slub: Use page variable instead of c->page.
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 #include <linux/stacktrace.h>
32 #include <linux/prefetch.h>
33
34 #include <trace/events/kmem.h>
35
36 /*
37 * Lock order:
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
41 *
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81 * freed then the slab will show up again on the partial lists.
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
103 * freelist that allows lockless access to
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
109 * the fast path and disables lockless freelists.
110 */
111
112 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115 static inline int kmem_cache_debug(struct kmem_cache *s)
116 {
117 #ifdef CONFIG_SLUB_DEBUG
118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
119 #else
120 return 0;
121 #endif
122 }
123
124 /*
125 * Issues still to be resolved:
126 *
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
129 * - Variable sizing of the per node arrays
130 */
131
132 /* Enable to test recovery from slab corruption on boot */
133 #undef SLUB_RESILIENCY_TEST
134
135 /* Enable to log cmpxchg failures */
136 #undef SLUB_DEBUG_CMPXCHG
137
138 /*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
142 #define MIN_PARTIAL 5
143
144 /*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149 #define MAX_PARTIAL 10
150
151 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
153
154 /*
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
158 */
159 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
160
161 /*
162 * Set of flags that will prevent slab merging
163 */
164 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
167
168 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
169 SLAB_CACHE_DMA | SLAB_NOTRACK)
170
171 #define OO_SHIFT 16
172 #define OO_MASK ((1 << OO_SHIFT) - 1)
173 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
174
175 /* Internal SLUB flags */
176 #define __OBJECT_POISON 0x80000000UL /* Poison object */
177 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
178
179 static int kmem_size = sizeof(struct kmem_cache);
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 static enum {
186 DOWN, /* No slab functionality available */
187 PARTIAL, /* Kmem_cache_node works */
188 UP, /* Everything works but does not show up in sysfs */
189 SYSFS /* Sysfs up */
190 } slab_state = DOWN;
191
192 /* A list of all slab caches on the system */
193 static DECLARE_RWSEM(slub_lock);
194 static LIST_HEAD(slab_caches);
195
196 /*
197 * Tracking user of a slab.
198 */
199 #define TRACK_ADDRS_COUNT 16
200 struct track {
201 unsigned long addr; /* Called from address */
202 #ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204 #endif
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208 };
209
210 enum track_item { TRACK_ALLOC, TRACK_FREE };
211
212 #ifdef CONFIG_SYSFS
213 static int sysfs_slab_add(struct kmem_cache *);
214 static int sysfs_slab_alias(struct kmem_cache *, const char *);
215 static void sysfs_slab_remove(struct kmem_cache *);
216
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221 static inline void sysfs_slab_remove(struct kmem_cache *s)
222 {
223 kfree(s->name);
224 kfree(s);
225 }
226
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 __this_cpu_inc(s->cpu_slab->stat[si]);
233 #endif
234 }
235
236 /********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240 int slab_is_available(void)
241 {
242 return slab_state >= UP;
243 }
244
245 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246 {
247 return s->node[node];
248 }
249
250 /* Verify that a pointer has an address that is valid within a slab page */
251 static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253 {
254 void *base;
255
256 if (!object)
257 return 1;
258
259 base = page_address(page);
260 if (object < base || object >= base + page->objects * s->size ||
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266 }
267
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 {
270 return *(void **)(object + s->offset);
271 }
272
273 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274 {
275 prefetch(object + s->offset);
276 }
277
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 void *p;
281
282 #ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284 #else
285 p = get_freepointer(s, object);
286 #endif
287 return p;
288 }
289
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291 {
292 *(void **)(object + s->offset) = fp;
293 }
294
295 /* Loop over all objects in a slab */
296 #define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
298 __p += (__s)->size)
299
300 /* Determine object index from a given position */
301 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302 {
303 return (p - addr) / s->size;
304 }
305
306 static inline size_t slab_ksize(const struct kmem_cache *s)
307 {
308 #ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
315
316 #endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328 }
329
330 static inline int order_objects(int order, unsigned long size, int reserved)
331 {
332 return ((PAGE_SIZE << order) - reserved) / size;
333 }
334
335 static inline struct kmem_cache_order_objects oo_make(int order,
336 unsigned long size, int reserved)
337 {
338 struct kmem_cache_order_objects x = {
339 (order << OO_SHIFT) + order_objects(order, size, reserved)
340 };
341
342 return x;
343 }
344
345 static inline int oo_order(struct kmem_cache_order_objects x)
346 {
347 return x.x >> OO_SHIFT;
348 }
349
350 static inline int oo_objects(struct kmem_cache_order_objects x)
351 {
352 return x.x & OO_MASK;
353 }
354
355 /*
356 * Per slab locking using the pagelock
357 */
358 static __always_inline void slab_lock(struct page *page)
359 {
360 bit_spin_lock(PG_locked, &page->flags);
361 }
362
363 static __always_inline void slab_unlock(struct page *page)
364 {
365 __bit_spin_unlock(PG_locked, &page->flags);
366 }
367
368 /* Interrupts must be disabled (for the fallback code to work right) */
369 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373 {
374 VM_BUG_ON(!irqs_disabled());
375 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377 if (s->flags & __CMPXCHG_DOUBLE) {
378 if (cmpxchg_double(&page->freelist, &page->counters,
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383 #endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398 #ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400 #endif
401
402 return 0;
403 }
404
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409 {
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 if (s->flags & __CMPXCHG_DOUBLE) {
413 if (cmpxchg_double(&page->freelist, &page->counters,
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418 #endif
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 slab_lock(page);
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
427 slab_unlock(page);
428 local_irq_restore(flags);
429 return 1;
430 }
431 slab_unlock(page);
432 local_irq_restore(flags);
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438 #ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440 #endif
441
442 return 0;
443 }
444
445 #ifdef CONFIG_SLUB_DEBUG
446 /*
447 * Determine a map of object in use on a page.
448 *
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
451 */
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 {
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459 }
460
461 /*
462 * Debug settings:
463 */
464 #ifdef CONFIG_SLUB_DEBUG_ON
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #else
467 static int slub_debug;
468 #endif
469
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472
473 /*
474 * Object debugging
475 */
476 static void print_section(char *text, u8 *addr, unsigned int length)
477 {
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
480 }
481
482 static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484 {
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493 }
494
495 static void set_track(struct kmem_cache *s, void *object,
496 enum track_item alloc, unsigned long addr)
497 {
498 struct track *p = get_track(s, object, alloc);
499
500 if (addr) {
501 #ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518 #endif
519 p->addr = addr;
520 p->cpu = smp_processor_id();
521 p->pid = current->pid;
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525 }
526
527 static void init_tracking(struct kmem_cache *s, void *object)
528 {
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
534 }
535
536 static void print_track(const char *s, struct track *t)
537 {
538 if (!t->addr)
539 return;
540
541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
543 #ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552 #endif
553 }
554
555 static void print_tracking(struct kmem_cache *s, void *object)
556 {
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562 }
563
564 static void print_page_info(struct page *page)
565 {
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
568
569 }
570
571 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572 {
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
584 }
585
586 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587 {
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595 }
596
597 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
598 {
599 unsigned int off; /* Offset of last byte */
600 u8 *addr = page_address(page);
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
610 print_section("Bytes b4 ", p - 16, 16);
611
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
614 if (s->flags & SLAB_RED_ZONE)
615 print_section("Redzone ", p + s->objsize,
616 s->inuse - s->objsize);
617
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
623 if (s->flags & SLAB_STORE_USER)
624 off += 2 * sizeof(struct track);
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
628 print_section("Padding ", p + off, s->size - off);
629
630 dump_stack();
631 }
632
633 static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635 {
636 slab_bug(s, "%s", reason);
637 print_trailer(s, page, object);
638 }
639
640 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
659 p[s->objsize - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->objsize, val, s->inuse - s->objsize);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->objsize))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
800 }
801 }
802
803 if (s->flags & SLAB_POISON) {
804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
808 p + s->objsize - 1, POISON_END, 1)))
809 return 0;
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
816 if (!s->offset && val == SLUB_RED_ACTIVE)
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
827 * No choice but to zap it and thus lose the remainder
828 * of the free objects in this slab. May cause
829 * another error because the object count is now wrong.
830 */
831 set_freepointer(s, p, NULL);
832 return 0;
833 }
834 return 1;
835 }
836
837 static int check_slab(struct kmem_cache *s, struct page *page)
838 {
839 int maxobj;
840
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
844 slab_err(s, page, "Not a valid slab page");
845 return 0;
846 }
847
848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
855 slab_err(s, page, "inuse %u > max %u",
856 s->name, page->inuse, page->objects);
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862 }
863
864 /*
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
867 */
868 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869 {
870 int nr = 0;
871 void *fp;
872 void *object = NULL;
873 unsigned long max_objects;
874
875 fp = page->freelist;
876 while (fp && nr <= page->objects) {
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
883 set_freepointer(s, object, NULL);
884 break;
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object, s->objsize);
930
931 dump_stack();
932 }
933 }
934
935 /*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940 {
941 flags &= gfp_allowed_mask;
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->objsize, flags, s->flags);
946 }
947
948 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949 {
950 flags &= gfp_allowed_mask;
951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953 }
954
955 static inline void slab_free_hook(struct kmem_cache *s, void *x)
956 {
957 kmemleak_free_recursive(x, s->flags);
958
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
971 local_irq_restore(flags);
972 }
973 #endif
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
976 }
977
978 /*
979 * Tracking of fully allocated slabs for debugging purposes.
980 *
981 * list_lock must be held.
982 */
983 static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
985 {
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
989 list_add(&page->lru, &n->full);
990 }
991
992 /*
993 * list_lock must be held.
994 */
995 static void remove_full(struct kmem_cache *s, struct page *page)
996 {
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
1000 list_del(&page->lru);
1001 }
1002
1003 /* Tracking of the number of slabs for debugging purposes */
1004 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005 {
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009 }
1010
1011 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012 {
1013 return atomic_long_read(&n->nr_slabs);
1014 }
1015
1016 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1017 {
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
1026 if (n) {
1027 atomic_long_inc(&n->nr_slabs);
1028 atomic_long_add(objects, &n->total_objects);
1029 }
1030 }
1031 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1032 {
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
1036 atomic_long_sub(objects, &n->total_objects);
1037 }
1038
1039 /* Object debug checks for alloc/free paths */
1040 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042 {
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
1046 init_object(s, object, SLUB_RED_INACTIVE);
1047 init_tracking(s, object);
1048 }
1049
1050 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1051 void *object, unsigned long addr)
1052 {
1053 if (!check_slab(s, page))
1054 goto bad;
1055
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
1058 goto bad;
1059 }
1060
1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1062 goto bad;
1063
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
1068 init_object(s, object, SLUB_RED_ACTIVE);
1069 return 1;
1070
1071 bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
1076 * as used avoids touching the remaining objects.
1077 */
1078 slab_fix(s, "Marking all objects used");
1079 page->inuse = page->objects;
1080 page->freelist = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
1087 {
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
1092 slab_lock(page);
1093
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
1103 object_err(s, page, object, "Object already free");
1104 goto fail;
1105 }
1106
1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108 goto out;
1109
1110 if (unlikely(s != page->slab)) {
1111 if (!PageSlab(page)) {
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
1114 } else if (!page->slab) {
1115 printk(KERN_ERR
1116 "SLUB <none>: no slab for object 0x%p.\n",
1117 object);
1118 dump_stack();
1119 } else
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
1122 goto fail;
1123 }
1124
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
1128 init_object(s, object, SLUB_RED_INACTIVE);
1129 rc = 1;
1130 out:
1131 slab_unlock(page);
1132 local_irq_restore(flags);
1133 return rc;
1134
1135 fail:
1136 slab_fix(s, "Object at 0x%p not freed", object);
1137 goto out;
1138 }
1139
1140 static int __init setup_slub_debug(char *str)
1141 {
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
1175 for (; *str && *str != ','; str++) {
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
1197 "unknown. skipped\n", *str);
1198 }
1199 }
1200
1201 check_slabs:
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
1204 out:
1205 return 1;
1206 }
1207
1208 __setup("slub_debug", setup_slub_debug);
1209
1210 static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
1212 void (*ctor)(void *))
1213 {
1214 /*
1215 * Enable debugging if selected on the kernel commandline.
1216 */
1217 if (slub_debug && (!slub_debug_slabs ||
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
1220
1221 return flags;
1222 }
1223 #else
1224 static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
1226
1227 static inline int alloc_debug_processing(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr) { return 0; }
1229
1230 static inline int free_debug_processing(struct kmem_cache *s,
1231 struct page *page, void *object, unsigned long addr) { return 0; }
1232
1233 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235 static inline int check_object(struct kmem_cache *s, struct page *page,
1236 void *object, u8 val) { return 1; }
1237 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
1239 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1240 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
1242 void (*ctor)(void *))
1243 {
1244 return flags;
1245 }
1246 #define slub_debug 0
1247
1248 #define disable_higher_order_debug 0
1249
1250 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
1252 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
1254 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
1258
1259 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
1267 #endif /* CONFIG_SLUB_DEBUG */
1268
1269 /*
1270 * Slab allocation and freeing
1271 */
1272 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274 {
1275 int order = oo_order(oo);
1276
1277 flags |= __GFP_NOTRACK;
1278
1279 if (node == NUMA_NO_NODE)
1280 return alloc_pages(flags, order);
1281 else
1282 return alloc_pages_exact_node(node, flags, order);
1283 }
1284
1285 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286 {
1287 struct page *page;
1288 struct kmem_cache_order_objects oo = s->oo;
1289 gfp_t alloc_gfp;
1290
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
1296 flags |= s->allocflags;
1297
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
1312
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
1315 }
1316
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
1323 if (kmemcheck_enabled
1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
1337 }
1338
1339 page->objects = oo_objects(oo);
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1343 1 << oo_order(oo));
1344
1345 return page;
1346 }
1347
1348 static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350 {
1351 setup_object_debug(s, page, object);
1352 if (unlikely(s->ctor))
1353 s->ctor(object);
1354 }
1355
1356 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357 {
1358 struct page *page;
1359 void *start;
1360 void *last;
1361 void *p;
1362
1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1364
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1367 if (!page)
1368 goto out;
1369
1370 inc_slabs_node(s, page_to_nid(page), page->objects);
1371 page->slab = s;
1372 page->flags |= 1 << PG_slab;
1373
1374 start = page_address(page);
1375
1376 if (unlikely(s->flags & SLAB_POISON))
1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1378
1379 last = start;
1380 for_each_object(p, s, start, page->objects) {
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
1386 set_freepointer(s, last, NULL);
1387
1388 page->freelist = start;
1389 page->inuse = page->objects;
1390 page->frozen = 1;
1391 out:
1392 return page;
1393 }
1394
1395 static void __free_slab(struct kmem_cache *s, struct page *page)
1396 {
1397 int order = compound_order(page);
1398 int pages = 1 << order;
1399
1400 if (kmem_cache_debug(s)) {
1401 void *p;
1402
1403 slab_pad_check(s, page);
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
1406 check_object(s, page, p, SLUB_RED_INACTIVE);
1407 }
1408
1409 kmemcheck_free_shadow(page, compound_order(page));
1410
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1414 -pages);
1415
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
1420 __free_pages(page, order);
1421 }
1422
1423 #define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
1426 static void rcu_free_slab(struct rcu_head *h)
1427 {
1428 struct page *page;
1429
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
1435 __free_slab(page->slab, page);
1436 }
1437
1438 static void free_slab(struct kmem_cache *s, struct page *page)
1439 {
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459 }
1460
1461 static void discard_slab(struct kmem_cache *s, struct page *page)
1462 {
1463 dec_slabs_node(s, page_to_nid(page), page->objects);
1464 free_slab(s, page);
1465 }
1466
1467 /*
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
1471 */
1472 static inline void add_partial(struct kmem_cache_node *n,
1473 struct page *page, int tail)
1474 {
1475 n->nr_partial++;
1476 if (tail == DEACTIVATE_TO_TAIL)
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
1480 }
1481
1482 /*
1483 * list_lock must be held.
1484 */
1485 static inline void remove_partial(struct kmem_cache_node *n,
1486 struct page *page)
1487 {
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490 }
1491
1492 /*
1493 * Remove slab from the partial list, freeze it and
1494 * return the pointer to the freelist.
1495 *
1496 * Returns a list of objects or NULL if it fails.
1497 *
1498 * Must hold list_lock since we modify the partial list.
