[PATCH] PCI Hotplug/powerpc: module build break
[deliverable/linux.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/config.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
35
36 DEFINE_SPINLOCK(swap_lock);
37 unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
45
46 struct swap_list_t swap_list = {-1, -1};
47
48 struct swap_info_struct swap_info[MAX_SWAPFILES];
49
50 static DEFINE_MUTEX(swapon_mutex);
51
52 /*
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_lock while calling the unplug_fn. And swap_lock
55 * cannot be turned into a mutex.
56 */
57 static DECLARE_RWSEM(swap_unplug_sem);
58
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
60 {
61 swp_entry_t entry;
62
63 down_read(&swap_unplug_sem);
64 entry.val = page_private(page);
65 if (PageSwapCache(page)) {
66 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 struct backing_dev_info *bdi;
68
69 /*
70 * If the page is removed from swapcache from under us (with a
71 * racy try_to_unuse/swapoff) we need an additional reference
72 * count to avoid reading garbage from page_private(page) above.
73 * If the WARN_ON triggers during a swapoff it maybe the race
74 * condition and it's harmless. However if it triggers without
75 * swapoff it signals a problem.
76 */
77 WARN_ON(page_count(page) <= 1);
78
79 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80 blk_run_backing_dev(bdi, page);
81 }
82 up_read(&swap_unplug_sem);
83 }
84
85 #define SWAPFILE_CLUSTER 256
86 #define LATENCY_LIMIT 256
87
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
89 {
90 unsigned long offset, last_in_cluster;
91 int latency_ration = LATENCY_LIMIT;
92
93 /*
94 * We try to cluster swap pages by allocating them sequentially
95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
96 * way, however, we resort to first-free allocation, starting
97 * a new cluster. This prevents us from scattering swap pages
98 * all over the entire swap partition, so that we reduce
99 * overall disk seek times between swap pages. -- sct
100 * But we do now try to find an empty cluster. -Andrea
101 */
102
103 si->flags += SWP_SCANNING;
104 if (unlikely(!si->cluster_nr)) {
105 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
107 goto lowest;
108 spin_unlock(&swap_lock);
109
110 offset = si->lowest_bit;
111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
112
113 /* Locate the first empty (unaligned) cluster */
114 for (; last_in_cluster <= si->highest_bit; offset++) {
115 if (si->swap_map[offset])
116 last_in_cluster = offset + SWAPFILE_CLUSTER;
117 else if (offset == last_in_cluster) {
118 spin_lock(&swap_lock);
119 si->cluster_next = offset-SWAPFILE_CLUSTER-1;
120 goto cluster;
121 }
122 if (unlikely(--latency_ration < 0)) {
123 cond_resched();
124 latency_ration = LATENCY_LIMIT;
125 }
126 }
127 spin_lock(&swap_lock);
128 goto lowest;
129 }
130
131 si->cluster_nr--;
132 cluster:
133 offset = si->cluster_next;
134 if (offset > si->highest_bit)
135 lowest: offset = si->lowest_bit;
136 checks: if (!(si->flags & SWP_WRITEOK))
137 goto no_page;
138 if (!si->highest_bit)
139 goto no_page;
140 if (!si->swap_map[offset]) {
141 if (offset == si->lowest_bit)
142 si->lowest_bit++;
143 if (offset == si->highest_bit)
144 si->highest_bit--;
145 si->inuse_pages++;
146 if (si->inuse_pages == si->pages) {
147 si->lowest_bit = si->max;
148 si->highest_bit = 0;
149 }
150 si->swap_map[offset] = 1;
151 si->cluster_next = offset + 1;
152 si->flags -= SWP_SCANNING;
153 return offset;
154 }
155
156 spin_unlock(&swap_lock);
157 while (++offset <= si->highest_bit) {
158 if (!si->swap_map[offset]) {
159 spin_lock(&swap_lock);
160 goto checks;
161 }
162 if (unlikely(--latency_ration < 0)) {
163 cond_resched();
164 latency_ration = LATENCY_LIMIT;
165 }
166 }
167 spin_lock(&swap_lock);
168 goto lowest;
169
170 no_page:
171 si->flags -= SWP_SCANNING;
172 return 0;
173 }
174
175 swp_entry_t get_swap_page(void)
176 {
177 struct swap_info_struct *si;
178 pgoff_t offset;
179 int type, next;
180 int wrapped = 0;
181
182 spin_lock(&swap_lock);
183 if (nr_swap_pages <= 0)
184 goto noswap;
185 nr_swap_pages--;
186
187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 si = swap_info + type;
189 next = si->next;
190 if (next < 0 ||
191 (!wrapped && si->prio != swap_info[next].prio)) {
192 next = swap_list.head;
193 wrapped++;
194 }
195
196 if (!si->highest_bit)
197 continue;
198 if (!(si->flags & SWP_WRITEOK))
199 continue;
200
201 swap_list.next = next;
202 offset = scan_swap_map(si);
203 if (offset) {
204 spin_unlock(&swap_lock);
205 return swp_entry(type, offset);
206 }
207 next = swap_list.next;
208 }
209
210 nr_swap_pages++;
211 noswap:
212 spin_unlock(&swap_lock);
213 return (swp_entry_t) {0};
214 }
215
216 swp_entry_t get_swap_page_of_type(int type)
217 {
218 struct swap_info_struct *si;
219 pgoff_t offset;
220
221 spin_lock(&swap_lock);
222 si = swap_info + type;
223 if (si->flags & SWP_WRITEOK) {
224 nr_swap_pages--;
225 offset = scan_swap_map(si);
226 if (offset) {
227 spin_unlock(&swap_lock);
228 return swp_entry(type, offset);
229 }
230 nr_swap_pages++;
231 }
232 spin_unlock(&swap_lock);
233 return (swp_entry_t) {0};
234 }
235
236 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
237 {
238 struct swap_info_struct * p;
239 unsigned long offset, type;
240
241 if (!entry.val)
242 goto out;
243 type = swp_type(entry);
244 if (type >= nr_swapfiles)
245 goto bad_nofile;
246 p = & swap_info[type];
247 if (!(p->flags & SWP_USED))
248 goto bad_device;
249 offset = swp_offset(entry);
250 if (offset >= p->max)
251 goto bad_offset;
252 if (!p->swap_map[offset])
253 goto bad_free;
254 spin_lock(&swap_lock);
255 return p;
256
257 bad_free:
258 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
259 goto out;
260 bad_offset:
261 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
262 goto out;
263 bad_device:
264 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
265 goto out;
266 bad_nofile:
267 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
268 out:
269 return NULL;
270 }
271
272 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
273 {
274 int count = p->swap_map[offset];
275
276 if (count < SWAP_MAP_MAX) {
277 count--;
278 p->swap_map[offset] = count;
279 if (!count) {
280 if (offset < p->lowest_bit)
281 p->lowest_bit = offset;
282 if (offset > p->highest_bit)
283 p->highest_bit = offset;
284 if (p->prio > swap_info[swap_list.next].prio)
285 swap_list.next = p - swap_info;
286 nr_swap_pages++;
287 p->inuse_pages--;
288 }
289 }
290 return count;
291 }
292
293 /*
294 * Caller has made sure that the swapdevice corresponding to entry
295 * is still around or has not been recycled.
