Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 #include <linux/prefetch.h>
33
34 #include <trace/events/kmem.h>
35
36 /*
37 * Lock order:
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
41 *
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81 * freed then the slab will show up again on the partial lists.
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
103 * freelist that allows lockless access to
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
109 * the fast path and disables lockless freelists.
110 */
111
112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115 static inline int kmem_cache_debug(struct kmem_cache *s)
116 {
117 #ifdef CONFIG_SLUB_DEBUG
118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119 #else
120 return 0;
121 #endif
122 }
123
124 /*
125 * Issues still to be resolved:
126 *
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
129 * - Variable sizing of the per node arrays
130 */
131
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
134
135 /* Enable to log cmpxchg failures */
136 #undef SLUB_DEBUG_CMPXCHG
137
138 /*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
142 #define MIN_PARTIAL 5
143
144 /*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149 #define MAX_PARTIAL 10
150
151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
153
154 /*
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
158 */
159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160
161 /*
162 * Set of flags that will prevent slab merging
163 */
164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
167
168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169 SLAB_CACHE_DMA | SLAB_NOTRACK)
170
171 #define OO_SHIFT 16
172 #define OO_MASK ((1 << OO_SHIFT) - 1)
173 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174
175 /* Internal SLUB flags */
176 #define __OBJECT_POISON 0x80000000UL /* Poison object */
177 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178
179 static int kmem_size = sizeof(struct kmem_cache);
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 static enum {
186 DOWN, /* No slab functionality available */
187 PARTIAL, /* Kmem_cache_node works */
188 UP, /* Everything works but does not show up in sysfs */
189 SYSFS /* Sysfs up */
190 } slab_state = DOWN;
191
192 /* A list of all slab caches on the system */
193 static DECLARE_RWSEM(slub_lock);
194 static LIST_HEAD(slab_caches);
195
196 /*
197 * Tracking user of a slab.
198 */
199 #define TRACK_ADDRS_COUNT 16
200 struct track {
201 unsigned long addr; /* Called from address */
202 #ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204 #endif
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208 };
209
210 enum track_item { TRACK_ALLOC, TRACK_FREE };
211
212 #ifdef CONFIG_SYSFS
213 static int sysfs_slab_add(struct kmem_cache *);
214 static int sysfs_slab_alias(struct kmem_cache *, const char *);
215 static void sysfs_slab_remove(struct kmem_cache *);
216
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221 static inline void sysfs_slab_remove(struct kmem_cache *s)
222 {
223 kfree(s->name);
224 kfree(s);
225 }
226
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 __this_cpu_inc(s->cpu_slab->stat[si]);
233 #endif
234 }
235
236 /********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240 int slab_is_available(void)
241 {
242 return slab_state >= UP;
243 }
244
245 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246 {
247 return s->node[node];
248 }
249
250 /* Verify that a pointer has an address that is valid within a slab page */
251 static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253 {
254 void *base;
255
256 if (!object)
257 return 1;
258
259 base = page_address(page);
260 if (object < base || object >= base + page->objects * s->size ||
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266 }
267
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 {
270 return *(void **)(object + s->offset);
271 }
272
273 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274 {
275 prefetch(object + s->offset);
276 }
277
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 void *p;
281
282 #ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284 #else
285 p = get_freepointer(s, object);
286 #endif
287 return p;
288 }
289
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291 {
292 *(void **)(object + s->offset) = fp;
293 }
294
295 /* Loop over all objects in a slab */
296 #define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
298 __p += (__s)->size)
299
300 /* Determine object index from a given position */
301 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302 {
303 return (p - addr) / s->size;
304 }
305
306 static inline size_t slab_ksize(const struct kmem_cache *s)
307 {
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
315
316 #endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328 }
329
330 static inline int order_objects(int order, unsigned long size, int reserved)
331 {
332 return ((PAGE_SIZE << order) - reserved) / size;
333 }
334
335 static inline struct kmem_cache_order_objects oo_make(int order,
336 unsigned long size, int reserved)
337 {
338 struct kmem_cache_order_objects x = {
339 (order << OO_SHIFT) + order_objects(order, size, reserved)
340 };
341
342 return x;
343 }
344
345 static inline int oo_order(struct kmem_cache_order_objects x)
346 {
347 return x.x >> OO_SHIFT;
348 }
349
350 static inline int oo_objects(struct kmem_cache_order_objects x)
351 {
352 return x.x & OO_MASK;
353 }
354
355 /*
356 * Per slab locking using the pagelock
357 */
358 static __always_inline void slab_lock(struct page *page)
359 {
360 bit_spin_lock(PG_locked, &page->flags);
361 }
362
363 static __always_inline void slab_unlock(struct page *page)
364 {
365 __bit_spin_unlock(PG_locked, &page->flags);
366 }
367
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373 {
374 VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 if (s->flags & __CMPXCHG_DOUBLE) {
378 if (cmpxchg_double(&page->freelist, &page->counters,
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383 #endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398 #ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400 #endif
401
402 return 0;
403 }
404
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409 {
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 if (s->flags & __CMPXCHG_DOUBLE) {
413 if (cmpxchg_double(&page->freelist, &page->counters,
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418 #endif
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 slab_lock(page);
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
427 slab_unlock(page);
428 local_irq_restore(flags);
429 return 1;
430 }
431 slab_unlock(page);
432 local_irq_restore(flags);
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438 #ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440 #endif
441
442 return 0;
443 }
444
445 #ifdef CONFIG_SLUB_DEBUG
446 /*
447 * Determine a map of object in use on a page.
448 *
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
451 */
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 {
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459 }
460
461 /*
462 * Debug settings:
463 */
464 #ifdef CONFIG_SLUB_DEBUG_ON
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #else
467 static int slub_debug;
468 #endif
469
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472
473 /*
474 * Object debugging
475 */
476 static void print_section(char *text, u8 *addr, unsigned int length)
477 {
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
480 }
481
482 static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484 {
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493 }
494
495 static void set_track(struct kmem_cache *s, void *object,
496 enum track_item alloc, unsigned long addr)
497 {
498 struct track *p = get_track(s, object, alloc);
499
500 if (addr) {
501 #ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518 #endif
519 p->addr = addr;
520 p->cpu = smp_processor_id();
521 p->pid = current->pid;
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525 }
526
527 static void init_tracking(struct kmem_cache *s, void *object)
528 {
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
534 }
535
536 static void print_track(const char *s, struct track *t)
537 {
538 if (!t->addr)
539 return;
540
541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
543 #ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552 #endif
553 }
554
555 static void print_tracking(struct kmem_cache *s, void *object)
556 {
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562 }
563
564 static void print_page_info(struct page *page)
565 {
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
568
569 }
570
571 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572 {
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
584 }
585
586 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587 {
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595 }
596
597 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
598 {
599 unsigned int off; /* Offset of last byte */
600 u8 *addr = page_address(page);
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
610 print_section("Bytes b4 ", p - 16, 16);
611
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
614 if (s->flags & SLAB_RED_ZONE)
615 print_section("Redzone ", p + s->objsize,
616 s->inuse - s->objsize);
617
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
623 if (s->flags & SLAB_STORE_USER)
624 off += 2 * sizeof(struct track);
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
628 print_section("Padding ", p + off, s->size - off);
629
630 dump_stack();
631 }
632
633 static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635 {
636 slab_bug(s, "%s", reason);
637 print_trailer(s, page, object);
638 }
639
640 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
659 p[s->objsize - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->objsize, val, s->inuse - s->objsize);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->objsize))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
800 }
801 }
802
803 if (s->flags & SLAB_POISON) {
804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
808 p + s->objsize - 1, POISON_END, 1)))
809 return 0;
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
816 if (!s->offset && val == SLUB_RED_ACTIVE)
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
827 * No choice but to zap it and thus lose the remainder
828 * of the free objects in this slab. May cause
829 * another error because the object count is now wrong.
830 */
831 set_freepointer(s, p, NULL);
832 return 0;
833 }
834 return 1;
835 }
836
837 static int check_slab(struct kmem_cache *s, struct page *page)
838 {
839 int maxobj;
840
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
844 slab_err(s, page, "Not a valid slab page");
845 return 0;
846 }
847
848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
855 slab_err(s, page, "inuse %u > max %u",
856 s->name, page->inuse, page->objects);
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862 }
863
864 /*
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
867 */
868 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869 {
870 int nr = 0;
871 void *fp;
872 void *object = NULL;
873 unsigned long max_objects;
874
875 fp = page->freelist;
876 while (fp && nr <= page->objects) {
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
883 set_freepointer(s, object, NULL);
884 break;
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object, s->objsize);
930
931 dump_stack();
932 }
933 }
934
935 /*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940 {
941 flags &= gfp_allowed_mask;
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->objsize, flags, s->flags);
946 }
947
948 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949 {
950 flags &= gfp_allowed_mask;
951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953 }
954
955 static inline void slab_free_hook(struct kmem_cache *s, void *x)
956 {
957 kmemleak_free_recursive(x, s->flags);
958
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
971 local_irq_restore(flags);
972 }
973 #endif
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
976 }
977
978 /*
979 * Tracking of fully allocated slabs for debugging purposes.
980 *
981 * list_lock must be held.
982 */
983 static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
985 {
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
989 list_add(&page->lru, &n->full);
990 }
991
992 /*
993 * list_lock must be held.
994 */
995 static void remove_full(struct kmem_cache *s, struct page *page)
996 {
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
1000 list_del(&page->lru);
1001 }
1002
1003 /* Tracking of the number of slabs for debugging purposes */
1004 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005 {
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009 }
1010
1011 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012 {
1013 return atomic_long_read(&n->nr_slabs);
1014 }
1015
1016 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1017 {
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
1026 if (n) {
1027 atomic_long_inc(&n->nr_slabs);
1028 atomic_long_add(objects, &n->total_objects);
1029 }
1030 }
1031 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1032 {
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
1036 atomic_long_sub(objects, &n->total_objects);
1037 }
1038
1039 /* Object debug checks for alloc/free paths */
1040 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042 {
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
1046 init_object(s, object, SLUB_RED_INACTIVE);
1047 init_tracking(s, object);
1048 }
1049
1050 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051 void *object, unsigned long addr)
1052 {
1053 if (!check_slab(s, page))
1054 goto bad;
1055
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
1058 goto bad;
1059 }
1060
1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062 goto bad;
1063
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
1068 init_object(s, object, SLUB_RED_ACTIVE);
1069 return 1;
1070
1071 bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
1076 * as used avoids touching the remaining objects.
1077 */
1078 slab_fix(s, "Marking all objects used");
1079 page->inuse = page->objects;
1080 page->freelist = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
1087 {
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
1092 slab_lock(page);
1093
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
1103 object_err(s, page, object, "Object already free");
1104 goto fail;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108 goto out;
1109
1110 if (unlikely(s != page->slab)) {
1111 if (!PageSlab(page)) {
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
1114 } else if (!page->slab) {
1115 printk(KERN_ERR
1116 "SLUB <none>: no slab for object 0x%p.\n",
1117 object);
1118 dump_stack();
1119 } else
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
1122 goto fail;
1123 }
1124
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
1128 init_object(s, object, SLUB_RED_INACTIVE);
1129 rc = 1;
1130 out:
1131 slab_unlock(page);
1132 local_irq_restore(flags);
1133 return rc;
1134
1135 fail:
1136 slab_fix(s, "Object at 0x%p not freed", object);
1137 goto out;
1138 }
1139
1140 static int __init setup_slub_debug(char *str)
1141 {
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
1175 for (; *str && *str != ','; str++) {
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
1197 "unknown. skipped\n", *str);
1198 }
1199 }
1200
1201 check_slabs:
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
1204 out:
1205 return 1;
1206 }
1207
1208 __setup("slub_debug", setup_slub_debug);
1209
1210 static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
1212 void (*ctor)(void *))
1213 {
1214 /*
1215 * Enable debugging if selected on the kernel commandline.
1216 */
1217 if (slub_debug && (!slub_debug_slabs ||
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
1220
1221 return flags;
1222 }
1223 #else
1224 static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
1226
1227 static inline int alloc_debug_processing(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr) { return 0; }
1229
1230 static inline int free_debug_processing(struct kmem_cache *s,
1231 struct page *page, void *object, unsigned long addr) { return 0; }
1232
1233 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235 static inline int check_object(struct kmem_cache *s, struct page *page,
1236 void *object, u8 val) { return 1; }
1237 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
1239 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
1242 void (*ctor)(void *))
1243 {
1244 return flags;
1245 }
1246 #define slub_debug 0
1247
1248 #define disable_higher_order_debug 0
1249
1250 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
1252 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
1254 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
1258
1259 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
1267 #endif /* CONFIG_SLUB_DEBUG */
1268
1269 /*
1270 * Slab allocation and freeing
1271 */
1272 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274 {
1275 int order = oo_order(oo);
1276
1277 flags |= __GFP_NOTRACK;
1278
1279 if (node == NUMA_NO_NODE)
1280 return alloc_pages(flags, order);
1281 else
1282 return alloc_pages_exact_node(node, flags, order);
1283 }
1284
1285 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286 {
1287 struct page *page;
1288 struct kmem_cache_order_objects oo = s->oo;
1289 gfp_t alloc_gfp;
1290
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
1296 flags |= s->allocflags;
1297
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
1312
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
1315 }
1316
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
1323 if (kmemcheck_enabled
1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
1337 }
1338
1339 page->objects = oo_objects(oo);
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343 1 << oo_order(oo));
1344
1345 return page;
1346 }
1347
1348 static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350 {
1351 setup_object_debug(s, page, object);
1352 if (unlikely(s->ctor))
1353 s->ctor(object);
1354 }
1355
1356 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357 {
1358 struct page *page;
1359 void *start;
1360 void *last;
1361 void *p;
1362
1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1364
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367 if (!page)
1368 goto out;
1369
1370 inc_slabs_node(s, page_to_nid(page), page->objects);
1371 page->slab = s;
1372 page->flags |= 1 << PG_slab;
1373
1374 start = page_address(page);
1375
1376 if (unlikely(s->flags & SLAB_POISON))
1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1378
1379 last = start;
1380 for_each_object(p, s, start, page->objects) {
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
1386 set_freepointer(s, last, NULL);
1387
1388 page->freelist = start;
1389 page->inuse = page->objects;
1390 page->frozen = 1;
1391 out:
1392 return page;
1393 }
1394
1395 static void __free_slab(struct kmem_cache *s, struct page *page)
1396 {
1397 int order = compound_order(page);
1398 int pages = 1 << order;
1399
1400 if (kmem_cache_debug(s)) {
1401 void *p;
1402
1403 slab_pad_check(s, page);
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
1406 check_object(s, page, p, SLUB_RED_INACTIVE);
1407 }
1408
1409 kmemcheck_free_shadow(page, compound_order(page));
1410
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414 -pages);
1415
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
1420 __free_pages(page, order);
1421 }
1422
1423 #define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
1426 static void rcu_free_slab(struct rcu_head *h)
1427 {
1428 struct page *page;
1429
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
1435 __free_slab(page->slab, page);
1436 }
1437
1438 static void free_slab(struct kmem_cache *s, struct page *page)
1439 {
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459 }
1460
1461 static void discard_slab(struct kmem_cache *s, struct page *page)
1462 {
1463 dec_slabs_node(s, page_to_nid(page), page->objects);
1464 free_slab(s, page);
1465 }
1466
1467 /*
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
1471 */
1472 static inline void add_partial(struct kmem_cache_node *n,
1473 struct page *page, int tail)
1474 {
1475 n->nr_partial++;
1476 if (tail == DEACTIVATE_TO_TAIL)
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
1480 }
1481
1482 /*
1483 * list_lock must be held.
1484 */
1485 static inline void remove_partial(struct kmem_cache_node *n,
1486 struct page *page)
1487 {
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490 }
1491
1492 /*
1493 * Lock slab, remove from the partial list and put the object into the
1494 * per cpu freelist.
1495 *
1496 * Returns a list of objects or NULL if it fails.
1497 *
1498 * Must hold list_lock.
1499 */
1500 static inline void *acquire_slab(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct page *page,
1502 int mode)
1503 {
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
1513 do {
1514 freelist = page->freelist;
1515 counters = page->counters;
1516 new.counters = counters;
1517 if (mode)
1518 new.inuse = page->objects;
1519
1520 VM_BUG_ON(new.frozen);
1521 new.frozen = 1;
1522
1523 } while (!__cmpxchg_double_slab(s, page,
1524 freelist, counters,
1525 NULL, new.counters,
1526 "lock and freeze"));
1527
1528 remove_partial(n, page);
1529 return freelist;
1530 }
1531
1532 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1533
1534 /*
1535 * Try to allocate a partial slab from a specific node.
