mm: drop tail page refcounting
[deliverable/linux.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35 #include <linux/page_idle.h>
36
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/pagemap.h>
41
42 /* How many pages do we try to swap or page in/out together? */
43 int page_cluster;
44
45 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
46 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
47 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
48
49 /*
50 * This path almost never happens for VM activity - pages are normally
51 * freed via pagevecs. But it gets used by networking.
52 */
53 static void __page_cache_release(struct page *page)
54 {
55 if (PageLRU(page)) {
56 struct zone *zone = page_zone(page);
57 struct lruvec *lruvec;
58 unsigned long flags;
59
60 spin_lock_irqsave(&zone->lru_lock, flags);
61 lruvec = mem_cgroup_page_lruvec(page, zone);
62 VM_BUG_ON_PAGE(!PageLRU(page), page);
63 __ClearPageLRU(page);
64 del_page_from_lru_list(page, lruvec, page_off_lru(page));
65 spin_unlock_irqrestore(&zone->lru_lock, flags);
66 }
67 mem_cgroup_uncharge(page);
68 }
69
70 static void __put_single_page(struct page *page)
71 {
72 __page_cache_release(page);
73 free_hot_cold_page(page, false);
74 }
75
76 static void __put_compound_page(struct page *page)
77 {
78 compound_page_dtor *dtor;
79
80 /*
81 * __page_cache_release() is supposed to be called for thp, not for
82 * hugetlb. This is because hugetlb page does never have PageLRU set
83 * (it's never listed to any LRU lists) and no memcg routines should
84 * be called for hugetlb (it has a separate hugetlb_cgroup.)
85 */
86 if (!PageHuge(page))
87 __page_cache_release(page);
88 dtor = get_compound_page_dtor(page);
89 (*dtor)(page);
90 }
91
92 void __put_page(struct page *page)
93 {
94 if (unlikely(PageCompound(page)))
95 __put_compound_page(page);
96 else
97 __put_single_page(page);
98 }
99 EXPORT_SYMBOL(__put_page);
100
101 /**
102 * put_pages_list() - release a list of pages
103 * @pages: list of pages threaded on page->lru
104 *
105 * Release a list of pages which are strung together on page.lru. Currently
106 * used by read_cache_pages() and related error recovery code.
107 */
108 void put_pages_list(struct list_head *pages)
109 {
110 while (!list_empty(pages)) {
111 struct page *victim;
112
113 victim = list_entry(pages->prev, struct page, lru);
114 list_del(&victim->lru);
115 page_cache_release(victim);
116 }
117 }
118 EXPORT_SYMBOL(put_pages_list);
119
120 /*
121 * get_kernel_pages() - pin kernel pages in memory
122 * @kiov: An array of struct kvec structures
123 * @nr_segs: number of segments to pin
124 * @write: pinning for read/write, currently ignored
125 * @pages: array that receives pointers to the pages pinned.
126 * Should be at least nr_segs long.
127 *
128 * Returns number of pages pinned. This may be fewer than the number
129 * requested. If nr_pages is 0 or negative, returns 0. If no pages
130 * were pinned, returns -errno. Each page returned must be released
131 * with a put_page() call when it is finished with.
132 */
133 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
134 struct page **pages)
135 {
136 int seg;
137
138 for (seg = 0; seg < nr_segs; seg++) {
139 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
140 return seg;
141
142 pages[seg] = kmap_to_page(kiov[seg].iov_base);
143 page_cache_get(pages[seg]);
144 }
145
146 return seg;
147 }
148 EXPORT_SYMBOL_GPL(get_kernel_pages);
149
150 /*
151 * get_kernel_page() - pin a kernel page in memory
152 * @start: starting kernel address
153 * @write: pinning for read/write, currently ignored
154 * @pages: array that receives pointer to the page pinned.
155 * Must be at least nr_segs long.
156 *
157 * Returns 1 if page is pinned. If the page was not pinned, returns
158 * -errno. The page returned must be released with a put_page() call
159 * when it is finished with.
