SLUB: Pass active and inactive redzone flags instead of boolean to debug functions
[deliverable/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30
31 /*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
107 */
108
109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112 static inline int kmem_cache_debug(struct kmem_cache *s)
113 {
114 #ifdef CONFIG_SLUB_DEBUG
115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116 #else
117 return 0;
118 #endif
119 }
120
121 /*
122 * Issues still to be resolved:
123 *
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
126 * - Variable sizing of the per node arrays
127 */
128
129 /* Enable to test recovery from slab corruption on boot */
130 #undef SLUB_RESILIENCY_TEST
131
132 /*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
136 #define MIN_PARTIAL 5
137
138 /*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143 #define MAX_PARTIAL 10
144
145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
147
148 /*
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
152 */
153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Set of flags that will prevent slab merging
157 */
158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
161
162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 SLAB_CACHE_DMA | SLAB_NOTRACK)
164
165 #define OO_SHIFT 16
166 #define OO_MASK ((1 << OO_SHIFT) - 1)
167 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
169 /* Internal SLUB flags */
170 #define __OBJECT_POISON 0x80000000UL /* Poison object */
171
172 static int kmem_size = sizeof(struct kmem_cache);
173
174 #ifdef CONFIG_SMP
175 static struct notifier_block slab_notifier;
176 #endif
177
178 static enum {
179 DOWN, /* No slab functionality available */
180 PARTIAL, /* Kmem_cache_node works */
181 UP, /* Everything works but does not show up in sysfs */
182 SYSFS /* Sysfs up */
183 } slab_state = DOWN;
184
185 /* A list of all slab caches on the system */
186 static DECLARE_RWSEM(slub_lock);
187 static LIST_HEAD(slab_caches);
188
189 /*
190 * Tracking user of a slab.
191 */
192 struct track {
193 unsigned long addr; /* Called from address */
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SLUB_DEBUG
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
205
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s)
211 {
212 kfree(s->name);
213 kfree(s);
214 }
215
216 #endif
217
218 static inline void stat(struct kmem_cache *s, enum stat_item si)
219 {
220 #ifdef CONFIG_SLUB_STATS
221 __this_cpu_inc(s->cpu_slab->stat[si]);
222 #endif
223 }
224
225 /********************************************************************
226 * Core slab cache functions
227 *******************************************************************/
228
229 int slab_is_available(void)
230 {
231 return slab_state >= UP;
232 }
233
234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235 {
236 return s->node[node];
237 }
238
239 /* Verify that a pointer has an address that is valid within a slab page */
240 static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
242 {
243 void *base;
244
245 if (!object)
246 return 1;
247
248 base = page_address(page);
249 if (object < base || object >= base + page->objects * s->size ||
250 (object - base) % s->size) {
251 return 0;
252 }
253
254 return 1;
255 }
256
257 static inline void *get_freepointer(struct kmem_cache *s, void *object)
258 {
259 return *(void **)(object + s->offset);
260 }
261
262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263 {
264 *(void **)(object + s->offset) = fp;
265 }
266
267 /* Loop over all objects in a slab */
268 #define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
270 __p += (__s)->size)
271
272 /* Scan freelist */
273 #define for_each_free_object(__p, __s, __free) \
274 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
275
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278 {
279 return (p - addr) / s->size;
280 }
281
282 static inline struct kmem_cache_order_objects oo_make(int order,
283 unsigned long size)
284 {
285 struct kmem_cache_order_objects x = {
286 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
287 };
288
289 return x;
290 }
291
292 static inline int oo_order(struct kmem_cache_order_objects x)
293 {
294 return x.x >> OO_SHIFT;
295 }
296
297 static inline int oo_objects(struct kmem_cache_order_objects x)
298 {
299 return x.x & OO_MASK;
300 }
301
302 #ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debug settings:
305 */
306 #ifdef CONFIG_SLUB_DEBUG_ON
307 static int slub_debug = DEBUG_DEFAULT_FLAGS;
308 #else
309 static int slub_debug;
310 #endif
311
312 static char *slub_debug_slabs;
313 static int disable_higher_order_debug;
314
315 /*
316 * Object debugging
317 */
318 static void print_section(char *text, u8 *addr, unsigned int length)
319 {
320 int i, offset;
321 int newline = 1;
322 char ascii[17];
323
324 ascii[16] = 0;
325
326 for (i = 0; i < length; i++) {
327 if (newline) {
328 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
329 newline = 0;
330 }
331 printk(KERN_CONT " %02x", addr[i]);
332 offset = i % 16;
333 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 if (offset == 15) {
335 printk(KERN_CONT " %s\n", ascii);
336 newline = 1;
337 }
338 }
339 if (!newline) {
340 i %= 16;
341 while (i < 16) {
342 printk(KERN_CONT " ");
343 ascii[i] = ' ';
344 i++;
345 }
346 printk(KERN_CONT " %s\n", ascii);
347 }
348 }
349
350 static struct track *get_track(struct kmem_cache *s, void *object,
351 enum track_item alloc)
352 {
353 struct track *p;
354
355 if (s->offset)
356 p = object + s->offset + sizeof(void *);
357 else
358 p = object + s->inuse;
359
360 return p + alloc;
361 }
362
363 static void set_track(struct kmem_cache *s, void *object,
364 enum track_item alloc, unsigned long addr)
365 {
366 struct track *p = get_track(s, object, alloc);
367
368 if (addr) {
369 p->addr = addr;
370 p->cpu = smp_processor_id();
371 p->pid = current->pid;
372 p->when = jiffies;
373 } else
374 memset(p, 0, sizeof(struct track));
375 }
376
377 static void init_tracking(struct kmem_cache *s, void *object)
378 {
379 if (!(s->flags & SLAB_STORE_USER))
380 return;
381
382 set_track(s, object, TRACK_FREE, 0UL);
383 set_track(s, object, TRACK_ALLOC, 0UL);
384 }
385
386 static void print_track(const char *s, struct track *t)
387 {
388 if (!t->addr)
389 return;
390
391 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
392 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
393 }
394
395 static void print_tracking(struct kmem_cache *s, void *object)
396 {
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
399
400 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401 print_track("Freed", get_track(s, object, TRACK_FREE));
402 }
403
404 static void print_page_info(struct page *page)
405 {
406 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407 page, page->objects, page->inuse, page->freelist, page->flags);
408
409 }
410
411 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
412 {
413 va_list args;
414 char buf[100];
415
416 va_start(args, fmt);
417 vsnprintf(buf, sizeof(buf), fmt, args);
418 va_end(args);
419 printk(KERN_ERR "========================================"
420 "=====================================\n");
421 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422 printk(KERN_ERR "----------------------------------------"
423 "-------------------------------------\n\n");
424 }
425
426 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
427 {
428 va_list args;
429 char buf[100];
430
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435 }
436
437 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
438 {
439 unsigned int off; /* Offset of last byte */
440 u8 *addr = page_address(page);
441
442 print_tracking(s, p);
443
444 print_page_info(page);
445
446 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447 p, p - addr, get_freepointer(s, p));
448
449 if (p > addr + 16)
450 print_section("Bytes b4", p - 16, 16);
451
452 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
453
454 if (s->flags & SLAB_RED_ZONE)
455 print_section("Redzone", p + s->objsize,
456 s->inuse - s->objsize);
457
458 if (s->offset)
459 off = s->offset + sizeof(void *);
460 else
461 off = s->inuse;
462
463 if (s->flags & SLAB_STORE_USER)
464 off += 2 * sizeof(struct track);
465
466 if (off != s->size)
467 /* Beginning of the filler is the free pointer */
468 print_section("Padding", p + off, s->size - off);
469
470 dump_stack();
471 }
472
473 static void object_err(struct kmem_cache *s, struct page *page,
474 u8 *object, char *reason)
475 {
476 slab_bug(s, "%s", reason);
477 print_trailer(s, page, object);
478 }
479
480 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
481 {
482 va_list args;
483 char buf[100];
484
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
487 va_end(args);
488 slab_bug(s, "%s", buf);
489 print_page_info(page);
490 dump_stack();
491 }
492
493 static void init_object(struct kmem_cache *s, void *object, u8 val)
494 {
495 u8 *p = object;
496
497 if (s->flags & __OBJECT_POISON) {
498 memset(p, POISON_FREE, s->objsize - 1);
499 p[s->objsize - 1] = POISON_END;
500 }
501
502 if (s->flags & SLAB_RED_ZONE)
503 memset(p + s->objsize, val, s->inuse - s->objsize);
504 }
505
506 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
507 {
508 while (bytes) {
509 if (*start != (u8)value)
510 return start;
511 start++;
512 bytes--;
513 }
514 return NULL;
515 }
516
517 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518 void *from, void *to)
519 {
520 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521 memset(from, data, to - from);
522 }
523
524 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525 u8 *object, char *what,
526 u8 *start, unsigned int value, unsigned int bytes)
527 {
528 u8 *fault;
529 u8 *end;
530
531 fault = check_bytes(start, value, bytes);
532 if (!fault)
533 return 1;
534
535 end = start + bytes;
536 while (end > fault && end[-1] == value)
537 end--;
538
539 slab_bug(s, "%s overwritten", what);
540 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541 fault, end - 1, fault[0], value);
542 print_trailer(s, page, object);
543
544 restore_bytes(s, what, value, fault, end);
545 return 0;
546 }
547
548 /*
549 * Object layout:
550 *
551 * object address
552 * Bytes of the object to be managed.
553 * If the freepointer may overlay the object then the free
554 * pointer is the first word of the object.
555 *
556 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
557 * 0xa5 (POISON_END)
558 *
559 * object + s->objsize
560 * Padding to reach word boundary. This is also used for Redzoning.
561 * Padding is extended by another word if Redzoning is enabled and
562 * objsize == inuse.
563 *
564 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565 * 0xcc (RED_ACTIVE) for objects in use.
566 *
567 * object + s->inuse
568 * Meta data starts here.
569 *
570 * A. Free pointer (if we cannot overwrite object on free)
571 * B. Tracking data for SLAB_STORE_USER
572 * C. Padding to reach required alignment boundary or at mininum
573 * one word if debugging is on to be able to detect writes
574 * before the word boundary.
575 *
576 * Padding is done using 0x5a (POISON_INUSE)
577 *
578 * object + s->size
579 * Nothing is used beyond s->size.
580 *
581 * If slabcaches are merged then the objsize and inuse boundaries are mostly
582 * ignored. And therefore no slab options that rely on these boundaries
583 * may be used with merged slabcaches.
584 */
585
586 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
587 {
588 unsigned long off = s->inuse; /* The end of info */
589
590 if (s->offset)
591 /* Freepointer is placed after the object. */
592 off += sizeof(void *);
593
594 if (s->flags & SLAB_STORE_USER)
595 /* We also have user information there */
596 off += 2 * sizeof(struct track);
597
598 if (s->size == off)
599 return 1;
600
601 return check_bytes_and_report(s, page, p, "Object padding",
602 p + off, POISON_INUSE, s->size - off);
603 }
604
605 /* Check the pad bytes at the end of a slab page */
606 static int slab_pad_check(struct kmem_cache *s, struct page *page)
607 {
608 u8 *start;
609 u8 *fault;
610 u8 *end;
611 int length;
612 int remainder;
613
614 if (!(s->flags & SLAB_POISON))
615 return 1;
616
617 start = page_address(page);
618 length = (PAGE_SIZE << compound_order(page));
619 end = start + length;
620 remainder = length % s->size;
621 if (!remainder)
622 return 1;
623
624 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
625 if (!fault)
626 return 1;
627 while (end > fault && end[-1] == POISON_INUSE)
628 end--;
629
630 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
631 print_section("Padding", end - remainder, remainder);
632
633 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
634 return 0;
635 }
636
637 static int check_object(struct kmem_cache *s, struct page *page,
638 void *object, u8 val)
639 {
640 u8 *p = object;
641 u8 *endobject = object + s->objsize;
642
643 if (s->flags & SLAB_RED_ZONE) {
644 if (!check_bytes_and_report(s, page, object, "Redzone",
645 endobject, val, s->inuse - s->objsize))
646 return 0;
647 } else {
648 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
649 check_bytes_and_report(s, page, p, "Alignment padding",
650 endobject, POISON_INUSE, s->inuse - s->objsize);
651 }
652 }
653
654 if (s->flags & SLAB_POISON) {
655 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
656 (!check_bytes_and_report(s, page, p, "Poison", p,
657 POISON_FREE, s->objsize - 1) ||
658 !check_bytes_and_report(s, page, p, "Poison",
659 p + s->objsize - 1, POISON_END, 1)))
660 return 0;
661 /*
662 * check_pad_bytes cleans up on its own.
663 */
664 check_pad_bytes(s, page, p);
665 }
666
667 if (!s->offset && val == SLUB_RED_ACTIVE)
668 /*
669 * Object and freepointer overlap. Cannot check
670 * freepointer while object is allocated.
671 */
672 return 1;
673
674 /* Check free pointer validity */
675 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
676 object_err(s, page, p, "Freepointer corrupt");
677 /*
678 * No choice but to zap it and thus lose the remainder
679 * of the free objects in this slab. May cause
680 * another error because the object count is now wrong.
681 */
682 set_freepointer(s, p, NULL);
683 return 0;
684 }
685 return 1;
686 }
687
688 static int check_slab(struct kmem_cache *s, struct page *page)
689 {
690 int maxobj;
691
692 VM_BUG_ON(!irqs_disabled());
693
694 if (!PageSlab(page)) {
695 slab_err(s, page, "Not a valid slab page");
696 return 0;
697 }
698
699 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
700 if (page->objects > maxobj) {
701 slab_err(s, page, "objects %u > max %u",
702 s->name, page->objects, maxobj);
703 return 0;
704 }
705 if (page->inuse > page->objects) {
706 slab_err(s, page, "inuse %u > max %u",
707 s->name, page->inuse, page->objects);
708 return 0;
709 }
710 /* Slab_pad_check fixes things up after itself */
711 slab_pad_check(s, page);
712 return 1;
713 }
714
715 /*
716 * Determine if a certain object on a page is on the freelist. Must hold the
717 * slab lock to guarantee that the chains are in a consistent state.
718 */
719 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
720 {
721 int nr = 0;
722 void *fp = page->freelist;
723 void *object = NULL;
724 unsigned long max_objects;
725
726 while (fp && nr <= page->objects) {
727 if (fp == search)
728 return 1;
729 if (!check_valid_pointer(s, page, fp)) {
730 if (object) {
731 object_err(s, page, object,
732 "Freechain corrupt");
733 set_freepointer(s, object, NULL);
734 break;
735 } else {
736 slab_err(s, page, "Freepointer corrupt");
737 page->freelist = NULL;
738 page->inuse = page->objects;
739 slab_fix(s, "Freelist cleared");
740 return 0;
741 }
742 break;
743 }
744 object = fp;
745 fp = get_freepointer(s, object);
746 nr++;
747 }
748
749 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
750 if (max_objects > MAX_OBJS_PER_PAGE)
751 max_objects = MAX_OBJS_PER_PAGE;
752
753 if (page->objects != max_objects) {
754 slab_err(s, page, "Wrong number of objects. Found %d but "
755 "should be %d", page->objects, max_objects);
756 page->objects = max_objects;
757 slab_fix(s, "Number of objects adjusted.");
758 }
759 if (page->inuse != page->objects - nr) {
760 slab_err(s, page, "Wrong object count. Counter is %d but "
761 "counted were %d", page->inuse, page->objects - nr);
762 page->inuse = page->objects - nr;
763 slab_fix(s, "Object count adjusted.");
764 }
765 return search == NULL;
766 }
767
768 static void trace(struct kmem_cache *s, struct page *page, void *object,
769 int alloc)
770 {
771 if (s->flags & SLAB_TRACE) {
772 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
773 s->name,
774 alloc ? "alloc" : "free",
775 object, page->inuse,
776 page->freelist);
777
778 if (!alloc)
779 print_section("Object", (void *)object, s->objsize);
780
781 dump_stack();
782 }
783 }
784
785 /*
786 * Hooks for other subsystems that check memory allocations. In a typical
787 * production configuration these hooks all should produce no code at all.
