tmpfs: move swap_state stats update
[deliverable/linux.git] / mm / swap_state.c
1 /*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20
21 #include <asm/pgtable.h>
22
23 /*
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
26 * future use of radix_tree tags in the swap cache.
27 */
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .sync_page = block_sync_page,
31 .set_page_dirty = __set_page_dirty_nobuffers,
32 .migratepage = migrate_page,
33 };
34
35 static struct backing_dev_info swap_backing_dev_info = {
36 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
37 .unplug_io_fn = swap_unplug_io_fn,
38 };
39
40 struct address_space swapper_space = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock),
43 .a_ops = &swap_aops,
44 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45 .backing_dev_info = &swap_backing_dev_info,
46 };
47
48 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
49
50 static struct {
51 unsigned long add_total;
52 unsigned long del_total;
53 unsigned long find_success;
54 unsigned long find_total;
55 } swap_cache_info;
56
57 void show_swap_cache_info(void)
58 {
59 printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n",
60 swap_cache_info.add_total, swap_cache_info.del_total,
61 swap_cache_info.find_success, swap_cache_info.find_total);
62 printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
63 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
64 }
65
66 /*
67 * __add_to_swap_cache resembles add_to_page_cache on swapper_space,
68 * but sets SwapCache flag and private instead of mapping and index.
69 */
70 static int __add_to_swap_cache(struct page *page, swp_entry_t entry,
71 gfp_t gfp_mask)
72 {
73 int error;
74
75 BUG_ON(!PageLocked(page));
76 BUG_ON(PageSwapCache(page));
77 BUG_ON(PagePrivate(page));
78 error = radix_tree_preload(gfp_mask);
79 if (!error) {
80 write_lock_irq(&swapper_space.tree_lock);
81 error = radix_tree_insert(&swapper_space.page_tree,
82 entry.val, page);
83 if (!error) {
84 page_cache_get(page);
85 SetPageSwapCache(page);
86 set_page_private(page, entry.val);
87 total_swapcache_pages++;
88 __inc_zone_page_state(page, NR_FILE_PAGES);
89 INC_CACHE_INFO(add_total);
90 }
91 write_unlock_irq(&swapper_space.tree_lock);
92 radix_tree_preload_end();
93 }
94 return error;
95 }
96
97 static int add_to_swap_cache(struct page *page, swp_entry_t entry,
98 gfp_t gfp_mask)
99 {
100 int error;
101
102 BUG_ON(PageLocked(page));
103 if (!swap_duplicate(entry))
104 return -ENOENT;
105
106 SetPageLocked(page);
107 error = __add_to_swap_cache(page, entry, gfp_mask & GFP_KERNEL);
108 /*
109 * Anon pages are already on the LRU, we don't run lru_cache_add here.
110 */
111 if (error) {
112 ClearPageLocked(page);
113 swap_free(entry);
114 return error;
115 }
116 return 0;
117 }
118
119 /*
120 * This must be called only on pages that have
121 * been verified to be in the swap cache.
122 */
123 void __delete_from_swap_cache(struct page *page)
124 {
125 BUG_ON(!PageLocked(page));
126 BUG_ON(!PageSwapCache(page));
127 BUG_ON(PageWriteback(page));
128 BUG_ON(PagePrivate(page));
129
130 radix_tree_delete(&swapper_space.page_tree, page_private(page));
131 set_page_private(page, 0);
132 ClearPageSwapCache(page);
133 total_swapcache_pages--;
134 __dec_zone_page_state(page, NR_FILE_PAGES);
135 INC_CACHE_INFO(del_total);
136 }
137
138 /**
139 * add_to_swap - allocate swap space for a page
140 * @page: page we want to move to swap
141 *
142 * Allocate swap space for the page and add the page to the
143 * swap cache. Caller needs to hold the page lock.