296 */
297 void swap_free(swp_entry_t entry)
298 {
299 struct swap_info_struct * p;
300
301 p = swap_info_get(entry);
302 if (p) {
303 swap_entry_free(p, swp_offset(entry));
304 spin_unlock(&swap_lock);
305 }
306 }
307
308 /*
309 * How many references to page are currently swapped out?
310 */
311 static inline int page_swapcount(struct page *page)
312 {
313 int count = 0;
314 struct swap_info_struct *p;
315 swp_entry_t entry;
316
317 entry.val = page_private(page);
318 p = swap_info_get(entry);
319 if (p) {
320 /* Subtract the 1 for the swap cache itself */
321 count = p->swap_map[swp_offset(entry)] - 1;
322 spin_unlock(&swap_lock);
323 }
324 return count;
325 }
326
327 /*
328 * We can use this swap cache entry directly
329 * if there are no other references to it.
330 */
331 int can_share_swap_page(struct page *page)
332 {
333 int count;
334
335 BUG_ON(!PageLocked(page));
336 count = page_mapcount(page);
337 if (count <= 1 && PageSwapCache(page))
338 count += page_swapcount(page);
339 return count == 1;
340 }
341
342 /*
343 * Work out if there are any other processes sharing this
344 * swap cache page. Free it if you can. Return success.
345 */
346 int remove_exclusive_swap_page(struct page *page)
347 {
348 int retval;
349 struct swap_info_struct * p;
350 swp_entry_t entry;
351
352 BUG_ON(PagePrivate(page));
353 BUG_ON(!PageLocked(page));
354
355 if (!PageSwapCache(page))
356 return 0;
357 if (PageWriteback(page))
358 return 0;
359 if (page_count(page) != 2) /* 2: us + cache */
360 return 0;
361
362 entry.val = page_private(page);
363 p = swap_info_get(entry);
364 if (!p)
365 return 0;
366
367 /* Is the only swap cache user the cache itself? */
368 retval = 0;
369 if (p->swap_map[swp_offset(entry)] == 1) {
370 /* Recheck the page count with the swapcache lock held.. */
371 write_lock_irq(&swapper_space.tree_lock);
372 if ((page_count(page) == 2) && !PageWriteback(page)) {
373 __delete_from_swap_cache(page);
374 SetPageDirty(page);
375 retval = 1;
376 }
377 write_unlock_irq(&swapper_space.tree_lock);
378 }
379 spin_unlock(&swap_lock);
380
381 if (retval) {
382 swap_free(entry);
383 page_cache_release(page);
384 }
385
386 return retval;
387 }
388
389 /*
390 * Free the swap entry like above, but also try to
391 * free the page cache entry if it is the last user.
392 */
393 void free_swap_and_cache(swp_entry_t entry)
394 {
395 struct swap_info_struct * p;
396 struct page *page = NULL;
397
398 p = swap_info_get(entry);
399 if (p) {
400 if (swap_entry_free(p, swp_offset(entry)) == 1)
401 page = find_trylock_page(&swapper_space, entry.val);
402 spin_unlock(&swap_lock);
403 }
404 if (page) {
405 int one_user;
406
407 BUG_ON(PagePrivate(page));
408 page_cache_get(page);
409 one_user = (page_count(page) == 2);
410 /* Only cache user (+us), or swap space full? Free it! */
411 if (!PageWriteback(page) && (one_user || vm_swap_full())) {
412 delete_from_swap_cache(page);
413 SetPageDirty(page);
414 }
415 unlock_page(page);
416 page_cache_release(page);
417 }
418 }
419
420 /*
421 * No need to decide whether this PTE shares the swap entry with others,
422 * just let do_wp_page work it out if a write is requested later - to
423 * force COW, vm_page_prot omits write permission from any private vma.
424 */
425 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
426 unsigned long addr, swp_entry_t entry, struct page *page)
427 {
428 inc_mm_counter(vma->vm_mm, anon_rss);
429 get_page(page);
430 set_pte_at(vma->vm_mm, addr, pte,
431 pte_mkold(mk_pte(page, vma->vm_page_prot)));
432 page_add_anon_rmap(page, vma, addr);
433 swap_free(entry);
434 /*
435 * Move the page to the active list so it is not
436 * immediately swapped out again after swapon.
437 */
438 activate_page(page);
439 }
440
441 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
442 unsigned long addr, unsigned long end,
443 swp_entry_t entry, struct page *page)
444 {
445 pte_t swp_pte = swp_entry_to_pte(entry);
446 pte_t *pte;
447 spinlock_t *ptl;
448 int found = 0;
449
450 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
451 do {
452 /*
453 * swapoff spends a _lot_ of time in this loop!
454 * Test inline before going to call unuse_pte.
