Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/seq_file.h>
18 #include <linux/debugobjects.h>
19 #include <linux/vmalloc.h>
20 #include <linux/kallsyms.h>
21
22 #include <asm/uaccess.h>
23 #include <asm/tlbflush.h>
24
25
26 DEFINE_RWLOCK(vmlist_lock);
27 struct vm_struct *vmlist;
28
29 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
30 int node, void *caller);
31
32 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
33 {
34 pte_t *pte;
35
36 pte = pte_offset_kernel(pmd, addr);
37 do {
38 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
39 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
40 } while (pte++, addr += PAGE_SIZE, addr != end);
41 }
42
43 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
44 unsigned long end)
45 {
46 pmd_t *pmd;
47 unsigned long next;
48
49 pmd = pmd_offset(pud, addr);
50 do {
51 next = pmd_addr_end(addr, end);
52 if (pmd_none_or_clear_bad(pmd))
53 continue;
54 vunmap_pte_range(pmd, addr, next);
55 } while (pmd++, addr = next, addr != end);
56 }
57
58 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
59 unsigned long end)
60 {
61 pud_t *pud;
62 unsigned long next;
63
64 pud = pud_offset(pgd, addr);
65 do {
66 next = pud_addr_end(addr, end);
67 if (pud_none_or_clear_bad(pud))
68 continue;
69 vunmap_pmd_range(pud, addr, next);
70 } while (pud++, addr = next, addr != end);
71 }
72
73 void unmap_kernel_range(unsigned long addr, unsigned long size)
74 {
75 pgd_t *pgd;
76 unsigned long next;
77 unsigned long start = addr;
78 unsigned long end = addr + size;
79
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
82 flush_cache_vunmap(addr, end);
83 do {
84 next = pgd_addr_end(addr, end);
85 if (pgd_none_or_clear_bad(pgd))
86 continue;
87 vunmap_pud_range(pgd, addr, next);
88 } while (pgd++, addr = next, addr != end);
89 flush_tlb_kernel_range(start, end);
90 }
91
92 static void unmap_vm_area(struct vm_struct *area)
93 {
94 unmap_kernel_range((unsigned long)area->addr, area->size);
95 }
96
97 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
98 unsigned long end, pgprot_t prot, struct page ***pages)
99 {
100 pte_t *pte;
101
102 pte = pte_alloc_kernel(pmd, addr);
103 if (!pte)
104 return -ENOMEM;
105 do {
106 struct page *page = **pages;
107 WARN_ON(!pte_none(*pte));
108 if (!page)
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*pages)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114 }
115
116 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page ***pages)
118 {
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages))
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131 }
132
133 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page ***pages)
135 {
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages))
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148 }
149
150 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
151 {
152 pgd_t *pgd;
153 unsigned long next;
154 unsigned long addr = (unsigned long) area->addr;
155 unsigned long end = addr + area->size - PAGE_SIZE;
156 int err;
157
158 BUG_ON(addr >= end);
159 pgd = pgd_offset_k(addr);
160 do {
161 next = pgd_addr_end(addr, end);
162 err = vmap_pud_range(pgd, addr, next, prot, pages);
163 if (err)
164 break;
165 } while (pgd++, addr = next, addr != end);
166 flush_cache_vmap((unsigned long) area->addr, end);
167 return err;
168 }
169 EXPORT_SYMBOL_GPL(map_vm_area);
170
171 /*
172 * Map a vmalloc()-space virtual address to the physical page.
173 */
174 struct page *vmalloc_to_page(const void *vmalloc_addr)
175 {
176 unsigned long addr = (unsigned long) vmalloc_addr;
177 struct page *page = NULL;
178 pgd_t *pgd = pgd_offset_k(addr);
179 pud_t *pud;
180 pmd_t *pmd;
181 pte_t *ptep, pte;
182
183 if (!pgd_none(*pgd)) {
184 pud = pud_offset(pgd, addr);
185 if (!pud_none(*pud)) {
186 pmd = pmd_offset(pud, addr);
187 if (!pmd_none(*pmd)) {
188 ptep = pte_offset_map(pmd, addr);
189 pte = *ptep;
190 if (pte_present(pte))
191 page = pte_page(pte);
192 pte_unmap(ptep);
193 }
194 }
195 }
196 return page;
197 }
198 EXPORT_SYMBOL(vmalloc_to_page);
199
200 /*
201 * Map a vmalloc()-space virtual address to the physical page frame number.
