mm: take pagevecs off reclaim stack
[deliverable/linux.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33
34 #include "internal.h"
35
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
38
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
42
43 /*
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
46 */
47 static void __page_cache_release(struct page *page)
48 {
49 if (PageLRU(page)) {
50 unsigned long flags;
51 struct zone *zone = page_zone(page);
52
53 spin_lock_irqsave(&zone->lru_lock, flags);
54 VM_BUG_ON(!PageLRU(page));
55 __ClearPageLRU(page);
56 del_page_from_lru(zone, page);
57 spin_unlock_irqrestore(&zone->lru_lock, flags);
58 }
59 }
60
61 static void __put_single_page(struct page *page)
62 {
63 __page_cache_release(page);
64 free_hot_cold_page(page, 0);
65 }
66
67 static void __put_compound_page(struct page *page)
68 {
69 compound_page_dtor *dtor;
70
71 __page_cache_release(page);
72 dtor = get_compound_page_dtor(page);
73 (*dtor)(page);
74 }
75
76 static void put_compound_page(struct page *page)
77 {
78 if (unlikely(PageTail(page))) {
79 /* __split_huge_page_refcount can run under us */
80 struct page *page_head = compound_trans_head(page);
81
82 if (likely(page != page_head &&
83 get_page_unless_zero(page_head))) {
84 unsigned long flags;
85 /*
86 * page_head wasn't a dangling pointer but it
87 * may not be a head page anymore by the time
88 * we obtain the lock. That is ok as long as it
89 * can't be freed from under us.
90 */
91 flags = compound_lock_irqsave(page_head);
92 if (unlikely(!PageTail(page))) {
93 /* __split_huge_page_refcount run before us */
94 compound_unlock_irqrestore(page_head, flags);
95 VM_BUG_ON(PageHead(page_head));
96 if (put_page_testzero(page_head))
97 __put_single_page(page_head);
98 out_put_single:
99 if (put_page_testzero(page))
100 __put_single_page(page);
101 return;
102 }
103 VM_BUG_ON(page_head != page->first_page);
104 /*
105 * We can release the refcount taken by
106 * get_page_unless_zero() now that
107 * __split_huge_page_refcount() is blocked on
108 * the compound_lock.
109 */
110 if (put_page_testzero(page_head))
111 VM_BUG_ON(1);
112 /* __split_huge_page_refcount will wait now */
113 VM_BUG_ON(page_mapcount(page) <= 0);
114 atomic_dec(&page->_mapcount);
115 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
116 VM_BUG_ON(atomic_read(&page->_count) != 0);
117 compound_unlock_irqrestore(page_head, flags);
118 if (put_page_testzero(page_head)) {
119 if (PageHead(page_head))
120 __put_compound_page(page_head);
121 else
122 __put_single_page(page_head);
123 }
124 } else {
125 /* page_head is a dangling pointer */
126 VM_BUG_ON(PageTail(page));
127 goto out_put_single;
128 }
129 } else if (put_page_testzero(page)) {
130 if (PageHead(page))
131 __put_compound_page(page);
132 else
133 __put_single_page(page);
134 }
135 }
136
137 void put_page(struct page *page)
138 {
139 if (unlikely(PageCompound(page)))
140 put_compound_page(page);
141 else if (put_page_testzero(page))
142 __put_single_page(page);
143 }
144 EXPORT_SYMBOL(put_page);
145
146 /*
147 * This function is exported but must not be called by anything other
148 * than get_page(). It implements the slow path of get_page().
149 */
150 bool __get_page_tail(struct page *page)
151 {
152 /*
153 * This takes care of get_page() if run on a tail page
154 * returned by one of the get_user_pages/follow_page variants.
155 * get_user_pages/follow_page itself doesn't need the compound
156 * lock because it runs __get_page_tail_foll() under the
157 * proper PT lock that already serializes against
158 * split_huge_page().
159 */
160 unsigned long flags;
161 bool got = false;
162 struct page *page_head = compound_trans_head(page);
163
164 if (likely(page != page_head && get_page_unless_zero(page_head))) {
165 /*
166 * page_head wasn't a dangling pointer but it
167 * may not be a head page anymore by the time
168 * we obtain the lock. That is ok as long as it
169 * can't be freed from under us.
170 */
171 flags = compound_lock_irqsave(page_head);
172 /* here __split_huge_page_refcount won't run anymore */
173 if (likely(PageTail(page))) {
174 __get_page_tail_foll(page, false);
175 got = true;
176 }
177 compound_unlock_irqrestore(page_head, flags);
178 if (unlikely(!got))
179 put_page(page_head);
180 }
181 return got;
182 }
183 EXPORT_SYMBOL(__get_page_tail);
184
185 /**
186 * put_pages_list() - release a list of pages
187 * @pages: list of pages threaded on page->lru
188 *
189 * Release a list of pages which are strung together on page.lru. Currently
190 * used by read_cache_pages() and related error recovery code.
