21d417ccff69d4efb8154d78c976b97e353a3609
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56
57 #include "internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 unsigned int may_writepage:1;
88
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
91
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
94
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
97
98 unsigned int hibernation_mode:1;
99
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
102
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
105
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
108 };
109
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
115 \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
118 } \
119 } while (0)
120 #else
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
123
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
129 \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
132 } \
133 } while (0)
134 #else
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 #endif
137
138 /*
139 * From 0 .. 100. Higher means more swappy.
140 */
141 int vm_swappiness = 60;
142 /*
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
145 */
146 unsigned long vm_total_pages;
147
148 static LIST_HEAD(shrinker_list);
149 static DECLARE_RWSEM(shrinker_rwsem);
150
151 #ifdef CONFIG_MEMCG
152 static bool global_reclaim(struct scan_control *sc)
153 {
154 return !sc->target_mem_cgroup;
155 }
156
157 /**
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
160 *
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
166 *
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
169 */
170 static bool sane_reclaim(struct scan_control *sc)
171 {
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
173
174 if (!memcg)
175 return true;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 return true;
179 #endif
180 return false;
181 }
182 #else
183 static bool global_reclaim(struct scan_control *sc)
184 {
185 return true;
186 }
187
188 static bool sane_reclaim(struct scan_control *sc)
189 {
190 return true;
191 }
192 #endif
193
194 unsigned long zone_reclaimable_pages(struct zone *zone)
195 {
196 unsigned long nr;
197
198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
206
207 return nr;
208 }
209
210 bool zone_reclaimable(struct zone *zone)
211 {
212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
213 zone_reclaimable_pages(zone) * 6;
214 }
215
216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
217 {
218 if (!mem_cgroup_disabled())
219 return mem_cgroup_get_lru_size(lruvec, lru);
220
221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
222 }
223
224 /*
225 * Add a shrinker callback to be called from the vm.
226 */
227 int register_shrinker(struct shrinker *shrinker)
228 {
229 size_t size = sizeof(*shrinker->nr_deferred);
230
231 if (shrinker->flags & SHRINKER_NUMA_AWARE)
232 size *= nr_node_ids;
233
234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
235 if (!shrinker->nr_deferred)
236 return -ENOMEM;
237
238 down_write(&shrinker_rwsem);
239 list_add_tail(&shrinker->list, &shrinker_list);
240 up_write(&shrinker_rwsem);
241 return 0;
242 }
243 EXPORT_SYMBOL(register_shrinker);
244
245 /*
246 * Remove one
247 */
248 void unregister_shrinker(struct shrinker *shrinker)
249 {
250 down_write(&shrinker_rwsem);
251 list_del(&shrinker->list);
252 up_write(&shrinker_rwsem);
253 kfree(shrinker->nr_deferred);
254 }
255 EXPORT_SYMBOL(unregister_shrinker);
256
257 #define SHRINK_BATCH 128
258
259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
260 struct shrinker *shrinker,
261 unsigned long nr_scanned,
262 unsigned long nr_eligible)
263 {
264 unsigned long freed = 0;
265 unsigned long long delta;
266 long total_scan;
267 long freeable;
268 long nr;
269 long new_nr;
270 int nid = shrinkctl->nid;
271 long batch_size = shrinker->batch ? shrinker->batch
272 : SHRINK_BATCH;
273
274 freeable = shrinker->count_objects(shrinker, shrinkctl);
275 if (freeable == 0)
276 return 0;
277
278 /*
279 * copy the current shrinker scan count into a local variable
280 * and zero it so that other concurrent shrinker invocations
281 * don't also do this scanning work.
282 */
283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
284
285 total_scan = nr;
286 delta = (4 * nr_scanned) / shrinker->seeks;
287 delta *= freeable;
288 do_div(delta, nr_eligible + 1);
289 total_scan += delta;
290 if (total_scan < 0) {
291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
292 shrinker->scan_objects, total_scan);
293 total_scan = freeable;
294 }
295
296 /*
297 * We need to avoid excessive windup on filesystem shrinkers
298 * due to large numbers of GFP_NOFS allocations causing the
299 * shrinkers to return -1 all the time. This results in a large
300 * nr being built up so when a shrink that can do some work
301 * comes along it empties the entire cache due to nr >>>
302 * freeable. This is bad for sustaining a working set in
303 * memory.
304 *
305 * Hence only allow the shrinker to scan the entire cache when
306 * a large delta change is calculated directly.
307 */
308 if (delta < freeable / 4)
309 total_scan = min(total_scan, freeable / 2);
310
311 /*
312 * Avoid risking looping forever due to too large nr value:
313 * never try to free more than twice the estimate number of
314 * freeable entries.
