mm/swap.c: clean up *lru_cache_add* functions
[deliverable/linux.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34
35 #include "internal.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
39
40 /* How many pages do we try to swap or page in/out together? */
41 int page_cluster;
42
43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
46
47 /*
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
50 */
51 static void __page_cache_release(struct page *page)
52 {
53 if (PageLRU(page)) {
54 struct zone *zone = page_zone(page);
55 struct lruvec *lruvec;
56 unsigned long flags;
57
58 spin_lock_irqsave(&zone->lru_lock, flags);
59 lruvec = mem_cgroup_page_lruvec(page, zone);
60 VM_BUG_ON_PAGE(!PageLRU(page), page);
61 __ClearPageLRU(page);
62 del_page_from_lru_list(page, lruvec, page_off_lru(page));
63 spin_unlock_irqrestore(&zone->lru_lock, flags);
64 }
65 }
66
67 static void __put_single_page(struct page *page)
68 {
69 __page_cache_release(page);
70 free_hot_cold_page(page, 0);
71 }
72
73 static void __put_compound_page(struct page *page)
74 {
75 compound_page_dtor *dtor;
76
77 __page_cache_release(page);
78 dtor = get_compound_page_dtor(page);
79 (*dtor)(page);
80 }
81
82 static void put_compound_page(struct page *page)
83 {
84 struct page *page_head;
85
86 if (likely(!PageTail(page))) {
87 if (put_page_testzero(page)) {
88 /*
89 * By the time all refcounts have been released
90 * split_huge_page cannot run anymore from under us.
91 */
92 if (PageHead(page))
93 __put_compound_page(page);
94 else
95 __put_single_page(page);
96 }
97 return;
98 }
99
100 /* __split_huge_page_refcount can run under us */
101 page_head = compound_head(page);
102
103 /*
104 * THP can not break up slab pages so avoid taking
105 * compound_lock() and skip the tail page refcounting (in
106 * _mapcount) too. Slab performs non-atomic bit ops on
107 * page->flags for better performance. In particular
108 * slab_unlock() in slub used to be a hot path. It is still
109 * hot on arches that do not support
110 * this_cpu_cmpxchg_double().
111 *
112 * If "page" is part of a slab or hugetlbfs page it cannot be
113 * splitted and the head page cannot change from under us. And
114 * if "page" is part of a THP page under splitting, if the
115 * head page pointed by the THP tail isn't a THP head anymore,
116 * we'll find PageTail clear after smp_rmb() and we'll treat
117 * it as a single page.
118 */
119 if (!__compound_tail_refcounted(page_head)) {
120 /*
121 * If "page" is a THP tail, we must read the tail page
122 * flags after the head page flags. The
123 * split_huge_page side enforces write memory barriers
124 * between clearing PageTail and before the head page
125 * can be freed and reallocated.
126 */
127 smp_rmb();
128 if (likely(PageTail(page))) {
129 /*
130 * __split_huge_page_refcount cannot race
131 * here.
132 */
133 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
134 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
135 if (put_page_testzero(page_head)) {
136 /*
137 * If this is the tail of a slab
138 * compound page, the tail pin must
139 * not be the last reference held on
140 * the page, because the PG_slab
141 * cannot be cleared before all tail
142 * pins (which skips the _mapcount
143 * tail refcounting) have been
144 * released. For hugetlbfs the tail
145 * pin may be the last reference on
146 * the page instead, because
147 * PageHeadHuge will not go away until
148 * the compound page enters the buddy
149 * allocator.
150 */
151 VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
152 __put_compound_page(page_head);
153 }
154 return;
155 } else
156 /*
157 * __split_huge_page_refcount run before us,
158 * "page" was a THP tail. The split page_head
159 * has been freed and reallocated as slab or
160 * hugetlbfs page of smaller order (only
161 * possible if reallocated as slab on x86).
162 */
163 goto out_put_single;
164 }
165
166 if (likely(page != page_head && get_page_unless_zero(page_head))) {
167 unsigned long flags;
168
169 /*
170 * page_head wasn't a dangling pointer but it may not
171 * be a head page anymore by the time we obtain the
172 * lock. That is ok as long as it can't be freed from
173 * under us.
