961 page->freelist);
962
963 if (!alloc)
964 print_section("Object ", (void *)object, s->objsize);
965
966 dump_stack();
967 }
968 }
969
970 /*
971 * Hooks for other subsystems that check memory allocations. In a typical
972 * production configuration these hooks all should produce no code at all.
973 */
974 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
975 {
976 flags &= gfp_allowed_mask;
977 lockdep_trace_alloc(flags);
978 might_sleep_if(flags & __GFP_WAIT);
979
980 return should_failslab(s->objsize, flags, s->flags);
981 }
982
983 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
984 {
985 flags &= gfp_allowed_mask;
986 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
987 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
988 }
989
990 static inline void slab_free_hook(struct kmem_cache *s, void *x)
991 {
992 kmemleak_free_recursive(x, s->flags);
993
994 /*
995 * Trouble is that we may no longer disable interupts in the fast path
996 * So in order to make the debug calls that expect irqs to be
997 * disabled we need to disable interrupts temporarily.
998 */
999 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1000 {
1001 unsigned long flags;
1002
1003 local_irq_save(flags);
1004 kmemcheck_slab_free(s, x, s->objsize);
1005 debug_check_no_locks_freed(x, s->objsize);
1006 local_irq_restore(flags);
1007 }
1008 #endif
1009 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1010 debug_check_no_obj_freed(x, s->objsize);
1011 }
1012
1013 /*
1014 * Tracking of fully allocated slabs for debugging purposes.
1015 *
1016 * list_lock must be held.
1017 */
1018 static void add_full(struct kmem_cache *s,
1019 struct kmem_cache_node *n, struct page *page)
1020 {
1021 if (!(s->flags & SLAB_STORE_USER))
1022 return;
1023
1024 list_add(&page->lru, &n->full);
1025 }
1026
1027 /*
1028 * list_lock must be held.
1029 */
1030 static void remove_full(struct kmem_cache *s, struct page *page)
1031 {
1032 if (!(s->flags & SLAB_STORE_USER))
1033 return;
1034
1035 list_del(&page->lru);
1036 }
1037
1038 /* Tracking of the number of slabs for debugging purposes */
1039 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1040 {
1041 struct kmem_cache_node *n = get_node(s, node);
1042
1043 return atomic_long_read(&n->nr_slabs);
1044 }
1045
1046 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1047 {
1048 return atomic_long_read(&n->nr_slabs);
1049 }
1050
1051 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1052 {
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 /*
1056 * May be called early in order to allocate a slab for the
1057 * kmem_cache_node structure. Solve the chicken-egg
1058 * dilemma by deferring the increment of the count during
1059 * bootstrap (see early_kmem_cache_node_alloc).
1060 */
1061 if (n) {
1062 atomic_long_inc(&n->nr_slabs);
1063 atomic_long_add(objects, &n->total_objects);
1064 }
1065 }
1066 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1067 {
1068 struct kmem_cache_node *n = get_node(s, node);
1069
1070 atomic_long_dec(&n->nr_slabs);
1071 atomic_long_sub(objects, &n->total_objects);
1072 }
1073
1074 /* Object debug checks for alloc/free paths */
1075 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1076 void *object)
1077 {
1078 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1079 return;
1080
1081 init_object(s, object, SLUB_RED_INACTIVE);
1082 init_tracking(s, object);
1083 }
1084
1085 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1086 void *object, unsigned long addr)
1087 {
1088 if (!check_slab(s, page))
1089 goto bad;
1090
1091 if (!check_valid_pointer(s, page, object)) {
1092 object_err(s, page, object, "Freelist Pointer check fails");
1093 goto bad;
1094 }
1095
1096 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1097 goto bad;
1098
1099 /* Success perform special debug activities for allocs */
1100 if (s->flags & SLAB_STORE_USER)
1101 set_track(s, object, TRACK_ALLOC, addr);
1102 trace(s, page, object, 1);
1103 init_object(s, object, SLUB_RED_ACTIVE);
1104 return 1;
1105
1106 bad:
1107 if (PageSlab(page)) {
1108 /*
1109 * If this is a slab page then lets do the best we can
1110 * to avoid issues in the future. Marking all objects
1111 * as used avoids touching the remaining objects.
1112 */
1113 slab_fix(s, "Marking all objects used");
1114 page->inuse = page->objects;
1115 page->freelist = NULL;
1116 }
1117 return 0;
1118 }
1119
1120 static noinline int free_debug_processing(struct kmem_cache *s,
1121 struct page *page, void *object, unsigned long addr)
1122 {
1123 unsigned long flags;
1124 int rc = 0;
1125
1126 local_irq_save(flags);
1127 slab_lock(page);
1128
1129 if (!check_slab(s, page))
1130 goto fail;
1131
1132 if (!check_valid_pointer(s, page, object)) {
1133 slab_err(s, page, "Invalid object pointer 0x%p", object);
1134 goto fail;
1135 }
1136
1137 if (on_freelist(s, page, object)) {
1138 object_err(s, page, object, "Object already free");
1139 goto fail;
1140 }
1141
1142 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1143 goto out;
1144
1145 if (unlikely(s != page->slab)) {
1146 if (!PageSlab(page)) {
1147 slab_err(s, page, "Attempt to free object(0x%p) "
1148 "outside of slab", object);
1149 } else if (!page->slab) {
1150 printk(KERN_ERR
1151 "SLUB <none>: no slab for object 0x%p.\n",
1152 object);
1153 dump_stack();
1154 } else
1155 object_err(s, page, object,
1156 "page slab pointer corrupt.");
1157 goto fail;
1158 }
1159
1160 if (s->flags & SLAB_STORE_USER)
1161 set_track(s, object, TRACK_FREE, addr);
1162 trace(s, page, object, 0);
1163 init_object(s, object, SLUB_RED_INACTIVE);
1164 rc = 1;
1165 out:
1166 slab_unlock(page);
1167 local_irq_restore(flags);
1168 return rc;
1169
1170 fail:
1171 slab_fix(s, "Object at 0x%p not freed", object);
1172 goto out;
1173 }
1174
1175 static int __init setup_slub_debug(char *str)
1176 {
1177 slub_debug = DEBUG_DEFAULT_FLAGS;
1178 if (*str++ != '=' || !*str)
1179 /*
1180 * No options specified. Switch on full debugging.
1181 */
1182 goto out;
1183
1184 if (*str == ',')
1185 /*
1186 * No options but restriction on slabs. This means full
1187 * debugging for slabs matching a pattern.
1188 */
1189 goto check_slabs;
1190
1191 if (tolower(*str) == 'o') {
1192 /*
1193 * Avoid enabling debugging on caches if its minimum order
1194 * would increase as a result.
1195 */
1196 disable_higher_order_debug = 1;
1197 goto out;
1198 }
1199
1200 slub_debug = 0;
1201 if (*str == '-')
1202 /*
1203 * Switch off all debugging measures.
1204 */
1205 goto out;
1206
1207 /*
1208 * Determine which debug features should be switched on
1209 */
1210 for (; *str && *str != ','; str++) {
1211 switch (tolower(*str)) {
1212 case 'f':
1213 slub_debug |= SLAB_DEBUG_FREE;
1214 break;
1215 case 'z':
1216 slub_debug |= SLAB_RED_ZONE;
1217 break;
1218 case 'p':
1219 slub_debug |= SLAB_POISON;
1220 break;
1221 case 'u':
1222 slub_debug |= SLAB_STORE_USER;
1223 break;
1224 case 't':
1225 slub_debug |= SLAB_TRACE;
1226 break;
1227 case 'a':
1228 slub_debug |= SLAB_FAILSLAB;
1229 break;
1230 default:
1231 printk(KERN_ERR "slub_debug option '%c' "
1232 "unknown. skipped\n", *str);
1233 }
1234 }
1235
1236 check_slabs:
1237 if (*str == ',')
1238 slub_debug_slabs = str + 1;
1239 out:
1240 return 1;
1241 }
1242
1243 __setup("slub_debug", setup_slub_debug);
1244
1245 static unsigned long kmem_cache_flags(unsigned long objsize,
1246 unsigned long flags, const char *name,
1247 void (*ctor)(void *))
1248 {
1249 /*
1250 * Enable debugging if selected on the kernel commandline.
1251 */
1252 if (slub_debug && (!slub_debug_slabs ||
1253 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1254 flags |= slub_debug;
1255
1256 return flags;
1257 }
1258 #else
1259 static inline void setup_object_debug(struct kmem_cache *s,
1260 struct page *page, void *object) {}
1261
1262 static inline int alloc_debug_processing(struct kmem_cache *s,
1263 struct page *page, void *object, unsigned long addr) { return 0; }
1264
1265 static inline int free_debug_processing(struct kmem_cache *s,
1266 struct page *page, void *object, unsigned long addr) { return 0; }
1267
1268 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1269 { return 1; }
1270 static inline int check_object(struct kmem_cache *s, struct page *page,
1271 void *object, u8 val) { return 1; }
1272 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1273 struct page *page) {}
1274 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1275 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1276 unsigned long flags, const char *name,
1277 void (*ctor)(void *))
1278 {
1279 return flags;
1280 }
1281 #define slub_debug 0
1282
1283 #define disable_higher_order_debug 0
1284
1285 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1286 { return 0; }
1287 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1288 { return 0; }
1289 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1290 int objects) {}
1291 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1292 int objects) {}
1293
1294 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1295 { return 0; }
1296
1297 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1298 void *object) {}
1299
1300 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1301
1302 #endif /* CONFIG_SLUB_DEBUG */
1303
1304 /*
1305 * Slab allocation and freeing
1306 */
1307 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1308 struct kmem_cache_order_objects oo)
1309 {
1310 int order = oo_order(oo);
1311
1312 flags |= __GFP_NOTRACK;
1313
1314 if (node == NUMA_NO_NODE)
1315 return alloc_pages(flags, order);
1316 else
1317 return alloc_pages_exact_node(node, flags, order);
1318 }
1319
1320 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1321 {
1322 struct page *page;
1323 struct kmem_cache_order_objects oo = s->oo;
1324 gfp_t alloc_gfp;
1325
1326 flags &= gfp_allowed_mask;
1327
1328 if (flags & __GFP_WAIT)
1329 local_irq_enable();
1330
1331 flags |= s->allocflags;
1332
1333 /*
1334 * Let the initial higher-order allocation fail under memory pressure
1335 * so we fall-back to the minimum order allocation.
1336 */
1337 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1338
1339 page = alloc_slab_page(alloc_gfp, node, oo);
1340 if (unlikely(!page)) {
1341 oo = s->min;
1342 /*
1343 * Allocation may have failed due to fragmentation.
1344 * Try a lower order alloc if possible
1345 */
1346 page = alloc_slab_page(flags, node, oo);
1347
1348 if (page)
1349 stat(s, ORDER_FALLBACK);
1350 }
1351
1352 if (flags & __GFP_WAIT)
1353 local_irq_disable();
1354
1355 if (!page)
1356 return NULL;
1357
1358 if (kmemcheck_enabled
1359 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1360 int pages = 1 << oo_order(oo);
1361
1362 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1363
1364 /*
1365 * Objects from caches that have a constructor don't get
1366 * cleared when they're allocated, so we need to do it here.
1367 */
1368 if (s->ctor)
1369 kmemcheck_mark_uninitialized_pages(page, pages);
1370 else
1371 kmemcheck_mark_unallocated_pages(page, pages);
1372 }
1373
1374 page->objects = oo_objects(oo);
1375 mod_zone_page_state(page_zone(page),
1376 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1377 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1378 1 << oo_order(oo));
1379
1380 return page;
1381 }
1382
1383 static void setup_object(struct kmem_cache *s, struct page *page,
1384 void *object)
1385 {
1386 setup_object_debug(s, page, object);
1387 if (unlikely(s->ctor))
1388 s->ctor(object);
1389 }
1390
1391 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1392 {
1393 struct page *page;
1394 void *start;
1395 void *last;
1396 void *p;
1397
1398 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1399
1400 page = allocate_slab(s,
1401 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1402 if (!page)
1403 goto out;
1404
1405 inc_slabs_node(s, page_to_nid(page), page->objects);
1406 page->slab = s;
1407 page->flags |= 1 << PG_slab;
1408
1409 start = page_address(page);
1410
1411 if (unlikely(s->flags & SLAB_POISON))
1412 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1413
1414 last = start;
1415 for_each_object(p, s, start, page->objects) {
1416 setup_object(s, page, last);
1417 set_freepointer(s, last, p);
1418 last = p;
1419 }
1420 setup_object(s, page, last);
1421 set_freepointer(s, last, NULL);
1422
1423 page->freelist = start;
1424 page->inuse = page->objects;
1425 page->frozen = 1;
1426 out:
1427 return page;
1428 }
1429
1430 static void __free_slab(struct kmem_cache *s, struct page *page)
1431 {
1432 int order = compound_order(page);
1433 int pages = 1 << order;
1434
1435 if (kmem_cache_debug(s)) {
1436 void *p;
1437
1438 slab_pad_check(s, page);
1439 for_each_object(p, s, page_address(page),
1440 page->objects)
1441 check_object(s, page, p, SLUB_RED_INACTIVE);
1442 }
1443
1444 kmemcheck_free_shadow(page, compound_order(page));
1445
1446 mod_zone_page_state(page_zone(page),
1447 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1448 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1449 -pages);
1450
1451 __ClearPageSlab(page);
1452 reset_page_mapcount(page);
1453 if (current->reclaim_state)
1454 current->reclaim_state->reclaimed_slab += pages;
1455 __free_pages(page, order);
1456 }
1457
1458 #define need_reserve_slab_rcu \
1459 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1460
1461 static void rcu_free_slab(struct rcu_head *h)
1462 {
1463 struct page *page;
1464
1465 if (need_reserve_slab_rcu)
1466 page = virt_to_head_page(h);
1467 else
1468 page = container_of((struct list_head *)h, struct page, lru);
1469
1470 __free_slab(page->slab, page);
1471 }
1472
1473 static void free_slab(struct kmem_cache *s, struct page *page)
1474 {
1475 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1476 struct rcu_head *head;
1477
1478 if (need_reserve_slab_rcu) {
1479 int order = compound_order(page);
1480 int offset = (PAGE_SIZE << order) - s->reserved;
1481
1482 VM_BUG_ON(s->reserved != sizeof(*head));
1483 head = page_address(page) + offset;
1484 } else {
1485 /*
1486 * RCU free overloads the RCU head over the LRU
1487 */
1488 head = (void *)&page->lru;
1489 }
1490
1491 call_rcu(head, rcu_free_slab);
1492 } else
1493 __free_slab(s, page);
1494 }
1495
1496 static void discard_slab(struct kmem_cache *s, struct page *page)
1497 {
1498 dec_slabs_node(s, page_to_nid(page), page->objects);
1499 free_slab(s, page);
1500 }
1501
1502 /*
1503 * Management of partially allocated slabs.
1504 *
1505 * list_lock must be held.
1506 */
1507 static inline void add_partial(struct kmem_cache_node *n,
1508 struct page *page, int tail)
1509 {
1510 n->nr_partial++;
1511 if (tail == DEACTIVATE_TO_TAIL)
1512 list_add_tail(&page->lru, &n->partial);
1513 else
1514 list_add(&page->lru, &n->partial);
1515 }
1516
1517 /*
1518 * list_lock must be held.
1519 */
1520 static inline void remove_partial(struct kmem_cache_node *n,
1521 struct page *page)
1522 {
1523 list_del(&page->lru);
1524 n->nr_partial--;
1525 }
1526
1527 /*
1528 * Lock slab, remove from the partial list and put the object into the
1529 * per cpu freelist.
1530 *
1531 * Returns a list of objects or NULL if it fails.
1532 *
1533 * Must hold list_lock.
1534 */
1535 static inline void *acquire_slab(struct kmem_cache *s,
1536 struct kmem_cache_node *n, struct page *page,
1537 int mode)
1538 {
1539 void *freelist;
1540 unsigned long counters;
1541 struct page new;
1542
1543 /*
1544 * Zap the freelist and set the frozen bit.
1545 * The old freelist is the list of objects for the
1546 * per cpu allocation list.