1536 */
1537 static void *get_partial_node(struct kmem_cache *s,
1538 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1539 {
1540 struct page *page, *page2;
1541 void *object = NULL;
1542
1543 /*
1544 * Racy check. If we mistakenly see no partial slabs then we
1545 * just allocate an empty slab. If we mistakenly try to get a
1546 * partial slab and there is none available then get_partials()
1547 * will return NULL.
1548 */
1549 if (!n || !n->nr_partial)
1550 return NULL;
1551
1552 spin_lock(&n->list_lock);
1553 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1554 void *t = acquire_slab(s, n, page, object == NULL);
1555 int available;
1556
1557 if (!t)
1558 break;
1559
1560 if (!object) {
1561 c->page = page;
1562 c->node = page_to_nid(page);
1563 stat(s, ALLOC_FROM_PARTIAL);
1564 object = t;
1565 available = page->objects - page->inuse;
1566 } else {
1567 page->freelist = t;
1568 available = put_cpu_partial(s, page, 0);
1569 stat(s, CPU_PARTIAL_NODE);
1570 }
1571 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1572 break;
1573
1574 }
1575 spin_unlock(&n->list_lock);
1576 return object;
1577 }
1578
1579 /*
1580 * Get a page from somewhere. Search in increasing NUMA distances.
1581 */
1582 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1583 struct kmem_cache_cpu *c)
1584 {
1585 #ifdef CONFIG_NUMA
1586 struct zonelist *zonelist;
1587 struct zoneref *z;
1588 struct zone *zone;
1589 enum zone_type high_zoneidx = gfp_zone(flags);
1590 void *object;
1591 unsigned int cpuset_mems_cookie;
1592
1593 /*
1594 * The defrag ratio allows a configuration of the tradeoffs between
1595 * inter node defragmentation and node local allocations. A lower
1596 * defrag_ratio increases the tendency to do local allocations
1597 * instead of attempting to obtain partial slabs from other nodes.
1598 *
1599 * If the defrag_ratio is set to 0 then kmalloc() always
1600 * returns node local objects. If the ratio is higher then kmalloc()
1601 * may return off node objects because partial slabs are obtained
1602 * from other nodes and filled up.
1603 *
1604 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1605 * defrag_ratio = 1000) then every (well almost) allocation will
1606 * first attempt to defrag slab caches on other nodes. This means
1607 * scanning over all nodes to look for partial slabs which may be
1608 * expensive if we do it every time we are trying to find a slab
1609 * with available objects.
1610 */
1611 if (!s->remote_node_defrag_ratio ||
1612 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1613 return NULL;
1614
1615 do {
1616 cpuset_mems_cookie = get_mems_allowed();
1617 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1618 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1619 struct kmem_cache_node *n;
1620
1621 n = get_node(s, zone_to_nid(zone));
1622
1623 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1624 n->nr_partial > s->min_partial) {
1625 object = get_partial_node(s, n, c);
1626 if (object) {
1627 /*
1628 * Return the object even if
1629 * put_mems_allowed indicated that
1630 * the cpuset mems_allowed was
1631 * updated in parallel. It's a
1632 * harmless race between the alloc
1633 * and the cpuset update.
1634 */
1635 put_mems_allowed(cpuset_mems_cookie);
1636 return object;
1637 }
1638 }
1639 }
1640 } while (!put_mems_allowed(cpuset_mems_cookie));
1641 #endif
1642 return NULL;
1643 }
1644
1645 /*
1646 * Get a partial page, lock it and return it.
1647 */
1648 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1649 struct kmem_cache_cpu *c)
1650 {
1651 void *object;
1652 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1653
1654 object = get_partial_node(s, get_node(s, searchnode), c);
1655 if (object || node != NUMA_NO_NODE)
1656 return object;
1657
1658 return get_any_partial(s, flags, c);
1659 }
1660
1661 #ifdef CONFIG_PREEMPT
1662 /*
1663 * Calculate the next globally unique transaction for disambiguiation
1664 * during cmpxchg. The transactions start with the cpu number and are then
1665 * incremented by CONFIG_NR_CPUS.
1666 */
1667 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1668 #else
1669 /*
1670 * No preemption supported therefore also no need to check for
1671 * different cpus.
1672 */
1673 #define TID_STEP 1
1674 #endif
1675
1676 static inline unsigned long next_tid(unsigned long tid)
1677 {
1678 return tid + TID_STEP;
1679 }
1680
1681 static inline unsigned int tid_to_cpu(unsigned long tid)
1682 {
1683 return tid % TID_STEP;
1684 }
1685
1686 static inline unsigned long tid_to_event(unsigned long tid)
1687 {
1688 return tid / TID_STEP;
1689 }
1690
1691 static inline unsigned int init_tid(int cpu)
1692 {
1693 return cpu;
1694 }
1695
1696 static inline void note_cmpxchg_failure(const char *n,
1697 const struct kmem_cache *s, unsigned long tid)
1698 {
1699 #ifdef SLUB_DEBUG_CMPXCHG
1700 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1701
1702 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1703
1704 #ifdef CONFIG_PREEMPT
1705 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1706 printk("due to cpu change %d -> %d\n",
1707 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1708 else
1709 #endif
1710 if (tid_to_event(tid) != tid_to_event(actual_tid))
1711 printk("due to cpu running other code. Event %ld->%ld\n",
1712 tid_to_event(tid), tid_to_event(actual_tid));
1713 else
1714 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 actual_tid, tid, next_tid(tid));
1716 #endif
1717 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1718 }
1719
1720 void init_kmem_cache_cpus(struct kmem_cache *s)
1721 {
1722 int cpu;
1723
1724 for_each_possible_cpu(cpu)
1725 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1726 }
1727
1728 /*
1729 * Remove the cpu slab
1730 */
1731 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1732 {
1733 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1734 struct page *page = c->page;
1735 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1736 int lock = 0;
1737 enum slab_modes l = M_NONE, m = M_NONE;
1738 void *freelist;
1739 void *nextfree;
1740 int tail = DEACTIVATE_TO_HEAD;
1741 struct page new;
1742 struct page old;
1743
1744 if (page->freelist) {
1745 stat(s, DEACTIVATE_REMOTE_FREES);
1746 tail = DEACTIVATE_TO_TAIL;
1747 }
1748
1749 c->tid = next_tid(c->tid);
1750 c->page = NULL;
1751 freelist = c->freelist;
1752 c->freelist = NULL;
1753
1754 /*
1755 * Stage one: Free all available per cpu objects back
1756 * to the page freelist while it is still frozen. Leave the
1757 * last one.
1758 *
1759 * There is no need to take the list->lock because the page
1760 * is still frozen.
1761 */
1762 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1763 void *prior;
1764 unsigned long counters;
1765
1766 do {
1767 prior = page->freelist;
1768 counters = page->counters;
1769 set_freepointer(s, freelist, prior);
1770 new.counters = counters;
1771 new.inuse--;
1772 VM_BUG_ON(!new.frozen);
1773
1774 } while (!__cmpxchg_double_slab(s, page,
1775 prior, counters,
1776 freelist, new.counters,
1777 "drain percpu freelist"));
1778
1779 freelist = nextfree;
1780 }
1781
1782 /*
1783 * Stage two: Ensure that the page is unfrozen while the
1784 * list presence reflects the actual number of objects
1785 * during unfreeze.
1786 *
1787 * We setup the list membership and then perform a cmpxchg
1788 * with the count. If there is a mismatch then the page
1789 * is not unfrozen but the page is on the wrong list.
1790 *
1791 * Then we restart the process which may have to remove
1792 * the page from the list that we just put it on again
1793 * because the number of objects in the slab may have
1794 * changed.
1795 */
1796 redo:
1797
1798 old.freelist = page->freelist;
1799 old.counters = page->counters;
1800 VM_BUG_ON(!old.frozen);
1801
1802 /* Determine target state of the slab */
1803 new.counters = old.counters;
1804 if (freelist) {
1805 new.inuse--;
1806 set_freepointer(s, freelist, old.freelist);
1807 new.freelist = freelist;
1808 } else
1809 new.freelist = old.freelist;
1810
1811 new.frozen = 0;
1812
1813 if (!new.inuse && n->nr_partial > s->min_partial)
1814 m = M_FREE;
1815 else if (new.freelist) {
1816 m = M_PARTIAL;
1817 if (!lock) {
1818 lock = 1;
1819 /*
1820 * Taking the spinlock removes the possiblity
1821 * that acquire_slab() will see a slab page that
1822 * is frozen
1823 */
1824 spin_lock(&n->list_lock);
1825 }
1826 } else {
1827 m = M_FULL;
1828 if (kmem_cache_debug(s) && !lock) {
1829 lock = 1;
1830 /*
1831 * This also ensures that the scanning of full
1832 * slabs from diagnostic functions will not see
1833 * any frozen slabs.
1834 */
1835 spin_lock(&n->list_lock);
1836 }
1837 }
1838
1839 if (l != m) {
1840
1841 if (l == M_PARTIAL)
1842
1843 remove_partial(n, page);
1844
1845 else if (l == M_FULL)
1846
1847 remove_full(s, page);
1848
1849 if (m == M_PARTIAL) {
1850
1851 add_partial(n, page, tail);
1852 stat(s, tail);
1853
1854 } else if (m == M_FULL) {
1855
1856 stat(s, DEACTIVATE_FULL);
1857 add_full(s, n, page);
1858
1859 }
1860 }
1861
1862 l = m;
1863 if (!__cmpxchg_double_slab(s, page,
1864 old.freelist, old.counters,
1865 new.freelist, new.counters,
1866 "unfreezing slab"))
1867 goto redo;
1868
1869 if (lock)
1870 spin_unlock(&n->list_lock);
1871
1872 if (m == M_FREE) {
1873 stat(s, DEACTIVATE_EMPTY);
1874 discard_slab(s, page);
1875 stat(s, FREE_SLAB);
1876 }
1877 }
1878
1879 /* Unfreeze all the cpu partial slabs */
1880 static void unfreeze_partials(struct kmem_cache *s)
1881 {
1882 struct kmem_cache_node *n = NULL;
1883 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1884 struct page *page, *discard_page = NULL;
1885
1886 while ((page = c->partial)) {
1887 enum slab_modes { M_PARTIAL, M_FREE };
1888 enum slab_modes l, m;
1889 struct page new;
1890 struct page old;
1891
1892 c->partial = page->next;
1893 l = M_FREE;
1894
1895 do {
1896
1897 old.freelist = page->freelist;
1898 old.counters = page->counters;
1899 VM_BUG_ON(!old.frozen);
1900
1901 new.counters = old.counters;
1902 new.freelist = old.freelist;
1903
1904 new.frozen = 0;
1905
1906 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1907 m = M_FREE;
1908 else {
1909 struct kmem_cache_node *n2 = get_node(s,
1910 page_to_nid(page));
1911
1912 m = M_PARTIAL;
1913 if (n != n2) {
1914 if (n)
1915 spin_unlock(&n->list_lock);
1916
1917 n = n2;
1918 spin_lock(&n->list_lock);
1919 }
1920 }
1921
1922 if (l != m) {
1923 if (l == M_PARTIAL) {
1924 remove_partial(n, page);
1925 stat(s, FREE_REMOVE_PARTIAL);
1926 } else {
1927 add_partial(n, page,
1928 DEACTIVATE_TO_TAIL);
1929 stat(s, FREE_ADD_PARTIAL);
1930 }
1931
1932 l = m;
1933 }
1934
1935 } while (!cmpxchg_double_slab(s, page,
1936 old.freelist, old.counters,
1937 new.freelist, new.counters,
1938 "unfreezing slab"));
1939
1940 if (m == M_FREE) {
1941 page->next = discard_page;
1942 discard_page = page;
1943 }
1944 }
1945
1946 if (n)
1947 spin_unlock(&n->list_lock);
1948
1949 while (discard_page) {
1950 page = discard_page;
1951 discard_page = discard_page->next;
1952
1953 stat(s, DEACTIVATE_EMPTY);
1954 discard_slab(s, page);
1955 stat(s, FREE_SLAB);
1956 }
1957 }
1958
1959 /*
1960 * Put a page that was just frozen (in __slab_free) into a partial page
1961 * slot if available. This is done without interrupts disabled and without
1962 * preemption disabled. The cmpxchg is racy and may put the partial page
1963 * onto a random cpus partial slot.
1964 *
1965 * If we did not find a slot then simply move all the partials to the
1966 * per node partial list.
1967 */
1968 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1969 {
1970 struct page *oldpage;
1971 int pages;
1972 int pobjects;
1973
1974 do {
1975 pages = 0;
1976 pobjects = 0;
1977 oldpage = this_cpu_read(s->cpu_slab->partial);
1978
1979 if (oldpage) {
1980 pobjects = oldpage->pobjects;
1981 pages = oldpage->pages;
1982 if (drain && pobjects > s->cpu_partial) {
1983 unsigned long flags;
1984 /*
1985 * partial array is full. Move the existing
1986 * set to the per node partial list.
1987 */
1988 local_irq_save(flags);
1989 unfreeze_partials(s);
1990 local_irq_restore(flags);
1991 pobjects = 0;
1992 pages = 0;
1993 stat(s, CPU_PARTIAL_DRAIN);
1994 }
1995 }
1996
1997 pages++;
1998 pobjects += page->objects - page->inuse;
1999
2000 page->pages = pages;
2001 page->pobjects = pobjects;
2002 page->next = oldpage;
2003
2004 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
2005 return pobjects;
2006 }
2007
2008 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2009 {
2010 stat(s, CPUSLAB_FLUSH);
2011 deactivate_slab(s, c);
2012 }
2013
2014 /*
2015 * Flush cpu slab.
2016 *
2017 * Called from IPI handler with interrupts disabled.
2018 */
2019 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2020 {
2021 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2022
2023 if (likely(c)) {
2024 if (c->page)
2025 flush_slab(s, c);
2026
2027 unfreeze_partials(s);
2028 }
2029 }
2030
2031 static void flush_cpu_slab(void *d)
2032 {
2033 struct kmem_cache *s = d;
2034
2035 __flush_cpu_slab(s, smp_processor_id());
2036 }
2037
2038 static void flush_all(struct kmem_cache *s)
2039 {
2040 on_each_cpu(flush_cpu_slab, s, 1);
2041 }
2042
2043 /*
2044 * Check if the objects in a per cpu structure fit numa
2045 * locality expectations.
2046 */
2047 static inline int node_match(struct kmem_cache_cpu *c, int node)
2048 {
2049 #ifdef CONFIG_NUMA
2050 if (node != NUMA_NO_NODE && c->node != node)
2051 return 0;
2052 #endif
2053 return 1;
2054 }
2055
2056 static int count_free(struct page *page)
2057 {
2058 return page->objects - page->inuse;
2059 }
2060
2061 static unsigned long count_partial(struct kmem_cache_node *n,
2062 int (*get_count)(struct page *))
2063 {
2064 unsigned long flags;
2065 unsigned long x = 0;
2066 struct page *page;
2067
2068 spin_lock_irqsave(&n->list_lock, flags);
2069 list_for_each_entry(page, &n->partial, lru)
2070 x += get_count(page);
2071 spin_unlock_irqrestore(&n->list_lock, flags);
2072 return x;
2073 }
2074
2075 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2076 {
2077 #ifdef CONFIG_SLUB_DEBUG
2078 return atomic_long_read(&n->total_objects);
2079 #else
2080 return 0;
2081 #endif
2082 }
2083
2084 static noinline void
2085 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2086 {
2087 int node;
2088
2089 printk(KERN_WARNING
2090 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2091 nid, gfpflags);
2092 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2093 "default order: %d, min order: %d\n", s->name, s->objsize,
2094 s->size, oo_order(s->oo), oo_order(s->min));
2095
2096 if (oo_order(s->min) > get_order(s->objsize))
2097 printk(KERN_WARNING " %s debugging increased min order, use "
2098 "slub_debug=O to disable.\n", s->name);
2099
2100 for_each_online_node(node) {
2101 struct kmem_cache_node *n = get_node(s, node);
2102 unsigned long nr_slabs;
2103 unsigned long nr_objs;
2104 unsigned long nr_free;
2105
2106 if (!n)
2107 continue;
2108
2109 nr_free = count_partial(n, count_free);
2110 nr_slabs = node_nr_slabs(n);
2111 nr_objs = node_nr_objs(n);
2112
2113 printk(KERN_WARNING
2114 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2115 node, nr_slabs, nr_objs, nr_free);
2116 }
2117 }
2118
2119 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2120 int node, struct kmem_cache_cpu **pc)
2121 {
2122 void *object;
2123 struct kmem_cache_cpu *c;
2124 struct page *page = new_slab(s, flags, node);
2125
2126 if (page) {
2127 c = __this_cpu_ptr(s->cpu_slab);
2128 if (c->page)
2129 flush_slab(s, c);
2130
2131 /*
2132 * No other reference to the page yet so we can
2133 * muck around with it freely without cmpxchg
2134 */
2135 object = page->freelist;
2136 page->freelist = NULL;
2137
2138 stat(s, ALLOC_SLAB);
2139 c->node = page_to_nid(page);
2140 c->page = page;
2141 *pc = c;
2142 } else
2143 object = NULL;
2144
2145 return object;
2146 }
2147
2148 /*
2149 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2150 * or deactivate the page.