455 */
456 if (unlikely(pte_same(*pte, swp_pte))) {
457 unuse_pte(vma, pte++, addr, entry, page);
458 found = 1;
459 break;
460 }
461 } while (pte++, addr += PAGE_SIZE, addr != end);
462 pte_unmap_unlock(pte - 1, ptl);
463 return found;
464 }
465
466 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
467 unsigned long addr, unsigned long end,
468 swp_entry_t entry, struct page *page)
469 {
470 pmd_t *pmd;
471 unsigned long next;
472
473 pmd = pmd_offset(pud, addr);
474 do {
475 next = pmd_addr_end(addr, end);
476 if (pmd_none_or_clear_bad(pmd))
477 continue;
478 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
479 return 1;
480 } while (pmd++, addr = next, addr != end);
481 return 0;
482 }
483
484 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
485 unsigned long addr, unsigned long end,
486 swp_entry_t entry, struct page *page)
487 {
488 pud_t *pud;
489 unsigned long next;
490
491 pud = pud_offset(pgd, addr);
492 do {
493 next = pud_addr_end(addr, end);
494 if (pud_none_or_clear_bad(pud))
495 continue;
496 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
497 return 1;
498 } while (pud++, addr = next, addr != end);
499 return 0;
500 }
501
502 static int unuse_vma(struct vm_area_struct *vma,
503 swp_entry_t entry, struct page *page)
504 {
505 pgd_t *pgd;
506 unsigned long addr, end, next;
507
508 if (page->mapping) {
509 addr = page_address_in_vma(page, vma);
510 if (addr == -EFAULT)
511 return 0;
512 else
513 end = addr + PAGE_SIZE;
514 } else {
515 addr = vma->vm_start;
516 end = vma->vm_end;
517 }
518
519 pgd = pgd_offset(vma->vm_mm, addr);
520 do {
521 next = pgd_addr_end(addr, end);
522 if (pgd_none_or_clear_bad(pgd))
523 continue;
524 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
525 return 1;
526 } while (pgd++, addr = next, addr != end);
527 return 0;
528 }
529
530 static int unuse_mm(struct mm_struct *mm,
531 swp_entry_t entry, struct page *page)
532 {
533 struct vm_area_struct *vma;
534
535 if (!down_read_trylock(&mm->mmap_sem)) {
536 /*
537 * Activate page so shrink_cache is unlikely to unmap its
538 * ptes while lock is dropped, so swapoff can make progress.
539 */
540 activate_page(page);
541 unlock_page(page);
542 down_read(&mm->mmap_sem);
543 lock_page(page);
544 }
545 for (vma = mm->mmap; vma; vma = vma->vm_next) {
546 if (vma->anon_vma && unuse_vma(vma, entry, page))
547 break;
548 }
549 up_read(&mm->mmap_sem);
550 /*
551 * Currently unuse_mm cannot fail, but leave error handling
552 * at call sites for now, since we change it from time to time.
553 */
554 return 0;
555 }
556
557 /*
558 * Scan swap_map from current position to next entry still in use.
559 * Recycle to start on reaching the end, returning 0 when empty.
560 */
561 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
562 unsigned int prev)
563 {
564 unsigned int max = si->max;
565 unsigned int i = prev;
566 int count;
567
568 /*
569 * No need for swap_lock here: we're just looking
570 * for whether an entry is in use, not modifying it; false
571 * hits are okay, and sys_swapoff() has already prevented new
572 * allocations from this area (while holding swap_lock).
573 */
574 for (;;) {
575 if (++i >= max) {
576 if (!prev) {
577 i = 0;
578 break;
579 }
580 /*
581 * No entries in use at top of swap_map,
582 * loop back to start and recheck there.
583 */
584 max = prev + 1;
585 prev = 0;
586 i = 1;
587 }
588 count = si->swap_map[i];
589 if (count && count != SWAP_MAP_BAD)
590 break;
591 }
592 return i;
593 }
594
595 /*
596 * We completely avoid races by reading each swap page in advance,
597 * and then search for the process using it. All the necessary
598 * page table adjustments can then be made atomically.
599 */
600 static int try_to_unuse(unsigned int type)
601 {
602 struct swap_info_struct * si = &swap_info[type];
603 struct mm_struct *start_mm;
604 unsigned short *swap_map;
605 unsigned short swcount;
606 struct page *page;
607 swp_entry_t entry;
608 unsigned int i = 0;
609 int retval = 0;
610 int reset_overflow = 0;
611 int shmem;
612
613 /*
614 * When searching mms for an entry, a good strategy is to
615 * start at the first mm we freed the previous entry from
616 * (though actually we don't notice whether we or coincidence
617 * freed the entry). Initialize this start_mm with a hold.
618 *
619 * A simpler strategy would be to start at the last mm we
620 * freed the previous entry from; but that would take less
621 * advantage of mmlist ordering, which clusters forked mms
622 * together, child after parent. If we race with dup_mmap(), we
623 * prefer to resolve parent before child, lest we miss entries
624 * duplicated after we scanned child: using last mm would invert
625 * that. Though it's only a serious concern when an overflowed
626 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
627 */
628 start_mm = &init_mm;
629 atomic_inc(&init_mm.mm_users);
630
631 /*
632 * Keep on scanning until all entries have gone. Usually,
633 * one pass through swap_map is enough, but not necessarily:
634 * there are races when an instance of an entry might be missed.
635 */
636 while ((i = find_next_to_unuse(si, i)) != 0) {
637 if (signal_pending(current)) {
638 retval = -EINTR;
639 break;
640 }
641
642 /*
643 * Get a page for the entry, using the existing swap
644 * cache page if there is one. Otherwise, get a clean
645 * page and read the swap into it.
646 */
647 swap_map = &si->swap_map[i];
648 entry = swp_entry(type, i);
649 page = read_swap_cache_async(entry, NULL, 0);
650 if (!page) {
651 /*
652 * Either swap_duplicate() failed because entry
653 * has been freed independently, and will not be
654 * reused since sys_swapoff() already disabled
655 * allocation from here, or alloc_page() failed.
656 */
657 if (!*swap_map)
658 continue;
659 retval = -ENOMEM;
660 break;
661 }
662
663 /*
664 * Don't hold on to start_mm if it looks like exiting.
665 */
666 if (atomic_read(&start_mm->mm_users) == 1) {
667 mmput(start_mm);
668 start_mm = &init_mm;
669 atomic_inc(&init_mm.mm_users);
670 }
671
672 /*
673 * Wait for and lock page. When do_swap_page races with
674 * try_to_unuse, do_swap_page can handle the fault much
675 * faster than try_to_unuse can locate the entry. This
676 * apparently redundant "wait_on_page_locked" lets try_to_unuse
677 * defer to do_swap_page in such a case - in some tests,
678 * do_swap_page and try_to_unuse repeatedly compete.
679 */
680 wait_on_page_locked(page);
681 wait_on_page_writeback(page);
682 lock_page(page);
683 wait_on_page_writeback(page);
684
685 /*
686 * Remove all references to entry.
687 * Whenever we reach init_mm, there's no address space
688 * to search, but use it as a reminder to search shmem.