191 */
192 void put_pages_list(struct list_head *pages)
193 {
194 while (!list_empty(pages)) {
195 struct page *victim;
196
197 victim = list_entry(pages->prev, struct page, lru);
198 list_del(&victim->lru);
199 page_cache_release(victim);
200 }
201 }
202 EXPORT_SYMBOL(put_pages_list);
203
204 static void pagevec_lru_move_fn(struct pagevec *pvec,
205 void (*move_fn)(struct page *page, void *arg),
206 void *arg)
207 {
208 int i;
209 struct zone *zone = NULL;
210 unsigned long flags = 0;
211
212 for (i = 0; i < pagevec_count(pvec); i++) {
213 struct page *page = pvec->pages[i];
214 struct zone *pagezone = page_zone(page);
215
216 if (pagezone != zone) {
217 if (zone)
218 spin_unlock_irqrestore(&zone->lru_lock, flags);
219 zone = pagezone;
220 spin_lock_irqsave(&zone->lru_lock, flags);
221 }
222
223 (*move_fn)(page, arg);
224 }
225 if (zone)
226 spin_unlock_irqrestore(&zone->lru_lock, flags);
227 release_pages(pvec->pages, pvec->nr, pvec->cold);
228 pagevec_reinit(pvec);
229 }
230
231 static void pagevec_move_tail_fn(struct page *page, void *arg)
232 {
233 int *pgmoved = arg;
234
235 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
236 enum lru_list lru = page_lru_base_type(page);
237 struct lruvec *lruvec;
238
239 lruvec = mem_cgroup_lru_move_lists(page_zone(page),
240 page, lru, lru);
241 list_move_tail(&page->lru, &lruvec->lists[lru]);
242 (*pgmoved)++;
243 }
244 }
245
246 /*
247 * pagevec_move_tail() must be called with IRQ disabled.
248 * Otherwise this may cause nasty races.
249 */
250 static void pagevec_move_tail(struct pagevec *pvec)
251 {
252 int pgmoved = 0;
253
254 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
255 __count_vm_events(PGROTATED, pgmoved);
256 }
257
258 /*
259 * Writeback is about to end against a page which has been marked for immediate
260 * reclaim. If it still appears to be reclaimable, move it to the tail of the
261 * inactive list.
262 */
263 void rotate_reclaimable_page(struct page *page)
264 {
265 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
266 !PageUnevictable(page) && PageLRU(page)) {
267 struct pagevec *pvec;
268 unsigned long flags;
269
270 page_cache_get(page);
271 local_irq_save(flags);
272 pvec = &__get_cpu_var(lru_rotate_pvecs);
273 if (!pagevec_add(pvec, page))
274 pagevec_move_tail(pvec);
275 local_irq_restore(flags);
276 }
277 }
278
279 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
280 int file, int rotated)
281 {
282 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
283 struct zone_reclaim_stat *memcg_reclaim_stat;
284
285 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
286
287 reclaim_stat->recent_scanned[file]++;
288 if (rotated)
289 reclaim_stat->recent_rotated[file]++;
290
291 if (!memcg_reclaim_stat)
292 return;
293
294 memcg_reclaim_stat->recent_scanned[file]++;
295 if (rotated)
296 memcg_reclaim_stat->recent_rotated[file]++;
297 }
298
299 static void __activate_page(struct page *page, void *arg)
300 {
301 struct zone *zone = page_zone(page);
302
303 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
304 int file = page_is_file_cache(page);
305 int lru = page_lru_base_type(page);
306 del_page_from_lru_list(zone, page, lru);
307
308 SetPageActive(page);
309 lru += LRU_ACTIVE;
310 add_page_to_lru_list(zone, page, lru);
311 __count_vm_event(PGACTIVATE);
312
313 update_page_reclaim_stat(zone, page, file, 1);
314 }
315 }
316
317 #ifdef CONFIG_SMP
318 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
319
320 static void activate_page_drain(int cpu)
321 {
322 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
323
324 if (pagevec_count(pvec))
325 pagevec_lru_move_fn(pvec, __activate_page, NULL);
326 }
327
328 void activate_page(struct page *page)
329 {
330 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
331 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
332
333 page_cache_get(page);
334 if (!pagevec_add(pvec, page))
335 pagevec_lru_move_fn(pvec, __activate_page, NULL);
336 put_cpu_var(activate_page_pvecs);
337 }
338 }
339
340 #else
341 static inline void activate_page_drain(int cpu)
342 {
343 }
344
345 void activate_page(struct page *page)
346 {
347 struct zone *zone = page_zone(page);
348
349 spin_lock_irq(&zone->lru_lock);
350 __activate_page(page, NULL);
351 spin_unlock_irq(&zone->lru_lock);
352 }
353 #endif
354
355 /*
356 * Mark a page as having seen activity.