788 */
789 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
790 {
791 flags &= gfp_allowed_mask;
792 lockdep_trace_alloc(flags);
793 might_sleep_if(flags & __GFP_WAIT);
794
795 return should_failslab(s->objsize, flags, s->flags);
796 }
797
798 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
799 {
800 flags &= gfp_allowed_mask;
801 kmemcheck_slab_alloc(s, flags, object, s->objsize);
802 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
803 }
804
805 static inline void slab_free_hook(struct kmem_cache *s, void *x)
806 {
807 kmemleak_free_recursive(x, s->flags);
808 }
809
810 static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
811 {
812 kmemcheck_slab_free(s, object, s->objsize);
813 debug_check_no_locks_freed(object, s->objsize);
814 if (!(s->flags & SLAB_DEBUG_OBJECTS))
815 debug_check_no_obj_freed(object, s->objsize);
816 }
817
818 /*
819 * Tracking of fully allocated slabs for debugging purposes.
820 */
821 static void add_full(struct kmem_cache_node *n, struct page *page)
822 {
823 spin_lock(&n->list_lock);
824 list_add(&page->lru, &n->full);
825 spin_unlock(&n->list_lock);
826 }
827
828 static void remove_full(struct kmem_cache *s, struct page *page)
829 {
830 struct kmem_cache_node *n;
831
832 if (!(s->flags & SLAB_STORE_USER))
833 return;
834
835 n = get_node(s, page_to_nid(page));
836
837 spin_lock(&n->list_lock);
838 list_del(&page->lru);
839 spin_unlock(&n->list_lock);
840 }
841
842 /* Tracking of the number of slabs for debugging purposes */
843 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
844 {
845 struct kmem_cache_node *n = get_node(s, node);
846
847 return atomic_long_read(&n->nr_slabs);
848 }
849
850 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
851 {
852 return atomic_long_read(&n->nr_slabs);
853 }
854
855 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
856 {
857 struct kmem_cache_node *n = get_node(s, node);
858
859 /*
860 * May be called early in order to allocate a slab for the
861 * kmem_cache_node structure. Solve the chicken-egg
862 * dilemma by deferring the increment of the count during
863 * bootstrap (see early_kmem_cache_node_alloc).
864 */
865 if (n) {
866 atomic_long_inc(&n->nr_slabs);
867 atomic_long_add(objects, &n->total_objects);
868 }
869 }
870 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
871 {
872 struct kmem_cache_node *n = get_node(s, node);
873
874 atomic_long_dec(&n->nr_slabs);
875 atomic_long_sub(objects, &n->total_objects);
876 }
877
878 /* Object debug checks for alloc/free paths */
879 static void setup_object_debug(struct kmem_cache *s, struct page *page,
880 void *object)
881 {
882 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
883 return;
884
885 init_object(s, object, SLUB_RED_INACTIVE);
886 init_tracking(s, object);
887 }
888
889 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
890 void *object, unsigned long addr)
891 {
892 if (!check_slab(s, page))
893 goto bad;
894
895 if (!on_freelist(s, page, object)) {
896 object_err(s, page, object, "Object already allocated");
897 goto bad;
898 }
899
900 if (!check_valid_pointer(s, page, object)) {
901 object_err(s, page, object, "Freelist Pointer check fails");
902 goto bad;
903 }
904
905 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
906 goto bad;
907
908 /* Success perform special debug activities for allocs */
909 if (s->flags & SLAB_STORE_USER)
910 set_track(s, object, TRACK_ALLOC, addr);
911 trace(s, page, object, 1);
912 init_object(s, object, SLUB_RED_ACTIVE);
913 return 1;
914
915 bad:
916 if (PageSlab(page)) {
917 /*
918 * If this is a slab page then lets do the best we can
919 * to avoid issues in the future. Marking all objects
920 * as used avoids touching the remaining objects.
921 */
922 slab_fix(s, "Marking all objects used");
923 page->inuse = page->objects;
924 page->freelist = NULL;
925 }
926 return 0;
927 }
928
929 static noinline int free_debug_processing(struct kmem_cache *s,
930 struct page *page, void *object, unsigned long addr)
931 {
932 if (!check_slab(s, page))
933 goto fail;
934
935 if (!check_valid_pointer(s, page, object)) {
936 slab_err(s, page, "Invalid object pointer 0x%p", object);
937 goto fail;
938 }
939
940 if (on_freelist(s, page, object)) {
941 object_err(s, page, object, "Object already free");
942 goto fail;
943 }
944
945 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
946 return 0;
947
948 if (unlikely(s != page->slab)) {
949 if (!PageSlab(page)) {
950 slab_err(s, page, "Attempt to free object(0x%p) "
951 "outside of slab", object);
952 } else if (!page->slab) {
953 printk(KERN_ERR
954 "SLUB <none>: no slab for object 0x%p.\n",
955 object);
956 dump_stack();
957 } else
958 object_err(s, page, object,
959 "page slab pointer corrupt.");
960 goto fail;
961 }
962
963 /* Special debug activities for freeing objects */
964 if (!PageSlubFrozen(page) && !page->freelist)
965 remove_full(s, page);
966 if (s->flags & SLAB_STORE_USER)
967 set_track(s, object, TRACK_FREE, addr);
968 trace(s, page, object, 0);
969 init_object(s, object, SLUB_RED_INACTIVE);
970 return 1;
971
972 fail:
973 slab_fix(s, "Object at 0x%p not freed", object);
974 return 0;
975 }
976
977 static int __init setup_slub_debug(char *str)
978 {
979 slub_debug = DEBUG_DEFAULT_FLAGS;
980 if (*str++ != '=' || !*str)
981 /*
982 * No options specified. Switch on full debugging.
983 */
984 goto out;
985
986 if (*str == ',')
987 /*
988 * No options but restriction on slabs. This means full
989 * debugging for slabs matching a pattern.
990 */
991 goto check_slabs;
992
993 if (tolower(*str) == 'o') {
994 /*
995 * Avoid enabling debugging on caches if its minimum order
996 * would increase as a result.
997 */
998 disable_higher_order_debug = 1;
999 goto out;
1000 }
1001
1002 slub_debug = 0;
1003 if (*str == '-')
1004 /*
1005 * Switch off all debugging measures.
1006 */
1007 goto out;
1008
1009 /*
1010 * Determine which debug features should be switched on
1011 */
1012 for (; *str && *str != ','; str++) {
1013 switch (tolower(*str)) {
1014 case 'f':
1015 slub_debug |= SLAB_DEBUG_FREE;
1016 break;
1017 case 'z':
1018 slub_debug |= SLAB_RED_ZONE;
1019 break;
1020 case 'p':
1021 slub_debug |= SLAB_POISON;
1022 break;
1023 case 'u':
1024 slub_debug |= SLAB_STORE_USER;
1025 break;
1026 case 't':
1027 slub_debug |= SLAB_TRACE;
1028 break;
1029 case 'a':
1030 slub_debug |= SLAB_FAILSLAB;
1031 break;
1032 default:
1033 printk(KERN_ERR "slub_debug option '%c' "
1034 "unknown. skipped\n", *str);
1035 }
1036 }
1037
1038 check_slabs:
1039 if (*str == ',')
1040 slub_debug_slabs = str + 1;
1041 out:
1042 return 1;
1043 }
1044
1045 __setup("slub_debug", setup_slub_debug);
1046
1047 static unsigned long kmem_cache_flags(unsigned long objsize,
1048 unsigned long flags, const char *name,
1049 void (*ctor)(void *))
1050 {
1051 /*
1052 * Enable debugging if selected on the kernel commandline.
1053 */
1054 if (slub_debug && (!slub_debug_slabs ||
1055 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1056 flags |= slub_debug;
1057
1058 return flags;
1059 }
1060 #else
1061 static inline void setup_object_debug(struct kmem_cache *s,
1062 struct page *page, void *object) {}
1063
1064 static inline int alloc_debug_processing(struct kmem_cache *s,
1065 struct page *page, void *object, unsigned long addr) { return 0; }
1066
1067 static inline int free_debug_processing(struct kmem_cache *s,
1068 struct page *page, void *object, unsigned long addr) { return 0; }
1069
1070 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1071 { return 1; }
1072 static inline int check_object(struct kmem_cache *s, struct page *page,
1073 void *object, u8 val) { return 1; }
1074 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1075 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1076 unsigned long flags, const char *name,
1077 void (*ctor)(void *))
1078 {
1079 return flags;
1080 }
1081 #define slub_debug 0
1082
1083 #define disable_higher_order_debug 0
1084
1085 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1086 { return 0; }
1087 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088 { return 0; }
1089 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1090 int objects) {}
1091 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1092 int objects) {}
1093
1094 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1095 { return 0; }
1096
1097 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1098 void *object) {}
1099
1100 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1101
1102 static inline void slab_free_hook_irq(struct kmem_cache *s,
1103 void *object) {}
1104
1105 #endif
1106
1107 /*
1108 * Slab allocation and freeing
1109 */
1110 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1111 struct kmem_cache_order_objects oo)
1112 {
1113 int order = oo_order(oo);
1114
1115 flags |= __GFP_NOTRACK;
1116
1117 if (node == NUMA_NO_NODE)
1118 return alloc_pages(flags, order);
1119 else
1120 return alloc_pages_exact_node(node, flags, order);
1121 }
1122
1123 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1124 {
1125 struct page *page;
1126 struct kmem_cache_order_objects oo = s->oo;
1127 gfp_t alloc_gfp;
1128
1129 flags |= s->allocflags;
1130
1131 /*
1132 * Let the initial higher-order allocation fail under memory pressure
1133 * so we fall-back to the minimum order allocation.
1134 */
1135 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1136
1137 page = alloc_slab_page(alloc_gfp, node, oo);
1138 if (unlikely(!page)) {
1139 oo = s->min;
1140 /*
1141 * Allocation may have failed due to fragmentation.
1142 * Try a lower order alloc if possible
1143 */
1144 page = alloc_slab_page(flags, node, oo);
1145 if (!page)
1146 return NULL;
1147
1148 stat(s, ORDER_FALLBACK);
1149 }
1150
1151 if (kmemcheck_enabled
1152 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1153 int pages = 1 << oo_order(oo);
1154
1155 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1156
1157 /*
1158 * Objects from caches that have a constructor don't get
1159 * cleared when they're allocated, so we need to do it here.
1160 */
1161 if (s->ctor)
1162 kmemcheck_mark_uninitialized_pages(page, pages);
1163 else
1164 kmemcheck_mark_unallocated_pages(page, pages);
1165 }
1166
1167 page->objects = oo_objects(oo);
1168 mod_zone_page_state(page_zone(page),
1169 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1171 1 << oo_order(oo));
1172
1173 return page;
1174 }
1175
1176 static void setup_object(struct kmem_cache *s, struct page *page,
1177 void *object)
1178 {
1179 setup_object_debug(s, page, object);
1180 if (unlikely(s->ctor))
1181 s->ctor(object);
1182 }
1183
1184 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1185 {
1186 struct page *page;
1187 void *start;
1188 void *last;
1189 void *p;
1190
1191 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1192
1193 page = allocate_slab(s,
1194 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1195 if (!page)
1196 goto out;
1197
1198 inc_slabs_node(s, page_to_nid(page), page->objects);
1199 page->slab = s;
1200 page->flags |= 1 << PG_slab;
1201
1202 start = page_address(page);
1203
1204 if (unlikely(s->flags & SLAB_POISON))
1205 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1206
1207 last = start;
1208 for_each_object(p, s, start, page->objects) {
1209 setup_object(s, page, last);
1210 set_freepointer(s, last, p);
1211 last = p;
1212 }
1213 setup_object(s, page, last);
1214 set_freepointer(s, last, NULL);
1215
1216 page->freelist = start;
1217 page->inuse = 0;
1218 out:
1219 return page;
1220 }
1221
1222 static void __free_slab(struct kmem_cache *s, struct page *page)
1223 {
1224 int order = compound_order(page);
1225 int pages = 1 << order;
1226
1227 if (kmem_cache_debug(s)) {
1228 void *p;
1229
1230 slab_pad_check(s, page);
1231 for_each_object(p, s, page_address(page),
1232 page->objects)
1233 check_object(s, page, p, SLUB_RED_INACTIVE);
1234 }
1235
1236 kmemcheck_free_shadow(page, compound_order(page));
1237
1238 mod_zone_page_state(page_zone(page),
1239 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1240 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1241 -pages);
1242
1243 __ClearPageSlab(page);
1244 reset_page_mapcount(page);
1245 if (current->reclaim_state)
1246 current->reclaim_state->reclaimed_slab += pages;
1247 __free_pages(page, order);
1248 }
1249
1250 static void rcu_free_slab(struct rcu_head *h)
1251 {
1252 struct page *page;
1253
1254 page = container_of((struct list_head *)h, struct page, lru);
1255 __free_slab(page->slab, page);
1256 }
1257
1258 static void free_slab(struct kmem_cache *s, struct page *page)
1259 {
1260 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1261 /*
1262 * RCU free overloads the RCU head over the LRU
1263 */
1264 struct rcu_head *head = (void *)&page->lru;
1265
1266 call_rcu(head, rcu_free_slab);
1267 } else
1268 __free_slab(s, page);
1269 }
1270
1271 static void discard_slab(struct kmem_cache *s, struct page *page)
1272 {
1273 dec_slabs_node(s, page_to_nid(page), page->objects);
1274 free_slab(s, page);
1275 }
1276
1277 /*
1278 * Per slab locking using the pagelock
1279 */
1280 static __always_inline void slab_lock(struct page *page)
1281 {
1282 bit_spin_lock(PG_locked, &page->flags);
1283 }
1284
1285 static __always_inline void slab_unlock(struct page *page)
1286 {
1287 __bit_spin_unlock(PG_locked, &page->flags);
1288 }
1289
1290 static __always_inline int slab_trylock(struct page *page)
1291 {
1292 int rc = 1;
1293
1294 rc = bit_spin_trylock(PG_locked, &page->flags);
1295 return rc;
1296 }
1297
1298 /*
1299 * Management of partially allocated slabs
1300 */
1301 static void add_partial(struct kmem_cache_node *n,
1302 struct page *page, int tail)
1303 {
1304 spin_lock(&n->list_lock);
1305 n->nr_partial++;
1306 if (tail)
1307 list_add_tail(&page->lru, &n->partial);
1308 else
1309 list_add(&page->lru, &n->partial);
1310 spin_unlock(&n->list_lock);
1311 }
1312
1313 static void remove_partial(struct kmem_cache *s, struct page *page)
1314 {
1315 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1316
1317 spin_lock(&n->list_lock);
1318 list_del(&page->lru);
1319 n->nr_partial--;
1320 spin_unlock(&n->list_lock);
1321 }
1322
1323 /*
1324 * Lock slab and remove from the partial list.
1325 *
1326 * Must hold list_lock.
1327 */
1328 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1329 struct page *page)
1330 {
1331 if (slab_trylock(page)) {
1332 list_del(&page->lru);
1333 n->nr_partial--;
1334 __SetPageSlubFrozen(page);
1335 return 1;
1336 }
1337 return 0;
1338 }
1339
1340 /*
1341 * Try to allocate a partial slab from a specific node.
1342 */
1343 static struct page *get_partial_node(struct kmem_cache_node *n)
1344 {
1345 struct page *page;
1346
1347 /*
1348 * Racy check. If we mistakenly see no partial slabs then we
1349 * just allocate an empty slab. If we mistakenly try to get a
1350 * partial slab and there is none available then get_partials()
1351 * will return NULL.
1352 */
1353 if (!n || !n->nr_partial)
1354 return NULL;
1355
1356 spin_lock(&n->list_lock);
1357 list_for_each_entry(page, &n->partial, lru)
1358 if (lock_and_freeze_slab(n, page))
1359 goto out;
1360 page = NULL;
1361 out:
1362 spin_unlock(&n->list_lock);
1363 return page;
1364 }
1365
1366 /*
1367 * Get a page from somewhere. Search in increasing NUMA distances.