689 */
690 shmem = 0;
691 swcount = *swap_map;
692 if (swcount > 1) {
693 if (start_mm == &init_mm)
694 shmem = shmem_unuse(entry, page);
695 else
696 retval = unuse_mm(start_mm, entry, page);
697 }
698 if (*swap_map > 1) {
699 int set_start_mm = (*swap_map >= swcount);
700 struct list_head *p = &start_mm->mmlist;
701 struct mm_struct *new_start_mm = start_mm;
702 struct mm_struct *prev_mm = start_mm;
703 struct mm_struct *mm;
704
705 atomic_inc(&new_start_mm->mm_users);
706 atomic_inc(&prev_mm->mm_users);
707 spin_lock(&mmlist_lock);
708 while (*swap_map > 1 && !retval &&
709 (p = p->next) != &start_mm->mmlist) {
710 mm = list_entry(p, struct mm_struct, mmlist);
711 if (atomic_inc_return(&mm->mm_users) == 1) {
712 atomic_dec(&mm->mm_users);
713 continue;
714 }
715 spin_unlock(&mmlist_lock);
716 mmput(prev_mm);
717 prev_mm = mm;
718
719 cond_resched();
720
721 swcount = *swap_map;
722 if (swcount <= 1)
723 ;
724 else if (mm == &init_mm) {
725 set_start_mm = 1;
726 shmem = shmem_unuse(entry, page);
727 } else
728 retval = unuse_mm(mm, entry, page);
729 if (set_start_mm && *swap_map < swcount) {
730 mmput(new_start_mm);
731 atomic_inc(&mm->mm_users);
732 new_start_mm = mm;
733 set_start_mm = 0;
734 }
735 spin_lock(&mmlist_lock);
736 }
737 spin_unlock(&mmlist_lock);
738 mmput(prev_mm);
739 mmput(start_mm);
740 start_mm = new_start_mm;
741 }
742 if (retval) {
743 unlock_page(page);
744 page_cache_release(page);
745 break;
746 }
747
748 /*
749 * How could swap count reach 0x7fff when the maximum
750 * pid is 0x7fff, and there's no way to repeat a swap
751 * page within an mm (except in shmem, where it's the
752 * shared object which takes the reference count)?
753 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
754 *
755 * If that's wrong, then we should worry more about
756 * exit_mmap() and do_munmap() cases described above:
757 * we might be resetting SWAP_MAP_MAX too early here.
758 * We know "Undead"s can happen, they're okay, so don't
759 * report them; but do report if we reset SWAP_MAP_MAX.
760 */
761 if (*swap_map == SWAP_MAP_MAX) {
762 spin_lock(&swap_lock);
763 *swap_map = 1;
764 spin_unlock(&swap_lock);
765 reset_overflow = 1;
766 }
767
768 /*
769 * If a reference remains (rare), we would like to leave
770 * the page in the swap cache; but try_to_unmap could
771 * then re-duplicate the entry once we drop page lock,
772 * so we might loop indefinitely; also, that page could
773 * not be swapped out to other storage meanwhile. So:
774 * delete from cache even if there's another reference,
775 * after ensuring that the data has been saved to disk -
776 * since if the reference remains (rarer), it will be
777 * read from disk into another page. Splitting into two
778 * pages would be incorrect if swap supported "shared
779 * private" pages, but they are handled by tmpfs files.
780 *
781 * Note shmem_unuse already deleted a swappage from
782 * the swap cache, unless the move to filepage failed:
783 * in which case it left swappage in cache, lowered its
784 * swap count to pass quickly through the loops above,
785 * and now we must reincrement count to try again later.
786 */
787 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
788 struct writeback_control wbc = {
789 .sync_mode = WB_SYNC_NONE,
790 };
791
792 swap_writepage(page, &wbc);
793 lock_page(page);
794 wait_on_page_writeback(page);
795 }
796 if (PageSwapCache(page)) {
797 if (shmem)
798 swap_duplicate(entry);
799 else
800 delete_from_swap_cache(page);
801 }
802
803 /*
804 * So we could skip searching mms once swap count went
805 * to 1, we did not mark any present ptes as dirty: must
806 * mark page dirty so shrink_list will preserve it.
807 */
808 SetPageDirty(page);
809 unlock_page(page);
810 page_cache_release(page);
811
812 /*
813 * Make sure that we aren't completely killing
814 * interactive performance.
815 */
816 cond_resched();
817 }
818
819 mmput(start_mm);
820 if (reset_overflow) {
821 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
822 swap_overflow = 0;
823 }
824 return retval;
825 }
826
827 /*
828 * After a successful try_to_unuse, if no swap is now in use, we know
829 * we can empty the mmlist. swap_lock must be held on entry and exit.
830 * Note that mmlist_lock nests inside swap_lock, and an mm must be
831 * added to the mmlist just after page_duplicate - before would be racy.
832 */
833 static void drain_mmlist(void)
834 {
835 struct list_head *p, *next;
836 unsigned int i;
837
838 for (i = 0; i < nr_swapfiles; i++)
839 if (swap_info[i].inuse_pages)
840 return;
841 spin_lock(&mmlist_lock);
842 list_for_each_safe(p, next, &init_mm.mmlist)
843 list_del_init(p);
844 spin_unlock(&mmlist_lock);
845 }
846
847 /*
848 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
849 * corresponds to page offset `offset'.
850 */
851 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
852 {
853 struct swap_extent *se = sis->curr_swap_extent;
854 struct swap_extent *start_se = se;
855
856 for ( ; ; ) {
857 struct list_head *lh;
858
859 if (se->start_page <= offset &&
860 offset < (se->start_page + se->nr_pages)) {
861 return se->start_block + (offset - se->start_page);
862 }
863 lh = se->list.next;
864 if (lh == &sis->extent_list)
865 lh = lh->next;
866 se = list_entry(lh, struct swap_extent, list);
867 sis->curr_swap_extent = se;
868 BUG_ON(se == start_se); /* It *must* be present */
869 }
870 }
871
872 /*
873 * Free all of a swapdev's extent information
874 */
875 static void destroy_swap_extents(struct swap_info_struct *sis)
876 {
877 while (!list_empty(&sis->extent_list)) {
878 struct swap_extent *se;
879
880 se = list_entry(sis->extent_list.next,
881 struct swap_extent, list);
882 list_del(&se->list);
883 kfree(se);
884 }
885 }
886
887 /*
888 * Add a block range (and the corresponding page range) into this swapdev's
889 * extent list. The extent list is kept sorted in page order.