160 */
161 int get_kernel_page(unsigned long start, int write, struct page **pages)
162 {
163 const struct kvec kiov = {
164 .iov_base = (void *)start,
165 .iov_len = PAGE_SIZE
166 };
167
168 return get_kernel_pages(&kiov, 1, write, pages);
169 }
170 EXPORT_SYMBOL_GPL(get_kernel_page);
171
172 static void pagevec_lru_move_fn(struct pagevec *pvec,
173 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
174 void *arg)
175 {
176 int i;
177 struct zone *zone = NULL;
178 struct lruvec *lruvec;
179 unsigned long flags = 0;
180
181 for (i = 0; i < pagevec_count(pvec); i++) {
182 struct page *page = pvec->pages[i];
183 struct zone *pagezone = page_zone(page);
184
185 if (pagezone != zone) {
186 if (zone)
187 spin_unlock_irqrestore(&zone->lru_lock, flags);
188 zone = pagezone;
189 spin_lock_irqsave(&zone->lru_lock, flags);
190 }
191
192 lruvec = mem_cgroup_page_lruvec(page, zone);
193 (*move_fn)(page, lruvec, arg);
194 }
195 if (zone)
196 spin_unlock_irqrestore(&zone->lru_lock, flags);
197 release_pages(pvec->pages, pvec->nr, pvec->cold);
198 pagevec_reinit(pvec);
199 }
200
201 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
202 void *arg)
203 {
204 int *pgmoved = arg;
205
206 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
207 enum lru_list lru = page_lru_base_type(page);
208 list_move_tail(&page->lru, &lruvec->lists[lru]);
209 (*pgmoved)++;
210 }
211 }
212
213 /*
214 * pagevec_move_tail() must be called with IRQ disabled.
215 * Otherwise this may cause nasty races.
216 */
217 static void pagevec_move_tail(struct pagevec *pvec)
218 {
219 int pgmoved = 0;
220
221 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
222 __count_vm_events(PGROTATED, pgmoved);
223 }
224
225 /*
226 * Writeback is about to end against a page which has been marked for immediate
227 * reclaim. If it still appears to be reclaimable, move it to the tail of the
228 * inactive list.
229 */
230 void rotate_reclaimable_page(struct page *page)
231 {
232 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
233 !PageUnevictable(page) && PageLRU(page)) {
234 struct pagevec *pvec;
235 unsigned long flags;
236
237 page_cache_get(page);
238 local_irq_save(flags);
239 pvec = this_cpu_ptr(&lru_rotate_pvecs);
240 if (!pagevec_add(pvec, page))
241 pagevec_move_tail(pvec);
242 local_irq_restore(flags);
243 }
244 }
245
246 static void update_page_reclaim_stat(struct lruvec *lruvec,
247 int file, int rotated)
248 {
249 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
250
251 reclaim_stat->recent_scanned[file]++;
252 if (rotated)
253 reclaim_stat->recent_rotated[file]++;
254 }
255
256 static void __activate_page(struct page *page, struct lruvec *lruvec,
257 void *arg)
258 {
259 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
260 int file = page_is_file_cache(page);
261 int lru = page_lru_base_type(page);
262
263 del_page_from_lru_list(page, lruvec, lru);
264 SetPageActive(page);
265 lru += LRU_ACTIVE;
266 add_page_to_lru_list(page, lruvec, lru);
267 trace_mm_lru_activate(page);
268
269 __count_vm_event(PGACTIVATE);
270 update_page_reclaim_stat(lruvec, file, 1);
271 }
272 }
273
274 #ifdef CONFIG_SMP
275 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
276
277 static void activate_page_drain(int cpu)
278 {
279 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
280
281 if (pagevec_count(pvec))
282 pagevec_lru_move_fn(pvec, __activate_page, NULL);
283 }
284
285 static bool need_activate_page_drain(int cpu)
286 {
287 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
288 }
289
290 void activate_page(struct page *page)
291 {
292 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
293 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
294