1547 */
1548 do {
1549 freelist = page->freelist;
1550 counters = page->counters;
1551 new.counters = counters;
1552 if (mode)
1553 new.inuse = page->objects;
1554
1555 VM_BUG_ON(new.frozen);
1556 new.frozen = 1;
1557
1558 } while (!__cmpxchg_double_slab(s, page,
1559 freelist, counters,
1560 NULL, new.counters,
1561 "lock and freeze"));
1562
1563 remove_partial(n, page);
1564 return freelist;
1565 }
1566
1567 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1568
1569 /*
1570 * Try to allocate a partial slab from a specific node.
1571 */
1572 static void *get_partial_node(struct kmem_cache *s,
1573 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1574 {
1575 struct page *page, *page2;
1576 void *object = NULL;
1577
1578 /*
1579 * Racy check. If we mistakenly see no partial slabs then we
1580 * just allocate an empty slab. If we mistakenly try to get a
1581 * partial slab and there is none available then get_partials()
1582 * will return NULL.
1583 */
1584 if (!n || !n->nr_partial)
1585 return NULL;
1586
1587 spin_lock(&n->list_lock);
1588 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1589 void *t = acquire_slab(s, n, page, object == NULL);
1590 int available;
1591
1592 if (!t)
1593 break;
1594
1595 if (!object) {
1596 c->page = page;
1597 c->node = page_to_nid(page);
1598 stat(s, ALLOC_FROM_PARTIAL);
1599 object = t;
1600 available = page->objects - page->inuse;
1601 } else {
1602 page->freelist = t;
1603 available = put_cpu_partial(s, page, 0);
1604 }
1605 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1606 break;
1607
1608 }
1609 spin_unlock(&n->list_lock);
1610 return object;
1611 }
1612
1613 /*
1614 * Get a page from somewhere. Search in increasing NUMA distances.
1615 */
1616 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1617 struct kmem_cache_cpu *c)
1618 {
1619 #ifdef CONFIG_NUMA
1620 struct zonelist *zonelist;
1621 struct zoneref *z;
1622 struct zone *zone;
1623 enum zone_type high_zoneidx = gfp_zone(flags);
1624 void *object;
1625
1626 /*
1627 * The defrag ratio allows a configuration of the tradeoffs between
1628 * inter node defragmentation and node local allocations. A lower
1629 * defrag_ratio increases the tendency to do local allocations
1630 * instead of attempting to obtain partial slabs from other nodes.
1631 *
1632 * If the defrag_ratio is set to 0 then kmalloc() always
1633 * returns node local objects. If the ratio is higher then kmalloc()
1634 * may return off node objects because partial slabs are obtained
1635 * from other nodes and filled up.
1636 *
1637 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1638 * defrag_ratio = 1000) then every (well almost) allocation will
1639 * first attempt to defrag slab caches on other nodes. This means
1640 * scanning over all nodes to look for partial slabs which may be
1641 * expensive if we do it every time we are trying to find a slab
1642 * with available objects.
1643 */
1644 if (!s->remote_node_defrag_ratio ||
1645 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1646 return NULL;
1647
1648 get_mems_allowed();
1649 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1650 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1651 struct kmem_cache_node *n;
1652
1653 n = get_node(s, zone_to_nid(zone));
1654
1655 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1656 n->nr_partial > s->min_partial) {
1657 object = get_partial_node(s, n, c);
1658 if (object) {
1659 put_mems_allowed();
1660 return object;
1661 }
1662 }
1663 }
1664 put_mems_allowed();
1665 #endif
1666 return NULL;
1667 }
1668
1669 /*
1670 * Get a partial page, lock it and return it.
1671 */
1672 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1673 struct kmem_cache_cpu *c)
1674 {
1675 void *object;
1676 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1677
1678 object = get_partial_node(s, get_node(s, searchnode), c);
1679 if (object || node != NUMA_NO_NODE)
1680 return object;
1681
1682 return get_any_partial(s, flags, c);
1683 }
1684
1685 #ifdef CONFIG_PREEMPT
1686 /*
1687 * Calculate the next globally unique transaction for disambiguiation
1688 * during cmpxchg. The transactions start with the cpu number and are then
1689 * incremented by CONFIG_NR_CPUS.
1690 */
1691 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1692 #else
1693 /*
1694 * No preemption supported therefore also no need to check for
1695 * different cpus.
1696 */
1697 #define TID_STEP 1
1698 #endif
1699
1700 static inline unsigned long next_tid(unsigned long tid)
1701 {
1702 return tid + TID_STEP;
1703 }
1704
1705 static inline unsigned int tid_to_cpu(unsigned long tid)
1706 {
1707 return tid % TID_STEP;
1708 }
1709
1710 static inline unsigned long tid_to_event(unsigned long tid)
1711 {
1712 return tid / TID_STEP;
1713 }
1714
1715 static inline unsigned int init_tid(int cpu)
1716 {
1717 return cpu;
1718 }
1719
1720 static inline void note_cmpxchg_failure(const char *n,
1721 const struct kmem_cache *s, unsigned long tid)
1722 {
1723 #ifdef SLUB_DEBUG_CMPXCHG
1724 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1725
1726 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1727
1728 #ifdef CONFIG_PREEMPT
1729 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1730 printk("due to cpu change %d -> %d\n",
1731 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1732 else
1733 #endif
1734 if (tid_to_event(tid) != tid_to_event(actual_tid))
1735 printk("due to cpu running other code. Event %ld->%ld\n",
1736 tid_to_event(tid), tid_to_event(actual_tid));
1737 else
1738 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1739 actual_tid, tid, next_tid(tid));
1740 #endif
1741 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1742 }
1743
1744 void init_kmem_cache_cpus(struct kmem_cache *s)
1745 {
1746 int cpu;
1747
1748 for_each_possible_cpu(cpu)
1749 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1750 }
1751
1752 /*
1753 * Remove the cpu slab
1754 */
1755 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1756 {
1757 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1758 struct page *page = c->page;
1759 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1760 int lock = 0;
1761 enum slab_modes l = M_NONE, m = M_NONE;
1762 void *freelist;
1763 void *nextfree;
1764 int tail = DEACTIVATE_TO_HEAD;
1765 struct page new;
1766 struct page old;
1767
1768 if (page->freelist) {
1769 stat(s, DEACTIVATE_REMOTE_FREES);
1770 tail = DEACTIVATE_TO_TAIL;
1771 }
1772
1773 c->tid = next_tid(c->tid);
1774 c->page = NULL;
1775 freelist = c->freelist;
1776 c->freelist = NULL;
1777
1778 /*
1779 * Stage one: Free all available per cpu objects back
1780 * to the page freelist while it is still frozen. Leave the
1781 * last one.
1782 *
1783 * There is no need to take the list->lock because the page
1784 * is still frozen.
1785 */
1786 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1787 void *prior;
1788 unsigned long counters;
1789
1790 do {
1791 prior = page->freelist;
1792 counters = page->counters;
1793 set_freepointer(s, freelist, prior);
1794 new.counters = counters;
1795 new.inuse--;
1796 VM_BUG_ON(!new.frozen);
1797
1798 } while (!__cmpxchg_double_slab(s, page,
1799 prior, counters,
1800 freelist, new.counters,
1801 "drain percpu freelist"));
1802
1803 freelist = nextfree;
1804 }
1805
1806 /*
1807 * Stage two: Ensure that the page is unfrozen while the
1808 * list presence reflects the actual number of objects
1809 * during unfreeze.
1810 *
1811 * We setup the list membership and then perform a cmpxchg
1812 * with the count. If there is a mismatch then the page
1813 * is not unfrozen but the page is on the wrong list.
1814 *
1815 * Then we restart the process which may have to remove
1816 * the page from the list that we just put it on again
1817 * because the number of objects in the slab may have
1818 * changed.
1819 */
1820 redo:
1821
1822 old.freelist = page->freelist;
1823 old.counters = page->counters;
1824 VM_BUG_ON(!old.frozen);
1825
1826 /* Determine target state of the slab */
1827 new.counters = old.counters;
1828 if (freelist) {
1829 new.inuse--;
1830 set_freepointer(s, freelist, old.freelist);
1831 new.freelist = freelist;
1832 } else
1833 new.freelist = old.freelist;
1834
1835 new.frozen = 0;
1836
1837 if (!new.inuse && n->nr_partial > s->min_partial)
1838 m = M_FREE;
1839 else if (new.freelist) {
1840 m = M_PARTIAL;
1841 if (!lock) {
1842 lock = 1;
1843 /*
1844 * Taking the spinlock removes the possiblity
1845 * that acquire_slab() will see a slab page that
1846 * is frozen
1847 */
1848 spin_lock(&n->list_lock);
1849 }
1850 } else {
1851 m = M_FULL;
1852 if (kmem_cache_debug(s) && !lock) {
1853 lock = 1;
1854 /*
1855 * This also ensures that the scanning of full
1856 * slabs from diagnostic functions will not see
1857 * any frozen slabs.
1858 */
1859 spin_lock(&n->list_lock);
1860 }
1861 }
1862
1863 if (l != m) {
1864
1865 if (l == M_PARTIAL)
1866
1867 remove_partial(n, page);
1868
1869 else if (l == M_FULL)
1870
1871 remove_full(s, page);
1872
1873 if (m == M_PARTIAL) {
1874
1875 add_partial(n, page, tail);
1876 stat(s, tail);
1877
1878 } else if (m == M_FULL) {
1879
1880 stat(s, DEACTIVATE_FULL);
1881 add_full(s, n, page);
1882
1883 }
1884 }
1885
1886 l = m;
1887 if (!__cmpxchg_double_slab(s, page,
1888 old.freelist, old.counters,
1889 new.freelist, new.counters,
1890 "unfreezing slab"))
1891 goto redo;
1892
1893 if (lock)
1894 spin_unlock(&n->list_lock);
1895
1896 if (m == M_FREE) {
1897 stat(s, DEACTIVATE_EMPTY);
1898 discard_slab(s, page);
1899 stat(s, FREE_SLAB);
1900 }
1901 }
1902
1903 /* Unfreeze all the cpu partial slabs */
1904 static void unfreeze_partials(struct kmem_cache *s)
1905 {
1906 struct kmem_cache_node *n = NULL;
1907 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1908 struct page *page;
1909
1910 while ((page = c->partial)) {
1911 enum slab_modes { M_PARTIAL, M_FREE };
1912 enum slab_modes l, m;
1913 struct page new;
1914 struct page old;
1915
1916 c->partial = page->next;
1917 l = M_FREE;
1918
1919 do {
1920
1921 old.freelist = page->freelist;
1922 old.counters = page->counters;
1923 VM_BUG_ON(!old.frozen);
1924
1925 new.counters = old.counters;
1926 new.freelist = old.freelist;
1927
1928 new.frozen = 0;
1929
1930 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1931 m = M_FREE;
1932 else {
1933 struct kmem_cache_node *n2 = get_node(s,
1934 page_to_nid(page));
1935
1936 m = M_PARTIAL;
1937 if (n != n2) {
1938 if (n)
1939 spin_unlock(&n->list_lock);
1940
1941 n = n2;
1942 spin_lock(&n->list_lock);
1943 }
1944 }
1945
1946 if (l != m) {
1947 if (l == M_PARTIAL)
1948 remove_partial(n, page);
1949 else
1950 add_partial(n, page, 1);
1951
1952 l = m;
1953 }
1954
1955 } while (!cmpxchg_double_slab(s, page,
1956 old.freelist, old.counters,
1957 new.freelist, new.counters,
1958 "unfreezing slab"));
1959
1960 if (m == M_FREE) {
1961 stat(s, DEACTIVATE_EMPTY);
1962 discard_slab(s, page);
1963 stat(s, FREE_SLAB);
1964 }
1965 }
1966
1967 if (n)
1968 spin_unlock(&n->list_lock);
1969 }
1970
1971 /*
1972 * Put a page that was just frozen (in __slab_free) into a partial page
1973 * slot if available. This is done without interrupts disabled and without
1974 * preemption disabled. The cmpxchg is racy and may put the partial page
1975 * onto a random cpus partial slot.
1976 *
1977 * If we did not find a slot then simply move all the partials to the
1978 * per node partial list.
1979 */
1980 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1981 {
1982 struct page *oldpage;
1983 int pages;
1984 int pobjects;
1985
1986 do {
1987 pages = 0;
1988 pobjects = 0;
1989 oldpage = this_cpu_read(s->cpu_slab->partial);
1990
1991 if (oldpage) {
1992 pobjects = oldpage->pobjects;
1993 pages = oldpage->pages;
1994 if (drain && pobjects > s->cpu_partial) {
1995 unsigned long flags;
1996 /*
1997 * partial array is full. Move the existing
1998 * set to the per node partial list.
1999 */
2000 local_irq_save(flags);
2001 unfreeze_partials(s);
2002 local_irq_restore(flags);
2003 pobjects = 0;
2004 pages = 0;
2005 }
2006 }
2007
2008 pages++;
2009 pobjects += page->objects - page->inuse;
2010
2011 page->pages = pages;
2012 page->pobjects = pobjects;
2013 page->next = oldpage;
2014
2015 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2016 stat(s, CPU_PARTIAL_FREE);
2017 return pobjects;
2018 }
2019
2020 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2021 {
2022 stat(s, CPUSLAB_FLUSH);
2023 deactivate_slab(s, c);
2024 }
2025
2026 /*
2027 * Flush cpu slab.
2028 *
2029 * Called from IPI handler with interrupts disabled.
2030 */
2031 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2032 {
2033 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2034
2035 if (likely(c)) {
2036 if (c->page)
2037 flush_slab(s, c);
2038
2039 unfreeze_partials(s);
2040 }
2041 }
2042
2043 static void flush_cpu_slab(void *d)
2044 {
2045 struct kmem_cache *s = d;
2046
2047 __flush_cpu_slab(s, smp_processor_id());
2048 }
2049
2050 static void flush_all(struct kmem_cache *s)
2051 {
2052 on_each_cpu(flush_cpu_slab, s, 1);
2053 }
2054
2055 /*
2056 * Check if the objects in a per cpu structure fit numa
2057 * locality expectations.
2058 */
2059 static inline int node_match(struct kmem_cache_cpu *c, int node)
2060 {
2061 #ifdef CONFIG_NUMA
2062 if (node != NUMA_NO_NODE && c->node != node)
2063 return 0;
2064 #endif
2065 return 1;
2066 }
2067
2068 static int count_free(struct page *page)
2069 {
2070 return page->objects - page->inuse;
2071 }
2072
2073 static unsigned long count_partial(struct kmem_cache_node *n,
2074 int (*get_count)(struct page *))
2075 {
2076 unsigned long flags;
2077 unsigned long x = 0;
2078 struct page *page;
2079
2080 spin_lock_irqsave(&n->list_lock, flags);
2081 list_for_each_entry(page, &n->partial, lru)
2082 x += get_count(page);
2083 spin_unlock_irqrestore(&n->list_lock, flags);
2084 return x;
2085 }
2086
2087 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2088 {
2089 #ifdef CONFIG_SLUB_DEBUG
2090 return atomic_long_read(&n->total_objects);
2091 #else
2092 return 0;
2093 #endif
2094 }
2095
2096 static noinline void
2097 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2098 {
2099 int node;
2100
2101 printk(KERN_WARNING
2102 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2103 nid, gfpflags);
2104 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2105 "default order: %d, min order: %d\n", s->name, s->objsize,
2106 s->size, oo_order(s->oo), oo_order(s->min));
2107
2108 if (oo_order(s->min) > get_order(s->objsize))
2109 printk(KERN_WARNING " %s debugging increased min order, use "
2110 "slub_debug=O to disable.\n", s->name);
2111
2112 for_each_online_node(node) {
2113 struct kmem_cache_node *n = get_node(s, node);
2114 unsigned long nr_slabs;
2115 unsigned long nr_objs;
2116 unsigned long nr_free;
2117
2118 if (!n)
2119 continue;
2120
2121 nr_free = count_partial(n, count_free);
2122 nr_slabs = node_nr_slabs(n);
2123 nr_objs = node_nr_objs(n);
2124
2125 printk(KERN_WARNING
2126 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2127 node, nr_slabs, nr_objs, nr_free);
2128 }
2129 }
2130
2131 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2132 int node, struct kmem_cache_cpu **pc)
2133 {
2134 void *object;
2135 struct kmem_cache_cpu *c;
2136 struct page *page = new_slab(s, flags, node);
2137
2138 if (page) {
2139 c = __this_cpu_ptr(s->cpu_slab);
2140 if (c->page)
2141 flush_slab(s, c);
2142
2143 /*
2144 * No other reference to the page yet so we can
2145 * muck around with it freely without cmpxchg
2146 */
2147 object = page->freelist;
2148 page->freelist = NULL;
2149
2150 stat(s, ALLOC_SLAB);
2151 c->node = page_to_nid(page);
2152 c->page = page;
2153 *pc = c;
2154 } else
2155 object = NULL;
2156
2157 return object;
2158 }
2159
2160 /*
2161 * Slow path. The lockless freelist is empty or we need to perform
2162 * debugging duties.