2151 *
2152 * The page is still frozen if the return value is not NULL.
2153 *
2154 * If this function returns NULL then the page has been unfrozen.
2155 */
2156 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2157 {
2158 struct page new;
2159 unsigned long counters;
2160 void *freelist;
2161
2162 do {
2163 freelist = page->freelist;
2164 counters = page->counters;
2165 new.counters = counters;
2166 VM_BUG_ON(!new.frozen);
2167
2168 new.inuse = page->objects;
2169 new.frozen = freelist != NULL;
2170
2171 } while (!cmpxchg_double_slab(s, page,
2172 freelist, counters,
2173 NULL, new.counters,
2174 "get_freelist"));
2175
2176 return freelist;
2177 }
2178
2179 /*
2180 * Slow path. The lockless freelist is empty or we need to perform
2181 * debugging duties.
2182 *
2183 * Processing is still very fast if new objects have been freed to the
2184 * regular freelist. In that case we simply take over the regular freelist
2185 * as the lockless freelist and zap the regular freelist.
2186 *
2187 * If that is not working then we fall back to the partial lists. We take the
2188 * first element of the freelist as the object to allocate now and move the
2189 * rest of the freelist to the lockless freelist.
2190 *
2191 * And if we were unable to get a new slab from the partial slab lists then
2192 * we need to allocate a new slab. This is the slowest path since it involves
2193 * a call to the page allocator and the setup of a new slab.
2194 */
2195 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2196 unsigned long addr, struct kmem_cache_cpu *c)
2197 {
2198 void **object;
2199 unsigned long flags;
2200
2201 local_irq_save(flags);
2202 #ifdef CONFIG_PREEMPT
2203 /*
2204 * We may have been preempted and rescheduled on a different
2205 * cpu before disabling interrupts. Need to reload cpu area
2206 * pointer.
2207 */
2208 c = this_cpu_ptr(s->cpu_slab);
2209 #endif
2210
2211 if (!c->page)
2212 goto new_slab;
2213 redo:
2214 if (unlikely(!node_match(c, node))) {
2215 stat(s, ALLOC_NODE_MISMATCH);
2216 deactivate_slab(s, c);
2217 goto new_slab;
2218 }
2219
2220 /* must check again c->freelist in case of cpu migration or IRQ */
2221 object = c->freelist;
2222 if (object)
2223 goto load_freelist;
2224
2225 stat(s, ALLOC_SLOWPATH);
2226
2227 object = get_freelist(s, c->page);
2228
2229 if (!object) {
2230 c->page = NULL;
2231 stat(s, DEACTIVATE_BYPASS);
2232 goto new_slab;
2233 }
2234
2235 stat(s, ALLOC_REFILL);
2236
2237 load_freelist:
2238 c->freelist = get_freepointer(s, object);
2239 c->tid = next_tid(c->tid);
2240 local_irq_restore(flags);
2241 return object;
2242
2243 new_slab:
2244
2245 if (c->partial) {
2246 c->page = c->partial;
2247 c->partial = c->page->next;
2248 c->node = page_to_nid(c->page);
2249 stat(s, CPU_PARTIAL_ALLOC);
2250 c->freelist = NULL;
2251 goto redo;
2252 }
2253
2254 /* Then do expensive stuff like retrieving pages from the partial lists */
2255 object = get_partial(s, gfpflags, node, c);
2256
2257 if (unlikely(!object)) {
2258
2259 object = new_slab_objects(s, gfpflags, node, &c);
2260
2261 if (unlikely(!object)) {
2262 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2263 slab_out_of_memory(s, gfpflags, node);
2264
2265 local_irq_restore(flags);
2266 return NULL;
2267 }
2268 }
2269
2270 if (likely(!kmem_cache_debug(s)))
2271 goto load_freelist;
2272
2273 /* Only entered in the debug case */
2274 if (!alloc_debug_processing(s, c->page, object, addr))
2275 goto new_slab; /* Slab failed checks. Next slab needed */
2276
2277 c->freelist = get_freepointer(s, object);
2278 deactivate_slab(s, c);
2279 c->node = NUMA_NO_NODE;
2280 local_irq_restore(flags);
2281 return object;
2282 }
2283
2284 /*
2285 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2286 * have the fastpath folded into their functions. So no function call
2287 * overhead for requests that can be satisfied on the fastpath.
2288 *
2289 * The fastpath works by first checking if the lockless freelist can be used.
2290 * If not then __slab_alloc is called for slow processing.
2291 *
2292 * Otherwise we can simply pick the next object from the lockless free list.
2293 */
2294 static __always_inline void *slab_alloc(struct kmem_cache *s,
2295 gfp_t gfpflags, int node, unsigned long addr)
2296 {
2297 void **object;
2298 struct kmem_cache_cpu *c;
2299 unsigned long tid;
2300
2301 if (slab_pre_alloc_hook(s, gfpflags))
2302 return NULL;
2303
2304 redo:
2305
2306 /*
2307 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2308 * enabled. We may switch back and forth between cpus while
2309 * reading from one cpu area. That does not matter as long
2310 * as we end up on the original cpu again when doing the cmpxchg.
2311 */
2312 c = __this_cpu_ptr(s->cpu_slab);
2313
2314 /*
2315 * The transaction ids are globally unique per cpu and per operation on
2316 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2317 * occurs on the right processor and that there was no operation on the
2318 * linked list in between.
2319 */
2320 tid = c->tid;
2321 barrier();
2322
2323 object = c->freelist;
2324 if (unlikely(!object || !node_match(c, node)))
2325
2326 object = __slab_alloc(s, gfpflags, node, addr, c);
2327
2328 else {
2329 void *next_object = get_freepointer_safe(s, object);
2330
2331 /*
2332 * The cmpxchg will only match if there was no additional
2333 * operation and if we are on the right processor.
2334 *
2335 * The cmpxchg does the following atomically (without lock semantics!)
2336 * 1. Relocate first pointer to the current per cpu area.
2337 * 2. Verify that tid and freelist have not been changed
2338 * 3. If they were not changed replace tid and freelist
2339 *
2340 * Since this is without lock semantics the protection is only against
2341 * code executing on this cpu *not* from access by other cpus.
2342 */
2343 if (unlikely(!this_cpu_cmpxchg_double(
2344 s->cpu_slab->freelist, s->cpu_slab->tid,
2345 object, tid,
2346 next_object, next_tid(tid)))) {
2347
2348 note_cmpxchg_failure("slab_alloc", s, tid);
2349 goto redo;
2350 }
2351 prefetch_freepointer(s, next_object);
2352 stat(s, ALLOC_FASTPATH);
2353 }
2354
2355 if (unlikely(gfpflags & __GFP_ZERO) && object)
2356 memset(object, 0, s->objsize);
2357
2358 slab_post_alloc_hook(s, gfpflags, object);
2359
2360 return object;
2361 }
2362
2363 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2364 {
2365 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2366
2367 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2368
2369 return ret;
2370 }
2371 EXPORT_SYMBOL(kmem_cache_alloc);
2372
2373 #ifdef CONFIG_TRACING
2374 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2375 {
2376 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2377 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2378 return ret;
2379 }
2380 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2381
2382 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2383 {
2384 void *ret = kmalloc_order(size, flags, order);
2385 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2386 return ret;
2387 }
2388 EXPORT_SYMBOL(kmalloc_order_trace);
2389 #endif
2390
2391 #ifdef CONFIG_NUMA
2392 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2393 {
2394 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2395
2396 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2397 s->objsize, s->size, gfpflags, node);
2398
2399 return ret;
2400 }
2401 EXPORT_SYMBOL(kmem_cache_alloc_node);
2402
2403 #ifdef CONFIG_TRACING
2404 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2405 gfp_t gfpflags,
2406 int node, size_t size)
2407 {
2408 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2409
2410 trace_kmalloc_node(_RET_IP_, ret,
2411 size, s->size, gfpflags, node);
2412 return ret;
2413 }
2414 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2415 #endif
2416 #endif
2417
2418 /*
2419 * Slow patch handling. This may still be called frequently since objects
2420 * have a longer lifetime than the cpu slabs in most processing loads.
2421 *
2422 * So we still attempt to reduce cache line usage. Just take the slab
2423 * lock and free the item. If there is no additional partial page
2424 * handling required then we can return immediately.
2425 */
2426 static void __slab_free(struct kmem_cache *s, struct page *page,
2427 void *x, unsigned long addr)
2428 {
2429 void *prior;
2430 void **object = (void *)x;
2431 int was_frozen;
2432 int inuse;
2433 struct page new;
2434 unsigned long counters;
2435 struct kmem_cache_node *n = NULL;
2436 unsigned long uninitialized_var(flags);
2437
2438 stat(s, FREE_SLOWPATH);
2439
2440 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2441 return;
2442
2443 do {
2444 prior = page->freelist;
2445 counters = page->counters;
2446 set_freepointer(s, object, prior);
2447 new.counters = counters;
2448 was_frozen = new.frozen;
2449 new.inuse--;
2450 if ((!new.inuse || !prior) && !was_frozen && !n) {
2451
2452 if (!kmem_cache_debug(s) && !prior)
2453
2454 /*
2455 * Slab was on no list before and will be partially empty
2456 * We can defer the list move and instead freeze it.
2457 */
2458 new.frozen = 1;
2459
2460 else { /* Needs to be taken off a list */
2461
2462 n = get_node(s, page_to_nid(page));
2463 /*
2464 * Speculatively acquire the list_lock.
2465 * If the cmpxchg does not succeed then we may
2466 * drop the list_lock without any processing.
2467 *
2468 * Otherwise the list_lock will synchronize with
2469 * other processors updating the list of slabs.
2470 */
2471 spin_lock_irqsave(&n->list_lock, flags);
2472
2473 }
2474 }
2475 inuse = new.inuse;
2476
2477 } while (!cmpxchg_double_slab(s, page,
2478 prior, counters,
2479 object, new.counters,
2480 "__slab_free"));
2481
2482 if (likely(!n)) {
2483
2484 /*
2485 * If we just froze the page then put it onto the
2486 * per cpu partial list.
2487 */
2488 if (new.frozen && !was_frozen) {
2489 put_cpu_partial(s, page, 1);
2490 stat(s, CPU_PARTIAL_FREE);
2491 }
2492 /*
2493 * The list lock was not taken therefore no list
2494 * activity can be necessary.
2495 */
2496 if (was_frozen)
2497 stat(s, FREE_FROZEN);
2498 return;
2499 }
2500
2501 /*
2502 * was_frozen may have been set after we acquired the list_lock in
2503 * an earlier loop. So we need to check it here again.
2504 */
2505 if (was_frozen)
2506 stat(s, FREE_FROZEN);
2507 else {
2508 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2509 goto slab_empty;
2510
2511 /*
2512 * Objects left in the slab. If it was not on the partial list before
2513 * then add it.
2514 */
2515 if (unlikely(!prior)) {
2516 remove_full(s, page);
2517 add_partial(n, page, DEACTIVATE_TO_TAIL);
2518 stat(s, FREE_ADD_PARTIAL);
2519 }
2520 }
2521 spin_unlock_irqrestore(&n->list_lock, flags);
2522 return;
2523
2524 slab_empty:
2525 if (prior) {
2526 /*
2527 * Slab on the partial list.
2528 */
2529 remove_partial(n, page);
2530 stat(s, FREE_REMOVE_PARTIAL);
2531 } else
2532 /* Slab must be on the full list */
2533 remove_full(s, page);
2534
2535 spin_unlock_irqrestore(&n->list_lock, flags);
2536 stat(s, FREE_SLAB);
2537 discard_slab(s, page);
2538 }
2539
2540 /*
2541 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2542 * can perform fastpath freeing without additional function calls.
2543 *
2544 * The fastpath is only possible if we are freeing to the current cpu slab
2545 * of this processor. This typically the case if we have just allocated
2546 * the item before.
2547 *
2548 * If fastpath is not possible then fall back to __slab_free where we deal
2549 * with all sorts of special processing.
2550 */
2551 static __always_inline void slab_free(struct kmem_cache *s,
2552 struct page *page, void *x, unsigned long addr)
2553 {
2554 void **object = (void *)x;
2555 struct kmem_cache_cpu *c;
2556 unsigned long tid;
2557
2558 slab_free_hook(s, x);
2559
2560 redo:
2561 /*
2562 * Determine the currently cpus per cpu slab.
2563 * The cpu may change afterward. However that does not matter since
2564 * data is retrieved via this pointer. If we are on the same cpu
2565 * during the cmpxchg then the free will succedd.
2566 */
2567 c = __this_cpu_ptr(s->cpu_slab);
2568
2569 tid = c->tid;
2570 barrier();
2571
2572 if (likely(page == c->page)) {
2573 set_freepointer(s, object, c->freelist);
2574
2575 if (unlikely(!this_cpu_cmpxchg_double(
2576 s->cpu_slab->freelist, s->cpu_slab->tid,
2577 c->freelist, tid,
2578 object, next_tid(tid)))) {
2579
2580 note_cmpxchg_failure("slab_free", s, tid);
2581 goto redo;
2582 }
2583 stat(s, FREE_FASTPATH);
2584 } else
2585 __slab_free(s, page, x, addr);
2586
2587 }
2588
2589 void kmem_cache_free(struct kmem_cache *s, void *x)
2590 {
2591 struct page *page;
2592
2593 page = virt_to_head_page(x);
2594
2595 slab_free(s, page, x, _RET_IP_);
2596
2597 trace_kmem_cache_free(_RET_IP_, x);
2598 }
2599 EXPORT_SYMBOL(kmem_cache_free);
2600
2601 /*
2602 * Object placement in a slab is made very easy because we always start at
2603 * offset 0. If we tune the size of the object to the alignment then we can
2604 * get the required alignment by putting one properly sized object after
2605 * another.
2606 *
2607 * Notice that the allocation order determines the sizes of the per cpu
2608 * caches. Each processor has always one slab available for allocations.
2609 * Increasing the allocation order reduces the number of times that slabs
2610 * must be moved on and off the partial lists and is therefore a factor in
2611 * locking overhead.
2612 */
2613
2614 /*
2615 * Mininum / Maximum order of slab pages. This influences locking overhead
2616 * and slab fragmentation. A higher order reduces the number of partial slabs
2617 * and increases the number of allocations possible without having to
2618 * take the list_lock.
2619 */
2620 static int slub_min_order;
2621 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2622 static int slub_min_objects;
2623
2624 /*
2625 * Merge control. If this is set then no merging of slab caches will occur.
2626 * (Could be removed. This was introduced to pacify the merge skeptics.)
2627 */
2628 static int slub_nomerge;
2629
2630 /*
2631 * Calculate the order of allocation given an slab object size.
2632 *
2633 * The order of allocation has significant impact on performance and other
2634 * system components. Generally order 0 allocations should be preferred since
2635 * order 0 does not cause fragmentation in the page allocator. Larger objects
2636 * be problematic to put into order 0 slabs because there may be too much
2637 * unused space left. We go to a higher order if more than 1/16th of the slab
2638 * would be wasted.
2639 *
2640 * In order to reach satisfactory performance we must ensure that a minimum
2641 * number of objects is in one slab. Otherwise we may generate too much
2642 * activity on the partial lists which requires taking the list_lock. This is
2643 * less a concern for large slabs though which are rarely used.