1368 */
1369 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1370 {
1371 #ifdef CONFIG_NUMA
1372 struct zonelist *zonelist;
1373 struct zoneref *z;
1374 struct zone *zone;
1375 enum zone_type high_zoneidx = gfp_zone(flags);
1376 struct page *page;
1377
1378 /*
1379 * The defrag ratio allows a configuration of the tradeoffs between
1380 * inter node defragmentation and node local allocations. A lower
1381 * defrag_ratio increases the tendency to do local allocations
1382 * instead of attempting to obtain partial slabs from other nodes.
1383 *
1384 * If the defrag_ratio is set to 0 then kmalloc() always
1385 * returns node local objects. If the ratio is higher then kmalloc()
1386 * may return off node objects because partial slabs are obtained
1387 * from other nodes and filled up.
1388 *
1389 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1390 * defrag_ratio = 1000) then every (well almost) allocation will
1391 * first attempt to defrag slab caches on other nodes. This means
1392 * scanning over all nodes to look for partial slabs which may be
1393 * expensive if we do it every time we are trying to find a slab
1394 * with available objects.
1395 */
1396 if (!s->remote_node_defrag_ratio ||
1397 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1398 return NULL;
1399
1400 get_mems_allowed();
1401 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1402 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1403 struct kmem_cache_node *n;
1404
1405 n = get_node(s, zone_to_nid(zone));
1406
1407 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1408 n->nr_partial > s->min_partial) {
1409 page = get_partial_node(n);
1410 if (page) {
1411 put_mems_allowed();
1412 return page;
1413 }
1414 }
1415 }
1416 put_mems_allowed();
1417 #endif
1418 return NULL;
1419 }
1420
1421 /*
1422 * Get a partial page, lock it and return it.
1423 */
1424 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1425 {
1426 struct page *page;
1427 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1428
1429 page = get_partial_node(get_node(s, searchnode));
1430 if (page || node != -1)
1431 return page;
1432
1433 return get_any_partial(s, flags);
1434 }
1435
1436 /*
1437 * Move a page back to the lists.
1438 *
1439 * Must be called with the slab lock held.
1440 *
1441 * On exit the slab lock will have been dropped.
1442 */
1443 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1444 {
1445 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1446
1447 __ClearPageSlubFrozen(page);
1448 if (page->inuse) {
1449
1450 if (page->freelist) {
1451 add_partial(n, page, tail);
1452 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1453 } else {
1454 stat(s, DEACTIVATE_FULL);
1455 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1456 add_full(n, page);
1457 }
1458 slab_unlock(page);
1459 } else {
1460 stat(s, DEACTIVATE_EMPTY);
1461 if (n->nr_partial < s->min_partial) {
1462 /*
1463 * Adding an empty slab to the partial slabs in order
1464 * to avoid page allocator overhead. This slab needs
1465 * to come after the other slabs with objects in
1466 * so that the others get filled first. That way the
1467 * size of the partial list stays small.
1468 *
1469 * kmem_cache_shrink can reclaim any empty slabs from
1470 * the partial list.
1471 */
1472 add_partial(n, page, 1);
1473 slab_unlock(page);
1474 } else {
1475 slab_unlock(page);
1476 stat(s, FREE_SLAB);
1477 discard_slab(s, page);
1478 }
1479 }
1480 }
1481
1482 /*
1483 * Remove the cpu slab
1484 */
1485 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1486 {
1487 struct page *page = c->page;
1488 int tail = 1;
1489
1490 if (page->freelist)
1491 stat(s, DEACTIVATE_REMOTE_FREES);
1492 /*
1493 * Merge cpu freelist into slab freelist. Typically we get here
1494 * because both freelists are empty. So this is unlikely
1495 * to occur.
1496 */
1497 while (unlikely(c->freelist)) {
1498 void **object;
1499
1500 tail = 0; /* Hot objects. Put the slab first */
1501
1502 /* Retrieve object from cpu_freelist */
1503 object = c->freelist;
1504 c->freelist = get_freepointer(s, c->freelist);
1505
1506 /* And put onto the regular freelist */
1507 set_freepointer(s, object, page->freelist);
1508 page->freelist = object;
1509 page->inuse--;
1510 }
1511 c->page = NULL;
1512 unfreeze_slab(s, page, tail);
1513 }
1514
1515 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1516 {
1517 stat(s, CPUSLAB_FLUSH);
1518 slab_lock(c->page);
1519 deactivate_slab(s, c);
1520 }
1521
1522 /*
1523 * Flush cpu slab.
1524 *
1525 * Called from IPI handler with interrupts disabled.
1526 */
1527 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1528 {
1529 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1530
1531 if (likely(c && c->page))
1532 flush_slab(s, c);
1533 }
1534
1535 static void flush_cpu_slab(void *d)
1536 {
1537 struct kmem_cache *s = d;
1538
1539 __flush_cpu_slab(s, smp_processor_id());
1540 }
1541
1542 static void flush_all(struct kmem_cache *s)
1543 {
1544 on_each_cpu(flush_cpu_slab, s, 1);
1545 }
1546
1547 /*
1548 * Check if the objects in a per cpu structure fit numa
1549 * locality expectations.
1550 */
1551 static inline int node_match(struct kmem_cache_cpu *c, int node)
1552 {
1553 #ifdef CONFIG_NUMA
1554 if (node != NUMA_NO_NODE && c->node != node)
1555 return 0;
1556 #endif
1557 return 1;
1558 }
1559
1560 static int count_free(struct page *page)
1561 {
1562 return page->objects - page->inuse;
1563 }
1564
1565 static unsigned long count_partial(struct kmem_cache_node *n,
1566 int (*get_count)(struct page *))
1567 {
1568 unsigned long flags;
1569 unsigned long x = 0;
1570 struct page *page;
1571
1572 spin_lock_irqsave(&n->list_lock, flags);
1573 list_for_each_entry(page, &n->partial, lru)
1574 x += get_count(page);
1575 spin_unlock_irqrestore(&n->list_lock, flags);
1576 return x;
1577 }
1578
1579 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1580 {
1581 #ifdef CONFIG_SLUB_DEBUG
1582 return atomic_long_read(&n->total_objects);
1583 #else
1584 return 0;
1585 #endif
1586 }
1587
1588 static noinline void
1589 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1590 {
1591 int node;
1592
1593 printk(KERN_WARNING
1594 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1595 nid, gfpflags);
1596 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1597 "default order: %d, min order: %d\n", s->name, s->objsize,
1598 s->size, oo_order(s->oo), oo_order(s->min));
1599
1600 if (oo_order(s->min) > get_order(s->objsize))
1601 printk(KERN_WARNING " %s debugging increased min order, use "
1602 "slub_debug=O to disable.\n", s->name);
1603
1604 for_each_online_node(node) {
1605 struct kmem_cache_node *n = get_node(s, node);
1606 unsigned long nr_slabs;
1607 unsigned long nr_objs;
1608 unsigned long nr_free;
1609
1610 if (!n)
1611 continue;
1612
1613 nr_free = count_partial(n, count_free);
1614 nr_slabs = node_nr_slabs(n);
1615 nr_objs = node_nr_objs(n);
1616
1617 printk(KERN_WARNING
1618 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1619 node, nr_slabs, nr_objs, nr_free);
1620 }
1621 }
1622
1623 /*
1624 * Slow path. The lockless freelist is empty or we need to perform
1625 * debugging duties.
1626 *
1627 * Interrupts are disabled.
1628 *
1629 * Processing is still very fast if new objects have been freed to the
1630 * regular freelist. In that case we simply take over the regular freelist
1631 * as the lockless freelist and zap the regular freelist.
1632 *
1633 * If that is not working then we fall back to the partial lists. We take the
1634 * first element of the freelist as the object to allocate now and move the
1635 * rest of the freelist to the lockless freelist.
1636 *
1637 * And if we were unable to get a new slab from the partial slab lists then
1638 * we need to allocate a new slab. This is the slowest path since it involves
1639 * a call to the page allocator and the setup of a new slab.
1640 */
1641 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1642 unsigned long addr, struct kmem_cache_cpu *c)
1643 {
1644 void **object;
1645 struct page *new;
1646
1647 /* We handle __GFP_ZERO in the caller */
1648 gfpflags &= ~__GFP_ZERO;
1649
1650 if (!c->page)
1651 goto new_slab;
1652
1653 slab_lock(c->page);
1654 if (unlikely(!node_match(c, node)))
1655 goto another_slab;
1656
1657 stat(s, ALLOC_REFILL);
1658
1659 load_freelist:
1660 object = c->page->freelist;
1661 if (unlikely(!object))
1662 goto another_slab;
1663 if (kmem_cache_debug(s))
1664 goto debug;
1665
1666 c->freelist = get_freepointer(s, object);
1667 c->page->inuse = c->page->objects;
1668 c->page->freelist = NULL;
1669 c->node = page_to_nid(c->page);
1670 unlock_out:
1671 slab_unlock(c->page);
1672 stat(s, ALLOC_SLOWPATH);
1673 return object;
1674
1675 another_slab:
1676 deactivate_slab(s, c);
1677
1678 new_slab:
1679 new = get_partial(s, gfpflags, node);
1680 if (new) {
1681 c->page = new;
1682 stat(s, ALLOC_FROM_PARTIAL);
1683 goto load_freelist;
1684 }
1685
1686 gfpflags &= gfp_allowed_mask;
1687 if (gfpflags & __GFP_WAIT)
1688 local_irq_enable();
1689
1690 new = new_slab(s, gfpflags, node);
1691
1692 if (gfpflags & __GFP_WAIT)
1693 local_irq_disable();
1694
1695 if (new) {
1696 c = __this_cpu_ptr(s->cpu_slab);
1697 stat(s, ALLOC_SLAB);
1698 if (c->page)
1699 flush_slab(s, c);
1700 slab_lock(new);
1701 __SetPageSlubFrozen(new);
1702 c->page = new;
1703 goto load_freelist;
1704 }
1705 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1706 slab_out_of_memory(s, gfpflags, node);
1707 return NULL;
1708 debug:
1709 if (!alloc_debug_processing(s, c->page, object, addr))
1710 goto another_slab;
1711
1712 c->page->inuse++;
1713 c->page->freelist = get_freepointer(s, object);
1714 c->node = -1;
1715 goto unlock_out;
1716 }
1717
1718 /*
1719 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1720 * have the fastpath folded into their functions. So no function call
1721 * overhead for requests that can be satisfied on the fastpath.
1722 *
1723 * The fastpath works by first checking if the lockless freelist can be used.
1724 * If not then __slab_alloc is called for slow processing.
1725 *
1726 * Otherwise we can simply pick the next object from the lockless free list.
1727 */
1728 static __always_inline void *slab_alloc(struct kmem_cache *s,
1729 gfp_t gfpflags, int node, unsigned long addr)
1730 {
1731 void **object;
1732 struct kmem_cache_cpu *c;
1733 unsigned long flags;
1734
1735 if (slab_pre_alloc_hook(s, gfpflags))
1736 return NULL;
1737
1738 local_irq_save(flags);
1739 c = __this_cpu_ptr(s->cpu_slab);
1740 object = c->freelist;
1741 if (unlikely(!object || !node_match(c, node)))
1742
1743 object = __slab_alloc(s, gfpflags, node, addr, c);
1744
1745 else {
1746 c->freelist = get_freepointer(s, object);
1747 stat(s, ALLOC_FASTPATH);
1748 }
1749 local_irq_restore(flags);
1750
1751 if (unlikely(gfpflags & __GFP_ZERO) && object)
1752 memset(object, 0, s->objsize);
1753
1754 slab_post_alloc_hook(s, gfpflags, object);
1755
1756 return object;
1757 }
1758
1759 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1760 {
1761 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1762
1763 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1764
1765 return ret;
1766 }
1767 EXPORT_SYMBOL(kmem_cache_alloc);
1768
1769 #ifdef CONFIG_TRACING
1770 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1771 {
1772 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1773 }
1774 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1775 #endif
1776
1777 #ifdef CONFIG_NUMA
1778 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1779 {
1780 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1781
1782 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1783 s->objsize, s->size, gfpflags, node);
1784
1785 return ret;
1786 }
1787 EXPORT_SYMBOL(kmem_cache_alloc_node);
1788 #endif
1789
1790 #ifdef CONFIG_TRACING
1791 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1792 gfp_t gfpflags,
1793 int node)
1794 {
1795 return slab_alloc(s, gfpflags, node, _RET_IP_);
1796 }
1797 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1798 #endif
1799
1800 /*
1801 * Slow patch handling. This may still be called frequently since objects
1802 * have a longer lifetime than the cpu slabs in most processing loads.
1803 *
1804 * So we still attempt to reduce cache line usage. Just take the slab
1805 * lock and free the item. If there is no additional partial page
1806 * handling required then we can return immediately.
1807 */
1808 static void __slab_free(struct kmem_cache *s, struct page *page,
1809 void *x, unsigned long addr)
1810 {
1811 void *prior;
1812 void **object = (void *)x;
1813
1814 stat(s, FREE_SLOWPATH);
1815 slab_lock(page);
1816
1817 if (kmem_cache_debug(s))
1818 goto debug;
1819
1820 checks_ok:
1821 prior = page->freelist;
1822 set_freepointer(s, object, prior);
1823 page->freelist = object;
1824 page->inuse--;
1825
1826 if (unlikely(PageSlubFrozen(page))) {
1827 stat(s, FREE_FROZEN);
1828 goto out_unlock;
1829 }
1830
1831 if (unlikely(!page->inuse))
1832 goto slab_empty;
1833
1834 /*
1835 * Objects left in the slab. If it was not on the partial list before
1836 * then add it.
1837 */
1838 if (unlikely(!prior)) {
1839 add_partial(get_node(s, page_to_nid(page)), page, 1);
1840 stat(s, FREE_ADD_PARTIAL);
1841 }
1842
1843 out_unlock:
1844 slab_unlock(page);
1845 return;
1846
1847 slab_empty:
1848 if (prior) {
1849 /*
1850 * Slab still on the partial list.
1851 */
1852 remove_partial(s, page);
1853 stat(s, FREE_REMOVE_PARTIAL);
1854 }
1855 slab_unlock(page);
1856 stat(s, FREE_SLAB);
1857 discard_slab(s, page);
1858 return;
1859
1860 debug:
1861 if (!free_debug_processing(s, page, x, addr))
1862 goto out_unlock;
1863 goto checks_ok;
1864 }
1865
1866 /*
1867 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1868 * can perform fastpath freeing without additional function calls.
1869 *
1870 * The fastpath is only possible if we are freeing to the current cpu slab
1871 * of this processor. This typically the case if we have just allocated
1872 * the item before.
1873 *
1874 * If fastpath is not possible then fall back to __slab_free where we deal
1875 * with all sorts of special processing.
1876 */
1877 static __always_inline void slab_free(struct kmem_cache *s,
1878 struct page *page, void *x, unsigned long addr)
1879 {
1880 void **object = (void *)x;
1881 struct kmem_cache_cpu *c;
1882 unsigned long flags;
1883
1884 slab_free_hook(s, x);
1885
1886 local_irq_save(flags);
1887 c = __this_cpu_ptr(s->cpu_slab);
1888
1889 slab_free_hook_irq(s, x);
1890
1891 if (likely(page == c->page && c->node >= 0)) {
1892 set_freepointer(s, object, c->freelist);
1893 c->freelist = object;
1894 stat(s, FREE_FASTPATH);
1895 } else
1896 __slab_free(s, page, x, addr);
1897
1898 local_irq_restore(flags);
1899 }
1900
1901 void kmem_cache_free(struct kmem_cache *s, void *x)
1902 {
1903 struct page *page;
1904
1905 page = virt_to_head_page(x);
1906
1907 slab_free(s, page, x, _RET_IP_);
1908
1909 trace_kmem_cache_free(_RET_IP_, x);
1910 }
1911 EXPORT_SYMBOL(kmem_cache_free);
1912
1913 /* Figure out on which slab page the object resides */
1914 static struct page *get_object_page(const void *x)
1915 {
1916 struct page *page = virt_to_head_page(x);
1917
1918 if (!PageSlab(page))
1919 return NULL;
1920
1921 return page;
1922 }
1923
1924 /*
1925 * Object placement in a slab is made very easy because we always start at
1926 * offset 0. If we tune the size of the object to the alignment then we can
1927 * get the required alignment by putting one properly sized object after
1928 * another.