2163 *
2164 * Processing is still very fast if new objects have been freed to the
2165 * regular freelist. In that case we simply take over the regular freelist
2166 * as the lockless freelist and zap the regular freelist.
2167 *
2168 * If that is not working then we fall back to the partial lists. We take the
2169 * first element of the freelist as the object to allocate now and move the
2170 * rest of the freelist to the lockless freelist.
2171 *
2172 * And if we were unable to get a new slab from the partial slab lists then
2173 * we need to allocate a new slab. This is the slowest path since it involves
2174 * a call to the page allocator and the setup of a new slab.
2175 */
2176 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2177 unsigned long addr, struct kmem_cache_cpu *c)
2178 {
2179 void **object;
2180 unsigned long flags;
2181 struct page new;
2182 unsigned long counters;
2183
2184 local_irq_save(flags);
2185 #ifdef CONFIG_PREEMPT
2186 /*
2187 * We may have been preempted and rescheduled on a different
2188 * cpu before disabling interrupts. Need to reload cpu area
2189 * pointer.
2190 */
2191 c = this_cpu_ptr(s->cpu_slab);
2192 #endif
2193
2194 if (!c->page)
2195 goto new_slab;
2196 redo:
2197 if (unlikely(!node_match(c, node))) {
2198 stat(s, ALLOC_NODE_MISMATCH);
2199 deactivate_slab(s, c);
2200 goto new_slab;
2201 }
2202
2203 stat(s, ALLOC_SLOWPATH);
2204
2205 do {
2206 object = c->page->freelist;
2207 counters = c->page->counters;
2208 new.counters = counters;
2209 VM_BUG_ON(!new.frozen);
2210
2211 /*
2212 * If there is no object left then we use this loop to
2213 * deactivate the slab which is simple since no objects
2214 * are left in the slab and therefore we do not need to
2215 * put the page back onto the partial list.
2216 *
2217 * If there are objects left then we retrieve them
2218 * and use them to refill the per cpu queue.
2219 */
2220
2221 new.inuse = c->page->objects;
2222 new.frozen = object != NULL;
2223
2224 } while (!__cmpxchg_double_slab(s, c->page,
2225 object, counters,
2226 NULL, new.counters,
2227 "__slab_alloc"));
2228
2229 if (!object) {
2230 c->page = NULL;
2231 stat(s, DEACTIVATE_BYPASS);
2232 goto new_slab;
2233 }
2234
2235 stat(s, ALLOC_REFILL);
2236
2237 load_freelist:
2238 c->freelist = get_freepointer(s, object);
2239 c->tid = next_tid(c->tid);
2240 local_irq_restore(flags);
2241 return object;
2242
2243 new_slab:
2244
2245 if (c->partial) {
2246 c->page = c->partial;
2247 c->partial = c->page->next;
2248 c->node = page_to_nid(c->page);
2249 stat(s, CPU_PARTIAL_ALLOC);
2250 c->freelist = NULL;
2251 goto redo;
2252 }
2253
2254 /* Then do expensive stuff like retrieving pages from the partial lists */
2255 object = get_partial(s, gfpflags, node, c);
2256
2257 if (unlikely(!object)) {
2258
2259 object = new_slab_objects(s, gfpflags, node, &c);
2260
2261 if (unlikely(!object)) {
2262 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2263 slab_out_of_memory(s, gfpflags, node);
2264
2265 local_irq_restore(flags);
2266 return NULL;
2267 }
2268 }
2269
2270 if (likely(!kmem_cache_debug(s)))
2271 goto load_freelist;
2272
2273 /* Only entered in the debug case */
2274 if (!alloc_debug_processing(s, c->page, object, addr))
2275 goto new_slab; /* Slab failed checks. Next slab needed */
2276
2277 c->freelist = get_freepointer(s, object);
2278 deactivate_slab(s, c);
2279 c->node = NUMA_NO_NODE;
2280 local_irq_restore(flags);
2281 return object;
2282 }
2283
2284 /*
2285 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2286 * have the fastpath folded into their functions. So no function call
2287 * overhead for requests that can be satisfied on the fastpath.
2288 *
2289 * The fastpath works by first checking if the lockless freelist can be used.
2290 * If not then __slab_alloc is called for slow processing.
2291 *
2292 * Otherwise we can simply pick the next object from the lockless free list.
2293 */
2294 static __always_inline void *slab_alloc(struct kmem_cache *s,
2295 gfp_t gfpflags, int node, unsigned long addr)
2296 {
2297 void **object;
2298 struct kmem_cache_cpu *c;
2299 unsigned long tid;
2300
2301 if (slab_pre_alloc_hook(s, gfpflags))
2302 return NULL;
2303
2304 redo:
2305
2306 /*
2307 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2308 * enabled. We may switch back and forth between cpus while
2309 * reading from one cpu area. That does not matter as long
2310 * as we end up on the original cpu again when doing the cmpxchg.
2311 */
2312 c = __this_cpu_ptr(s->cpu_slab);
2313
2314 /*
2315 * The transaction ids are globally unique per cpu and per operation on
2316 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2317 * occurs on the right processor and that there was no operation on the
2318 * linked list in between.
2319 */
2320 tid = c->tid;
2321 barrier();
2322
2323 object = c->freelist;
2324 if (unlikely(!object || !node_match(c, node)))
2325
2326 object = __slab_alloc(s, gfpflags, node, addr, c);
2327
2328 else {
2329 /*
2330 * The cmpxchg will only match if there was no additional
2331 * operation and if we are on the right processor.
2332 *
2333 * The cmpxchg does the following atomically (without lock semantics!)
2334 * 1. Relocate first pointer to the current per cpu area.
2335 * 2. Verify that tid and freelist have not been changed
2336 * 3. If they were not changed replace tid and freelist
2337 *
2338 * Since this is without lock semantics the protection is only against
2339 * code executing on this cpu *not* from access by other cpus.
2340 */
2341 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2342 s->cpu_slab->freelist, s->cpu_slab->tid,
2343 object, tid,
2344 get_freepointer_safe(s, object), next_tid(tid)))) {
2345
2346 note_cmpxchg_failure("slab_alloc", s, tid);
2347 goto redo;
2348 }
2349 stat(s, ALLOC_FASTPATH);
2350 }
2351
2352 if (unlikely(gfpflags & __GFP_ZERO) && object)
2353 memset(object, 0, s->objsize);
2354
2355 slab_post_alloc_hook(s, gfpflags, object);
2356
2357 return object;
2358 }
2359
2360 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2361 {
2362 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2363
2364 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2365
2366 return ret;
2367 }
2368 EXPORT_SYMBOL(kmem_cache_alloc);
2369
2370 #ifdef CONFIG_TRACING
2371 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2372 {
2373 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2374 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2375 return ret;
2376 }
2377 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2378
2379 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2380 {
2381 void *ret = kmalloc_order(size, flags, order);
2382 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2383 return ret;
2384 }
2385 EXPORT_SYMBOL(kmalloc_order_trace);
2386 #endif
2387
2388 #ifdef CONFIG_NUMA
2389 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2390 {
2391 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2392
2393 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2394 s->objsize, s->size, gfpflags, node);
2395
2396 return ret;
2397 }
2398 EXPORT_SYMBOL(kmem_cache_alloc_node);
2399
2400 #ifdef CONFIG_TRACING
2401 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2402 gfp_t gfpflags,
2403 int node, size_t size)
2404 {
2405 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2406
2407 trace_kmalloc_node(_RET_IP_, ret,
2408 size, s->size, gfpflags, node);
2409 return ret;
2410 }
2411 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2412 #endif
2413 #endif
2414
2415 /*
2416 * Slow patch handling. This may still be called frequently since objects
2417 * have a longer lifetime than the cpu slabs in most processing loads.
2418 *
2419 * So we still attempt to reduce cache line usage. Just take the slab
2420 * lock and free the item. If there is no additional partial page
2421 * handling required then we can return immediately.
2422 */
2423 static void __slab_free(struct kmem_cache *s, struct page *page,
2424 void *x, unsigned long addr)
2425 {
2426 void *prior;
2427 void **object = (void *)x;
2428 int was_frozen;
2429 int inuse;
2430 struct page new;
2431 unsigned long counters;
2432 struct kmem_cache_node *n = NULL;
2433 unsigned long uninitialized_var(flags);
2434
2435 stat(s, FREE_SLOWPATH);
2436
2437 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2438 return;
2439
2440 do {
2441 prior = page->freelist;
2442 counters = page->counters;
2443 set_freepointer(s, object, prior);
2444 new.counters = counters;
2445 was_frozen = new.frozen;
2446 new.inuse--;
2447 if ((!new.inuse || !prior) && !was_frozen && !n) {
2448
2449 if (!kmem_cache_debug(s) && !prior)
2450
2451 /*
2452 * Slab was on no list before and will be partially empty
2453 * We can defer the list move and instead freeze it.
2454 */
2455 new.frozen = 1;
2456
2457 else { /* Needs to be taken off a list */
2458
2459 n = get_node(s, page_to_nid(page));
2460 /*
2461 * Speculatively acquire the list_lock.
2462 * If the cmpxchg does not succeed then we may
2463 * drop the list_lock without any processing.
2464 *
2465 * Otherwise the list_lock will synchronize with
2466 * other processors updating the list of slabs.
2467 */
2468 spin_lock_irqsave(&n->list_lock, flags);
2469
2470 }
2471 }
2472 inuse = new.inuse;
2473
2474 } while (!cmpxchg_double_slab(s, page,
2475 prior, counters,
2476 object, new.counters,
2477 "__slab_free"));
2478
2479 if (likely(!n)) {
2480
2481 /*
2482 * If we just froze the page then put it onto the
2483 * per cpu partial list.
2484 */
2485 if (new.frozen && !was_frozen)
2486 put_cpu_partial(s, page, 1);
2487
2488 /*
2489 * The list lock was not taken therefore no list
2490 * activity can be necessary.
2491 */
2492 if (was_frozen)
2493 stat(s, FREE_FROZEN);
2494 return;
2495 }
2496
2497 /*
2498 * was_frozen may have been set after we acquired the list_lock in
2499 * an earlier loop. So we need to check it here again.
2500 */
2501 if (was_frozen)
2502 stat(s, FREE_FROZEN);
2503 else {
2504 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2505 goto slab_empty;
2506
2507 /*
2508 * Objects left in the slab. If it was not on the partial list before
2509 * then add it.
2510 */
2511 if (unlikely(!prior)) {
2512 remove_full(s, page);
2513 add_partial(n, page, DEACTIVATE_TO_TAIL);
2514 stat(s, FREE_ADD_PARTIAL);
2515 }
2516 }
2517 spin_unlock_irqrestore(&n->list_lock, flags);
2518 return;
2519
2520 slab_empty:
2521 if (prior) {
2522 /*
2523 * Slab on the partial list.
2524 */
2525 remove_partial(n, page);
2526 stat(s, FREE_REMOVE_PARTIAL);
2527 } else
2528 /* Slab must be on the full list */
2529 remove_full(s, page);
2530
2531 spin_unlock_irqrestore(&n->list_lock, flags);
2532 stat(s, FREE_SLAB);
2533 discard_slab(s, page);
2534 }
2535
2536 /*
2537 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2538 * can perform fastpath freeing without additional function calls.
2539 *
2540 * The fastpath is only possible if we are freeing to the current cpu slab
2541 * of this processor. This typically the case if we have just allocated
2542 * the item before.
2543 *
2544 * If fastpath is not possible then fall back to __slab_free where we deal
2545 * with all sorts of special processing.
2546 */
2547 static __always_inline void slab_free(struct kmem_cache *s,
2548 struct page *page, void *x, unsigned long addr)
2549 {
2550 void **object = (void *)x;
2551 struct kmem_cache_cpu *c;
2552 unsigned long tid;
2553
2554 slab_free_hook(s, x);
2555
2556 redo:
2557 /*
2558 * Determine the currently cpus per cpu slab.
2559 * The cpu may change afterward. However that does not matter since
2560 * data is retrieved via this pointer. If we are on the same cpu
2561 * during the cmpxchg then the free will succedd.
2562 */
2563 c = __this_cpu_ptr(s->cpu_slab);
2564
2565 tid = c->tid;
2566 barrier();
2567
2568 if (likely(page == c->page)) {
2569 set_freepointer(s, object, c->freelist);
2570
2571 if (unlikely(!irqsafe_cpu_cmpxchg_double(
2572 s->cpu_slab->freelist, s->cpu_slab->tid,
2573 c->freelist, tid,
2574 object, next_tid(tid)))) {
2575
2576 note_cmpxchg_failure("slab_free", s, tid);
2577 goto redo;
2578 }
2579 stat(s, FREE_FASTPATH);
2580 } else
2581 __slab_free(s, page, x, addr);
2582
2583 }
2584
2585 void kmem_cache_free(struct kmem_cache *s, void *x)
2586 {
2587 struct page *page;
2588
2589 page = virt_to_head_page(x);
2590
2591 slab_free(s, page, x, _RET_IP_);
2592
2593 trace_kmem_cache_free(_RET_IP_, x);
2594 }
2595 EXPORT_SYMBOL(kmem_cache_free);
2596
2597 /*
2598 * Object placement in a slab is made very easy because we always start at
2599 * offset 0. If we tune the size of the object to the alignment then we can
2600 * get the required alignment by putting one properly sized object after
2601 * another.
2602 *
2603 * Notice that the allocation order determines the sizes of the per cpu
2604 * caches. Each processor has always one slab available for allocations.
2605 * Increasing the allocation order reduces the number of times that slabs
2606 * must be moved on and off the partial lists and is therefore a factor in
2607 * locking overhead.
2608 */
2609
2610 /*
2611 * Mininum / Maximum order of slab pages. This influences locking overhead
2612 * and slab fragmentation. A higher order reduces the number of partial slabs
2613 * and increases the number of allocations possible without having to
2614 * take the list_lock.
2615 */
2616 static int slub_min_order;
2617 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2618 static int slub_min_objects;
2619
2620 /*
2621 * Merge control. If this is set then no merging of slab caches will occur.
2622 * (Could be removed. This was introduced to pacify the merge skeptics.)
2623 */
2624 static int slub_nomerge;
2625
2626 /*
2627 * Calculate the order of allocation given an slab object size.
2628 *
2629 * The order of allocation has significant impact on performance and other
2630 * system components. Generally order 0 allocations should be preferred since
2631 * order 0 does not cause fragmentation in the page allocator. Larger objects
2632 * be problematic to put into order 0 slabs because there may be too much
2633 * unused space left. We go to a higher order if more than 1/16th of the slab
2634 * would be wasted.
2635 *
2636 * In order to reach satisfactory performance we must ensure that a minimum
2637 * number of objects is in one slab. Otherwise we may generate too much
2638 * activity on the partial lists which requires taking the list_lock. This is
2639 * less a concern for large slabs though which are rarely used.
2640 *
2641 * slub_max_order specifies the order where we begin to stop considering the
2642 * number of objects in a slab as critical. If we reach slub_max_order then
2643 * we try to keep the page order as low as possible. So we accept more waste
2644 * of space in favor of a small page order.
2645 *
2646 * Higher order allocations also allow the placement of more objects in a
2647 * slab and thereby reduce object handling overhead. If the user has
2648 * requested a higher mininum order then we start with that one instead of
2649 * the smallest order which will fit the object.