357 *
358 * inactive,unreferenced -> inactive,referenced
359 * inactive,referenced -> active,unreferenced
360 * active,unreferenced -> active,referenced
361 */
362 void mark_page_accessed(struct page *page)
363 {
364 if (!PageActive(page) && !PageUnevictable(page) &&
365 PageReferenced(page) && PageLRU(page)) {
366 activate_page(page);
367 ClearPageReferenced(page);
368 } else if (!PageReferenced(page)) {
369 SetPageReferenced(page);
370 }
371 }
372
373 EXPORT_SYMBOL(mark_page_accessed);
374
375 void __lru_cache_add(struct page *page, enum lru_list lru)
376 {
377 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
378
379 page_cache_get(page);
380 if (!pagevec_add(pvec, page))
381 ____pagevec_lru_add(pvec, lru);
382 put_cpu_var(lru_add_pvecs);
383 }
384 EXPORT_SYMBOL(__lru_cache_add);
385
386 /**
387 * lru_cache_add_lru - add a page to a page list
388 * @page: the page to be added to the LRU.
389 * @lru: the LRU list to which the page is added.
390 */
391 void lru_cache_add_lru(struct page *page, enum lru_list lru)
392 {
393 if (PageActive(page)) {
394 VM_BUG_ON(PageUnevictable(page));
395 ClearPageActive(page);
396 } else if (PageUnevictable(page)) {
397 VM_BUG_ON(PageActive(page));
398 ClearPageUnevictable(page);
399 }
400
401 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
402 __lru_cache_add(page, lru);
403 }
404
405 /**
406 * add_page_to_unevictable_list - add a page to the unevictable list
407 * @page: the page to be added to the unevictable list
408 *
409 * Add page directly to its zone's unevictable list. To avoid races with
410 * tasks that might be making the page evictable, through eg. munlock,
411 * munmap or exit, while it's not on the lru, we want to add the page
412 * while it's locked or otherwise "invisible" to other tasks. This is
413 * difficult to do when using the pagevec cache, so bypass that.
414 */
415 void add_page_to_unevictable_list(struct page *page)
416 {
417 struct zone *zone = page_zone(page);
418
419 spin_lock_irq(&zone->lru_lock);
420 SetPageUnevictable(page);
421 SetPageLRU(page);
422 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
423 spin_unlock_irq(&zone->lru_lock);
424 }
425
426 /*
427 * If the page can not be invalidated, it is moved to the
428 * inactive list to speed up its reclaim. It is moved to the
429 * head of the list, rather than the tail, to give the flusher
430 * threads some time to write it out, as this is much more
431 * effective than the single-page writeout from reclaim.
432 *
433 * If the page isn't page_mapped and dirty/writeback, the page
434 * could reclaim asap using PG_reclaim.
435 *
436 * 1. active, mapped page -> none
437 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
438 * 3. inactive, mapped page -> none
439 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
440 * 5. inactive, clean -> inactive, tail
441 * 6. Others -> none
442 *
443 * In 4, why it moves inactive's head, the VM expects the page would
444 * be write it out by flusher threads as this is much more effective
445 * than the single-page writeout from reclaim.
446 */
447 static void lru_deactivate_fn(struct page *page, void *arg)
448 {
449 int lru, file;
450 bool active;
451 struct zone *zone = page_zone(page);
452
453 if (!PageLRU(page))
454 return;
455
456 if (PageUnevictable(page))
457 return;
458
459 /* Some processes are using the page */
460 if (page_mapped(page))
461 return;
462
463 active = PageActive(page);
464
465 file = page_is_file_cache(page);
466 lru = page_lru_base_type(page);
467 del_page_from_lru_list(zone, page, lru + active);
468 ClearPageActive(page);
469 ClearPageReferenced(page);
470 add_page_to_lru_list(zone, page, lru);
471
472 if (PageWriteback(page) || PageDirty(page)) {
473 /*
474 * PG_reclaim could be raced with end_page_writeback
475 * It can make readahead confusing. But race window
476 * is _really_ small and it's non-critical problem.