1499 */
1500 static inline void *acquire_slab(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct page *page,
1502 int mode)
1503 {
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
1513 freelist = page->freelist;
1514 counters = page->counters;
1515 new.counters = counters;
1516 if (mode)
1517 new.inuse = page->objects;
1518
1519 VM_BUG_ON(new.frozen);
1520 new.frozen = 1;
1521
1522 if (!__cmpxchg_double_slab(s, page,
1523 freelist, counters,
1524 NULL, new.counters,
1525 "acquire_slab"))
1526
1527 return NULL;
1528
1529 remove_partial(n, page);
1530 WARN_ON(!freelist);
1531 return freelist;
1532 }
1533
1534 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1535
1536 /*
1537 * Try to allocate a partial slab from a specific node.
1538 */
1539 static void *get_partial_node(struct kmem_cache *s,
1540 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
1541 {
1542 struct page *page, *page2;
1543 void *object = NULL;
1544
1545 /*
1546 * Racy check. If we mistakenly see no partial slabs then we
1547 * just allocate an empty slab. If we mistakenly try to get a
1548 * partial slab and there is none available then get_partials()
1549 * will return NULL.
1550 */
1551 if (!n || !n->nr_partial)
1552 return NULL;
1553
1554 spin_lock(&n->list_lock);
1555 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1556 void *t = acquire_slab(s, n, page, object == NULL);
1557 int available;
1558
1559 if (!t)
1560 break;
1561
1562 if (!object) {
1563 c->page = page;
1564 stat(s, ALLOC_FROM_PARTIAL);
1565 object = t;
1566 available = page->objects - page->inuse;
1567 } else {
1568 page->freelist = t;
1569 available = put_cpu_partial(s, page, 0);
1570 stat(s, CPU_PARTIAL_NODE);
1571 }
1572 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1573 break;
1574
1575 }
1576 spin_unlock(&n->list_lock);
1577 return object;
1578 }
1579
1580 /*
1581 * Get a page from somewhere. Search in increasing NUMA distances.
1582 */
1583 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1584 struct kmem_cache_cpu *c)
1585 {
1586 #ifdef CONFIG_NUMA
1587 struct zonelist *zonelist;
1588 struct zoneref *z;
1589 struct zone *zone;
1590 enum zone_type high_zoneidx = gfp_zone(flags);
1591 void *object;
1592 unsigned int cpuset_mems_cookie;
1593
1594 /*
1595 * The defrag ratio allows a configuration of the tradeoffs between
1596 * inter node defragmentation and node local allocations. A lower
1597 * defrag_ratio increases the tendency to do local allocations
1598 * instead of attempting to obtain partial slabs from other nodes.
1599 *
1600 * If the defrag_ratio is set to 0 then kmalloc() always
1601 * returns node local objects. If the ratio is higher then kmalloc()
1602 * may return off node objects because partial slabs are obtained
1603 * from other nodes and filled up.
1604 *
1605 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1606 * defrag_ratio = 1000) then every (well almost) allocation will
1607 * first attempt to defrag slab caches on other nodes. This means
1608 * scanning over all nodes to look for partial slabs which may be
1609 * expensive if we do it every time we are trying to find a slab
1610 * with available objects.
1611 */
1612 if (!s->remote_node_defrag_ratio ||
1613 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1614 return NULL;
1615
1616 do {
1617 cpuset_mems_cookie = get_mems_allowed();
1618 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1619 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1620 struct kmem_cache_node *n;
1621
1622 n = get_node(s, zone_to_nid(zone));
1623
1624 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1625 n->nr_partial > s->min_partial) {
1626 object = get_partial_node(s, n, c);
1627 if (object) {
1628 /*
1629 * Return the object even if
1630 * put_mems_allowed indicated that
1631 * the cpuset mems_allowed was
1632 * updated in parallel. It's a
1633 * harmless race between the alloc
1634 * and the cpuset update.
1635 */
1636 put_mems_allowed(cpuset_mems_cookie);
1637 return object;
1638 }
1639 }
1640 }
1641 } while (!put_mems_allowed(cpuset_mems_cookie));
1642 #endif
1643 return NULL;
1644 }
1645
1646 /*
1647 * Get a partial page, lock it and return it.
1648 */
1649 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1650 struct kmem_cache_cpu *c)
1651 {
1652 void *object;
1653 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1654
1655 object = get_partial_node(s, get_node(s, searchnode), c);
1656 if (object || node != NUMA_NO_NODE)
1657 return object;
1658
1659 return get_any_partial(s, flags, c);
1660 }
1661
1662 #ifdef CONFIG_PREEMPT
1663 /*
1664 * Calculate the next globally unique transaction for disambiguiation
1665 * during cmpxchg. The transactions start with the cpu number and are then
1666 * incremented by CONFIG_NR_CPUS.
1667 */
1668 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1669 #else
1670 /*
1671 * No preemption supported therefore also no need to check for
1672 * different cpus.
1673 */
1674 #define TID_STEP 1
1675 #endif
1676
1677 static inline unsigned long next_tid(unsigned long tid)
1678 {
1679 return tid + TID_STEP;
1680 }
1681
1682 static inline unsigned int tid_to_cpu(unsigned long tid)
1683 {
1684 return tid % TID_STEP;
1685 }
1686
1687 static inline unsigned long tid_to_event(unsigned long tid)
1688 {
1689 return tid / TID_STEP;
1690 }
1691
1692 static inline unsigned int init_tid(int cpu)
1693 {
1694 return cpu;
1695 }
1696
1697 static inline void note_cmpxchg_failure(const char *n,
1698 const struct kmem_cache *s, unsigned long tid)
1699 {
1700 #ifdef SLUB_DEBUG_CMPXCHG
1701 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1702
1703 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1704
1705 #ifdef CONFIG_PREEMPT
1706 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1707 printk("due to cpu change %d -> %d\n",
1708 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1709 else
1710 #endif
1711 if (tid_to_event(tid) != tid_to_event(actual_tid))
1712 printk("due to cpu running other code. Event %ld->%ld\n",
1713 tid_to_event(tid), tid_to_event(actual_tid));
1714 else
1715 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1716 actual_tid, tid, next_tid(tid));
1717 #endif
1718 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1719 }
1720
1721 void init_kmem_cache_cpus(struct kmem_cache *s)
1722 {
1723 int cpu;
1724
1725 for_each_possible_cpu(cpu)
1726 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1727 }
1728
1729 /*
1730 * Remove the cpu slab
1731 */
1732 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1733 {
1734 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1735 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1736 int lock = 0;
1737 enum slab_modes l = M_NONE, m = M_NONE;
1738 void *nextfree;
1739 int tail = DEACTIVATE_TO_HEAD;
1740 struct page new;
1741 struct page old;
1742
1743 if (page->freelist) {
1744 stat(s, DEACTIVATE_REMOTE_FREES);
1745 tail = DEACTIVATE_TO_TAIL;
1746 }
1747
1748 /*
1749 * Stage one: Free all available per cpu objects back
1750 * to the page freelist while it is still frozen. Leave the
1751 * last one.
1752 *
1753 * There is no need to take the list->lock because the page
1754 * is still frozen.
1755 */
1756 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1757 void *prior;
1758 unsigned long counters;
1759
1760 do {
1761 prior = page->freelist;
1762 counters = page->counters;
1763 set_freepointer(s, freelist, prior);
1764 new.counters = counters;
1765 new.inuse--;
1766 VM_BUG_ON(!new.frozen);
1767
1768 } while (!__cmpxchg_double_slab(s, page,
1769 prior, counters,
1770 freelist, new.counters,
1771 "drain percpu freelist"));
1772
1773 freelist = nextfree;
1774 }
1775
1776 /*
1777 * Stage two: Ensure that the page is unfrozen while the
1778 * list presence reflects the actual number of objects
1779 * during unfreeze.
1780 *
1781 * We setup the list membership and then perform a cmpxchg
1782 * with the count. If there is a mismatch then the page
1783 * is not unfrozen but the page is on the wrong list.
1784 *
1785 * Then we restart the process which may have to remove
1786 * the page from the list that we just put it on again
1787 * because the number of objects in the slab may have
1788 * changed.
1789 */
1790 redo:
1791
1792 old.freelist = page->freelist;
1793 old.counters = page->counters;
1794 VM_BUG_ON(!old.frozen);
1795
1796 /* Determine target state of the slab */
1797 new.counters = old.counters;
1798 if (freelist) {
1799 new.inuse--;
1800 set_freepointer(s, freelist, old.freelist);
1801 new.freelist = freelist;
1802 } else
1803 new.freelist = old.freelist;
1804
1805 new.frozen = 0;
1806
1807 if (!new.inuse && n->nr_partial > s->min_partial)
1808 m = M_FREE;
1809 else if (new.freelist) {
1810 m = M_PARTIAL;
1811 if (!lock) {
1812 lock = 1;
1813 /*
1814 * Taking the spinlock removes the possiblity
1815 * that acquire_slab() will see a slab page that
1816 * is frozen
1817 */
1818 spin_lock(&n->list_lock);
1819 }
1820 } else {
1821 m = M_FULL;
1822 if (kmem_cache_debug(s) && !lock) {
1823 lock = 1;
1824 /*
1825 * This also ensures that the scanning of full
1826 * slabs from diagnostic functions will not see
1827 * any frozen slabs.
1828 */
1829 spin_lock(&n->list_lock);
1830 }
1831 }
1832
1833 if (l != m) {
1834
1835 if (l == M_PARTIAL)
1836
1837 remove_partial(n, page);
1838
1839 else if (l == M_FULL)
1840
1841 remove_full(s, page);
1842
1843 if (m == M_PARTIAL) {
1844
1845 add_partial(n, page, tail);
1846 stat(s, tail);
1847
1848 } else if (m == M_FULL) {
1849
1850 stat(s, DEACTIVATE_FULL);
1851 add_full(s, n, page);
1852
1853 }
1854 }
1855
1856 l = m;
1857 if (!__cmpxchg_double_slab(s, page,
1858 old.freelist, old.counters,
1859 new.freelist, new.counters,
1860 "unfreezing slab"))
1861 goto redo;
1862
1863 if (lock)
1864 spin_unlock(&n->list_lock);
1865
1866 if (m == M_FREE) {
1867 stat(s, DEACTIVATE_EMPTY);
1868 discard_slab(s, page);
1869 stat(s, FREE_SLAB);
1870 }
1871 }
1872
1873 /* Unfreeze all the cpu partial slabs */
1874 static void unfreeze_partials(struct kmem_cache *s)
1875 {
1876 struct kmem_cache_node *n = NULL;
1877 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1878 struct page *page, *discard_page = NULL;
1879
1880 while ((page = c->partial)) {
1881 enum slab_modes { M_PARTIAL, M_FREE };
1882 enum slab_modes l, m;
1883 struct page new;
1884 struct page old;
1885
1886 c->partial = page->next;
1887 l = M_FREE;
1888
1889 do {
1890
1891 old.freelist = page->freelist;
1892 old.counters = page->counters;
1893 VM_BUG_ON(!old.frozen);
1894
1895 new.counters = old.counters;
1896 new.freelist = old.freelist;
1897
1898 new.frozen = 0;
1899
1900 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1901 m = M_FREE;
1902 else {
1903 struct kmem_cache_node *n2 = get_node(s,
1904 page_to_nid(page));
1905
1906 m = M_PARTIAL;
1907 if (n != n2) {
1908 if (n)
1909 spin_unlock(&n->list_lock);
1910
1911 n = n2;
1912 spin_lock(&n->list_lock);
1913 }
1914 }
1915
1916 if (l != m) {
1917 if (l == M_PARTIAL) {
1918 remove_partial(n, page);
1919 stat(s, FREE_REMOVE_PARTIAL);
1920 } else {
1921 add_partial(n, page,
1922 DEACTIVATE_TO_TAIL);
1923 stat(s, FREE_ADD_PARTIAL);
1924 }
1925
1926 l = m;
1927 }
1928
1929 } while (!cmpxchg_double_slab(s, page,
1930 old.freelist, old.counters,
1931 new.freelist, new.counters,
1932 "unfreezing slab"));
1933
1934 if (m == M_FREE) {
1935 page->next = discard_page;
1936 discard_page = page;
1937 }
1938 }
1939
1940 if (n)
1941 spin_unlock(&n->list_lock);
1942
1943 while (discard_page) {
1944 page = discard_page;
1945 discard_page = discard_page->next;
1946
1947 stat(s, DEACTIVATE_EMPTY);
1948 discard_slab(s, page);
1949 stat(s, FREE_SLAB);
1950 }
1951 }
1952
1953 /*
1954 * Put a page that was just frozen (in __slab_free) into a partial page
1955 * slot if available. This is done without interrupts disabled and without
1956 * preemption disabled. The cmpxchg is racy and may put the partial page
1957 * onto a random cpus partial slot.
1958 *
1959 * If we did not find a slot then simply move all the partials to the
1960 * per node partial list.
1961 */
1962 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1963 {
1964 struct page *oldpage;
1965 int pages;
1966 int pobjects;
1967
1968 do {
1969 pages = 0;
1970 pobjects = 0;
1971 oldpage = this_cpu_read(s->cpu_slab->partial);
1972
1973 if (oldpage) {
1974 pobjects = oldpage->pobjects;
1975 pages = oldpage->pages;
1976 if (drain && pobjects > s->cpu_partial) {
1977 unsigned long flags;
1978 /*
1979 * partial array is full. Move the existing
1980 * set to the per node partial list.
1981 */
1982 local_irq_save(flags);
1983 unfreeze_partials(s);
1984 local_irq_restore(flags);
1985 pobjects = 0;
1986 pages = 0;
1987 stat(s, CPU_PARTIAL_DRAIN);
1988 }
1989 }
1990
1991 pages++;
1992 pobjects += page->objects - page->inuse;
1993
1994 page->pages = pages;
1995 page->pobjects = pobjects;
1996 page->next = oldpage;
1997
1998 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1999 return pobjects;
2000 }
2001
2002 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2003 {
2004 stat(s, CPUSLAB_FLUSH);
2005 deactivate_slab(s, c->page, c->freelist);
2006
2007 c->tid = next_tid(c->tid);
2008 c->page = NULL;
2009 c->freelist = NULL;
2010 }
2011
2012 /*
2013 * Flush cpu slab.
2014 *
2015 * Called from IPI handler with interrupts disabled.
2016 */
2017 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2018 {
2019 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2020
2021 if (likely(c)) {
2022 if (c->page)
2023 flush_slab(s, c);
2024
2025 unfreeze_partials(s);
2026 }
2027 }
2028
2029 static void flush_cpu_slab(void *d)
2030 {
2031 struct kmem_cache *s = d;
2032
2033 __flush_cpu_slab(s, smp_processor_id());
2034 }
2035
2036 static bool has_cpu_slab(int cpu, void *info)
2037 {
2038 struct kmem_cache *s = info;
2039 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2040
2041 return c->page || c->partial;
2042 }
2043
2044 static void flush_all(struct kmem_cache *s)
2045 {
2046 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2047 }
2048
2049 /*
2050 * Check if the objects in a per cpu structure fit numa
2051 * locality expectations.
2052 */
2053 static inline int node_match(struct kmem_cache_cpu *c, int node)
2054 {
2055 #ifdef CONFIG_NUMA
2056 if (node != NUMA_NO_NODE && page_to_nid(c->page) != node)
2057 return 0;
2058 #endif
2059 return 1;
2060 }
2061
2062 static int count_free(struct page *page)
2063 {
2064 return page->objects - page->inuse;
2065 }
2066
2067 static unsigned long count_partial(struct kmem_cache_node *n,
2068 int (*get_count)(struct page *))
2069 {
2070 unsigned long flags;
2071 unsigned long x = 0;
2072 struct page *page;
2073
2074 spin_lock_irqsave(&n->list_lock, flags);
2075 list_for_each_entry(page, &n->partial, lru)
2076 x += get_count(page);
2077 spin_unlock_irqrestore(&n->list_lock, flags);
2078 return x;
2079 }
2080
2081 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2082 {
2083 #ifdef CONFIG_SLUB_DEBUG
2084 return atomic_long_read(&n->total_objects);
2085 #else
2086 return 0;
2087 #endif
2088 }
2089
2090 static noinline void
2091 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2092 {
2093 int node;
2094
2095 printk(KERN_WARNING
2096 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2097 nid, gfpflags);
2098 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2099 "default order: %d, min order: %d\n", s->name, s->objsize,
2100 s->size, oo_order(s->oo), oo_order(s->min));
2101
2102 if (oo_order(s->min) > get_order(s->objsize))
2103 printk(KERN_WARNING " %s debugging increased min order, use "
2104 "slub_debug=O to disable.\n", s->name);
2105
2106 for_each_online_node(node) {
2107 struct kmem_cache_node *n = get_node(s, node);
2108 unsigned long nr_slabs;
2109 unsigned long nr_objs;
2110 unsigned long nr_free;
2111
2112 if (!n)
2113 continue;
2114
2115 nr_free = count_partial(n, count_free);
2116 nr_slabs = node_nr_slabs(n);
2117 nr_objs = node_nr_objs(n);
2118
2119 printk(KERN_WARNING
2120 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2121 node, nr_slabs, nr_objs, nr_free);
2122 }
2123 }
2124
2125 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2126 int node, struct kmem_cache_cpu **pc)
2127 {
2128 void *freelist;
2129 struct kmem_cache_cpu *c = *pc;
2130 struct page *page;
2131
2132 freelist = get_partial(s, flags, node, c);
2133
2134 if (freelist)
2135 return freelist;
2136
2137 page = new_slab(s, flags, node);
2138 if (page) {
2139 c = __this_cpu_ptr(s->cpu_slab);
2140 if (c->page)
2141 flush_slab(s, c);
2142
2143 /*
2144 * No other reference to the page yet so we can
2145 * muck around with it freely without cmpxchg
2146 */
2147 freelist = page->freelist;
2148 page->freelist = NULL;
2149
2150 stat(s, ALLOC_SLAB);
2151 c->page = page;
2152 *pc = c;
2153 } else
2154 freelist = NULL;
2155
2156 return freelist;
2157 }
2158
2159 /*
2160 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2161 * or deactivate the page.
