thp: improve order in lru list for split huge page
[deliverable/linux.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43
44 /*
45 * This path almost never happens for VM activity - pages are normally
46 * freed via pagevecs. But it gets used by networking.
47 */
48 static void __page_cache_release(struct page *page)
49 {
50 if (PageLRU(page)) {
51 unsigned long flags;
52 struct zone *zone = page_zone(page);
53
54 spin_lock_irqsave(&zone->lru_lock, flags);
55 VM_BUG_ON(!PageLRU(page));
56 __ClearPageLRU(page);
57 del_page_from_lru(zone, page);
58 spin_unlock_irqrestore(&zone->lru_lock, flags);
59 }
60 }
61
62 static void __put_single_page(struct page *page)
63 {
64 __page_cache_release(page);
65 free_hot_cold_page(page, 0);
66 }
67
68 static void __put_compound_page(struct page *page)
69 {
70 compound_page_dtor *dtor;
71
72 __page_cache_release(page);
73 dtor = get_compound_page_dtor(page);
74 (*dtor)(page);
75 }
76
77 static void put_compound_page(struct page *page)
78 {
79 if (unlikely(PageTail(page))) {
80 /* __split_huge_page_refcount can run under us */
81 struct page *page_head = compound_trans_head(page);
82
83 if (likely(page != page_head &&
84 get_page_unless_zero(page_head))) {
85 unsigned long flags;
86 /*
87 * page_head wasn't a dangling pointer but it
88 * may not be a head page anymore by the time
89 * we obtain the lock. That is ok as long as it
90 * can't be freed from under us.
91 */
92 flags = compound_lock_irqsave(page_head);
93 if (unlikely(!PageTail(page))) {
94 /* __split_huge_page_refcount run before us */
95 compound_unlock_irqrestore(page_head, flags);
96 VM_BUG_ON(PageHead(page_head));
97 if (put_page_testzero(page_head))
98 __put_single_page(page_head);
99 out_put_single:
100 if (put_page_testzero(page))
101 __put_single_page(page);
102 return;
103 }
104 VM_BUG_ON(page_head != page->first_page);
105 /*
106 * We can release the refcount taken by
107 * get_page_unless_zero() now that
108 * __split_huge_page_refcount() is blocked on
109 * the compound_lock.
110 */
111 if (put_page_testzero(page_head))
112 VM_BUG_ON(1);
113 /* __split_huge_page_refcount will wait now */
114 VM_BUG_ON(page_mapcount(page) <= 0);
115 atomic_dec(&page->_mapcount);
116 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
117 VM_BUG_ON(atomic_read(&page->_count) != 0);
118 compound_unlock_irqrestore(page_head, flags);
119 if (put_page_testzero(page_head)) {
120 if (PageHead(page_head))
121 __put_compound_page(page_head);
122 else
123 __put_single_page(page_head);
124 }
125 } else {
126 /* page_head is a dangling pointer */
127 VM_BUG_ON(PageTail(page));
128 goto out_put_single;
129 }
130 } else if (put_page_testzero(page)) {
131 if (PageHead(page))
132 __put_compound_page(page);
133 else
134 __put_single_page(page);
135 }
136 }
137
138 void put_page(struct page *page)
139 {
140 if (unlikely(PageCompound(page)))
141 put_compound_page(page);
142 else if (put_page_testzero(page))
143 __put_single_page(page);
144 }
145 EXPORT_SYMBOL(put_page);
146
147 /*
148 * This function is exported but must not be called by anything other
149 * than get_page(). It implements the slow path of get_page().
150 */
151 bool __get_page_tail(struct page *page)
152 {
153 /*
154 * This takes care of get_page() if run on a tail page
155 * returned by one of the get_user_pages/follow_page variants.
156 * get_user_pages/follow_page itself doesn't need the compound
157 * lock because it runs __get_page_tail_foll() under the
158 * proper PT lock that already serializes against
159 * split_huge_page().