202 */
203 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
204 {
205 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
206 }
207 EXPORT_SYMBOL(vmalloc_to_pfn);
208
209 static struct vm_struct *
210 __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
211 unsigned long end, int node, gfp_t gfp_mask, void *caller)
212 {
213 struct vm_struct **p, *tmp, *area;
214 unsigned long align = 1;
215 unsigned long addr;
216
217 BUG_ON(in_interrupt());
218 if (flags & VM_IOREMAP) {
219 int bit = fls(size);
220
221 if (bit > IOREMAP_MAX_ORDER)
222 bit = IOREMAP_MAX_ORDER;
223 else if (bit < PAGE_SHIFT)
224 bit = PAGE_SHIFT;
225
226 align = 1ul << bit;
227 }
228 addr = ALIGN(start, align);
229 size = PAGE_ALIGN(size);
230 if (unlikely(!size))
231 return NULL;
232
233 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
234
235 if (unlikely(!area))
236 return NULL;
237
238 /*
239 * We always allocate a guard page.
240 */
241 size += PAGE_SIZE;
242
243 write_lock(&vmlist_lock);
244 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
245 if ((unsigned long)tmp->addr < addr) {
246 if((unsigned long)tmp->addr + tmp->size >= addr)
247 addr = ALIGN(tmp->size +
248 (unsigned long)tmp->addr, align);
249 continue;
250 }
251 if ((size + addr) < addr)
252 goto out;
253 if (size + addr <= (unsigned long)tmp->addr)
254 goto found;
255 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
256 if (addr > end - size)
257 goto out;
258 }
259 if ((size + addr) < addr)
260 goto out;
261 if (addr > end - size)
262 goto out;
263
264 found:
265 area->next = *p;
266 *p = area;
267
268 area->flags = flags;
269 area->addr = (void *)addr;
270 area->size = size;
271 area->pages = NULL;
272 area->nr_pages = 0;
273 area->phys_addr = 0;
274 area->caller = caller;
275 write_unlock(&vmlist_lock);
276
277 return area;
278
279 out:
280 write_unlock(&vmlist_lock);
281 kfree(area);
282 if (printk_ratelimit())
283 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
284 return NULL;
285 }
286
287 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
288 unsigned long start, unsigned long end)
289 {
290 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
291 __builtin_return_address(0));
292 }
293 EXPORT_SYMBOL_GPL(__get_vm_area);
294
295 /**
296 * get_vm_area - reserve a contiguous kernel virtual area
297 * @size: size of the area
298 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
299 *
300 * Search an area of @size in the kernel virtual mapping area,
301 * and reserved it for out purposes. Returns the area descriptor
302 * on success or %NULL on failure.
303 */
304 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
305 {
306 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
307 -1, GFP_KERNEL, __builtin_return_address(0));
308 }
309
310 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
311 void *caller)
312 {
313 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
314 -1, GFP_KERNEL, caller);
315 }
316
317 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
318 int node, gfp_t gfp_mask)
319 {
320 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
321 gfp_mask, __builtin_return_address(0));
322 }
323
324 /* Caller must hold vmlist_lock */
325 static struct vm_struct *__find_vm_area(const void *addr)
326 {
327 struct vm_struct *tmp;
328
329 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
330 if (tmp->addr == addr)
331 break;
332 }
333
334 return tmp;
335 }
336
337 /* Caller must hold vmlist_lock */
338 static struct vm_struct *__remove_vm_area(const void *addr)
339 {
340 struct vm_struct **p, *tmp;
341
342 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
343 if (tmp->addr == addr)
344 goto found;
345 }
346 return NULL;
347
348 found:
349 unmap_vm_area(tmp);
350 *p = tmp->next;
351
352 /*
353 * Remove the guard page.
354 */
355 tmp->size -= PAGE_SIZE;
356 return tmp;
357 }
358
359 /**
360 * remove_vm_area - find and remove a continuous kernel virtual area
361 * @addr: base address
362 *
363 * Search for the kernel VM area starting at @addr, and remove it.
364 * This function returns the found VM area, but using it is NOT safe
365 * on SMP machines, except for its size or flags.