890 *
891 * This function rather assumes that it is called in ascending page order.
892 */
893 static int
894 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
895 unsigned long nr_pages, sector_t start_block)
896 {
897 struct swap_extent *se;
898 struct swap_extent *new_se;
899 struct list_head *lh;
900
901 lh = sis->extent_list.prev; /* The highest page extent */
902 if (lh != &sis->extent_list) {
903 se = list_entry(lh, struct swap_extent, list);
904 BUG_ON(se->start_page + se->nr_pages != start_page);
905 if (se->start_block + se->nr_pages == start_block) {
906 /* Merge it */
907 se->nr_pages += nr_pages;
908 return 0;
909 }
910 }
911
912 /*
913 * No merge. Insert a new extent, preserving ordering.
914 */
915 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
916 if (new_se == NULL)
917 return -ENOMEM;
918 new_se->start_page = start_page;
919 new_se->nr_pages = nr_pages;
920 new_se->start_block = start_block;
921
922 list_add_tail(&new_se->list, &sis->extent_list);
923 return 1;
924 }
925
926 /*
927 * A `swap extent' is a simple thing which maps a contiguous range of pages
928 * onto a contiguous range of disk blocks. An ordered list of swap extents
929 * is built at swapon time and is then used at swap_writepage/swap_readpage
930 * time for locating where on disk a page belongs.
931 *
932 * If the swapfile is an S_ISBLK block device, a single extent is installed.
933 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
934 * swap files identically.
935 *
936 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
937 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
938 * swapfiles are handled *identically* after swapon time.
939 *
940 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
941 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
942 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
943 * requirements, they are simply tossed out - we will never use those blocks
944 * for swapping.
945 *
946 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
947 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
948 * which will scribble on the fs.
949 *
950 * The amount of disk space which a single swap extent represents varies.
951 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
952 * extents in the list. To avoid much list walking, we cache the previous
953 * search location in `curr_swap_extent', and start new searches from there.
954 * This is extremely effective. The average number of iterations in
955 * map_swap_page() has been measured at about 0.3 per page. - akpm.
956 */
957 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
958 {
959 struct inode *inode;
960 unsigned blocks_per_page;
961 unsigned long page_no;
962 unsigned blkbits;
963 sector_t probe_block;
964 sector_t last_block;
965 sector_t lowest_block = -1;
966 sector_t highest_block = 0;
967 int nr_extents = 0;
968 int ret;
969
970 inode = sis->swap_file->f_mapping->host;
971 if (S_ISBLK(inode->i_mode)) {
972 ret = add_swap_extent(sis, 0, sis->max, 0);
973 *span = sis->pages;
974 goto done;
975 }
976
977 blkbits = inode->i_blkbits;
978 blocks_per_page = PAGE_SIZE >> blkbits;
979
980 /*
981 * Map all the blocks into the extent list. This code doesn't try
982 * to be very smart.
983 */
984 probe_block = 0;
985 page_no = 0;
986 last_block = i_size_read(inode) >> blkbits;
987 while ((probe_block + blocks_per_page) <= last_block &&
988 page_no < sis->max) {
989 unsigned block_in_page;
990 sector_t first_block;
991
992 first_block = bmap(inode, probe_block);
993 if (first_block == 0)
994 goto bad_bmap;
995
996 /*
997 * It must be PAGE_SIZE aligned on-disk
998 */
999 if (first_block & (blocks_per_page - 1)) {
1000 probe_block++;
1001 goto reprobe;
1002 }
1003
1004 for (block_in_page = 1; block_in_page < blocks_per_page;
1005 block_in_page++) {
1006 sector_t block;
1007
1008 block = bmap(inode, probe_block + block_in_page);
1009 if (block == 0)
1010 goto bad_bmap;
1011 if (block != first_block + block_in_page) {
1012 /* Discontiguity */
1013 probe_block++;
1014 goto reprobe;
1015 }
1016 }
1017
1018 first_block >>= (PAGE_SHIFT - blkbits);
1019 if (page_no) { /* exclude the header page */
1020 if (first_block < lowest_block)
1021 lowest_block = first_block;
1022 if (first_block > highest_block)
1023 highest_block = first_block;
1024 }
1025
1026 /*
1027 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1028 */
1029 ret = add_swap_extent(sis, page_no, 1, first_block);
1030 if (ret < 0)
1031 goto out;
1032 nr_extents += ret;
1033 page_no++;
1034 probe_block += blocks_per_page;
1035 reprobe:
1036 continue;
1037 }
1038 ret = nr_extents;
1039 *span = 1 + highest_block - lowest_block;
1040 if (page_no == 0)
1041 page_no = 1; /* force Empty message */
1042 sis->max = page_no;
1043 sis->pages = page_no - 1;
1044 sis->highest_bit = page_no - 1;
1045 done:
1046 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1047 struct swap_extent, list);
1048 goto out;
1049 bad_bmap:
1050 printk(KERN_ERR "swapon: swapfile has holes\n");
1051 ret = -EINVAL;
1052 out:
1053 return ret;
1054 }
1055
1056 #if 0 /* We don't need this yet */
1057 #include <linux/backing-dev.h>
1058 int page_queue_congested(struct page *page)
1059 {
1060 struct backing_dev_info *bdi;
1061
1062 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1063
1064 if (PageSwapCache(page)) {
1065 swp_entry_t entry = { .val = page_private(page) };
1066 struct swap_info_struct *sis;
1067
1068 sis = get_swap_info_struct(swp_type(entry));
1069 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1070 } else
1071 bdi = page->mapping->backing_dev_info;
1072 return bdi_write_congested(bdi);
1073 }
1074 #endif
1075
1076 asmlinkage long sys_swapoff(const char __user * specialfile)
1077 {
1078 struct swap_info_struct * p = NULL;
1079 unsigned short *swap_map;
1080 struct file *swap_file, *victim;
1081 struct address_space *mapping;
1082 struct inode *inode;
1083 char * pathname;
1084 int i, type, prev;
1085 int err;
1086
1087 if (!capable(CAP_SYS_ADMIN))
1088 return -EPERM;
1089
1090 pathname = getname(specialfile);
1091 err = PTR_ERR(pathname);
1092 if (IS_ERR(pathname))
1093 goto out;
1094
1095 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1096 putname(pathname);
1097 err = PTR_ERR(victim);
1098 if (IS_ERR(victim))
1099 goto out;
1100
1101 mapping = victim->f_mapping;
1102 prev = -1;
1103 spin_lock(&swap_lock);
1104 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1105 p = swap_info + type;