295 page_cache_get(page);
296 if (!pagevec_add(pvec, page))
297 pagevec_lru_move_fn(pvec, __activate_page, NULL);
298 put_cpu_var(activate_page_pvecs);
299 }
300 }
301
302 #else
303 static inline void activate_page_drain(int cpu)
304 {
305 }
306
307 static bool need_activate_page_drain(int cpu)
308 {
309 return false;
310 }
311
312 void activate_page(struct page *page)
313 {
314 struct zone *zone = page_zone(page);
315
316 spin_lock_irq(&zone->lru_lock);
317 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
318 spin_unlock_irq(&zone->lru_lock);
319 }
320 #endif
321
322 static void __lru_cache_activate_page(struct page *page)
323 {
324 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
325 int i;
326
327 /*
328 * Search backwards on the optimistic assumption that the page being
329 * activated has just been added to this pagevec. Note that only
330 * the local pagevec is examined as a !PageLRU page could be in the
331 * process of being released, reclaimed, migrated or on a remote
332 * pagevec that is currently being drained. Furthermore, marking
333 * a remote pagevec's page PageActive potentially hits a race where
334 * a page is marked PageActive just after it is added to the inactive
335 * list causing accounting errors and BUG_ON checks to trigger.
336 */
337 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
338 struct page *pagevec_page = pvec->pages[i];
339
340 if (pagevec_page == page) {
341 SetPageActive(page);
342 break;
343 }
344 }
345
346 put_cpu_var(lru_add_pvec);
347 }
348
349 /*
350 * Mark a page as having seen activity.
351 *
352 * inactive,unreferenced -> inactive,referenced
353 * inactive,referenced -> active,unreferenced
354 * active,unreferenced -> active,referenced
355 *
356 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
357 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
358 */
359 void mark_page_accessed(struct page *page)
360 {
361 if (!PageActive(page) && !PageUnevictable(page) &&
362 PageReferenced(page)) {
363
364 /*
365 * If the page is on the LRU, queue it for activation via
366 * activate_page_pvecs. Otherwise, assume the page is on a
367 * pagevec, mark it active and it'll be moved to the active
368 * LRU on the next drain.
369 */
370 if (PageLRU(page))
371 activate_page(page);
372 else
373 __lru_cache_activate_page(page);
374 ClearPageReferenced(page);
375 if (page_is_file_cache(page))
376 workingset_activation(page);
377 } else if (!PageReferenced(page)) {
378 SetPageReferenced(page);
379 }
380 if (page_is_idle(page))
381 clear_page_idle(page);
382 }
383 EXPORT_SYMBOL(mark_page_accessed);
384
385 static void __lru_cache_add(struct page *page)
386 {
387 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
388
389 page_cache_get(page);
390 if (!pagevec_space(pvec))
391 __pagevec_lru_add(pvec);
392 pagevec_add(pvec, page);
393 put_cpu_var(lru_add_pvec);
394 }
395
396 /**
397 * lru_cache_add: add a page to the page lists
398 * @page: the page to add
399 */
400 void lru_cache_add_anon(struct page *page)
401 {
402 if (PageActive(page))
403 ClearPageActive(page);
404 __lru_cache_add(page);
405 }
406
407 void lru_cache_add_file(struct page *page)
408 {
409 if (PageActive(page))
410 ClearPageActive(page);
411 __lru_cache_add(page);
412 }
413 EXPORT_SYMBOL(lru_cache_add_file);
414
415 /**
416 * lru_cache_add - add a page to a page list
417 * @page: the page to be added to the LRU.
418 *
419 * Queue the page for addition to the LRU via pagevec. The decision on whether
420 * to add the page to the [in]active [file|anon] list is deferred until the
421 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
422 * have the page added to the active list using mark_page_accessed().