2650 */
2651 static inline int slab_order(int size, int min_objects,
2652 int max_order, int fract_leftover, int reserved)
2653 {
2654 int order;
2655 int rem;
2656 int min_order = slub_min_order;
2657
2658 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2659 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2660
2661 for (order = max(min_order,
2662 fls(min_objects * size - 1) - PAGE_SHIFT);
2663 order <= max_order; order++) {
2664
2665 unsigned long slab_size = PAGE_SIZE << order;
2666
2667 if (slab_size < min_objects * size + reserved)
2668 continue;
2669
2670 rem = (slab_size - reserved) % size;
2671
2672 if (rem <= slab_size / fract_leftover)
2673 break;
2674
2675 }
2676
2677 return order;
2678 }
2679
2680 static inline int calculate_order(int size, int reserved)
2681 {
2682 int order;
2683 int min_objects;
2684 int fraction;
2685 int max_objects;
2686
2687 /*
2688 * Attempt to find best configuration for a slab. This
2689 * works by first attempting to generate a layout with
2690 * the best configuration and backing off gradually.
2691 *
2692 * First we reduce the acceptable waste in a slab. Then
2693 * we reduce the minimum objects required in a slab.
2694 */
2695 min_objects = slub_min_objects;
2696 if (!min_objects)
2697 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2698 max_objects = order_objects(slub_max_order, size, reserved);
2699 min_objects = min(min_objects, max_objects);
2700
2701 while (min_objects > 1) {
2702 fraction = 16;
2703 while (fraction >= 4) {
2704 order = slab_order(size, min_objects,
2705 slub_max_order, fraction, reserved);
2706 if (order <= slub_max_order)
2707 return order;
2708 fraction /= 2;
2709 }
2710 min_objects--;
2711 }
2712
2713 /*
2714 * We were unable to place multiple objects in a slab. Now
2715 * lets see if we can place a single object there.
2716 */
2717 order = slab_order(size, 1, slub_max_order, 1, reserved);
2718 if (order <= slub_max_order)
2719 return order;
2720
2721 /*
2722 * Doh this slab cannot be placed using slub_max_order.
2723 */
2724 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2725 if (order < MAX_ORDER)
2726 return order;
2727 return -ENOSYS;
2728 }
2729
2730 /*
2731 * Figure out what the alignment of the objects will be.
2732 */
2733 static unsigned long calculate_alignment(unsigned long flags,
2734 unsigned long align, unsigned long size)
2735 {
2736 /*
2737 * If the user wants hardware cache aligned objects then follow that
2738 * suggestion if the object is sufficiently large.
2739 *
2740 * The hardware cache alignment cannot override the specified
2741 * alignment though. If that is greater then use it.
2742 */
2743 if (flags & SLAB_HWCACHE_ALIGN) {
2744 unsigned long ralign = cache_line_size();
2745 while (size <= ralign / 2)
2746 ralign /= 2;
2747 align = max(align, ralign);
2748 }
2749
2750 if (align < ARCH_SLAB_MINALIGN)
2751 align = ARCH_SLAB_MINALIGN;
2752
2753 return ALIGN(align, sizeof(void *));
2754 }
2755
2756 static void
2757 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2758 {
2759 n->nr_partial = 0;
2760 spin_lock_init(&n->list_lock);
2761 INIT_LIST_HEAD(&n->partial);
2762 #ifdef CONFIG_SLUB_DEBUG
2763 atomic_long_set(&n->nr_slabs, 0);
2764 atomic_long_set(&n->total_objects, 0);
2765 INIT_LIST_HEAD(&n->full);
2766 #endif
2767 }
2768
2769 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2770 {
2771 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2772 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2773
2774 /*
2775 * Must align to double word boundary for the double cmpxchg
2776 * instructions to work; see __pcpu_double_call_return_bool().
2777 */
2778 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2779 2 * sizeof(void *));
2780
2781 if (!s->cpu_slab)
2782 return 0;
2783
2784 init_kmem_cache_cpus(s);
2785
2786 return 1;
2787 }
2788
2789 static struct kmem_cache *kmem_cache_node;
2790
2791 /*
2792 * No kmalloc_node yet so do it by hand. We know that this is the first
2793 * slab on the node for this slabcache. There are no concurrent accesses
2794 * possible.
2795 *
2796 * Note that this function only works on the kmalloc_node_cache
2797 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2798 * memory on a fresh node that has no slab structures yet.
2799 */
2800 static void early_kmem_cache_node_alloc(int node)
2801 {
2802 struct page *page;
2803 struct kmem_cache_node *n;
2804
2805 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2806
2807 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2808
2809 BUG_ON(!page);
2810 if (page_to_nid(page) != node) {
2811 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2812 "node %d\n", node);
2813 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2814 "in order to be able to continue\n");
2815 }
2816
2817 n = page->freelist;
2818 BUG_ON(!n);
2819 page->freelist = get_freepointer(kmem_cache_node, n);
2820 page->inuse = 1;
2821 page->frozen = 0;
2822 kmem_cache_node->node[node] = n;
2823 #ifdef CONFIG_SLUB_DEBUG
2824 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2825 init_tracking(kmem_cache_node, n);
2826 #endif
2827 init_kmem_cache_node(n, kmem_cache_node);
2828 inc_slabs_node(kmem_cache_node, node, page->objects);
2829
2830 add_partial(n, page, DEACTIVATE_TO_HEAD);
2831 }
2832
2833 static void free_kmem_cache_nodes(struct kmem_cache *s)
2834 {
2835 int node;
2836
2837 for_each_node_state(node, N_NORMAL_MEMORY) {
2838 struct kmem_cache_node *n = s->node[node];
2839
2840 if (n)
2841 kmem_cache_free(kmem_cache_node, n);
2842
2843 s->node[node] = NULL;
2844 }
2845 }
2846
2847 static int init_kmem_cache_nodes(struct kmem_cache *s)
2848 {
2849 int node;
2850
2851 for_each_node_state(node, N_NORMAL_MEMORY) {
2852 struct kmem_cache_node *n;
2853
2854 if (slab_state == DOWN) {
2855 early_kmem_cache_node_alloc(node);
2856 continue;
2857 }
2858 n = kmem_cache_alloc_node(kmem_cache_node,
2859 GFP_KERNEL, node);
2860
2861 if (!n) {
2862 free_kmem_cache_nodes(s);
2863 return 0;
2864 }
2865
2866 s->node[node] = n;
2867 init_kmem_cache_node(n, s);
2868 }
2869 return 1;
2870 }
2871
2872 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2873 {
2874 if (min < MIN_PARTIAL)
2875 min = MIN_PARTIAL;
2876 else if (min > MAX_PARTIAL)
2877 min = MAX_PARTIAL;
2878 s->min_partial = min;
2879 }
2880
2881 /*
2882 * calculate_sizes() determines the order and the distribution of data within
2883 * a slab object.
2884 */
2885 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2886 {
2887 unsigned long flags = s->flags;
2888 unsigned long size = s->objsize;
2889 unsigned long align = s->align;
2890 int order;
2891
2892 /*
2893 * Round up object size to the next word boundary. We can only
2894 * place the free pointer at word boundaries and this determines
2895 * the possible location of the free pointer.
2896 */
2897 size = ALIGN(size, sizeof(void *));
2898
2899 #ifdef CONFIG_SLUB_DEBUG
2900 /*
2901 * Determine if we can poison the object itself. If the user of
2902 * the slab may touch the object after free or before allocation
2903 * then we should never poison the object itself.
2904 */
2905 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2906 !s->ctor)
2907 s->flags |= __OBJECT_POISON;
2908 else
2909 s->flags &= ~__OBJECT_POISON;
2910
2911
2912 /*
2913 * If we are Redzoning then check if there is some space between the
2914 * end of the object and the free pointer. If not then add an
2915 * additional word to have some bytes to store Redzone information.
2916 */
2917 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2918 size += sizeof(void *);
2919 #endif
2920
2921 /*
2922 * With that we have determined the number of bytes in actual use
2923 * by the object. This is the potential offset to the free pointer.
2924 */
2925 s->inuse = size;
2926
2927 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2928 s->ctor)) {
2929 /*
2930 * Relocate free pointer after the object if it is not
2931 * permitted to overwrite the first word of the object on
2932 * kmem_cache_free.
2933 *
2934 * This is the case if we do RCU, have a constructor or
2935 * destructor or are poisoning the objects.
2936 */
2937 s->offset = size;
2938 size += sizeof(void *);
2939 }
2940
2941 #ifdef CONFIG_SLUB_DEBUG
2942 if (flags & SLAB_STORE_USER)
2943 /*
2944 * Need to store information about allocs and frees after
2945 * the object.
2946 */
2947 size += 2 * sizeof(struct track);
2948
2949 if (flags & SLAB_RED_ZONE)
2950 /*
2951 * Add some empty padding so that we can catch
2952 * overwrites from earlier objects rather than let
2953 * tracking information or the free pointer be
2954 * corrupted if a user writes before the start
2955 * of the object.
2956 */
2957 size += sizeof(void *);
2958 #endif
2959
2960 /*
2961 * Determine the alignment based on various parameters that the
2962 * user specified and the dynamic determination of cache line size
2963 * on bootup.
2964 */
2965 align = calculate_alignment(flags, align, s->objsize);
2966 s->align = align;
2967
2968 /*
2969 * SLUB stores one object immediately after another beginning from
2970 * offset 0. In order to align the objects we have to simply size
2971 * each object to conform to the alignment.
2972 */
2973 size = ALIGN(size, align);
2974 s->size = size;
2975 if (forced_order >= 0)
2976 order = forced_order;
2977 else
2978 order = calculate_order(size, s->reserved);
2979
2980 if (order < 0)
2981 return 0;
2982
2983 s->allocflags = 0;
2984 if (order)
2985 s->allocflags |= __GFP_COMP;
2986
2987 if (s->flags & SLAB_CACHE_DMA)
2988 s->allocflags |= SLUB_DMA;
2989
2990 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2991 s->allocflags |= __GFP_RECLAIMABLE;
2992
2993 /*
2994 * Determine the number of objects per slab
2995 */
2996 s->oo = oo_make(order, size, s->reserved);
2997 s->min = oo_make(get_order(size), size, s->reserved);
2998 if (oo_objects(s->oo) > oo_objects(s->max))
2999 s->max = s->oo;
3000
3001 return !!oo_objects(s->oo);
3002
3003 }
3004
3005 static int kmem_cache_open(struct kmem_cache *s,
3006 const char *name, size_t size,
3007 size_t align, unsigned long flags,
3008 void (*ctor)(void *))
3009 {
3010 memset(s, 0, kmem_size);
3011 s->name = name;
3012 s->ctor = ctor;
3013 s->objsize = size;
3014 s->align = align;
3015 s->flags = kmem_cache_flags(size, flags, name, ctor);
3016 s->reserved = 0;
3017
3018 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3019 s->reserved = sizeof(struct rcu_head);
3020
3021 if (!calculate_sizes(s, -1))
3022 goto error;
3023 if (disable_higher_order_debug) {
3024 /*
3025 * Disable debugging flags that store metadata if the min slab
3026 * order increased.
3027 */
3028 if (get_order(s->size) > get_order(s->objsize)) {
3029 s->flags &= ~DEBUG_METADATA_FLAGS;
3030 s->offset = 0;
3031 if (!calculate_sizes(s, -1))
3032 goto error;
3033 }
3034 }
3035
3036 #ifdef CONFIG_CMPXCHG_DOUBLE
3037 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3038 /* Enable fast mode */
3039 s->flags |= __CMPXCHG_DOUBLE;
3040 #endif
3041
3042 /*
3043 * The larger the object size is, the more pages we want on the partial
3044 * list to avoid pounding the page allocator excessively.
3045 */
3046 set_min_partial(s, ilog2(s->size) / 2);
3047
3048 /*
3049 * cpu_partial determined the maximum number of objects kept in the
3050 * per cpu partial lists of a processor.
3051 *
3052 * Per cpu partial lists mainly contain slabs that just have one
3053 * object freed. If they are used for allocation then they can be
3054 * filled up again with minimal effort. The slab will never hit the
3055 * per node partial lists and therefore no locking will be required.
3056 *
3057 * This setting also determines
3058 *
3059 * A) The number of objects from per cpu partial slabs dumped to the
3060 * per node list when we reach the limit.
3061 * B) The number of objects in cpu partial slabs to extract from the
3062 * per node list when we run out of per cpu objects. We only fetch 50%
3063 * to keep some capacity around for frees.
3064 */
3065 if (s->size >= PAGE_SIZE)
3066 s->cpu_partial = 2;
3067 else if (s->size >= 1024)
3068 s->cpu_partial = 6;
3069 else if (s->size >= 256)
3070 s->cpu_partial = 13;
3071 else
3072 s->cpu_partial = 30;
3073
3074 s->refcount = 1;
3075 #ifdef CONFIG_NUMA
3076 s->remote_node_defrag_ratio = 1000;
3077 #endif
3078 if (!init_kmem_cache_nodes(s))
3079 goto error;
3080
3081 if (alloc_kmem_cache_cpus(s))
3082 return 1;
3083
3084 free_kmem_cache_nodes(s);
3085 error:
3086 if (flags & SLAB_PANIC)
3087 panic("Cannot create slab %s size=%lu realsize=%u "
3088 "order=%u offset=%u flags=%lx\n",
3089 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3090 s->offset, flags);
3091 return 0;
3092 }
3093
3094 /*
3095 * Determine the size of a slab object
3096 */
3097 unsigned int kmem_cache_size(struct kmem_cache *s)
3098 {
3099 return s->objsize;
3100 }
3101 EXPORT_SYMBOL(kmem_cache_size);
3102
3103 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3104 const char *text)
3105 {
3106 #ifdef CONFIG_SLUB_DEBUG
3107 void *addr = page_address(page);
3108 void *p;
3109 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3110 sizeof(long), GFP_ATOMIC);
3111 if (!map)
3112 return;
3113 slab_err(s, page, "%s", text);
3114 slab_lock(page);
3115
3116 get_map(s, page, map);
3117 for_each_object(p, s, addr, page->objects) {
3118
3119 if (!test_bit(slab_index(p, s, addr), map)) {
3120 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3121 p, p - addr);
3122 print_tracking(s, p);
3123 }
3124 }
3125 slab_unlock(page);
3126 kfree(map);
3127 #endif
3128 }
3129
3130 /*
3131 * Attempt to free all partial slabs on a node.
3132 * This is called from kmem_cache_close(). We must be the last thread
3133 * using the cache and therefore we do not need to lock anymore.
3134 */
3135 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3136 {
3137 struct page *page, *h;
3138
3139 list_for_each_entry_safe(page, h, &n->partial, lru) {
3140 if (!page->inuse) {
3141 remove_partial(n, page);
3142 discard_slab(s, page);
3143 } else {
3144 list_slab_objects(s, page,
3145 "Objects remaining on kmem_cache_close()");
3146 }
3147 }
3148 }
3149
3150 /*
3151 * Release all resources used by a slab cache.