1106 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1107 if (p->swap_file->f_mapping == mapping)
1108 break;
1109 }
1110 prev = type;
1111 }
1112 if (type < 0) {
1113 err = -EINVAL;
1114 spin_unlock(&swap_lock);
1115 goto out_dput;
1116 }
1117 if (!security_vm_enough_memory(p->pages))
1118 vm_unacct_memory(p->pages);
1119 else {
1120 err = -ENOMEM;
1121 spin_unlock(&swap_lock);
1122 goto out_dput;
1123 }
1124 if (prev < 0) {
1125 swap_list.head = p->next;
1126 } else {
1127 swap_info[prev].next = p->next;
1128 }
1129 if (type == swap_list.next) {
1130 /* just pick something that's safe... */
1131 swap_list.next = swap_list.head;
1132 }
1133 nr_swap_pages -= p->pages;
1134 total_swap_pages -= p->pages;
1135 p->flags &= ~SWP_WRITEOK;
1136 spin_unlock(&swap_lock);
1137
1138 current->flags |= PF_SWAPOFF;
1139 err = try_to_unuse(type);
1140 current->flags &= ~PF_SWAPOFF;
1141
1142 if (err) {
1143 /* re-insert swap space back into swap_list */
1144 spin_lock(&swap_lock);
1145 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1146 if (p->prio >= swap_info[i].prio)
1147 break;
1148 p->next = i;
1149 if (prev < 0)
1150 swap_list.head = swap_list.next = p - swap_info;
1151 else
1152 swap_info[prev].next = p - swap_info;
1153 nr_swap_pages += p->pages;
1154 total_swap_pages += p->pages;
1155 p->flags |= SWP_WRITEOK;
1156 spin_unlock(&swap_lock);
1157 goto out_dput;
1158 }
1159
1160 /* wait for any unplug function to finish */
1161 down_write(&swap_unplug_sem);
1162 up_write(&swap_unplug_sem);
1163
1164 destroy_swap_extents(p);
1165 mutex_lock(&swapon_mutex);
1166 spin_lock(&swap_lock);
1167 drain_mmlist();
1168
1169 /* wait for anyone still in scan_swap_map */
1170 p->highest_bit = 0; /* cuts scans short */
1171 while (p->flags >= SWP_SCANNING) {
1172 spin_unlock(&swap_lock);
1173 schedule_timeout_uninterruptible(1);
1174 spin_lock(&swap_lock);
1175 }
1176
1177 swap_file = p->swap_file;
1178 p->swap_file = NULL;
1179 p->max = 0;
1180 swap_map = p->swap_map;
1181 p->swap_map = NULL;
1182 p->flags = 0;
1183 spin_unlock(&swap_lock);
1184 mutex_unlock(&swapon_mutex);
1185 vfree(swap_map);
1186 inode = mapping->host;
1187 if (S_ISBLK(inode->i_mode)) {
1188 struct block_device *bdev = I_BDEV(inode);
1189 set_blocksize(bdev, p->old_block_size);
1190 bd_release(bdev);
1191 } else {
1192 mutex_lock(&inode->i_mutex);
1193 inode->i_flags &= ~S_SWAPFILE;
1194 mutex_unlock(&inode->i_mutex);
1195 }
1196 filp_close(swap_file, NULL);
1197 err = 0;
1198
1199 out_dput:
1200 filp_close(victim, NULL);
1201 out:
1202 return err;
1203 }
1204
1205 #ifdef CONFIG_PROC_FS
1206 /* iterator */
1207 static void *swap_start(struct seq_file *swap, loff_t *pos)
1208 {
1209 struct swap_info_struct *ptr = swap_info;
1210 int i;
1211 loff_t l = *pos;
1212
1213 mutex_lock(&swapon_mutex);
1214
1215 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1216 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1217 continue;
1218 if (!l--)
1219 return ptr;
1220 }
1221
1222 return NULL;
1223 }
1224
1225 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1226 {
1227 struct swap_info_struct *ptr = v;
1228 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1229
1230 for (++ptr; ptr < endptr; ptr++) {
1231 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1232 continue;
1233 ++*pos;
1234 return ptr;
1235 }
1236
1237 return NULL;
1238 }
1239
1240 static void swap_stop(struct seq_file *swap, void *v)
1241 {
1242 mutex_unlock(&swapon_mutex);
1243 }
1244
1245 static int swap_show(struct seq_file *swap, void *v)
1246 {
1247 struct swap_info_struct *ptr = v;
1248 struct file *file;
1249 int len;
1250
1251 if (v == swap_info)
1252 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1253
1254 file = ptr->swap_file;
1255 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1256 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1257 len < 40 ? 40 - len : 1, " ",
1258 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1259 "partition" : "file\t",
1260 ptr->pages << (PAGE_SHIFT - 10),
1261 ptr->inuse_pages << (PAGE_SHIFT - 10),
1262 ptr->prio);
1263 return 0;
1264 }
1265
1266 static struct seq_operations swaps_op = {
1267 .start = swap_start,
1268 .next = swap_next,
1269 .stop = swap_stop,
1270 .show = swap_show
1271 };
1272
1273 static int swaps_open(struct inode *inode, struct file *file)
1274 {
1275 return seq_open(file, &swaps_op);
1276 }
1277
1278 static struct file_operations proc_swaps_operations = {
1279 .open = swaps_open,
1280 .read = seq_read,
1281 .llseek = seq_lseek,
1282 .release = seq_release,
1283 };
1284
1285 static int __init procswaps_init(void)
1286 {
1287 struct proc_dir_entry *entry;
1288
1289 entry = create_proc_entry("swaps", 0, NULL);
1290 if (entry)
1291 entry->proc_fops = &proc_swaps_operations;
1292 return 0;
1293 }
1294 __initcall(procswaps_init);
1295 #endif /* CONFIG_PROC_FS */
1296
1297 /*
1298 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1299 *
1300 * The swapon system call
1301 */
1302 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1303 {
1304 struct swap_info_struct * p;
1305 char *name = NULL;
1306 struct block_device *bdev = NULL;
1307 struct file *swap_file = NULL;
1308 struct address_space *mapping;
1309 unsigned int type;
1310 int i, prev;
1311 int error;
1312 static int least_priority;
1313 union swap_header *swap_header = NULL;
1314 int swap_header_version;
1315 unsigned int nr_good_pages = 0;
1316 int nr_extents = 0;
1317 sector_t span;
1318 unsigned long maxpages = 1;
1319 int swapfilesize;
1320 unsigned short *swap_map;
1321 struct page *page = NULL;
1322 struct inode *inode = NULL;
1323 int did_down = 0;
1324
1325 if (!capable(CAP_SYS_ADMIN))
1326 return -EPERM;
1327 spin_lock(&swap_lock);
1328 p = swap_info;
1329 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1330 if (!(p->flags & SWP_USED))
1331 break;
1332 error = -EPERM;
1333 /*
1334 * Test if adding another swap device is possible. There are
1335 * two limiting factors: 1) the number of bits for the swap
1336 * type swp_entry_t definition and 2) the number of bits for
1337 * the swap type in the swap ptes as defined by the different
1338 * architectures. To honor both limitations a swap entry
1339 * with swap offset 0 and swap type ~0UL is created, encoded
1340 * to a swap pte, decoded to a swp_entry_t again and finally
1341 * the swap type part is extracted. This will mask all bits
1342 * from the initial ~0UL that can't be encoded in either the
1343 * swp_entry_t or the architecture definition of a swap pte.