1929 *
1930 * Notice that the allocation order determines the sizes of the per cpu
1931 * caches. Each processor has always one slab available for allocations.
1932 * Increasing the allocation order reduces the number of times that slabs
1933 * must be moved on and off the partial lists and is therefore a factor in
1934 * locking overhead.
1935 */
1936
1937 /*
1938 * Mininum / Maximum order of slab pages. This influences locking overhead
1939 * and slab fragmentation. A higher order reduces the number of partial slabs
1940 * and increases the number of allocations possible without having to
1941 * take the list_lock.
1942 */
1943 static int slub_min_order;
1944 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1945 static int slub_min_objects;
1946
1947 /*
1948 * Merge control. If this is set then no merging of slab caches will occur.
1949 * (Could be removed. This was introduced to pacify the merge skeptics.)
1950 */
1951 static int slub_nomerge;
1952
1953 /*
1954 * Calculate the order of allocation given an slab object size.
1955 *
1956 * The order of allocation has significant impact on performance and other
1957 * system components. Generally order 0 allocations should be preferred since
1958 * order 0 does not cause fragmentation in the page allocator. Larger objects
1959 * be problematic to put into order 0 slabs because there may be too much
1960 * unused space left. We go to a higher order if more than 1/16th of the slab
1961 * would be wasted.
1962 *
1963 * In order to reach satisfactory performance we must ensure that a minimum
1964 * number of objects is in one slab. Otherwise we may generate too much
1965 * activity on the partial lists which requires taking the list_lock. This is
1966 * less a concern for large slabs though which are rarely used.
1967 *
1968 * slub_max_order specifies the order where we begin to stop considering the
1969 * number of objects in a slab as critical. If we reach slub_max_order then
1970 * we try to keep the page order as low as possible. So we accept more waste
1971 * of space in favor of a small page order.
1972 *
1973 * Higher order allocations also allow the placement of more objects in a
1974 * slab and thereby reduce object handling overhead. If the user has
1975 * requested a higher mininum order then we start with that one instead of
1976 * the smallest order which will fit the object.
1977 */
1978 static inline int slab_order(int size, int min_objects,
1979 int max_order, int fract_leftover)
1980 {
1981 int order;
1982 int rem;
1983 int min_order = slub_min_order;
1984
1985 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1986 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1987
1988 for (order = max(min_order,
1989 fls(min_objects * size - 1) - PAGE_SHIFT);
1990 order <= max_order; order++) {
1991
1992 unsigned long slab_size = PAGE_SIZE << order;
1993
1994 if (slab_size < min_objects * size)
1995 continue;
1996
1997 rem = slab_size % size;
1998
1999 if (rem <= slab_size / fract_leftover)
2000 break;
2001
2002 }
2003
2004 return order;
2005 }
2006
2007 static inline int calculate_order(int size)
2008 {
2009 int order;
2010 int min_objects;
2011 int fraction;
2012 int max_objects;
2013
2014 /*
2015 * Attempt to find best configuration for a slab. This
2016 * works by first attempting to generate a layout with
2017 * the best configuration and backing off gradually.
2018 *
2019 * First we reduce the acceptable waste in a slab. Then
2020 * we reduce the minimum objects required in a slab.
2021 */
2022 min_objects = slub_min_objects;
2023 if (!min_objects)
2024 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2025 max_objects = (PAGE_SIZE << slub_max_order)/size;
2026 min_objects = min(min_objects, max_objects);
2027
2028 while (min_objects > 1) {
2029 fraction = 16;
2030 while (fraction >= 4) {
2031 order = slab_order(size, min_objects,
2032 slub_max_order, fraction);
2033 if (order <= slub_max_order)
2034 return order;
2035 fraction /= 2;
2036 }
2037 min_objects--;
2038 }
2039
2040 /*
2041 * We were unable to place multiple objects in a slab. Now
2042 * lets see if we can place a single object there.
2043 */
2044 order = slab_order(size, 1, slub_max_order, 1);
2045 if (order <= slub_max_order)
2046 return order;
2047
2048 /*
2049 * Doh this slab cannot be placed using slub_max_order.
2050 */
2051 order = slab_order(size, 1, MAX_ORDER, 1);
2052 if (order < MAX_ORDER)
2053 return order;
2054 return -ENOSYS;
2055 }
2056
2057 /*
2058 * Figure out what the alignment of the objects will be.
2059 */
2060 static unsigned long calculate_alignment(unsigned long flags,
2061 unsigned long align, unsigned long size)
2062 {
2063 /*
2064 * If the user wants hardware cache aligned objects then follow that
2065 * suggestion if the object is sufficiently large.
2066 *
2067 * The hardware cache alignment cannot override the specified
2068 * alignment though. If that is greater then use it.
2069 */
2070 if (flags & SLAB_HWCACHE_ALIGN) {
2071 unsigned long ralign = cache_line_size();
2072 while (size <= ralign / 2)
2073 ralign /= 2;
2074 align = max(align, ralign);
2075 }
2076
2077 if (align < ARCH_SLAB_MINALIGN)
2078 align = ARCH_SLAB_MINALIGN;
2079
2080 return ALIGN(align, sizeof(void *));
2081 }
2082
2083 static void
2084 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2085 {
2086 n->nr_partial = 0;
2087 spin_lock_init(&n->list_lock);
2088 INIT_LIST_HEAD(&n->partial);
2089 #ifdef CONFIG_SLUB_DEBUG
2090 atomic_long_set(&n->nr_slabs, 0);
2091 atomic_long_set(&n->total_objects, 0);
2092 INIT_LIST_HEAD(&n->full);
2093 #endif
2094 }
2095
2096 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2097 {
2098 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2099 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2100
2101 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2102
2103 return s->cpu_slab != NULL;
2104 }
2105
2106 static struct kmem_cache *kmem_cache_node;
2107
2108 /*
2109 * No kmalloc_node yet so do it by hand. We know that this is the first
2110 * slab on the node for this slabcache. There are no concurrent accesses
2111 * possible.
2112 *
2113 * Note that this function only works on the kmalloc_node_cache
2114 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2115 * memory on a fresh node that has no slab structures yet.
2116 */
2117 static void early_kmem_cache_node_alloc(int node)
2118 {
2119 struct page *page;
2120 struct kmem_cache_node *n;
2121 unsigned long flags;
2122
2123 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2124
2125 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2126
2127 BUG_ON(!page);
2128 if (page_to_nid(page) != node) {
2129 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2130 "node %d\n", node);
2131 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2132 "in order to be able to continue\n");
2133 }
2134
2135 n = page->freelist;
2136 BUG_ON(!n);
2137 page->freelist = get_freepointer(kmem_cache_node, n);
2138 page->inuse++;
2139 kmem_cache_node->node[node] = n;
2140 #ifdef CONFIG_SLUB_DEBUG
2141 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2142 init_tracking(kmem_cache_node, n);
2143 #endif
2144 init_kmem_cache_node(n, kmem_cache_node);
2145 inc_slabs_node(kmem_cache_node, node, page->objects);
2146
2147 /*
2148 * lockdep requires consistent irq usage for each lock
2149 * so even though there cannot be a race this early in
2150 * the boot sequence, we still disable irqs.
2151 */
2152 local_irq_save(flags);
2153 add_partial(n, page, 0);
2154 local_irq_restore(flags);
2155 }
2156
2157 static void free_kmem_cache_nodes(struct kmem_cache *s)
2158 {
2159 int node;
2160
2161 for_each_node_state(node, N_NORMAL_MEMORY) {
2162 struct kmem_cache_node *n = s->node[node];
2163
2164 if (n)
2165 kmem_cache_free(kmem_cache_node, n);
2166
2167 s->node[node] = NULL;
2168 }
2169 }
2170
2171 static int init_kmem_cache_nodes(struct kmem_cache *s)
2172 {
2173 int node;
2174
2175 for_each_node_state(node, N_NORMAL_MEMORY) {
2176 struct kmem_cache_node *n;
2177
2178 if (slab_state == DOWN) {
2179 early_kmem_cache_node_alloc(node);
2180 continue;
2181 }
2182 n = kmem_cache_alloc_node(kmem_cache_node,
2183 GFP_KERNEL, node);
2184
2185 if (!n) {
2186 free_kmem_cache_nodes(s);
2187 return 0;
2188 }
2189
2190 s->node[node] = n;
2191 init_kmem_cache_node(n, s);
2192 }
2193 return 1;
2194 }
2195
2196 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2197 {
2198 if (min < MIN_PARTIAL)
2199 min = MIN_PARTIAL;
2200 else if (min > MAX_PARTIAL)
2201 min = MAX_PARTIAL;
2202 s->min_partial = min;
2203 }
2204
2205 /*
2206 * calculate_sizes() determines the order and the distribution of data within
2207 * a slab object.
2208 */
2209 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2210 {
2211 unsigned long flags = s->flags;
2212 unsigned long size = s->objsize;
2213 unsigned long align = s->align;
2214 int order;
2215
2216 /*
2217 * Round up object size to the next word boundary. We can only
2218 * place the free pointer at word boundaries and this determines
2219 * the possible location of the free pointer.
2220 */
2221 size = ALIGN(size, sizeof(void *));
2222
2223 #ifdef CONFIG_SLUB_DEBUG
2224 /*
2225 * Determine if we can poison the object itself. If the user of
2226 * the slab may touch the object after free or before allocation
2227 * then we should never poison the object itself.
2228 */
2229 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2230 !s->ctor)
2231 s->flags |= __OBJECT_POISON;
2232 else
2233 s->flags &= ~__OBJECT_POISON;
2234
2235
2236 /*
2237 * If we are Redzoning then check if there is some space between the
2238 * end of the object and the free pointer. If not then add an
2239 * additional word to have some bytes to store Redzone information.
2240 */
2241 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2242 size += sizeof(void *);
2243 #endif
2244
2245 /*
2246 * With that we have determined the number of bytes in actual use
2247 * by the object. This is the potential offset to the free pointer.
2248 */
2249 s->inuse = size;
2250
2251 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2252 s->ctor)) {
2253 /*
2254 * Relocate free pointer after the object if it is not
2255 * permitted to overwrite the first word of the object on
2256 * kmem_cache_free.
2257 *
2258 * This is the case if we do RCU, have a constructor or
2259 * destructor or are poisoning the objects.
2260 */
2261 s->offset = size;
2262 size += sizeof(void *);
2263 }
2264
2265 #ifdef CONFIG_SLUB_DEBUG
2266 if (flags & SLAB_STORE_USER)
2267 /*
2268 * Need to store information about allocs and frees after
2269 * the object.
2270 */
2271 size += 2 * sizeof(struct track);
2272
2273 if (flags & SLAB_RED_ZONE)
2274 /*
2275 * Add some empty padding so that we can catch
2276 * overwrites from earlier objects rather than let
2277 * tracking information or the free pointer be
2278 * corrupted if a user writes before the start
2279 * of the object.
2280 */
2281 size += sizeof(void *);
2282 #endif
2283
2284 /*
2285 * Determine the alignment based on various parameters that the
2286 * user specified and the dynamic determination of cache line size
2287 * on bootup.
2288 */
2289 align = calculate_alignment(flags, align, s->objsize);
2290 s->align = align;
2291
2292 /*
2293 * SLUB stores one object immediately after another beginning from
2294 * offset 0. In order to align the objects we have to simply size
2295 * each object to conform to the alignment.
2296 */
2297 size = ALIGN(size, align);
2298 s->size = size;
2299 if (forced_order >= 0)
2300 order = forced_order;
2301 else
2302 order = calculate_order(size);
2303
2304 if (order < 0)
2305 return 0;
2306
2307 s->allocflags = 0;
2308 if (order)
2309 s->allocflags |= __GFP_COMP;
2310
2311 if (s->flags & SLAB_CACHE_DMA)
2312 s->allocflags |= SLUB_DMA;
2313
2314 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2315 s->allocflags |= __GFP_RECLAIMABLE;
2316
2317 /*
2318 * Determine the number of objects per slab
2319 */
2320 s->oo = oo_make(order, size);
2321 s->min = oo_make(get_order(size), size);
2322 if (oo_objects(s->oo) > oo_objects(s->max))
2323 s->max = s->oo;
2324
2325 return !!oo_objects(s->oo);
2326
2327 }
2328
2329 static int kmem_cache_open(struct kmem_cache *s,
2330 const char *name, size_t size,
2331 size_t align, unsigned long flags,
2332 void (*ctor)(void *))
2333 {
2334 memset(s, 0, kmem_size);
2335 s->name = name;
2336 s->ctor = ctor;
2337 s->objsize = size;
2338 s->align = align;
2339 s->flags = kmem_cache_flags(size, flags, name, ctor);
2340
2341 if (!calculate_sizes(s, -1))
2342 goto error;
2343 if (disable_higher_order_debug) {
2344 /*
2345 * Disable debugging flags that store metadata if the min slab
2346 * order increased.
2347 */
2348 if (get_order(s->size) > get_order(s->objsize)) {
2349 s->flags &= ~DEBUG_METADATA_FLAGS;
2350 s->offset = 0;
2351 if (!calculate_sizes(s, -1))
2352 goto error;
2353 }
2354 }
2355
2356 /*
2357 * The larger the object size is, the more pages we want on the partial
2358 * list to avoid pounding the page allocator excessively.
2359 */
2360 set_min_partial(s, ilog2(s->size));
2361 s->refcount = 1;
2362 #ifdef CONFIG_NUMA
2363 s->remote_node_defrag_ratio = 1000;
2364 #endif
2365 if (!init_kmem_cache_nodes(s))
2366 goto error;
2367
2368 if (alloc_kmem_cache_cpus(s))
2369 return 1;
2370
2371 free_kmem_cache_nodes(s);
2372 error:
2373 if (flags & SLAB_PANIC)
2374 panic("Cannot create slab %s size=%lu realsize=%u "
2375 "order=%u offset=%u flags=%lx\n",
2376 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2377 s->offset, flags);
2378 return 0;
2379 }
2380
2381 /*
2382 * Check if a given pointer is valid
2383 */
2384 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2385 {
2386 struct page *page;
2387
2388 if (!kern_ptr_validate(object, s->size))
2389 return 0;
2390
2391 page = get_object_page(object);
2392
2393 if (!page || s != page->slab)
2394 /* No slab or wrong slab */
2395 return 0;
2396
2397 if (!check_valid_pointer(s, page, object))
2398 return 0;
2399
2400 /*
2401 * We could also check if the object is on the slabs freelist.
2402 * But this would be too expensive and it seems that the main
2403 * purpose of kmem_ptr_valid() is to check if the object belongs
2404 * to a certain slab.
2405 */
2406 return 1;
2407 }
2408 EXPORT_SYMBOL(kmem_ptr_validate);
2409
2410 /*
2411 * Determine the size of a slab object
2412 */
2413 unsigned int kmem_cache_size(struct kmem_cache *s)
2414 {
2415 return s->objsize;
2416 }
2417 EXPORT_SYMBOL(kmem_cache_size);
2418
2419 const char *kmem_cache_name(struct kmem_cache *s)
2420 {
2421 return s->name;
2422 }
2423 EXPORT_SYMBOL(kmem_cache_name);
2424
2425 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2426 const char *text)
2427 {
2428 #ifdef CONFIG_SLUB_DEBUG
2429 void *addr = page_address(page);
2430 void *p;
2431 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2432 GFP_ATOMIC);
2433
2434 if (!map)
2435 return;
2436 slab_err(s, page, "%s", text);
2437 slab_lock(page);
2438 for_each_free_object(p, s, page->freelist)
2439 set_bit(slab_index(p, s, addr), map);
2440
2441 for_each_object(p, s, addr, page->objects) {
2442
2443 if (!test_bit(slab_index(p, s, addr), map)) {
2444 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2445 p, p - addr);
2446 print_tracking(s, p);
2447 }
2448 }
2449 slab_unlock(page);
2450 kfree(map);
2451 #endif
2452 }
2453
2454 /*
2455 * Attempt to free all partial slabs on a node.