423 */
424 void lru_cache_add(struct page *page)
425 {
426 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
427 VM_BUG_ON_PAGE(PageLRU(page), page);
428 __lru_cache_add(page);
429 }
430
431 /**
432 * add_page_to_unevictable_list - add a page to the unevictable list
433 * @page: the page to be added to the unevictable list
434 *
435 * Add page directly to its zone's unevictable list. To avoid races with
436 * tasks that might be making the page evictable, through eg. munlock,
437 * munmap or exit, while it's not on the lru, we want to add the page
438 * while it's locked or otherwise "invisible" to other tasks. This is
439 * difficult to do when using the pagevec cache, so bypass that.
440 */
441 void add_page_to_unevictable_list(struct page *page)
442 {
443 struct zone *zone = page_zone(page);
444 struct lruvec *lruvec;
445
446 spin_lock_irq(&zone->lru_lock);
447 lruvec = mem_cgroup_page_lruvec(page, zone);
448 ClearPageActive(page);
449 SetPageUnevictable(page);
450 SetPageLRU(page);
451 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
452 spin_unlock_irq(&zone->lru_lock);
453 }
454
455 /**
456 * lru_cache_add_active_or_unevictable
457 * @page: the page to be added to LRU
458 * @vma: vma in which page is mapped for determining reclaimability
459 *
460 * Place @page on the active or unevictable LRU list, depending on its
461 * evictability. Note that if the page is not evictable, it goes
462 * directly back onto it's zone's unevictable list, it does NOT use a
463 * per cpu pagevec.
464 */
465 void lru_cache_add_active_or_unevictable(struct page *page,
466 struct vm_area_struct *vma)
467 {
468 VM_BUG_ON_PAGE(PageLRU(page), page);
469
470 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
471 SetPageActive(page);
472 lru_cache_add(page);
473 return;
474 }
475
476 if (!TestSetPageMlocked(page)) {
477 /*
478 * We use the irq-unsafe __mod_zone_page_stat because this
479 * counter is not modified from interrupt context, and the pte
480 * lock is held(spinlock), which implies preemption disabled.
481 */
482 __mod_zone_page_state(page_zone(page), NR_MLOCK,
483 hpage_nr_pages(page));
484 count_vm_event(UNEVICTABLE_PGMLOCKED);
485 }
486 add_page_to_unevictable_list(page);
487 }
488
489 /*
490 * If the page can not be invalidated, it is moved to the
491 * inactive list to speed up its reclaim. It is moved to the
492 * head of the list, rather than the tail, to give the flusher
493 * threads some time to write it out, as this is much more
494 * effective than the single-page writeout from reclaim.
495 *
496 * If the page isn't page_mapped and dirty/writeback, the page
497 * could reclaim asap using PG_reclaim.
498 *
499 * 1. active, mapped page -> none
500 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
501 * 3. inactive, mapped page -> none
502 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
503 * 5. inactive, clean -> inactive, tail
504 * 6. Others -> none
505 *
506 * In 4, why it moves inactive's head, the VM expects the page would
507 * be write it out by flusher threads as this is much more effective
508 * than the single-page writeout from reclaim.
509 */
510 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
511 void *arg)
512 {
513 int lru, file;
514 bool active;
515
516 if (!PageLRU(page))
517 return;
518
519 if (PageUnevictable(page))
520 return;
521
522 /* Some processes are using the page */
523 if (page_mapped(page))
524 return;
525
526 active = PageActive(page);
527 file = page_is_file_cache(page);
528 lru = page_lru_base_type(page);
529
530 del_page_from_lru_list(page, lruvec, lru + active);
531 ClearPageActive(page);
532 ClearPageReferenced(page);
533 add_page_to_lru_list(page, lruvec, lru);
534
535 if (PageWriteback(page) || PageDirty(page)) {
536 /*
537 * PG_reclaim could be raced with end_page_writeback
538 * It can make readahead confusing. But race window
539 * is _really_ small and it's non-critical problem.