1344 */
1345 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1346 spin_unlock(&swap_lock);
1347 goto out;
1348 }
1349 if (type >= nr_swapfiles)
1350 nr_swapfiles = type+1;
1351 INIT_LIST_HEAD(&p->extent_list);
1352 p->flags = SWP_USED;
1353 p->swap_file = NULL;
1354 p->old_block_size = 0;
1355 p->swap_map = NULL;
1356 p->lowest_bit = 0;
1357 p->highest_bit = 0;
1358 p->cluster_nr = 0;
1359 p->inuse_pages = 0;
1360 p->next = -1;
1361 if (swap_flags & SWAP_FLAG_PREFER) {
1362 p->prio =
1363 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1364 } else {
1365 p->prio = --least_priority;
1366 }
1367 spin_unlock(&swap_lock);
1368 name = getname(specialfile);
1369 error = PTR_ERR(name);
1370 if (IS_ERR(name)) {
1371 name = NULL;
1372 goto bad_swap_2;
1373 }
1374 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1375 error = PTR_ERR(swap_file);
1376 if (IS_ERR(swap_file)) {
1377 swap_file = NULL;
1378 goto bad_swap_2;
1379 }
1380
1381 p->swap_file = swap_file;
1382 mapping = swap_file->f_mapping;
1383 inode = mapping->host;
1384
1385 error = -EBUSY;
1386 for (i = 0; i < nr_swapfiles; i++) {
1387 struct swap_info_struct *q = &swap_info[i];
1388
1389 if (i == type || !q->swap_file)
1390 continue;
1391 if (mapping == q->swap_file->f_mapping)
1392 goto bad_swap;
1393 }
1394
1395 error = -EINVAL;
1396 if (S_ISBLK(inode->i_mode)) {
1397 bdev = I_BDEV(inode);
1398 error = bd_claim(bdev, sys_swapon);
1399 if (error < 0) {
1400 bdev = NULL;
1401 error = -EINVAL;
1402 goto bad_swap;
1403 }
1404 p->old_block_size = block_size(bdev);
1405 error = set_blocksize(bdev, PAGE_SIZE);
1406 if (error < 0)
1407 goto bad_swap;
1408 p->bdev = bdev;
1409 } else if (S_ISREG(inode->i_mode)) {
1410 p->bdev = inode->i_sb->s_bdev;
1411 mutex_lock(&inode->i_mutex);
1412 did_down = 1;
1413 if (IS_SWAPFILE(inode)) {
1414 error = -EBUSY;
1415 goto bad_swap;
1416 }
1417 } else {
1418 goto bad_swap;
1419 }
1420
1421 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1422
1423 /*
1424 * Read the swap header.
1425 */
1426 if (!mapping->a_ops->readpage) {
1427 error = -EINVAL;
1428 goto bad_swap;
1429 }
1430 page = read_cache_page(mapping, 0,
1431 (filler_t *)mapping->a_ops->readpage, swap_file);
1432 if (IS_ERR(page)) {
1433 error = PTR_ERR(page);
1434 goto bad_swap;
1435 }
1436 wait_on_page_locked(page);
1437 if (!PageUptodate(page))
1438 goto bad_swap;
1439 kmap(page);
1440 swap_header = page_address(page);
1441
1442 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1443 swap_header_version = 1;
1444 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1445 swap_header_version = 2;
1446 else {
1447 printk(KERN_ERR "Unable to find swap-space signature\n");
1448 error = -EINVAL;
1449 goto bad_swap;
1450 }
1451
1452 switch (swap_header_version) {
1453 case 1:
1454 printk(KERN_ERR "version 0 swap is no longer supported. "
1455 "Use mkswap -v1 %s\n", name);
1456 error = -EINVAL;
1457 goto bad_swap;
1458 case 2:
1459 /* Check the swap header's sub-version and the size of
1460 the swap file and bad block lists */
1461 if (swap_header->info.version != 1) {
1462 printk(KERN_WARNING
1463 "Unable to handle swap header version %d\n",
1464 swap_header->info.version);
1465 error = -EINVAL;
1466 goto bad_swap;
1467 }
1468
1469 p->lowest_bit = 1;
1470 p->cluster_next = 1;
1471
1472 /*
1473 * Find out how many pages are allowed for a single swap
1474 * device. There are two limiting factors: 1) the number of
1475 * bits for the swap offset in the swp_entry_t type and
1476 * 2) the number of bits in the a swap pte as defined by
1477 * the different architectures. In order to find the
1478 * largest possible bit mask a swap entry with swap type 0
1479 * and swap offset ~0UL is created, encoded to a swap pte,
1480 * decoded to a swp_entry_t again and finally the swap
1481 * offset is extracted. This will mask all the bits from
1482 * the initial ~0UL mask that can't be encoded in either
1483 * the swp_entry_t or the architecture definition of a
1484 * swap pte.