174 */
175 flags = compound_lock_irqsave(page_head);
176 if (unlikely(!PageTail(page))) {
177 /* __split_huge_page_refcount run before us */
178 compound_unlock_irqrestore(page_head, flags);
179 if (put_page_testzero(page_head)) {
180 /*
181 * The head page may have been freed
182 * and reallocated as a compound page
183 * of smaller order and then freed
184 * again. All we know is that it
185 * cannot have become: a THP page, a
186 * compound page of higher order, a
187 * tail page. That is because we
188 * still hold the refcount of the
189 * split THP tail and page_head was
190 * the THP head before the split.
191 */
192 if (PageHead(page_head))
193 __put_compound_page(page_head);
194 else
195 __put_single_page(page_head);
196 }
197 out_put_single:
198 if (put_page_testzero(page))
199 __put_single_page(page);
200 return;
201 }
202 VM_BUG_ON_PAGE(page_head != page->first_page, page);
203 /*
204 * We can release the refcount taken by
205 * get_page_unless_zero() now that
206 * __split_huge_page_refcount() is blocked on the
207 * compound_lock.
208 */
209 if (put_page_testzero(page_head))
210 VM_BUG_ON_PAGE(1, page_head);
211 /* __split_huge_page_refcount will wait now */
212 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
213 atomic_dec(&page->_mapcount);
214 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
215 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
216 compound_unlock_irqrestore(page_head, flags);
217
218 if (put_page_testzero(page_head)) {
219 if (PageHead(page_head))
220 __put_compound_page(page_head);
221 else
222 __put_single_page(page_head);
223 }
224 } else {
225 /* page_head is a dangling pointer */
226 VM_BUG_ON_PAGE(PageTail(page), page);
227 goto out_put_single;
228 }
229 }
230
231 void put_page(struct page *page)
232 {
233 if (unlikely(PageCompound(page)))
234 put_compound_page(page);
235 else if (put_page_testzero(page))
236 __put_single_page(page);
237 }
238 EXPORT_SYMBOL(put_page);
239
240 /*
241 * This function is exported but must not be called by anything other
242 * than get_page(). It implements the slow path of get_page().
243 */
244 bool __get_page_tail(struct page *page)
245 {
246 /*
247 * This takes care of get_page() if run on a tail page
248 * returned by one of the get_user_pages/follow_page variants.
249 * get_user_pages/follow_page itself doesn't need the compound
250 * lock because it runs __get_page_tail_foll() under the
251 * proper PT lock that already serializes against
252 * split_huge_page().
253 */
254 unsigned long flags;
255 bool got;
256 struct page *page_head = compound_head(page);
257
258 /* Ref to put_compound_page() comment. */
259 if (!__compound_tail_refcounted(page_head)) {
260 smp_rmb();
261 if (likely(PageTail(page))) {
262 /*
263 * This is a hugetlbfs page or a slab
264 * page. __split_huge_page_refcount
265 * cannot race here.
266 */
267 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
268 __get_page_tail_foll(page, true);
269 return true;
270 } else {
271 /*
272 * __split_huge_page_refcount run
273 * before us, "page" was a THP
274 * tail. The split page_head has been
275 * freed and reallocated as slab or
276 * hugetlbfs page of smaller order
277 * (only possible if reallocated as
278 * slab on x86).
279 */
280 return false;
281 }
282 }
283
284 got = false;
285 if (likely(page != page_head && get_page_unless_zero(page_head))) {
286 /*
287 * page_head wasn't a dangling pointer but it
288 * may not be a head page anymore by the time
289 * we obtain the lock. That is ok as long as it
290 * can't be freed from under us.