3152 */
3153 static inline int kmem_cache_close(struct kmem_cache *s)
3154 {
3155 int node;
3156
3157 flush_all(s);
3158 free_percpu(s->cpu_slab);
3159 /* Attempt to free all objects */
3160 for_each_node_state(node, N_NORMAL_MEMORY) {
3161 struct kmem_cache_node *n = get_node(s, node);
3162
3163 free_partial(s, n);
3164 if (n->nr_partial || slabs_node(s, node))
3165 return 1;
3166 }
3167 free_kmem_cache_nodes(s);
3168 return 0;
3169 }
3170
3171 /*
3172 * Close a cache and release the kmem_cache structure
3173 * (must be used for caches created using kmem_cache_create)
3174 */
3175 void kmem_cache_destroy(struct kmem_cache *s)
3176 {
3177 down_write(&slub_lock);
3178 s->refcount--;
3179 if (!s->refcount) {
3180 list_del(&s->list);
3181 up_write(&slub_lock);
3182 if (kmem_cache_close(s)) {
3183 printk(KERN_ERR "SLUB %s: %s called for cache that "
3184 "still has objects.\n", s->name, __func__);
3185 dump_stack();
3186 }
3187 if (s->flags & SLAB_DESTROY_BY_RCU)
3188 rcu_barrier();
3189 sysfs_slab_remove(s);
3190 } else
3191 up_write(&slub_lock);
3192 }
3193 EXPORT_SYMBOL(kmem_cache_destroy);
3194
3195 /********************************************************************
3196 * Kmalloc subsystem
3197 *******************************************************************/
3198
3199 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3200 EXPORT_SYMBOL(kmalloc_caches);
3201
3202 static struct kmem_cache *kmem_cache;
3203
3204 #ifdef CONFIG_ZONE_DMA
3205 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3206 #endif
3207
3208 static int __init setup_slub_min_order(char *str)
3209 {
3210 get_option(&str, &slub_min_order);
3211
3212 return 1;
3213 }
3214
3215 __setup("slub_min_order=", setup_slub_min_order);
3216
3217 static int __init setup_slub_max_order(char *str)
3218 {
3219 get_option(&str, &slub_max_order);
3220 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3221
3222 return 1;
3223 }
3224
3225 __setup("slub_max_order=", setup_slub_max_order);
3226
3227 static int __init setup_slub_min_objects(char *str)
3228 {
3229 get_option(&str, &slub_min_objects);
3230
3231 return 1;
3232 }
3233
3234 __setup("slub_min_objects=", setup_slub_min_objects);
3235
3236 static int __init setup_slub_nomerge(char *str)
3237 {
3238 slub_nomerge = 1;
3239 return 1;
3240 }
3241
3242 __setup("slub_nomerge", setup_slub_nomerge);
3243
3244 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3245 int size, unsigned int flags)
3246 {
3247 struct kmem_cache *s;
3248
3249 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3250
3251 /*
3252 * This function is called with IRQs disabled during early-boot on
3253 * single CPU so there's no need to take slub_lock here.
3254 */
3255 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3256 flags, NULL))
3257 goto panic;
3258
3259 list_add(&s->list, &slab_caches);
3260 return s;
3261
3262 panic:
3263 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3264 return NULL;
3265 }
3266
3267 /*
3268 * Conversion table for small slabs sizes / 8 to the index in the
3269 * kmalloc array. This is necessary for slabs < 192 since we have non power
3270 * of two cache sizes there. The size of larger slabs can be determined using
3271 * fls.
3272 */
3273 static s8 size_index[24] = {
3274 3, /* 8 */
3275 4, /* 16 */
3276 5, /* 24 */
3277 5, /* 32 */
3278 6, /* 40 */
3279 6, /* 48 */
3280 6, /* 56 */
3281 6, /* 64 */
3282 1, /* 72 */
3283 1, /* 80 */
3284 1, /* 88 */
3285 1, /* 96 */
3286 7, /* 104 */
3287 7, /* 112 */
3288 7, /* 120 */
3289 7, /* 128 */
3290 2, /* 136 */
3291 2, /* 144 */
3292 2, /* 152 */
3293 2, /* 160 */
3294 2, /* 168 */
3295 2, /* 176 */
3296 2, /* 184 */
3297 2 /* 192 */
3298 };
3299
3300 static inline int size_index_elem(size_t bytes)
3301 {
3302 return (bytes - 1) / 8;
3303 }
3304
3305 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3306 {
3307 int index;
3308
3309 if (size <= 192) {
3310 if (!size)
3311 return ZERO_SIZE_PTR;
3312
3313 index = size_index[size_index_elem(size)];
3314 } else
3315 index = fls(size - 1);
3316
3317 #ifdef CONFIG_ZONE_DMA
3318 if (unlikely((flags & SLUB_DMA)))
3319 return kmalloc_dma_caches[index];
3320
3321 #endif
3322 return kmalloc_caches[index];
3323 }
3324
3325 void *__kmalloc(size_t size, gfp_t flags)
3326 {
3327 struct kmem_cache *s;
3328 void *ret;
3329
3330 if (unlikely(size > SLUB_MAX_SIZE))
3331 return kmalloc_large(size, flags);
3332
3333 s = get_slab(size, flags);
3334
3335 if (unlikely(ZERO_OR_NULL_PTR(s)))
3336 return s;
3337
3338 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3339
3340 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3341
3342 return ret;
3343 }
3344 EXPORT_SYMBOL(__kmalloc);
3345
3346 #ifdef CONFIG_NUMA
3347 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3348 {
3349 struct page *page;
3350 void *ptr = NULL;
3351
3352 flags |= __GFP_COMP | __GFP_NOTRACK;
3353 page = alloc_pages_node(node, flags, get_order(size));
3354 if (page)
3355 ptr = page_address(page);
3356
3357 kmemleak_alloc(ptr, size, 1, flags);
3358 return ptr;
3359 }
3360
3361 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3362 {
3363 struct kmem_cache *s;
3364 void *ret;
3365
3366 if (unlikely(size > SLUB_MAX_SIZE)) {
3367 ret = kmalloc_large_node(size, flags, node);
3368
3369 trace_kmalloc_node(_RET_IP_, ret,
3370 size, PAGE_SIZE << get_order(size),
3371 flags, node);
3372
3373 return ret;
3374 }
3375
3376 s = get_slab(size, flags);
3377
3378 if (unlikely(ZERO_OR_NULL_PTR(s)))
3379 return s;
3380
3381 ret = slab_alloc(s, flags, node, _RET_IP_);
3382
3383 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3384
3385 return ret;
3386 }
3387 EXPORT_SYMBOL(__kmalloc_node);
3388 #endif
3389
3390 size_t ksize(const void *object)
3391 {
3392 struct page *page;
3393
3394 if (unlikely(object == ZERO_SIZE_PTR))
3395 return 0;
3396
3397 page = virt_to_head_page(object);
3398
3399 if (unlikely(!PageSlab(page))) {
3400 WARN_ON(!PageCompound(page));
3401 return PAGE_SIZE << compound_order(page);
3402 }
3403
3404 return slab_ksize(page->slab);
3405 }
3406 EXPORT_SYMBOL(ksize);
3407
3408 #ifdef CONFIG_SLUB_DEBUG
3409 bool verify_mem_not_deleted(const void *x)
3410 {
3411 struct page *page;
3412 void *object = (void *)x;
3413 unsigned long flags;
3414 bool rv;
3415
3416 if (unlikely(ZERO_OR_NULL_PTR(x)))
3417 return false;
3418
3419 local_irq_save(flags);
3420
3421 page = virt_to_head_page(x);
3422 if (unlikely(!PageSlab(page))) {
3423 /* maybe it was from stack? */
3424 rv = true;
3425 goto out_unlock;
3426 }
3427
3428 slab_lock(page);
3429 if (on_freelist(page->slab, page, object)) {
3430 object_err(page->slab, page, object, "Object is on free-list");
3431 rv = false;
3432 } else {
3433 rv = true;
3434 }
3435 slab_unlock(page);
3436
3437 out_unlock:
3438 local_irq_restore(flags);
3439 return rv;
3440 }
3441 EXPORT_SYMBOL(verify_mem_not_deleted);
3442 #endif
3443
3444 void kfree(const void *x)
3445 {
3446 struct page *page;
3447 void *object = (void *)x;
3448
3449 trace_kfree(_RET_IP_, x);
3450
3451 if (unlikely(ZERO_OR_NULL_PTR(x)))
3452 return;
3453
3454 page = virt_to_head_page(x);
3455 if (unlikely(!PageSlab(page))) {
3456 BUG_ON(!PageCompound(page));
3457 kmemleak_free(x);
3458 put_page(page);
3459 return;
3460 }
3461 slab_free(page->slab, page, object, _RET_IP_);
3462 }
3463 EXPORT_SYMBOL(kfree);
3464
3465 /*
3466 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3467 * the remaining slabs by the number of items in use. The slabs with the
3468 * most items in use come first. New allocations will then fill those up
3469 * and thus they can be removed from the partial lists.
3470 *
3471 * The slabs with the least items are placed last. This results in them
3472 * being allocated from last increasing the chance that the last objects
3473 * are freed in them.
3474 */
3475 int kmem_cache_shrink(struct kmem_cache *s)
3476 {
3477 int node;
3478 int i;
3479 struct kmem_cache_node *n;
3480 struct page *page;
3481 struct page *t;
3482 int objects = oo_objects(s->max);
3483 struct list_head *slabs_by_inuse =
3484 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3485 unsigned long flags;
3486
3487 if (!slabs_by_inuse)
3488 return -ENOMEM;
3489
3490 flush_all(s);
3491 for_each_node_state(node, N_NORMAL_MEMORY) {
3492 n = get_node(s, node);
3493
3494 if (!n->nr_partial)
3495 continue;
3496
3497 for (i = 0; i < objects; i++)
3498 INIT_LIST_HEAD(slabs_by_inuse + i);
3499
3500 spin_lock_irqsave(&n->list_lock, flags);
3501
3502 /*
3503 * Build lists indexed by the items in use in each slab.
3504 *
3505 * Note that concurrent frees may occur while we hold the
3506 * list_lock. page->inuse here is the upper limit.
3507 */
3508 list_for_each_entry_safe(page, t, &n->partial, lru) {
3509 list_move(&page->lru, slabs_by_inuse + page->inuse);
3510 if (!page->inuse)
3511 n->nr_partial--;
3512 }
3513
3514 /*
3515 * Rebuild the partial list with the slabs filled up most
3516 * first and the least used slabs at the end.
3517 */
3518 for (i = objects - 1; i > 0; i--)
3519 list_splice(slabs_by_inuse + i, n->partial.prev);
3520
3521 spin_unlock_irqrestore(&n->list_lock, flags);
3522
3523 /* Release empty slabs */
3524 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3525 discard_slab(s, page);
3526 }
3527
3528 kfree(slabs_by_inuse);
3529 return 0;
3530 }
3531 EXPORT_SYMBOL(kmem_cache_shrink);
3532
3533 #if defined(CONFIG_MEMORY_HOTPLUG)
3534 static int slab_mem_going_offline_callback(void *arg)
3535 {
3536 struct kmem_cache *s;
3537
3538 down_read(&slub_lock);
3539 list_for_each_entry(s, &slab_caches, list)
3540 kmem_cache_shrink(s);
3541 up_read(&slub_lock);
3542
3543 return 0;
3544 }
3545
3546 static void slab_mem_offline_callback(void *arg)
3547 {
3548 struct kmem_cache_node *n;
3549 struct kmem_cache *s;
3550 struct memory_notify *marg = arg;
3551 int offline_node;
3552
3553 offline_node = marg->status_change_nid;
3554
3555 /*
3556 * If the node still has available memory. we need kmem_cache_node
3557 * for it yet.
3558 */
3559 if (offline_node < 0)
3560 return;
3561
3562 down_read(&slub_lock);
3563 list_for_each_entry(s, &slab_caches, list) {
3564 n = get_node(s, offline_node);
3565 if (n) {
3566 /*
3567 * if n->nr_slabs > 0, slabs still exist on the node
3568 * that is going down. We were unable to free them,
3569 * and offline_pages() function shouldn't call this
3570 * callback. So, we must fail.
3571 */
3572 BUG_ON(slabs_node(s, offline_node));
3573
3574 s->node[offline_node] = NULL;
3575 kmem_cache_free(kmem_cache_node, n);
3576 }
3577 }
3578 up_read(&slub_lock);
3579 }
3580
3581 static int slab_mem_going_online_callback(void *arg)
3582 {
3583 struct kmem_cache_node *n;
3584 struct kmem_cache *s;
3585 struct memory_notify *marg = arg;
3586 int nid = marg->status_change_nid;
3587 int ret = 0;
3588
3589 /*
3590 * If the node's memory is already available, then kmem_cache_node is
3591 * already created. Nothing to do.
3592 */
3593 if (nid < 0)
3594 return 0;
3595
3596 /*
3597 * We are bringing a node online. No memory is available yet. We must
3598 * allocate a kmem_cache_node structure in order to bring the node
3599 * online.
3600 */
3601 down_read(&slub_lock);
3602 list_for_each_entry(s, &slab_caches, list) {
3603 /*
3604 * XXX: kmem_cache_alloc_node will fallback to other nodes
3605 * since memory is not yet available from the node that
3606 * is brought up.
3607 */
3608 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3609 if (!n) {
3610 ret = -ENOMEM;
3611 goto out;
3612 }
3613 init_kmem_cache_node(n, s);
3614 s->node[nid] = n;
3615 }
3616 out:
3617 up_read(&slub_lock);
3618 return ret;
3619 }
3620
3621 static int slab_memory_callback(struct notifier_block *self,
3622 unsigned long action, void *arg)
3623 {
3624 int ret = 0;
3625
3626 switch (action) {
3627 case MEM_GOING_ONLINE:
3628 ret = slab_mem_going_online_callback(arg);
3629 break;
3630 case MEM_GOING_OFFLINE:
3631 ret = slab_mem_going_offline_callback(arg);
3632 break;
3633 case MEM_OFFLINE:
3634 case MEM_CANCEL_ONLINE:
3635 slab_mem_offline_callback(arg);
3636 break;
3637 case MEM_ONLINE:
3638 case MEM_CANCEL_OFFLINE:
3639 break;
3640 }
3641 if (ret)
3642 ret = notifier_from_errno(ret);
3643 else
3644 ret = NOTIFY_OK;
3645 return ret;
3646 }
3647
3648 #endif /* CONFIG_MEMORY_HOTPLUG */
3649
3650 /********************************************************************
3651 * Basic setup of slabs
3652 *******************************************************************/
3653
3654 /*
3655 * Used for early kmem_cache structures that were allocated using
3656 * the page allocator
3657 */
3658
3659 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3660 {
3661 int node;
3662
3663 list_add(&s->list, &slab_caches);
3664 s->refcount = -1;
3665
3666 for_each_node_state(node, N_NORMAL_MEMORY) {
3667 struct kmem_cache_node *n = get_node(s, node);
3668 struct page *p;
3669
3670 if (n) {
3671 list_for_each_entry(p, &n->partial, lru)
3672 p->slab = s;
3673
3674 #ifdef CONFIG_SLUB_DEBUG
3675 list_for_each_entry(p, &n->full, lru)
3676 p->slab = s;
3677 #endif
3678 }
3679 }
3680 }
3681
3682 void __init kmem_cache_init(void)
3683 {
3684 int i;
3685 int caches = 0;
3686 struct kmem_cache *temp_kmem_cache;
3687 int order;
3688 struct kmem_cache *temp_kmem_cache_node;
3689 unsigned long kmalloc_size;
3690
3691 kmem_size = offsetof(struct kmem_cache, node) +
3692 nr_node_ids * sizeof(struct kmem_cache_node *);
3693
3694 /* Allocate two kmem_caches from the page allocator */
3695 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3696 order = get_order(2 * kmalloc_size);
3697 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3698
3699 /*
3700 * Must first have the slab cache available for the allocations of the
3701 * struct kmem_cache_node's. There is special bootstrap code in
3702 * kmem_cache_open for slab_state == DOWN.
3703 */
3704 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3705
3706 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3707 sizeof(struct kmem_cache_node),
3708 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3709
3710 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3711
3712 /* Able to allocate the per node structures */
3713 slab_state = PARTIAL;
3714
3715 temp_kmem_cache = kmem_cache;
3716 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3717 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3718 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3719 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3720
3721 /*
3722 * Allocate kmem_cache_node properly from the kmem_cache slab.
3723 * kmem_cache_node is separately allocated so no need to
3724 * update any list pointers.
3725 */
3726 temp_kmem_cache_node = kmem_cache_node;
3727
3728 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3729 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3730
3731 kmem_cache_bootstrap_fixup(kmem_cache_node);
3732
3733 caches++;
3734 kmem_cache_bootstrap_fixup(kmem_cache);
3735 caches++;
3736 /* Free temporary boot structure */
3737 free_pages((unsigned long)temp_kmem_cache, order);
3738
3739 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3740
3741 /*
3742 * Patch up the size_index table if we have strange large alignment
3743 * requirements for the kmalloc array. This is only the case for
3744 * MIPS it seems. The standard arches will not generate any code here.
3745 *
3746 * Largest permitted alignment is 256 bytes due to the way we
3747 * handle the index determination for the smaller caches.