144 */
145 int add_to_swap(struct page * page, gfp_t gfp_mask)
146 {
147 swp_entry_t entry;
148 int err;
149
150 BUG_ON(!PageLocked(page));
151
152 for (;;) {
153 entry = get_swap_page();
154 if (!entry.val)
155 return 0;
156
157 /*
158 * Radix-tree node allocations from PF_MEMALLOC contexts could
159 * completely exhaust the page allocator. __GFP_NOMEMALLOC
160 * stops emergency reserves from being allocated.
161 *
162 * TODO: this could cause a theoretical memory reclaim
163 * deadlock in the swap out path.
164 */
165 /*
166 * Add it to the swap cache and mark it dirty
167 */
168 err = __add_to_swap_cache(page, entry,
169 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
170
171 switch (err) {
172 case 0: /* Success */
173 SetPageUptodate(page);
174 SetPageDirty(page);
175 return 1;
176 case -EEXIST:
177 /* Raced with "speculative" read_swap_cache_async */
178 swap_free(entry);
179 continue;
180 default:
181 /* -ENOMEM radix-tree allocation failure */
182 swap_free(entry);
183 return 0;
184 }
185 }
186 }
187
188 /*
189 * This must be called only on pages that have
190 * been verified to be in the swap cache and locked.
191 * It will never put the page into the free list,
192 * the caller has a reference on the page.
193 */
194 void delete_from_swap_cache(struct page *page)
195 {
196 swp_entry_t entry;
197
198 entry.val = page_private(page);
199
200 write_lock_irq(&swapper_space.tree_lock);
201 __delete_from_swap_cache(page);
202 write_unlock_irq(&swapper_space.tree_lock);
203
204 swap_free(entry);
205 page_cache_release(page);
206 }
207
208 /*
209 * Strange swizzling function only for use by shmem_writepage
210 */
211 int move_to_swap_cache(struct page *page, swp_entry_t entry)
212 {
213 int err = __add_to_swap_cache(page, entry, GFP_ATOMIC);
214 if (!err) {
215 remove_from_page_cache(page);
216 page_cache_release(page); /* pagecache ref */
217 if (!swap_duplicate(entry))
218 BUG();
219 SetPageDirty(page);
220 }
221 return err;
222 }
223
224 /*
225 * Strange swizzling function for shmem_getpage (and shmem_unuse)
226 */
227 int move_from_swap_cache(struct page *page, unsigned long index,
228 struct address_space *mapping)
229 {
230 int err = add_to_page_cache(page, mapping, index, GFP_ATOMIC);
231 if (!err) {
232 delete_from_swap_cache(page);
233 /* shift page from clean_pages to dirty_pages list */
234 ClearPageDirty(page);
235 set_page_dirty(page);
236 }
237 return err;
238 }
239
240 /*
241 * If we are the only user, then try to free up the swap cache.
242 *
243 * Its ok to check for PageSwapCache without the page lock
244 * here because we are going to recheck again inside
245 * exclusive_swap_page() _with_ the lock.
246 * - Marcelo
247 */
248 static inline void free_swap_cache(struct page *page)
249 {
250 if (PageSwapCache(page) && !TestSetPageLocked(page)) {
251 remove_exclusive_swap_page(page);
252 unlock_page(page);
253 }
254 }
255
256 /*
257 * Perform a free_page(), also freeing any swap cache associated with
258 * this page if it is the last user of the page.
259 */
260 void free_page_and_swap_cache(struct page *page)
261 {
262 free_swap_cache(page);
263 page_cache_release(page);
264 }
265
266 /*
267 * Passed an array of pages, drop them all from swapcache and then release
268 * them. They are removed from the LRU and freed if this is their last use.
269 */
270 void free_pages_and_swap_cache(struct page **pages, int nr)
271 {
272 struct page **pagep = pages;
273
274 lru_add_drain();
275 while (nr) {
276 int todo = min(nr, PAGEVEC_SIZE);
277 int i;
278
279 for (i = 0; i < todo; i++)
280 free_swap_cache(pagep[i]);
281 release_pages(pagep, todo, 0);
282 pagep += todo;
283 nr -= todo;
284 }
285 }
286
287 /*
288 * Lookup a swap entry in the swap cache. A found page will be returned
289 * unlocked and with its refcount incremented - we rely on the kernel
290 * lock getting page table operations atomic even if we drop the page
291 * lock before returning.