291 */
292 flags = compound_lock_irqsave(page_head);
293 /* here __split_huge_page_refcount won't run anymore */
294 if (likely(PageTail(page))) {
295 __get_page_tail_foll(page, false);
296 got = true;
297 }
298 compound_unlock_irqrestore(page_head, flags);
299 if (unlikely(!got))
300 put_page(page_head);
301 }
302 return got;
303 }
304 EXPORT_SYMBOL(__get_page_tail);
305
306 /**
307 * put_pages_list() - release a list of pages
308 * @pages: list of pages threaded on page->lru
309 *
310 * Release a list of pages which are strung together on page.lru. Currently
311 * used by read_cache_pages() and related error recovery code.
312 */
313 void put_pages_list(struct list_head *pages)
314 {
315 while (!list_empty(pages)) {
316 struct page *victim;
317
318 victim = list_entry(pages->prev, struct page, lru);
319 list_del(&victim->lru);
320 page_cache_release(victim);
321 }
322 }
323 EXPORT_SYMBOL(put_pages_list);
324
325 /*
326 * get_kernel_pages() - pin kernel pages in memory
327 * @kiov: An array of struct kvec structures
328 * @nr_segs: number of segments to pin
329 * @write: pinning for read/write, currently ignored
330 * @pages: array that receives pointers to the pages pinned.
331 * Should be at least nr_segs long.
332 *
333 * Returns number of pages pinned. This may be fewer than the number
334 * requested. If nr_pages is 0 or negative, returns 0. If no pages
335 * were pinned, returns -errno. Each page returned must be released
336 * with a put_page() call when it is finished with.
337 */
338 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
339 struct page **pages)
340 {
341 int seg;
342
343 for (seg = 0; seg < nr_segs; seg++) {
344 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
345 return seg;
346
347 pages[seg] = kmap_to_page(kiov[seg].iov_base);
348 page_cache_get(pages[seg]);
349 }
350
351 return seg;
352 }
353 EXPORT_SYMBOL_GPL(get_kernel_pages);
354
355 /*
356 * get_kernel_page() - pin a kernel page in memory
357 * @start: starting kernel address
358 * @write: pinning for read/write, currently ignored
359 * @pages: array that receives pointer to the page pinned.
360 * Must be at least nr_segs long.
361 *
362 * Returns 1 if page is pinned. If the page was not pinned, returns
363 * -errno. The page returned must be released with a put_page() call
364 * when it is finished with.
365 */
366 int get_kernel_page(unsigned long start, int write, struct page **pages)
367 {
368 const struct kvec kiov = {
369 .iov_base = (void *)start,
370 .iov_len = PAGE_SIZE
371 };
372
373 return get_kernel_pages(&kiov, 1, write, pages);
374 }
375 EXPORT_SYMBOL_GPL(get_kernel_page);
376
377 static void pagevec_lru_move_fn(struct pagevec *pvec,
378 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
379 void *arg)
380 {
381 int i;
382 struct zone *zone = NULL;
383 struct lruvec *lruvec;
384 unsigned long flags = 0;
385
386 for (i = 0; i < pagevec_count(pvec); i++) {
387 struct page *page = pvec->pages[i];
388 struct zone *pagezone = page_zone(page);
389
390 if (pagezone != zone) {
391 if (zone)
392 spin_unlock_irqrestore(&zone->lru_lock, flags);
393 zone = pagezone;
394 spin_lock_irqsave(&zone->lru_lock, flags);
395 }
396
397 lruvec = mem_cgroup_page_lruvec(page, zone);
398 (*move_fn)(page, lruvec, arg);
399 }
400 if (zone)
401 spin_unlock_irqrestore(&zone->lru_lock, flags);
402 release_pages(pvec->pages, pvec->nr, pvec->cold);
403 pagevec_reinit(pvec);
404 }
405
406 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
407 void *arg)
408 {
409 int *pgmoved = arg;
410
411 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
412 enum lru_list lru = page_lru_base_type(page);
413 list_move_tail(&page->lru, &lruvec->lists[lru]);
414 (*pgmoved)++;
415 }
416 }
417
418 /*
419 * pagevec_move_tail() must be called with IRQ disabled.
420 * Otherwise this may cause nasty races.