160 */
161 unsigned long flags;
162 bool got = false;
163 struct page *page_head = compound_trans_head(page);
164
165 if (likely(page != page_head && get_page_unless_zero(page_head))) {
166 /*
167 * page_head wasn't a dangling pointer but it
168 * may not be a head page anymore by the time
169 * we obtain the lock. That is ok as long as it
170 * can't be freed from under us.
171 */
172 flags = compound_lock_irqsave(page_head);
173 /* here __split_huge_page_refcount won't run anymore */
174 if (likely(PageTail(page))) {
175 __get_page_tail_foll(page, false);
176 got = true;
177 }
178 compound_unlock_irqrestore(page_head, flags);
179 if (unlikely(!got))
180 put_page(page_head);
181 }
182 return got;
183 }
184 EXPORT_SYMBOL(__get_page_tail);
185
186 /**
187 * put_pages_list() - release a list of pages
188 * @pages: list of pages threaded on page->lru
189 *
190 * Release a list of pages which are strung together on page.lru. Currently
191 * used by read_cache_pages() and related error recovery code.
192 */
193 void put_pages_list(struct list_head *pages)
194 {
195 while (!list_empty(pages)) {
196 struct page *victim;
197
198 victim = list_entry(pages->prev, struct page, lru);
199 list_del(&victim->lru);
200 page_cache_release(victim);
201 }
202 }
203 EXPORT_SYMBOL(put_pages_list);
204
205 static void pagevec_lru_move_fn(struct pagevec *pvec,
206 void (*move_fn)(struct page *page, void *arg),
207 void *arg)
208 {
209 int i;
210 struct zone *zone = NULL;
211 unsigned long flags = 0;
212
213 for (i = 0; i < pagevec_count(pvec); i++) {
214 struct page *page = pvec->pages[i];
215 struct zone *pagezone = page_zone(page);
216
217 if (pagezone != zone) {
218 if (zone)
219 spin_unlock_irqrestore(&zone->lru_lock, flags);
220 zone = pagezone;
221 spin_lock_irqsave(&zone->lru_lock, flags);
222 }
223
224 (*move_fn)(page, arg);
225 }
226 if (zone)
227 spin_unlock_irqrestore(&zone->lru_lock, flags);
228 release_pages(pvec->pages, pvec->nr, pvec->cold);
229 pagevec_reinit(pvec);
230 }
231
232 static void pagevec_move_tail_fn(struct page *page, void *arg)
233 {
234 int *pgmoved = arg;
235
236 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
237 enum lru_list lru = page_lru_base_type(page);
238 struct lruvec *lruvec;
239
240 lruvec = mem_cgroup_lru_move_lists(page_zone(page),
241 page, lru, lru);
242 list_move_tail(&page->lru, &lruvec->lists[lru]);
243 (*pgmoved)++;
244 }
245 }
246
247 /*
248 * pagevec_move_tail() must be called with IRQ disabled.
249 * Otherwise this may cause nasty races.
250 */
251 static void pagevec_move_tail(struct pagevec *pvec)
252 {
253 int pgmoved = 0;
254
255 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
256 __count_vm_events(PGROTATED, pgmoved);
257 }
258
259 /*
260 * Writeback is about to end against a page which has been marked for immediate
261 * reclaim. If it still appears to be reclaimable, move it to the tail of the
262 * inactive list.