2162 *
2163 * The page is still frozen if the return value is not NULL.
2164 *
2165 * If this function returns NULL then the page has been unfrozen.
2166 */
2167 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2168 {
2169 struct page new;
2170 unsigned long counters;
2171 void *freelist;
2172
2173 do {
2174 freelist = page->freelist;
2175 counters = page->counters;
2176
2177 new.counters = counters;
2178 VM_BUG_ON(!new.frozen);
2179
2180 new.inuse = page->objects;
2181 new.frozen = freelist != NULL;
2182
2183 } while (!cmpxchg_double_slab(s, page,
2184 freelist, counters,
2185 NULL, new.counters,
2186 "get_freelist"));
2187
2188 return freelist;
2189 }
2190
2191 /*
2192 * Slow path. The lockless freelist is empty or we need to perform
2193 * debugging duties.
2194 *
2195 * Processing is still very fast if new objects have been freed to the
2196 * regular freelist. In that case we simply take over the regular freelist
2197 * as the lockless freelist and zap the regular freelist.
2198 *
2199 * If that is not working then we fall back to the partial lists. We take the
2200 * first element of the freelist as the object to allocate now and move the
2201 * rest of the freelist to the lockless freelist.
2202 *
2203 * And if we were unable to get a new slab from the partial slab lists then
2204 * we need to allocate a new slab. This is the slowest path since it involves
2205 * a call to the page allocator and the setup of a new slab.
2206 */
2207 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2208 unsigned long addr, struct kmem_cache_cpu *c)
2209 {
2210 void *freelist;
2211 struct page *page;
2212 unsigned long flags;
2213
2214 local_irq_save(flags);
2215 #ifdef CONFIG_PREEMPT
2216 /*
2217 * We may have been preempted and rescheduled on a different
2218 * cpu before disabling interrupts. Need to reload cpu area
2219 * pointer.
2220 */
2221 c = this_cpu_ptr(s->cpu_slab);
2222 #endif
2223
2224 page = c->page;
2225 if (!page)
2226 goto new_slab;
2227 redo:
2228
2229 if (unlikely(!node_match(c, node))) {
2230 stat(s, ALLOC_NODE_MISMATCH);
2231 deactivate_slab(s, page, c->freelist);
2232 c->page = NULL;
2233 c->freelist = NULL;
2234 goto new_slab;
2235 }
2236
2237 /* must check again c->freelist in case of cpu migration or IRQ */
2238 freelist = c->freelist;
2239 if (freelist)
2240 goto load_freelist;
2241
2242 stat(s, ALLOC_SLOWPATH);
2243
2244 freelist = get_freelist(s, page);
2245
2246 if (!freelist) {
2247 c->page = NULL;
2248 stat(s, DEACTIVATE_BYPASS);
2249 goto new_slab;
2250 }
2251
2252 stat(s, ALLOC_REFILL);
2253
2254 load_freelist:
2255 /*
2256 * freelist is pointing to the list of objects to be used.
2257 * page is pointing to the page from which the objects are obtained.
2258 * That page must be frozen for per cpu allocations to work.
2259 */
2260 VM_BUG_ON(!c->page->frozen);
2261 c->freelist = get_freepointer(s, freelist);
2262 c->tid = next_tid(c->tid);
2263 local_irq_restore(flags);
2264 return freelist;
2265
2266 new_slab:
2267
2268 if (c->partial) {
2269 page = c->page = c->partial;
2270 c->partial = page->next;
2271 stat(s, CPU_PARTIAL_ALLOC);
2272 c->freelist = NULL;
2273 goto redo;
2274 }
2275
2276 freelist = new_slab_objects(s, gfpflags, node, &c);
2277
2278 if (unlikely(!freelist)) {
2279 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2280 slab_out_of_memory(s, gfpflags, node);
2281
2282 local_irq_restore(flags);
2283 return NULL;
2284 }
2285
2286 page = c->page;
2287 if (likely(!kmem_cache_debug(s)))
2288 goto load_freelist;
2289
2290 /* Only entered in the debug case */
2291 if (!alloc_debug_processing(s, page, freelist, addr))
2292 goto new_slab; /* Slab failed checks. Next slab needed */
2293
2294 deactivate_slab(s, page, get_freepointer(s, freelist));
2295 c->page = NULL;
2296 c->freelist = NULL;
2297 local_irq_restore(flags);
2298 return freelist;
2299 }
2300
2301 /*
2302 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2303 * have the fastpath folded into their functions. So no function call
2304 * overhead for requests that can be satisfied on the fastpath.
2305 *
2306 * The fastpath works by first checking if the lockless freelist can be used.
2307 * If not then __slab_alloc is called for slow processing.
2308 *
2309 * Otherwise we can simply pick the next object from the lockless free list.
2310 */
2311 static __always_inline void *slab_alloc(struct kmem_cache *s,
2312 gfp_t gfpflags, int node, unsigned long addr)
2313 {
2314 void **object;
2315 struct kmem_cache_cpu *c;
2316 unsigned long tid;
2317
2318 if (slab_pre_alloc_hook(s, gfpflags))
2319 return NULL;
2320
2321 redo:
2322
2323 /*
2324 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2325 * enabled. We may switch back and forth between cpus while
2326 * reading from one cpu area. That does not matter as long
2327 * as we end up on the original cpu again when doing the cmpxchg.
2328 */
2329 c = __this_cpu_ptr(s->cpu_slab);
2330
2331 /*
2332 * The transaction ids are globally unique per cpu and per operation on
2333 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2334 * occurs on the right processor and that there was no operation on the
2335 * linked list in between.
2336 */
2337 tid = c->tid;
2338 barrier();
2339
2340 object = c->freelist;
2341 if (unlikely(!object || !node_match(c, node)))
2342
2343 object = __slab_alloc(s, gfpflags, node, addr, c);
2344
2345 else {
2346 void *next_object = get_freepointer_safe(s, object);
2347
2348 /*
2349 * The cmpxchg will only match if there was no additional
2350 * operation and if we are on the right processor.
2351 *
2352 * The cmpxchg does the following atomically (without lock semantics!)
2353 * 1. Relocate first pointer to the current per cpu area.
2354 * 2. Verify that tid and freelist have not been changed
2355 * 3. If they were not changed replace tid and freelist
2356 *
2357 * Since this is without lock semantics the protection is only against
2358 * code executing on this cpu *not* from access by other cpus.
2359 */
2360 if (unlikely(!this_cpu_cmpxchg_double(
2361 s->cpu_slab->freelist, s->cpu_slab->tid,
2362 object, tid,
2363 next_object, next_tid(tid)))) {
2364
2365 note_cmpxchg_failure("slab_alloc", s, tid);
2366 goto redo;
2367 }
2368 prefetch_freepointer(s, next_object);
2369 stat(s, ALLOC_FASTPATH);
2370 }
2371
2372 if (unlikely(gfpflags & __GFP_ZERO) && object)
2373 memset(object, 0, s->objsize);
2374
2375 slab_post_alloc_hook(s, gfpflags, object);
2376
2377 return object;
2378 }
2379
2380 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2381 {
2382 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2383
2384 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2385
2386 return ret;
2387 }
2388 EXPORT_SYMBOL(kmem_cache_alloc);
2389
2390 #ifdef CONFIG_TRACING
2391 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2392 {
2393 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2394 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2395 return ret;
2396 }
2397 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2398
2399 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2400 {
2401 void *ret = kmalloc_order(size, flags, order);
2402 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2403 return ret;
2404 }
2405 EXPORT_SYMBOL(kmalloc_order_trace);
2406 #endif
2407
2408 #ifdef CONFIG_NUMA
2409 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2410 {
2411 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2412
2413 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2414 s->objsize, s->size, gfpflags, node);
2415
2416 return ret;
2417 }
2418 EXPORT_SYMBOL(kmem_cache_alloc_node);
2419
2420 #ifdef CONFIG_TRACING
2421 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2422 gfp_t gfpflags,
2423 int node, size_t size)
2424 {
2425 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2426
2427 trace_kmalloc_node(_RET_IP_, ret,
2428 size, s->size, gfpflags, node);
2429 return ret;
2430 }
2431 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2432 #endif
2433 #endif
2434
2435 /*
2436 * Slow patch handling. This may still be called frequently since objects
2437 * have a longer lifetime than the cpu slabs in most processing loads.
2438 *
2439 * So we still attempt to reduce cache line usage. Just take the slab
2440 * lock and free the item. If there is no additional partial page
2441 * handling required then we can return immediately.
2442 */
2443 static void __slab_free(struct kmem_cache *s, struct page *page,
2444 void *x, unsigned long addr)
2445 {
2446 void *prior;
2447 void **object = (void *)x;
2448 int was_frozen;
2449 int inuse;
2450 struct page new;
2451 unsigned long counters;
2452 struct kmem_cache_node *n = NULL;
2453 unsigned long uninitialized_var(flags);
2454
2455 stat(s, FREE_SLOWPATH);
2456
2457 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2458 return;
2459
2460 do {
2461 prior = page->freelist;
2462 counters = page->counters;
2463 set_freepointer(s, object, prior);
2464 new.counters = counters;
2465 was_frozen = new.frozen;
2466 new.inuse--;
2467 if ((!new.inuse || !prior) && !was_frozen && !n) {
2468
2469 if (!kmem_cache_debug(s) && !prior)
2470
2471 /*
2472 * Slab was on no list before and will be partially empty
2473 * We can defer the list move and instead freeze it.
2474 */
2475 new.frozen = 1;
2476
2477 else { /* Needs to be taken off a list */
2478
2479 n = get_node(s, page_to_nid(page));
2480 /*
2481 * Speculatively acquire the list_lock.
2482 * If the cmpxchg does not succeed then we may
2483 * drop the list_lock without any processing.
2484 *
2485 * Otherwise the list_lock will synchronize with
2486 * other processors updating the list of slabs.
2487 */
2488 spin_lock_irqsave(&n->list_lock, flags);
2489
2490 }
2491 }
2492 inuse = new.inuse;
2493
2494 } while (!cmpxchg_double_slab(s, page,
2495 prior, counters,
2496 object, new.counters,
2497 "__slab_free"));
2498
2499 if (likely(!n)) {
2500
2501 /*
2502 * If we just froze the page then put it onto the
2503 * per cpu partial list.
2504 */
2505 if (new.frozen && !was_frozen) {
2506 put_cpu_partial(s, page, 1);
2507 stat(s, CPU_PARTIAL_FREE);
2508 }
2509 /*
2510 * The list lock was not taken therefore no list
2511 * activity can be necessary.
2512 */
2513 if (was_frozen)
2514 stat(s, FREE_FROZEN);
2515 return;
2516 }
2517
2518 /*
2519 * was_frozen may have been set after we acquired the list_lock in
2520 * an earlier loop. So we need to check it here again.
2521 */
2522 if (was_frozen)
2523 stat(s, FREE_FROZEN);
2524 else {
2525 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2526 goto slab_empty;
2527
2528 /*
2529 * Objects left in the slab. If it was not on the partial list before
2530 * then add it.
2531 */
2532 if (unlikely(!prior)) {
2533 remove_full(s, page);
2534 add_partial(n, page, DEACTIVATE_TO_TAIL);
2535 stat(s, FREE_ADD_PARTIAL);
2536 }
2537 }
2538 spin_unlock_irqrestore(&n->list_lock, flags);
2539 return;
2540
2541 slab_empty:
2542 if (prior) {
2543 /*
2544 * Slab on the partial list.
2545 */
2546 remove_partial(n, page);
2547 stat(s, FREE_REMOVE_PARTIAL);
2548 } else
2549 /* Slab must be on the full list */
2550 remove_full(s, page);
2551
2552 spin_unlock_irqrestore(&n->list_lock, flags);
2553 stat(s, FREE_SLAB);
2554 discard_slab(s, page);
2555 }
2556
2557 /*
2558 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2559 * can perform fastpath freeing without additional function calls.
2560 *
2561 * The fastpath is only possible if we are freeing to the current cpu slab
2562 * of this processor. This typically the case if we have just allocated
2563 * the item before.
2564 *
2565 * If fastpath is not possible then fall back to __slab_free where we deal
2566 * with all sorts of special processing.
2567 */
2568 static __always_inline void slab_free(struct kmem_cache *s,
2569 struct page *page, void *x, unsigned long addr)
2570 {
2571 void **object = (void *)x;
2572 struct kmem_cache_cpu *c;
2573 unsigned long tid;
2574
2575 slab_free_hook(s, x);
2576
2577 redo:
2578 /*
2579 * Determine the currently cpus per cpu slab.
2580 * The cpu may change afterward. However that does not matter since
2581 * data is retrieved via this pointer. If we are on the same cpu
2582 * during the cmpxchg then the free will succedd.
2583 */
2584 c = __this_cpu_ptr(s->cpu_slab);
2585
2586 tid = c->tid;
2587 barrier();
2588
2589 if (likely(page == c->page)) {
2590 set_freepointer(s, object, c->freelist);
2591
2592 if (unlikely(!this_cpu_cmpxchg_double(
2593 s->cpu_slab->freelist, s->cpu_slab->tid,
2594 c->freelist, tid,
2595 object, next_tid(tid)))) {
2596
2597 note_cmpxchg_failure("slab_free", s, tid);
2598 goto redo;
2599 }
2600 stat(s, FREE_FASTPATH);
2601 } else
2602 __slab_free(s, page, x, addr);
2603
2604 }
2605
2606 void kmem_cache_free(struct kmem_cache *s, void *x)
2607 {
2608 struct page *page;
2609
2610 page = virt_to_head_page(x);
2611
2612 slab_free(s, page, x, _RET_IP_);
2613
2614 trace_kmem_cache_free(_RET_IP_, x);
2615 }
2616 EXPORT_SYMBOL(kmem_cache_free);
2617
2618 /*
2619 * Object placement in a slab is made very easy because we always start at
2620 * offset 0. If we tune the size of the object to the alignment then we can
2621 * get the required alignment by putting one properly sized object after
2622 * another.
2623 *
2624 * Notice that the allocation order determines the sizes of the per cpu
2625 * caches. Each processor has always one slab available for allocations.
2626 * Increasing the allocation order reduces the number of times that slabs
2627 * must be moved on and off the partial lists and is therefore a factor in
2628 * locking overhead.
2629 */
2630
2631 /*
2632 * Mininum / Maximum order of slab pages. This influences locking overhead
2633 * and slab fragmentation. A higher order reduces the number of partial slabs
2634 * and increases the number of allocations possible without having to
2635 * take the list_lock.
2636 */
2637 static int slub_min_order;
2638 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2639 static int slub_min_objects;
2640
2641 /*
2642 * Merge control. If this is set then no merging of slab caches will occur.
2643 * (Could be removed. This was introduced to pacify the merge skeptics.)
2644 */
2645 static int slub_nomerge;
2646
2647 /*
2648 * Calculate the order of allocation given an slab object size.