366 */
367 struct vm_struct *remove_vm_area(const void *addr)
368 {
369 struct vm_struct *v;
370 write_lock(&vmlist_lock);
371 v = __remove_vm_area(addr);
372 write_unlock(&vmlist_lock);
373 return v;
374 }
375
376 static void __vunmap(const void *addr, int deallocate_pages)
377 {
378 struct vm_struct *area;
379
380 if (!addr)
381 return;
382
383 if ((PAGE_SIZE-1) & (unsigned long)addr) {
384 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
385 return;
386 }
387
388 area = remove_vm_area(addr);
389 if (unlikely(!area)) {
390 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
391 addr);
392 return;
393 }
394
395 debug_check_no_locks_freed(addr, area->size);
396 debug_check_no_obj_freed(addr, area->size);
397
398 if (deallocate_pages) {
399 int i;
400
401 for (i = 0; i < area->nr_pages; i++) {
402 struct page *page = area->pages[i];
403
404 BUG_ON(!page);
405 __free_page(page);
406 }
407
408 if (area->flags & VM_VPAGES)
409 vfree(area->pages);
410 else
411 kfree(area->pages);
412 }
413
414 kfree(area);
415 return;
416 }
417
418 /**
419 * vfree - release memory allocated by vmalloc()
420 * @addr: memory base address
421 *
422 * Free the virtually continuous memory area starting at @addr, as
423 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
424 * NULL, no operation is performed.
425 *
426 * Must not be called in interrupt context.
427 */
428 void vfree(const void *addr)
429 {
430 BUG_ON(in_interrupt());
431 __vunmap(addr, 1);
432 }
433 EXPORT_SYMBOL(vfree);
434
435 /**
436 * vunmap - release virtual mapping obtained by vmap()
437 * @addr: memory base address
438 *
439 * Free the virtually contiguous memory area starting at @addr,
440 * which was created from the page array passed to vmap().
441 *
442 * Must not be called in interrupt context.
443 */
444 void vunmap(const void *addr)
445 {
446 BUG_ON(in_interrupt());
447 __vunmap(addr, 0);
448 }
449 EXPORT_SYMBOL(vunmap);
450
451 /**
452 * vmap - map an array of pages into virtually contiguous space
453 * @pages: array of page pointers
454 * @count: number of pages to map
455 * @flags: vm_area->flags
456 * @prot: page protection for the mapping
457 *
458 * Maps @count pages from @pages into contiguous kernel virtual
459 * space.
460 */
461 void *vmap(struct page **pages, unsigned int count,
462 unsigned long flags, pgprot_t prot)
463 {
464 struct vm_struct *area;
465
466 if (count > num_physpages)
467 return NULL;
468
469 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
470 __builtin_return_address(0));
471 if (!area)
472 return NULL;
473
474 if (map_vm_area(area, prot, &pages)) {
475 vunmap(area->addr);
476 return NULL;
477 }
478
479 return area->addr;
480 }
481 EXPORT_SYMBOL(vmap);
482
483 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
484 pgprot_t prot, int node, void *caller)
485 {
486 struct page **pages;
487 unsigned int nr_pages, array_size, i;
488
489 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
490 array_size = (nr_pages * sizeof(struct page *));
491
492 area->nr_pages = nr_pages;
493 /* Please note that the recursion is strictly bounded. */
494 if (array_size > PAGE_SIZE) {
495 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
496 PAGE_KERNEL, node, caller);
497 area->flags |= VM_VPAGES;
498 } else {
499 pages = kmalloc_node(array_size,
500 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
501 node);
502 }
503 area->pages = pages;
504 area->caller = caller;
505 if (!area->pages) {
506 remove_vm_area(area->addr);
507 kfree(area);
508 return NULL;
509 }
510
511 for (i = 0; i < area->nr_pages; i++) {
512 struct page *page;
513
514 if (node < 0)
515 page = alloc_page(gfp_mask);
516 else
517 page = alloc_pages_node(node, gfp_mask, 0);
518
519 if (unlikely(!page)) {
520 /* Successfully allocated i pages, free them in __vunmap() */
521 area->nr_pages = i;
522 goto fail;
523 }
524 area->pages[i] = page;
525 }
526
527 if (map_vm_area(area, prot, &pages))
528 goto fail;
529 return area->addr;
530
531 fail:
532 vfree(area->addr);
533 return NULL;
534 }
535
536 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
537 {
538 return __vmalloc_area_node(area, gfp_mask, prot, -1,
539 __builtin_return_address(0));
540 }
541
542 /**
543 * __vmalloc_node - allocate virtually contiguous memory
544 * @size: allocation size
545 * @gfp_mask: flags for the page level allocator
546 * @prot: protection mask for the allocated pages
547 * @node: node to use for allocation or -1
548 * @caller: caller's return address
549 *
550 * Allocate enough pages to cover @size from the page level
551 * allocator with @gfp_mask flags. Map them into contiguous
552 * kernel virtual space, using a pagetable protection of @prot.