3748 *
3749 * Make sure that nothing crazy happens if someone starts tinkering
3750 * around with ARCH_KMALLOC_MINALIGN
3751 */
3752 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3753 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3754
3755 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3756 int elem = size_index_elem(i);
3757 if (elem >= ARRAY_SIZE(size_index))
3758 break;
3759 size_index[elem] = KMALLOC_SHIFT_LOW;
3760 }
3761
3762 if (KMALLOC_MIN_SIZE == 64) {
3763 /*
3764 * The 96 byte size cache is not used if the alignment
3765 * is 64 byte.
3766 */
3767 for (i = 64 + 8; i <= 96; i += 8)
3768 size_index[size_index_elem(i)] = 7;
3769 } else if (KMALLOC_MIN_SIZE == 128) {
3770 /*
3771 * The 192 byte sized cache is not used if the alignment
3772 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3773 * instead.
3774 */
3775 for (i = 128 + 8; i <= 192; i += 8)
3776 size_index[size_index_elem(i)] = 8;
3777 }
3778
3779 /* Caches that are not of the two-to-the-power-of size */
3780 if (KMALLOC_MIN_SIZE <= 32) {
3781 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3782 caches++;
3783 }
3784
3785 if (KMALLOC_MIN_SIZE <= 64) {
3786 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3787 caches++;
3788 }
3789
3790 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3791 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3792 caches++;
3793 }
3794
3795 slab_state = UP;
3796
3797 /* Provide the correct kmalloc names now that the caches are up */
3798 if (KMALLOC_MIN_SIZE <= 32) {
3799 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3800 BUG_ON(!kmalloc_caches[1]->name);
3801 }
3802
3803 if (KMALLOC_MIN_SIZE <= 64) {
3804 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3805 BUG_ON(!kmalloc_caches[2]->name);
3806 }
3807
3808 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3809 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3810
3811 BUG_ON(!s);
3812 kmalloc_caches[i]->name = s;
3813 }
3814
3815 #ifdef CONFIG_SMP
3816 register_cpu_notifier(&slab_notifier);
3817 #endif
3818
3819 #ifdef CONFIG_ZONE_DMA
3820 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3821 struct kmem_cache *s = kmalloc_caches[i];
3822
3823 if (s && s->size) {
3824 char *name = kasprintf(GFP_NOWAIT,
3825 "dma-kmalloc-%d", s->objsize);
3826
3827 BUG_ON(!name);
3828 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3829 s->objsize, SLAB_CACHE_DMA);
3830 }
3831 }
3832 #endif
3833 printk(KERN_INFO
3834 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3835 " CPUs=%d, Nodes=%d\n",
3836 caches, cache_line_size(),
3837 slub_min_order, slub_max_order, slub_min_objects,
3838 nr_cpu_ids, nr_node_ids);
3839 }
3840
3841 void __init kmem_cache_init_late(void)
3842 {
3843 }
3844
3845 /*
3846 * Find a mergeable slab cache
3847 */
3848 static int slab_unmergeable(struct kmem_cache *s)
3849 {
3850 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3851 return 1;
3852
3853 if (s->ctor)
3854 return 1;
3855
3856 /*
3857 * We may have set a slab to be unmergeable during bootstrap.
3858 */
3859 if (s->refcount < 0)
3860 return 1;
3861
3862 return 0;
3863 }
3864
3865 static struct kmem_cache *find_mergeable(size_t size,
3866 size_t align, unsigned long flags, const char *name,
3867 void (*ctor)(void *))
3868 {
3869 struct kmem_cache *s;
3870
3871 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3872 return NULL;
3873
3874 if (ctor)
3875 return NULL;
3876
3877 size = ALIGN(size, sizeof(void *));
3878 align = calculate_alignment(flags, align, size);
3879 size = ALIGN(size, align);
3880 flags = kmem_cache_flags(size, flags, name, NULL);
3881
3882 list_for_each_entry(s, &slab_caches, list) {
3883 if (slab_unmergeable(s))
3884 continue;
3885
3886 if (size > s->size)
3887 continue;
3888
3889 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3890 continue;
3891 /*
3892 * Check if alignment is compatible.
3893 * Courtesy of Adrian Drzewiecki
3894 */
3895 if ((s->size & ~(align - 1)) != s->size)
3896 continue;
3897
3898 if (s->size - size >= sizeof(void *))
3899 continue;
3900
3901 return s;
3902 }
3903 return NULL;
3904 }
3905
3906 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3907 size_t align, unsigned long flags, void (*ctor)(void *))
3908 {
3909 struct kmem_cache *s;
3910 char *n;
3911
3912 if (WARN_ON(!name))
3913 return NULL;
3914
3915 down_write(&slub_lock);
3916 s = find_mergeable(size, align, flags, name, ctor);
3917 if (s) {
3918 s->refcount++;
3919 /*
3920 * Adjust the object sizes so that we clear
3921 * the complete object on kzalloc.
3922 */
3923 s->objsize = max(s->objsize, (int)size);
3924 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3925
3926 if (sysfs_slab_alias(s, name)) {
3927 s->refcount--;
3928 goto err;
3929 }
3930 up_write(&slub_lock);
3931 return s;
3932 }
3933
3934 n = kstrdup(name, GFP_KERNEL);
3935 if (!n)
3936 goto err;
3937
3938 s = kmalloc(kmem_size, GFP_KERNEL);
3939 if (s) {
3940 if (kmem_cache_open(s, n,
3941 size, align, flags, ctor)) {
3942 list_add(&s->list, &slab_caches);
3943 if (sysfs_slab_add(s)) {
3944 list_del(&s->list);
3945 kfree(n);
3946 kfree(s);
3947 goto err;
3948 }
3949 up_write(&slub_lock);
3950 return s;
3951 }
3952 kfree(n);
3953 kfree(s);
3954 }
3955 err:
3956 up_write(&slub_lock);
3957
3958 if (flags & SLAB_PANIC)
3959 panic("Cannot create slabcache %s\n", name);
3960 else
3961 s = NULL;
3962 return s;
3963 }
3964 EXPORT_SYMBOL(kmem_cache_create);
3965
3966 #ifdef CONFIG_SMP
3967 /*
3968 * Use the cpu notifier to insure that the cpu slabs are flushed when
3969 * necessary.
3970 */
3971 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3972 unsigned long action, void *hcpu)
3973 {
3974 long cpu = (long)hcpu;
3975 struct kmem_cache *s;
3976 unsigned long flags;
3977
3978 switch (action) {
3979 case CPU_UP_CANCELED:
3980 case CPU_UP_CANCELED_FROZEN:
3981 case CPU_DEAD:
3982 case CPU_DEAD_FROZEN:
3983 down_read(&slub_lock);
3984 list_for_each_entry(s, &slab_caches, list) {
3985 local_irq_save(flags);
3986 __flush_cpu_slab(s, cpu);
3987 local_irq_restore(flags);
3988 }
3989 up_read(&slub_lock);
3990 break;
3991 default:
3992 break;
3993 }
3994 return NOTIFY_OK;
3995 }
3996
3997 static struct notifier_block __cpuinitdata slab_notifier = {
3998 .notifier_call = slab_cpuup_callback
3999 };
4000
4001 #endif
4002
4003 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4004 {
4005 struct kmem_cache *s;
4006 void *ret;
4007
4008 if (unlikely(size > SLUB_MAX_SIZE))
4009 return kmalloc_large(size, gfpflags);
4010
4011 s = get_slab(size, gfpflags);
4012
4013 if (unlikely(ZERO_OR_NULL_PTR(s)))
4014 return s;
4015
4016 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4017
4018 /* Honor the call site pointer we received. */
4019 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4020
4021 return ret;
4022 }
4023
4024 #ifdef CONFIG_NUMA
4025 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4026 int node, unsigned long caller)
4027 {
4028 struct kmem_cache *s;
4029 void *ret;
4030
4031 if (unlikely(size > SLUB_MAX_SIZE)) {
4032 ret = kmalloc_large_node(size, gfpflags, node);
4033
4034 trace_kmalloc_node(caller, ret,
4035 size, PAGE_SIZE << get_order(size),
4036 gfpflags, node);
4037
4038 return ret;
4039 }
4040
4041 s = get_slab(size, gfpflags);
4042
4043 if (unlikely(ZERO_OR_NULL_PTR(s)))
4044 return s;
4045
4046 ret = slab_alloc(s, gfpflags, node, caller);
4047
4048 /* Honor the call site pointer we received. */
4049 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4050
4051 return ret;
4052 }
4053 #endif
4054
4055 #ifdef CONFIG_SYSFS
4056 static int count_inuse(struct page *page)
4057 {
4058 return page->inuse;
4059 }
4060
4061 static int count_total(struct page *page)
4062 {
4063 return page->objects;
4064 }
4065 #endif
4066
4067 #ifdef CONFIG_SLUB_DEBUG
4068 static int validate_slab(struct kmem_cache *s, struct page *page,
4069 unsigned long *map)
4070 {
4071 void *p;
4072 void *addr = page_address(page);
4073
4074 if (!check_slab(s, page) ||
4075 !on_freelist(s, page, NULL))
4076 return 0;
4077
4078 /* Now we know that a valid freelist exists */
4079 bitmap_zero(map, page->objects);
4080
4081 get_map(s, page, map);
4082 for_each_object(p, s, addr, page->objects) {
4083 if (test_bit(slab_index(p, s, addr), map))
4084 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4085 return 0;
4086 }
4087
4088 for_each_object(p, s, addr, page->objects)
4089 if (!test_bit(slab_index(p, s, addr), map))
4090 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4091 return 0;
4092 return 1;
4093 }
4094
4095 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4096 unsigned long *map)
4097 {
4098 slab_lock(page);
4099 validate_slab(s, page, map);
4100 slab_unlock(page);
4101 }
4102
4103 static int validate_slab_node(struct kmem_cache *s,
4104 struct kmem_cache_node *n, unsigned long *map)
4105 {
4106 unsigned long count = 0;
4107 struct page *page;
4108 unsigned long flags;
4109
4110 spin_lock_irqsave(&n->list_lock, flags);
4111
4112 list_for_each_entry(page, &n->partial, lru) {
4113 validate_slab_slab(s, page, map);
4114 count++;
4115 }
4116 if (count != n->nr_partial)
4117 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4118 "counter=%ld\n", s->name, count, n->nr_partial);
4119
4120 if (!(s->flags & SLAB_STORE_USER))
4121 goto out;
4122
4123 list_for_each_entry(page, &n->full, lru) {
4124 validate_slab_slab(s, page, map);
4125 count++;
4126 }
4127 if (count != atomic_long_read(&n->nr_slabs))
4128 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4129 "counter=%ld\n", s->name, count,
4130 atomic_long_read(&n->nr_slabs));
4131
4132 out:
4133 spin_unlock_irqrestore(&n->list_lock, flags);
4134 return count;
4135 }
4136
4137 static long validate_slab_cache(struct kmem_cache *s)
4138 {
4139 int node;
4140 unsigned long count = 0;
4141 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4142 sizeof(unsigned long), GFP_KERNEL);
4143
4144 if (!map)
4145 return -ENOMEM;
4146
4147 flush_all(s);
4148 for_each_node_state(node, N_NORMAL_MEMORY) {
4149 struct kmem_cache_node *n = get_node(s, node);
4150
4151 count += validate_slab_node(s, n, map);
4152 }
4153 kfree(map);
4154 return count;
4155 }
4156 /*
4157 * Generate lists of code addresses where slabcache objects are allocated
4158 * and freed.
4159 */
4160
4161 struct location {
4162 unsigned long count;
4163 unsigned long addr;
4164 long long sum_time;
4165 long min_time;
4166 long max_time;
4167 long min_pid;
4168 long max_pid;
4169 DECLARE_BITMAP(cpus, NR_CPUS);
4170 nodemask_t nodes;
4171 };
4172
4173 struct loc_track {
4174 unsigned long max;
4175 unsigned long count;
4176 struct location *loc;
4177 };
4178
4179 static void free_loc_track(struct loc_track *t)
4180 {
4181 if (t->max)
4182 free_pages((unsigned long)t->loc,
4183 get_order(sizeof(struct location) * t->max));
4184 }
4185
4186 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4187 {
4188 struct location *l;
4189 int order;
4190
4191 order = get_order(sizeof(struct location) * max);
4192
4193 l = (void *)__get_free_pages(flags, order);
4194 if (!l)
4195 return 0;
4196
4197 if (t->count) {
4198 memcpy(l, t->loc, sizeof(struct location) * t->count);
4199 free_loc_track(t);
4200 }
4201 t->max = max;
4202 t->loc = l;
4203 return 1;
4204 }
4205
4206 static int add_location(struct loc_track *t, struct kmem_cache *s,
4207 const struct track *track)
4208 {
4209 long start, end, pos;
4210 struct location *l;
4211 unsigned long caddr;
4212 unsigned long age = jiffies - track->when;
4213
4214 start = -1;
4215 end = t->count;
4216
4217 for ( ; ; ) {
4218 pos = start + (end - start + 1) / 2;
4219
4220 /*
4221 * There is nothing at "end". If we end up there
4222 * we need to add something to before end.
4223 */
4224 if (pos == end)
4225 break;
4226
4227 caddr = t->loc[pos].addr;
4228 if (track->addr == caddr) {
4229
4230 l = &t->loc[pos];
4231 l->count++;
4232 if (track->when) {
4233 l->sum_time += age;
4234 if (age < l->min_time)
4235 l->min_time = age;
4236 if (age > l->max_time)
4237 l->max_time = age;
4238
4239 if (track->pid < l->min_pid)
4240 l->min_pid = track->pid;
4241 if (track->pid > l->max_pid)
4242 l->max_pid = track->pid;
4243
4244 cpumask_set_cpu(track->cpu,
4245 to_cpumask(l->cpus));
4246 }
4247 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4248 return 1;
4249 }
4250
4251 if (track->addr < caddr)
4252 end = pos;
4253 else
4254 start = pos;
4255 }
4256
4257 /*
4258 * Not found. Insert new tracking element.