421 */
422 static void pagevec_move_tail(struct pagevec *pvec)
423 {
424 int pgmoved = 0;
425
426 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
427 __count_vm_events(PGROTATED, pgmoved);
428 }
429
430 /*
431 * Writeback is about to end against a page which has been marked for immediate
432 * reclaim. If it still appears to be reclaimable, move it to the tail of the
433 * inactive list.
434 */
435 void rotate_reclaimable_page(struct page *page)
436 {
437 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
438 !PageUnevictable(page) && PageLRU(page)) {
439 struct pagevec *pvec;
440 unsigned long flags;
441
442 page_cache_get(page);
443 local_irq_save(flags);
444 pvec = &__get_cpu_var(lru_rotate_pvecs);
445 if (!pagevec_add(pvec, page))
446 pagevec_move_tail(pvec);
447 local_irq_restore(flags);
448 }
449 }
450
451 static void update_page_reclaim_stat(struct lruvec *lruvec,
452 int file, int rotated)
453 {
454 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
455
456 reclaim_stat->recent_scanned[file]++;
457 if (rotated)
458 reclaim_stat->recent_rotated[file]++;
459 }
460
461 static void __activate_page(struct page *page, struct lruvec *lruvec,
462 void *arg)
463 {
464 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
465 int file = page_is_file_cache(page);
466 int lru = page_lru_base_type(page);
467
468 del_page_from_lru_list(page, lruvec, lru);
469 SetPageActive(page);
470 lru += LRU_ACTIVE;
471 add_page_to_lru_list(page, lruvec, lru);
472 trace_mm_lru_activate(page, page_to_pfn(page));
473
474 __count_vm_event(PGACTIVATE);
475 update_page_reclaim_stat(lruvec, file, 1);
476 }
477 }
478
479 #ifdef CONFIG_SMP
480 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
481
482 static void activate_page_drain(int cpu)
483 {
484 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
485
486 if (pagevec_count(pvec))
487 pagevec_lru_move_fn(pvec, __activate_page, NULL);
488 }
489
490 static bool need_activate_page_drain(int cpu)
491 {
492 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
493 }
494
495 void activate_page(struct page *page)
496 {
497 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
498 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
499
500 page_cache_get(page);
501 if (!pagevec_add(pvec, page))
502 pagevec_lru_move_fn(pvec, __activate_page, NULL);
503 put_cpu_var(activate_page_pvecs);
504 }
505 }
506
507 #else
508 static inline void activate_page_drain(int cpu)
509 {
510 }
511
512 static bool need_activate_page_drain(int cpu)
513 {
514 return false;
515 }
516
517 void activate_page(struct page *page)
518 {
519 struct zone *zone = page_zone(page);
520
521 spin_lock_irq(&zone->lru_lock);
522 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
523 spin_unlock_irq(&zone->lru_lock);
524 }
525 #endif
526
527 static void __lru_cache_activate_page(struct page *page)
528 {
529 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
530 int i;
531
532 /*
533 * Search backwards on the optimistic assumption that the page being
534 * activated has just been added to this pagevec. Note that only
535 * the local pagevec is examined as a !PageLRU page could be in the
536 * process of being released, reclaimed, migrated or on a remote
537 * pagevec that is currently being drained. Furthermore, marking
538 * a remote pagevec's page PageActive potentially hits a race where
539 * a page is marked PageActive just after it is added to the inactive
540 * list causing accounting errors and BUG_ON checks to trigger.
541 */
542 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
543 struct page *pagevec_page = pvec->pages[i];
544
545 if (pagevec_page == page) {
546 SetPageActive(page);
547 break;
548 }
549 }
550
551 put_cpu_var(lru_add_pvec);
552 }
553
554 /*
555 * Mark a page as having seen activity.
556 *
557 * inactive,unreferenced -> inactive,referenced
558 * inactive,referenced -> active,unreferenced
559 * active,unreferenced -> active,referenced
560 */
561 void mark_page_accessed(struct page *page)
562 {
563 if (!PageActive(page) && !PageUnevictable(page) &&
564 PageReferenced(page)) {
565
566 /*
567 * If the page is on the LRU, queue it for activation via
568 * activate_page_pvecs. Otherwise, assume the page is on a
569 * pagevec, mark it active and it'll be moved to the active
570 * LRU on the next drain.
