slob: record page flag overlays explicitly
[deliverable/linux.git] / mm / sparse.c
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "internal.h"
12 #include <asm/dma.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include "internal.h"
16
17 /*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section - memory sections, mem_map's for valid memory
21 */
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
24 ____cacheline_internodealigned_in_smp;
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 ____cacheline_internodealigned_in_smp;
28 #endif
29 EXPORT_SYMBOL(mem_section);
30
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 /*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
42
43 int page_to_nid(struct page *page)
44 {
45 return section_to_node_table[page_to_section(page)];
46 }
47 EXPORT_SYMBOL(page_to_nid);
48
49 static void set_section_nid(unsigned long section_nr, int nid)
50 {
51 section_to_node_table[section_nr] = nid;
52 }
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr, int nid)
55 {
56 }
57 #endif
58
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 {
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
65
66 if (slab_is_available())
67 section = kmalloc_node(array_size, GFP_KERNEL, nid);
68 else
69 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
70
71 if (section)
72 memset(section, 0, array_size);
73
74 return section;
75 }
76
77 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
78 {
79 static DEFINE_SPINLOCK(index_init_lock);
80 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81 struct mem_section *section;
82 int ret = 0;
83
84 if (mem_section[root])
85 return -EEXIST;
86
87 section = sparse_index_alloc(nid);
88 if (!section)
89 return -ENOMEM;
90 /*
91 * This lock keeps two different sections from
92 * reallocating for the same index
93 */
94 spin_lock(&index_init_lock);
95
96 if (mem_section[root]) {
97 ret = -EEXIST;
98 goto out;
99 }
100
101 mem_section[root] = section;
102 out:
103 spin_unlock(&index_init_lock);
104 return ret;
105 }
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 {
109 return 0;
110 }
111 #endif
112
113 /*
114 * Although written for the SPARSEMEM_EXTREME case, this happens
115 * to also work for the flat array case because
116 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
117 */
118 int __section_nr(struct mem_section* ms)
119 {
120 unsigned long root_nr;
121 struct mem_section* root;
122
123 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
124 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
125 if (!root)
126 continue;
127
128 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
129 break;
130 }
131
132 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
133 }
134
135 /*
136 * During early boot, before section_mem_map is used for an actual
137 * mem_map, we use section_mem_map to store the section's NUMA
138 * node. This keeps us from having to use another data structure. The
139 * node information is cleared just before we store the real mem_map.
140 */
141 static inline unsigned long sparse_encode_early_nid(int nid)
142 {
143 return (nid << SECTION_NID_SHIFT);
144 }
145
146 static inline int sparse_early_nid(struct mem_section *section)
147 {
148 return (section->section_mem_map >> SECTION_NID_SHIFT);
149 }
150
151 /* Validate the physical addressing limitations of the model */
152 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
153 unsigned long *end_pfn)
154 {
155 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
156
157 /*
158 * Sanity checks - do not allow an architecture to pass
159 * in larger pfns than the maximum scope of sparsemem:
160 */
161 if (*start_pfn > max_sparsemem_pfn) {
162 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
163 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
164 *start_pfn, *end_pfn, max_sparsemem_pfn);
165 WARN_ON_ONCE(1);
166 *start_pfn = max_sparsemem_pfn;
167 *end_pfn = max_sparsemem_pfn;
168 }
169
170 if (*end_pfn > max_sparsemem_pfn) {
171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 *start_pfn, *end_pfn, max_sparsemem_pfn);
174 WARN_ON_ONCE(1);
175 *end_pfn = max_sparsemem_pfn;
176 }
177 }
178
179 /* Record a memory area against a node. */
180 void __init memory_present(int nid, unsigned long start, unsigned long end)
181 {
182 unsigned long pfn;
183
184 start &= PAGE_SECTION_MASK;
185 mminit_validate_memmodel_limits(&start, &end);
186 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
187 unsigned long section = pfn_to_section_nr(pfn);
188 struct mem_section *ms;
189
190 sparse_index_init(section, nid);
191 set_section_nid(section, nid);
192
193 ms = __nr_to_section(section);
194 if (!ms->section_mem_map)
195 ms->section_mem_map = sparse_encode_early_nid(nid) |
196 SECTION_MARKED_PRESENT;
197 }
198 }
199
200 /*
201 * Only used by the i386 NUMA architecures, but relatively
202 * generic code.