2456 */
2457 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2458 {
2459 unsigned long flags;
2460 struct page *page, *h;
2461
2462 spin_lock_irqsave(&n->list_lock, flags);
2463 list_for_each_entry_safe(page, h, &n->partial, lru) {
2464 if (!page->inuse) {
2465 list_del(&page->lru);
2466 discard_slab(s, page);
2467 n->nr_partial--;
2468 } else {
2469 list_slab_objects(s, page,
2470 "Objects remaining on kmem_cache_close()");
2471 }
2472 }
2473 spin_unlock_irqrestore(&n->list_lock, flags);
2474 }
2475
2476 /*
2477 * Release all resources used by a slab cache.
2478 */
2479 static inline int kmem_cache_close(struct kmem_cache *s)
2480 {
2481 int node;
2482
2483 flush_all(s);
2484 free_percpu(s->cpu_slab);
2485 /* Attempt to free all objects */
2486 for_each_node_state(node, N_NORMAL_MEMORY) {
2487 struct kmem_cache_node *n = get_node(s, node);
2488
2489 free_partial(s, n);
2490 if (n->nr_partial || slabs_node(s, node))
2491 return 1;
2492 }
2493 free_kmem_cache_nodes(s);
2494 return 0;
2495 }
2496
2497 /*
2498 * Close a cache and release the kmem_cache structure
2499 * (must be used for caches created using kmem_cache_create)
2500 */
2501 void kmem_cache_destroy(struct kmem_cache *s)
2502 {
2503 down_write(&slub_lock);
2504 s->refcount--;
2505 if (!s->refcount) {
2506 list_del(&s->list);
2507 if (kmem_cache_close(s)) {
2508 printk(KERN_ERR "SLUB %s: %s called for cache that "
2509 "still has objects.\n", s->name, __func__);
2510 dump_stack();
2511 }
2512 if (s->flags & SLAB_DESTROY_BY_RCU)
2513 rcu_barrier();
2514 sysfs_slab_remove(s);
2515 }
2516 up_write(&slub_lock);
2517 }
2518 EXPORT_SYMBOL(kmem_cache_destroy);
2519
2520 /********************************************************************
2521 * Kmalloc subsystem
2522 *******************************************************************/
2523
2524 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2525 EXPORT_SYMBOL(kmalloc_caches);
2526
2527 static struct kmem_cache *kmem_cache;
2528
2529 #ifdef CONFIG_ZONE_DMA
2530 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2531 #endif
2532
2533 static int __init setup_slub_min_order(char *str)
2534 {
2535 get_option(&str, &slub_min_order);
2536
2537 return 1;
2538 }
2539
2540 __setup("slub_min_order=", setup_slub_min_order);
2541
2542 static int __init setup_slub_max_order(char *str)
2543 {
2544 get_option(&str, &slub_max_order);
2545 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2546
2547 return 1;
2548 }
2549
2550 __setup("slub_max_order=", setup_slub_max_order);
2551
2552 static int __init setup_slub_min_objects(char *str)
2553 {
2554 get_option(&str, &slub_min_objects);
2555
2556 return 1;
2557 }
2558
2559 __setup("slub_min_objects=", setup_slub_min_objects);
2560
2561 static int __init setup_slub_nomerge(char *str)
2562 {
2563 slub_nomerge = 1;
2564 return 1;
2565 }
2566
2567 __setup("slub_nomerge", setup_slub_nomerge);
2568
2569 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2570 int size, unsigned int flags)
2571 {
2572 struct kmem_cache *s;
2573
2574 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2575
2576 /*
2577 * This function is called with IRQs disabled during early-boot on
2578 * single CPU so there's no need to take slub_lock here.
2579 */
2580 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2581 flags, NULL))
2582 goto panic;
2583
2584 list_add(&s->list, &slab_caches);
2585 return s;
2586
2587 panic:
2588 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2589 return NULL;
2590 }
2591
2592 /*
2593 * Conversion table for small slabs sizes / 8 to the index in the
2594 * kmalloc array. This is necessary for slabs < 192 since we have non power
2595 * of two cache sizes there. The size of larger slabs can be determined using
2596 * fls.
2597 */
2598 static s8 size_index[24] = {
2599 3, /* 8 */
2600 4, /* 16 */
2601 5, /* 24 */
2602 5, /* 32 */
2603 6, /* 40 */
2604 6, /* 48 */
2605 6, /* 56 */
2606 6, /* 64 */
2607 1, /* 72 */
2608 1, /* 80 */
2609 1, /* 88 */
2610 1, /* 96 */
2611 7, /* 104 */
2612 7, /* 112 */
2613 7, /* 120 */
2614 7, /* 128 */
2615 2, /* 136 */
2616 2, /* 144 */
2617 2, /* 152 */
2618 2, /* 160 */
2619 2, /* 168 */
2620 2, /* 176 */
2621 2, /* 184 */
2622 2 /* 192 */
2623 };
2624
2625 static inline int size_index_elem(size_t bytes)
2626 {
2627 return (bytes - 1) / 8;
2628 }
2629
2630 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2631 {
2632 int index;
2633
2634 if (size <= 192) {
2635 if (!size)
2636 return ZERO_SIZE_PTR;
2637
2638 index = size_index[size_index_elem(size)];
2639 } else
2640 index = fls(size - 1);
2641
2642 #ifdef CONFIG_ZONE_DMA
2643 if (unlikely((flags & SLUB_DMA)))
2644 return kmalloc_dma_caches[index];
2645
2646 #endif
2647 return kmalloc_caches[index];
2648 }
2649
2650 void *__kmalloc(size_t size, gfp_t flags)
2651 {
2652 struct kmem_cache *s;
2653 void *ret;
2654
2655 if (unlikely(size > SLUB_MAX_SIZE))
2656 return kmalloc_large(size, flags);
2657
2658 s = get_slab(size, flags);
2659
2660 if (unlikely(ZERO_OR_NULL_PTR(s)))
2661 return s;
2662
2663 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2664
2665 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2666
2667 return ret;
2668 }
2669 EXPORT_SYMBOL(__kmalloc);
2670
2671 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2672 {
2673 struct page *page;
2674 void *ptr = NULL;
2675
2676 flags |= __GFP_COMP | __GFP_NOTRACK;
2677 page = alloc_pages_node(node, flags, get_order(size));
2678 if (page)
2679 ptr = page_address(page);
2680
2681 kmemleak_alloc(ptr, size, 1, flags);
2682 return ptr;
2683 }
2684
2685 #ifdef CONFIG_NUMA
2686 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2687 {
2688 struct kmem_cache *s;
2689 void *ret;
2690
2691 if (unlikely(size > SLUB_MAX_SIZE)) {
2692 ret = kmalloc_large_node(size, flags, node);
2693
2694 trace_kmalloc_node(_RET_IP_, ret,
2695 size, PAGE_SIZE << get_order(size),
2696 flags, node);
2697
2698 return ret;
2699 }
2700
2701 s = get_slab(size, flags);
2702
2703 if (unlikely(ZERO_OR_NULL_PTR(s)))
2704 return s;
2705
2706 ret = slab_alloc(s, flags, node, _RET_IP_);
2707
2708 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2709
2710 return ret;
2711 }
2712 EXPORT_SYMBOL(__kmalloc_node);
2713 #endif
2714
2715 size_t ksize(const void *object)
2716 {
2717 struct page *page;
2718 struct kmem_cache *s;
2719
2720 if (unlikely(object == ZERO_SIZE_PTR))
2721 return 0;
2722
2723 page = virt_to_head_page(object);
2724
2725 if (unlikely(!PageSlab(page))) {
2726 WARN_ON(!PageCompound(page));
2727 return PAGE_SIZE << compound_order(page);
2728 }
2729 s = page->slab;
2730
2731 #ifdef CONFIG_SLUB_DEBUG
2732 /*
2733 * Debugging requires use of the padding between object
2734 * and whatever may come after it.
2735 */
2736 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2737 return s->objsize;
2738
2739 #endif
2740 /*
2741 * If we have the need to store the freelist pointer
2742 * back there or track user information then we can
2743 * only use the space before that information.
2744 */
2745 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2746 return s->inuse;
2747 /*
2748 * Else we can use all the padding etc for the allocation
2749 */
2750 return s->size;
2751 }
2752 EXPORT_SYMBOL(ksize);
2753
2754 void kfree(const void *x)
2755 {
2756 struct page *page;
2757 void *object = (void *)x;
2758
2759 trace_kfree(_RET_IP_, x);
2760
2761 if (unlikely(ZERO_OR_NULL_PTR(x)))
2762 return;
2763
2764 page = virt_to_head_page(x);
2765 if (unlikely(!PageSlab(page))) {
2766 BUG_ON(!PageCompound(page));
2767 kmemleak_free(x);
2768 put_page(page);
2769 return;
2770 }
2771 slab_free(page->slab, page, object, _RET_IP_);
2772 }
2773 EXPORT_SYMBOL(kfree);
2774
2775 /*
2776 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2777 * the remaining slabs by the number of items in use. The slabs with the
2778 * most items in use come first. New allocations will then fill those up
2779 * and thus they can be removed from the partial lists.
2780 *
2781 * The slabs with the least items are placed last. This results in them
2782 * being allocated from last increasing the chance that the last objects
2783 * are freed in them.
2784 */
2785 int kmem_cache_shrink(struct kmem_cache *s)
2786 {
2787 int node;
2788 int i;
2789 struct kmem_cache_node *n;
2790 struct page *page;
2791 struct page *t;
2792 int objects = oo_objects(s->max);
2793 struct list_head *slabs_by_inuse =
2794 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2795 unsigned long flags;
2796
2797 if (!slabs_by_inuse)
2798 return -ENOMEM;
2799
2800 flush_all(s);
2801 for_each_node_state(node, N_NORMAL_MEMORY) {
2802 n = get_node(s, node);
2803
2804 if (!n->nr_partial)
2805 continue;
2806
2807 for (i = 0; i < objects; i++)
2808 INIT_LIST_HEAD(slabs_by_inuse + i);
2809
2810 spin_lock_irqsave(&n->list_lock, flags);
2811
2812 /*
2813 * Build lists indexed by the items in use in each slab.
2814 *
2815 * Note that concurrent frees may occur while we hold the
2816 * list_lock. page->inuse here is the upper limit.
2817 */
2818 list_for_each_entry_safe(page, t, &n->partial, lru) {
2819 if (!page->inuse && slab_trylock(page)) {
2820 /*
2821 * Must hold slab lock here because slab_free
2822 * may have freed the last object and be
2823 * waiting to release the slab.
2824 */
2825 list_del(&page->lru);
2826 n->nr_partial--;
2827 slab_unlock(page);
2828 discard_slab(s, page);
2829 } else {
2830 list_move(&page->lru,
2831 slabs_by_inuse + page->inuse);
2832 }
2833 }
2834
2835 /*
2836 * Rebuild the partial list with the slabs filled up most
2837 * first and the least used slabs at the end.
2838 */
2839 for (i = objects - 1; i >= 0; i--)
2840 list_splice(slabs_by_inuse + i, n->partial.prev);
2841
2842 spin_unlock_irqrestore(&n->list_lock, flags);
2843 }
2844
2845 kfree(slabs_by_inuse);
2846 return 0;
2847 }
2848 EXPORT_SYMBOL(kmem_cache_shrink);
2849
2850 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2851 static int slab_mem_going_offline_callback(void *arg)
2852 {
2853 struct kmem_cache *s;
2854
2855 down_read(&slub_lock);
2856 list_for_each_entry(s, &slab_caches, list)
2857 kmem_cache_shrink(s);
2858 up_read(&slub_lock);
2859
2860 return 0;
2861 }
2862
2863 static void slab_mem_offline_callback(void *arg)
2864 {
2865 struct kmem_cache_node *n;
2866 struct kmem_cache *s;
2867 struct memory_notify *marg = arg;
2868 int offline_node;
2869
2870 offline_node = marg->status_change_nid;
2871
2872 /*
2873 * If the node still has available memory. we need kmem_cache_node
2874 * for it yet.
2875 */
2876 if (offline_node < 0)
2877 return;
2878
2879 down_read(&slub_lock);
2880 list_for_each_entry(s, &slab_caches, list) {
2881 n = get_node(s, offline_node);
2882 if (n) {
2883 /*
2884 * if n->nr_slabs > 0, slabs still exist on the node
2885 * that is going down. We were unable to free them,
2886 * and offline_pages() function shouldn't call this
2887 * callback. So, we must fail.
2888 */
2889 BUG_ON(slabs_node(s, offline_node));
2890
2891 s->node[offline_node] = NULL;
2892 kmem_cache_free(kmem_cache_node, n);
2893 }
2894 }
2895 up_read(&slub_lock);
2896 }
2897
2898 static int slab_mem_going_online_callback(void *arg)
2899 {
2900 struct kmem_cache_node *n;
2901 struct kmem_cache *s;
2902 struct memory_notify *marg = arg;
2903 int nid = marg->status_change_nid;
2904 int ret = 0;
2905
2906 /*
2907 * If the node's memory is already available, then kmem_cache_node is
2908 * already created. Nothing to do.
2909 */
2910 if (nid < 0)
2911 return 0;
2912
2913 /*
2914 * We are bringing a node online. No memory is available yet. We must
2915 * allocate a kmem_cache_node structure in order to bring the node
2916 * online.
2917 */
2918 down_read(&slub_lock);
2919 list_for_each_entry(s, &slab_caches, list) {
2920 /*
2921 * XXX: kmem_cache_alloc_node will fallback to other nodes
2922 * since memory is not yet available from the node that
2923 * is brought up.
2924 */
2925 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2926 if (!n) {
2927 ret = -ENOMEM;
2928 goto out;
2929 }
2930 init_kmem_cache_node(n, s);
2931 s->node[nid] = n;
2932 }
2933 out:
2934 up_read(&slub_lock);
2935 return ret;
2936 }
2937
2938 static int slab_memory_callback(struct notifier_block *self,
2939 unsigned long action, void *arg)
2940 {
2941 int ret = 0;
2942
2943 switch (action) {
2944 case MEM_GOING_ONLINE:
2945 ret = slab_mem_going_online_callback(arg);
2946 break;
2947 case MEM_GOING_OFFLINE:
2948 ret = slab_mem_going_offline_callback(arg);
2949 break;
2950 case MEM_OFFLINE:
2951 case MEM_CANCEL_ONLINE:
2952 slab_mem_offline_callback(arg);
2953 break;
2954 case MEM_ONLINE:
2955 case MEM_CANCEL_OFFLINE:
2956 break;
2957 }
2958 if (ret)
2959 ret = notifier_from_errno(ret);
2960 else
2961 ret = NOTIFY_OK;
2962 return ret;
2963 }
2964
2965 #endif /* CONFIG_MEMORY_HOTPLUG */
2966
2967 /********************************************************************
2968 * Basic setup of slabs
2969 *******************************************************************/
2970
2971 /*
2972 * Used for early kmem_cache structures that were allocated using
2973 * the page allocator
2974 */
2975
2976 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2977 {
2978 int node;
2979
2980 list_add(&s->list, &slab_caches);
2981 s->refcount = -1;
2982
2983 for_each_node_state(node, N_NORMAL_MEMORY) {
2984 struct kmem_cache_node *n = get_node(s, node);
2985 struct page *p;
2986
2987 if (n) {
2988 list_for_each_entry(p, &n->partial, lru)
2989 p->slab = s;
2990
2991 #ifdef CONFIG_SLAB_DEBUG
2992 list_for_each_entry(p, &n->full, lru)
2993 p->slab = s;
2994 #endif
2995 }
2996 }
2997 }
2998
2999 void __init kmem_cache_init(void)
3000 {
3001 int i;
3002 int caches = 0;
3003 struct kmem_cache *temp_kmem_cache;
3004 int order;
3005 struct kmem_cache *temp_kmem_cache_node;
3006 unsigned long kmalloc_size;
3007
3008 kmem_size = offsetof(struct kmem_cache, node) +
3009 nr_node_ids * sizeof(struct kmem_cache_node *);
3010
3011 /* Allocate two kmem_caches from the page allocator */
3012 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3013 order = get_order(2 * kmalloc_size);
3014 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3015
3016 /*
3017 * Must first have the slab cache available for the allocations of the
3018 * struct kmem_cache_node's. There is special bootstrap code in
3019 * kmem_cache_open for slab_state == DOWN.