263 */
264 void rotate_reclaimable_page(struct page *page)
265 {
266 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
267 !PageUnevictable(page) && PageLRU(page)) {
268 struct pagevec *pvec;
269 unsigned long flags;
270
271 page_cache_get(page);
272 local_irq_save(flags);
273 pvec = &__get_cpu_var(lru_rotate_pvecs);
274 if (!pagevec_add(pvec, page))
275 pagevec_move_tail(pvec);
276 local_irq_restore(flags);
277 }
278 }
279
280 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
281 int file, int rotated)
282 {
283 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
284 struct zone_reclaim_stat *memcg_reclaim_stat;
285
286 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
287
288 reclaim_stat->recent_scanned[file]++;
289 if (rotated)
290 reclaim_stat->recent_rotated[file]++;
291
292 if (!memcg_reclaim_stat)
293 return;
294
295 memcg_reclaim_stat->recent_scanned[file]++;
296 if (rotated)
297 memcg_reclaim_stat->recent_rotated[file]++;
298 }
299
300 static void __activate_page(struct page *page, void *arg)
301 {
302 struct zone *zone = page_zone(page);
303
304 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
305 int file = page_is_file_cache(page);
306 int lru = page_lru_base_type(page);
307 del_page_from_lru_list(zone, page, lru);
308
309 SetPageActive(page);
310 lru += LRU_ACTIVE;
311 add_page_to_lru_list(zone, page, lru);
312 __count_vm_event(PGACTIVATE);
313
314 update_page_reclaim_stat(zone, page, file, 1);
315 }
316 }
317
318 #ifdef CONFIG_SMP
319 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
320
321 static void activate_page_drain(int cpu)
322 {
323 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
324
325 if (pagevec_count(pvec))
326 pagevec_lru_move_fn(pvec, __activate_page, NULL);
327 }
328
329 void activate_page(struct page *page)
330 {
331 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
332 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
333
334 page_cache_get(page);
335 if (!pagevec_add(pvec, page))
336 pagevec_lru_move_fn(pvec, __activate_page, NULL);
337 put_cpu_var(activate_page_pvecs);
338 }
339 }
340
341 #else
342 static inline void activate_page_drain(int cpu)
343 {
344 }
345
346 void activate_page(struct page *page)
347 {
348 struct zone *zone = page_zone(page);
349
350 spin_lock_irq(&zone->lru_lock);
351 __activate_page(page, NULL);
352 spin_unlock_irq(&zone->lru_lock);
353 }
354 #endif
355
356 /*
357 * Mark a page as having seen activity.
358 *
359 * inactive,unreferenced -> inactive,referenced
360 * inactive,referenced -> active,unreferenced
361 * active,unreferenced -> active,referenced
362 */
363 void mark_page_accessed(struct page *page)
364 {
365 if (!PageActive(page) && !PageUnevictable(page) &&
366 PageReferenced(page) && PageLRU(page)) {
367 activate_page(page);
368 ClearPageReferenced(page);
369 } else if (!PageReferenced(page)) {
370 SetPageReferenced(page);
371 }
372 }
373
374 EXPORT_SYMBOL(mark_page_accessed);
375
376 void __lru_cache_add(struct page *page, enum lru_list lru)
377 {
378 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
379
380 page_cache_get(page);
381 if (!pagevec_add(pvec, page))
382 ____pagevec_lru_add(pvec, lru);
383 put_cpu_var(lru_add_pvecs);
384 }
385 EXPORT_SYMBOL(__lru_cache_add);
386
387 /**
388 * lru_cache_add_lru - add a page to a page list
389 * @page: the page to be added to the LRU.
390 * @lru: the LRU list to which the page is added.
391 */
392 void lru_cache_add_lru(struct page *page, enum lru_list lru)
393 {
394 if (PageActive(page)) {
395 VM_BUG_ON(PageUnevictable(page));
396 ClearPageActive(page);
397 } else if (PageUnevictable(page)) {
398 VM_BUG_ON(PageActive(page));
399 ClearPageUnevictable(page);
400 }
401
402 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
403 __lru_cache_add(page, lru);
404 }
405
406 /**
407 * add_page_to_unevictable_list - add a page to the unevictable list
408 * @page: the page to be added to the unevictable list
409 *
410 * Add page directly to its zone's unevictable list. To avoid races with
411 * tasks that might be making the page evictable, through eg. munlock,
412 * munmap or exit, while it's not on the lru, we want to add the page
413 * while it's locked or otherwise "invisible" to other tasks. This is
414 * difficult to do when using the pagevec cache, so bypass that.