203 */
204 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
205 unsigned long end_pfn)
206 {
207 unsigned long pfn;
208 unsigned long nr_pages = 0;
209
210 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
211 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
212 if (nid != early_pfn_to_nid(pfn))
213 continue;
214
215 if (pfn_present(pfn))
216 nr_pages += PAGES_PER_SECTION;
217 }
218
219 return nr_pages * sizeof(struct page);
220 }
221
222 /*
223 * Subtle, we encode the real pfn into the mem_map such that
224 * the identity pfn - section_mem_map will return the actual
225 * physical page frame number.
226 */
227 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
228 {
229 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
230 }
231
232 /*
233 * Decode mem_map from the coded memmap
234 */
235 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
236 {
237 /* mask off the extra low bits of information */
238 coded_mem_map &= SECTION_MAP_MASK;
239 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
240 }
241
242 static int __meminit sparse_init_one_section(struct mem_section *ms,
243 unsigned long pnum, struct page *mem_map,
244 unsigned long *pageblock_bitmap)
245 {
246 if (!present_section(ms))
247 return -EINVAL;
248
249 ms->section_mem_map &= ~SECTION_MAP_MASK;
250 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
251 SECTION_HAS_MEM_MAP;
252 ms->pageblock_flags = pageblock_bitmap;
253
254 return 1;
255 }
256
257 unsigned long usemap_size(void)
258 {
259 unsigned long size_bytes;
260 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
261 size_bytes = roundup(size_bytes, sizeof(unsigned long));
262 return size_bytes;
263 }
264
265 #ifdef CONFIG_MEMORY_HOTPLUG
266 static unsigned long *__kmalloc_section_usemap(void)
267 {
268 return kmalloc(usemap_size(), GFP_KERNEL);
269 }
270 #endif /* CONFIG_MEMORY_HOTPLUG */
271
272 static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
273 {
274 unsigned long *usemap;
275 struct mem_section *ms = __nr_to_section(pnum);
276 int nid = sparse_early_nid(ms);
277
278 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
279 if (usemap)
280 return usemap;
281
282 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
283 nid = 0;
284
285 printk(KERN_WARNING "%s: allocation failed\n", __func__);
286 return NULL;
287 }
288
289 #ifndef CONFIG_SPARSEMEM_VMEMMAP
290 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
291 {
292 struct page *map;
293
294 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
295 if (map)
296 return map;
297
298 map = alloc_bootmem_pages_node(NODE_DATA(nid),
299 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
300 return map;
301 }
302 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
303
304 struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
305 {
306 struct page *map;
307 struct mem_section *ms = __nr_to_section(pnum);
308 int nid = sparse_early_nid(ms);
309
310 map = sparse_mem_map_populate(pnum, nid);
311 if (map)
312 return map;
313
314 printk(KERN_ERR "%s: sparsemem memory map backing failed "
315 "some memory will not be available.\n", __func__);
316 ms->section_mem_map = 0;
317 return NULL;
318 }
319
320 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
321 {
322 }
323 /*
324 * Allocate the accumulated non-linear sections, allocate a mem_map
325 * for each and record the physical to section mapping.
326 */
327 void __init sparse_init(void)
328 {
329 unsigned long pnum;
330 struct page *map;
331 unsigned long *usemap;
332 unsigned long **usemap_map;
333 int size;
334
335 /*
336 * map is using big page (aka 2M in x86 64 bit)
337 * usemap is less one page (aka 24 bytes)
338 * so alloc 2M (with 2M align) and 24 bytes in turn will
339 * make next 2M slip to one more 2M later.
340 * then in big system, the memory will have a lot of holes...
341 * here try to allocate 2M pages continously.