2649 *
2650 * The order of allocation has significant impact on performance and other
2651 * system components. Generally order 0 allocations should be preferred since
2652 * order 0 does not cause fragmentation in the page allocator. Larger objects
2653 * be problematic to put into order 0 slabs because there may be too much
2654 * unused space left. We go to a higher order if more than 1/16th of the slab
2655 * would be wasted.
2656 *
2657 * In order to reach satisfactory performance we must ensure that a minimum
2658 * number of objects is in one slab. Otherwise we may generate too much
2659 * activity on the partial lists which requires taking the list_lock. This is
2660 * less a concern for large slabs though which are rarely used.
2661 *
2662 * slub_max_order specifies the order where we begin to stop considering the
2663 * number of objects in a slab as critical. If we reach slub_max_order then
2664 * we try to keep the page order as low as possible. So we accept more waste
2665 * of space in favor of a small page order.
2666 *
2667 * Higher order allocations also allow the placement of more objects in a
2668 * slab and thereby reduce object handling overhead. If the user has
2669 * requested a higher mininum order then we start with that one instead of
2670 * the smallest order which will fit the object.
2671 */
2672 static inline int slab_order(int size, int min_objects,
2673 int max_order, int fract_leftover, int reserved)
2674 {
2675 int order;
2676 int rem;
2677 int min_order = slub_min_order;
2678
2679 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2680 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2681
2682 for (order = max(min_order,
2683 fls(min_objects * size - 1) - PAGE_SHIFT);
2684 order <= max_order; order++) {
2685
2686 unsigned long slab_size = PAGE_SIZE << order;
2687
2688 if (slab_size < min_objects * size + reserved)
2689 continue;
2690
2691 rem = (slab_size - reserved) % size;
2692
2693 if (rem <= slab_size / fract_leftover)
2694 break;
2695
2696 }
2697
2698 return order;
2699 }
2700
2701 static inline int calculate_order(int size, int reserved)
2702 {
2703 int order;
2704 int min_objects;
2705 int fraction;
2706 int max_objects;
2707
2708 /*
2709 * Attempt to find best configuration for a slab. This
2710 * works by first attempting to generate a layout with
2711 * the best configuration and backing off gradually.
2712 *
2713 * First we reduce the acceptable waste in a slab. Then
2714 * we reduce the minimum objects required in a slab.
2715 */
2716 min_objects = slub_min_objects;
2717 if (!min_objects)
2718 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2719 max_objects = order_objects(slub_max_order, size, reserved);
2720 min_objects = min(min_objects, max_objects);
2721
2722 while (min_objects > 1) {
2723 fraction = 16;
2724 while (fraction >= 4) {
2725 order = slab_order(size, min_objects,
2726 slub_max_order, fraction, reserved);
2727 if (order <= slub_max_order)
2728 return order;
2729 fraction /= 2;
2730 }
2731 min_objects--;
2732 }
2733
2734 /*
2735 * We were unable to place multiple objects in a slab. Now
2736 * lets see if we can place a single object there.
2737 */
2738 order = slab_order(size, 1, slub_max_order, 1, reserved);
2739 if (order <= slub_max_order)
2740 return order;
2741
2742 /*
2743 * Doh this slab cannot be placed using slub_max_order.
2744 */
2745 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2746 if (order < MAX_ORDER)
2747 return order;
2748 return -ENOSYS;
2749 }
2750
2751 /*
2752 * Figure out what the alignment of the objects will be.
2753 */
2754 static unsigned long calculate_alignment(unsigned long flags,
2755 unsigned long align, unsigned long size)
2756 {
2757 /*
2758 * If the user wants hardware cache aligned objects then follow that
2759 * suggestion if the object is sufficiently large.
2760 *
2761 * The hardware cache alignment cannot override the specified
2762 * alignment though. If that is greater then use it.
2763 */
2764 if (flags & SLAB_HWCACHE_ALIGN) {
2765 unsigned long ralign = cache_line_size();
2766 while (size <= ralign / 2)
2767 ralign /= 2;
2768 align = max(align, ralign);
2769 }
2770
2771 if (align < ARCH_SLAB_MINALIGN)
2772 align = ARCH_SLAB_MINALIGN;
2773
2774 return ALIGN(align, sizeof(void *));
2775 }
2776
2777 static void
2778 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2779 {
2780 n->nr_partial = 0;
2781 spin_lock_init(&n->list_lock);
2782 INIT_LIST_HEAD(&n->partial);
2783 #ifdef CONFIG_SLUB_DEBUG
2784 atomic_long_set(&n->nr_slabs, 0);
2785 atomic_long_set(&n->total_objects, 0);
2786 INIT_LIST_HEAD(&n->full);
2787 #endif
2788 }
2789
2790 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2791 {
2792 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2793 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2794
2795 /*
2796 * Must align to double word boundary for the double cmpxchg
2797 * instructions to work; see __pcpu_double_call_return_bool().
2798 */
2799 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2800 2 * sizeof(void *));
2801
2802 if (!s->cpu_slab)
2803 return 0;
2804
2805 init_kmem_cache_cpus(s);
2806
2807 return 1;
2808 }
2809
2810 static struct kmem_cache *kmem_cache_node;
2811
2812 /*
2813 * No kmalloc_node yet so do it by hand. We know that this is the first
2814 * slab on the node for this slabcache. There are no concurrent accesses
2815 * possible.
2816 *
2817 * Note that this function only works on the kmalloc_node_cache
2818 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2819 * memory on a fresh node that has no slab structures yet.
2820 */
2821 static void early_kmem_cache_node_alloc(int node)
2822 {
2823 struct page *page;
2824 struct kmem_cache_node *n;
2825
2826 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2827
2828 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2829
2830 BUG_ON(!page);
2831 if (page_to_nid(page) != node) {
2832 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2833 "node %d\n", node);
2834 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2835 "in order to be able to continue\n");
2836 }
2837
2838 n = page->freelist;
2839 BUG_ON(!n);
2840 page->freelist = get_freepointer(kmem_cache_node, n);
2841 page->inuse = 1;
2842 page->frozen = 0;
2843 kmem_cache_node->node[node] = n;
2844 #ifdef CONFIG_SLUB_DEBUG
2845 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2846 init_tracking(kmem_cache_node, n);
2847 #endif
2848 init_kmem_cache_node(n, kmem_cache_node);
2849 inc_slabs_node(kmem_cache_node, node, page->objects);
2850
2851 add_partial(n, page, DEACTIVATE_TO_HEAD);
2852 }
2853
2854 static void free_kmem_cache_nodes(struct kmem_cache *s)
2855 {
2856 int node;
2857
2858 for_each_node_state(node, N_NORMAL_MEMORY) {
2859 struct kmem_cache_node *n = s->node[node];
2860
2861 if (n)
2862 kmem_cache_free(kmem_cache_node, n);
2863
2864 s->node[node] = NULL;
2865 }
2866 }
2867
2868 static int init_kmem_cache_nodes(struct kmem_cache *s)
2869 {
2870 int node;
2871
2872 for_each_node_state(node, N_NORMAL_MEMORY) {
2873 struct kmem_cache_node *n;
2874
2875 if (slab_state == DOWN) {
2876 early_kmem_cache_node_alloc(node);
2877 continue;
2878 }
2879 n = kmem_cache_alloc_node(kmem_cache_node,
2880 GFP_KERNEL, node);
2881
2882 if (!n) {
2883 free_kmem_cache_nodes(s);
2884 return 0;
2885 }
2886
2887 s->node[node] = n;
2888 init_kmem_cache_node(n, s);
2889 }
2890 return 1;
2891 }
2892
2893 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2894 {
2895 if (min < MIN_PARTIAL)
2896 min = MIN_PARTIAL;
2897 else if (min > MAX_PARTIAL)
2898 min = MAX_PARTIAL;
2899 s->min_partial = min;
2900 }
2901
2902 /*
2903 * calculate_sizes() determines the order and the distribution of data within
2904 * a slab object.
2905 */
2906 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2907 {
2908 unsigned long flags = s->flags;
2909 unsigned long size = s->objsize;
2910 unsigned long align = s->align;
2911 int order;
2912
2913 /*
2914 * Round up object size to the next word boundary. We can only
2915 * place the free pointer at word boundaries and this determines
2916 * the possible location of the free pointer.
2917 */
2918 size = ALIGN(size, sizeof(void *));
2919
2920 #ifdef CONFIG_SLUB_DEBUG
2921 /*
2922 * Determine if we can poison the object itself. If the user of
2923 * the slab may touch the object after free or before allocation
2924 * then we should never poison the object itself.
2925 */
2926 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2927 !s->ctor)
2928 s->flags |= __OBJECT_POISON;
2929 else
2930 s->flags &= ~__OBJECT_POISON;
2931
2932
2933 /*
2934 * If we are Redzoning then check if there is some space between the
2935 * end of the object and the free pointer. If not then add an
2936 * additional word to have some bytes to store Redzone information.
2937 */
2938 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2939 size += sizeof(void *);
2940 #endif
2941
2942 /*
2943 * With that we have determined the number of bytes in actual use
2944 * by the object. This is the potential offset to the free pointer.
2945 */
2946 s->inuse = size;
2947
2948 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2949 s->ctor)) {
2950 /*
2951 * Relocate free pointer after the object if it is not
2952 * permitted to overwrite the first word of the object on
2953 * kmem_cache_free.
2954 *
2955 * This is the case if we do RCU, have a constructor or
2956 * destructor or are poisoning the objects.
2957 */
2958 s->offset = size;
2959 size += sizeof(void *);
2960 }
2961
2962 #ifdef CONFIG_SLUB_DEBUG
2963 if (flags & SLAB_STORE_USER)
2964 /*
2965 * Need to store information about allocs and frees after
2966 * the object.
2967 */
2968 size += 2 * sizeof(struct track);
2969
2970 if (flags & SLAB_RED_ZONE)
2971 /*
2972 * Add some empty padding so that we can catch
2973 * overwrites from earlier objects rather than let
2974 * tracking information or the free pointer be
2975 * corrupted if a user writes before the start
2976 * of the object.
2977 */
2978 size += sizeof(void *);
2979 #endif
2980
2981 /*
2982 * Determine the alignment based on various parameters that the
2983 * user specified and the dynamic determination of cache line size
2984 * on bootup.
2985 */
2986 align = calculate_alignment(flags, align, s->objsize);
2987 s->align = align;
2988
2989 /*
2990 * SLUB stores one object immediately after another beginning from
2991 * offset 0. In order to align the objects we have to simply size
2992 * each object to conform to the alignment.
2993 */
2994 size = ALIGN(size, align);
2995 s->size = size;
2996 if (forced_order >= 0)
2997 order = forced_order;
2998 else
2999 order = calculate_order(size, s->reserved);
3000
3001 if (order < 0)
3002 return 0;
3003
3004 s->allocflags = 0;
3005 if (order)
3006 s->allocflags |= __GFP_COMP;
3007
3008 if (s->flags & SLAB_CACHE_DMA)
3009 s->allocflags |= SLUB_DMA;
3010
3011 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3012 s->allocflags |= __GFP_RECLAIMABLE;
3013
3014 /*
3015 * Determine the number of objects per slab
3016 */
3017 s->oo = oo_make(order, size, s->reserved);
3018 s->min = oo_make(get_order(size), size, s->reserved);
3019 if (oo_objects(s->oo) > oo_objects(s->max))
3020 s->max = s->oo;
3021
3022 return !!oo_objects(s->oo);
3023
3024 }
3025
3026 static int kmem_cache_open(struct kmem_cache *s,
3027 const char *name, size_t size,
3028 size_t align, unsigned long flags,
3029 void (*ctor)(void *))
3030 {
3031 memset(s, 0, kmem_size);
3032 s->name = name;
3033 s->ctor = ctor;
3034 s->objsize = size;
3035 s->align = align;
3036 s->flags = kmem_cache_flags(size, flags, name, ctor);
3037 s->reserved = 0;
3038
3039 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3040 s->reserved = sizeof(struct rcu_head);
3041
3042 if (!calculate_sizes(s, -1))
3043 goto error;
3044 if (disable_higher_order_debug) {
3045 /*
3046 * Disable debugging flags that store metadata if the min slab
3047 * order increased.
3048 */
3049 if (get_order(s->size) > get_order(s->objsize)) {
3050 s->flags &= ~DEBUG_METADATA_FLAGS;
3051 s->offset = 0;
3052 if (!calculate_sizes(s, -1))
3053 goto error;
3054 }
3055 }
3056
3057 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3058 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3059 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3060 /* Enable fast mode */
3061 s->flags |= __CMPXCHG_DOUBLE;
3062 #endif
3063
3064 /*
3065 * The larger the object size is, the more pages we want on the partial
3066 * list to avoid pounding the page allocator excessively.
3067 */
3068 set_min_partial(s, ilog2(s->size) / 2);
3069
3070 /*
3071 * cpu_partial determined the maximum number of objects kept in the
3072 * per cpu partial lists of a processor.
3073 *
3074 * Per cpu partial lists mainly contain slabs that just have one
3075 * object freed. If they are used for allocation then they can be
3076 * filled up again with minimal effort. The slab will never hit the
3077 * per node partial lists and therefore no locking will be required.
3078 *
3079 * This setting also determines
3080 *
3081 * A) The number of objects from per cpu partial slabs dumped to the
3082 * per node list when we reach the limit.
3083 * B) The number of objects in cpu partial slabs to extract from the
3084 * per node list when we run out of per cpu objects. We only fetch 50%
3085 * to keep some capacity around for frees.
3086 */
3087 if (kmem_cache_debug(s))
3088 s->cpu_partial = 0;
3089 else if (s->size >= PAGE_SIZE)
3090 s->cpu_partial = 2;
3091 else if (s->size >= 1024)
3092 s->cpu_partial = 6;
3093 else if (s->size >= 256)
3094 s->cpu_partial = 13;
3095 else
3096 s->cpu_partial = 30;
3097
3098 s->refcount = 1;
3099 #ifdef CONFIG_NUMA
3100 s->remote_node_defrag_ratio = 1000;
3101 #endif
3102 if (!init_kmem_cache_nodes(s))
3103 goto error;
3104
3105 if (alloc_kmem_cache_cpus(s))
3106 return 1;
3107
3108 free_kmem_cache_nodes(s);
3109 error:
3110 if (flags & SLAB_PANIC)
3111 panic("Cannot create slab %s size=%lu realsize=%u "
3112 "order=%u offset=%u flags=%lx\n",
3113 s->name, (unsigned long)size, s->size, oo_order(s->oo),
3114 s->offset, flags);
3115 return 0;
3116 }
3117
3118 /*
3119 * Determine the size of a slab object
3120 */
3121 unsigned int kmem_cache_size(struct kmem_cache *s)
3122 {
3123 return s->objsize;
3124 }
3125 EXPORT_SYMBOL(kmem_cache_size);
3126
3127 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3128 const char *text)
3129 {
3130 #ifdef CONFIG_SLUB_DEBUG
3131 void *addr = page_address(page);
3132 void *p;
3133 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3134 sizeof(long), GFP_ATOMIC);
3135 if (!map)
3136 return;
3137 slab_err(s, page, "%s", text);
3138 slab_lock(page);
3139
3140 get_map(s, page, map);
3141 for_each_object(p, s, addr, page->objects) {
3142
3143 if (!test_bit(slab_index(p, s, addr), map)) {
3144 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3145 p, p - addr);
3146 print_tracking(s, p);
3147 }
3148 }
3149 slab_unlock(page);
3150 kfree(map);
3151 #endif
3152 }
3153
3154 /*
3155 * Attempt to free all partial slabs on a node.
3156 * This is called from kmem_cache_close(). We must be the last thread
3157 * using the cache and therefore we do not need to lock anymore.
3158 */
3159 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3160 {
3161 struct page *page, *h;
3162
3163 list_for_each_entry_safe(page, h, &n->partial, lru) {
3164 if (!page->inuse) {
3165 remove_partial(n, page);
3166 discard_slab(s, page);
3167 } else {
3168 list_slab_objects(s, page,
3169 "Objects remaining on kmem_cache_close()");
3170 }
3171 }
3172 }
3173
3174 /*
3175 * Release all resources used by a slab cache.