315 */
316 if (total_scan > freeable * 2)
317 total_scan = freeable * 2;
318
319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
320 nr_scanned, nr_eligible,
321 freeable, delta, total_scan);
322
323 /*
324 * Normally, we should not scan less than batch_size objects in one
325 * pass to avoid too frequent shrinker calls, but if the slab has less
326 * than batch_size objects in total and we are really tight on memory,
327 * we will try to reclaim all available objects, otherwise we can end
328 * up failing allocations although there are plenty of reclaimable
329 * objects spread over several slabs with usage less than the
330 * batch_size.
331 *
332 * We detect the "tight on memory" situations by looking at the total
333 * number of objects we want to scan (total_scan). If it is greater
334 * than the total number of objects on slab (freeable), we must be
335 * scanning at high prio and therefore should try to reclaim as much as
336 * possible.
337 */
338 while (total_scan >= batch_size ||
339 total_scan >= freeable) {
340 unsigned long ret;
341 unsigned long nr_to_scan = min(batch_size, total_scan);
342
343 shrinkctl->nr_to_scan = nr_to_scan;
344 ret = shrinker->scan_objects(shrinker, shrinkctl);
345 if (ret == SHRINK_STOP)
346 break;
347 freed += ret;
348
349 count_vm_events(SLABS_SCANNED, nr_to_scan);
350 total_scan -= nr_to_scan;
351
352 cond_resched();
353 }
354
355 /*
356 * move the unused scan count back into the shrinker in a
357 * manner that handles concurrent updates. If we exhausted the
358 * scan, there is no need to do an update.
359 */
360 if (total_scan > 0)
361 new_nr = atomic_long_add_return(total_scan,
362 &shrinker->nr_deferred[nid]);
363 else
364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
365
366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
367 return freed;
368 }
369
370 /**
371 * shrink_slab - shrink slab caches
372 * @gfp_mask: allocation context
373 * @nid: node whose slab caches to target
374 * @memcg: memory cgroup whose slab caches to target
375 * @nr_scanned: pressure numerator
376 * @nr_eligible: pressure denominator
377 *
378 * Call the shrink functions to age shrinkable caches.
379 *
380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
381 * unaware shrinkers will receive a node id of 0 instead.
382 *
383 * @memcg specifies the memory cgroup to target. If it is not NULL,
384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
385 * objects from the memory cgroup specified. Otherwise, only unaware
386 * shrinkers are called.
387 *
388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
389 * the available objects should be scanned. Page reclaim for example
390 * passes the number of pages scanned and the number of pages on the
391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
392 * when it encountered mapped pages. The ratio is further biased by
393 * the ->seeks setting of the shrink function, which indicates the
394 * cost to recreate an object relative to that of an LRU page.
395 *
396 * Returns the number of reclaimed slab objects.
397 */
398 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
399 struct mem_cgroup *memcg,
400 unsigned long nr_scanned,
401 unsigned long nr_eligible)
402 {
403 struct shrinker *shrinker;
404 unsigned long freed = 0;
405
406 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
407 return 0;
408
409 if (nr_scanned == 0)
410 nr_scanned = SWAP_CLUSTER_MAX;
411
412 if (!down_read_trylock(&shrinker_rwsem)) {
413 /*
414 * If we would return 0, our callers would understand that we
415 * have nothing else to shrink and give up trying. By returning
416 * 1 we keep it going and assume we'll be able to shrink next
417 * time.
418 */
419 freed = 1;
420 goto out;
421 }
422
423 list_for_each_entry(shrinker, &shrinker_list, list) {
424 struct shrink_control sc = {
425 .gfp_mask = gfp_mask,
426 .nid = nid,
427 .memcg = memcg,
428 };
429
430 /*
431 * If kernel memory accounting is disabled, we ignore
432 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
433 * passing NULL for memcg.
434 */
435 if (memcg_kmem_enabled() &&
436 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
437 continue;
438
439 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
440 sc.nid = 0;
441
442 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
443 }
444
445 up_read(&shrinker_rwsem);
446 out:
447 cond_resched();
448 return freed;
449 }
450
451 void drop_slab_node(int nid)
452 {
453 unsigned long freed;
454
455 do {
456 struct mem_cgroup *memcg = NULL;
457
458 freed = 0;
459 do {
460 freed += shrink_slab(GFP_KERNEL, nid, memcg,
461 1000, 1000);
462 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
463 } while (freed > 10);
464 }
465
466 void drop_slab(void)
467 {
468 int nid;
469
470 for_each_online_node(nid)
471 drop_slab_node(nid);
472 }
473
474 static inline int is_page_cache_freeable(struct page *page)
475 {
476 /*
477 * A freeable page cache page is referenced only by the caller
478 * that isolated the page, the page cache radix tree and
479 * optional buffer heads at page->private.