342 *
343 * powerpc need to call sparse_init_one_section right after each
344 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
345 */
346 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
347 usemap_map = alloc_bootmem(size);
348 if (!usemap_map)
349 panic("can not allocate usemap_map\n");
350
351 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
352 if (!present_section_nr(pnum))
353 continue;
354 usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
355 }
356
357 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
358 if (!present_section_nr(pnum))
359 continue;
360
361 usemap = usemap_map[pnum];
362 if (!usemap)
363 continue;
364
365 map = sparse_early_mem_map_alloc(pnum);
366 if (!map)
367 continue;
368
369 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
370 usemap);
371 }
372
373 vmemmap_populate_print_last();
374
375 free_bootmem(__pa(usemap_map), size);
376 }
377
378 #ifdef CONFIG_MEMORY_HOTPLUG
379 #ifdef CONFIG_SPARSEMEM_VMEMMAP
380 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
381 unsigned long nr_pages)
382 {
383 /* This will make the necessary allocations eventually. */
384 return sparse_mem_map_populate(pnum, nid);
385 }
386 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
387 {
388 return; /* XXX: Not implemented yet */
389 }
390 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
391 {
392 }
393 #else
394 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
395 {
396 struct page *page, *ret;
397 unsigned long memmap_size = sizeof(struct page) * nr_pages;
398
399 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
400 if (page)
401 goto got_map_page;
402
403 ret = vmalloc(memmap_size);
404 if (ret)
405 goto got_map_ptr;
406
407 return NULL;
408 got_map_page:
409 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
410 got_map_ptr:
411 memset(ret, 0, memmap_size);
412
413 return ret;
414 }
415
416 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
417 unsigned long nr_pages)
418 {
419 return __kmalloc_section_memmap(nr_pages);
420 }
421
422 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
423 {
424 if (is_vmalloc_addr(memmap))
425 vfree(memmap);
426 else
427 free_pages((unsigned long)memmap,
428 get_order(sizeof(struct page) * nr_pages));
429 }
430
431 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
432 {
433 unsigned long maps_section_nr, removing_section_nr, i;
434 int magic;
435
436 for (i = 0; i < nr_pages; i++, page++) {
437 magic = atomic_read(&page->_mapcount);
438
439 BUG_ON(magic == NODE_INFO);
440
441 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
442 removing_section_nr = page->private;
443
444 /*
445 * When this function is called, the removing section is
446 * logical offlined state. This means all pages are isolated
447 * from page allocator. If removing section's memmap is placed
448 * on the same section, it must not be freed.
449 * If it is freed, page allocator may allocate it which will
450 * be removed physically soon.
451 */
452 if (maps_section_nr != removing_section_nr)
453 put_page_bootmem(page);
454 }
455 }
456 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
457
458 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
459 {
460 struct page *usemap_page;
461 unsigned long nr_pages;
462
463 if (!usemap)
464 return;
465
466 usemap_page = virt_to_page(usemap);
467 /*
468 * Check to see if allocation came from hot-plug-add
469 */
470 if (PageSlab(usemap_page)) {
471 kfree(usemap);
472 if (memmap)
473 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
474 return;
475 }
476
477 /*
478 * The usemap came from bootmem. This is packed with other usemaps
479 * on the section which has pgdat at boot time. Just keep it as is now.
480 */
481
482 if (memmap) {
483 struct page *memmap_page;
484 memmap_page = virt_to_page(memmap);
485
486 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
487 >> PAGE_SHIFT;
488
489 free_map_bootmem(memmap_page, nr_pages);
490 }
491 }
492
493 /*
494 * returns the number of sections whose mem_maps were properly
495 * set. If this is <=0, then that means that the passed-in
496 * map was not consumed and must be freed.
497 */
498 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
499 int nr_pages)
500 {
501 unsigned long section_nr = pfn_to_section_nr(start_pfn);
502 struct pglist_data *pgdat = zone->zone_pgdat;
503 struct mem_section *ms;
504 struct page *memmap;
505 unsigned long *usemap;
506 unsigned long flags;
507 int ret;
508
509 /*
510 * no locking for this, because it does its own
511 * plus, it does a kmalloc
512 */
513 ret = sparse_index_init(section_nr, pgdat->node_id);
514 if (ret < 0 && ret != -EEXIST)
515 return ret;
516 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
517 if (!memmap)
518 return -ENOMEM;
519 usemap = __kmalloc_section_usemap();
520 if (!usemap) {
521 __kfree_section_memmap(memmap, nr_pages);
522 return -ENOMEM;
523 }
524
525 pgdat_resize_lock(pgdat, &flags);
526
527 ms = __pfn_to_section(start_pfn);
528 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
529 ret = -EEXIST;
530 goto out;
531 }
532
533 ms->section_mem_map |= SECTION_MARKED_PRESENT;
534
535 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
536
537 out:
538 pgdat_resize_unlock(pgdat, &flags);
539 if (ret <= 0) {
540 kfree(usemap);
541 __kfree_section_memmap(memmap, nr_pages);
542 }
543 return ret;
544 }
545
546 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
547 {
548 struct page *memmap = NULL;
549 unsigned long *usemap = NULL;
550
551 if (ms->section_mem_map) {
552 usemap = ms->pageblock_flags;
553 memmap = sparse_decode_mem_map(ms->section_mem_map,
554 __section_nr(ms));
555 ms->section_mem_map = 0;
556 ms->pageblock_flags = NULL;
557 }
558
559 free_section_usemap(memmap, usemap);
560 }
561 #endif
This page took 0.042519 seconds and 5 git commands to generate.