2644 *
2645 * slub_max_order specifies the order where we begin to stop considering the
2646 * number of objects in a slab as critical. If we reach slub_max_order then
2647 * we try to keep the page order as low as possible. So we accept more waste
2648 * of space in favor of a small page order.
2649 *
2650 * Higher order allocations also allow the placement of more objects in a
2651 * slab and thereby reduce object handling overhead. If the user has
2652 * requested a higher mininum order then we start with that one instead of
2653 * the smallest order which will fit the object.
2654 */
2655 static inline int slab_order(int size, int min_objects,
2656 int max_order, int fract_leftover, int reserved)
2657 {
2658 int order;
2659 int rem;
2660 int min_order = slub_min_order;
2661
2662 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2663 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2664
2665 for (order = max(min_order,
2666 fls(min_objects * size - 1) - PAGE_SHIFT);
2667 order <= max_order; order++) {
2668
2669 unsigned long slab_size = PAGE_SIZE << order;
2670
2671 if (slab_size < min_objects * size + reserved)
2672 continue;
2673
2674 rem = (slab_size - reserved) % size;
2675
2676 if (rem <= slab_size / fract_leftover)
2677 break;
2678
2679 }
2680
2681 return order;
2682 }
2683
2684 static inline int calculate_order(int size, int reserved)
2685 {
2686 int order;
2687 int min_objects;
2688 int fraction;
2689 int max_objects;
2690
2691 /*
2692 * Attempt to find best configuration for a slab. This
2693 * works by first attempting to generate a layout with
2694 * the best configuration and backing off gradually.
2695 *
2696 * First we reduce the acceptable waste in a slab. Then
2697 * we reduce the minimum objects required in a slab.
2698 */
2699 min_objects = slub_min_objects;
2700 if (!min_objects)
2701 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2702 max_objects = order_objects(slub_max_order, size, reserved);
2703 min_objects = min(min_objects, max_objects);
2704
2705 while (min_objects > 1) {
2706 fraction = 16;
2707 while (fraction >= 4) {
2708 order = slab_order(size, min_objects,
2709 slub_max_order, fraction, reserved);
2710 if (order <= slub_max_order)
2711 return order;
2712 fraction /= 2;
2713 }
2714 min_objects--;
2715 }
2716
2717 /*
2718 * We were unable to place multiple objects in a slab. Now
2719 * lets see if we can place a single object there.
2720 */
2721 order = slab_order(size, 1, slub_max_order, 1, reserved);
2722 if (order <= slub_max_order)
2723 return order;
2724
2725 /*
2726 * Doh this slab cannot be placed using slub_max_order.
2727 */
2728 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2729 if (order < MAX_ORDER)
2730 return order;
2731 return -ENOSYS;
2732 }
2733
2734 /*
2735 * Figure out what the alignment of the objects will be.
2736 */
2737 static unsigned long calculate_alignment(unsigned long flags,
2738 unsigned long align, unsigned long size)
2739 {
2740 /*
2741 * If the user wants hardware cache aligned objects then follow that
2742 * suggestion if the object is sufficiently large.
2743 *
2744 * The hardware cache alignment cannot override the specified
2745 * alignment though. If that is greater then use it.
2746 */
2747 if (flags & SLAB_HWCACHE_ALIGN) {
2748 unsigned long ralign = cache_line_size();
2749 while (size <= ralign / 2)
2750 ralign /= 2;
2751 align = max(align, ralign);
2752 }
2753
2754 if (align < ARCH_SLAB_MINALIGN)
2755 align = ARCH_SLAB_MINALIGN;
2756
2757 return ALIGN(align, sizeof(void *));
2758 }
2759
2760 static void
2761 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2762 {
2763 n->nr_partial = 0;
2764 spin_lock_init(&n->list_lock);
2765 INIT_LIST_HEAD(&n->partial);
2766 #ifdef CONFIG_SLUB_DEBUG
2767 atomic_long_set(&n->nr_slabs, 0);
2768 atomic_long_set(&n->total_objects, 0);
2769 INIT_LIST_HEAD(&n->full);
2770 #endif
2771 }
2772
2773 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2774 {
2775 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2776 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2777
2778 /*
2779 * Must align to double word boundary for the double cmpxchg
2780 * instructions to work; see __pcpu_double_call_return_bool().
2781 */
2782 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2783 2 * sizeof(void *));
2784
2785 if (!s->cpu_slab)
2786 return 0;
2787
2788 init_kmem_cache_cpus(s);
2789
2790 return 1;
2791 }
2792
2793 static struct kmem_cache *kmem_cache_node;
2794
2795 /*
2796 * No kmalloc_node yet so do it by hand. We know that this is the first
2797 * slab on the node for this slabcache. There are no concurrent accesses
2798 * possible.
2799 *
2800 * Note that this function only works on the kmalloc_node_cache
2801 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2802 * memory on a fresh node that has no slab structures yet.
2803 */
2804 static void early_kmem_cache_node_alloc(int node)
2805 {
2806 struct page *page;
2807 struct kmem_cache_node *n;
2808
2809 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2810
2811 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2812
2813 BUG_ON(!page);
2814 if (page_to_nid(page) != node) {
2815 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2816 "node %d\n", node);
2817 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2818 "in order to be able to continue\n");
2819 }
2820
2821 n = page->freelist;
2822 BUG_ON(!n);
2823 page->freelist = get_freepointer(kmem_cache_node, n);
2824 page->inuse = 1;
2825 page->frozen = 0;
2826 kmem_cache_node->node[node] = n;
2827 #ifdef CONFIG_SLUB_DEBUG
2828 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2829 init_tracking(kmem_cache_node, n);
2830 #endif
2831 init_kmem_cache_node(n, kmem_cache_node);
2832 inc_slabs_node(kmem_cache_node, node, page->objects);
2833
2834 add_partial(n, page, DEACTIVATE_TO_HEAD);
2835 }
2836
2837 static void free_kmem_cache_nodes(struct kmem_cache *s)
2838 {
2839 int node;
2840
2841 for_each_node_state(node, N_NORMAL_MEMORY) {
2842 struct kmem_cache_node *n = s->node[node];
2843
2844 if (n)
2845 kmem_cache_free(kmem_cache_node, n);
2846
2847 s->node[node] = NULL;
2848 }
2849 }
2850
2851 static int init_kmem_cache_nodes(struct kmem_cache *s)
2852 {
2853 int node;
2854
2855 for_each_node_state(node, N_NORMAL_MEMORY) {
2856 struct kmem_cache_node *n;
2857
2858 if (slab_state == DOWN) {
2859 early_kmem_cache_node_alloc(node);
2860 continue;
2861 }
2862 n = kmem_cache_alloc_node(kmem_cache_node,
2863 GFP_KERNEL, node);
2864
2865 if (!n) {
2866 free_kmem_cache_nodes(s);
2867 return 0;
2868 }
2869
2870 s->node[node] = n;
2871 init_kmem_cache_node(n, s);
2872 }
2873 return 1;
2874 }
2875
2876 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2877 {
2878 if (min < MIN_PARTIAL)
2879 min = MIN_PARTIAL;
2880 else if (min > MAX_PARTIAL)
2881 min = MAX_PARTIAL;
2882 s->min_partial = min;
2883 }
2884
2885 /*
2886 * calculate_sizes() determines the order and the distribution of data within
2887 * a slab object.
2888 */
2889 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2890 {
2891 unsigned long flags = s->flags;
2892 unsigned long size = s->objsize;
2893 unsigned long align = s->align;
2894 int order;
2895
2896 /*
2897 * Round up object size to the next word boundary. We can only
2898 * place the free pointer at word boundaries and this determines
2899 * the possible location of the free pointer.
2900 */
2901 size = ALIGN(size, sizeof(void *));
2902
2903 #ifdef CONFIG_SLUB_DEBUG
2904 /*
2905 * Determine if we can poison the object itself. If the user of
2906 * the slab may touch the object after free or before allocation
2907 * then we should never poison the object itself.
2908 */
2909 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2910 !s->ctor)
2911 s->flags |= __OBJECT_POISON;
2912 else
2913 s->flags &= ~__OBJECT_POISON;
2914
2915
2916 /*
2917 * If we are Redzoning then check if there is some space between the
2918 * end of the object and the free pointer. If not then add an
2919 * additional word to have some bytes to store Redzone information.
2920 */
2921 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2922 size += sizeof(void *);
2923 #endif
2924
2925 /*
2926 * With that we have determined the number of bytes in actual use
2927 * by the object. This is the potential offset to the free pointer.
2928 */
2929 s->inuse = size;
2930
2931 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2932 s->ctor)) {
2933 /*
2934 * Relocate free pointer after the object if it is not
2935 * permitted to overwrite the first word of the object on
2936 * kmem_cache_free.
2937 *
2938 * This is the case if we do RCU, have a constructor or
2939 * destructor or are poisoning the objects.
2940 */
2941 s->offset = size;
2942 size += sizeof(void *);
2943 }
2944
2945 #ifdef CONFIG_SLUB_DEBUG
2946 if (flags & SLAB_STORE_USER)
2947 /*
2948 * Need to store information about allocs and frees after
2949 * the object.
2950 */
2951 size += 2 * sizeof(struct track);
2952
2953 if (flags & SLAB_RED_ZONE)
2954 /*
2955 * Add some empty padding so that we can catch
2956 * overwrites from earlier objects rather than let
2957 * tracking information or the free pointer be
2958 * corrupted if a user writes before the start
2959 * of the object.
2960 */
2961 size += sizeof(void *);
2962 #endif
2963
2964 /*
2965 * Determine the alignment based on various parameters that the
2966 * user specified and the dynamic determination of cache line size
2967 * on bootup.
2968 */
2969 align = calculate_alignment(flags, align, s->objsize);
2970 s->align = align;
2971
2972 /*
2973 * SLUB stores one object immediately after another beginning from
2974 * offset 0. In order to align the objects we have to simply size
2975 * each object to conform to the alignment.
2976 */
2977 size = ALIGN(size, align);
2978 s->size = size;
2979 if (forced_order >= 0)
2980 order = forced_order;
2981 else
2982 order = calculate_order(size, s->reserved);
2983
2984 if (order < 0)
2985 return 0;
2986
2987 s->allocflags = 0;
2988 if (order)
2989 s->allocflags |= __GFP_COMP;
2990
2991 if (s->flags & SLAB_CACHE_DMA)
2992 s->allocflags |= SLUB_DMA;
2993
2994 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2995 s->allocflags |= __GFP_RECLAIMABLE;
2996
2997 /*
2998 * Determine the number of objects per slab
2999 */
3000 s->oo = oo_make(order, size, s->reserved);
3001 s->min = oo_make(get_order(size), size, s->reserved);
3002 if (oo_objects(s->oo) > oo_objects(s->max))
3003 s->max = s->oo;
3004
3005 return !!oo_objects(s->oo);
3006
3007 }
3008
3009 static int kmem_cache_open(struct kmem_cache *s,
3010 const char *name, size_t size,
3011 size_t align, unsigned long flags,
3012 void (*ctor)(void *))
3013 {
3014 memset(s, 0, kmem_size);
3015 s->name = name;
3016 s->ctor = ctor;
3017 s->objsize = size;
3018 s->align = align;
3019 s->flags = kmem_cache_flags(size, flags, name, ctor);
3020 s->reserved = 0;
3021
3022 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3023 s->reserved = sizeof(struct rcu_head);
3024
3025 if (!calculate_sizes(s, -1))
3026 goto error;
3027 if (disable_higher_order_debug) {
3028 /*
3029 * Disable debugging flags that store metadata if the min slab
3030 * order increased.
3031 */
3032 if (get_order(s->size) > get_order(s->objsize)) {
3033 s->flags &= ~DEBUG_METADATA_FLAGS;
3034 s->offset = 0;
3035 if (!calculate_sizes(s, -1))
3036 goto error;
3037 }
3038 }
3039
3040 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3041 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3042 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3043 /* Enable fast mode */
3044 s->flags |= __CMPXCHG_DOUBLE;
3045 #endif
3046
3047 /*
3048 * The larger the object size is, the more pages we want on the partial
3049 * list to avoid pounding the page allocator excessively.
3050 */
3051 set_min_partial(s, ilog2(s->size) / 2);
3052
3053 /*
3054 * cpu_partial determined the maximum number of objects kept in the
3055 * per cpu partial lists of a processor.
3056 *
3057 * Per cpu partial lists mainly contain slabs that just have one
3058 * object freed. If they are used for allocation then they can be
3059 * filled up again with minimal effort. The slab will never hit the
3060 * per node partial lists and therefore no locking will be required.
3061 *
3062 * This setting also determines
3063 *
3064 * A) The number of objects from per cpu partial slabs dumped to the
3065 * per node list when we reach the limit.
3066 * B) The number of objects in cpu partial slabs to extract from the
3067 * per node list when we run out of per cpu objects. We only fetch 50%
3068 * to keep some capacity around for frees.
3069 */
3070 if (kmem_cache_debug(s))
3071 s->cpu_partial = 0;
3072 else if (s->size >= PAGE_SIZE)
3073 s->cpu_partial = 2;
3074 else if (s->size >= 1024)
3075 s->cpu_partial = 6;
3076 else if (s->size >= 256)
3077 s->cpu_partial = 13;
3078 else
3079 s->cpu_partial = 30;
3080
3081 s->refcount = 1;
3082 #ifdef CONFIG_NUMA
3083 s->remote_node_defrag_ratio = 1000;
3084 #endif
3085 if (!init_kmem_cache_nodes(s))
3086 goto error;
3087
3088 if (alloc_kmem_cache_cpus(s))
3089 return 1;
3090
3091 free_kmem_cache_nodes(s);
3092 error:
3093 if (flags & SLAB_PANIC)
3094 panic("Cannot create slab %s size=%lu realsize=%u "
3095 "order=%u offset=%u flags=%lx\n",
3096 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3097 s->offset, flags);
3098 return 0;
3099 }
3100
3101 /*
3102 * Determine the size of a slab object
3103 */
3104 unsigned int kmem_cache_size(struct kmem_cache *s)
3105 {
3106 return s->objsize;
3107 }
3108 EXPORT_SYMBOL(kmem_cache_size);
3109
3110 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3111 const char *text)
3112 {
3113 #ifdef CONFIG_SLUB_DEBUG
3114 void *addr = page_address(page);
3115 void *p;
3116 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3117 sizeof(long), GFP_ATOMIC);
3118 if (!map)
3119 return;
3120 slab_err(s, page, "%s", text);
3121 slab_lock(page);
3122
3123 get_map(s, page, map);
3124 for_each_object(p, s, addr, page->objects) {
3125
3126 if (!test_bit(slab_index(p, s, addr), map)) {
3127 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3128 p, p - addr);
3129 print_tracking(s, p);
3130 }
3131 }
3132 slab_unlock(page);
3133 kfree(map);
3134 #endif
3135 }
3136
3137 /*
3138 * Attempt to free all partial slabs on a node.
3139 * This is called from kmem_cache_close(). We must be the last thread
3140 * using the cache and therefore we do not need to lock anymore.
3141 */
3142 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3143 {
3144 struct page *page, *h;
3145
3146 list_for_each_entry_safe(page, h, &n->partial, lru) {
3147 if (!page->inuse) {
3148 remove_partial(n, page);
3149 discard_slab(s, page);
3150 } else {
3151 list_slab_objects(s, page,
3152 "Objects remaining on kmem_cache_close()");
3153 }
3154 }
3155 }
3156
3157 /*
3158 * Release all resources used by a slab cache.