480 */
481 return page_count(page) - page_has_private(page) == 2;
482 }
483
484 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
485 {
486 if (current->flags & PF_SWAPWRITE)
487 return 1;
488 if (!inode_write_congested(inode))
489 return 1;
490 if (inode_to_bdi(inode) == current->backing_dev_info)
491 return 1;
492 return 0;
493 }
494
495 /*
496 * We detected a synchronous write error writing a page out. Probably
497 * -ENOSPC. We need to propagate that into the address_space for a subsequent
498 * fsync(), msync() or close().
499 *
500 * The tricky part is that after writepage we cannot touch the mapping: nothing
501 * prevents it from being freed up. But we have a ref on the page and once
502 * that page is locked, the mapping is pinned.
503 *
504 * We're allowed to run sleeping lock_page() here because we know the caller has
505 * __GFP_FS.
506 */
507 static void handle_write_error(struct address_space *mapping,
508 struct page *page, int error)
509 {
510 lock_page(page);
511 if (page_mapping(page) == mapping)
512 mapping_set_error(mapping, error);
513 unlock_page(page);
514 }
515
516 /* possible outcome of pageout() */
517 typedef enum {
518 /* failed to write page out, page is locked */
519 PAGE_KEEP,
520 /* move page to the active list, page is locked */
521 PAGE_ACTIVATE,
522 /* page has been sent to the disk successfully, page is unlocked */
523 PAGE_SUCCESS,
524 /* page is clean and locked */
525 PAGE_CLEAN,
526 } pageout_t;
527
528 /*
529 * pageout is called by shrink_page_list() for each dirty page.
530 * Calls ->writepage().
531 */
532 static pageout_t pageout(struct page *page, struct address_space *mapping,
533 struct scan_control *sc)
534 {
535 /*
536 * If the page is dirty, only perform writeback if that write
537 * will be non-blocking. To prevent this allocation from being
538 * stalled by pagecache activity. But note that there may be
539 * stalls if we need to run get_block(). We could test
540 * PagePrivate for that.
541 *
542 * If this process is currently in __generic_file_write_iter() against
543 * this page's queue, we can perform writeback even if that
544 * will block.
545 *
546 * If the page is swapcache, write it back even if that would
547 * block, for some throttling. This happens by accident, because
548 * swap_backing_dev_info is bust: it doesn't reflect the
549 * congestion state of the swapdevs. Easy to fix, if needed.
550 */
551 if (!is_page_cache_freeable(page))
552 return PAGE_KEEP;
553 if (!mapping) {
554 /*
555 * Some data journaling orphaned pages can have
556 * page->mapping == NULL while being dirty with clean buffers.
557 */
558 if (page_has_private(page)) {
559 if (try_to_free_buffers(page)) {
560 ClearPageDirty(page);
561 pr_info("%s: orphaned page\n", __func__);
562 return PAGE_CLEAN;
563 }
564 }
565 return PAGE_KEEP;
566 }
567 if (mapping->a_ops->writepage == NULL)
568 return PAGE_ACTIVATE;
569 if (!may_write_to_inode(mapping->host, sc))
570 return PAGE_KEEP;
571
572 if (clear_page_dirty_for_io(page)) {
573 int res;
574 struct writeback_control wbc = {
575 .sync_mode = WB_SYNC_NONE,
576 .nr_to_write = SWAP_CLUSTER_MAX,
577 .range_start = 0,
578 .range_end = LLONG_MAX,
579 .for_reclaim = 1,
580 };
581
582 SetPageReclaim(page);
583 res = mapping->a_ops->writepage(page, &wbc);
584 if (res < 0)
585 handle_write_error(mapping, page, res);
586 if (res == AOP_WRITEPAGE_ACTIVATE) {
587 ClearPageReclaim(page);
588 return PAGE_ACTIVATE;
589 }
590
591 if (!PageWriteback(page)) {
592 /* synchronous write or broken a_ops? */
593 ClearPageReclaim(page);
594 }
595 trace_mm_vmscan_writepage(page);
596 inc_zone_page_state(page, NR_VMSCAN_WRITE);
597 return PAGE_SUCCESS;
598 }
599
600 return PAGE_CLEAN;
601 }
602
603 /*
604 * Same as remove_mapping, but if the page is removed from the mapping, it
605 * gets returned with a refcount of 0.