540 */
541 SetPageReclaim(page);
542 } else {
543 /*
544 * The page's writeback ends up during pagevec
545 * We moves tha page into tail of inactive.
546 */
547 list_move_tail(&page->lru, &lruvec->lists[lru]);
548 __count_vm_event(PGROTATED);
549 }
550
551 if (active)
552 __count_vm_event(PGDEACTIVATE);
553 update_page_reclaim_stat(lruvec, file, 0);
554 }
555
556 /*
557 * Drain pages out of the cpu's pagevecs.
558 * Either "cpu" is the current CPU, and preemption has already been
559 * disabled; or "cpu" is being hot-unplugged, and is already dead.
560 */
561 void lru_add_drain_cpu(int cpu)
562 {
563 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
564
565 if (pagevec_count(pvec))
566 __pagevec_lru_add(pvec);
567
568 pvec = &per_cpu(lru_rotate_pvecs, cpu);
569 if (pagevec_count(pvec)) {
570 unsigned long flags;
571
572 /* No harm done if a racing interrupt already did this */
573 local_irq_save(flags);
574 pagevec_move_tail(pvec);
575 local_irq_restore(flags);
576 }
577
578 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
579 if (pagevec_count(pvec))
580 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
581
582 activate_page_drain(cpu);
583 }
584
585 /**
586 * deactivate_file_page - forcefully deactivate a file page
587 * @page: page to deactivate
588 *
589 * This function hints the VM that @page is a good reclaim candidate,
590 * for example if its invalidation fails due to the page being dirty
591 * or under writeback.
592 */
593 void deactivate_file_page(struct page *page)
594 {
595 /*
596 * In a workload with many unevictable page such as mprotect,
597 * unevictable page deactivation for accelerating reclaim is pointless.
598 */
599 if (PageUnevictable(page))
600 return;
601
602 if (likely(get_page_unless_zero(page))) {
603 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
604
605 if (!pagevec_add(pvec, page))
606 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
607 put_cpu_var(lru_deactivate_file_pvecs);
608 }
609 }
610
611 void lru_add_drain(void)
612 {
613 lru_add_drain_cpu(get_cpu());
614 put_cpu();
615 }
616
617 static void lru_add_drain_per_cpu(struct work_struct *dummy)
618 {
619 lru_add_drain();
620 }
621
622 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
623
624 void lru_add_drain_all(void)
625 {
626 static DEFINE_MUTEX(lock);
627 static struct cpumask has_work;
628 int cpu;
629
630 mutex_lock(&lock);
631 get_online_cpus();
632 cpumask_clear(&has_work);
633
634 for_each_online_cpu(cpu) {
635 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
636
637 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
638 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
639 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
640 need_activate_page_drain(cpu)) {
641 INIT_WORK(work, lru_add_drain_per_cpu);
642 schedule_work_on(cpu, work);
643 cpumask_set_cpu(cpu, &has_work);
644 }
645 }
646
647 for_each_cpu(cpu, &has_work)
648 flush_work(&per_cpu(lru_add_drain_work, cpu));
649
650 put_online_cpus();
651 mutex_unlock(&lock);
652 }
653
654 /**
655 * release_pages - batched page_cache_release()
656 * @pages: array of pages to release
657 * @nr: number of pages
658 * @cold: whether the pages are cache cold
659 *
660 * Decrement the reference count on all the pages in @pages. If it
661 * fell to zero, remove the page from the LRU and free it.
662 */
663 void release_pages(struct page **pages, int nr, bool cold)
664 {
665 int i;
666 LIST_HEAD(pages_to_free);
667 struct zone *zone = NULL;
668 struct lruvec *lruvec;
669 unsigned long uninitialized_var(flags);
670 unsigned int uninitialized_var(lock_batch);
671
672 for (i = 0; i < nr; i++) {
673 struct page *page = pages[i];
674
675 /*
676 * Make sure the IRQ-safe lock-holding time does not get
677 * excessive with a continuous string of pages from the
678 * same zone. The lock is held only if zone != NULL.