292 */
293 struct page * lookup_swap_cache(swp_entry_t entry)
294 {
295 struct page *page;
296
297 page = find_get_page(&swapper_space, entry.val);
298
299 if (page)
300 INC_CACHE_INFO(find_success);
301
302 INC_CACHE_INFO(find_total);
303 return page;
304 }
305
306 /*
307 * Locate a page of swap in physical memory, reserving swap cache space
308 * and reading the disk if it is not already cached.
309 * A failure return means that either the page allocation failed or that
310 * the swap entry is no longer in use.
311 */
312 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
313 struct vm_area_struct *vma, unsigned long addr)
314 {
315 struct page *found_page, *new_page = NULL;
316 int err;
317
318 do {
319 /*
320 * First check the swap cache. Since this is normally
321 * called after lookup_swap_cache() failed, re-calling
322 * that would confuse statistics.
323 */
324 found_page = find_get_page(&swapper_space, entry.val);
325 if (found_page)
326 break;
327
328 /*
329 * Get a new page to read into from swap.
330 */
331 if (!new_page) {
332 new_page = alloc_page_vma(gfp_mask, vma, addr);
333 if (!new_page)
334 break; /* Out of memory */
335 }
336
337 /*
338 * Associate the page with swap entry in the swap cache.
339 * May fail (-ENOENT) if swap entry has been freed since
340 * our caller observed it. May fail (-EEXIST) if there
341 * is already a page associated with this entry in the
342 * swap cache: added by a racing read_swap_cache_async,
343 * or by try_to_swap_out (or shmem_writepage) re-using
344 * the just freed swap entry for an existing page.
345 * May fail (-ENOMEM) if radix-tree node allocation failed.
346 */
347 err = add_to_swap_cache(new_page, entry, gfp_mask);
348 if (!err) {
349 /*
350 * Initiate read into locked page and return.
351 */
352 lru_cache_add_active(new_page);
353 swap_readpage(NULL, new_page);
354 return new_page;
355 }
356 } while (err != -ENOENT && err != -ENOMEM);
357
358 if (new_page)
359 page_cache_release(new_page);
360 return found_page;
361 }
362
363 /**
364 * swapin_readahead - swap in pages in hope we need them soon
365 * @entry: swap entry of this memory
366 * @vma: user vma this address belongs to
367 * @addr: target address for mempolicy
368 *
369 * Returns the struct page for entry and addr, after queueing swapin.
370 *
371 * Primitive swap readahead code. We simply read an aligned block of
372 * (1 << page_cluster) entries in the swap area. This method is chosen
373 * because it doesn't cost us any seek time. We also make sure to queue
374 * the 'original' request together with the readahead ones...
375 *
376 * This has been extended to use the NUMA policies from the mm triggering
377 * the readahead.
378 *
379 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
380 */
381 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
382 struct vm_area_struct *vma, unsigned long addr)
383 {
384 int nr_pages;
385 struct page *page;
386 unsigned long offset;
387 unsigned long end_offset;
388
389 /*
390 * Get starting offset for readaround, and number of pages to read.
391 * Adjust starting address by readbehind (for NUMA interleave case)?
392 * No, it's very unlikely that swap layout would follow vma layout,
393 * more likely that neighbouring swap pages came from the same node:
394 * so use the same "addr" to choose the same node for each swap read.
395 */
396 nr_pages = valid_swaphandles(entry, &offset);
397 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
398 /* Ok, do the async read-ahead now */
399 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
400 gfp_mask, vma, addr);
401 if (!page)
402 break;
403 page_cache_release(page);
404 }
405 lru_add_drain(); /* Push any new pages onto the LRU now */
406 return read_swap_cache_async(entry, gfp_mask, vma, addr);
407 }
This page took 0.06636 seconds and 6 git commands to generate.