477 */
478 SetPageReclaim(page);
479 } else {
480 struct lruvec *lruvec;
481 /*
482 * The page's writeback ends up during pagevec
483 * We moves tha page into tail of inactive.
484 */
485 lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
486 list_move_tail(&page->lru, &lruvec->lists[lru]);
487 __count_vm_event(PGROTATED);
488 }
489
490 if (active)
491 __count_vm_event(PGDEACTIVATE);
492 update_page_reclaim_stat(zone, page, file, 0);
493 }
494
495 /*
496 * Drain pages out of the cpu's pagevecs.
497 * Either "cpu" is the current CPU, and preemption has already been
498 * disabled; or "cpu" is being hot-unplugged, and is already dead.
499 */
500 static void drain_cpu_pagevecs(int cpu)
501 {
502 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
503 struct pagevec *pvec;
504 int lru;
505
506 for_each_lru(lru) {
507 pvec = &pvecs[lru - LRU_BASE];
508 if (pagevec_count(pvec))
509 ____pagevec_lru_add(pvec, lru);
510 }
511
512 pvec = &per_cpu(lru_rotate_pvecs, cpu);
513 if (pagevec_count(pvec)) {
514 unsigned long flags;
515
516 /* No harm done if a racing interrupt already did this */
517 local_irq_save(flags);
518 pagevec_move_tail(pvec);
519 local_irq_restore(flags);
520 }
521
522 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
523 if (pagevec_count(pvec))
524 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
525
526 activate_page_drain(cpu);
527 }
528
529 /**
530 * deactivate_page - forcefully deactivate a page
531 * @page: page to deactivate
532 *
533 * This function hints the VM that @page is a good reclaim candidate,
534 * for example if its invalidation fails due to the page being dirty
535 * or under writeback.
536 */
537 void deactivate_page(struct page *page)
538 {
539 /*
540 * In a workload with many unevictable page such as mprotect, unevictable
541 * page deactivation for accelerating reclaim is pointless.
542 */
543 if (PageUnevictable(page))
544 return;
545
546 if (likely(get_page_unless_zero(page))) {
547 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
548
549 if (!pagevec_add(pvec, page))
550 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
551 put_cpu_var(lru_deactivate_pvecs);
552 }
553 }
554
555 void lru_add_drain(void)
556 {
557 drain_cpu_pagevecs(get_cpu());
558 put_cpu();
559 }
560
561 static void lru_add_drain_per_cpu(struct work_struct *dummy)
562 {
563 lru_add_drain();
564 }
565
566 /*
567 * Returns 0 for success
568 */
569 int lru_add_drain_all(void)
570 {
571 return schedule_on_each_cpu(lru_add_drain_per_cpu);
572 }
573
574 /*
575 * Batched page_cache_release(). Decrement the reference count on all the
576 * passed pages. If it fell to zero then remove the page from the LRU and
577 * free it.
578 *
579 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
580 * for the remainder of the operation.
581 *
582 * The locking in this function is against shrink_inactive_list(): we recheck
583 * the page count inside the lock to see whether shrink_inactive_list()
584 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
585 * will free it.
586 */
587 void release_pages(struct page **pages, int nr, int cold)
588 {
589 int i;
590 LIST_HEAD(pages_to_free);
591 struct zone *zone = NULL;
592 unsigned long uninitialized_var(flags);
593
594 for (i = 0; i < nr; i++) {
595 struct page *page = pages[i];
596
597 if (unlikely(PageCompound(page))) {
598 if (zone) {
599 spin_unlock_irqrestore(&zone->lru_lock, flags);
600 zone = NULL;
601 }
602 put_compound_page(page);
603 continue;
604 }
605
606 if (!put_page_testzero(page))
607 continue;
608
609 if (PageLRU(page)) {
610 struct zone *pagezone = page_zone(page);
611
612 if (pagezone != zone) {
613 if (zone)
614 spin_unlock_irqrestore(&zone->lru_lock,
615 flags);
616 zone = pagezone;
617 spin_lock_irqsave(&zone->lru_lock, flags);
618 }
619 VM_BUG_ON(!PageLRU(page));
620 __ClearPageLRU(page);
621 del_page_from_lru(zone, page);
622 }
623
624 list_add(&page->lru, &pages_to_free);
625 }
626 if (zone)
627 spin_unlock_irqrestore(&zone->lru_lock, flags);
628
629 free_hot_cold_page_list(&pages_to_free, cold);
630 }
631 EXPORT_SYMBOL(release_pages);
632
633 /*
634 * The pages which we're about to release may be in the deferred lru-addition
635 * queues. That would prevent them from really being freed right now. That's
636 * OK from a correctness point of view but is inefficient - those pages may be
637 * cache-warm and we want to give them back to the page allocator ASAP.