3159 */
3160 static inline int kmem_cache_close(struct kmem_cache *s)
3161 {
3162 int node;
3163
3164 flush_all(s);
3165 free_percpu(s->cpu_slab);
3166 /* Attempt to free all objects */
3167 for_each_node_state(node, N_NORMAL_MEMORY) {
3168 struct kmem_cache_node *n = get_node(s, node);
3169
3170 free_partial(s, n);
3171 if (n->nr_partial || slabs_node(s, node))
3172 return 1;
3173 }
3174 free_kmem_cache_nodes(s);
3175 return 0;
3176 }
3177
3178 /*
3179 * Close a cache and release the kmem_cache structure
3180 * (must be used for caches created using kmem_cache_create)
3181 */
3182 void kmem_cache_destroy(struct kmem_cache *s)
3183 {
3184 down_write(&slub_lock);
3185 s->refcount--;
3186 if (!s->refcount) {
3187 list_del(&s->list);
3188 up_write(&slub_lock);
3189 if (kmem_cache_close(s)) {
3190 printk(KERN_ERR "SLUB %s: %s called for cache that "
3191 "still has objects.\n", s->name, __func__);
3192 dump_stack();
3193 }
3194 if (s->flags & SLAB_DESTROY_BY_RCU)
3195 rcu_barrier();
3196 sysfs_slab_remove(s);
3197 } else
3198 up_write(&slub_lock);
3199 }
3200 EXPORT_SYMBOL(kmem_cache_destroy);
3201
3202 /********************************************************************
3203 * Kmalloc subsystem
3204 *******************************************************************/
3205
3206 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3207 EXPORT_SYMBOL(kmalloc_caches);
3208
3209 static struct kmem_cache *kmem_cache;
3210
3211 #ifdef CONFIG_ZONE_DMA
3212 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3213 #endif
3214
3215 static int __init setup_slub_min_order(char *str)
3216 {
3217 get_option(&str, &slub_min_order);
3218
3219 return 1;
3220 }
3221
3222 __setup("slub_min_order=", setup_slub_min_order);
3223
3224 static int __init setup_slub_max_order(char *str)
3225 {
3226 get_option(&str, &slub_max_order);
3227 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3228
3229 return 1;
3230 }
3231
3232 __setup("slub_max_order=", setup_slub_max_order);
3233
3234 static int __init setup_slub_min_objects(char *str)
3235 {
3236 get_option(&str, &slub_min_objects);
3237
3238 return 1;
3239 }
3240
3241 __setup("slub_min_objects=", setup_slub_min_objects);
3242
3243 static int __init setup_slub_nomerge(char *str)
3244 {
3245 slub_nomerge = 1;
3246 return 1;
3247 }
3248
3249 __setup("slub_nomerge", setup_slub_nomerge);
3250
3251 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3252 int size, unsigned int flags)
3253 {
3254 struct kmem_cache *s;
3255
3256 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3257
3258 /*
3259 * This function is called with IRQs disabled during early-boot on
3260 * single CPU so there's no need to take slub_lock here.
3261 */
3262 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3263 flags, NULL))
3264 goto panic;
3265
3266 list_add(&s->list, &slab_caches);
3267 return s;
3268
3269 panic:
3270 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3271 return NULL;
3272 }
3273
3274 /*
3275 * Conversion table for small slabs sizes / 8 to the index in the
3276 * kmalloc array. This is necessary for slabs < 192 since we have non power
3277 * of two cache sizes there. The size of larger slabs can be determined using
3278 * fls.
3279 */
3280 static s8 size_index[24] = {
3281 3, /* 8 */
3282 4, /* 16 */
3283 5, /* 24 */
3284 5, /* 32 */
3285 6, /* 40 */
3286 6, /* 48 */
3287 6, /* 56 */
3288 6, /* 64 */
3289 1, /* 72 */
3290 1, /* 80 */
3291 1, /* 88 */
3292 1, /* 96 */
3293 7, /* 104 */
3294 7, /* 112 */
3295 7, /* 120 */
3296 7, /* 128 */
3297 2, /* 136 */
3298 2, /* 144 */
3299 2, /* 152 */
3300 2, /* 160 */
3301 2, /* 168 */
3302 2, /* 176 */
3303 2, /* 184 */
3304 2 /* 192 */
3305 };
3306
3307 static inline int size_index_elem(size_t bytes)
3308 {
3309 return (bytes - 1) / 8;
3310 }
3311
3312 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3313 {
3314 int index;
3315
3316 if (size <= 192) {
3317 if (!size)
3318 return ZERO_SIZE_PTR;
3319
3320 index = size_index[size_index_elem(size)];
3321 } else
3322 index = fls(size - 1);
3323
3324 #ifdef CONFIG_ZONE_DMA
3325 if (unlikely((flags & SLUB_DMA)))
3326 return kmalloc_dma_caches[index];
3327
3328 #endif
3329 return kmalloc_caches[index];
3330 }
3331
3332 void *__kmalloc(size_t size, gfp_t flags)
3333 {
3334 struct kmem_cache *s;
3335 void *ret;
3336
3337 if (unlikely(size > SLUB_MAX_SIZE))
3338 return kmalloc_large(size, flags);
3339
3340 s = get_slab(size, flags);
3341
3342 if (unlikely(ZERO_OR_NULL_PTR(s)))
3343 return s;
3344
3345 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3346
3347 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3348
3349 return ret;
3350 }
3351 EXPORT_SYMBOL(__kmalloc);
3352
3353 #ifdef CONFIG_NUMA
3354 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3355 {
3356 struct page *page;
3357 void *ptr = NULL;
3358
3359 flags |= __GFP_COMP | __GFP_NOTRACK;
3360 page = alloc_pages_node(node, flags, get_order(size));
3361 if (page)
3362 ptr = page_address(page);
3363
3364 kmemleak_alloc(ptr, size, 1, flags);
3365 return ptr;
3366 }
3367
3368 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3369 {
3370 struct kmem_cache *s;
3371 void *ret;
3372
3373 if (unlikely(size > SLUB_MAX_SIZE)) {
3374 ret = kmalloc_large_node(size, flags, node);
3375
3376 trace_kmalloc_node(_RET_IP_, ret,
3377 size, PAGE_SIZE << get_order(size),
3378 flags, node);
3379
3380 return ret;
3381 }
3382
3383 s = get_slab(size, flags);
3384
3385 if (unlikely(ZERO_OR_NULL_PTR(s)))
3386 return s;
3387
3388 ret = slab_alloc(s, flags, node, _RET_IP_);
3389
3390 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3391
3392 return ret;
3393 }
3394 EXPORT_SYMBOL(__kmalloc_node);
3395 #endif
3396
3397 size_t ksize(const void *object)
3398 {
3399 struct page *page;
3400
3401 if (unlikely(object == ZERO_SIZE_PTR))
3402 return 0;
3403
3404 page = virt_to_head_page(object);
3405
3406 if (unlikely(!PageSlab(page))) {
3407 WARN_ON(!PageCompound(page));
3408 return PAGE_SIZE << compound_order(page);
3409 }
3410
3411 return slab_ksize(page->slab);
3412 }
3413 EXPORT_SYMBOL(ksize);
3414
3415 #ifdef CONFIG_SLUB_DEBUG
3416 bool verify_mem_not_deleted(const void *x)
3417 {
3418 struct page *page;
3419 void *object = (void *)x;
3420 unsigned long flags;
3421 bool rv;
3422
3423 if (unlikely(ZERO_OR_NULL_PTR(x)))
3424 return false;
3425
3426 local_irq_save(flags);
3427
3428 page = virt_to_head_page(x);
3429 if (unlikely(!PageSlab(page))) {
3430 /* maybe it was from stack? */
3431 rv = true;
3432 goto out_unlock;
3433 }
3434
3435 slab_lock(page);
3436 if (on_freelist(page->slab, page, object)) {
3437 object_err(page->slab, page, object, "Object is on free-list");
3438 rv = false;
3439 } else {
3440 rv = true;
3441 }
3442 slab_unlock(page);
3443
3444 out_unlock:
3445 local_irq_restore(flags);
3446 return rv;
3447 }
3448 EXPORT_SYMBOL(verify_mem_not_deleted);
3449 #endif
3450
3451 void kfree(const void *x)
3452 {
3453 struct page *page;
3454 void *object = (void *)x;
3455
3456 trace_kfree(_RET_IP_, x);
3457
3458 if (unlikely(ZERO_OR_NULL_PTR(x)))
3459 return;
3460
3461 page = virt_to_head_page(x);
3462 if (unlikely(!PageSlab(page))) {
3463 BUG_ON(!PageCompound(page));
3464 kmemleak_free(x);
3465 put_page(page);
3466 return;
3467 }
3468 slab_free(page->slab, page, object, _RET_IP_);
3469 }
3470 EXPORT_SYMBOL(kfree);
3471
3472 /*
3473 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3474 * the remaining slabs by the number of items in use. The slabs with the
3475 * most items in use come first. New allocations will then fill those up
3476 * and thus they can be removed from the partial lists.
3477 *
3478 * The slabs with the least items are placed last. This results in them
3479 * being allocated from last increasing the chance that the last objects
3480 * are freed in them.
3481 */
3482 int kmem_cache_shrink(struct kmem_cache *s)
3483 {
3484 int node;
3485 int i;
3486 struct kmem_cache_node *n;
3487 struct page *page;
3488 struct page *t;
3489 int objects = oo_objects(s->max);
3490 struct list_head *slabs_by_inuse =
3491 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3492 unsigned long flags;
3493
3494 if (!slabs_by_inuse)
3495 return -ENOMEM;
3496
3497 flush_all(s);
3498 for_each_node_state(node, N_NORMAL_MEMORY) {
3499 n = get_node(s, node);
3500
3501 if (!n->nr_partial)
3502 continue;
3503
3504 for (i = 0; i < objects; i++)
3505 INIT_LIST_HEAD(slabs_by_inuse + i);
3506
3507 spin_lock_irqsave(&n->list_lock, flags);
3508
3509 /*
3510 * Build lists indexed by the items in use in each slab.
3511 *
3512 * Note that concurrent frees may occur while we hold the
3513 * list_lock. page->inuse here is the upper limit.
3514 */
3515 list_for_each_entry_safe(page, t, &n->partial, lru) {
3516 list_move(&page->lru, slabs_by_inuse + page->inuse);
3517 if (!page->inuse)
3518 n->nr_partial--;
3519 }
3520
3521 /*
3522 * Rebuild the partial list with the slabs filled up most
3523 * first and the least used slabs at the end.
3524 */
3525 for (i = objects - 1; i > 0; i--)
3526 list_splice(slabs_by_inuse + i, n->partial.prev);
3527
3528 spin_unlock_irqrestore(&n->list_lock, flags);
3529
3530 /* Release empty slabs */
3531 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3532 discard_slab(s, page);
3533 }
3534
3535 kfree(slabs_by_inuse);
3536 return 0;
3537 }
3538 EXPORT_SYMBOL(kmem_cache_shrink);
3539
3540 #if defined(CONFIG_MEMORY_HOTPLUG)
3541 static int slab_mem_going_offline_callback(void *arg)
3542 {
3543 struct kmem_cache *s;
3544
3545 down_read(&slub_lock);
3546 list_for_each_entry(s, &slab_caches, list)
3547 kmem_cache_shrink(s);
3548 up_read(&slub_lock);
3549
3550 return 0;
3551 }
3552
3553 static void slab_mem_offline_callback(void *arg)
3554 {
3555 struct kmem_cache_node *n;
3556 struct kmem_cache *s;
3557 struct memory_notify *marg = arg;
3558 int offline_node;
3559
3560 offline_node = marg->status_change_nid;
3561
3562 /*
3563 * If the node still has available memory. we need kmem_cache_node
3564 * for it yet.
3565 */
3566 if (offline_node < 0)
3567 return;
3568
3569 down_read(&slub_lock);
3570 list_for_each_entry(s, &slab_caches, list) {
3571 n = get_node(s, offline_node);
3572 if (n) {
3573 /*
3574 * if n->nr_slabs > 0, slabs still exist on the node
3575 * that is going down. We were unable to free them,
3576 * and offline_pages() function shouldn't call this
3577 * callback. So, we must fail.
3578 */
3579 BUG_ON(slabs_node(s, offline_node));
3580
3581 s->node[offline_node] = NULL;
3582 kmem_cache_free(kmem_cache_node, n);
3583 }
3584 }
3585 up_read(&slub_lock);
3586 }
3587
3588 static int slab_mem_going_online_callback(void *arg)
3589 {
3590 struct kmem_cache_node *n;
3591 struct kmem_cache *s;
3592 struct memory_notify *marg = arg;
3593 int nid = marg->status_change_nid;
3594 int ret = 0;
3595
3596 /*
3597 * If the node's memory is already available, then kmem_cache_node is
3598 * already created. Nothing to do.
3599 */
3600 if (nid < 0)
3601 return 0;
3602
3603 /*
3604 * We are bringing a node online. No memory is available yet. We must
3605 * allocate a kmem_cache_node structure in order to bring the node
3606 * online.
3607 */
3608 down_read(&slub_lock);
3609 list_for_each_entry(s, &slab_caches, list) {
3610 /*
3611 * XXX: kmem_cache_alloc_node will fallback to other nodes
3612 * since memory is not yet available from the node that
3613 * is brought up.
3614 */
3615 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3616 if (!n) {
3617 ret = -ENOMEM;
3618 goto out;
3619 }
3620 init_kmem_cache_node(n, s);
3621 s->node[nid] = n;
3622 }
3623 out:
3624 up_read(&slub_lock);
3625 return ret;
3626 }
3627
3628 static int slab_memory_callback(struct notifier_block *self,
3629 unsigned long action, void *arg)
3630 {
3631 int ret = 0;
3632
3633 switch (action) {
3634 case MEM_GOING_ONLINE:
3635 ret = slab_mem_going_online_callback(arg);
3636 break;
3637 case MEM_GOING_OFFLINE:
3638 ret = slab_mem_going_offline_callback(arg);
3639 break;
3640 case MEM_OFFLINE:
3641 case MEM_CANCEL_ONLINE:
3642 slab_mem_offline_callback(arg);
3643 break;
3644 case MEM_ONLINE:
3645 case MEM_CANCEL_OFFLINE:
3646 break;
3647 }
3648 if (ret)
3649 ret = notifier_from_errno(ret);
3650 else
3651 ret = NOTIFY_OK;
3652 return ret;
3653 }
3654
3655 #endif /* CONFIG_MEMORY_HOTPLUG */
3656
3657 /********************************************************************
3658 * Basic setup of slabs
3659 *******************************************************************/
3660
3661 /*
3662 * Used for early kmem_cache structures that were allocated using
3663 * the page allocator
3664 */
3665
3666 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3667 {
3668 int node;
3669
3670 list_add(&s->list, &slab_caches);
3671 s->refcount = -1;
3672
3673 for_each_node_state(node, N_NORMAL_MEMORY) {
3674 struct kmem_cache_node *n = get_node(s, node);
3675 struct page *p;
3676
3677 if (n) {
3678 list_for_each_entry(p, &n->partial, lru)
3679 p->slab = s;
3680
3681 #ifdef CONFIG_SLUB_DEBUG
3682 list_for_each_entry(p, &n->full, lru)
3683 p->slab = s;
3684 #endif
3685 }
3686 }
3687 }
3688
3689 void __init kmem_cache_init(void)
3690 {
3691 int i;
3692 int caches = 0;
3693 struct kmem_cache *temp_kmem_cache;
3694 int order;
3695 struct kmem_cache *temp_kmem_cache_node;
3696 unsigned long kmalloc_size;
3697
3698 if (debug_guardpage_minorder())
3699 slub_max_order = 0;
3700
3701 kmem_size = offsetof(struct kmem_cache, node) +
3702 nr_node_ids * sizeof(struct kmem_cache_node *);
3703
3704 /* Allocate two kmem_caches from the page allocator */
3705 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3706 order = get_order(2 * kmalloc_size);
3707 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3708
3709 /*
3710 * Must first have the slab cache available for the allocations of the
3711 * struct kmem_cache_node's. There is special bootstrap code in
3712 * kmem_cache_open for slab_state == DOWN.
3713 */
3714 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3715
3716 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3717 sizeof(struct kmem_cache_node),
3718 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3719
3720 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3721
3722 /* Able to allocate the per node structures */
3723 slab_state = PARTIAL;
3724
3725 temp_kmem_cache = kmem_cache;
3726 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3727 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3728 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3729 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3730
3731 /*
3732 * Allocate kmem_cache_node properly from the kmem_cache slab.
3733 * kmem_cache_node is separately allocated so no need to
3734 * update any list pointers.
3735 */
3736 temp_kmem_cache_node = kmem_cache_node;
3737
3738 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3739 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3740
3741 kmem_cache_bootstrap_fixup(kmem_cache_node);
3742
3743 caches++;
3744 kmem_cache_bootstrap_fixup(kmem_cache);
3745 caches++;
3746 /* Free temporary boot structure */
3747 free_pages((unsigned long)temp_kmem_cache, order);
3748
3749 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3750
3751 /*
3752 * Patch up the size_index table if we have strange large alignment
3753 * requirements for the kmalloc array. This is only the case for
3754 * MIPS it seems. The standard arches will not generate any code here.
3755 *
3756 * Largest permitted alignment is 256 bytes due to the way we
3757 * handle the index determination for the smaller caches.