679 */
680 if (zone && ++lock_batch == SWAP_CLUSTER_MAX) {
681 spin_unlock_irqrestore(&zone->lru_lock, flags);
682 zone = NULL;
683 }
684
685 page = compound_head(page);
686 if (!put_page_testzero(page))
687 continue;
688
689 if (PageCompound(page)) {
690 if (zone) {
691 spin_unlock_irqrestore(&zone->lru_lock, flags);
692 zone = NULL;
693 }
694 __put_compound_page(page);
695 continue;
696 }
697
698 if (PageLRU(page)) {
699 struct zone *pagezone = page_zone(page);
700
701 if (pagezone != zone) {
702 if (zone)
703 spin_unlock_irqrestore(&zone->lru_lock,
704 flags);
705 lock_batch = 0;
706 zone = pagezone;
707 spin_lock_irqsave(&zone->lru_lock, flags);
708 }
709
710 lruvec = mem_cgroup_page_lruvec(page, zone);
711 VM_BUG_ON_PAGE(!PageLRU(page), page);
712 __ClearPageLRU(page);
713 del_page_from_lru_list(page, lruvec, page_off_lru(page));
714 }
715
716 /* Clear Active bit in case of parallel mark_page_accessed */
717 __ClearPageActive(page);
718
719 list_add(&page->lru, &pages_to_free);
720 }
721 if (zone)
722 spin_unlock_irqrestore(&zone->lru_lock, flags);
723
724 mem_cgroup_uncharge_list(&pages_to_free);
725 free_hot_cold_page_list(&pages_to_free, cold);
726 }
727 EXPORT_SYMBOL(release_pages);
728
729 /*
730 * The pages which we're about to release may be in the deferred lru-addition
731 * queues. That would prevent them from really being freed right now. That's
732 * OK from a correctness point of view but is inefficient - those pages may be
733 * cache-warm and we want to give them back to the page allocator ASAP.
734 *
735 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
736 * and __pagevec_lru_add_active() call release_pages() directly to avoid
737 * mutual recursion.
738 */
739 void __pagevec_release(struct pagevec *pvec)
740 {
741 lru_add_drain();
742 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
743 pagevec_reinit(pvec);
744 }
745 EXPORT_SYMBOL(__pagevec_release);
746
747 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
748 /* used by __split_huge_page_refcount() */
749 void lru_add_page_tail(struct page *page, struct page *page_tail,
750 struct lruvec *lruvec, struct list_head *list)
751 {
752 const int file = 0;
753
754 VM_BUG_ON_PAGE(!PageHead(page), page);
755 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
756 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
757 VM_BUG_ON(NR_CPUS != 1 &&
758 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
759
760 if (!list)
761 SetPageLRU(page_tail);
762
763 if (likely(PageLRU(page)))
764 list_add_tail(&page_tail->lru, &page->lru);
765 else if (list) {
766 /* page reclaim is reclaiming a huge page */
767 get_page(page_tail);
768 list_add_tail(&page_tail->lru, list);
769 } else {
770 struct list_head *list_head;
771 /*
772 * Head page has not yet been counted, as an hpage,
773 * so we must account for each subpage individually.
774 *
775 * Use the standard add function to put page_tail on the list,
776 * but then correct its position so they all end up in order.
777 */
778 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
779 list_head = page_tail->lru.prev;
780 list_move_tail(&page_tail->lru, list_head);
781 }
782
783 if (!PageUnevictable(page))
784 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
785 }
786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
787
788 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
789 void *arg)
790 {
791 int file = page_is_file_cache(page);
792 int active = PageActive(page);
793 enum lru_list lru = page_lru(page);
794
795 VM_BUG_ON_PAGE(PageLRU(page), page);
796
797 SetPageLRU(page);
798 add_page_to_lru_list(page, lruvec, lru);
799 update_page_reclaim_stat(lruvec, file, active);
800 trace_mm_lru_insertion(page, lru);
801 }
802
803 /*
804 * Add the passed pages to the LRU, then drop the caller's refcount
805 * on them. Reinitialises the caller's pagevec.