638 *
639 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
640 * and __pagevec_lru_add_active() call release_pages() directly to avoid
641 * mutual recursion.
642 */
643 void __pagevec_release(struct pagevec *pvec)
644 {
645 lru_add_drain();
646 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
647 pagevec_reinit(pvec);
648 }
649
650 EXPORT_SYMBOL(__pagevec_release);
651
652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
653 /* used by __split_huge_page_refcount() */
654 void lru_add_page_tail(struct zone* zone,
655 struct page *page, struct page *page_tail)
656 {
657 int active;
658 enum lru_list lru;
659 const int file = 0;
660
661 VM_BUG_ON(!PageHead(page));
662 VM_BUG_ON(PageCompound(page_tail));
663 VM_BUG_ON(PageLRU(page_tail));
664 VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
665
666 SetPageLRU(page_tail);
667
668 if (page_evictable(page_tail, NULL)) {
669 if (PageActive(page)) {
670 SetPageActive(page_tail);
671 active = 1;
672 lru = LRU_ACTIVE_ANON;
673 } else {
674 active = 0;
675 lru = LRU_INACTIVE_ANON;
676 }
677 update_page_reclaim_stat(zone, page_tail, file, active);
678 } else {
679 SetPageUnevictable(page_tail);
680 lru = LRU_UNEVICTABLE;
681 }
682
683 if (likely(PageLRU(page)))
684 list_add_tail(&page_tail->lru, &page->lru);
685 else {
686 struct list_head *list_head;
687 /*
688 * Head page has not yet been counted, as an hpage,
689 * so we must account for each subpage individually.
690 *
691 * Use the standard add function to put page_tail on the list,
692 * but then correct its position so they all end up in order.
693 */
694 add_page_to_lru_list(zone, page_tail, lru);
695 list_head = page_tail->lru.prev;
696 list_move_tail(&page_tail->lru, list_head);
697 }
698 }
699 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
700
701 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
702 {
703 enum lru_list lru = (enum lru_list)arg;
704 struct zone *zone = page_zone(page);
705 int file = is_file_lru(lru);
706 int active = is_active_lru(lru);
707
708 VM_BUG_ON(PageActive(page));
709 VM_BUG_ON(PageUnevictable(page));
710 VM_BUG_ON(PageLRU(page));
711
712 SetPageLRU(page);
713 if (active)
714 SetPageActive(page);
715 update_page_reclaim_stat(zone, page, file, active);
716 add_page_to_lru_list(zone, page, lru);
717 }
718
719 /*
720 * Add the passed pages to the LRU, then drop the caller's refcount
721 * on them. Reinitialises the caller's pagevec.
722 */
723 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
724 {
725 VM_BUG_ON(is_unevictable_lru(lru));
726
727 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
728 }
729
730 EXPORT_SYMBOL(____pagevec_lru_add);
731
732 /**
733 * pagevec_lookup - gang pagecache lookup
734 * @pvec: Where the resulting pages are placed
735 * @mapping: The address_space to search
736 * @start: The starting page index
737 * @nr_pages: The maximum number of pages
738 *
739 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
740 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
741 * reference against the pages in @pvec.
742 *
743 * The search returns a group of mapping-contiguous pages with ascending
744 * indexes. There may be holes in the indices due to not-present pages.
745 *
746 * pagevec_lookup() returns the number of pages which were found.
747 */
748 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
749 pgoff_t start, unsigned nr_pages)
750 {
751 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
752 return pagevec_count(pvec);
753 }
754
755 EXPORT_SYMBOL(pagevec_lookup);
756
757 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
758 pgoff_t *index, int tag, unsigned nr_pages)
759 {
760 pvec->nr = find_get_pages_tag(mapping, index, tag,
761 nr_pages, pvec->pages);
762 return pagevec_count(pvec);
763 }
764
765 EXPORT_SYMBOL(pagevec_lookup_tag);
766
767 /*
768 * Perform any setup for the swap system
769 */
770 void __init swap_setup(void)
771 {
772 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
773
774 #ifdef CONFIG_SWAP
775 bdi_init(swapper_space.backing_dev_info);
776 #endif
777
778 /* Use a smaller cluster for small-memory machines */
779 if (megs < 16)
780 page_cluster = 2;
781 else
782 page_cluster = 3;
783 /*
784 * Right now other parts of the system means that we
785 * _really_ don't want to cluster much more
786 */
787 }
This page took 0.05942 seconds and 6 git commands to generate.