553 */
554 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
555 int node, void *caller)
556 {
557 struct vm_struct *area;
558
559 size = PAGE_ALIGN(size);
560 if (!size || (size >> PAGE_SHIFT) > num_physpages)
561 return NULL;
562
563 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
564 node, gfp_mask, caller);
565
566 if (!area)
567 return NULL;
568
569 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
570 }
571
572 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
573 {
574 return __vmalloc_node(size, gfp_mask, prot, -1,
575 __builtin_return_address(0));
576 }
577 EXPORT_SYMBOL(__vmalloc);
578
579 /**
580 * vmalloc - allocate virtually contiguous memory
581 * @size: allocation size
582 * Allocate enough pages to cover @size from the page level
583 * allocator and map them into contiguous kernel virtual space.
584 *
585 * For tight control over page level allocator and protection flags
586 * use __vmalloc() instead.
587 */
588 void *vmalloc(unsigned long size)
589 {
590 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
591 -1, __builtin_return_address(0));
592 }
593 EXPORT_SYMBOL(vmalloc);
594
595 /**
596 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
597 * @size: allocation size
598 *
599 * The resulting memory area is zeroed so it can be mapped to userspace
600 * without leaking data.
601 */
602 void *vmalloc_user(unsigned long size)
603 {
604 struct vm_struct *area;
605 void *ret;
606
607 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
608 if (ret) {
609 write_lock(&vmlist_lock);
610 area = __find_vm_area(ret);
611 area->flags |= VM_USERMAP;
612 write_unlock(&vmlist_lock);
613 }
614 return ret;
615 }
616 EXPORT_SYMBOL(vmalloc_user);
617
618 /**
619 * vmalloc_node - allocate memory on a specific node
620 * @size: allocation size
621 * @node: numa node
622 *
623 * Allocate enough pages to cover @size from the page level
624 * allocator and map them into contiguous kernel virtual space.
625 *
626 * For tight control over page level allocator and protection flags
627 * use __vmalloc() instead.
628 */
629 void *vmalloc_node(unsigned long size, int node)
630 {
631 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
632 node, __builtin_return_address(0));
633 }
634 EXPORT_SYMBOL(vmalloc_node);
635
636 #ifndef PAGE_KERNEL_EXEC
637 # define PAGE_KERNEL_EXEC PAGE_KERNEL
638 #endif
639
640 /**
641 * vmalloc_exec - allocate virtually contiguous, executable memory
642 * @size: allocation size
643 *
644 * Kernel-internal function to allocate enough pages to cover @size
645 * the page level allocator and map them into contiguous and
646 * executable kernel virtual space.
647 *
648 * For tight control over page level allocator and protection flags
649 * use __vmalloc() instead.
650 */
651
652 void *vmalloc_exec(unsigned long size)
653 {
654 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
655 }
656
657 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
658 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
659 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
660 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
661 #else
662 #define GFP_VMALLOC32 GFP_KERNEL
663 #endif
664
665 /**
666 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
667 * @size: allocation size
668 *
669 * Allocate enough 32bit PA addressable pages to cover @size from the
670 * page level allocator and map them into contiguous kernel virtual space.
671 */
672 void *vmalloc_32(unsigned long size)
673 {
674 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
675 }
676 EXPORT_SYMBOL(vmalloc_32);
677
678 /**
679 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
680 * @size: allocation size
681 *
682 * The resulting memory area is 32bit addressable and zeroed so it can be
683 * mapped to userspace without leaking data.