3176 */
3177 static inline int kmem_cache_close(struct kmem_cache *s)
3178 {
3179 int node;
3180
3181 flush_all(s);
3182 free_percpu(s->cpu_slab);
3183 /* Attempt to free all objects */
3184 for_each_node_state(node, N_NORMAL_MEMORY) {
3185 struct kmem_cache_node *n = get_node(s, node);
3186
3187 free_partial(s, n);
3188 if (n->nr_partial || slabs_node(s, node))
3189 return 1;
3190 }
3191 free_kmem_cache_nodes(s);
3192 return 0;
3193 }
3194
3195 /*
3196 * Close a cache and release the kmem_cache structure
3197 * (must be used for caches created using kmem_cache_create)
3198 */
3199 void kmem_cache_destroy(struct kmem_cache *s)
3200 {
3201 down_write(&slub_lock);
3202 s->refcount--;
3203 if (!s->refcount) {
3204 list_del(&s->list);
3205 up_write(&slub_lock);
3206 if (kmem_cache_close(s)) {
3207 printk(KERN_ERR "SLUB %s: %s called for cache that "
3208 "still has objects.\n", s->name, __func__);
3209 dump_stack();
3210 }
3211 if (s->flags & SLAB_DESTROY_BY_RCU)
3212 rcu_barrier();
3213 sysfs_slab_remove(s);
3214 } else
3215 up_write(&slub_lock);
3216 }
3217 EXPORT_SYMBOL(kmem_cache_destroy);
3218
3219 /********************************************************************
3220 * Kmalloc subsystem
3221 *******************************************************************/
3222
3223 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3224 EXPORT_SYMBOL(kmalloc_caches);
3225
3226 static struct kmem_cache *kmem_cache;
3227
3228 #ifdef CONFIG_ZONE_DMA
3229 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3230 #endif
3231
3232 static int __init setup_slub_min_order(char *str)
3233 {
3234 get_option(&str, &slub_min_order);
3235
3236 return 1;
3237 }
3238
3239 __setup("slub_min_order=", setup_slub_min_order);
3240
3241 static int __init setup_slub_max_order(char *str)
3242 {
3243 get_option(&str, &slub_max_order);
3244 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3245
3246 return 1;
3247 }
3248
3249 __setup("slub_max_order=", setup_slub_max_order);
3250
3251 static int __init setup_slub_min_objects(char *str)
3252 {
3253 get_option(&str, &slub_min_objects);
3254
3255 return 1;
3256 }
3257
3258 __setup("slub_min_objects=", setup_slub_min_objects);
3259
3260 static int __init setup_slub_nomerge(char *str)
3261 {
3262 slub_nomerge = 1;
3263 return 1;
3264 }
3265
3266 __setup("slub_nomerge", setup_slub_nomerge);
3267
3268 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3269 int size, unsigned int flags)
3270 {
3271 struct kmem_cache *s;
3272
3273 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3274
3275 /*
3276 * This function is called with IRQs disabled during early-boot on
3277 * single CPU so there's no need to take slub_lock here.
3278 */
3279 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3280 flags, NULL))
3281 goto panic;
3282
3283 list_add(&s->list, &slab_caches);
3284 return s;
3285
3286 panic:
3287 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3288 return NULL;
3289 }
3290
3291 /*
3292 * Conversion table for small slabs sizes / 8 to the index in the
3293 * kmalloc array. This is necessary for slabs < 192 since we have non power
3294 * of two cache sizes there. The size of larger slabs can be determined using
3295 * fls.
3296 */
3297 static s8 size_index[24] = {
3298 3, /* 8 */
3299 4, /* 16 */
3300 5, /* 24 */
3301 5, /* 32 */
3302 6, /* 40 */
3303 6, /* 48 */
3304 6, /* 56 */
3305 6, /* 64 */
3306 1, /* 72 */
3307 1, /* 80 */
3308 1, /* 88 */
3309 1, /* 96 */
3310 7, /* 104 */
3311 7, /* 112 */
3312 7, /* 120 */
3313 7, /* 128 */
3314 2, /* 136 */
3315 2, /* 144 */
3316 2, /* 152 */
3317 2, /* 160 */
3318 2, /* 168 */
3319 2, /* 176 */
3320 2, /* 184 */
3321 2 /* 192 */
3322 };
3323
3324 static inline int size_index_elem(size_t bytes)
3325 {
3326 return (bytes - 1) / 8;
3327 }
3328
3329 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3330 {
3331 int index;
3332
3333 if (size <= 192) {
3334 if (!size)
3335 return ZERO_SIZE_PTR;
3336
3337 index = size_index[size_index_elem(size)];
3338 } else
3339 index = fls(size - 1);
3340
3341 #ifdef CONFIG_ZONE_DMA
3342 if (unlikely((flags & SLUB_DMA)))
3343 return kmalloc_dma_caches[index];
3344
3345 #endif
3346 return kmalloc_caches[index];
3347 }
3348
3349 void *__kmalloc(size_t size, gfp_t flags)
3350 {
3351 struct kmem_cache *s;
3352 void *ret;
3353
3354 if (unlikely(size > SLUB_MAX_SIZE))
3355 return kmalloc_large(size, flags);
3356
3357 s = get_slab(size, flags);
3358
3359 if (unlikely(ZERO_OR_NULL_PTR(s)))
3360 return s;
3361
3362 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3363
3364 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3365
3366 return ret;
3367 }
3368 EXPORT_SYMBOL(__kmalloc);
3369
3370 #ifdef CONFIG_NUMA
3371 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3372 {
3373 struct page *page;
3374 void *ptr = NULL;
3375
3376 flags |= __GFP_COMP | __GFP_NOTRACK;
3377 page = alloc_pages_node(node, flags, get_order(size));
3378 if (page)
3379 ptr = page_address(page);
3380
3381 kmemleak_alloc(ptr, size, 1, flags);
3382 return ptr;
3383 }
3384
3385 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3386 {
3387 struct kmem_cache *s;
3388 void *ret;
3389
3390 if (unlikely(size > SLUB_MAX_SIZE)) {
3391 ret = kmalloc_large_node(size, flags, node);
3392
3393 trace_kmalloc_node(_RET_IP_, ret,
3394 size, PAGE_SIZE << get_order(size),
3395 flags, node);
3396
3397 return ret;
3398 }
3399
3400 s = get_slab(size, flags);
3401
3402 if (unlikely(ZERO_OR_NULL_PTR(s)))
3403 return s;
3404
3405 ret = slab_alloc(s, flags, node, _RET_IP_);
3406
3407 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3408
3409 return ret;
3410 }
3411 EXPORT_SYMBOL(__kmalloc_node);
3412 #endif
3413
3414 size_t ksize(const void *object)
3415 {
3416 struct page *page;
3417
3418 if (unlikely(object == ZERO_SIZE_PTR))
3419 return 0;
3420
3421 page = virt_to_head_page(object);
3422
3423 if (unlikely(!PageSlab(page))) {
3424 WARN_ON(!PageCompound(page));
3425 return PAGE_SIZE << compound_order(page);
3426 }
3427
3428 return slab_ksize(page->slab);
3429 }
3430 EXPORT_SYMBOL(ksize);
3431
3432 #ifdef CONFIG_SLUB_DEBUG
3433 bool verify_mem_not_deleted(const void *x)
3434 {
3435 struct page *page;
3436 void *object = (void *)x;
3437 unsigned long flags;
3438 bool rv;
3439
3440 if (unlikely(ZERO_OR_NULL_PTR(x)))
3441 return false;
3442
3443 local_irq_save(flags);
3444
3445 page = virt_to_head_page(x);
3446 if (unlikely(!PageSlab(page))) {
3447 /* maybe it was from stack? */
3448 rv = true;
3449 goto out_unlock;
3450 }
3451
3452 slab_lock(page);
3453 if (on_freelist(page->slab, page, object)) {
3454 object_err(page->slab, page, object, "Object is on free-list");
3455 rv = false;
3456 } else {
3457 rv = true;
3458 }
3459 slab_unlock(page);
3460
3461 out_unlock:
3462 local_irq_restore(flags);
3463 return rv;
3464 }
3465 EXPORT_SYMBOL(verify_mem_not_deleted);
3466 #endif
3467
3468 void kfree(const void *x)
3469 {
3470 struct page *page;
3471 void *object = (void *)x;
3472
3473 trace_kfree(_RET_IP_, x);
3474
3475 if (unlikely(ZERO_OR_NULL_PTR(x)))
3476 return;
3477
3478 page = virt_to_head_page(x);
3479 if (unlikely(!PageSlab(page))) {
3480 BUG_ON(!PageCompound(page));
3481 kmemleak_free(x);
3482 put_page(page);
3483 return;
3484 }
3485 slab_free(page->slab, page, object, _RET_IP_);
3486 }
3487 EXPORT_SYMBOL(kfree);
3488
3489 /*
3490 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3491 * the remaining slabs by the number of items in use. The slabs with the
3492 * most items in use come first. New allocations will then fill those up
3493 * and thus they can be removed from the partial lists.
3494 *
3495 * The slabs with the least items are placed last. This results in them
3496 * being allocated from last increasing the chance that the last objects
3497 * are freed in them.
3498 */
3499 int kmem_cache_shrink(struct kmem_cache *s)
3500 {
3501 int node;
3502 int i;
3503 struct kmem_cache_node *n;
3504 struct page *page;
3505 struct page *t;
3506 int objects = oo_objects(s->max);
3507 struct list_head *slabs_by_inuse =
3508 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3509 unsigned long flags;
3510
3511 if (!slabs_by_inuse)
3512 return -ENOMEM;
3513
3514 flush_all(s);
3515 for_each_node_state(node, N_NORMAL_MEMORY) {
3516 n = get_node(s, node);
3517
3518 if (!n->nr_partial)
3519 continue;
3520
3521 for (i = 0; i < objects; i++)
3522 INIT_LIST_HEAD(slabs_by_inuse + i);
3523
3524 spin_lock_irqsave(&n->list_lock, flags);
3525
3526 /*
3527 * Build lists indexed by the items in use in each slab.
3528 *
3529 * Note that concurrent frees may occur while we hold the
3530 * list_lock. page->inuse here is the upper limit.
3531 */
3532 list_for_each_entry_safe(page, t, &n->partial, lru) {
3533 list_move(&page->lru, slabs_by_inuse + page->inuse);
3534 if (!page->inuse)
3535 n->nr_partial--;
3536 }
3537
3538 /*
3539 * Rebuild the partial list with the slabs filled up most
3540 * first and the least used slabs at the end.
3541 */
3542 for (i = objects - 1; i > 0; i--)
3543 list_splice(slabs_by_inuse + i, n->partial.prev);
3544
3545 spin_unlock_irqrestore(&n->list_lock, flags);
3546
3547 /* Release empty slabs */
3548 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3549 discard_slab(s, page);
3550 }
3551
3552 kfree(slabs_by_inuse);
3553 return 0;
3554 }
3555 EXPORT_SYMBOL(kmem_cache_shrink);
3556
3557 #if defined(CONFIG_MEMORY_HOTPLUG)
3558 static int slab_mem_going_offline_callback(void *arg)
3559 {
3560 struct kmem_cache *s;
3561
3562 down_read(&slub_lock);
3563 list_for_each_entry(s, &slab_caches, list)
3564 kmem_cache_shrink(s);
3565 up_read(&slub_lock);
3566
3567 return 0;
3568 }
3569
3570 static void slab_mem_offline_callback(void *arg)
3571 {
3572 struct kmem_cache_node *n;
3573 struct kmem_cache *s;
3574 struct memory_notify *marg = arg;
3575 int offline_node;
3576
3577 offline_node = marg->status_change_nid;
3578
3579 /*
3580 * If the node still has available memory. we need kmem_cache_node
3581 * for it yet.
3582 */
3583 if (offline_node < 0)
3584 return;
3585
3586 down_read(&slub_lock);
3587 list_for_each_entry(s, &slab_caches, list) {
3588 n = get_node(s, offline_node);
3589 if (n) {
3590 /*
3591 * if n->nr_slabs > 0, slabs still exist on the node
3592 * that is going down. We were unable to free them,
3593 * and offline_pages() function shouldn't call this
3594 * callback. So, we must fail.
3595 */
3596 BUG_ON(slabs_node(s, offline_node));
3597
3598 s->node[offline_node] = NULL;
3599 kmem_cache_free(kmem_cache_node, n);
3600 }
3601 }
3602 up_read(&slub_lock);
3603 }
3604
3605 static int slab_mem_going_online_callback(void *arg)
3606 {
3607 struct kmem_cache_node *n;
3608 struct kmem_cache *s;
3609 struct memory_notify *marg = arg;
3610 int nid = marg->status_change_nid;
3611 int ret = 0;
3612
3613 /*
3614 * If the node's memory is already available, then kmem_cache_node is
3615 * already created. Nothing to do.
3616 */
3617 if (nid < 0)
3618 return 0;
3619
3620 /*
3621 * We are bringing a node online. No memory is available yet. We must
3622 * allocate a kmem_cache_node structure in order to bring the node
3623 * online.
3624 */
3625 down_read(&slub_lock);
3626 list_for_each_entry(s, &slab_caches, list) {
3627 /*
3628 * XXX: kmem_cache_alloc_node will fallback to other nodes
3629 * since memory is not yet available from the node that
3630 * is brought up.
3631 */
3632 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3633 if (!n) {
3634 ret = -ENOMEM;
3635 goto out;
3636 }
3637 init_kmem_cache_node(n, s);
3638 s->node[nid] = n;
3639 }
3640 out:
3641 up_read(&slub_lock);
3642 return ret;
3643 }
3644
3645 static int slab_memory_callback(struct notifier_block *self,
3646 unsigned long action, void *arg)
3647 {
3648 int ret = 0;
3649
3650 switch (action) {
3651 case MEM_GOING_ONLINE:
3652 ret = slab_mem_going_online_callback(arg);
3653 break;
3654 case MEM_GOING_OFFLINE:
3655 ret = slab_mem_going_offline_callback(arg);
3656 break;
3657 case MEM_OFFLINE:
3658 case MEM_CANCEL_ONLINE:
3659 slab_mem_offline_callback(arg);
3660 break;
3661 case MEM_ONLINE:
3662 case MEM_CANCEL_OFFLINE:
3663 break;
3664 }
3665 if (ret)
3666 ret = notifier_from_errno(ret);
3667 else
3668 ret = NOTIFY_OK;
3669 return ret;
3670 }
3671
3672 #endif /* CONFIG_MEMORY_HOTPLUG */
3673
3674 /********************************************************************
3675 * Basic setup of slabs
3676 *******************************************************************/
3677
3678 /*
3679 * Used for early kmem_cache structures that were allocated using
3680 * the page allocator
3681 */
3682
3683 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3684 {
3685 int node;
3686
3687 list_add(&s->list, &slab_caches);
3688 s->refcount = -1;
3689
3690 for_each_node_state(node, N_NORMAL_MEMORY) {
3691 struct kmem_cache_node *n = get_node(s, node);
3692 struct page *p;
3693
3694 if (n) {
3695 list_for_each_entry(p, &n->partial, lru)
3696 p->slab = s;
3697
3698 #ifdef CONFIG_SLUB_DEBUG
3699 list_for_each_entry(p, &n->full, lru)
3700 p->slab = s;
3701 #endif
3702 }
3703 }
3704 }
3705
3706 void __init kmem_cache_init(void)
3707 {
3708 int i;
3709 int caches = 0;
3710 struct kmem_cache *temp_kmem_cache;
3711 int order;
3712 struct kmem_cache *temp_kmem_cache_node;
3713 unsigned long kmalloc_size;
3714
3715 if (debug_guardpage_minorder())
3716 slub_max_order = 0;
3717
3718 kmem_size = offsetof(struct kmem_cache, node) +
3719 nr_node_ids * sizeof(struct kmem_cache_node *);
3720
3721 /* Allocate two kmem_caches from the page allocator */
3722 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3723 order = get_order(2 * kmalloc_size);
3724 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3725
3726 /*
3727 * Must first have the slab cache available for the allocations of the
3728 * struct kmem_cache_node's. There is special bootstrap code in
3729 * kmem_cache_open for slab_state == DOWN.
3730 */
3731 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3732
3733 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3734 sizeof(struct kmem_cache_node),
3735 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3736
3737 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3738
3739 /* Able to allocate the per node structures */
3740 slab_state = PARTIAL;
3741
3742 temp_kmem_cache = kmem_cache;
3743 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3744 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3745 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3746 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3747
3748 /*
3749 * Allocate kmem_cache_node properly from the kmem_cache slab.
3750 * kmem_cache_node is separately allocated so no need to
3751 * update any list pointers.
3752 */
3753 temp_kmem_cache_node = kmem_cache_node;
3754
3755 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3756 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3757
3758 kmem_cache_bootstrap_fixup(kmem_cache_node);
3759
3760 caches++;
3761 kmem_cache_bootstrap_fixup(kmem_cache);
3762 caches++;
3763 /* Free temporary boot structure */
3764 free_pages((unsigned long)temp_kmem_cache, order);
3765
3766 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3767
3768 /*
3769 * Patch up the size_index table if we have strange large alignment
3770 * requirements for the kmalloc array. This is only the case for
3771 * MIPS it seems. The standard arches will not generate any code here.