606 */
607 static int __remove_mapping(struct address_space *mapping, struct page *page,
608 bool reclaimed)
609 {
610 unsigned long flags;
611
612 BUG_ON(!PageLocked(page));
613 BUG_ON(mapping != page_mapping(page));
614
615 spin_lock_irqsave(&mapping->tree_lock, flags);
616 /*
617 * The non racy check for a busy page.
618 *
619 * Must be careful with the order of the tests. When someone has
620 * a ref to the page, it may be possible that they dirty it then
621 * drop the reference. So if PageDirty is tested before page_count
622 * here, then the following race may occur:
623 *
624 * get_user_pages(&page);
625 * [user mapping goes away]
626 * write_to(page);
627 * !PageDirty(page) [good]
628 * SetPageDirty(page);
629 * put_page(page);
630 * !page_count(page) [good, discard it]
631 *
632 * [oops, our write_to data is lost]
633 *
634 * Reversing the order of the tests ensures such a situation cannot
635 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
636 * load is not satisfied before that of page->_refcount.
637 *
638 * Note that if SetPageDirty is always performed via set_page_dirty,
639 * and thus under tree_lock, then this ordering is not required.
640 */
641 if (!page_ref_freeze(page, 2))
642 goto cannot_free;
643 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
644 if (unlikely(PageDirty(page))) {
645 page_ref_unfreeze(page, 2);
646 goto cannot_free;
647 }
648
649 if (PageSwapCache(page)) {
650 swp_entry_t swap = { .val = page_private(page) };
651 mem_cgroup_swapout(page, swap);
652 __delete_from_swap_cache(page);
653 spin_unlock_irqrestore(&mapping->tree_lock, flags);
654 swapcache_free(swap);
655 } else {
656 void (*freepage)(struct page *);
657 void *shadow = NULL;
658
659 freepage = mapping->a_ops->freepage;
660 /*
661 * Remember a shadow entry for reclaimed file cache in
662 * order to detect refaults, thus thrashing, later on.
663 *
664 * But don't store shadows in an address space that is
665 * already exiting. This is not just an optizimation,
666 * inode reclaim needs to empty out the radix tree or
667 * the nodes are lost. Don't plant shadows behind its
668 * back.
669 *
670 * We also don't store shadows for DAX mappings because the
671 * only page cache pages found in these are zero pages
672 * covering holes, and because we don't want to mix DAX
673 * exceptional entries and shadow exceptional entries in the
674 * same page_tree.
675 */
676 if (reclaimed && page_is_file_cache(page) &&
677 !mapping_exiting(mapping) && !dax_mapping(mapping))
678 shadow = workingset_eviction(mapping, page);
679 __delete_from_page_cache(page, shadow);
680 spin_unlock_irqrestore(&mapping->tree_lock, flags);
681
682 if (freepage != NULL)
683 freepage(page);
684 }
685
686 return 1;
687
688 cannot_free:
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 return 0;
691 }
692
693 /*
694 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
695 * someone else has a ref on the page, abort and return 0. If it was
696 * successfully detached, return 1. Assumes the caller has a single ref on
697 * this page.
698 */
699 int remove_mapping(struct address_space *mapping, struct page *page)
700 {
701 if (__remove_mapping(mapping, page, false)) {
702 /*
703 * Unfreezing the refcount with 1 rather than 2 effectively
704 * drops the pagecache ref for us without requiring another
705 * atomic operation.
706 */
707 page_ref_unfreeze(page, 1);
708 return 1;
709 }
710 return 0;
711 }
712
713 /**
714 * putback_lru_page - put previously isolated page onto appropriate LRU list
715 * @page: page to be put back to appropriate lru list
716 *
717 * Add previously isolated @page to appropriate LRU list.
718 * Page may still be unevictable for other reasons.
719 *
720 * lru_lock must not be held, interrupts must be enabled.
721 */
722 void putback_lru_page(struct page *page)
723 {
724 bool is_unevictable;
725 int was_unevictable = PageUnevictable(page);
726
727 VM_BUG_ON_PAGE(PageLRU(page), page);
728
729 redo:
730 ClearPageUnevictable(page);
731
732 if (page_evictable(page)) {
733 /*
734 * For evictable pages, we can use the cache.
735 * In event of a race, worst case is we end up with an
736 * unevictable page on [in]active list.
737 * We know how to handle that.
738 */
739 is_unevictable = false;
740 lru_cache_add(page);
741 } else {
742 /*
743 * Put unevictable pages directly on zone's unevictable
744 * list.