3020 */
3021 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3022
3023 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3024 sizeof(struct kmem_cache_node),
3025 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3026
3027 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3028
3029 /* Able to allocate the per node structures */
3030 slab_state = PARTIAL;
3031
3032 temp_kmem_cache = kmem_cache;
3033 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3034 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3035 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3036 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3037
3038 /*
3039 * Allocate kmem_cache_node properly from the kmem_cache slab.
3040 * kmem_cache_node is separately allocated so no need to
3041 * update any list pointers.
3042 */
3043 temp_kmem_cache_node = kmem_cache_node;
3044
3045 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3046 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3047
3048 kmem_cache_bootstrap_fixup(kmem_cache_node);
3049
3050 caches++;
3051 kmem_cache_bootstrap_fixup(kmem_cache);
3052 caches++;
3053 /* Free temporary boot structure */
3054 free_pages((unsigned long)temp_kmem_cache, order);
3055
3056 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3057
3058 /*
3059 * Patch up the size_index table if we have strange large alignment
3060 * requirements for the kmalloc array. This is only the case for
3061 * MIPS it seems. The standard arches will not generate any code here.
3062 *
3063 * Largest permitted alignment is 256 bytes due to the way we
3064 * handle the index determination for the smaller caches.
3065 *
3066 * Make sure that nothing crazy happens if someone starts tinkering
3067 * around with ARCH_KMALLOC_MINALIGN
3068 */
3069 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3070 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3071
3072 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3073 int elem = size_index_elem(i);
3074 if (elem >= ARRAY_SIZE(size_index))
3075 break;
3076 size_index[elem] = KMALLOC_SHIFT_LOW;
3077 }
3078
3079 if (KMALLOC_MIN_SIZE == 64) {
3080 /*
3081 * The 96 byte size cache is not used if the alignment
3082 * is 64 byte.
3083 */
3084 for (i = 64 + 8; i <= 96; i += 8)
3085 size_index[size_index_elem(i)] = 7;
3086 } else if (KMALLOC_MIN_SIZE == 128) {
3087 /*
3088 * The 192 byte sized cache is not used if the alignment
3089 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3090 * instead.
3091 */
3092 for (i = 128 + 8; i <= 192; i += 8)
3093 size_index[size_index_elem(i)] = 8;
3094 }
3095
3096 /* Caches that are not of the two-to-the-power-of size */
3097 if (KMALLOC_MIN_SIZE <= 32) {
3098 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3099 caches++;
3100 }
3101
3102 if (KMALLOC_MIN_SIZE <= 64) {
3103 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3104 caches++;
3105 }
3106
3107 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3108 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3109 caches++;
3110 }
3111
3112 slab_state = UP;
3113
3114 /* Provide the correct kmalloc names now that the caches are up */
3115 if (KMALLOC_MIN_SIZE <= 32) {
3116 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3117 BUG_ON(!kmalloc_caches[1]->name);
3118 }
3119
3120 if (KMALLOC_MIN_SIZE <= 64) {
3121 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3122 BUG_ON(!kmalloc_caches[2]->name);
3123 }
3124
3125 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3126 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3127
3128 BUG_ON(!s);
3129 kmalloc_caches[i]->name = s;
3130 }
3131
3132 #ifdef CONFIG_SMP
3133 register_cpu_notifier(&slab_notifier);
3134 #endif
3135
3136 #ifdef CONFIG_ZONE_DMA
3137 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3138 struct kmem_cache *s = kmalloc_caches[i];
3139
3140 if (s && s->size) {
3141 char *name = kasprintf(GFP_NOWAIT,
3142 "dma-kmalloc-%d", s->objsize);
3143
3144 BUG_ON(!name);
3145 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3146 s->objsize, SLAB_CACHE_DMA);
3147 }
3148 }
3149 #endif
3150 printk(KERN_INFO
3151 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3152 " CPUs=%d, Nodes=%d\n",
3153 caches, cache_line_size(),
3154 slub_min_order, slub_max_order, slub_min_objects,
3155 nr_cpu_ids, nr_node_ids);
3156 }
3157
3158 void __init kmem_cache_init_late(void)
3159 {
3160 }
3161
3162 /*
3163 * Find a mergeable slab cache
3164 */
3165 static int slab_unmergeable(struct kmem_cache *s)
3166 {
3167 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3168 return 1;
3169
3170 if (s->ctor)
3171 return 1;
3172
3173 /*
3174 * We may have set a slab to be unmergeable during bootstrap.
3175 */
3176 if (s->refcount < 0)
3177 return 1;
3178
3179 return 0;
3180 }
3181
3182 static struct kmem_cache *find_mergeable(size_t size,
3183 size_t align, unsigned long flags, const char *name,
3184 void (*ctor)(void *))
3185 {
3186 struct kmem_cache *s;
3187
3188 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3189 return NULL;
3190
3191 if (ctor)
3192 return NULL;
3193
3194 size = ALIGN(size, sizeof(void *));
3195 align = calculate_alignment(flags, align, size);
3196 size = ALIGN(size, align);
3197 flags = kmem_cache_flags(size, flags, name, NULL);
3198
3199 list_for_each_entry(s, &slab_caches, list) {
3200 if (slab_unmergeable(s))
3201 continue;
3202
3203 if (size > s->size)
3204 continue;
3205
3206 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3207 continue;
3208 /*
3209 * Check if alignment is compatible.
3210 * Courtesy of Adrian Drzewiecki
3211 */
3212 if ((s->size & ~(align - 1)) != s->size)
3213 continue;
3214
3215 if (s->size - size >= sizeof(void *))
3216 continue;
3217
3218 return s;
3219 }
3220 return NULL;
3221 }
3222
3223 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3224 size_t align, unsigned long flags, void (*ctor)(void *))
3225 {
3226 struct kmem_cache *s;
3227 char *n;
3228
3229 if (WARN_ON(!name))
3230 return NULL;
3231
3232 down_write(&slub_lock);
3233 s = find_mergeable(size, align, flags, name, ctor);
3234 if (s) {
3235 s->refcount++;
3236 /*
3237 * Adjust the object sizes so that we clear
3238 * the complete object on kzalloc.
3239 */
3240 s->objsize = max(s->objsize, (int)size);
3241 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3242
3243 if (sysfs_slab_alias(s, name)) {
3244 s->refcount--;
3245 goto err;
3246 }
3247 up_write(&slub_lock);
3248 return s;
3249 }
3250
3251 n = kstrdup(name, GFP_KERNEL);
3252 if (!n)
3253 goto err;
3254
3255 s = kmalloc(kmem_size, GFP_KERNEL);
3256 if (s) {
3257 if (kmem_cache_open(s, n,
3258 size, align, flags, ctor)) {
3259 list_add(&s->list, &slab_caches);
3260 if (sysfs_slab_add(s)) {
3261 list_del(&s->list);
3262 kfree(n);
3263 kfree(s);
3264 goto err;
3265 }
3266 up_write(&slub_lock);
3267 return s;
3268 }
3269 kfree(n);
3270 kfree(s);
3271 }
3272 up_write(&slub_lock);
3273
3274 err:
3275 if (flags & SLAB_PANIC)
3276 panic("Cannot create slabcache %s\n", name);
3277 else
3278 s = NULL;
3279 return s;
3280 }
3281 EXPORT_SYMBOL(kmem_cache_create);
3282
3283 #ifdef CONFIG_SMP
3284 /*
3285 * Use the cpu notifier to insure that the cpu slabs are flushed when
3286 * necessary.
3287 */
3288 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3289 unsigned long action, void *hcpu)
3290 {
3291 long cpu = (long)hcpu;
3292 struct kmem_cache *s;
3293 unsigned long flags;
3294
3295 switch (action) {
3296 case CPU_UP_CANCELED:
3297 case CPU_UP_CANCELED_FROZEN:
3298 case CPU_DEAD:
3299 case CPU_DEAD_FROZEN:
3300 down_read(&slub_lock);
3301 list_for_each_entry(s, &slab_caches, list) {
3302 local_irq_save(flags);
3303 __flush_cpu_slab(s, cpu);
3304 local_irq_restore(flags);
3305 }
3306 up_read(&slub_lock);
3307 break;
3308 default:
3309 break;
3310 }
3311 return NOTIFY_OK;
3312 }
3313
3314 static struct notifier_block __cpuinitdata slab_notifier = {
3315 .notifier_call = slab_cpuup_callback
3316 };
3317
3318 #endif
3319
3320 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3321 {
3322 struct kmem_cache *s;
3323 void *ret;
3324
3325 if (unlikely(size > SLUB_MAX_SIZE))
3326 return kmalloc_large(size, gfpflags);
3327
3328 s = get_slab(size, gfpflags);
3329
3330 if (unlikely(ZERO_OR_NULL_PTR(s)))
3331 return s;
3332
3333 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3334
3335 /* Honor the call site pointer we recieved. */
3336 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3337
3338 return ret;
3339 }
3340
3341 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3342 int node, unsigned long caller)
3343 {
3344 struct kmem_cache *s;
3345 void *ret;
3346
3347 if (unlikely(size > SLUB_MAX_SIZE)) {
3348 ret = kmalloc_large_node(size, gfpflags, node);
3349
3350 trace_kmalloc_node(caller, ret,
3351 size, PAGE_SIZE << get_order(size),
3352 gfpflags, node);
3353
3354 return ret;
3355 }
3356
3357 s = get_slab(size, gfpflags);
3358
3359 if (unlikely(ZERO_OR_NULL_PTR(s)))
3360 return s;
3361
3362 ret = slab_alloc(s, gfpflags, node, caller);
3363
3364 /* Honor the call site pointer we recieved. */
3365 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3366
3367 return ret;
3368 }
3369
3370 #ifdef CONFIG_SLUB_DEBUG
3371 static int count_inuse(struct page *page)
3372 {
3373 return page->inuse;
3374 }
3375
3376 static int count_total(struct page *page)
3377 {
3378 return page->objects;
3379 }
3380
3381 static int validate_slab(struct kmem_cache *s, struct page *page,
3382 unsigned long *map)
3383 {
3384 void *p;
3385 void *addr = page_address(page);
3386
3387 if (!check_slab(s, page) ||
3388 !on_freelist(s, page, NULL))
3389 return 0;
3390
3391 /* Now we know that a valid freelist exists */
3392 bitmap_zero(map, page->objects);
3393
3394 for_each_free_object(p, s, page->freelist) {
3395 set_bit(slab_index(p, s, addr), map);
3396 if (!check_object(s, page, p, 0))
3397 return 0;
3398 }
3399
3400 for_each_object(p, s, addr, page->objects)
3401 if (!test_bit(slab_index(p, s, addr), map))
3402 if (!check_object(s, page, p, 1))
3403 return 0;
3404 return 1;
3405 }
3406
3407 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3408 unsigned long *map)
3409 {
3410 if (slab_trylock(page)) {
3411 validate_slab(s, page, map);
3412 slab_unlock(page);
3413 } else
3414 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3415 s->name, page);
3416 }
3417
3418 static int validate_slab_node(struct kmem_cache *s,
3419 struct kmem_cache_node *n, unsigned long *map)
3420 {
3421 unsigned long count = 0;
3422 struct page *page;
3423 unsigned long flags;
3424
3425 spin_lock_irqsave(&n->list_lock, flags);
3426
3427 list_for_each_entry(page, &n->partial, lru) {
3428 validate_slab_slab(s, page, map);
3429 count++;
3430 }
3431 if (count != n->nr_partial)
3432 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3433 "counter=%ld\n", s->name, count, n->nr_partial);
3434
3435 if (!(s->flags & SLAB_STORE_USER))
3436 goto out;
3437
3438 list_for_each_entry(page, &n->full, lru) {
3439 validate_slab_slab(s, page, map);
3440 count++;
3441 }
3442 if (count != atomic_long_read(&n->nr_slabs))
3443 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3444 "counter=%ld\n", s->name, count,
3445 atomic_long_read(&n->nr_slabs));
3446
3447 out:
3448 spin_unlock_irqrestore(&n->list_lock, flags);
3449 return count;
3450 }
3451
3452 static long validate_slab_cache(struct kmem_cache *s)
3453 {
3454 int node;
3455 unsigned long count = 0;
3456 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3457 sizeof(unsigned long), GFP_KERNEL);
3458
3459 if (!map)
3460 return -ENOMEM;
3461
3462 flush_all(s);
3463 for_each_node_state(node, N_NORMAL_MEMORY) {
3464 struct kmem_cache_node *n = get_node(s, node);
3465
3466 count += validate_slab_node(s, n, map);
3467 }
3468 kfree(map);
3469 return count;
3470 }
3471
3472 #ifdef SLUB_RESILIENCY_TEST
3473 static void resiliency_test(void)
3474 {
3475 u8 *p;
3476
3477 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3478
3479 printk(KERN_ERR "SLUB resiliency testing\n");
3480 printk(KERN_ERR "-----------------------\n");
3481 printk(KERN_ERR "A. Corruption after allocation\n");
3482
3483 p = kzalloc(16, GFP_KERNEL);
3484 p[16] = 0x12;
3485 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3486 " 0x12->0x%p\n\n", p + 16);
3487
3488 validate_slab_cache(kmalloc_caches[4]);
3489
3490 /* Hmmm... The next two are dangerous */
3491 p = kzalloc(32, GFP_KERNEL);
3492 p[32 + sizeof(void *)] = 0x34;
3493 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3494 " 0x34 -> -0x%p\n", p);
3495 printk(KERN_ERR
3496 "If allocated object is overwritten then not detectable\n\n");
3497
3498 validate_slab_cache(kmalloc_caches[5]);
3499 p = kzalloc(64, GFP_KERNEL);
3500 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3501 *p = 0x56;
3502 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3503 p);
3504 printk(KERN_ERR
3505 "If allocated object is overwritten then not detectable\n\n");
3506 validate_slab_cache(kmalloc_caches[6]);
3507
3508 printk(KERN_ERR "\nB. Corruption after free\n");
3509 p = kzalloc(128, GFP_KERNEL);
3510 kfree(p);
3511 *p = 0x78;
3512 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3513 validate_slab_cache(kmalloc_caches[7]);
3514
3515 p = kzalloc(256, GFP_KERNEL);
3516 kfree(p);
3517 p[50] = 0x9a;
3518 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3519 p);
3520 validate_slab_cache(kmalloc_caches[8]);
3521
3522 p = kzalloc(512, GFP_KERNEL);
3523 kfree(p);
3524 p[512] = 0xab;
3525 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3526 validate_slab_cache(kmalloc_caches[9]);
3527 }
3528 #else
3529 static void resiliency_test(void) {};
3530 #endif
3531
3532 /*
3533 * Generate lists of code addresses where slabcache objects are allocated
3534 * and freed.