3772 *
3773 * Largest permitted alignment is 256 bytes due to the way we
3774 * handle the index determination for the smaller caches.
3775 *
3776 * Make sure that nothing crazy happens if someone starts tinkering
3777 * around with ARCH_KMALLOC_MINALIGN
3778 */
3779 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3780 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3781
3782 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3783 int elem = size_index_elem(i);
3784 if (elem >= ARRAY_SIZE(size_index))
3785 break;
3786 size_index[elem] = KMALLOC_SHIFT_LOW;
3787 }
3788
3789 if (KMALLOC_MIN_SIZE == 64) {
3790 /*
3791 * The 96 byte size cache is not used if the alignment
3792 * is 64 byte.
3793 */
3794 for (i = 64 + 8; i <= 96; i += 8)
3795 size_index[size_index_elem(i)] = 7;
3796 } else if (KMALLOC_MIN_SIZE == 128) {
3797 /*
3798 * The 192 byte sized cache is not used if the alignment
3799 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3800 * instead.
3801 */
3802 for (i = 128 + 8; i <= 192; i += 8)
3803 size_index[size_index_elem(i)] = 8;
3804 }
3805
3806 /* Caches that are not of the two-to-the-power-of size */
3807 if (KMALLOC_MIN_SIZE <= 32) {
3808 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3809 caches++;
3810 }
3811
3812 if (KMALLOC_MIN_SIZE <= 64) {
3813 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3814 caches++;
3815 }
3816
3817 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3818 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3819 caches++;
3820 }
3821
3822 slab_state = UP;
3823
3824 /* Provide the correct kmalloc names now that the caches are up */
3825 if (KMALLOC_MIN_SIZE <= 32) {
3826 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3827 BUG_ON(!kmalloc_caches[1]->name);
3828 }
3829
3830 if (KMALLOC_MIN_SIZE <= 64) {
3831 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3832 BUG_ON(!kmalloc_caches[2]->name);
3833 }
3834
3835 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3836 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3837
3838 BUG_ON(!s);
3839 kmalloc_caches[i]->name = s;
3840 }
3841
3842 #ifdef CONFIG_SMP
3843 register_cpu_notifier(&slab_notifier);
3844 #endif
3845
3846 #ifdef CONFIG_ZONE_DMA
3847 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3848 struct kmem_cache *s = kmalloc_caches[i];
3849
3850 if (s && s->size) {
3851 char *name = kasprintf(GFP_NOWAIT,
3852 "dma-kmalloc-%d", s->objsize);
3853
3854 BUG_ON(!name);
3855 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3856 s->objsize, SLAB_CACHE_DMA);
3857 }
3858 }
3859 #endif
3860 printk(KERN_INFO
3861 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3862 " CPUs=%d, Nodes=%d\n",
3863 caches, cache_line_size(),
3864 slub_min_order, slub_max_order, slub_min_objects,
3865 nr_cpu_ids, nr_node_ids);
3866 }
3867
3868 void __init kmem_cache_init_late(void)
3869 {
3870 }
3871
3872 /*
3873 * Find a mergeable slab cache
3874 */
3875 static int slab_unmergeable(struct kmem_cache *s)
3876 {
3877 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3878 return 1;
3879
3880 if (s->ctor)
3881 return 1;
3882
3883 /*
3884 * We may have set a slab to be unmergeable during bootstrap.
3885 */
3886 if (s->refcount < 0)
3887 return 1;
3888
3889 return 0;
3890 }
3891
3892 static struct kmem_cache *find_mergeable(size_t size,
3893 size_t align, unsigned long flags, const char *name,
3894 void (*ctor)(void *))
3895 {
3896 struct kmem_cache *s;
3897
3898 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3899 return NULL;
3900
3901 if (ctor)
3902 return NULL;
3903
3904 size = ALIGN(size, sizeof(void *));
3905 align = calculate_alignment(flags, align, size);
3906 size = ALIGN(size, align);
3907 flags = kmem_cache_flags(size, flags, name, NULL);
3908
3909 list_for_each_entry(s, &slab_caches, list) {
3910 if (slab_unmergeable(s))
3911 continue;
3912
3913 if (size > s->size)
3914 continue;
3915
3916 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3917 continue;
3918 /*
3919 * Check if alignment is compatible.
3920 * Courtesy of Adrian Drzewiecki
3921 */
3922 if ((s->size & ~(align - 1)) != s->size)
3923 continue;
3924
3925 if (s->size - size >= sizeof(void *))
3926 continue;
3927
3928 return s;
3929 }
3930 return NULL;
3931 }
3932
3933 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3934 size_t align, unsigned long flags, void (*ctor)(void *))
3935 {
3936 struct kmem_cache *s;
3937 char *n;
3938
3939 if (WARN_ON(!name))
3940 return NULL;
3941
3942 down_write(&slub_lock);
3943 s = find_mergeable(size, align, flags, name, ctor);
3944 if (s) {
3945 s->refcount++;
3946 /*
3947 * Adjust the object sizes so that we clear
3948 * the complete object on kzalloc.
3949 */
3950 s->objsize = max(s->objsize, (int)size);
3951 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3952
3953 if (sysfs_slab_alias(s, name)) {
3954 s->refcount--;
3955 goto err;
3956 }
3957 up_write(&slub_lock);
3958 return s;
3959 }
3960
3961 n = kstrdup(name, GFP_KERNEL);
3962 if (!n)
3963 goto err;
3964
3965 s = kmalloc(kmem_size, GFP_KERNEL);
3966 if (s) {
3967 if (kmem_cache_open(s, n,
3968 size, align, flags, ctor)) {
3969 list_add(&s->list, &slab_caches);
3970 up_write(&slub_lock);
3971 if (sysfs_slab_add(s)) {
3972 down_write(&slub_lock);
3973 list_del(&s->list);
3974 kfree(n);
3975 kfree(s);
3976 goto err;
3977 }
3978 return s;
3979 }
3980 kfree(n);
3981 kfree(s);
3982 }
3983 err:
3984 up_write(&slub_lock);
3985
3986 if (flags & SLAB_PANIC)
3987 panic("Cannot create slabcache %s\n", name);
3988 else
3989 s = NULL;
3990 return s;
3991 }
3992 EXPORT_SYMBOL(kmem_cache_create);
3993
3994 #ifdef CONFIG_SMP
3995 /*
3996 * Use the cpu notifier to insure that the cpu slabs are flushed when
3997 * necessary.
3998 */
3999 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
4000 unsigned long action, void *hcpu)
4001 {
4002 long cpu = (long)hcpu;
4003 struct kmem_cache *s;
4004 unsigned long flags;
4005
4006 switch (action) {
4007 case CPU_UP_CANCELED:
4008 case CPU_UP_CANCELED_FROZEN:
4009 case CPU_DEAD:
4010 case CPU_DEAD_FROZEN:
4011 down_read(&slub_lock);
4012 list_for_each_entry(s, &slab_caches, list) {
4013 local_irq_save(flags);
4014 __flush_cpu_slab(s, cpu);
4015 local_irq_restore(flags);
4016 }
4017 up_read(&slub_lock);
4018 break;
4019 default:
4020 break;
4021 }
4022 return NOTIFY_OK;
4023 }
4024
4025 static struct notifier_block __cpuinitdata slab_notifier = {
4026 .notifier_call = slab_cpuup_callback
4027 };
4028
4029 #endif
4030
4031 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4032 {
4033 struct kmem_cache *s;
4034 void *ret;
4035
4036 if (unlikely(size > SLUB_MAX_SIZE))
4037 return kmalloc_large(size, gfpflags);
4038
4039 s = get_slab(size, gfpflags);
4040
4041 if (unlikely(ZERO_OR_NULL_PTR(s)))
4042 return s;
4043
4044 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
4045
4046 /* Honor the call site pointer we received. */
4047 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4048
4049 return ret;
4050 }
4051
4052 #ifdef CONFIG_NUMA
4053 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4054 int node, unsigned long caller)
4055 {
4056 struct kmem_cache *s;
4057 void *ret;
4058
4059 if (unlikely(size > SLUB_MAX_SIZE)) {
4060 ret = kmalloc_large_node(size, gfpflags, node);
4061
4062 trace_kmalloc_node(caller, ret,
4063 size, PAGE_SIZE << get_order(size),
4064 gfpflags, node);
4065
4066 return ret;
4067 }
4068
4069 s = get_slab(size, gfpflags);
4070
4071 if (unlikely(ZERO_OR_NULL_PTR(s)))
4072 return s;
4073
4074 ret = slab_alloc(s, gfpflags, node, caller);
4075
4076 /* Honor the call site pointer we received. */
4077 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4078
4079 return ret;
4080 }
4081 #endif
4082
4083 #ifdef CONFIG_SYSFS
4084 static int count_inuse(struct page *page)
4085 {
4086 return page->inuse;
4087 }
4088
4089 static int count_total(struct page *page)
4090 {
4091 return page->objects;
4092 }
4093 #endif
4094
4095 #ifdef CONFIG_SLUB_DEBUG
4096 static int validate_slab(struct kmem_cache *s, struct page *page,
4097 unsigned long *map)
4098 {
4099 void *p;
4100 void *addr = page_address(page);
4101
4102 if (!check_slab(s, page) ||
4103 !on_freelist(s, page, NULL))
4104 return 0;
4105
4106 /* Now we know that a valid freelist exists */
4107 bitmap_zero(map, page->objects);
4108
4109 get_map(s, page, map);
4110 for_each_object(p, s, addr, page->objects) {
4111 if (test_bit(slab_index(p, s, addr), map))
4112 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4113 return 0;
4114 }
4115
4116 for_each_object(p, s, addr, page->objects)
4117 if (!test_bit(slab_index(p, s, addr), map))
4118 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4119 return 0;
4120 return 1;
4121 }
4122
4123 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4124 unsigned long *map)
4125 {
4126 slab_lock(page);
4127 validate_slab(s, page, map);
4128 slab_unlock(page);
4129 }
4130
4131 static int validate_slab_node(struct kmem_cache *s,
4132 struct kmem_cache_node *n, unsigned long *map)
4133 {
4134 unsigned long count = 0;
4135 struct page *page;
4136 unsigned long flags;
4137
4138 spin_lock_irqsave(&n->list_lock, flags);
4139
4140 list_for_each_entry(page, &n->partial, lru) {
4141 validate_slab_slab(s, page, map);
4142 count++;
4143 }
4144 if (count != n->nr_partial)
4145 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4146 "counter=%ld\n", s->name, count, n->nr_partial);
4147
4148 if (!(s->flags & SLAB_STORE_USER))
4149 goto out;
4150
4151 list_for_each_entry(page, &n->full, lru) {
4152 validate_slab_slab(s, page, map);
4153 count++;
4154 }
4155 if (count != atomic_long_read(&n->nr_slabs))
4156 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4157 "counter=%ld\n", s->name, count,
4158 atomic_long_read(&n->nr_slabs));
4159
4160 out:
4161 spin_unlock_irqrestore(&n->list_lock, flags);
4162 return count;
4163 }
4164
4165 static long validate_slab_cache(struct kmem_cache *s)
4166 {
4167 int node;
4168 unsigned long count = 0;
4169 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4170 sizeof(unsigned long), GFP_KERNEL);
4171
4172 if (!map)
4173 return -ENOMEM;
4174
4175 flush_all(s);
4176 for_each_node_state(node, N_NORMAL_MEMORY) {
4177 struct kmem_cache_node *n = get_node(s, node);
4178
4179 count += validate_slab_node(s, n, map);
4180 }
4181 kfree(map);
4182 return count;
4183 }
4184 /*
4185 * Generate lists of code addresses where slabcache objects are allocated
4186 * and freed.
4187 */
4188
4189 struct location {
4190 unsigned long count;
4191 unsigned long addr;
4192 long long sum_time;
4193 long min_time;
4194 long max_time;
4195 long min_pid;
4196 long max_pid;
4197 DECLARE_BITMAP(cpus, NR_CPUS);
4198 nodemask_t nodes;
4199 };
4200
4201 struct loc_track {
4202 unsigned long max;
4203 unsigned long count;
4204 struct location *loc;
4205 };
4206
4207 static void free_loc_track(struct loc_track *t)
4208 {
4209 if (t->max)
4210 free_pages((unsigned long)t->loc,
4211 get_order(sizeof(struct location) * t->max));
4212 }
4213
4214 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4215 {
4216 struct location *l;
4217 int order;
4218
4219 order = get_order(sizeof(struct location) * max);
4220
4221 l = (void *)__get_free_pages(flags, order);
4222 if (!l)
4223 return 0;
4224
4225 if (t->count) {
4226 memcpy(l, t->loc, sizeof(struct location) * t->count);
4227 free_loc_track(t);
4228 }
4229 t->max = max;
4230 t->loc = l;
4231 return 1;
4232 }
4233
4234 static int add_location(struct loc_track *t, struct kmem_cache *s,
4235 const struct track *track)
4236 {
4237 long start, end, pos;
4238 struct location *l;
4239 unsigned long caddr;
4240 unsigned long age = jiffies - track->when;
4241
4242 start = -1;
4243 end = t->count;
4244
4245 for ( ; ; ) {
4246 pos = start + (end - start + 1) / 2;
4247
4248 /*
4249 * There is nothing at "end". If we end up there
4250 * we need to add something to before end.
4251 */
4252 if (pos == end)
4253 break;
4254
4255 caddr = t->loc[pos].addr;
4256 if (track->addr == caddr) {
4257
4258 l = &t->loc[pos];
4259 l->count++;
4260 if (track->when) {
4261 l->sum_time += age;
4262 if (age < l->min_time)
4263 l->min_time = age;
4264 if (age > l->max_time)
4265 l->max_time = age;
4266
4267 if (track->pid < l->min_pid)
4268 l->min_pid = track->pid;
4269 if (track->pid > l->max_pid)
4270 l->max_pid = track->pid;
4271
4272 cpumask_set_cpu(track->cpu,
4273 to_cpumask(l->cpus));
4274 }
4275 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4276 return 1;
4277 }
4278
4279 if (track->addr < caddr)
4280 end = pos;
4281 else
4282 start = pos;
4283 }
4284
4285 /*
4286 * Not found. Insert new tracking element.