3758 *
3759 * Make sure that nothing crazy happens if someone starts tinkering
3760 * around with ARCH_KMALLOC_MINALIGN
3761 */
3762 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3763 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3764
3765 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3766 int elem = size_index_elem(i);
3767 if (elem >= ARRAY_SIZE(size_index))
3768 break;
3769 size_index[elem] = KMALLOC_SHIFT_LOW;
3770 }
3771
3772 if (KMALLOC_MIN_SIZE == 64) {
3773 /*
3774 * The 96 byte size cache is not used if the alignment
3775 * is 64 byte.
3776 */
3777 for (i = 64 + 8; i <= 96; i += 8)
3778 size_index[size_index_elem(i)] = 7;
3779 } else if (KMALLOC_MIN_SIZE == 128) {
3780 /*
3781 * The 192 byte sized cache is not used if the alignment
3782 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3783 * instead.
3784 */
3785 for (i = 128 + 8; i <= 192; i += 8)
3786 size_index[size_index_elem(i)] = 8;
3787 }
3788
3789 /* Caches that are not of the two-to-the-power-of size */
3790 if (KMALLOC_MIN_SIZE <= 32) {
3791 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3792 caches++;
3793 }
3794
3795 if (KMALLOC_MIN_SIZE <= 64) {
3796 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3797 caches++;
3798 }
3799
3800 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3801 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3802 caches++;
3803 }
3804
3805 slab_state = UP;
3806
3807 /* Provide the correct kmalloc names now that the caches are up */
3808 if (KMALLOC_MIN_SIZE <= 32) {
3809 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3810 BUG_ON(!kmalloc_caches[1]->name);
3811 }
3812
3813 if (KMALLOC_MIN_SIZE <= 64) {
3814 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3815 BUG_ON(!kmalloc_caches[2]->name);
3816 }
3817
3818 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3819 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3820
3821 BUG_ON(!s);
3822 kmalloc_caches[i]->name = s;
3823 }
3824
3825 #ifdef CONFIG_SMP
3826 register_cpu_notifier(&slab_notifier);
3827 #endif
3828
3829 #ifdef CONFIG_ZONE_DMA
3830 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3831 struct kmem_cache *s = kmalloc_caches[i];
3832
3833 if (s && s->size) {
3834 char *name = kasprintf(GFP_NOWAIT,
3835 "dma-kmalloc-%d", s->objsize);
3836
3837 BUG_ON(!name);
3838 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3839 s->objsize, SLAB_CACHE_DMA);
3840 }
3841 }
3842 #endif
3843 printk(KERN_INFO
3844 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3845 " CPUs=%d, Nodes=%d\n",
3846 caches, cache_line_size(),
3847 slub_min_order, slub_max_order, slub_min_objects,
3848 nr_cpu_ids, nr_node_ids);
3849 }
3850
3851 void __init kmem_cache_init_late(void)
3852 {
3853 }
3854
3855 /*
3856 * Find a mergeable slab cache
3857 */
3858 static int slab_unmergeable(struct kmem_cache *s)
3859 {
3860 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3861 return 1;
3862
3863 if (s->ctor)
3864 return 1;
3865
3866 /*
3867 * We may have set a slab to be unmergeable during bootstrap.
3868 */
3869 if (s->refcount < 0)
3870 return 1;
3871
3872 return 0;
3873 }
3874
3875 static struct kmem_cache *find_mergeable(size_t size,
3876 size_t align, unsigned long flags, const char *name,
3877 void (*ctor)(void *))
3878 {
3879 struct kmem_cache *s;
3880
3881 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3882 return NULL;
3883
3884 if (ctor)
3885 return NULL;
3886
3887 size = ALIGN(size, sizeof(void *));
3888 align = calculate_alignment(flags, align, size);
3889 size = ALIGN(size, align);
3890 flags = kmem_cache_flags(size, flags, name, NULL);
3891
3892 list_for_each_entry(s, &slab_caches, list) {
3893 if (slab_unmergeable(s))
3894 continue;
3895
3896 if (size > s->size)
3897 continue;
3898
3899 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3900 continue;
3901 /*
3902 * Check if alignment is compatible.
3903 * Courtesy of Adrian Drzewiecki
3904 */
3905 if ((s->size & ~(align - 1)) != s->size)
3906 continue;
3907
3908 if (s->size - size >= sizeof(void *))
3909 continue;
3910
3911 return s;
3912 }
3913 return NULL;
3914 }
3915
3916 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3917 size_t align, unsigned long flags, void (*ctor)(void *))
3918 {
3919 struct kmem_cache *s;
3920 char *n;
3921
3922 if (WARN_ON(!name))
3923 return NULL;
3924
3925 down_write(&slub_lock);
3926 s = find_mergeable(size, align, flags, name, ctor);
3927 if (s) {
3928 s->refcount++;
3929 /*
3930 * Adjust the object sizes so that we clear
3931 * the complete object on kzalloc.
3932 */
3933 s->objsize = max(s->objsize, (int)size);
3934 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3935
3936 if (sysfs_slab_alias(s, name)) {
3937 s->refcount--;
3938 goto err;
3939 }
3940 up_write(&slub_lock);
3941 return s;
3942 }
3943
3944 n = kstrdup(name, GFP_KERNEL);
3945 if (!n)
3946 goto err;
3947
3948 s = kmalloc(kmem_size, GFP_KERNEL);
3949 if (s) {
3950 if (kmem_cache_open(s, n,
3951 size, align, flags, ctor)) {
3952 list_add(&s->list, &slab_caches);
3953 up_write(&slub_lock);
3954 if (sysfs_slab_add(s)) {
3955 down_write(&slub_lock);
3956 list_del(&s->list);
3957 kfree(n);
3958 kfree(s);
3959 goto err;
3960 }
3961 return s;
3962 }
3963 kfree(n);
3964 kfree(s);
3965 }
3966 err:
3967 up_write(&slub_lock);
3968
3969 if (flags & SLAB_PANIC)
3970 panic("Cannot create slabcache %s\n", name);
3971 else
3972 s = NULL;
3973 return s;
3974 }
3975 EXPORT_SYMBOL(kmem_cache_create);
3976
3977 #ifdef CONFIG_SMP
3978 /*
3979 * Use the cpu notifier to insure that the cpu slabs are flushed when
3980 * necessary.
3981 */
3982 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3983 unsigned long action, void *hcpu)
3984 {
3985 long cpu = (long)hcpu;
3986 struct kmem_cache *s;
3987 unsigned long flags;
3988
3989 switch (action) {
3990 case CPU_UP_CANCELED:
3991 case CPU_UP_CANCELED_FROZEN:
3992 case CPU_DEAD:
3993 case CPU_DEAD_FROZEN:
3994 down_read(&slub_lock);
3995 list_for_each_entry(s, &slab_caches, list) {
3996 local_irq_save(flags);
3997 __flush_cpu_slab(s, cpu);
3998 local_irq_restore(flags);
3999 }
4000 up_read(&slub_lock);
4001 break;
4002 default:
4003 break;
4004 }
4005 return NOTIFY_OK;
4006 }
4007
4008 static struct notifier_block __cpuinitdata slab_notifier = {
4009 .notifier_call = slab_cpuup_callback
4010 };
4011
4012 #endif
4013
4014 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4015 {
4016 struct kmem_cache *s;
4017 void *ret;
4018
4019 if (unlikely(size > SLUB_MAX_SIZE))
4020 return kmalloc_large(size, gfpflags);
4021
4022 s = get_slab(size, gfpflags);
4023
4024 if (unlikely(ZERO_OR_NULL_PTR(s)))
4025 return s;
4026
4027 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4028
4029 /* Honor the call site pointer we received. */
4030 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4031
4032 return ret;
4033 }
4034
4035 #ifdef CONFIG_NUMA
4036 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4037 int node, unsigned long caller)
4038 {
4039 struct kmem_cache *s;
4040 void *ret;
4041
4042 if (unlikely(size > SLUB_MAX_SIZE)) {
4043 ret = kmalloc_large_node(size, gfpflags, node);
4044
4045 trace_kmalloc_node(caller, ret,
4046 size, PAGE_SIZE << get_order(size),
4047 gfpflags, node);
4048
4049 return ret;
4050 }
4051
4052 s = get_slab(size, gfpflags);
4053
4054 if (unlikely(ZERO_OR_NULL_PTR(s)))
4055 return s;
4056
4057 ret = slab_alloc(s, gfpflags, node, caller);
4058
4059 /* Honor the call site pointer we received. */
4060 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4061
4062 return ret;
4063 }
4064 #endif
4065
4066 #ifdef CONFIG_SYSFS
4067 static int count_inuse(struct page *page)
4068 {
4069 return page->inuse;
4070 }
4071
4072 static int count_total(struct page *page)
4073 {
4074 return page->objects;
4075 }
4076 #endif
4077
4078 #ifdef CONFIG_SLUB_DEBUG
4079 static int validate_slab(struct kmem_cache *s, struct page *page,
4080 unsigned long *map)
4081 {
4082 void *p;
4083 void *addr = page_address(page);
4084
4085 if (!check_slab(s, page) ||
4086 !on_freelist(s, page, NULL))
4087 return 0;
4088
4089 /* Now we know that a valid freelist exists */
4090 bitmap_zero(map, page->objects);
4091
4092 get_map(s, page, map);
4093 for_each_object(p, s, addr, page->objects) {
4094 if (test_bit(slab_index(p, s, addr), map))
4095 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4096 return 0;
4097 }
4098
4099 for_each_object(p, s, addr, page->objects)
4100 if (!test_bit(slab_index(p, s, addr), map))
4101 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4102 return 0;
4103 return 1;
4104 }
4105
4106 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4107 unsigned long *map)
4108 {
4109 slab_lock(page);
4110 validate_slab(s, page, map);
4111 slab_unlock(page);
4112 }
4113
4114 static int validate_slab_node(struct kmem_cache *s,
4115 struct kmem_cache_node *n, unsigned long *map)
4116 {
4117 unsigned long count = 0;
4118 struct page *page;
4119 unsigned long flags;
4120
4121 spin_lock_irqsave(&n->list_lock, flags);
4122
4123 list_for_each_entry(page, &n->partial, lru) {
4124 validate_slab_slab(s, page, map);
4125 count++;
4126 }
4127 if (count != n->nr_partial)
4128 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4129 "counter=%ld\n", s->name, count, n->nr_partial);
4130
4131 if (!(s->flags & SLAB_STORE_USER))
4132 goto out;
4133
4134 list_for_each_entry(page, &n->full, lru) {
4135 validate_slab_slab(s, page, map);
4136 count++;
4137 }
4138 if (count != atomic_long_read(&n->nr_slabs))
4139 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4140 "counter=%ld\n", s->name, count,
4141 atomic_long_read(&n->nr_slabs));
4142
4143 out:
4144 spin_unlock_irqrestore(&n->list_lock, flags);
4145 return count;
4146 }
4147
4148 static long validate_slab_cache(struct kmem_cache *s)
4149 {
4150 int node;
4151 unsigned long count = 0;
4152 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4153 sizeof(unsigned long), GFP_KERNEL);
4154
4155 if (!map)
4156 return -ENOMEM;
4157
4158 flush_all(s);
4159 for_each_node_state(node, N_NORMAL_MEMORY) {
4160 struct kmem_cache_node *n = get_node(s, node);
4161
4162 count += validate_slab_node(s, n, map);
4163 }
4164 kfree(map);
4165 return count;
4166 }
4167 /*
4168 * Generate lists of code addresses where slabcache objects are allocated
4169 * and freed.
4170 */
4171
4172 struct location {
4173 unsigned long count;
4174 unsigned long addr;
4175 long long sum_time;
4176 long min_time;
4177 long max_time;
4178 long min_pid;
4179 long max_pid;
4180 DECLARE_BITMAP(cpus, NR_CPUS);
4181 nodemask_t nodes;
4182 };
4183
4184 struct loc_track {
4185 unsigned long max;
4186 unsigned long count;
4187 struct location *loc;
4188 };
4189
4190 static void free_loc_track(struct loc_track *t)
4191 {
4192 if (t->max)
4193 free_pages((unsigned long)t->loc,
4194 get_order(sizeof(struct location) * t->max));
4195 }
4196
4197 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4198 {
4199 struct location *l;
4200 int order;
4201
4202 order = get_order(sizeof(struct location) * max);
4203
4204 l = (void *)__get_free_pages(flags, order);
4205 if (!l)
4206 return 0;
4207
4208 if (t->count) {
4209 memcpy(l, t->loc, sizeof(struct location) * t->count);
4210 free_loc_track(t);
4211 }
4212 t->max = max;
4213 t->loc = l;
4214 return 1;
4215 }
4216
4217 static int add_location(struct loc_track *t, struct kmem_cache *s,
4218 const struct track *track)
4219 {
4220 long start, end, pos;
4221 struct location *l;
4222 unsigned long caddr;
4223 unsigned long age = jiffies - track->when;
4224
4225 start = -1;
4226 end = t->count;
4227
4228 for ( ; ; ) {
4229 pos = start + (end - start + 1) / 2;
4230
4231 /*
4232 * There is nothing at "end". If we end up there
4233 * we need to add something to before end.
4234 */
4235 if (pos == end)
4236 break;
4237
4238 caddr = t->loc[pos].addr;
4239 if (track->addr == caddr) {
4240
4241 l = &t->loc[pos];
4242 l->count++;
4243 if (track->when) {
4244 l->sum_time += age;
4245 if (age < l->min_time)
4246 l->min_time = age;
4247 if (age > l->max_time)
4248 l->max_time = age;
4249
4250 if (track->pid < l->min_pid)
4251 l->min_pid = track->pid;
4252 if (track->pid > l->max_pid)
4253 l->max_pid = track->pid;
4254
4255 cpumask_set_cpu(track->cpu,
4256 to_cpumask(l->cpus));
4257 }
4258 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4259 return 1;
4260 }
4261
4262 if (track->addr < caddr)
4263 end = pos;
4264 else
4265 start = pos;
4266 }
4267
4268 /*
4269 * Not found. Insert new tracking element.