415 */
416 void add_page_to_unevictable_list(struct page *page)
417 {
418 struct zone *zone = page_zone(page);
419
420 spin_lock_irq(&zone->lru_lock);
421 SetPageUnevictable(page);
422 SetPageLRU(page);
423 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
424 spin_unlock_irq(&zone->lru_lock);
425 }
426
427 /*
428 * If the page can not be invalidated, it is moved to the
429 * inactive list to speed up its reclaim. It is moved to the
430 * head of the list, rather than the tail, to give the flusher
431 * threads some time to write it out, as this is much more
432 * effective than the single-page writeout from reclaim.
433 *
434 * If the page isn't page_mapped and dirty/writeback, the page
435 * could reclaim asap using PG_reclaim.
436 *
437 * 1. active, mapped page -> none
438 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
439 * 3. inactive, mapped page -> none
440 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
441 * 5. inactive, clean -> inactive, tail
442 * 6. Others -> none
443 *
444 * In 4, why it moves inactive's head, the VM expects the page would
445 * be write it out by flusher threads as this is much more effective
446 * than the single-page writeout from reclaim.
447 */
448 static void lru_deactivate_fn(struct page *page, void *arg)
449 {
450 int lru, file;
451 bool active;
452 struct zone *zone = page_zone(page);
453
454 if (!PageLRU(page))
455 return;
456
457 if (PageUnevictable(page))
458 return;
459
460 /* Some processes are using the page */
461 if (page_mapped(page))
462 return;
463
464 active = PageActive(page);
465
466 file = page_is_file_cache(page);
467 lru = page_lru_base_type(page);
468 del_page_from_lru_list(zone, page, lru + active);
469 ClearPageActive(page);
470 ClearPageReferenced(page);
471 add_page_to_lru_list(zone, page, lru);
472
473 if (PageWriteback(page) || PageDirty(page)) {
474 /*
475 * PG_reclaim could be raced with end_page_writeback
476 * It can make readahead confusing. But race window
477 * is _really_ small and it's non-critical problem.
478 */
479 SetPageReclaim(page);
480 } else {
481 struct lruvec *lruvec;
482 /*
483 * The page's writeback ends up during pagevec
484 * We moves tha page into tail of inactive.
485 */
486 lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
487 list_move_tail(&page->lru, &lruvec->lists[lru]);
488 __count_vm_event(PGROTATED);
489 }
490
491 if (active)
492 __count_vm_event(PGDEACTIVATE);
493 update_page_reclaim_stat(zone, page, file, 0);
494 }
495
496 /*
497 * Drain pages out of the cpu's pagevecs.
498 * Either "cpu" is the current CPU, and preemption has already been
499 * disabled; or "cpu" is being hot-unplugged, and is already dead.
500 */
501 static void drain_cpu_pagevecs(int cpu)
502 {
503 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
504 struct pagevec *pvec;
505 int lru;
506
507 for_each_lru(lru) {
508 pvec = &pvecs[lru - LRU_BASE];
509 if (pagevec_count(pvec))
510 ____pagevec_lru_add(pvec, lru);
511 }
512
513 pvec = &per_cpu(lru_rotate_pvecs, cpu);
514 if (pagevec_count(pvec)) {
515 unsigned long flags;
516
517 /* No harm done if a racing interrupt already did this */
518 local_irq_save(flags);
519 pagevec_move_tail(pvec);
520 local_irq_restore(flags);
521 }
522
523 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
524 if (pagevec_count(pvec))
525 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
526
527 activate_page_drain(cpu);
528 }
529
530 /**
531 * deactivate_page - forcefully deactivate a page
532 * @page: page to deactivate
533 *
534 * This function hints the VM that @page is a good reclaim candidate,
535 * for example if its invalidation fails due to the page being dirty
536 * or under writeback.