4287 */
4288 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4289 return 0;
4290
4291 l = t->loc + pos;
4292 if (pos < t->count)
4293 memmove(l + 1, l,
4294 (t->count - pos) * sizeof(struct location));
4295 t->count++;
4296 l->count = 1;
4297 l->addr = track->addr;
4298 l->sum_time = age;
4299 l->min_time = age;
4300 l->max_time = age;
4301 l->min_pid = track->pid;
4302 l->max_pid = track->pid;
4303 cpumask_clear(to_cpumask(l->cpus));
4304 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4305 nodes_clear(l->nodes);
4306 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4307 return 1;
4308 }
4309
4310 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4311 struct page *page, enum track_item alloc,
4312 unsigned long *map)
4313 {
4314 void *addr = page_address(page);
4315 void *p;
4316
4317 bitmap_zero(map, page->objects);
4318 get_map(s, page, map);
4319
4320 for_each_object(p, s, addr, page->objects)
4321 if (!test_bit(slab_index(p, s, addr), map))
4322 add_location(t, s, get_track(s, p, alloc));
4323 }
4324
4325 static int list_locations(struct kmem_cache *s, char *buf,
4326 enum track_item alloc)
4327 {
4328 int len = 0;
4329 unsigned long i;
4330 struct loc_track t = { 0, 0, NULL };
4331 int node;
4332 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4333 sizeof(unsigned long), GFP_KERNEL);
4334
4335 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4336 GFP_TEMPORARY)) {
4337 kfree(map);
4338 return sprintf(buf, "Out of memory\n");
4339 }
4340 /* Push back cpu slabs */
4341 flush_all(s);
4342
4343 for_each_node_state(node, N_NORMAL_MEMORY) {
4344 struct kmem_cache_node *n = get_node(s, node);
4345 unsigned long flags;
4346 struct page *page;
4347
4348 if (!atomic_long_read(&n->nr_slabs))
4349 continue;
4350
4351 spin_lock_irqsave(&n->list_lock, flags);
4352 list_for_each_entry(page, &n->partial, lru)
4353 process_slab(&t, s, page, alloc, map);
4354 list_for_each_entry(page, &n->full, lru)
4355 process_slab(&t, s, page, alloc, map);
4356 spin_unlock_irqrestore(&n->list_lock, flags);
4357 }
4358
4359 for (i = 0; i < t.count; i++) {
4360 struct location *l = &t.loc[i];
4361
4362 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4363 break;
4364 len += sprintf(buf + len, "%7ld ", l->count);
4365
4366 if (l->addr)
4367 len += sprintf(buf + len, "%pS", (void *)l->addr);
4368 else
4369 len += sprintf(buf + len, "<not-available>");
4370
4371 if (l->sum_time != l->min_time) {
4372 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4373 l->min_time,
4374 (long)div_u64(l->sum_time, l->count),
4375 l->max_time);
4376 } else
4377 len += sprintf(buf + len, " age=%ld",
4378 l->min_time);
4379
4380 if (l->min_pid != l->max_pid)
4381 len += sprintf(buf + len, " pid=%ld-%ld",
4382 l->min_pid, l->max_pid);
4383 else
4384 len += sprintf(buf + len, " pid=%ld",
4385 l->min_pid);
4386
4387 if (num_online_cpus() > 1 &&
4388 !cpumask_empty(to_cpumask(l->cpus)) &&
4389 len < PAGE_SIZE - 60) {
4390 len += sprintf(buf + len, " cpus=");
4391 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4392 to_cpumask(l->cpus));
4393 }
4394
4395 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4396 len < PAGE_SIZE - 60) {
4397 len += sprintf(buf + len, " nodes=");
4398 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4399 l->nodes);
4400 }
4401
4402 len += sprintf(buf + len, "\n");
4403 }
4404
4405 free_loc_track(&t);
4406 kfree(map);
4407 if (!t.count)
4408 len += sprintf(buf, "No data\n");
4409 return len;
4410 }
4411 #endif
4412
4413 #ifdef SLUB_RESILIENCY_TEST
4414 static void resiliency_test(void)
4415 {
4416 u8 *p;
4417
4418 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4419
4420 printk(KERN_ERR "SLUB resiliency testing\n");
4421 printk(KERN_ERR "-----------------------\n");
4422 printk(KERN_ERR "A. Corruption after allocation\n");
4423
4424 p = kzalloc(16, GFP_KERNEL);
4425 p[16] = 0x12;
4426 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4427 " 0x12->0x%p\n\n", p + 16);
4428
4429 validate_slab_cache(kmalloc_caches[4]);
4430
4431 /* Hmmm... The next two are dangerous */
4432 p = kzalloc(32, GFP_KERNEL);
4433 p[32 + sizeof(void *)] = 0x34;
4434 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4435 " 0x34 -> -0x%p\n", p);
4436 printk(KERN_ERR
4437 "If allocated object is overwritten then not detectable\n\n");
4438
4439 validate_slab_cache(kmalloc_caches[5]);
4440 p = kzalloc(64, GFP_KERNEL);
4441 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4442 *p = 0x56;
4443 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4444 p);
4445 printk(KERN_ERR
4446 "If allocated object is overwritten then not detectable\n\n");
4447 validate_slab_cache(kmalloc_caches[6]);
4448
4449 printk(KERN_ERR "\nB. Corruption after free\n");
4450 p = kzalloc(128, GFP_KERNEL);
4451 kfree(p);
4452 *p = 0x78;
4453 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4454 validate_slab_cache(kmalloc_caches[7]);
4455
4456 p = kzalloc(256, GFP_KERNEL);
4457 kfree(p);
4458 p[50] = 0x9a;
4459 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4460 p);
4461 validate_slab_cache(kmalloc_caches[8]);
4462
4463 p = kzalloc(512, GFP_KERNEL);
4464 kfree(p);
4465 p[512] = 0xab;
4466 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4467 validate_slab_cache(kmalloc_caches[9]);
4468 }
4469 #else
4470 #ifdef CONFIG_SYSFS
4471 static void resiliency_test(void) {};
4472 #endif
4473 #endif
4474
4475 #ifdef CONFIG_SYSFS
4476 enum slab_stat_type {
4477 SL_ALL, /* All slabs */
4478 SL_PARTIAL, /* Only partially allocated slabs */
4479 SL_CPU, /* Only slabs used for cpu caches */
4480 SL_OBJECTS, /* Determine allocated objects not slabs */
4481 SL_TOTAL /* Determine object capacity not slabs */
4482 };
4483
4484 #define SO_ALL (1 << SL_ALL)
4485 #define SO_PARTIAL (1 << SL_PARTIAL)
4486 #define SO_CPU (1 << SL_CPU)
4487 #define SO_OBJECTS (1 << SL_OBJECTS)
4488 #define SO_TOTAL (1 << SL_TOTAL)
4489
4490 static ssize_t show_slab_objects(struct kmem_cache *s,
4491 char *buf, unsigned long flags)
4492 {
4493 unsigned long total = 0;
4494 int node;
4495 int x;
4496 unsigned long *nodes;
4497 unsigned long *per_cpu;
4498
4499 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4500 if (!nodes)
4501 return -ENOMEM;
4502 per_cpu = nodes + nr_node_ids;
4503
4504 if (flags & SO_CPU) {
4505 int cpu;
4506
4507 for_each_possible_cpu(cpu) {
4508 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4509 int node;
4510 struct page *page;
4511
4512 page = ACCESS_ONCE(c->page);
4513 if (!page)
4514 continue;
4515
4516 node = page_to_nid(page);
4517 if (flags & SO_TOTAL)
4518 x = page->objects;
4519 else if (flags & SO_OBJECTS)
4520 x = page->inuse;
4521 else
4522 x = 1;
4523
4524 total += x;
4525 nodes[node] += x;
4526
4527 page = ACCESS_ONCE(c->partial);
4528 if (page) {
4529 x = page->pobjects;
4530 total += x;
4531 nodes[node] += x;
4532 }
4533
4534 per_cpu[node]++;
4535 }
4536 }
4537
4538 lock_memory_hotplug();
4539 #ifdef CONFIG_SLUB_DEBUG
4540 if (flags & SO_ALL) {
4541 for_each_node_state(node, N_NORMAL_MEMORY) {
4542 struct kmem_cache_node *n = get_node(s, node);
4543
4544 if (flags & SO_TOTAL)
4545 x = atomic_long_read(&n->total_objects);
4546 else if (flags & SO_OBJECTS)
4547 x = atomic_long_read(&n->total_objects) -
4548 count_partial(n, count_free);
4549
4550 else
4551 x = atomic_long_read(&n->nr_slabs);
4552 total += x;
4553 nodes[node] += x;
4554 }
4555
4556 } else
4557 #endif
4558 if (flags & SO_PARTIAL) {
4559 for_each_node_state(node, N_NORMAL_MEMORY) {
4560 struct kmem_cache_node *n = get_node(s, node);
4561
4562 if (flags & SO_TOTAL)
4563 x = count_partial(n, count_total);
4564 else if (flags & SO_OBJECTS)
4565 x = count_partial(n, count_inuse);
4566 else
4567 x = n->nr_partial;
4568 total += x;
4569 nodes[node] += x;
4570 }
4571 }
4572 x = sprintf(buf, "%lu", total);
4573 #ifdef CONFIG_NUMA
4574 for_each_node_state(node, N_NORMAL_MEMORY)
4575 if (nodes[node])
4576 x += sprintf(buf + x, " N%d=%lu",
4577 node, nodes[node]);
4578 #endif
4579 unlock_memory_hotplug();
4580 kfree(nodes);
4581 return x + sprintf(buf + x, "\n");
4582 }
4583
4584 #ifdef CONFIG_SLUB_DEBUG
4585 static int any_slab_objects(struct kmem_cache *s)
4586 {
4587 int node;
4588
4589 for_each_online_node(node) {
4590 struct kmem_cache_node *n = get_node(s, node);
4591
4592 if (!n)
4593 continue;
4594
4595 if (atomic_long_read(&n->total_objects))
4596 return 1;
4597 }
4598 return 0;
4599 }
4600 #endif
4601
4602 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4603 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4604
4605 struct slab_attribute {
4606 struct attribute attr;
4607 ssize_t (*show)(struct kmem_cache *s, char *buf);
4608 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4609 };
4610
4611 #define SLAB_ATTR_RO(_name) \
4612 static struct slab_attribute _name##_attr = \
4613 __ATTR(_name, 0400, _name##_show, NULL)
4614
4615 #define SLAB_ATTR(_name) \
4616 static struct slab_attribute _name##_attr = \
4617 __ATTR(_name, 0600, _name##_show, _name##_store)
4618
4619 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4620 {
4621 return sprintf(buf, "%d\n", s->size);
4622 }
4623 SLAB_ATTR_RO(slab_size);
4624
4625 static ssize_t align_show(struct kmem_cache *s, char *buf)
4626 {
4627 return sprintf(buf, "%d\n", s->align);
4628 }
4629 SLAB_ATTR_RO(align);
4630
4631 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4632 {
4633 return sprintf(buf, "%d\n", s->objsize);
4634 }
4635 SLAB_ATTR_RO(object_size);
4636
4637 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4638 {
4639 return sprintf(buf, "%d\n", oo_objects(s->oo));
4640 }
4641 SLAB_ATTR_RO(objs_per_slab);
4642
4643 static ssize_t order_store(struct kmem_cache *s,
4644 const char *buf, size_t length)
4645 {
4646 unsigned long order;
4647 int err;
4648
4649 err = strict_strtoul(buf, 10, &order);
4650 if (err)
4651 return err;
4652
4653 if (order > slub_max_order || order < slub_min_order)
4654 return -EINVAL;
4655
4656 calculate_sizes(s, order);
4657 return length;
4658 }
4659
4660 static ssize_t order_show(struct kmem_cache *s, char *buf)
4661 {
4662 return sprintf(buf, "%d\n", oo_order(s->oo));
4663 }
4664 SLAB_ATTR(order);
4665
4666 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4667 {
4668 return sprintf(buf, "%lu\n", s->min_partial);
4669 }
4670
4671 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4672 size_t length)
4673 {
4674 unsigned long min;
4675 int err;
4676
4677 err = strict_strtoul(buf, 10, &min);
4678 if (err)
4679 return err;
4680
4681 set_min_partial(s, min);
4682 return length;
4683 }
4684 SLAB_ATTR(min_partial);
4685
4686 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4687 {
4688 return sprintf(buf, "%u\n", s->cpu_partial);
4689 }
4690
4691 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4692 size_t length)
4693 {
4694 unsigned long objects;
4695 int err;
4696
4697 err = strict_strtoul(buf, 10, &objects);
4698 if (err)
4699 return err;
4700 if (objects && kmem_cache_debug(s))
4701 return -EINVAL;
4702
4703 s->cpu_partial = objects;
4704 flush_all(s);
4705 return length;
4706 }
4707 SLAB_ATTR(cpu_partial);
4708
4709 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4710 {
4711 if (!s->ctor)
4712 return 0;
4713 return sprintf(buf, "%pS\n", s->ctor);
4714 }
4715 SLAB_ATTR_RO(ctor);
4716
4717 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4718 {
4719 return sprintf(buf, "%d\n", s->refcount - 1);
4720 }
4721 SLAB_ATTR_RO(aliases);
4722
4723 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4724 {
4725 return show_slab_objects(s, buf, SO_PARTIAL);
4726 }
4727 SLAB_ATTR_RO(partial);
4728
4729 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4730 {
4731 return show_slab_objects(s, buf, SO_CPU);
4732 }
4733 SLAB_ATTR_RO(cpu_slabs);
4734
4735 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4736 {
4737 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4738 }
4739 SLAB_ATTR_RO(objects);
4740
4741 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4742 {
4743 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4744 }
4745 SLAB_ATTR_RO(objects_partial);
4746
4747 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4748 {
4749 int objects = 0;
4750 int pages = 0;
4751 int cpu;
4752 int len;
4753
4754 for_each_online_cpu(cpu) {
4755 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4756
4757 if (page) {
4758 pages += page->pages;
4759 objects += page->pobjects;
4760 }
4761 }
4762
4763 len = sprintf(buf, "%d(%d)", objects, pages);
4764
4765 #ifdef CONFIG_SMP
4766 for_each_online_cpu(cpu) {
4767 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4768
4769 if (page && len < PAGE_SIZE - 20)
4770 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4771 page->pobjects, page->pages);
4772 }
4773 #endif
4774 return len + sprintf(buf + len, "\n");
4775 }
4776 SLAB_ATTR_RO(slabs_cpu_partial);
4777
4778 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4779 {
4780 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4781 }
4782
4783 static ssize_t reclaim_account_store(struct kmem_cache *s,
4784 const char *buf, size_t length)
4785 {
4786 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4787 if (buf[0] == '1')
4788 s->flags |= SLAB_RECLAIM_ACCOUNT;
4789 return length;
4790 }
4791 SLAB_ATTR(reclaim_account);
4792
4793 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4794 {
4795 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4796 }
4797 SLAB_ATTR_RO(hwcache_align);
4798
4799 #ifdef CONFIG_ZONE_DMA
4800 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4801 {
4802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4803 }
4804 SLAB_ATTR_RO(cache_dma);
4805 #endif
4806
4807 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4808 {
4809 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4810 }
4811 SLAB_ATTR_RO(destroy_by_rcu);
4812
4813 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4814 {
4815 return sprintf(buf, "%d\n", s->reserved);
4816 }
4817 SLAB_ATTR_RO(reserved);
4818
4819 #ifdef CONFIG_SLUB_DEBUG
4820 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4821 {
4822 return show_slab_objects(s, buf, SO_ALL);
4823 }
4824 SLAB_ATTR_RO(slabs);
4825
4826 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4827 {
4828 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4829 }
4830 SLAB_ATTR_RO(total_objects);
4831
4832 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4833 {
4834 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4835 }
4836
4837 static ssize_t sanity_checks_store(struct kmem_cache *s,
4838 const char *buf, size_t length)
4839 {
4840 s->flags &= ~SLAB_DEBUG_FREE;
4841 if (buf[0] == '1') {
4842 s->flags &= ~__CMPXCHG_DOUBLE;
4843 s->flags |= SLAB_DEBUG_FREE;
4844 }
4845 return length;
4846 }
4847 SLAB_ATTR(sanity_checks);
4848
4849 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4850 {
4851 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4852 }
4853
4854 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4855 size_t length)
4856 {
4857 s->flags &= ~SLAB_TRACE;
4858 if (buf[0] == '1') {
4859 s->flags &= ~__CMPXCHG_DOUBLE;
4860 s->flags |= SLAB_TRACE;
4861 }
4862 return length;
4863 }
4864 SLAB_ATTR(trace);
4865
4866 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4867 {
4868 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4869 }
4870
4871 static ssize_t red_zone_store(struct kmem_cache *s,
4872 const char *buf, size_t length)
4873 {
4874 if (any_slab_objects(s))
4875 return -EBUSY;
4876
4877 s->flags &= ~SLAB_RED_ZONE;
4878 if (buf[0] == '1') {
4879 s->flags &= ~__CMPXCHG_DOUBLE;
4880 s->flags |= SLAB_RED_ZONE;
4881 }
4882 calculate_sizes(s, -1);
4883 return length;
4884 }
4885 SLAB_ATTR(red_zone);
4886
4887 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4888 {
4889 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4890 }
4891
4892 static ssize_t poison_store(struct kmem_cache *s,
4893 const char *buf, size_t length)
4894 {
4895 if (any_slab_objects(s))
4896 return -EBUSY;
4897
4898 s->flags &= ~SLAB_POISON;
4899 if (buf[0] == '1') {
4900 s->flags &= ~__CMPXCHG_DOUBLE;
4901 s->flags |= SLAB_POISON;
4902 }
4903 calculate_sizes(s, -1);
4904 return length;
4905 }