684 */
685 void *vmalloc_32_user(unsigned long size)
686 {
687 struct vm_struct *area;
688 void *ret;
689
690 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
691 if (ret) {
692 write_lock(&vmlist_lock);
693 area = __find_vm_area(ret);
694 area->flags |= VM_USERMAP;
695 write_unlock(&vmlist_lock);
696 }
697 return ret;
698 }
699 EXPORT_SYMBOL(vmalloc_32_user);
700
701 long vread(char *buf, char *addr, unsigned long count)
702 {
703 struct vm_struct *tmp;
704 char *vaddr, *buf_start = buf;
705 unsigned long n;
706
707 /* Don't allow overflow */
708 if ((unsigned long) addr + count < count)
709 count = -(unsigned long) addr;
710
711 read_lock(&vmlist_lock);
712 for (tmp = vmlist; tmp; tmp = tmp->next) {
713 vaddr = (char *) tmp->addr;
714 if (addr >= vaddr + tmp->size - PAGE_SIZE)
715 continue;
716 while (addr < vaddr) {
717 if (count == 0)
718 goto finished;
719 *buf = '\0';
720 buf++;
721 addr++;
722 count--;
723 }
724 n = vaddr + tmp->size - PAGE_SIZE - addr;
725 do {
726 if (count == 0)
727 goto finished;
728 *buf = *addr;
729 buf++;
730 addr++;
731 count--;
732 } while (--n > 0);
733 }
734 finished:
735 read_unlock(&vmlist_lock);
736 return buf - buf_start;
737 }
738
739 long vwrite(char *buf, char *addr, unsigned long count)
740 {
741 struct vm_struct *tmp;
742 char *vaddr, *buf_start = buf;
743 unsigned long n;
744
745 /* Don't allow overflow */
746 if ((unsigned long) addr + count < count)
747 count = -(unsigned long) addr;
748
749 read_lock(&vmlist_lock);
750 for (tmp = vmlist; tmp; tmp = tmp->next) {
751 vaddr = (char *) tmp->addr;
752 if (addr >= vaddr + tmp->size - PAGE_SIZE)
753 continue;
754 while (addr < vaddr) {
755 if (count == 0)
756 goto finished;
757 buf++;
758 addr++;
759 count--;
760 }
761 n = vaddr + tmp->size - PAGE_SIZE - addr;
762 do {
763 if (count == 0)
764 goto finished;
765 *addr = *buf;
766 buf++;
767 addr++;
768 count--;
769 } while (--n > 0);
770 }
771 finished:
772 read_unlock(&vmlist_lock);
773 return buf - buf_start;
774 }
775
776 /**
777 * remap_vmalloc_range - map vmalloc pages to userspace
778 * @vma: vma to cover (map full range of vma)
779 * @addr: vmalloc memory
780 * @pgoff: number of pages into addr before first page to map
781 *
782 * Returns: 0 for success, -Exxx on failure
783 *
784 * This function checks that addr is a valid vmalloc'ed area, and
785 * that it is big enough to cover the vma. Will return failure if
786 * that criteria isn't met.
787 *
788 * Similar to remap_pfn_range() (see mm/memory.c)
789 */
790 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
791 unsigned long pgoff)
792 {
793 struct vm_struct *area;
794 unsigned long uaddr = vma->vm_start;
795 unsigned long usize = vma->vm_end - vma->vm_start;
796 int ret;
797
798 if ((PAGE_SIZE-1) & (unsigned long)addr)
799 return -EINVAL;
800
801 read_lock(&vmlist_lock);
802 area = __find_vm_area(addr);
803 if (!area)
804 goto out_einval_locked;
805
806 if (!(area->flags & VM_USERMAP))
807 goto out_einval_locked;
808
809 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
810 goto out_einval_locked;
811 read_unlock(&vmlist_lock);
812
813 addr += pgoff << PAGE_SHIFT;
814 do {
815 struct page *page = vmalloc_to_page(addr);
816 ret = vm_insert_page(vma, uaddr, page);
817 if (ret)
818 return ret;
819
820 uaddr += PAGE_SIZE;
821 addr += PAGE_SIZE;
822 usize -= PAGE_SIZE;
823 } while (usize > 0);
824
825 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
826 vma->vm_flags |= VM_RESERVED;
827
828 return ret;
829
830 out_einval_locked:
831 read_unlock(&vmlist_lock);
832 return -EINVAL;
833 }
834 EXPORT_SYMBOL(remap_vmalloc_range);
835
836 /*
837 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
838 * have one.