571 */
572 if (PageLRU(page))
573 activate_page(page);
574 else
575 __lru_cache_activate_page(page);
576 ClearPageReferenced(page);
577 if (page_is_file_cache(page))
578 workingset_activation(page);
579 } else if (!PageReferenced(page)) {
580 SetPageReferenced(page);
581 }
582 }
583 EXPORT_SYMBOL(mark_page_accessed);
584
585 static void __lru_cache_add(struct page *page)
586 {
587 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
588
589 page_cache_get(page);
590 if (!pagevec_space(pvec))
591 __pagevec_lru_add(pvec);
592 pagevec_add(pvec, page);
593 put_cpu_var(lru_add_pvec);
594 }
595
596 /**
597 * lru_cache_add: add a page to the page lists
598 * @page: the page to add
599 */
600 void lru_cache_add_anon(struct page *page)
601 {
602 ClearPageActive(page);
603 __lru_cache_add(page);
604 }
605
606 void lru_cache_add_file(struct page *page)
607 {
608 ClearPageActive(page);
609 __lru_cache_add(page);
610 }
611 EXPORT_SYMBOL(lru_cache_add_file);
612
613 /**
614 * lru_cache_add - add a page to a page list
615 * @page: the page to be added to the LRU.
616 *
617 * Queue the page for addition to the LRU via pagevec. The decision on whether
618 * to add the page to the [in]active [file|anon] list is deferred until the
619 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
620 * have the page added to the active list using mark_page_accessed().
621 */
622 void lru_cache_add(struct page *page)
623 {
624 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
625 VM_BUG_ON_PAGE(PageLRU(page), page);
626 __lru_cache_add(page);
627 }
628
629 /**
630 * add_page_to_unevictable_list - add a page to the unevictable list
631 * @page: the page to be added to the unevictable list
632 *
633 * Add page directly to its zone's unevictable list. To avoid races with
634 * tasks that might be making the page evictable, through eg. munlock,
635 * munmap or exit, while it's not on the lru, we want to add the page
636 * while it's locked or otherwise "invisible" to other tasks. This is
637 * difficult to do when using the pagevec cache, so bypass that.
638 */
639 void add_page_to_unevictable_list(struct page *page)
640 {
641 struct zone *zone = page_zone(page);
642 struct lruvec *lruvec;
643
644 spin_lock_irq(&zone->lru_lock);
645 lruvec = mem_cgroup_page_lruvec(page, zone);
646 ClearPageActive(page);
647 SetPageUnevictable(page);
648 SetPageLRU(page);
649 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
650 spin_unlock_irq(&zone->lru_lock);
651 }
652
653 /*
654 * If the page can not be invalidated, it is moved to the
655 * inactive list to speed up its reclaim. It is moved to the
656 * head of the list, rather than the tail, to give the flusher
657 * threads some time to write it out, as this is much more
658 * effective than the single-page writeout from reclaim.
659 *
660 * If the page isn't page_mapped and dirty/writeback, the page
661 * could reclaim asap using PG_reclaim.
662 *
663 * 1. active, mapped page -> none
664 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
665 * 3. inactive, mapped page -> none
666 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
667 * 5. inactive, clean -> inactive, tail
668 * 6. Others -> none
669 *
670 * In 4, why it moves inactive's head, the VM expects the page would
671 * be write it out by flusher threads as this is much more effective
672 * than the single-page writeout from reclaim.