4259 */
4260 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4261 return 0;
4262
4263 l = t->loc + pos;
4264 if (pos < t->count)
4265 memmove(l + 1, l,
4266 (t->count - pos) * sizeof(struct location));
4267 t->count++;
4268 l->count = 1;
4269 l->addr = track->addr;
4270 l->sum_time = age;
4271 l->min_time = age;
4272 l->max_time = age;
4273 l->min_pid = track->pid;
4274 l->max_pid = track->pid;
4275 cpumask_clear(to_cpumask(l->cpus));
4276 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4277 nodes_clear(l->nodes);
4278 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4279 return 1;
4280 }
4281
4282 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4283 struct page *page, enum track_item alloc,
4284 unsigned long *map)
4285 {
4286 void *addr = page_address(page);
4287 void *p;
4288
4289 bitmap_zero(map, page->objects);
4290 get_map(s, page, map);
4291
4292 for_each_object(p, s, addr, page->objects)
4293 if (!test_bit(slab_index(p, s, addr), map))
4294 add_location(t, s, get_track(s, p, alloc));
4295 }
4296
4297 static int list_locations(struct kmem_cache *s, char *buf,
4298 enum track_item alloc)
4299 {
4300 int len = 0;
4301 unsigned long i;
4302 struct loc_track t = { 0, 0, NULL };
4303 int node;
4304 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4305 sizeof(unsigned long), GFP_KERNEL);
4306
4307 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4308 GFP_TEMPORARY)) {
4309 kfree(map);
4310 return sprintf(buf, "Out of memory\n");
4311 }
4312 /* Push back cpu slabs */
4313 flush_all(s);
4314
4315 for_each_node_state(node, N_NORMAL_MEMORY) {
4316 struct kmem_cache_node *n = get_node(s, node);
4317 unsigned long flags;
4318 struct page *page;
4319
4320 if (!atomic_long_read(&n->nr_slabs))
4321 continue;
4322
4323 spin_lock_irqsave(&n->list_lock, flags);
4324 list_for_each_entry(page, &n->partial, lru)
4325 process_slab(&t, s, page, alloc, map);
4326 list_for_each_entry(page, &n->full, lru)
4327 process_slab(&t, s, page, alloc, map);
4328 spin_unlock_irqrestore(&n->list_lock, flags);
4329 }
4330
4331 for (i = 0; i < t.count; i++) {
4332 struct location *l = &t.loc[i];
4333
4334 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4335 break;
4336 len += sprintf(buf + len, "%7ld ", l->count);
4337
4338 if (l->addr)
4339 len += sprintf(buf + len, "%pS", (void *)l->addr);
4340 else
4341 len += sprintf(buf + len, "<not-available>");
4342
4343 if (l->sum_time != l->min_time) {
4344 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4345 l->min_time,
4346 (long)div_u64(l->sum_time, l->count),
4347 l->max_time);
4348 } else
4349 len += sprintf(buf + len, " age=%ld",
4350 l->min_time);
4351
4352 if (l->min_pid != l->max_pid)
4353 len += sprintf(buf + len, " pid=%ld-%ld",
4354 l->min_pid, l->max_pid);
4355 else
4356 len += sprintf(buf + len, " pid=%ld",
4357 l->min_pid);
4358
4359 if (num_online_cpus() > 1 &&
4360 !cpumask_empty(to_cpumask(l->cpus)) &&
4361 len < PAGE_SIZE - 60) {
4362 len += sprintf(buf + len, " cpus=");
4363 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4364 to_cpumask(l->cpus));
4365 }
4366
4367 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4368 len < PAGE_SIZE - 60) {
4369 len += sprintf(buf + len, " nodes=");
4370 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4371 l->nodes);
4372 }
4373
4374 len += sprintf(buf + len, "\n");
4375 }
4376
4377 free_loc_track(&t);
4378 kfree(map);
4379 if (!t.count)
4380 len += sprintf(buf, "No data\n");
4381 return len;
4382 }
4383 #endif
4384
4385 #ifdef SLUB_RESILIENCY_TEST
4386 static void resiliency_test(void)
4387 {
4388 u8 *p;
4389
4390 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4391
4392 printk(KERN_ERR "SLUB resiliency testing\n");
4393 printk(KERN_ERR "-----------------------\n");
4394 printk(KERN_ERR "A. Corruption after allocation\n");
4395
4396 p = kzalloc(16, GFP_KERNEL);
4397 p[16] = 0x12;
4398 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4399 " 0x12->0x%p\n\n", p + 16);
4400
4401 validate_slab_cache(kmalloc_caches[4]);
4402
4403 /* Hmmm... The next two are dangerous */
4404 p = kzalloc(32, GFP_KERNEL);
4405 p[32 + sizeof(void *)] = 0x34;
4406 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4407 " 0x34 -> -0x%p\n", p);
4408 printk(KERN_ERR
4409 "If allocated object is overwritten then not detectable\n\n");
4410
4411 validate_slab_cache(kmalloc_caches[5]);
4412 p = kzalloc(64, GFP_KERNEL);
4413 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4414 *p = 0x56;
4415 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4416 p);
4417 printk(KERN_ERR
4418 "If allocated object is overwritten then not detectable\n\n");
4419 validate_slab_cache(kmalloc_caches[6]);
4420
4421 printk(KERN_ERR "\nB. Corruption after free\n");
4422 p = kzalloc(128, GFP_KERNEL);
4423 kfree(p);
4424 *p = 0x78;
4425 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4426 validate_slab_cache(kmalloc_caches[7]);
4427
4428 p = kzalloc(256, GFP_KERNEL);
4429 kfree(p);
4430 p[50] = 0x9a;
4431 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4432 p);
4433 validate_slab_cache(kmalloc_caches[8]);
4434
4435 p = kzalloc(512, GFP_KERNEL);
4436 kfree(p);
4437 p[512] = 0xab;
4438 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4439 validate_slab_cache(kmalloc_caches[9]);
4440 }
4441 #else
4442 #ifdef CONFIG_SYSFS
4443 static void resiliency_test(void) {};
4444 #endif
4445 #endif
4446
4447 #ifdef CONFIG_SYSFS
4448 enum slab_stat_type {
4449 SL_ALL, /* All slabs */
4450 SL_PARTIAL, /* Only partially allocated slabs */
4451 SL_CPU, /* Only slabs used for cpu caches */
4452 SL_OBJECTS, /* Determine allocated objects not slabs */
4453 SL_TOTAL /* Determine object capacity not slabs */
4454 };
4455
4456 #define SO_ALL (1 << SL_ALL)
4457 #define SO_PARTIAL (1 << SL_PARTIAL)
4458 #define SO_CPU (1 << SL_CPU)
4459 #define SO_OBJECTS (1 << SL_OBJECTS)
4460 #define SO_TOTAL (1 << SL_TOTAL)
4461
4462 static ssize_t show_slab_objects(struct kmem_cache *s,
4463 char *buf, unsigned long flags)
4464 {
4465 unsigned long total = 0;
4466 int node;
4467 int x;
4468 unsigned long *nodes;
4469 unsigned long *per_cpu;
4470
4471 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4472 if (!nodes)
4473 return -ENOMEM;
4474 per_cpu = nodes + nr_node_ids;
4475
4476 if (flags & SO_CPU) {
4477 int cpu;
4478
4479 for_each_possible_cpu(cpu) {
4480 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4481 struct page *page;
4482
4483 if (!c || c->node < 0)
4484 continue;
4485
4486 if (c->page) {
4487 if (flags & SO_TOTAL)
4488 x = c->page->objects;
4489 else if (flags & SO_OBJECTS)
4490 x = c->page->inuse;
4491 else
4492 x = 1;
4493
4494 total += x;
4495 nodes[c->node] += x;
4496 }
4497 page = c->partial;
4498
4499 if (page) {
4500 x = page->pobjects;
4501 total += x;
4502 nodes[c->node] += x;
4503 }
4504 per_cpu[c->node]++;
4505 }
4506 }
4507
4508 lock_memory_hotplug();
4509 #ifdef CONFIG_SLUB_DEBUG
4510 if (flags & SO_ALL) {
4511 for_each_node_state(node, N_NORMAL_MEMORY) {
4512 struct kmem_cache_node *n = get_node(s, node);
4513
4514 if (flags & SO_TOTAL)
4515 x = atomic_long_read(&n->total_objects);
4516 else if (flags & SO_OBJECTS)
4517 x = atomic_long_read(&n->total_objects) -
4518 count_partial(n, count_free);
4519
4520 else
4521 x = atomic_long_read(&n->nr_slabs);
4522 total += x;
4523 nodes[node] += x;
4524 }
4525
4526 } else
4527 #endif
4528 if (flags & SO_PARTIAL) {
4529 for_each_node_state(node, N_NORMAL_MEMORY) {
4530 struct kmem_cache_node *n = get_node(s, node);
4531
4532 if (flags & SO_TOTAL)
4533 x = count_partial(n, count_total);
4534 else if (flags & SO_OBJECTS)
4535 x = count_partial(n, count_inuse);
4536 else
4537 x = n->nr_partial;
4538 total += x;
4539 nodes[node] += x;
4540 }
4541 }
4542 x = sprintf(buf, "%lu", total);
4543 #ifdef CONFIG_NUMA
4544 for_each_node_state(node, N_NORMAL_MEMORY)
4545 if (nodes[node])
4546 x += sprintf(buf + x, " N%d=%lu",
4547 node, nodes[node]);
4548 #endif
4549 unlock_memory_hotplug();
4550 kfree(nodes);
4551 return x + sprintf(buf + x, "\n");
4552 }
4553
4554 #ifdef CONFIG_SLUB_DEBUG
4555 static int any_slab_objects(struct kmem_cache *s)
4556 {
4557 int node;
4558
4559 for_each_online_node(node) {
4560 struct kmem_cache_node *n = get_node(s, node);
4561
4562 if (!n)
4563 continue;
4564
4565 if (atomic_long_read(&n->total_objects))
4566 return 1;
4567 }
4568 return 0;
4569 }
4570 #endif
4571
4572 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4573 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4574
4575 struct slab_attribute {
4576 struct attribute attr;
4577 ssize_t (*show)(struct kmem_cache *s, char *buf);
4578 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4579 };
4580
4581 #define SLAB_ATTR_RO(_name) \
4582 static struct slab_attribute _name##_attr = \
4583 __ATTR(_name, 0400, _name##_show, NULL)
4584
4585 #define SLAB_ATTR(_name) \
4586 static struct slab_attribute _name##_attr = \
4587 __ATTR(_name, 0600, _name##_show, _name##_store)
4588
4589 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4590 {
4591 return sprintf(buf, "%d\n", s->size);
4592 }
4593 SLAB_ATTR_RO(slab_size);
4594
4595 static ssize_t align_show(struct kmem_cache *s, char *buf)
4596 {
4597 return sprintf(buf, "%d\n", s->align);
4598 }
4599 SLAB_ATTR_RO(align);
4600
4601 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4602 {
4603 return sprintf(buf, "%d\n", s->objsize);
4604 }
4605 SLAB_ATTR_RO(object_size);
4606
4607 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4608 {
4609 return sprintf(buf, "%d\n", oo_objects(s->oo));
4610 }
4611 SLAB_ATTR_RO(objs_per_slab);
4612
4613 static ssize_t order_store(struct kmem_cache *s,
4614 const char *buf, size_t length)
4615 {
4616 unsigned long order;
4617 int err;
4618
4619 err = strict_strtoul(buf, 10, &order);
4620 if (err)
4621 return err;
4622
4623 if (order > slub_max_order || order < slub_min_order)
4624 return -EINVAL;
4625
4626 calculate_sizes(s, order);
4627 return length;
4628 }
4629
4630 static ssize_t order_show(struct kmem_cache *s, char *buf)
4631 {
4632 return sprintf(buf, "%d\n", oo_order(s->oo));
4633 }
4634 SLAB_ATTR(order);
4635
4636 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4637 {
4638 return sprintf(buf, "%lu\n", s->min_partial);
4639 }
4640
4641 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4642 size_t length)
4643 {
4644 unsigned long min;
4645 int err;
4646
4647 err = strict_strtoul(buf, 10, &min);
4648 if (err)
4649 return err;
4650
4651 set_min_partial(s, min);
4652 return length;
4653 }
4654 SLAB_ATTR(min_partial);
4655
4656 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4657 {
4658 return sprintf(buf, "%u\n", s->cpu_partial);
4659 }
4660
4661 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4663 {
4664 unsigned long objects;
4665 int err;
4666
4667 err = strict_strtoul(buf, 10, &objects);
4668 if (err)
4669 return err;
4670
4671 s->cpu_partial = objects;
4672 flush_all(s);
4673 return length;
4674 }
4675 SLAB_ATTR(cpu_partial);
4676
4677 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4678 {
4679 if (!s->ctor)
4680 return 0;
4681 return sprintf(buf, "%pS\n", s->ctor);
4682 }
4683 SLAB_ATTR_RO(ctor);
4684
4685 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4686 {
4687 return sprintf(buf, "%d\n", s->refcount - 1);
4688 }
4689 SLAB_ATTR_RO(aliases);
4690
4691 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4692 {
4693 return show_slab_objects(s, buf, SO_PARTIAL);
4694 }
4695 SLAB_ATTR_RO(partial);
4696
4697 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4698 {
4699 return show_slab_objects(s, buf, SO_CPU);
4700 }
4701 SLAB_ATTR_RO(cpu_slabs);
4702
4703 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4704 {
4705 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4706 }
4707 SLAB_ATTR_RO(objects);
4708
4709 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4710 {
4711 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4712 }
4713 SLAB_ATTR_RO(objects_partial);
4714
4715 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4716 {
4717 int objects = 0;
4718 int pages = 0;
4719 int cpu;
4720 int len;
4721
4722 for_each_online_cpu(cpu) {
4723 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4724
4725 if (page) {
4726 pages += page->pages;
4727 objects += page->pobjects;
4728 }
4729 }
4730
4731 len = sprintf(buf, "%d(%d)", objects, pages);
4732
4733 #ifdef CONFIG_SMP
4734 for_each_online_cpu(cpu) {
4735 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4736
4737 if (page && len < PAGE_SIZE - 20)
4738 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4739 page->pobjects, page->pages);
4740 }
4741 #endif
4742 return len + sprintf(buf + len, "\n");
4743 }
4744 SLAB_ATTR_RO(slabs_cpu_partial);
4745
4746 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4747 {
4748 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4749 }
4750
4751 static ssize_t reclaim_account_store(struct kmem_cache *s,
4752 const char *buf, size_t length)
4753 {
4754 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4755 if (buf[0] == '1')
4756 s->flags |= SLAB_RECLAIM_ACCOUNT;
4757 return length;
4758 }
4759 SLAB_ATTR(reclaim_account);
4760
4761 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4762 {
4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4764 }
4765 SLAB_ATTR_RO(hwcache_align);
4766
4767 #ifdef CONFIG_ZONE_DMA
4768 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4769 {
4770 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4771 }
4772 SLAB_ATTR_RO(cache_dma);
4773 #endif
4774
4775 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4776 {
4777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4778 }
4779 SLAB_ATTR_RO(destroy_by_rcu);
4780
4781 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4782 {
4783 return sprintf(buf, "%d\n", s->reserved);
4784 }
4785 SLAB_ATTR_RO(reserved);
4786
4787 #ifdef CONFIG_SLUB_DEBUG
4788 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4789 {
4790 return show_slab_objects(s, buf, SO_ALL);
4791 }
4792 SLAB_ATTR_RO(slabs);
4793
4794 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4795 {
4796 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4797 }
4798 SLAB_ATTR_RO(total_objects);
4799
4800 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4801 {
4802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4803 }
4804
4805 static ssize_t sanity_checks_store(struct kmem_cache *s,
4806 const char *buf, size_t length)
4807 {
4808 s->flags &= ~SLAB_DEBUG_FREE;
4809 if (buf[0] == '1') {
4810 s->flags &= ~__CMPXCHG_DOUBLE;
4811 s->flags |= SLAB_DEBUG_FREE;
4812 }
4813 return length;
4814 }
4815 SLAB_ATTR(sanity_checks);
4816
4817 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4818 {
4819 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4820 }
4821
4822 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4823 size_t length)
4824 {
4825 s->flags &= ~SLAB_TRACE;
4826 if (buf[0] == '1') {
4827 s->flags &= ~__CMPXCHG_DOUBLE;
4828 s->flags |= SLAB_TRACE;
4829 }
4830 return length;
4831 }
4832 SLAB_ATTR(trace);
4833
4834 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4835 {
4836 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4837 }
4838
4839 static ssize_t red_zone_store(struct kmem_cache *s,
4840 const char *buf, size_t length)
4841 {
4842 if (any_slab_objects(s))
4843 return -EBUSY;
4844
4845 s->flags &= ~SLAB_RED_ZONE;
4846 if (buf[0] == '1') {
4847 s->flags &= ~__CMPXCHG_DOUBLE;
4848 s->flags |= SLAB_RED_ZONE;
4849 }
4850 calculate_sizes(s, -1);
4851 return length;
4852 }
4853 SLAB_ATTR(red_zone);
4854
4855 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4856 {
4857 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4858 }
4859
4860 static ssize_t poison_store(struct kmem_cache *s,
4861 const char *buf, size_t length)
4862 {
4863 if (any_slab_objects(s))
4864 return -EBUSY;
4865
4866 s->flags &= ~SLAB_POISON;
4867 if (buf[0] == '1') {
4868 s->flags &= ~__CMPXCHG_DOUBLE;
4869 s->flags |= SLAB_POISON;
4870 }
4871 calculate_sizes(s, -1);