4270 */
4271 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4272 return 0;
4273
4274 l = t->loc + pos;
4275 if (pos < t->count)
4276 memmove(l + 1, l,
4277 (t->count - pos) * sizeof(struct location));
4278 t->count++;
4279 l->count = 1;
4280 l->addr = track->addr;
4281 l->sum_time = age;
4282 l->min_time = age;
4283 l->max_time = age;
4284 l->min_pid = track->pid;
4285 l->max_pid = track->pid;
4286 cpumask_clear(to_cpumask(l->cpus));
4287 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4288 nodes_clear(l->nodes);
4289 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4290 return 1;
4291 }
4292
4293 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4294 struct page *page, enum track_item alloc,
4295 unsigned long *map)
4296 {
4297 void *addr = page_address(page);
4298 void *p;
4299
4300 bitmap_zero(map, page->objects);
4301 get_map(s, page, map);
4302
4303 for_each_object(p, s, addr, page->objects)
4304 if (!test_bit(slab_index(p, s, addr), map))
4305 add_location(t, s, get_track(s, p, alloc));
4306 }
4307
4308 static int list_locations(struct kmem_cache *s, char *buf,
4309 enum track_item alloc)
4310 {
4311 int len = 0;
4312 unsigned long i;
4313 struct loc_track t = { 0, 0, NULL };
4314 int node;
4315 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4316 sizeof(unsigned long), GFP_KERNEL);
4317
4318 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4319 GFP_TEMPORARY)) {
4320 kfree(map);
4321 return sprintf(buf, "Out of memory\n");
4322 }
4323 /* Push back cpu slabs */
4324 flush_all(s);
4325
4326 for_each_node_state(node, N_NORMAL_MEMORY) {
4327 struct kmem_cache_node *n = get_node(s, node);
4328 unsigned long flags;
4329 struct page *page;
4330
4331 if (!atomic_long_read(&n->nr_slabs))
4332 continue;
4333
4334 spin_lock_irqsave(&n->list_lock, flags);
4335 list_for_each_entry(page, &n->partial, lru)
4336 process_slab(&t, s, page, alloc, map);
4337 list_for_each_entry(page, &n->full, lru)
4338 process_slab(&t, s, page, alloc, map);
4339 spin_unlock_irqrestore(&n->list_lock, flags);
4340 }
4341
4342 for (i = 0; i < t.count; i++) {
4343 struct location *l = &t.loc[i];
4344
4345 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4346 break;
4347 len += sprintf(buf + len, "%7ld ", l->count);
4348
4349 if (l->addr)
4350 len += sprintf(buf + len, "%pS", (void *)l->addr);
4351 else
4352 len += sprintf(buf + len, "<not-available>");
4353
4354 if (l->sum_time != l->min_time) {
4355 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4356 l->min_time,
4357 (long)div_u64(l->sum_time, l->count),
4358 l->max_time);
4359 } else
4360 len += sprintf(buf + len, " age=%ld",
4361 l->min_time);
4362
4363 if (l->min_pid != l->max_pid)
4364 len += sprintf(buf + len, " pid=%ld-%ld",
4365 l->min_pid, l->max_pid);
4366 else
4367 len += sprintf(buf + len, " pid=%ld",
4368 l->min_pid);
4369
4370 if (num_online_cpus() > 1 &&
4371 !cpumask_empty(to_cpumask(l->cpus)) &&
4372 len < PAGE_SIZE - 60) {
4373 len += sprintf(buf + len, " cpus=");
4374 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4375 to_cpumask(l->cpus));
4376 }
4377
4378 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4379 len < PAGE_SIZE - 60) {
4380 len += sprintf(buf + len, " nodes=");
4381 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4382 l->nodes);
4383 }
4384
4385 len += sprintf(buf + len, "\n");
4386 }
4387
4388 free_loc_track(&t);
4389 kfree(map);
4390 if (!t.count)
4391 len += sprintf(buf, "No data\n");
4392 return len;
4393 }
4394 #endif
4395
4396 #ifdef SLUB_RESILIENCY_TEST
4397 static void resiliency_test(void)
4398 {
4399 u8 *p;
4400
4401 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4402
4403 printk(KERN_ERR "SLUB resiliency testing\n");
4404 printk(KERN_ERR "-----------------------\n");
4405 printk(KERN_ERR "A. Corruption after allocation\n");
4406
4407 p = kzalloc(16, GFP_KERNEL);
4408 p[16] = 0x12;
4409 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4410 " 0x12->0x%p\n\n", p + 16);
4411
4412 validate_slab_cache(kmalloc_caches[4]);
4413
4414 /* Hmmm... The next two are dangerous */
4415 p = kzalloc(32, GFP_KERNEL);
4416 p[32 + sizeof(void *)] = 0x34;
4417 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4418 " 0x34 -> -0x%p\n", p);
4419 printk(KERN_ERR
4420 "If allocated object is overwritten then not detectable\n\n");
4421
4422 validate_slab_cache(kmalloc_caches[5]);
4423 p = kzalloc(64, GFP_KERNEL);
4424 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4425 *p = 0x56;
4426 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4427 p);
4428 printk(KERN_ERR
4429 "If allocated object is overwritten then not detectable\n\n");
4430 validate_slab_cache(kmalloc_caches[6]);
4431
4432 printk(KERN_ERR "\nB. Corruption after free\n");
4433 p = kzalloc(128, GFP_KERNEL);
4434 kfree(p);
4435 *p = 0x78;
4436 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4437 validate_slab_cache(kmalloc_caches[7]);
4438
4439 p = kzalloc(256, GFP_KERNEL);
4440 kfree(p);
4441 p[50] = 0x9a;
4442 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4443 p);
4444 validate_slab_cache(kmalloc_caches[8]);
4445
4446 p = kzalloc(512, GFP_KERNEL);
4447 kfree(p);
4448 p[512] = 0xab;
4449 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4450 validate_slab_cache(kmalloc_caches[9]);
4451 }
4452 #else
4453 #ifdef CONFIG_SYSFS
4454 static void resiliency_test(void) {};
4455 #endif
4456 #endif
4457
4458 #ifdef CONFIG_SYSFS
4459 enum slab_stat_type {
4460 SL_ALL, /* All slabs */
4461 SL_PARTIAL, /* Only partially allocated slabs */
4462 SL_CPU, /* Only slabs used for cpu caches */
4463 SL_OBJECTS, /* Determine allocated objects not slabs */
4464 SL_TOTAL /* Determine object capacity not slabs */
4465 };
4466
4467 #define SO_ALL (1 << SL_ALL)
4468 #define SO_PARTIAL (1 << SL_PARTIAL)
4469 #define SO_CPU (1 << SL_CPU)
4470 #define SO_OBJECTS (1 << SL_OBJECTS)
4471 #define SO_TOTAL (1 << SL_TOTAL)
4472
4473 static ssize_t show_slab_objects(struct kmem_cache *s,
4474 char *buf, unsigned long flags)
4475 {
4476 unsigned long total = 0;
4477 int node;
4478 int x;
4479 unsigned long *nodes;
4480 unsigned long *per_cpu;
4481
4482 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4483 if (!nodes)
4484 return -ENOMEM;
4485 per_cpu = nodes + nr_node_ids;
4486
4487 if (flags & SO_CPU) {
4488 int cpu;
4489
4490 for_each_possible_cpu(cpu) {
4491 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4492 int node = ACCESS_ONCE(c->node);
4493 struct page *page;
4494
4495 if (node < 0)
4496 continue;
4497 page = ACCESS_ONCE(c->page);
4498 if (page) {
4499 if (flags & SO_TOTAL)
4500 x = page->objects;
4501 else if (flags & SO_OBJECTS)
4502 x = page->inuse;
4503 else
4504 x = 1;
4505
4506 total += x;
4507 nodes[node] += x;
4508 }
4509 page = c->partial;
4510
4511 if (page) {
4512 x = page->pobjects;
4513 total += x;
4514 nodes[node] += x;
4515 }
4516 per_cpu[node]++;
4517 }
4518 }
4519
4520 lock_memory_hotplug();
4521 #ifdef CONFIG_SLUB_DEBUG
4522 if (flags & SO_ALL) {
4523 for_each_node_state(node, N_NORMAL_MEMORY) {
4524 struct kmem_cache_node *n = get_node(s, node);
4525
4526 if (flags & SO_TOTAL)
4527 x = atomic_long_read(&n->total_objects);
4528 else if (flags & SO_OBJECTS)
4529 x = atomic_long_read(&n->total_objects) -
4530 count_partial(n, count_free);
4531
4532 else
4533 x = atomic_long_read(&n->nr_slabs);
4534 total += x;
4535 nodes[node] += x;
4536 }
4537
4538 } else
4539 #endif
4540 if (flags & SO_PARTIAL) {
4541 for_each_node_state(node, N_NORMAL_MEMORY) {
4542 struct kmem_cache_node *n = get_node(s, node);
4543
4544 if (flags & SO_TOTAL)
4545 x = count_partial(n, count_total);
4546 else if (flags & SO_OBJECTS)
4547 x = count_partial(n, count_inuse);
4548 else
4549 x = n->nr_partial;
4550 total += x;
4551 nodes[node] += x;
4552 }
4553 }
4554 x = sprintf(buf, "%lu", total);
4555 #ifdef CONFIG_NUMA
4556 for_each_node_state(node, N_NORMAL_MEMORY)
4557 if (nodes[node])
4558 x += sprintf(buf + x, " N%d=%lu",
4559 node, nodes[node]);
4560 #endif
4561 unlock_memory_hotplug();
4562 kfree(nodes);
4563 return x + sprintf(buf + x, "\n");
4564 }
4565
4566 #ifdef CONFIG_SLUB_DEBUG
4567 static int any_slab_objects(struct kmem_cache *s)
4568 {
4569 int node;
4570
4571 for_each_online_node(node) {
4572 struct kmem_cache_node *n = get_node(s, node);
4573
4574 if (!n)
4575 continue;
4576
4577 if (atomic_long_read(&n->total_objects))
4578 return 1;
4579 }
4580 return 0;
4581 }
4582 #endif
4583
4584 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4585 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4586
4587 struct slab_attribute {
4588 struct attribute attr;
4589 ssize_t (*show)(struct kmem_cache *s, char *buf);
4590 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4591 };
4592
4593 #define SLAB_ATTR_RO(_name) \
4594 static struct slab_attribute _name##_attr = \
4595 __ATTR(_name, 0400, _name##_show, NULL)
4596
4597 #define SLAB_ATTR(_name) \
4598 static struct slab_attribute _name##_attr = \
4599 __ATTR(_name, 0600, _name##_show, _name##_store)
4600
4601 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4602 {
4603 return sprintf(buf, "%d\n", s->size);
4604 }
4605 SLAB_ATTR_RO(slab_size);
4606
4607 static ssize_t align_show(struct kmem_cache *s, char *buf)
4608 {
4609 return sprintf(buf, "%d\n", s->align);
4610 }
4611 SLAB_ATTR_RO(align);
4612
4613 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4614 {
4615 return sprintf(buf, "%d\n", s->objsize);
4616 }
4617 SLAB_ATTR_RO(object_size);
4618
4619 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4620 {
4621 return sprintf(buf, "%d\n", oo_objects(s->oo));
4622 }
4623 SLAB_ATTR_RO(objs_per_slab);
4624
4625 static ssize_t order_store(struct kmem_cache *s,
4626 const char *buf, size_t length)
4627 {
4628 unsigned long order;
4629 int err;
4630
4631 err = strict_strtoul(buf, 10, &order);
4632 if (err)
4633 return err;
4634
4635 if (order > slub_max_order || order < slub_min_order)
4636 return -EINVAL;
4637
4638 calculate_sizes(s, order);
4639 return length;
4640 }
4641
4642 static ssize_t order_show(struct kmem_cache *s, char *buf)
4643 {
4644 return sprintf(buf, "%d\n", oo_order(s->oo));
4645 }
4646 SLAB_ATTR(order);
4647
4648 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4649 {
4650 return sprintf(buf, "%lu\n", s->min_partial);
4651 }
4652
4653 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4654 size_t length)
4655 {
4656 unsigned long min;
4657 int err;
4658
4659 err = strict_strtoul(buf, 10, &min);
4660 if (err)
4661 return err;
4662
4663 set_min_partial(s, min);
4664 return length;
4665 }
4666 SLAB_ATTR(min_partial);
4667
4668 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4669 {
4670 return sprintf(buf, "%u\n", s->cpu_partial);
4671 }
4672
4673 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4674 size_t length)
4675 {
4676 unsigned long objects;
4677 int err;
4678
4679 err = strict_strtoul(buf, 10, &objects);
4680 if (err)
4681 return err;
4682 if (objects && kmem_cache_debug(s))
4683 return -EINVAL;
4684
4685 s->cpu_partial = objects;
4686 flush_all(s);
4687 return length;
4688 }
4689 SLAB_ATTR(cpu_partial);
4690
4691 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4692 {
4693 if (!s->ctor)
4694 return 0;
4695 return sprintf(buf, "%pS\n", s->ctor);
4696 }
4697 SLAB_ATTR_RO(ctor);
4698
4699 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4700 {
4701 return sprintf(buf, "%d\n", s->refcount - 1);
4702 }
4703 SLAB_ATTR_RO(aliases);
4704
4705 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4706 {
4707 return show_slab_objects(s, buf, SO_PARTIAL);
4708 }
4709 SLAB_ATTR_RO(partial);
4710
4711 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4712 {
4713 return show_slab_objects(s, buf, SO_CPU);
4714 }
4715 SLAB_ATTR_RO(cpu_slabs);
4716
4717 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4718 {
4719 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4720 }
4721 SLAB_ATTR_RO(objects);
4722
4723 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4724 {
4725 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4726 }
4727 SLAB_ATTR_RO(objects_partial);
4728
4729 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4730 {
4731 int objects = 0;
4732 int pages = 0;
4733 int cpu;
4734 int len;
4735
4736 for_each_online_cpu(cpu) {
4737 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4738
4739 if (page) {
4740 pages += page->pages;
4741 objects += page->pobjects;
4742 }
4743 }
4744
4745 len = sprintf(buf, "%d(%d)", objects, pages);
4746
4747 #ifdef CONFIG_SMP
4748 for_each_online_cpu(cpu) {
4749 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4750
4751 if (page && len < PAGE_SIZE - 20)
4752 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4753 page->pobjects, page->pages);
4754 }
4755 #endif
4756 return len + sprintf(buf + len, "\n");
4757 }
4758 SLAB_ATTR_RO(slabs_cpu_partial);
4759
4760 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4761 {
4762 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4763 }
4764
4765 static ssize_t reclaim_account_store(struct kmem_cache *s,
4766 const char *buf, size_t length)
4767 {
4768 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4769 if (buf[0] == '1')
4770 s->flags |= SLAB_RECLAIM_ACCOUNT;
4771 return length;
4772 }
4773 SLAB_ATTR(reclaim_account);
4774
4775 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4776 {
4777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4778 }
4779 SLAB_ATTR_RO(hwcache_align);
4780
4781 #ifdef CONFIG_ZONE_DMA
4782 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4783 {
4784 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4785 }
4786 SLAB_ATTR_RO(cache_dma);
4787 #endif
4788
4789 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4790 {
4791 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4792 }
4793 SLAB_ATTR_RO(destroy_by_rcu);
4794
4795 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4796 {
4797 return sprintf(buf, "%d\n", s->reserved);
4798 }
4799 SLAB_ATTR_RO(reserved);
4800
4801 #ifdef CONFIG_SLUB_DEBUG
4802 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4803 {
4804 return show_slab_objects(s, buf, SO_ALL);
4805 }
4806 SLAB_ATTR_RO(slabs);
4807
4808 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4809 {
4810 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4811 }
4812 SLAB_ATTR_RO(total_objects);
4813
4814 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4815 {
4816 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4817 }
4818
4819 static ssize_t sanity_checks_store(struct kmem_cache *s,
4820 const char *buf, size_t length)
4821 {
4822 s->flags &= ~SLAB_DEBUG_FREE;
4823 if (buf[0] == '1') {
4824 s->flags &= ~__CMPXCHG_DOUBLE;
4825 s->flags |= SLAB_DEBUG_FREE;
4826 }
4827 return length;
4828 }
4829 SLAB_ATTR(sanity_checks);
4830
4831 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4832 {
4833 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4834 }
4835
4836 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4837 size_t length)
4838 {
4839 s->flags &= ~SLAB_TRACE;
4840 if (buf[0] == '1') {
4841 s->flags &= ~__CMPXCHG_DOUBLE;
4842 s->flags |= SLAB_TRACE;
4843 }
4844 return length;
4845 }
4846 SLAB_ATTR(trace);
4847
4848 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4849 {
4850 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4851 }
4852
4853 static ssize_t red_zone_store(struct kmem_cache *s,
4854 const char *buf, size_t length)
4855 {
4856 if (any_slab_objects(s))
4857 return -EBUSY;
4858
4859 s->flags &= ~SLAB_RED_ZONE;
4860 if (buf[0] == '1') {
4861 s->flags &= ~__CMPXCHG_DOUBLE;
4862 s->flags |= SLAB_RED_ZONE;
4863 }
4864 calculate_sizes(s, -1);
4865 return length;
4866 }
4867 SLAB_ATTR(red_zone);
4868
4869 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4870 {
4871 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4872 }
4873
4874 static ssize_t poison_store(struct kmem_cache *s,
4875 const char *buf, size_t length)
4876 {
4877 if (any_slab_objects(s))
4878 return -EBUSY;
4879
4880 s->flags &= ~SLAB_POISON;
4881 if (buf[0] == '1') {
4882 s->flags &= ~__CMPXCHG_DOUBLE;
4883 s->flags |= SLAB_POISON;
4884 }
4885 calculate_sizes(s, -1);
4886 return length;
4887 }