4906 SLAB_ATTR(poison);
4907
4908 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4909 {
4910 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4911 }
4912
4913 static ssize_t store_user_store(struct kmem_cache *s,
4914 const char *buf, size_t length)
4915 {
4916 if (any_slab_objects(s))
4917 return -EBUSY;
4918
4919 s->flags &= ~SLAB_STORE_USER;
4920 if (buf[0] == '1') {
4921 s->flags &= ~__CMPXCHG_DOUBLE;
4922 s->flags |= SLAB_STORE_USER;
4923 }
4924 calculate_sizes(s, -1);
4925 return length;
4926 }
4927 SLAB_ATTR(store_user);
4928
4929 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4930 {
4931 return 0;
4932 }
4933
4934 static ssize_t validate_store(struct kmem_cache *s,
4935 const char *buf, size_t length)
4936 {
4937 int ret = -EINVAL;
4938
4939 if (buf[0] == '1') {
4940 ret = validate_slab_cache(s);
4941 if (ret >= 0)
4942 ret = length;
4943 }
4944 return ret;
4945 }
4946 SLAB_ATTR(validate);
4947
4948 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4949 {
4950 if (!(s->flags & SLAB_STORE_USER))
4951 return -ENOSYS;
4952 return list_locations(s, buf, TRACK_ALLOC);
4953 }
4954 SLAB_ATTR_RO(alloc_calls);
4955
4956 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4957 {
4958 if (!(s->flags & SLAB_STORE_USER))
4959 return -ENOSYS;
4960 return list_locations(s, buf, TRACK_FREE);
4961 }
4962 SLAB_ATTR_RO(free_calls);
4963 #endif /* CONFIG_SLUB_DEBUG */
4964
4965 #ifdef CONFIG_FAILSLAB
4966 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4967 {
4968 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4969 }
4970
4971 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4972 size_t length)
4973 {
4974 s->flags &= ~SLAB_FAILSLAB;
4975 if (buf[0] == '1')
4976 s->flags |= SLAB_FAILSLAB;
4977 return length;
4978 }
4979 SLAB_ATTR(failslab);
4980 #endif
4981
4982 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4983 {
4984 return 0;
4985 }
4986
4987 static ssize_t shrink_store(struct kmem_cache *s,
4988 const char *buf, size_t length)
4989 {
4990 if (buf[0] == '1') {
4991 int rc = kmem_cache_shrink(s);
4992
4993 if (rc)
4994 return rc;
4995 } else
4996 return -EINVAL;
4997 return length;
4998 }
4999 SLAB_ATTR(shrink);
5000
5001 #ifdef CONFIG_NUMA
5002 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5003 {
5004 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5005 }
5006
5007 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5008 const char *buf, size_t length)
5009 {
5010 unsigned long ratio;
5011 int err;
5012
5013 err = strict_strtoul(buf, 10, &ratio);
5014 if (err)
5015 return err;
5016
5017 if (ratio <= 100)
5018 s->remote_node_defrag_ratio = ratio * 10;
5019
5020 return length;
5021 }
5022 SLAB_ATTR(remote_node_defrag_ratio);
5023 #endif
5024
5025 #ifdef CONFIG_SLUB_STATS
5026 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5027 {
5028 unsigned long sum = 0;
5029 int cpu;
5030 int len;
5031 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5032
5033 if (!data)
5034 return -ENOMEM;
5035
5036 for_each_online_cpu(cpu) {
5037 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5038
5039 data[cpu] = x;
5040 sum += x;
5041 }
5042
5043 len = sprintf(buf, "%lu", sum);
5044
5045 #ifdef CONFIG_SMP
5046 for_each_online_cpu(cpu) {
5047 if (data[cpu] && len < PAGE_SIZE - 20)
5048 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5049 }
5050 #endif
5051 kfree(data);
5052 return len + sprintf(buf + len, "\n");
5053 }
5054
5055 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5056 {
5057 int cpu;
5058
5059 for_each_online_cpu(cpu)
5060 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5061 }
5062
5063 #define STAT_ATTR(si, text) \
5064 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5065 { \
5066 return show_stat(s, buf, si); \
5067 } \
5068 static ssize_t text##_store(struct kmem_cache *s, \
5069 const char *buf, size_t length) \
5070 { \
5071 if (buf[0] != '0') \
5072 return -EINVAL; \
5073 clear_stat(s, si); \
5074 return length; \
5075 } \
5076 SLAB_ATTR(text); \
5077
5078 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5079 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5080 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5081 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5082 STAT_ATTR(FREE_FROZEN, free_frozen);
5083 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5084 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5085 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5086 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5087 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5088 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5089 STAT_ATTR(FREE_SLAB, free_slab);
5090 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5091 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5092 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5093 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5094 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5095 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5096 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5097 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5098 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5099 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5100 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5101 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5102 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5103 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5104 #endif
5105
5106 static struct attribute *slab_attrs[] = {
5107 &slab_size_attr.attr,
5108 &object_size_attr.attr,
5109 &objs_per_slab_attr.attr,
5110 &order_attr.attr,
5111 &min_partial_attr.attr,
5112 &cpu_partial_attr.attr,
5113 &objects_attr.attr,
5114 &objects_partial_attr.attr,
5115 &partial_attr.attr,
5116 &cpu_slabs_attr.attr,
5117 &ctor_attr.attr,
5118 &aliases_attr.attr,
5119 &align_attr.attr,
5120 &hwcache_align_attr.attr,
5121 &reclaim_account_attr.attr,
5122 &destroy_by_rcu_attr.attr,
5123 &shrink_attr.attr,
5124 &reserved_attr.attr,
5125 &slabs_cpu_partial_attr.attr,
5126 #ifdef CONFIG_SLUB_DEBUG
5127 &total_objects_attr.attr,
5128 &slabs_attr.attr,
5129 &sanity_checks_attr.attr,
5130 &trace_attr.attr,
5131 &red_zone_attr.attr,
5132 &poison_attr.attr,
5133 &store_user_attr.attr,
5134 &validate_attr.attr,
5135 &alloc_calls_attr.attr,
5136 &free_calls_attr.attr,
5137 #endif
5138 #ifdef CONFIG_ZONE_DMA
5139 &cache_dma_attr.attr,
5140 #endif
5141 #ifdef CONFIG_NUMA
5142 &remote_node_defrag_ratio_attr.attr,
5143 #endif
5144 #ifdef CONFIG_SLUB_STATS
5145 &alloc_fastpath_attr.attr,
5146 &alloc_slowpath_attr.attr,
5147 &free_fastpath_attr.attr,
5148 &free_slowpath_attr.attr,
5149 &free_frozen_attr.attr,
5150 &free_add_partial_attr.attr,
5151 &free_remove_partial_attr.attr,
5152 &alloc_from_partial_attr.attr,
5153 &alloc_slab_attr.attr,
5154 &alloc_refill_attr.attr,
5155 &alloc_node_mismatch_attr.attr,
5156 &free_slab_attr.attr,
5157 &cpuslab_flush_attr.attr,
5158 &deactivate_full_attr.attr,
5159 &deactivate_empty_attr.attr,
5160 &deactivate_to_head_attr.attr,
5161 &deactivate_to_tail_attr.attr,
5162 &deactivate_remote_frees_attr.attr,
5163 &deactivate_bypass_attr.attr,
5164 &order_fallback_attr.attr,
5165 &cmpxchg_double_fail_attr.attr,
5166 &cmpxchg_double_cpu_fail_attr.attr,
5167 &cpu_partial_alloc_attr.attr,
5168 &cpu_partial_free_attr.attr,
5169 &cpu_partial_node_attr.attr,
5170 &cpu_partial_drain_attr.attr,
5171 #endif
5172 #ifdef CONFIG_FAILSLAB
5173 &failslab_attr.attr,
5174 #endif
5175
5176 NULL
5177 };
5178
5179 static struct attribute_group slab_attr_group = {
5180 .attrs = slab_attrs,
5181 };
5182
5183 static ssize_t slab_attr_show(struct kobject *kobj,
5184 struct attribute *attr,
5185 char *buf)
5186 {
5187 struct slab_attribute *attribute;
5188 struct kmem_cache *s;
5189 int err;
5190
5191 attribute = to_slab_attr(attr);
5192 s = to_slab(kobj);
5193
5194 if (!attribute->show)
5195 return -EIO;
5196
5197 err = attribute->show(s, buf);
5198
5199 return err;
5200 }
5201
5202 static ssize_t slab_attr_store(struct kobject *kobj,
5203 struct attribute *attr,
5204 const char *buf, size_t len)
5205 {
5206 struct slab_attribute *attribute;
5207 struct kmem_cache *s;
5208 int err;
5209
5210 attribute = to_slab_attr(attr);
5211 s = to_slab(kobj);
5212
5213 if (!attribute->store)
5214 return -EIO;
5215
5216 err = attribute->store(s, buf, len);
5217
5218 return err;
5219 }
5220
5221 static void kmem_cache_release(struct kobject *kobj)
5222 {
5223 struct kmem_cache *s = to_slab(kobj);
5224
5225 kfree(s->name);
5226 kfree(s);
5227 }
5228
5229 static const struct sysfs_ops slab_sysfs_ops = {
5230 .show = slab_attr_show,
5231 .store = slab_attr_store,
5232 };
5233
5234 static struct kobj_type slab_ktype = {
5235 .sysfs_ops = &slab_sysfs_ops,
5236 .release = kmem_cache_release
5237 };
5238
5239 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5240 {
5241 struct kobj_type *ktype = get_ktype(kobj);
5242
5243 if (ktype == &slab_ktype)
5244 return 1;
5245 return 0;
5246 }
5247
5248 static const struct kset_uevent_ops slab_uevent_ops = {
5249 .filter = uevent_filter,
5250 };
5251
5252 static struct kset *slab_kset;
5253
5254 #define ID_STR_LENGTH 64
5255
5256 /* Create a unique string id for a slab cache:
5257 *
5258 * Format :[flags-]size
5259 */
5260 static char *create_unique_id(struct kmem_cache *s)
5261 {
5262 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5263 char *p = name;
5264
5265 BUG_ON(!name);
5266
5267 *p++ = ':';
5268 /*
5269 * First flags affecting slabcache operations. We will only
5270 * get here for aliasable slabs so we do not need to support
5271 * too many flags. The flags here must cover all flags that
5272 * are matched during merging to guarantee that the id is
5273 * unique.
5274 */
5275 if (s->flags & SLAB_CACHE_DMA)
5276 *p++ = 'd';
5277 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5278 *p++ = 'a';
5279 if (s->flags & SLAB_DEBUG_FREE)
5280 *p++ = 'F';
5281 if (!(s->flags & SLAB_NOTRACK))
5282 *p++ = 't';
5283 if (p != name + 1)
5284 *p++ = '-';
5285 p += sprintf(p, "%07d", s->size);
5286 BUG_ON(p > name + ID_STR_LENGTH - 1);
5287 return name;
5288 }
5289
5290 static int sysfs_slab_add(struct kmem_cache *s)
5291 {
5292 int err;
5293 const char *name;
5294 int unmergeable;
5295
5296 if (slab_state < SYSFS)
5297 /* Defer until later */
5298 return 0;
5299
5300 unmergeable = slab_unmergeable(s);
5301 if (unmergeable) {
5302 /*
5303 * Slabcache can never be merged so we can use the name proper.
5304 * This is typically the case for debug situations. In that
5305 * case we can catch duplicate names easily.
5306 */
5307 sysfs_remove_link(&slab_kset->kobj, s->name);
5308 name = s->name;
5309 } else {
5310 /*
5311 * Create a unique name for the slab as a target
5312 * for the symlinks.
5313 */
5314 name = create_unique_id(s);
5315 }
5316
5317 s->kobj.kset = slab_kset;
5318 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5319 if (err) {
5320 kobject_put(&s->kobj);
5321 return err;
5322 }
5323
5324 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5325 if (err) {
5326 kobject_del(&s->kobj);
5327 kobject_put(&s->kobj);
5328 return err;
5329 }
5330 kobject_uevent(&s->kobj, KOBJ_ADD);
5331 if (!unmergeable) {
5332 /* Setup first alias */
5333 sysfs_slab_alias(s, s->name);
5334 kfree(name);
5335 }
5336 return 0;
5337 }
5338
5339 static void sysfs_slab_remove(struct kmem_cache *s)
5340 {
5341 if (slab_state < SYSFS)
5342 /*
5343 * Sysfs has not been setup yet so no need to remove the
5344 * cache from sysfs.
5345 */
5346 return;
5347
5348 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5349 kobject_del(&s->kobj);
5350 kobject_put(&s->kobj);
5351 }
5352
5353 /*
5354 * Need to buffer aliases during bootup until sysfs becomes
5355 * available lest we lose that information.
5356 */
5357 struct saved_alias {
5358 struct kmem_cache *s;
5359 const char *name;
5360 struct saved_alias *next;
5361 };
5362
5363 static struct saved_alias *alias_list;
5364
5365 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5366 {
5367 struct saved_alias *al;
5368
5369 if (slab_state == SYSFS) {
5370 /*
5371 * If we have a leftover link then remove it.
5372 */
5373 sysfs_remove_link(&slab_kset->kobj, name);
5374 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5375 }
5376
5377 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5378 if (!al)
5379 return -ENOMEM;
5380
5381 al->s = s;
5382 al->name = name;
5383 al->next = alias_list;
5384 alias_list = al;
5385 return 0;
5386 }
5387
5388 static int __init slab_sysfs_init(void)
5389 {
5390 struct kmem_cache *s;
5391 int err;
5392
5393 down_write(&slub_lock);
5394
5395 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5396 if (!slab_kset) {
5397 up_write(&slub_lock);
5398 printk(KERN_ERR "Cannot register slab subsystem.\n");
5399 return -ENOSYS;
5400 }
5401
5402 slab_state = SYSFS;
5403
5404 list_for_each_entry(s, &slab_caches, list) {
5405 err = sysfs_slab_add(s);
5406 if (err)
5407 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5408 " to sysfs\n", s->name);
5409 }
5410
5411 while (alias_list) {
5412 struct saved_alias *al = alias_list;
5413
5414 alias_list = alias_list->next;
5415 err = sysfs_slab_alias(al->s, al->name);
5416 if (err)
5417 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5418 " %s to sysfs\n", s->name);
5419 kfree(al);
5420 }
5421
5422 up_write(&slub_lock);
5423 resiliency_test();
5424 return 0;
5425 }
5426
5427 __initcall(slab_sysfs_init);
5428 #endif /* CONFIG_SYSFS */
5429
5430 /*
5431 * The /proc/slabinfo ABI
5432 */
5433 #ifdef CONFIG_SLABINFO
5434 static void print_slabinfo_header(struct seq_file *m)
5435 {
5436 seq_puts(m, "slabinfo - version: 2.1\n");
5437 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5438 "<objperslab> <pagesperslab>");
5439 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5440 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5441 seq_putc(m, '\n');
5442 }
5443
5444 static void *s_start(struct seq_file *m, loff_t *pos)
5445 {
5446 loff_t n = *pos;
5447
5448 down_read(&slub_lock);
5449 if (!n)
5450 print_slabinfo_header(m);
5451
5452 return seq_list_start(&slab_caches, *pos);
5453 }
5454
5455 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5456 {
5457 return seq_list_next(p, &slab_caches, pos);
5458 }
5459
5460 static void s_stop(struct seq_file *m, void *p)
5461 {
5462 up_read(&slub_lock);
5463 }
5464
5465 static int s_show(struct seq_file *m, void *p)
5466 {
5467 unsigned long nr_partials = 0;
5468 unsigned long nr_slabs = 0;
5469 unsigned long nr_inuse = 0;
5470 unsigned long nr_objs = 0;
5471 unsigned long nr_free = 0;
5472 struct kmem_cache *s;
5473 int node;
5474
5475 s = list_entry(p, struct kmem_cache, list);
5476
5477 for_each_online_node(node) {
5478 struct kmem_cache_node *n = get_node(s, node);
5479
5480 if (!n)
5481 continue;
5482
5483 nr_partials += n->nr_partial;
5484 nr_slabs += atomic_long_read(&n->nr_slabs);
5485 nr_objs += atomic_long_read(&n->total_objects);
5486 nr_free += count_partial(n, count_free);
5487 }
5488
5489 nr_inuse = nr_objs - nr_free;
5490
5491 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5492 nr_objs, s->size, oo_objects(s->oo),
5493 (1 << oo_order(s->oo)));
5494 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5495 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5496 0UL);
5497 seq_putc(m, '\n');
5498 return 0;
5499 }
5500
5501 static const struct seq_operations slabinfo_op = {
5502 .start = s_start,
5503 .next = s_next,
5504 .stop = s_stop,
5505 .show = s_show,
5506 };
5507
5508 static int slabinfo_open(struct inode *inode, struct file *file)
5509 {
5510 return seq_open(file, &slabinfo_op);
5511 }
5512
5513 static const struct file_operations proc_slabinfo_operations = {
5514 .open = slabinfo_open,
5515 .read = seq_read,
5516 .llseek = seq_lseek,
5517 .release = seq_release,
5518 };
5519
5520 static int __init slab_proc_init(void)
5521 {
5522 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5523 return 0;
5524 }
5525 module_init(slab_proc_init);
5526 #endif /* CONFIG_SLABINFO */
This page took 0.185715 seconds and 6 git commands to generate.