4872 return length;
4873 }
4874 SLAB_ATTR(poison);
4875
4876 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4877 {
4878 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4879 }
4880
4881 static ssize_t store_user_store(struct kmem_cache *s,
4882 const char *buf, size_t length)
4883 {
4884 if (any_slab_objects(s))
4885 return -EBUSY;
4886
4887 s->flags &= ~SLAB_STORE_USER;
4888 if (buf[0] == '1') {
4889 s->flags &= ~__CMPXCHG_DOUBLE;
4890 s->flags |= SLAB_STORE_USER;
4891 }
4892 calculate_sizes(s, -1);
4893 return length;
4894 }
4895 SLAB_ATTR(store_user);
4896
4897 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4898 {
4899 return 0;
4900 }
4901
4902 static ssize_t validate_store(struct kmem_cache *s,
4903 const char *buf, size_t length)
4904 {
4905 int ret = -EINVAL;
4906
4907 if (buf[0] == '1') {
4908 ret = validate_slab_cache(s);
4909 if (ret >= 0)
4910 ret = length;
4911 }
4912 return ret;
4913 }
4914 SLAB_ATTR(validate);
4915
4916 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4917 {
4918 if (!(s->flags & SLAB_STORE_USER))
4919 return -ENOSYS;
4920 return list_locations(s, buf, TRACK_ALLOC);
4921 }
4922 SLAB_ATTR_RO(alloc_calls);
4923
4924 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4925 {
4926 if (!(s->flags & SLAB_STORE_USER))
4927 return -ENOSYS;
4928 return list_locations(s, buf, TRACK_FREE);
4929 }
4930 SLAB_ATTR_RO(free_calls);
4931 #endif /* CONFIG_SLUB_DEBUG */
4932
4933 #ifdef CONFIG_FAILSLAB
4934 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4935 {
4936 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4937 }
4938
4939 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4940 size_t length)
4941 {
4942 s->flags &= ~SLAB_FAILSLAB;
4943 if (buf[0] == '1')
4944 s->flags |= SLAB_FAILSLAB;
4945 return length;
4946 }
4947 SLAB_ATTR(failslab);
4948 #endif
4949
4950 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4951 {
4952 return 0;
4953 }
4954
4955 static ssize_t shrink_store(struct kmem_cache *s,
4956 const char *buf, size_t length)
4957 {
4958 if (buf[0] == '1') {
4959 int rc = kmem_cache_shrink(s);
4960
4961 if (rc)
4962 return rc;
4963 } else
4964 return -EINVAL;
4965 return length;
4966 }
4967 SLAB_ATTR(shrink);
4968
4969 #ifdef CONFIG_NUMA
4970 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4971 {
4972 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4973 }
4974
4975 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4976 const char *buf, size_t length)
4977 {
4978 unsigned long ratio;
4979 int err;
4980
4981 err = strict_strtoul(buf, 10, &ratio);
4982 if (err)
4983 return err;
4984
4985 if (ratio <= 100)
4986 s->remote_node_defrag_ratio = ratio * 10;
4987
4988 return length;
4989 }
4990 SLAB_ATTR(remote_node_defrag_ratio);
4991 #endif
4992
4993 #ifdef CONFIG_SLUB_STATS
4994 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4995 {
4996 unsigned long sum = 0;
4997 int cpu;
4998 int len;
4999 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5000
5001 if (!data)
5002 return -ENOMEM;
5003
5004 for_each_online_cpu(cpu) {
5005 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5006
5007 data[cpu] = x;
5008 sum += x;
5009 }
5010
5011 len = sprintf(buf, "%lu", sum);
5012
5013 #ifdef CONFIG_SMP
5014 for_each_online_cpu(cpu) {
5015 if (data[cpu] && len < PAGE_SIZE - 20)
5016 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5017 }
5018 #endif
5019 kfree(data);
5020 return len + sprintf(buf + len, "\n");
5021 }
5022
5023 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5024 {
5025 int cpu;
5026
5027 for_each_online_cpu(cpu)
5028 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5029 }
5030
5031 #define STAT_ATTR(si, text) \
5032 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5033 { \
5034 return show_stat(s, buf, si); \
5035 } \
5036 static ssize_t text##_store(struct kmem_cache *s, \
5037 const char *buf, size_t length) \
5038 { \
5039 if (buf[0] != '0') \
5040 return -EINVAL; \
5041 clear_stat(s, si); \
5042 return length; \
5043 } \
5044 SLAB_ATTR(text); \
5045
5046 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5047 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5048 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5049 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5050 STAT_ATTR(FREE_FROZEN, free_frozen);
5051 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5052 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5053 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5054 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5055 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5056 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5057 STAT_ATTR(FREE_SLAB, free_slab);
5058 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5059 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5060 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5061 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5062 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5063 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5064 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5065 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5066 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5067 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5068 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5069 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5070 #endif
5071
5072 static struct attribute *slab_attrs[] = {
5073 &slab_size_attr.attr,
5074 &object_size_attr.attr,
5075 &objs_per_slab_attr.attr,
5076 &order_attr.attr,
5077 &min_partial_attr.attr,
5078 &cpu_partial_attr.attr,
5079 &objects_attr.attr,
5080 &objects_partial_attr.attr,
5081 &partial_attr.attr,
5082 &cpu_slabs_attr.attr,
5083 &ctor_attr.attr,
5084 &aliases_attr.attr,
5085 &align_attr.attr,
5086 &hwcache_align_attr.attr,
5087 &reclaim_account_attr.attr,
5088 &destroy_by_rcu_attr.attr,
5089 &shrink_attr.attr,
5090 &reserved_attr.attr,
5091 &slabs_cpu_partial_attr.attr,
5092 #ifdef CONFIG_SLUB_DEBUG
5093 &total_objects_attr.attr,
5094 &slabs_attr.attr,
5095 &sanity_checks_attr.attr,
5096 &trace_attr.attr,
5097 &red_zone_attr.attr,
5098 &poison_attr.attr,
5099 &store_user_attr.attr,
5100 &validate_attr.attr,
5101 &alloc_calls_attr.attr,
5102 &free_calls_attr.attr,
5103 #endif
5104 #ifdef CONFIG_ZONE_DMA
5105 &cache_dma_attr.attr,
5106 #endif
5107 #ifdef CONFIG_NUMA
5108 &remote_node_defrag_ratio_attr.attr,
5109 #endif
5110 #ifdef CONFIG_SLUB_STATS
5111 &alloc_fastpath_attr.attr,
5112 &alloc_slowpath_attr.attr,
5113 &free_fastpath_attr.attr,
5114 &free_slowpath_attr.attr,
5115 &free_frozen_attr.attr,
5116 &free_add_partial_attr.attr,
5117 &free_remove_partial_attr.attr,
5118 &alloc_from_partial_attr.attr,
5119 &alloc_slab_attr.attr,
5120 &alloc_refill_attr.attr,
5121 &alloc_node_mismatch_attr.attr,
5122 &free_slab_attr.attr,
5123 &cpuslab_flush_attr.attr,
5124 &deactivate_full_attr.attr,
5125 &deactivate_empty_attr.attr,
5126 &deactivate_to_head_attr.attr,
5127 &deactivate_to_tail_attr.attr,
5128 &deactivate_remote_frees_attr.attr,
5129 &deactivate_bypass_attr.attr,
5130 &order_fallback_attr.attr,
5131 &cmpxchg_double_fail_attr.attr,
5132 &cmpxchg_double_cpu_fail_attr.attr,
5133 &cpu_partial_alloc_attr.attr,
5134 &cpu_partial_free_attr.attr,
5135 #endif
5136 #ifdef CONFIG_FAILSLAB
5137 &failslab_attr.attr,
5138 #endif
5139
5140 NULL
5141 };
5142
5143 static struct attribute_group slab_attr_group = {
5144 .attrs = slab_attrs,
5145 };
5146
5147 static ssize_t slab_attr_show(struct kobject *kobj,
5148 struct attribute *attr,
5149 char *buf)
5150 {
5151 struct slab_attribute *attribute;
5152 struct kmem_cache *s;
5153 int err;
5154
5155 attribute = to_slab_attr(attr);
5156 s = to_slab(kobj);
5157
5158 if (!attribute->show)
5159 return -EIO;
5160
5161 err = attribute->show(s, buf);
5162
5163 return err;
5164 }
5165
5166 static ssize_t slab_attr_store(struct kobject *kobj,
5167 struct attribute *attr,
5168 const char *buf, size_t len)
5169 {
5170 struct slab_attribute *attribute;
5171 struct kmem_cache *s;
5172 int err;
5173
5174 attribute = to_slab_attr(attr);
5175 s = to_slab(kobj);
5176
5177 if (!attribute->store)
5178 return -EIO;
5179
5180 err = attribute->store(s, buf, len);
5181
5182 return err;
5183 }
5184
5185 static void kmem_cache_release(struct kobject *kobj)
5186 {
5187 struct kmem_cache *s = to_slab(kobj);
5188
5189 kfree(s->name);
5190 kfree(s);
5191 }
5192
5193 static const struct sysfs_ops slab_sysfs_ops = {
5194 .show = slab_attr_show,
5195 .store = slab_attr_store,
5196 };
5197
5198 static struct kobj_type slab_ktype = {
5199 .sysfs_ops = &slab_sysfs_ops,
5200 .release = kmem_cache_release
5201 };
5202
5203 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5204 {
5205 struct kobj_type *ktype = get_ktype(kobj);
5206
5207 if (ktype == &slab_ktype)
5208 return 1;
5209 return 0;
5210 }
5211
5212 static const struct kset_uevent_ops slab_uevent_ops = {
5213 .filter = uevent_filter,
5214 };
5215
5216 static struct kset *slab_kset;
5217
5218 #define ID_STR_LENGTH 64
5219
5220 /* Create a unique string id for a slab cache:
5221 *
5222 * Format :[flags-]size
5223 */
5224 static char *create_unique_id(struct kmem_cache *s)
5225 {
5226 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5227 char *p = name;
5228
5229 BUG_ON(!name);
5230
5231 *p++ = ':';
5232 /*
5233 * First flags affecting slabcache operations. We will only
5234 * get here for aliasable slabs so we do not need to support
5235 * too many flags. The flags here must cover all flags that
5236 * are matched during merging to guarantee that the id is
5237 * unique.
5238 */
5239 if (s->flags & SLAB_CACHE_DMA)
5240 *p++ = 'd';
5241 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5242 *p++ = 'a';
5243 if (s->flags & SLAB_DEBUG_FREE)
5244 *p++ = 'F';
5245 if (!(s->flags & SLAB_NOTRACK))
5246 *p++ = 't';
5247 if (p != name + 1)
5248 *p++ = '-';
5249 p += sprintf(p, "%07d", s->size);
5250 BUG_ON(p > name + ID_STR_LENGTH - 1);
5251 return name;
5252 }
5253
5254 static int sysfs_slab_add(struct kmem_cache *s)
5255 {
5256 int err;
5257 const char *name;
5258 int unmergeable;
5259
5260 if (slab_state < SYSFS)
5261 /* Defer until later */
5262 return 0;
5263
5264 unmergeable = slab_unmergeable(s);
5265 if (unmergeable) {
5266 /*
5267 * Slabcache can never be merged so we can use the name proper.
5268 * This is typically the case for debug situations. In that
5269 * case we can catch duplicate names easily.
5270 */
5271 sysfs_remove_link(&slab_kset->kobj, s->name);
5272 name = s->name;
5273 } else {
5274 /*
5275 * Create a unique name for the slab as a target
5276 * for the symlinks.
5277 */
5278 name = create_unique_id(s);
5279 }
5280
5281 s->kobj.kset = slab_kset;
5282 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5283 if (err) {
5284 kobject_put(&s->kobj);
5285 return err;
5286 }
5287
5288 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5289 if (err) {
5290 kobject_del(&s->kobj);
5291 kobject_put(&s->kobj);
5292 return err;
5293 }
5294 kobject_uevent(&s->kobj, KOBJ_ADD);
5295 if (!unmergeable) {
5296 /* Setup first alias */
5297 sysfs_slab_alias(s, s->name);
5298 kfree(name);
5299 }
5300 return 0;
5301 }
5302
5303 static void sysfs_slab_remove(struct kmem_cache *s)
5304 {
5305 if (slab_state < SYSFS)
5306 /*
5307 * Sysfs has not been setup yet so no need to remove the
5308 * cache from sysfs.
5309 */
5310 return;
5311
5312 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5313 kobject_del(&s->kobj);
5314 kobject_put(&s->kobj);
5315 }
5316
5317 /*
5318 * Need to buffer aliases during bootup until sysfs becomes
5319 * available lest we lose that information.
5320 */
5321 struct saved_alias {
5322 struct kmem_cache *s;
5323 const char *name;
5324 struct saved_alias *next;
5325 };
5326
5327 static struct saved_alias *alias_list;
5328
5329 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5330 {
5331 struct saved_alias *al;
5332
5333 if (slab_state == SYSFS) {
5334 /*
5335 * If we have a leftover link then remove it.
5336 */
5337 sysfs_remove_link(&slab_kset->kobj, name);
5338 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5339 }
5340
5341 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5342 if (!al)
5343 return -ENOMEM;
5344
5345 al->s = s;
5346 al->name = name;
5347 al->next = alias_list;
5348 alias_list = al;
5349 return 0;
5350 }
5351
5352 static int __init slab_sysfs_init(void)
5353 {
5354 struct kmem_cache *s;
5355 int err;
5356
5357 down_write(&slub_lock);
5358
5359 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5360 if (!slab_kset) {
5361 up_write(&slub_lock);
5362 printk(KERN_ERR "Cannot register slab subsystem.\n");
5363 return -ENOSYS;
5364 }
5365
5366 slab_state = SYSFS;
5367
5368 list_for_each_entry(s, &slab_caches, list) {
5369 err = sysfs_slab_add(s);
5370 if (err)
5371 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5372 " to sysfs\n", s->name);
5373 }
5374
5375 while (alias_list) {
5376 struct saved_alias *al = alias_list;
5377
5378 alias_list = alias_list->next;
5379 err = sysfs_slab_alias(al->s, al->name);
5380 if (err)
5381 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5382 " %s to sysfs\n", s->name);
5383 kfree(al);
5384 }
5385
5386 up_write(&slub_lock);
5387 resiliency_test();
5388 return 0;
5389 }
5390
5391 __initcall(slab_sysfs_init);
5392 #endif /* CONFIG_SYSFS */
5393
5394 /*
5395 * The /proc/slabinfo ABI
5396 */
5397 #ifdef CONFIG_SLABINFO
5398 static void print_slabinfo_header(struct seq_file *m)
5399 {
5400 seq_puts(m, "slabinfo - version: 2.1\n");
5401 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5402 "<objperslab> <pagesperslab>");
5403 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5404 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5405 seq_putc(m, '\n');
5406 }
5407
5408 static void *s_start(struct seq_file *m, loff_t *pos)
5409 {
5410 loff_t n = *pos;
5411
5412 down_read(&slub_lock);
5413 if (!n)
5414 print_slabinfo_header(m);
5415
5416 return seq_list_start(&slab_caches, *pos);
5417 }
5418
5419 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5420 {
5421 return seq_list_next(p, &slab_caches, pos);
5422 }
5423
5424 static void s_stop(struct seq_file *m, void *p)
5425 {
5426 up_read(&slub_lock);
5427 }
5428
5429 static int s_show(struct seq_file *m, void *p)
5430 {
5431 unsigned long nr_partials = 0;
5432 unsigned long nr_slabs = 0;
5433 unsigned long nr_inuse = 0;
5434 unsigned long nr_objs = 0;
5435 unsigned long nr_free = 0;
5436 struct kmem_cache *s;
5437 int node;
5438
5439 s = list_entry(p, struct kmem_cache, list);
5440
5441 for_each_online_node(node) {
5442 struct kmem_cache_node *n = get_node(s, node);
5443
5444 if (!n)
5445 continue;
5446
5447 nr_partials += n->nr_partial;
5448 nr_slabs += atomic_long_read(&n->nr_slabs);
5449 nr_objs += atomic_long_read(&n->total_objects);
5450 nr_free += count_partial(n, count_free);
5451 }
5452
5453 nr_inuse = nr_objs - nr_free;
5454
5455 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5456 nr_objs, s->size, oo_objects(s->oo),
5457 (1 << oo_order(s->oo)));
5458 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5459 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5460 0UL);
5461 seq_putc(m, '\n');
5462 return 0;
5463 }
5464
5465 static const struct seq_operations slabinfo_op = {
5466 .start = s_start,
5467 .next = s_next,
5468 .stop = s_stop,
5469 .show = s_show,
5470 };
5471
5472 static int slabinfo_open(struct inode *inode, struct file *file)
5473 {
5474 return seq_open(file, &slabinfo_op);
5475 }
5476
5477 static const struct file_operations proc_slabinfo_operations = {
5478 .open = slabinfo_open,
5479 .read = seq_read,
5480 .llseek = seq_lseek,
5481 .release = seq_release,
5482 };
5483
5484 static int __init slab_proc_init(void)
5485 {
5486 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5487 return 0;
5488 }
5489 module_init(slab_proc_init);
5490 #endif /* CONFIG_SLABINFO */
This page took 0.135316 seconds and 6 git commands to generate.