806 */
807 void __pagevec_lru_add(struct pagevec *pvec)
808 {
809 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
810 }
811 EXPORT_SYMBOL(__pagevec_lru_add);
812
813 /**
814 * pagevec_lookup_entries - gang pagecache lookup
815 * @pvec: Where the resulting entries are placed
816 * @mapping: The address_space to search
817 * @start: The starting entry index
818 * @nr_entries: The maximum number of entries
819 * @indices: The cache indices corresponding to the entries in @pvec
820 *
821 * pagevec_lookup_entries() will search for and return a group of up
822 * to @nr_entries pages and shadow entries in the mapping. All
823 * entries are placed in @pvec. pagevec_lookup_entries() takes a
824 * reference against actual pages in @pvec.
825 *
826 * The search returns a group of mapping-contiguous entries with
827 * ascending indexes. There may be holes in the indices due to
828 * not-present entries.
829 *
830 * pagevec_lookup_entries() returns the number of entries which were
831 * found.
832 */
833 unsigned pagevec_lookup_entries(struct pagevec *pvec,
834 struct address_space *mapping,
835 pgoff_t start, unsigned nr_pages,
836 pgoff_t *indices)
837 {
838 pvec->nr = find_get_entries(mapping, start, nr_pages,
839 pvec->pages, indices);
840 return pagevec_count(pvec);
841 }
842
843 /**
844 * pagevec_remove_exceptionals - pagevec exceptionals pruning
845 * @pvec: The pagevec to prune
846 *
847 * pagevec_lookup_entries() fills both pages and exceptional radix
848 * tree entries into the pagevec. This function prunes all
849 * exceptionals from @pvec without leaving holes, so that it can be
850 * passed on to page-only pagevec operations.
851 */
852 void pagevec_remove_exceptionals(struct pagevec *pvec)
853 {
854 int i, j;
855
856 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
857 struct page *page = pvec->pages[i];
858 if (!radix_tree_exceptional_entry(page))
859 pvec->pages[j++] = page;
860 }
861 pvec->nr = j;
862 }
863
864 /**
865 * pagevec_lookup - gang pagecache lookup
866 * @pvec: Where the resulting pages are placed
867 * @mapping: The address_space to search
868 * @start: The starting page index
869 * @nr_pages: The maximum number of pages
870 *
871 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
872 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
873 * reference against the pages in @pvec.
874 *
875 * The search returns a group of mapping-contiguous pages with ascending
876 * indexes. There may be holes in the indices due to not-present pages.
877 *
878 * pagevec_lookup() returns the number of pages which were found.
879 */
880 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
881 pgoff_t start, unsigned nr_pages)
882 {
883 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
884 return pagevec_count(pvec);
885 }
886 EXPORT_SYMBOL(pagevec_lookup);
887
888 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
889 pgoff_t *index, int tag, unsigned nr_pages)
890 {
891 pvec->nr = find_get_pages_tag(mapping, index, tag,
892 nr_pages, pvec->pages);
893 return pagevec_count(pvec);
894 }
895 EXPORT_SYMBOL(pagevec_lookup_tag);
896
897 /*
898 * Perform any setup for the swap system
899 */
900 void __init swap_setup(void)
901 {
902 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
903 #ifdef CONFIG_SWAP
904 int i;
905
906 for (i = 0; i < MAX_SWAPFILES; i++)
907 spin_lock_init(&swapper_spaces[i].tree_lock);
908 #endif
909
910 /* Use a smaller cluster for small-memory machines */
911 if (megs < 16)
912 page_cluster = 2;
913 else
914 page_cluster = 3;
915 /*
916 * Right now other parts of the system means that we
917 * _really_ don't want to cluster much more
918 */
919 }
This page took 0.105194 seconds and 6 git commands to generate.