1485 */
1486 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1487 if (maxpages > swap_header->info.last_page)
1488 maxpages = swap_header->info.last_page;
1489 p->highest_bit = maxpages - 1;
1490
1491 error = -EINVAL;
1492 if (!maxpages)
1493 goto bad_swap;
1494 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1495 goto bad_swap;
1496 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1497 goto bad_swap;
1498
1499 /* OK, set up the swap map and apply the bad block list */
1500 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1501 error = -ENOMEM;
1502 goto bad_swap;
1503 }
1504
1505 error = 0;
1506 memset(p->swap_map, 0, maxpages * sizeof(short));
1507 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1508 int page_nr = swap_header->info.badpages[i];
1509 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1510 error = -EINVAL;
1511 else
1512 p->swap_map[page_nr] = SWAP_MAP_BAD;
1513 }
1514 nr_good_pages = swap_header->info.last_page -
1515 swap_header->info.nr_badpages -
1516 1 /* header page */;
1517 if (error)
1518 goto bad_swap;
1519 }
1520
1521 if (swapfilesize && maxpages > swapfilesize) {
1522 printk(KERN_WARNING
1523 "Swap area shorter than signature indicates\n");
1524 error = -EINVAL;
1525 goto bad_swap;
1526 }
1527 if (nr_good_pages) {
1528 p->swap_map[0] = SWAP_MAP_BAD;
1529 p->max = maxpages;
1530 p->pages = nr_good_pages;
1531 nr_extents = setup_swap_extents(p, &span);
1532 if (nr_extents < 0) {
1533 error = nr_extents;
1534 goto bad_swap;
1535 }
1536 nr_good_pages = p->pages;
1537 }
1538 if (!nr_good_pages) {
1539 printk(KERN_WARNING "Empty swap-file\n");
1540 error = -EINVAL;
1541 goto bad_swap;
1542 }
1543
1544 mutex_lock(&swapon_mutex);
1545 spin_lock(&swap_lock);
1546 p->flags = SWP_ACTIVE;
1547 nr_swap_pages += nr_good_pages;
1548 total_swap_pages += nr_good_pages;
1549
1550 printk(KERN_INFO "Adding %uk swap on %s. "
1551 "Priority:%d extents:%d across:%lluk\n",
1552 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1553 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1554
1555 /* insert swap space into swap_list: */
1556 prev = -1;
1557 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1558 if (p->prio >= swap_info[i].prio) {
1559 break;
1560 }
1561 prev = i;
1562 }
1563 p->next = i;
1564 if (prev < 0) {
1565 swap_list.head = swap_list.next = p - swap_info;
1566 } else {
1567 swap_info[prev].next = p - swap_info;
1568 }
1569 spin_unlock(&swap_lock);
1570 mutex_unlock(&swapon_mutex);
1571 error = 0;
1572 goto out;
1573 bad_swap:
1574 if (bdev) {
1575 set_blocksize(bdev, p->old_block_size);
1576 bd_release(bdev);
1577 }
1578 destroy_swap_extents(p);
1579 bad_swap_2:
1580 spin_lock(&swap_lock);
1581 swap_map = p->swap_map;
1582 p->swap_file = NULL;
1583 p->swap_map = NULL;
1584 p->flags = 0;
1585 if (!(swap_flags & SWAP_FLAG_PREFER))
1586 ++least_priority;
1587 spin_unlock(&swap_lock);
1588 vfree(swap_map);
1589 if (swap_file)
1590 filp_close(swap_file, NULL);
1591 out:
1592 if (page && !IS_ERR(page)) {
1593 kunmap(page);
1594 page_cache_release(page);
1595 }
1596 if (name)
1597 putname(name);
1598 if (did_down) {
1599 if (!error)
1600 inode->i_flags |= S_SWAPFILE;
1601 mutex_unlock(&inode->i_mutex);
1602 }
1603 return error;
1604 }
1605
1606 void si_swapinfo(struct sysinfo *val)
1607 {
1608 unsigned int i;
1609 unsigned long nr_to_be_unused = 0;
1610
1611 spin_lock(&swap_lock);
1612 for (i = 0; i < nr_swapfiles; i++) {
1613 if (!(swap_info[i].flags & SWP_USED) ||
1614 (swap_info[i].flags & SWP_WRITEOK))
1615 continue;
1616 nr_to_be_unused += swap_info[i].inuse_pages;
1617 }
1618 val->freeswap = nr_swap_pages + nr_to_be_unused;
1619 val->totalswap = total_swap_pages + nr_to_be_unused;
1620 spin_unlock(&swap_lock);
1621 }
1622
1623 /*
1624 * Verify that a swap entry is valid and increment its swap map count.
1625 *
1626 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1627 * "permanent", but will be reclaimed by the next swapoff.
1628 */
1629 int swap_duplicate(swp_entry_t entry)
1630 {
1631 struct swap_info_struct * p;
1632 unsigned long offset, type;
1633 int result = 0;
1634
1635 type = swp_type(entry);
1636 if (type >= nr_swapfiles)
1637 goto bad_file;
1638 p = type + swap_info;
1639 offset = swp_offset(entry);
1640
1641 spin_lock(&swap_lock);
1642 if (offset < p->max && p->swap_map[offset]) {
1643 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1644 p->swap_map[offset]++;
1645 result = 1;
1646 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1647 if (swap_overflow++ < 5)
1648 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1649 p->swap_map[offset] = SWAP_MAP_MAX;
1650 result = 1;
1651 }
1652 }
1653 spin_unlock(&swap_lock);
1654 out:
1655 return result;
1656
1657 bad_file:
1658 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1659 goto out;
1660 }
1661
1662 struct swap_info_struct *
1663 get_swap_info_struct(unsigned type)
1664 {
1665 return &swap_info[type];
1666 }
1667
1668 /*
1669 * swap_lock prevents swap_map being freed. Don't grab an extra
1670 * reference on the swaphandle, it doesn't matter if it becomes unused.
1671 */
1672 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1673 {
1674 int ret = 0, i = 1 << page_cluster;
1675 unsigned long toff;
1676 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1677
1678 if (!page_cluster) /* no readahead */
1679 return 0;
1680 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1681 if (!toff) /* first page is swap header */
1682 toff++, i--;
1683 *offset = toff;
1684
1685 spin_lock(&swap_lock);
1686 do {
1687 /* Don't read-ahead past the end of the swap area */
1688 if (toff >= swapdev->max)
1689 break;
1690 /* Don't read in free or bad pages */
1691 if (!swapdev->swap_map[toff])
1692 break;
1693 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1694 break;
1695 toff++;
1696 ret++;
1697 } while (--i);
1698 spin_unlock(&swap_lock);
1699 return ret;
1700 }
This page took 0.072162 seconds and 5 git commands to generate.