537 */
538 void deactivate_page(struct page *page)
539 {
540 /*
541 * In a workload with many unevictable page such as mprotect, unevictable
542 * page deactivation for accelerating reclaim is pointless.
543 */
544 if (PageUnevictable(page))
545 return;
546
547 if (likely(get_page_unless_zero(page))) {
548 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
549
550 if (!pagevec_add(pvec, page))
551 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
552 put_cpu_var(lru_deactivate_pvecs);
553 }
554 }
555
556 void lru_add_drain(void)
557 {
558 drain_cpu_pagevecs(get_cpu());
559 put_cpu();
560 }
561
562 static void lru_add_drain_per_cpu(struct work_struct *dummy)
563 {
564 lru_add_drain();
565 }
566
567 /*
568 * Returns 0 for success
569 */
570 int lru_add_drain_all(void)
571 {
572 return schedule_on_each_cpu(lru_add_drain_per_cpu);
573 }
574
575 /*
576 * Batched page_cache_release(). Decrement the reference count on all the
577 * passed pages. If it fell to zero then remove the page from the LRU and
578 * free it.
579 *
580 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
581 * for the remainder of the operation.
582 *
583 * The locking in this function is against shrink_inactive_list(): we recheck
584 * the page count inside the lock to see whether shrink_inactive_list()
585 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
586 * will free it.
587 */
588 void release_pages(struct page **pages, int nr, int cold)
589 {
590 int i;
591 LIST_HEAD(pages_to_free);
592 struct zone *zone = NULL;
593 unsigned long uninitialized_var(flags);
594
595 for (i = 0; i < nr; i++) {
596 struct page *page = pages[i];
597
598 if (unlikely(PageCompound(page))) {
599 if (zone) {
600 spin_unlock_irqrestore(&zone->lru_lock, flags);
601 zone = NULL;
602 }
603 put_compound_page(page);
604 continue;
605 }
606
607 if (!put_page_testzero(page))
608 continue;
609
610 if (PageLRU(page)) {
611 struct zone *pagezone = page_zone(page);
612
613 if (pagezone != zone) {
614 if (zone)
615 spin_unlock_irqrestore(&zone->lru_lock,
616 flags);
617 zone = pagezone;
618 spin_lock_irqsave(&zone->lru_lock, flags);
619 }
620 VM_BUG_ON(!PageLRU(page));
621 __ClearPageLRU(page);
622 del_page_from_lru(zone, page);
623 }
624
625 list_add(&page->lru, &pages_to_free);
626 }
627 if (zone)
628 spin_unlock_irqrestore(&zone->lru_lock, flags);
629
630 free_hot_cold_page_list(&pages_to_free, cold);
631 }
632 EXPORT_SYMBOL(release_pages);
633
634 /*
635 * The pages which we're about to release may be in the deferred lru-addition
636 * queues. That would prevent them from really being freed right now. That's
637 * OK from a correctness point of view but is inefficient - those pages may be
638 * cache-warm and we want to give them back to the page allocator ASAP.
639 *
640 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
641 * and __pagevec_lru_add_active() call release_pages() directly to avoid
642 * mutual recursion.