673 */
674 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
675 void *arg)
676 {
677 int lru, file;
678 bool active;
679
680 if (!PageLRU(page))
681 return;
682
683 if (PageUnevictable(page))
684 return;
685
686 /* Some processes are using the page */
687 if (page_mapped(page))
688 return;
689
690 active = PageActive(page);
691 file = page_is_file_cache(page);
692 lru = page_lru_base_type(page);
693
694 del_page_from_lru_list(page, lruvec, lru + active);
695 ClearPageActive(page);
696 ClearPageReferenced(page);
697 add_page_to_lru_list(page, lruvec, lru);
698
699 if (PageWriteback(page) || PageDirty(page)) {
700 /*
701 * PG_reclaim could be raced with end_page_writeback
702 * It can make readahead confusing. But race window
703 * is _really_ small and it's non-critical problem.
704 */
705 SetPageReclaim(page);
706 } else {
707 /*
708 * The page's writeback ends up during pagevec
709 * We moves tha page into tail of inactive.
710 */
711 list_move_tail(&page->lru, &lruvec->lists[lru]);
712 __count_vm_event(PGROTATED);
713 }
714
715 if (active)
716 __count_vm_event(PGDEACTIVATE);
717 update_page_reclaim_stat(lruvec, file, 0);
718 }
719
720 /*
721 * Drain pages out of the cpu's pagevecs.
722 * Either "cpu" is the current CPU, and preemption has already been
723 * disabled; or "cpu" is being hot-unplugged, and is already dead.
724 */
725 void lru_add_drain_cpu(int cpu)
726 {
727 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
728
729 if (pagevec_count(pvec))
730 __pagevec_lru_add(pvec);
731
732 pvec = &per_cpu(lru_rotate_pvecs, cpu);
733 if (pagevec_count(pvec)) {
734 unsigned long flags;
735
736 /* No harm done if a racing interrupt already did this */
737 local_irq_save(flags);
738 pagevec_move_tail(pvec);
739 local_irq_restore(flags);
740 }
741
742 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
743 if (pagevec_count(pvec))
744 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
745
746 activate_page_drain(cpu);
747 }
748
749 /**
750 * deactivate_page - forcefully deactivate a page
751 * @page: page to deactivate
752 *
753 * This function hints the VM that @page is a good reclaim candidate,
754 * for example if its invalidation fails due to the page being dirty
755 * or under writeback.
756 */
757 void deactivate_page(struct page *page)
758 {
759 /*
760 * In a workload with many unevictable page such as mprotect, unevictable
761 * page deactivation for accelerating reclaim is pointless.
762 */
763 if (PageUnevictable(page))
764 return;
765
766 if (likely(get_page_unless_zero(page))) {
767 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
768
769 if (!pagevec_add(pvec, page))
770 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
771 put_cpu_var(lru_deactivate_pvecs);
772 }
773 }
774
775 void lru_add_drain(void)
776 {
777 lru_add_drain_cpu(get_cpu());
778 put_cpu();
779 }
780
781 static void lru_add_drain_per_cpu(struct work_struct *dummy)
782 {
783 lru_add_drain();
784 }
785
786 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
787
788 void lru_add_drain_all(void)
789 {
790 static DEFINE_MUTEX(lock);
791 static struct cpumask has_work;
792 int cpu;
793
794 mutex_lock(&lock);
795 get_online_cpus();
796 cpumask_clear(&has_work);
797
798 for_each_online_cpu(cpu) {
799 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
800
801 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
802 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
803 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
804 need_activate_page_drain(cpu)) {
805 INIT_WORK(work, lru_add_drain_per_cpu);
806 schedule_work_on(cpu, work);
807 cpumask_set_cpu(cpu, &has_work);
808 }
809 }
810
811 for_each_cpu(cpu, &has_work)
812 flush_work(&per_cpu(lru_add_drain_work, cpu));
813
814 put_online_cpus();
815 mutex_unlock(&lock);
816 }
817
818 /*
819 * Batched page_cache_release(). Decrement the reference count on all the
820 * passed pages. If it fell to zero then remove the page from the LRU and
821 * free it.
822 *
823 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
824 * for the remainder of the operation.
825 *
826 * The locking in this function is against shrink_inactive_list(): we recheck
827 * the page count inside the lock to see whether shrink_inactive_list()
828 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
829 * will free it.