3535 */
3536
3537 struct location {
3538 unsigned long count;
3539 unsigned long addr;
3540 long long sum_time;
3541 long min_time;
3542 long max_time;
3543 long min_pid;
3544 long max_pid;
3545 DECLARE_BITMAP(cpus, NR_CPUS);
3546 nodemask_t nodes;
3547 };
3548
3549 struct loc_track {
3550 unsigned long max;
3551 unsigned long count;
3552 struct location *loc;
3553 };
3554
3555 static void free_loc_track(struct loc_track *t)
3556 {
3557 if (t->max)
3558 free_pages((unsigned long)t->loc,
3559 get_order(sizeof(struct location) * t->max));
3560 }
3561
3562 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3563 {
3564 struct location *l;
3565 int order;
3566
3567 order = get_order(sizeof(struct location) * max);
3568
3569 l = (void *)__get_free_pages(flags, order);
3570 if (!l)
3571 return 0;
3572
3573 if (t->count) {
3574 memcpy(l, t->loc, sizeof(struct location) * t->count);
3575 free_loc_track(t);
3576 }
3577 t->max = max;
3578 t->loc = l;
3579 return 1;
3580 }
3581
3582 static int add_location(struct loc_track *t, struct kmem_cache *s,
3583 const struct track *track)
3584 {
3585 long start, end, pos;
3586 struct location *l;
3587 unsigned long caddr;
3588 unsigned long age = jiffies - track->when;
3589
3590 start = -1;
3591 end = t->count;
3592
3593 for ( ; ; ) {
3594 pos = start + (end - start + 1) / 2;
3595
3596 /*
3597 * There is nothing at "end". If we end up there
3598 * we need to add something to before end.
3599 */
3600 if (pos == end)
3601 break;
3602
3603 caddr = t->loc[pos].addr;
3604 if (track->addr == caddr) {
3605
3606 l = &t->loc[pos];
3607 l->count++;
3608 if (track->when) {
3609 l->sum_time += age;
3610 if (age < l->min_time)
3611 l->min_time = age;
3612 if (age > l->max_time)
3613 l->max_time = age;
3614
3615 if (track->pid < l->min_pid)
3616 l->min_pid = track->pid;
3617 if (track->pid > l->max_pid)
3618 l->max_pid = track->pid;
3619
3620 cpumask_set_cpu(track->cpu,
3621 to_cpumask(l->cpus));
3622 }
3623 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3624 return 1;
3625 }
3626
3627 if (track->addr < caddr)
3628 end = pos;
3629 else
3630 start = pos;
3631 }
3632
3633 /*
3634 * Not found. Insert new tracking element.
3635 */
3636 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3637 return 0;
3638
3639 l = t->loc + pos;
3640 if (pos < t->count)
3641 memmove(l + 1, l,
3642 (t->count - pos) * sizeof(struct location));
3643 t->count++;
3644 l->count = 1;
3645 l->addr = track->addr;
3646 l->sum_time = age;
3647 l->min_time = age;
3648 l->max_time = age;
3649 l->min_pid = track->pid;
3650 l->max_pid = track->pid;
3651 cpumask_clear(to_cpumask(l->cpus));
3652 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3653 nodes_clear(l->nodes);
3654 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3655 return 1;
3656 }
3657
3658 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3659 struct page *page, enum track_item alloc,
3660 long *map)
3661 {
3662 void *addr = page_address(page);
3663 void *p;
3664
3665 bitmap_zero(map, page->objects);
3666 for_each_free_object(p, s, page->freelist)
3667 set_bit(slab_index(p, s, addr), map);
3668
3669 for_each_object(p, s, addr, page->objects)
3670 if (!test_bit(slab_index(p, s, addr), map))
3671 add_location(t, s, get_track(s, p, alloc));
3672 }
3673
3674 static int list_locations(struct kmem_cache *s, char *buf,
3675 enum track_item alloc)
3676 {
3677 int len = 0;
3678 unsigned long i;
3679 struct loc_track t = { 0, 0, NULL };
3680 int node;
3681 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3682 sizeof(unsigned long), GFP_KERNEL);
3683
3684 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3685 GFP_TEMPORARY)) {
3686 kfree(map);
3687 return sprintf(buf, "Out of memory\n");
3688 }
3689 /* Push back cpu slabs */
3690 flush_all(s);
3691
3692 for_each_node_state(node, N_NORMAL_MEMORY) {
3693 struct kmem_cache_node *n = get_node(s, node);
3694 unsigned long flags;
3695 struct page *page;
3696
3697 if (!atomic_long_read(&n->nr_slabs))
3698 continue;
3699
3700 spin_lock_irqsave(&n->list_lock, flags);
3701 list_for_each_entry(page, &n->partial, lru)
3702 process_slab(&t, s, page, alloc, map);
3703 list_for_each_entry(page, &n->full, lru)
3704 process_slab(&t, s, page, alloc, map);
3705 spin_unlock_irqrestore(&n->list_lock, flags);
3706 }
3707
3708 for (i = 0; i < t.count; i++) {
3709 struct location *l = &t.loc[i];
3710
3711 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3712 break;
3713 len += sprintf(buf + len, "%7ld ", l->count);
3714
3715 if (l->addr)
3716 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3717 else
3718 len += sprintf(buf + len, "<not-available>");
3719
3720 if (l->sum_time != l->min_time) {
3721 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3722 l->min_time,
3723 (long)div_u64(l->sum_time, l->count),
3724 l->max_time);
3725 } else
3726 len += sprintf(buf + len, " age=%ld",
3727 l->min_time);
3728
3729 if (l->min_pid != l->max_pid)
3730 len += sprintf(buf + len, " pid=%ld-%ld",
3731 l->min_pid, l->max_pid);
3732 else
3733 len += sprintf(buf + len, " pid=%ld",
3734 l->min_pid);
3735
3736 if (num_online_cpus() > 1 &&
3737 !cpumask_empty(to_cpumask(l->cpus)) &&
3738 len < PAGE_SIZE - 60) {
3739 len += sprintf(buf + len, " cpus=");
3740 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3741 to_cpumask(l->cpus));
3742 }
3743
3744 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3745 len < PAGE_SIZE - 60) {
3746 len += sprintf(buf + len, " nodes=");
3747 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3748 l->nodes);
3749 }
3750
3751 len += sprintf(buf + len, "\n");
3752 }
3753
3754 free_loc_track(&t);
3755 kfree(map);
3756 if (!t.count)
3757 len += sprintf(buf, "No data\n");
3758 return len;
3759 }
3760
3761 enum slab_stat_type {
3762 SL_ALL, /* All slabs */
3763 SL_PARTIAL, /* Only partially allocated slabs */
3764 SL_CPU, /* Only slabs used for cpu caches */
3765 SL_OBJECTS, /* Determine allocated objects not slabs */
3766 SL_TOTAL /* Determine object capacity not slabs */
3767 };
3768
3769 #define SO_ALL (1 << SL_ALL)
3770 #define SO_PARTIAL (1 << SL_PARTIAL)
3771 #define SO_CPU (1 << SL_CPU)
3772 #define SO_OBJECTS (1 << SL_OBJECTS)
3773 #define SO_TOTAL (1 << SL_TOTAL)
3774
3775 static ssize_t show_slab_objects(struct kmem_cache *s,
3776 char *buf, unsigned long flags)
3777 {
3778 unsigned long total = 0;
3779 int node;
3780 int x;
3781 unsigned long *nodes;
3782 unsigned long *per_cpu;
3783
3784 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3785 if (!nodes)
3786 return -ENOMEM;
3787 per_cpu = nodes + nr_node_ids;
3788
3789 if (flags & SO_CPU) {
3790 int cpu;
3791
3792 for_each_possible_cpu(cpu) {
3793 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3794
3795 if (!c || c->node < 0)
3796 continue;
3797
3798 if (c->page) {
3799 if (flags & SO_TOTAL)
3800 x = c->page->objects;
3801 else if (flags & SO_OBJECTS)
3802 x = c->page->inuse;
3803 else
3804 x = 1;
3805
3806 total += x;
3807 nodes[c->node] += x;
3808 }
3809 per_cpu[c->node]++;
3810 }
3811 }
3812
3813 if (flags & SO_ALL) {
3814 for_each_node_state(node, N_NORMAL_MEMORY) {
3815 struct kmem_cache_node *n = get_node(s, node);
3816
3817 if (flags & SO_TOTAL)
3818 x = atomic_long_read(&n->total_objects);
3819 else if (flags & SO_OBJECTS)
3820 x = atomic_long_read(&n->total_objects) -
3821 count_partial(n, count_free);
3822
3823 else
3824 x = atomic_long_read(&n->nr_slabs);
3825 total += x;
3826 nodes[node] += x;
3827 }
3828
3829 } else if (flags & SO_PARTIAL) {
3830 for_each_node_state(node, N_NORMAL_MEMORY) {
3831 struct kmem_cache_node *n = get_node(s, node);
3832
3833 if (flags & SO_TOTAL)
3834 x = count_partial(n, count_total);
3835 else if (flags & SO_OBJECTS)
3836 x = count_partial(n, count_inuse);
3837 else
3838 x = n->nr_partial;
3839 total += x;
3840 nodes[node] += x;
3841 }
3842 }
3843 x = sprintf(buf, "%lu", total);
3844 #ifdef CONFIG_NUMA
3845 for_each_node_state(node, N_NORMAL_MEMORY)
3846 if (nodes[node])
3847 x += sprintf(buf + x, " N%d=%lu",
3848 node, nodes[node]);
3849 #endif
3850 kfree(nodes);
3851 return x + sprintf(buf + x, "\n");
3852 }
3853
3854 static int any_slab_objects(struct kmem_cache *s)
3855 {
3856 int node;
3857
3858 for_each_online_node(node) {
3859 struct kmem_cache_node *n = get_node(s, node);
3860
3861 if (!n)
3862 continue;
3863
3864 if (atomic_long_read(&n->total_objects))
3865 return 1;
3866 }
3867 return 0;
3868 }
3869
3870 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3871 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3872
3873 struct slab_attribute {
3874 struct attribute attr;
3875 ssize_t (*show)(struct kmem_cache *s, char *buf);
3876 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3877 };
3878
3879 #define SLAB_ATTR_RO(_name) \
3880 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3881
3882 #define SLAB_ATTR(_name) \
3883 static struct slab_attribute _name##_attr = \
3884 __ATTR(_name, 0644, _name##_show, _name##_store)
3885
3886 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3887 {
3888 return sprintf(buf, "%d\n", s->size);
3889 }
3890 SLAB_ATTR_RO(slab_size);
3891
3892 static ssize_t align_show(struct kmem_cache *s, char *buf)
3893 {
3894 return sprintf(buf, "%d\n", s->align);
3895 }
3896 SLAB_ATTR_RO(align);
3897
3898 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3899 {
3900 return sprintf(buf, "%d\n", s->objsize);
3901 }
3902 SLAB_ATTR_RO(object_size);
3903
3904 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3905 {
3906 return sprintf(buf, "%d\n", oo_objects(s->oo));
3907 }
3908 SLAB_ATTR_RO(objs_per_slab);
3909
3910 static ssize_t order_store(struct kmem_cache *s,
3911 const char *buf, size_t length)
3912 {
3913 unsigned long order;
3914 int err;
3915
3916 err = strict_strtoul(buf, 10, &order);
3917 if (err)
3918 return err;
3919
3920 if (order > slub_max_order || order < slub_min_order)
3921 return -EINVAL;
3922
3923 calculate_sizes(s, order);
3924 return length;
3925 }
3926
3927 static ssize_t order_show(struct kmem_cache *s, char *buf)
3928 {
3929 return sprintf(buf, "%d\n", oo_order(s->oo));
3930 }
3931 SLAB_ATTR(order);
3932
3933 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3934 {
3935 return sprintf(buf, "%lu\n", s->min_partial);
3936 }
3937
3938 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3939 size_t length)
3940 {
3941 unsigned long min;
3942 int err;
3943
3944 err = strict_strtoul(buf, 10, &min);
3945 if (err)
3946 return err;
3947
3948 set_min_partial(s, min);
3949 return length;
3950 }
3951 SLAB_ATTR(min_partial);
3952
3953 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3954 {
3955 if (s->ctor) {
3956 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3957
3958 return n + sprintf(buf + n, "\n");
3959 }
3960 return 0;
3961 }
3962 SLAB_ATTR_RO(ctor);
3963
3964 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3965 {
3966 return sprintf(buf, "%d\n", s->refcount - 1);
3967 }
3968 SLAB_ATTR_RO(aliases);
3969
3970 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3971 {
3972 return show_slab_objects(s, buf, SO_ALL);
3973 }
3974 SLAB_ATTR_RO(slabs);
3975
3976 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3977 {
3978 return show_slab_objects(s, buf, SO_PARTIAL);
3979 }
3980 SLAB_ATTR_RO(partial);
3981
3982 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3983 {
3984 return show_slab_objects(s, buf, SO_CPU);
3985 }
3986 SLAB_ATTR_RO(cpu_slabs);
3987
3988 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3989 {
3990 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3991 }
3992 SLAB_ATTR_RO(objects);
3993
3994 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3995 {
3996 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3997 }
3998 SLAB_ATTR_RO(objects_partial);
3999
4000 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4001 {
4002 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4003 }
4004 SLAB_ATTR_RO(total_objects);
4005
4006 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4007 {
4008 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4009 }
4010
4011 static ssize_t sanity_checks_store(struct kmem_cache *s,
4012 const char *buf, size_t length)
4013 {
4014 s->flags &= ~SLAB_DEBUG_FREE;
4015 if (buf[0] == '1')
4016 s->flags |= SLAB_DEBUG_FREE;
4017 return length;
4018 }
4019 SLAB_ATTR(sanity_checks);
4020
4021 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4022 {
4023 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4024 }
4025
4026 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4027 size_t length)
4028 {
4029 s->flags &= ~SLAB_TRACE;
4030 if (buf[0] == '1')
4031 s->flags |= SLAB_TRACE;
4032 return length;
4033 }
4034 SLAB_ATTR(trace);
4035
4036 #ifdef CONFIG_FAILSLAB
4037 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4038 {
4039 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4040 }
4041
4042 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4043 size_t length)
4044 {
4045 s->flags &= ~SLAB_FAILSLAB;
4046 if (buf[0] == '1')
4047 s->flags |= SLAB_FAILSLAB;
4048 return length;
4049 }
4050 SLAB_ATTR(failslab);
4051 #endif
4052
4053 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4054 {
4055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4056 }
4057
4058 static ssize_t reclaim_account_store(struct kmem_cache *s,
4059 const char *buf, size_t length)
4060 {
4061 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4062 if (buf[0] == '1')
4063 s->flags |= SLAB_RECLAIM_ACCOUNT;
4064 return length;
4065 }
4066 SLAB_ATTR(reclaim_account);
4067
4068 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4069 {
4070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4071 }
4072 SLAB_ATTR_RO(hwcache_align);
4073
4074 #ifdef CONFIG_ZONE_DMA
4075 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4076 {
4077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4078 }
4079 SLAB_ATTR_RO(cache_dma);
4080 #endif
4081
4082 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4083 {
4084 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4085 }
4086 SLAB_ATTR_RO(destroy_by_rcu);
4087
4088 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4089 {
4090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4091 }
4092
4093 static ssize_t red_zone_store(struct kmem_cache *s,
4094 const char *buf, size_t length)
4095 {
4096 if (any_slab_objects(s))
4097 return -EBUSY;
4098
4099 s->flags &= ~SLAB_RED_ZONE;
4100 if (buf[0] == '1')
4101 s->flags |= SLAB_RED_ZONE;
4102 calculate_sizes(s, -1);
4103 return length;
4104 }
4105 SLAB_ATTR(red_zone);
4106
4107 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4108 {
4109 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4110 }
4111
4112 static ssize_t poison_store(struct kmem_cache *s,
4113 const char *buf, size_t length)
4114 {
4115 if (any_slab_objects(s))
4116 return -EBUSY;
4117
4118 s->flags &= ~SLAB_POISON;
4119 if (buf[0] == '1')