839 */
840 void __attribute__((weak)) vmalloc_sync_all(void)
841 {
842 }
843
844
845 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
846 {
847 /* apply_to_page_range() does all the hard work. */
848 return 0;
849 }
850
851 /**
852 * alloc_vm_area - allocate a range of kernel address space
853 * @size: size of the area
854 *
855 * Returns: NULL on failure, vm_struct on success
856 *
857 * This function reserves a range of kernel address space, and
858 * allocates pagetables to map that range. No actual mappings
859 * are created. If the kernel address space is not shared
860 * between processes, it syncs the pagetable across all
861 * processes.
862 */
863 struct vm_struct *alloc_vm_area(size_t size)
864 {
865 struct vm_struct *area;
866
867 area = get_vm_area_caller(size, VM_IOREMAP,
868 __builtin_return_address(0));
869 if (area == NULL)
870 return NULL;
871
872 /*
873 * This ensures that page tables are constructed for this region
874 * of kernel virtual address space and mapped into init_mm.
875 */
876 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
877 area->size, f, NULL)) {
878 free_vm_area(area);
879 return NULL;
880 }
881
882 /* Make sure the pagetables are constructed in process kernel
883 mappings */
884 vmalloc_sync_all();
885
886 return area;
887 }
888 EXPORT_SYMBOL_GPL(alloc_vm_area);
889
890 void free_vm_area(struct vm_struct *area)
891 {
892 struct vm_struct *ret;
893 ret = remove_vm_area(area->addr);
894 BUG_ON(ret != area);
895 kfree(area);
896 }
897 EXPORT_SYMBOL_GPL(free_vm_area);
898
899
900 #ifdef CONFIG_PROC_FS
901 static void *s_start(struct seq_file *m, loff_t *pos)
902 {
903 loff_t n = *pos;
904 struct vm_struct *v;
905
906 read_lock(&vmlist_lock);
907 v = vmlist;
908 while (n > 0 && v) {
909 n--;
910 v = v->next;
911 }
912 if (!n)
913 return v;
914
915 return NULL;
916
917 }
918
919 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
920 {
921 struct vm_struct *v = p;
922
923 ++*pos;
924 return v->next;
925 }
926
927 static void s_stop(struct seq_file *m, void *p)
928 {
929 read_unlock(&vmlist_lock);
930 }
931
932 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
933 {
934 if (NUMA_BUILD) {
935 unsigned int nr, *counters = m->private;
936
937 if (!counters)
938 return;
939
940 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
941
942 for (nr = 0; nr < v->nr_pages; nr++)
943 counters[page_to_nid(v->pages[nr])]++;
944
945 for_each_node_state(nr, N_HIGH_MEMORY)
946 if (counters[nr])
947 seq_printf(m, " N%u=%u", nr, counters[nr]);
948 }
949 }
950
951 static int s_show(struct seq_file *m, void *p)
952 {
953 struct vm_struct *v = p;
954
955 seq_printf(m, "0x%p-0x%p %7ld",
956 v->addr, v->addr + v->size, v->size);
957
958 if (v->caller) {
959 char buff[2 * KSYM_NAME_LEN];
960
961 seq_putc(m, ' ');
962 sprint_symbol(buff, (unsigned long)v->caller);
963 seq_puts(m, buff);
964 }
965
966 if (v->nr_pages)
967 seq_printf(m, " pages=%d", v->nr_pages);
968
969 if (v->phys_addr)
970 seq_printf(m, " phys=%lx", v->phys_addr);
971
972 if (v->flags & VM_IOREMAP)
973 seq_printf(m, " ioremap");
974
975 if (v->flags & VM_ALLOC)
976 seq_printf(m, " vmalloc");
977
978 if (v->flags & VM_MAP)
979 seq_printf(m, " vmap");
980
981 if (v->flags & VM_USERMAP)
982 seq_printf(m, " user");
983
984 if (v->flags & VM_VPAGES)
985 seq_printf(m, " vpages");
986
987 show_numa_info(m, v);
988 seq_putc(m, '\n');
989 return 0;
990 }
991
992 const struct seq_operations vmalloc_op = {
993 .start = s_start,
994 .next = s_next,
995 .stop = s_stop,
996 .show = s_show,
997 };
998 #endif
999
This page took 0.099579 seconds and 6 git commands to generate.