830 */
831 void release_pages(struct page **pages, int nr, int cold)
832 {
833 int i;
834 LIST_HEAD(pages_to_free);
835 struct zone *zone = NULL;
836 struct lruvec *lruvec;
837 unsigned long uninitialized_var(flags);
838
839 for (i = 0; i < nr; i++) {
840 struct page *page = pages[i];
841
842 if (unlikely(PageCompound(page))) {
843 if (zone) {
844 spin_unlock_irqrestore(&zone->lru_lock, flags);
845 zone = NULL;
846 }
847 put_compound_page(page);
848 continue;
849 }
850
851 if (!put_page_testzero(page))
852 continue;
853
854 if (PageLRU(page)) {
855 struct zone *pagezone = page_zone(page);
856
857 if (pagezone != zone) {
858 if (zone)
859 spin_unlock_irqrestore(&zone->lru_lock,
860 flags);
861 zone = pagezone;
862 spin_lock_irqsave(&zone->lru_lock, flags);
863 }
864
865 lruvec = mem_cgroup_page_lruvec(page, zone);
866 VM_BUG_ON_PAGE(!PageLRU(page), page);
867 __ClearPageLRU(page);
868 del_page_from_lru_list(page, lruvec, page_off_lru(page));
869 }
870
871 /* Clear Active bit in case of parallel mark_page_accessed */
872 ClearPageActive(page);
873
874 list_add(&page->lru, &pages_to_free);
875 }
876 if (zone)
877 spin_unlock_irqrestore(&zone->lru_lock, flags);
878
879 free_hot_cold_page_list(&pages_to_free, cold);
880 }
881 EXPORT_SYMBOL(release_pages);
882
883 /*
884 * The pages which we're about to release may be in the deferred lru-addition
885 * queues. That would prevent them from really being freed right now. That's
886 * OK from a correctness point of view but is inefficient - those pages may be
887 * cache-warm and we want to give them back to the page allocator ASAP.
888 *
889 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
890 * and __pagevec_lru_add_active() call release_pages() directly to avoid
891 * mutual recursion.
892 */
893 void __pagevec_release(struct pagevec *pvec)
894 {
895 lru_add_drain();
896 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
897 pagevec_reinit(pvec);
898 }
899 EXPORT_SYMBOL(__pagevec_release);
900
901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
902 /* used by __split_huge_page_refcount() */
903 void lru_add_page_tail(struct page *page, struct page *page_tail,
904 struct lruvec *lruvec, struct list_head *list)
905 {
906 const int file = 0;
907
908 VM_BUG_ON_PAGE(!PageHead(page), page);
909 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
910 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
911 VM_BUG_ON(NR_CPUS != 1 &&
912 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
913
914 if (!list)
915 SetPageLRU(page_tail);
916
917 if (likely(PageLRU(page)))
918 list_add_tail(&page_tail->lru, &page->lru);
919 else if (list) {
920 /* page reclaim is reclaiming a huge page */
921 get_page(page_tail);
922 list_add_tail(&page_tail->lru, list);
923 } else {
924 struct list_head *list_head;
925 /*
926 * Head page has not yet been counted, as an hpage,
927 * so we must account for each subpage individually.
928 *
929 * Use the standard add function to put page_tail on the list,
930 * but then correct its position so they all end up in order.
931 */
932 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
933 list_head = page_tail->lru.prev;
934 list_move_tail(&page_tail->lru, list_head);
935 }
936
937 if (!PageUnevictable(page))
938 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
939 }
940 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
941
942 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
943 void *arg)
944 {
945 int file = page_is_file_cache(page);
946 int active = PageActive(page);
947 enum lru_list lru = page_lru(page);
948
949 VM_BUG_ON_PAGE(PageLRU(page), page);
950
951 SetPageLRU(page);
952 add_page_to_lru_list(page, lruvec, lru);
953 update_page_reclaim_stat(lruvec, file, active);
954 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
955 }
956
957 /*
958 * Add the passed pages to the LRU, then drop the caller's refcount
959 * on them. Reinitialises the caller's pagevec.