4120 s->flags |= SLAB_POISON;
4121 calculate_sizes(s, -1);
4122 return length;
4123 }
4124 SLAB_ATTR(poison);
4125
4126 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4127 {
4128 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4129 }
4130
4131 static ssize_t store_user_store(struct kmem_cache *s,
4132 const char *buf, size_t length)
4133 {
4134 if (any_slab_objects(s))
4135 return -EBUSY;
4136
4137 s->flags &= ~SLAB_STORE_USER;
4138 if (buf[0] == '1')
4139 s->flags |= SLAB_STORE_USER;
4140 calculate_sizes(s, -1);
4141 return length;
4142 }
4143 SLAB_ATTR(store_user);
4144
4145 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4146 {
4147 return 0;
4148 }
4149
4150 static ssize_t validate_store(struct kmem_cache *s,
4151 const char *buf, size_t length)
4152 {
4153 int ret = -EINVAL;
4154
4155 if (buf[0] == '1') {
4156 ret = validate_slab_cache(s);
4157 if (ret >= 0)
4158 ret = length;
4159 }
4160 return ret;
4161 }
4162 SLAB_ATTR(validate);
4163
4164 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4165 {
4166 return 0;
4167 }
4168
4169 static ssize_t shrink_store(struct kmem_cache *s,
4170 const char *buf, size_t length)
4171 {
4172 if (buf[0] == '1') {
4173 int rc = kmem_cache_shrink(s);
4174
4175 if (rc)
4176 return rc;
4177 } else
4178 return -EINVAL;
4179 return length;
4180 }
4181 SLAB_ATTR(shrink);
4182
4183 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4184 {
4185 if (!(s->flags & SLAB_STORE_USER))
4186 return -ENOSYS;
4187 return list_locations(s, buf, TRACK_ALLOC);
4188 }
4189 SLAB_ATTR_RO(alloc_calls);
4190
4191 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4192 {
4193 if (!(s->flags & SLAB_STORE_USER))
4194 return -ENOSYS;
4195 return list_locations(s, buf, TRACK_FREE);
4196 }
4197 SLAB_ATTR_RO(free_calls);
4198
4199 #ifdef CONFIG_NUMA
4200 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4201 {
4202 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4203 }
4204
4205 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4206 const char *buf, size_t length)
4207 {
4208 unsigned long ratio;
4209 int err;
4210
4211 err = strict_strtoul(buf, 10, &ratio);
4212 if (err)
4213 return err;
4214
4215 if (ratio <= 100)
4216 s->remote_node_defrag_ratio = ratio * 10;
4217
4218 return length;
4219 }
4220 SLAB_ATTR(remote_node_defrag_ratio);
4221 #endif
4222
4223 #ifdef CONFIG_SLUB_STATS
4224 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4225 {
4226 unsigned long sum = 0;
4227 int cpu;
4228 int len;
4229 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4230
4231 if (!data)
4232 return -ENOMEM;
4233
4234 for_each_online_cpu(cpu) {
4235 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4236
4237 data[cpu] = x;
4238 sum += x;
4239 }
4240
4241 len = sprintf(buf, "%lu", sum);
4242
4243 #ifdef CONFIG_SMP
4244 for_each_online_cpu(cpu) {
4245 if (data[cpu] && len < PAGE_SIZE - 20)
4246 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4247 }
4248 #endif
4249 kfree(data);
4250 return len + sprintf(buf + len, "\n");
4251 }
4252
4253 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4254 {
4255 int cpu;
4256
4257 for_each_online_cpu(cpu)
4258 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4259 }
4260
4261 #define STAT_ATTR(si, text) \
4262 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4263 { \
4264 return show_stat(s, buf, si); \
4265 } \
4266 static ssize_t text##_store(struct kmem_cache *s, \
4267 const char *buf, size_t length) \
4268 { \
4269 if (buf[0] != '0') \
4270 return -EINVAL; \
4271 clear_stat(s, si); \
4272 return length; \
4273 } \
4274 SLAB_ATTR(text); \
4275
4276 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4277 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4278 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4279 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4280 STAT_ATTR(FREE_FROZEN, free_frozen);
4281 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4282 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4283 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4284 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4285 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4286 STAT_ATTR(FREE_SLAB, free_slab);
4287 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4288 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4289 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4290 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4291 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4292 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4293 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4294 #endif
4295
4296 static struct attribute *slab_attrs[] = {
4297 &slab_size_attr.attr,
4298 &object_size_attr.attr,
4299 &objs_per_slab_attr.attr,
4300 &order_attr.attr,
4301 &min_partial_attr.attr,
4302 &objects_attr.attr,
4303 &objects_partial_attr.attr,
4304 &total_objects_attr.attr,
4305 &slabs_attr.attr,
4306 &partial_attr.attr,
4307 &cpu_slabs_attr.attr,
4308 &ctor_attr.attr,
4309 &aliases_attr.attr,
4310 &align_attr.attr,
4311 &sanity_checks_attr.attr,
4312 &trace_attr.attr,
4313 &hwcache_align_attr.attr,
4314 &reclaim_account_attr.attr,
4315 &destroy_by_rcu_attr.attr,
4316 &red_zone_attr.attr,
4317 &poison_attr.attr,
4318 &store_user_attr.attr,
4319 &validate_attr.attr,
4320 &shrink_attr.attr,
4321 &alloc_calls_attr.attr,
4322 &free_calls_attr.attr,
4323 #ifdef CONFIG_ZONE_DMA
4324 &cache_dma_attr.attr,
4325 #endif
4326 #ifdef CONFIG_NUMA
4327 &remote_node_defrag_ratio_attr.attr,
4328 #endif
4329 #ifdef CONFIG_SLUB_STATS
4330 &alloc_fastpath_attr.attr,
4331 &alloc_slowpath_attr.attr,
4332 &free_fastpath_attr.attr,
4333 &free_slowpath_attr.attr,
4334 &free_frozen_attr.attr,
4335 &free_add_partial_attr.attr,
4336 &free_remove_partial_attr.attr,
4337 &alloc_from_partial_attr.attr,
4338 &alloc_slab_attr.attr,
4339 &alloc_refill_attr.attr,
4340 &free_slab_attr.attr,
4341 &cpuslab_flush_attr.attr,
4342 &deactivate_full_attr.attr,
4343 &deactivate_empty_attr.attr,
4344 &deactivate_to_head_attr.attr,
4345 &deactivate_to_tail_attr.attr,
4346 &deactivate_remote_frees_attr.attr,
4347 &order_fallback_attr.attr,
4348 #endif
4349 #ifdef CONFIG_FAILSLAB
4350 &failslab_attr.attr,
4351 #endif
4352
4353 NULL
4354 };
4355
4356 static struct attribute_group slab_attr_group = {
4357 .attrs = slab_attrs,
4358 };
4359
4360 static ssize_t slab_attr_show(struct kobject *kobj,
4361 struct attribute *attr,
4362 char *buf)
4363 {
4364 struct slab_attribute *attribute;
4365 struct kmem_cache *s;
4366 int err;
4367
4368 attribute = to_slab_attr(attr);
4369 s = to_slab(kobj);
4370
4371 if (!attribute->show)
4372 return -EIO;
4373
4374 err = attribute->show(s, buf);
4375
4376 return err;
4377 }
4378
4379 static ssize_t slab_attr_store(struct kobject *kobj,
4380 struct attribute *attr,
4381 const char *buf, size_t len)
4382 {
4383 struct slab_attribute *attribute;
4384 struct kmem_cache *s;
4385 int err;
4386
4387 attribute = to_slab_attr(attr);
4388 s = to_slab(kobj);
4389
4390 if (!attribute->store)
4391 return -EIO;
4392
4393 err = attribute->store(s, buf, len);
4394
4395 return err;
4396 }
4397
4398 static void kmem_cache_release(struct kobject *kobj)
4399 {
4400 struct kmem_cache *s = to_slab(kobj);
4401
4402 kfree(s->name);
4403 kfree(s);
4404 }
4405
4406 static const struct sysfs_ops slab_sysfs_ops = {
4407 .show = slab_attr_show,
4408 .store = slab_attr_store,
4409 };
4410
4411 static struct kobj_type slab_ktype = {
4412 .sysfs_ops = &slab_sysfs_ops,
4413 .release = kmem_cache_release
4414 };
4415
4416 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4417 {
4418 struct kobj_type *ktype = get_ktype(kobj);
4419
4420 if (ktype == &slab_ktype)
4421 return 1;
4422 return 0;
4423 }
4424
4425 static const struct kset_uevent_ops slab_uevent_ops = {
4426 .filter = uevent_filter,
4427 };
4428
4429 static struct kset *slab_kset;
4430
4431 #define ID_STR_LENGTH 64
4432
4433 /* Create a unique string id for a slab cache:
4434 *
4435 * Format :[flags-]size
4436 */
4437 static char *create_unique_id(struct kmem_cache *s)
4438 {
4439 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4440 char *p = name;
4441
4442 BUG_ON(!name);
4443
4444 *p++ = ':';
4445 /*
4446 * First flags affecting slabcache operations. We will only
4447 * get here for aliasable slabs so we do not need to support
4448 * too many flags. The flags here must cover all flags that
4449 * are matched during merging to guarantee that the id is
4450 * unique.
4451 */
4452 if (s->flags & SLAB_CACHE_DMA)
4453 *p++ = 'd';
4454 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4455 *p++ = 'a';
4456 if (s->flags & SLAB_DEBUG_FREE)
4457 *p++ = 'F';
4458 if (!(s->flags & SLAB_NOTRACK))
4459 *p++ = 't';
4460 if (p != name + 1)
4461 *p++ = '-';
4462 p += sprintf(p, "%07d", s->size);
4463 BUG_ON(p > name + ID_STR_LENGTH - 1);
4464 return name;
4465 }
4466
4467 static int sysfs_slab_add(struct kmem_cache *s)
4468 {
4469 int err;
4470 const char *name;
4471 int unmergeable;
4472
4473 if (slab_state < SYSFS)
4474 /* Defer until later */
4475 return 0;
4476
4477 unmergeable = slab_unmergeable(s);
4478 if (unmergeable) {
4479 /*
4480 * Slabcache can never be merged so we can use the name proper.
4481 * This is typically the case for debug situations. In that
4482 * case we can catch duplicate names easily.
4483 */
4484 sysfs_remove_link(&slab_kset->kobj, s->name);
4485 name = s->name;
4486 } else {
4487 /*
4488 * Create a unique name for the slab as a target
4489 * for the symlinks.
4490 */
4491 name = create_unique_id(s);
4492 }
4493
4494 s->kobj.kset = slab_kset;
4495 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4496 if (err) {
4497 kobject_put(&s->kobj);
4498 return err;
4499 }
4500
4501 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4502 if (err) {
4503 kobject_del(&s->kobj);
4504 kobject_put(&s->kobj);
4505 return err;
4506 }
4507 kobject_uevent(&s->kobj, KOBJ_ADD);
4508 if (!unmergeable) {
4509 /* Setup first alias */
4510 sysfs_slab_alias(s, s->name);
4511 kfree(name);
4512 }
4513 return 0;
4514 }
4515
4516 static void sysfs_slab_remove(struct kmem_cache *s)
4517 {
4518 if (slab_state < SYSFS)
4519 /*
4520 * Sysfs has not been setup yet so no need to remove the
4521 * cache from sysfs.
4522 */
4523 return;
4524
4525 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4526 kobject_del(&s->kobj);
4527 kobject_put(&s->kobj);
4528 }
4529
4530 /*
4531 * Need to buffer aliases during bootup until sysfs becomes
4532 * available lest we lose that information.
4533 */
4534 struct saved_alias {
4535 struct kmem_cache *s;
4536 const char *name;
4537 struct saved_alias *next;
4538 };
4539
4540 static struct saved_alias *alias_list;
4541
4542 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4543 {
4544 struct saved_alias *al;
4545
4546 if (slab_state == SYSFS) {
4547 /*
4548 * If we have a leftover link then remove it.
4549 */
4550 sysfs_remove_link(&slab_kset->kobj, name);
4551 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4552 }
4553
4554 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4555 if (!al)
4556 return -ENOMEM;
4557
4558 al->s = s;
4559 al->name = name;
4560 al->next = alias_list;
4561 alias_list = al;
4562 return 0;
4563 }
4564
4565 static int __init slab_sysfs_init(void)
4566 {
4567 struct kmem_cache *s;
4568 int err;
4569
4570 down_write(&slub_lock);
4571
4572 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4573 if (!slab_kset) {
4574 up_write(&slub_lock);
4575 printk(KERN_ERR "Cannot register slab subsystem.\n");
4576 return -ENOSYS;
4577 }
4578
4579 slab_state = SYSFS;
4580
4581 list_for_each_entry(s, &slab_caches, list) {
4582 err = sysfs_slab_add(s);
4583 if (err)
4584 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4585 " to sysfs\n", s->name);
4586 }
4587
4588 while (alias_list) {
4589 struct saved_alias *al = alias_list;
4590
4591 alias_list = alias_list->next;
4592 err = sysfs_slab_alias(al->s, al->name);
4593 if (err)
4594 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4595 " %s to sysfs\n", s->name);
4596 kfree(al);
4597 }
4598
4599 up_write(&slub_lock);
4600 resiliency_test();
4601 return 0;
4602 }
4603
4604 __initcall(slab_sysfs_init);
4605 #endif
4606
4607 /*
4608 * The /proc/slabinfo ABI
4609 */
4610 #ifdef CONFIG_SLABINFO
4611 static void print_slabinfo_header(struct seq_file *m)
4612 {
4613 seq_puts(m, "slabinfo - version: 2.1\n");
4614 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4615 "<objperslab> <pagesperslab>");
4616 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4617 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4618 seq_putc(m, '\n');
4619 }
4620
4621 static void *s_start(struct seq_file *m, loff_t *pos)
4622 {
4623 loff_t n = *pos;
4624
4625 down_read(&slub_lock);
4626 if (!n)
4627 print_slabinfo_header(m);
4628
4629 return seq_list_start(&slab_caches, *pos);
4630 }
4631
4632 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4633 {
4634 return seq_list_next(p, &slab_caches, pos);
4635 }
4636
4637 static void s_stop(struct seq_file *m, void *p)
4638 {
4639 up_read(&slub_lock);
4640 }
4641
4642 static int s_show(struct seq_file *m, void *p)
4643 {
4644 unsigned long nr_partials = 0;
4645 unsigned long nr_slabs = 0;
4646 unsigned long nr_inuse = 0;
4647 unsigned long nr_objs = 0;
4648 unsigned long nr_free = 0;
4649 struct kmem_cache *s;
4650 int node;
4651
4652 s = list_entry(p, struct kmem_cache, list);
4653
4654 for_each_online_node(node) {
4655 struct kmem_cache_node *n = get_node(s, node);
4656
4657 if (!n)
4658 continue;
4659
4660 nr_partials += n->nr_partial;
4661 nr_slabs += atomic_long_read(&n->nr_slabs);
4662 nr_objs += atomic_long_read(&n->total_objects);
4663 nr_free += count_partial(n, count_free);
4664 }
4665
4666 nr_inuse = nr_objs - nr_free;
4667
4668 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4669 nr_objs, s->size, oo_objects(s->oo),
4670 (1 << oo_order(s->oo)));
4671 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4672 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4673 0UL);
4674 seq_putc(m, '\n');
4675 return 0;
4676 }
4677
4678 static const struct seq_operations slabinfo_op = {
4679 .start = s_start,
4680 .next = s_next,
4681 .stop = s_stop,
4682 .show = s_show,
4683 };
4684
4685 static int slabinfo_open(struct inode *inode, struct file *file)
4686 {
4687 return seq_open(file, &slabinfo_op);
4688 }
4689
4690 static const struct file_operations proc_slabinfo_operations = {
4691 .open = slabinfo_open,
4692 .read = seq_read,
4693 .llseek = seq_lseek,
4694 .release = seq_release,
4695 };
4696
4697 static int __init slab_proc_init(void)
4698 {
4699 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4700 return 0;
4701 }
4702 module_init(slab_proc_init);
4703 #endif /* CONFIG_SLABINFO */
This page took 0.18767 seconds and 6 git commands to generate.