4888 SLAB_ATTR(poison);
4889
4890 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4891 {
4892 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4893 }
4894
4895 static ssize_t store_user_store(struct kmem_cache *s,
4896 const char *buf, size_t length)
4897 {
4898 if (any_slab_objects(s))
4899 return -EBUSY;
4900
4901 s->flags &= ~SLAB_STORE_USER;
4902 if (buf[0] == '1') {
4903 s->flags &= ~__CMPXCHG_DOUBLE;
4904 s->flags |= SLAB_STORE_USER;
4905 }
4906 calculate_sizes(s, -1);
4907 return length;
4908 }
4909 SLAB_ATTR(store_user);
4910
4911 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4912 {
4913 return 0;
4914 }
4915
4916 static ssize_t validate_store(struct kmem_cache *s,
4917 const char *buf, size_t length)
4918 {
4919 int ret = -EINVAL;
4920
4921 if (buf[0] == '1') {
4922 ret = validate_slab_cache(s);
4923 if (ret >= 0)
4924 ret = length;
4925 }
4926 return ret;
4927 }
4928 SLAB_ATTR(validate);
4929
4930 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4931 {
4932 if (!(s->flags & SLAB_STORE_USER))
4933 return -ENOSYS;
4934 return list_locations(s, buf, TRACK_ALLOC);
4935 }
4936 SLAB_ATTR_RO(alloc_calls);
4937
4938 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4939 {
4940 if (!(s->flags & SLAB_STORE_USER))
4941 return -ENOSYS;
4942 return list_locations(s, buf, TRACK_FREE);
4943 }
4944 SLAB_ATTR_RO(free_calls);
4945 #endif /* CONFIG_SLUB_DEBUG */
4946
4947 #ifdef CONFIG_FAILSLAB
4948 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4949 {
4950 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4951 }
4952
4953 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4954 size_t length)
4955 {
4956 s->flags &= ~SLAB_FAILSLAB;
4957 if (buf[0] == '1')
4958 s->flags |= SLAB_FAILSLAB;
4959 return length;
4960 }
4961 SLAB_ATTR(failslab);
4962 #endif
4963
4964 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4965 {
4966 return 0;
4967 }
4968
4969 static ssize_t shrink_store(struct kmem_cache *s,
4970 const char *buf, size_t length)
4971 {
4972 if (buf[0] == '1') {
4973 int rc = kmem_cache_shrink(s);
4974
4975 if (rc)
4976 return rc;
4977 } else
4978 return -EINVAL;
4979 return length;
4980 }
4981 SLAB_ATTR(shrink);
4982
4983 #ifdef CONFIG_NUMA
4984 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4985 {
4986 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4987 }
4988
4989 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4990 const char *buf, size_t length)
4991 {
4992 unsigned long ratio;
4993 int err;
4994
4995 err = strict_strtoul(buf, 10, &ratio);
4996 if (err)
4997 return err;
4998
4999 if (ratio <= 100)
5000 s->remote_node_defrag_ratio = ratio * 10;
5001
5002 return length;
5003 }
5004 SLAB_ATTR(remote_node_defrag_ratio);
5005 #endif
5006
5007 #ifdef CONFIG_SLUB_STATS
5008 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5009 {
5010 unsigned long sum = 0;
5011 int cpu;
5012 int len;
5013 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5014
5015 if (!data)
5016 return -ENOMEM;
5017
5018 for_each_online_cpu(cpu) {
5019 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5020
5021 data[cpu] = x;
5022 sum += x;
5023 }
5024
5025 len = sprintf(buf, "%lu", sum);
5026
5027 #ifdef CONFIG_SMP
5028 for_each_online_cpu(cpu) {
5029 if (data[cpu] && len < PAGE_SIZE - 20)
5030 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5031 }
5032 #endif
5033 kfree(data);
5034 return len + sprintf(buf + len, "\n");
5035 }
5036
5037 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5038 {
5039 int cpu;
5040
5041 for_each_online_cpu(cpu)
5042 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5043 }
5044
5045 #define STAT_ATTR(si, text) \
5046 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5047 { \
5048 return show_stat(s, buf, si); \
5049 } \
5050 static ssize_t text##_store(struct kmem_cache *s, \
5051 const char *buf, size_t length) \
5052 { \
5053 if (buf[0] != '0') \
5054 return -EINVAL; \
5055 clear_stat(s, si); \
5056 return length; \
5057 } \
5058 SLAB_ATTR(text); \
5059
5060 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5061 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5062 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5063 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5064 STAT_ATTR(FREE_FROZEN, free_frozen);
5065 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5066 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5067 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5068 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5069 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5070 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5071 STAT_ATTR(FREE_SLAB, free_slab);
5072 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5073 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5074 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5075 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5076 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5077 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5078 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5079 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5080 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5081 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5082 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5083 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5084 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5085 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5086 #endif
5087
5088 static struct attribute *slab_attrs[] = {
5089 &slab_size_attr.attr,
5090 &object_size_attr.attr,
5091 &objs_per_slab_attr.attr,
5092 &order_attr.attr,
5093 &min_partial_attr.attr,
5094 &cpu_partial_attr.attr,
5095 &objects_attr.attr,
5096 &objects_partial_attr.attr,
5097 &partial_attr.attr,
5098 &cpu_slabs_attr.attr,
5099 &ctor_attr.attr,
5100 &aliases_attr.attr,
5101 &align_attr.attr,
5102 &hwcache_align_attr.attr,
5103 &reclaim_account_attr.attr,
5104 &destroy_by_rcu_attr.attr,
5105 &shrink_attr.attr,
5106 &reserved_attr.attr,
5107 &slabs_cpu_partial_attr.attr,
5108 #ifdef CONFIG_SLUB_DEBUG
5109 &total_objects_attr.attr,
5110 &slabs_attr.attr,
5111 &sanity_checks_attr.attr,
5112 &trace_attr.attr,
5113 &red_zone_attr.attr,
5114 &poison_attr.attr,
5115 &store_user_attr.attr,
5116 &validate_attr.attr,
5117 &alloc_calls_attr.attr,
5118 &free_calls_attr.attr,
5119 #endif
5120 #ifdef CONFIG_ZONE_DMA
5121 &cache_dma_attr.attr,
5122 #endif
5123 #ifdef CONFIG_NUMA
5124 &remote_node_defrag_ratio_attr.attr,
5125 #endif
5126 #ifdef CONFIG_SLUB_STATS
5127 &alloc_fastpath_attr.attr,
5128 &alloc_slowpath_attr.attr,
5129 &free_fastpath_attr.attr,
5130 &free_slowpath_attr.attr,
5131 &free_frozen_attr.attr,
5132 &free_add_partial_attr.attr,
5133 &free_remove_partial_attr.attr,
5134 &alloc_from_partial_attr.attr,
5135 &alloc_slab_attr.attr,
5136 &alloc_refill_attr.attr,
5137 &alloc_node_mismatch_attr.attr,
5138 &free_slab_attr.attr,
5139 &cpuslab_flush_attr.attr,
5140 &deactivate_full_attr.attr,
5141 &deactivate_empty_attr.attr,
5142 &deactivate_to_head_attr.attr,
5143 &deactivate_to_tail_attr.attr,
5144 &deactivate_remote_frees_attr.attr,
5145 &deactivate_bypass_attr.attr,
5146 &order_fallback_attr.attr,
5147 &cmpxchg_double_fail_attr.attr,
5148 &cmpxchg_double_cpu_fail_attr.attr,
5149 &cpu_partial_alloc_attr.attr,
5150 &cpu_partial_free_attr.attr,
5151 &cpu_partial_node_attr.attr,
5152 &cpu_partial_drain_attr.attr,
5153 #endif
5154 #ifdef CONFIG_FAILSLAB
5155 &failslab_attr.attr,
5156 #endif
5157
5158 NULL
5159 };
5160
5161 static struct attribute_group slab_attr_group = {
5162 .attrs = slab_attrs,
5163 };
5164
5165 static ssize_t slab_attr_show(struct kobject *kobj,
5166 struct attribute *attr,
5167 char *buf)
5168 {
5169 struct slab_attribute *attribute;
5170 struct kmem_cache *s;
5171 int err;
5172
5173 attribute = to_slab_attr(attr);
5174 s = to_slab(kobj);
5175
5176 if (!attribute->show)
5177 return -EIO;
5178
5179 err = attribute->show(s, buf);
5180
5181 return err;
5182 }
5183
5184 static ssize_t slab_attr_store(struct kobject *kobj,
5185 struct attribute *attr,
5186 const char *buf, size_t len)
5187 {
5188 struct slab_attribute *attribute;
5189 struct kmem_cache *s;
5190 int err;
5191
5192 attribute = to_slab_attr(attr);
5193 s = to_slab(kobj);
5194
5195 if (!attribute->store)
5196 return -EIO;
5197
5198 err = attribute->store(s, buf, len);
5199
5200 return err;
5201 }
5202
5203 static void kmem_cache_release(struct kobject *kobj)
5204 {
5205 struct kmem_cache *s = to_slab(kobj);
5206
5207 kfree(s->name);
5208 kfree(s);
5209 }
5210
5211 static const struct sysfs_ops slab_sysfs_ops = {
5212 .show = slab_attr_show,
5213 .store = slab_attr_store,
5214 };
5215
5216 static struct kobj_type slab_ktype = {
5217 .sysfs_ops = &slab_sysfs_ops,
5218 .release = kmem_cache_release
5219 };
5220
5221 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5222 {
5223 struct kobj_type *ktype = get_ktype(kobj);
5224
5225 if (ktype == &slab_ktype)
5226 return 1;
5227 return 0;
5228 }
5229
5230 static const struct kset_uevent_ops slab_uevent_ops = {
5231 .filter = uevent_filter,
5232 };
5233
5234 static struct kset *slab_kset;
5235
5236 #define ID_STR_LENGTH 64
5237
5238 /* Create a unique string id for a slab cache:
5239 *
5240 * Format :[flags-]size
5241 */
5242 static char *create_unique_id(struct kmem_cache *s)
5243 {
5244 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5245 char *p = name;
5246
5247 BUG_ON(!name);
5248
5249 *p++ = ':';
5250 /*
5251 * First flags affecting slabcache operations. We will only
5252 * get here for aliasable slabs so we do not need to support
5253 * too many flags. The flags here must cover all flags that
5254 * are matched during merging to guarantee that the id is
5255 * unique.
5256 */
5257 if (s->flags & SLAB_CACHE_DMA)
5258 *p++ = 'd';
5259 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5260 *p++ = 'a';
5261 if (s->flags & SLAB_DEBUG_FREE)
5262 *p++ = 'F';
5263 if (!(s->flags & SLAB_NOTRACK))
5264 *p++ = 't';
5265 if (p != name + 1)
5266 *p++ = '-';
5267 p += sprintf(p, "%07d", s->size);
5268 BUG_ON(p > name + ID_STR_LENGTH - 1);
5269 return name;
5270 }
5271
5272 static int sysfs_slab_add(struct kmem_cache *s)
5273 {
5274 int err;
5275 const char *name;
5276 int unmergeable;
5277
5278 if (slab_state < SYSFS)
5279 /* Defer until later */
5280 return 0;
5281
5282 unmergeable = slab_unmergeable(s);
5283 if (unmergeable) {
5284 /*
5285 * Slabcache can never be merged so we can use the name proper.
5286 * This is typically the case for debug situations. In that
5287 * case we can catch duplicate names easily.
5288 */
5289 sysfs_remove_link(&slab_kset->kobj, s->name);
5290 name = s->name;
5291 } else {
5292 /*
5293 * Create a unique name for the slab as a target
5294 * for the symlinks.
5295 */
5296 name = create_unique_id(s);
5297 }
5298
5299 s->kobj.kset = slab_kset;
5300 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5301 if (err) {
5302 kobject_put(&s->kobj);
5303 return err;
5304 }
5305
5306 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5307 if (err) {
5308 kobject_del(&s->kobj);
5309 kobject_put(&s->kobj);
5310 return err;
5311 }
5312 kobject_uevent(&s->kobj, KOBJ_ADD);
5313 if (!unmergeable) {
5314 /* Setup first alias */
5315 sysfs_slab_alias(s, s->name);
5316 kfree(name);
5317 }
5318 return 0;
5319 }
5320
5321 static void sysfs_slab_remove(struct kmem_cache *s)
5322 {
5323 if (slab_state < SYSFS)
5324 /*
5325 * Sysfs has not been setup yet so no need to remove the
5326 * cache from sysfs.
5327 */
5328 return;
5329
5330 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5331 kobject_del(&s->kobj);
5332 kobject_put(&s->kobj);
5333 }
5334
5335 /*
5336 * Need to buffer aliases during bootup until sysfs becomes
5337 * available lest we lose that information.
5338 */
5339 struct saved_alias {
5340 struct kmem_cache *s;
5341 const char *name;
5342 struct saved_alias *next;
5343 };
5344
5345 static struct saved_alias *alias_list;
5346
5347 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5348 {
5349 struct saved_alias *al;
5350
5351 if (slab_state == SYSFS) {
5352 /*
5353 * If we have a leftover link then remove it.
5354 */
5355 sysfs_remove_link(&slab_kset->kobj, name);
5356 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5357 }
5358
5359 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5360 if (!al)
5361 return -ENOMEM;
5362
5363 al->s = s;
5364 al->name = name;
5365 al->next = alias_list;
5366 alias_list = al;
5367 return 0;
5368 }
5369
5370 static int __init slab_sysfs_init(void)
5371 {
5372 struct kmem_cache *s;
5373 int err;
5374
5375 down_write(&slub_lock);
5376
5377 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5378 if (!slab_kset) {
5379 up_write(&slub_lock);
5380 printk(KERN_ERR "Cannot register slab subsystem.\n");
5381 return -ENOSYS;
5382 }
5383
5384 slab_state = SYSFS;
5385
5386 list_for_each_entry(s, &slab_caches, list) {
5387 err = sysfs_slab_add(s);
5388 if (err)
5389 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5390 " to sysfs\n", s->name);
5391 }
5392
5393 while (alias_list) {
5394 struct saved_alias *al = alias_list;
5395
5396 alias_list = alias_list->next;
5397 err = sysfs_slab_alias(al->s, al->name);
5398 if (err)
5399 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5400 " %s to sysfs\n", s->name);
5401 kfree(al);
5402 }
5403
5404 up_write(&slub_lock);
5405 resiliency_test();
5406 return 0;
5407 }
5408
5409 __initcall(slab_sysfs_init);
5410 #endif /* CONFIG_SYSFS */
5411
5412 /*
5413 * The /proc/slabinfo ABI
5414 */
5415 #ifdef CONFIG_SLABINFO
5416 static void print_slabinfo_header(struct seq_file *m)
5417 {
5418 seq_puts(m, "slabinfo - version: 2.1\n");
5419 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5420 "<objperslab> <pagesperslab>");
5421 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5422 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5423 seq_putc(m, '\n');
5424 }
5425
5426 static void *s_start(struct seq_file *m, loff_t *pos)
5427 {
5428 loff_t n = *pos;
5429
5430 down_read(&slub_lock);
5431 if (!n)
5432 print_slabinfo_header(m);
5433
5434 return seq_list_start(&slab_caches, *pos);
5435 }
5436
5437 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5438 {
5439 return seq_list_next(p, &slab_caches, pos);
5440 }
5441
5442 static void s_stop(struct seq_file *m, void *p)
5443 {
5444 up_read(&slub_lock);
5445 }
5446
5447 static int s_show(struct seq_file *m, void *p)
5448 {
5449 unsigned long nr_partials = 0;
5450 unsigned long nr_slabs = 0;
5451 unsigned long nr_inuse = 0;
5452 unsigned long nr_objs = 0;
5453 unsigned long nr_free = 0;
5454 struct kmem_cache *s;
5455 int node;
5456
5457 s = list_entry(p, struct kmem_cache, list);
5458
5459 for_each_online_node(node) {
5460 struct kmem_cache_node *n = get_node(s, node);
5461
5462 if (!n)
5463 continue;
5464
5465 nr_partials += n->nr_partial;
5466 nr_slabs += atomic_long_read(&n->nr_slabs);
5467 nr_objs += atomic_long_read(&n->total_objects);
5468 nr_free += count_partial(n, count_free);
5469 }
5470
5471 nr_inuse = nr_objs - nr_free;
5472
5473 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5474 nr_objs, s->size, oo_objects(s->oo),
5475 (1 << oo_order(s->oo)));
5476 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5477 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5478 0UL);
5479 seq_putc(m, '\n');
5480 return 0;
5481 }
5482
5483 static const struct seq_operations slabinfo_op = {
5484 .start = s_start,
5485 .next = s_next,
5486 .stop = s_stop,
5487 .show = s_show,
5488 };
5489
5490 static int slabinfo_open(struct inode *inode, struct file *file)
5491 {
5492 return seq_open(file, &slabinfo_op);
5493 }
5494
5495 static const struct file_operations proc_slabinfo_operations = {
5496 .open = slabinfo_open,
5497 .read = seq_read,
5498 .llseek = seq_lseek,
5499 .release = seq_release,
5500 };
5501
5502 static int __init slab_proc_init(void)
5503 {
5504 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5505 return 0;
5506 }
5507 module_init(slab_proc_init);
5508 #endif /* CONFIG_SLABINFO */
This page took 0.155133 seconds and 6 git commands to generate.