960 */
961 void __pagevec_lru_add(struct pagevec *pvec)
962 {
963 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
964 }
965 EXPORT_SYMBOL(__pagevec_lru_add);
966
967 /**
968 * pagevec_lookup_entries - gang pagecache lookup
969 * @pvec: Where the resulting entries are placed
970 * @mapping: The address_space to search
971 * @start: The starting entry index
972 * @nr_entries: The maximum number of entries
973 * @indices: The cache indices corresponding to the entries in @pvec
974 *
975 * pagevec_lookup_entries() will search for and return a group of up
976 * to @nr_entries pages and shadow entries in the mapping. All
977 * entries are placed in @pvec. pagevec_lookup_entries() takes a
978 * reference against actual pages in @pvec.
979 *
980 * The search returns a group of mapping-contiguous entries with
981 * ascending indexes. There may be holes in the indices due to
982 * not-present entries.
983 *
984 * pagevec_lookup_entries() returns the number of entries which were
985 * found.
986 */
987 unsigned pagevec_lookup_entries(struct pagevec *pvec,
988 struct address_space *mapping,
989 pgoff_t start, unsigned nr_pages,
990 pgoff_t *indices)
991 {
992 pvec->nr = find_get_entries(mapping, start, nr_pages,
993 pvec->pages, indices);
994 return pagevec_count(pvec);
995 }
996
997 /**
998 * pagevec_remove_exceptionals - pagevec exceptionals pruning
999 * @pvec: The pagevec to prune
1000 *
1001 * pagevec_lookup_entries() fills both pages and exceptional radix
1002 * tree entries into the pagevec. This function prunes all
1003 * exceptionals from @pvec without leaving holes, so that it can be
1004 * passed on to page-only pagevec operations.
1005 */
1006 void pagevec_remove_exceptionals(struct pagevec *pvec)
1007 {
1008 int i, j;
1009
1010 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1011 struct page *page = pvec->pages[i];
1012 if (!radix_tree_exceptional_entry(page))
1013 pvec->pages[j++] = page;
1014 }
1015 pvec->nr = j;
1016 }
1017
1018 /**
1019 * pagevec_lookup - gang pagecache lookup
1020 * @pvec: Where the resulting pages are placed
1021 * @mapping: The address_space to search
1022 * @start: The starting page index
1023 * @nr_pages: The maximum number of pages
1024 *
1025 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1026 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1027 * reference against the pages in @pvec.
1028 *
1029 * The search returns a group of mapping-contiguous pages with ascending
1030 * indexes. There may be holes in the indices due to not-present pages.
1031 *
1032 * pagevec_lookup() returns the number of pages which were found.
1033 */
1034 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1035 pgoff_t start, unsigned nr_pages)
1036 {
1037 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1038 return pagevec_count(pvec);
1039 }
1040 EXPORT_SYMBOL(pagevec_lookup);
1041
1042 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1043 pgoff_t *index, int tag, unsigned nr_pages)
1044 {
1045 pvec->nr = find_get_pages_tag(mapping, index, tag,
1046 nr_pages, pvec->pages);
1047 return pagevec_count(pvec);
1048 }
1049 EXPORT_SYMBOL(pagevec_lookup_tag);
1050
1051 /*
1052 * Perform any setup for the swap system
1053 */
1054 void __init swap_setup(void)
1055 {
1056 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1057 #ifdef CONFIG_SWAP
1058 int i;
1059
1060 if (bdi_init(swapper_spaces[0].backing_dev_info))
1061 panic("Failed to init swap bdi");
1062 for (i = 0; i < MAX_SWAPFILES; i++) {
1063 spin_lock_init(&swapper_spaces[i].tree_lock);
1064 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1065 }
1066 #endif
1067
1068 /* Use a smaller cluster for small-memory machines */
1069 if (megs < 16)
1070 page_cluster = 2;
1071 else
1072 page_cluster = 3;
1073 /*
1074 * Right now other parts of the system means that we
1075 * _really_ don't want to cluster much more
1076 */
1077 }
This page took 0.121586 seconds and 5 git commands to generate.