643 */
644 void __pagevec_release(struct pagevec *pvec)
645 {
646 lru_add_drain();
647 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
648 pagevec_reinit(pvec);
649 }
650
651 EXPORT_SYMBOL(__pagevec_release);
652
653 /* used by __split_huge_page_refcount() */
654 void lru_add_page_tail(struct zone* zone,
655 struct page *page, struct page *page_tail)
656 {
657 int active;
658 enum lru_list lru;
659 const int file = 0;
660
661 VM_BUG_ON(!PageHead(page));
662 VM_BUG_ON(PageCompound(page_tail));
663 VM_BUG_ON(PageLRU(page_tail));
664 VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
665
666 SetPageLRU(page_tail);
667
668 if (page_evictable(page_tail, NULL)) {
669 struct lruvec *lruvec;
670
671 if (PageActive(page)) {
672 SetPageActive(page_tail);
673 active = 1;
674 lru = LRU_ACTIVE_ANON;
675 } else {
676 active = 0;
677 lru = LRU_INACTIVE_ANON;
678 }
679 update_page_reclaim_stat(zone, page_tail, file, active);
680 lruvec = mem_cgroup_lru_add_list(zone, page_tail, lru);
681 if (likely(PageLRU(page)))
682 list_add(&page_tail->lru, page->lru.prev);
683 else
684 list_add(&page_tail->lru, lruvec->lists[lru].prev);
685 __mod_zone_page_state(zone, NR_LRU_BASE + lru,
686 hpage_nr_pages(page_tail));
687 } else {
688 SetPageUnevictable(page_tail);
689 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
690 }
691 }
692
693 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
694 {
695 enum lru_list lru = (enum lru_list)arg;
696 struct zone *zone = page_zone(page);
697 int file = is_file_lru(lru);
698 int active = is_active_lru(lru);
699
700 VM_BUG_ON(PageActive(page));
701 VM_BUG_ON(PageUnevictable(page));
702 VM_BUG_ON(PageLRU(page));
703
704 SetPageLRU(page);
705 if (active)
706 SetPageActive(page);
707 update_page_reclaim_stat(zone, page, file, active);
708 add_page_to_lru_list(zone, page, lru);
709 }
710
711 /*
712 * Add the passed pages to the LRU, then drop the caller's refcount
713 * on them. Reinitialises the caller's pagevec.
714 */
715 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
716 {
717 VM_BUG_ON(is_unevictable_lru(lru));
718
719 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
720 }
721
722 EXPORT_SYMBOL(____pagevec_lru_add);
723
724 /*
725 * Try to drop buffers from the pages in a pagevec
726 */
727 void pagevec_strip(struct pagevec *pvec)
728 {
729 int i;
730
731 for (i = 0; i < pagevec_count(pvec); i++) {
732 struct page *page = pvec->pages[i];
733
734 if (page_has_private(page) && trylock_page(page)) {
735 if (page_has_private(page))
736 try_to_release_page(page, 0);
737 unlock_page(page);
738 }
739 }
740 }
741
742 /**
743 * pagevec_lookup - gang pagecache lookup
744 * @pvec: Where the resulting pages are placed
745 * @mapping: The address_space to search
746 * @start: The starting page index
747 * @nr_pages: The maximum number of pages
748 *
749 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
750 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
751 * reference against the pages in @pvec.
752 *
753 * The search returns a group of mapping-contiguous pages with ascending
754 * indexes. There may be holes in the indices due to not-present pages.
755 *
756 * pagevec_lookup() returns the number of pages which were found.
757 */
758 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
759 pgoff_t start, unsigned nr_pages)
760 {
761 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
762 return pagevec_count(pvec);
763 }
764
765 EXPORT_SYMBOL(pagevec_lookup);
766
767 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
768 pgoff_t *index, int tag, unsigned nr_pages)
769 {
770 pvec->nr = find_get_pages_tag(mapping, index, tag,
771 nr_pages, pvec->pages);
772 return pagevec_count(pvec);
773 }
774
775 EXPORT_SYMBOL(pagevec_lookup_tag);
776
777 /*
778 * Perform any setup for the swap system
779 */
780 void __init swap_setup(void)
781 {
782 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
783
784 #ifdef CONFIG_SWAP
785 bdi_init(swapper_space.backing_dev_info);
786 #endif
787
788 /* Use a smaller cluster for small-memory machines */
789 if (megs < 16)
790 page_cluster = 2;
791 else
792 page_cluster = 3;
793 /*
794 * Right now other parts of the system means that we
795 * _really_ don't want to cluster much more
796 */
797 }
This page took 0.077018 seconds and 6 git commands to generate.