745 */
746 is_unevictable = true;
747 add_page_to_unevictable_list(page);
748 /*
749 * When racing with an mlock or AS_UNEVICTABLE clearing
750 * (page is unlocked) make sure that if the other thread
751 * does not observe our setting of PG_lru and fails
752 * isolation/check_move_unevictable_pages,
753 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
754 * the page back to the evictable list.
755 *
756 * The other side is TestClearPageMlocked() or shmem_lock().
757 */
758 smp_mb();
759 }
760
761 /*
762 * page's status can change while we move it among lru. If an evictable
763 * page is on unevictable list, it never be freed. To avoid that,
764 * check after we added it to the list, again.
765 */
766 if (is_unevictable && page_evictable(page)) {
767 if (!isolate_lru_page(page)) {
768 put_page(page);
769 goto redo;
770 }
771 /* This means someone else dropped this page from LRU
772 * So, it will be freed or putback to LRU again. There is
773 * nothing to do here.
774 */
775 }
776
777 if (was_unevictable && !is_unevictable)
778 count_vm_event(UNEVICTABLE_PGRESCUED);
779 else if (!was_unevictable && is_unevictable)
780 count_vm_event(UNEVICTABLE_PGCULLED);
781
782 put_page(page); /* drop ref from isolate */
783 }
784
785 enum page_references {
786 PAGEREF_RECLAIM,
787 PAGEREF_RECLAIM_CLEAN,
788 PAGEREF_KEEP,
789 PAGEREF_ACTIVATE,
790 };
791
792 static enum page_references page_check_references(struct page *page,
793 struct scan_control *sc)
794 {
795 int referenced_ptes, referenced_page;
796 unsigned long vm_flags;
797
798 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
799 &vm_flags);
800 referenced_page = TestClearPageReferenced(page);
801
802 /*
803 * Mlock lost the isolation race with us. Let try_to_unmap()
804 * move the page to the unevictable list.
805 */
806 if (vm_flags & VM_LOCKED)
807 return PAGEREF_RECLAIM;
808
809 if (referenced_ptes) {
810 if (PageSwapBacked(page))
811 return PAGEREF_ACTIVATE;
812 /*
813 * All mapped pages start out with page table
814 * references from the instantiating fault, so we need
815 * to look twice if a mapped file page is used more
816 * than once.
817 *
818 * Mark it and spare it for another trip around the
819 * inactive list. Another page table reference will
820 * lead to its activation.
821 *
822 * Note: the mark is set for activated pages as well
823 * so that recently deactivated but used pages are
824 * quickly recovered.
825 */
826 SetPageReferenced(page);
827
828 if (referenced_page || referenced_ptes > 1)
829 return PAGEREF_ACTIVATE;
830
831 /*
832 * Activate file-backed executable pages after first usage.
833 */
834 if (vm_flags & VM_EXEC)
835 return PAGEREF_ACTIVATE;
836
837 return PAGEREF_KEEP;
838 }
839
840 /* Reclaim if clean, defer dirty pages to writeback */
841 if (referenced_page && !PageSwapBacked(page))
842 return PAGEREF_RECLAIM_CLEAN;
843
844 return PAGEREF_RECLAIM;
845 }
846
847 /* Check if a page is dirty or under writeback */
848 static void page_check_dirty_writeback(struct page *page,
849 bool *dirty, bool *writeback)
850 {
851 struct address_space *mapping;
852
853 /*
854 * Anonymous pages are not handled by flushers and must be written
855 * from reclaim context. Do not stall reclaim based on them
856 */
857 if (!page_is_file_cache(page)) {
858 *dirty = false;
859 *writeback = false;
860 return;
861 }
862
863 /* By default assume that the page flags are accurate */
864 *dirty = PageDirty(page);
865 *writeback = PageWriteback(page);
866
867 /* Verify dirty/writeback state if the filesystem supports it */
868 if (!page_has_private(page))
869 return;
870
871 mapping = page_mapping(page);
872 if (mapping && mapping->a_ops->is_dirty_writeback)
873 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
874 }
875
876 /*
877 * shrink_page_list() returns the number of reclaimed pages
878 */
879 static unsigned long shrink_page_list(struct list_head *page_list,
880 struct zone *zone,
881 struct scan_control *sc,
882 enum ttu_flags ttu_flags,
883 unsigned long *ret_nr_dirty,
884 unsigned long *ret_nr_unqueued_dirty,
885 unsigned long *ret_nr_congested,
886 unsigned long *ret_nr_writeback,
887 unsigned long *ret_nr_immediate,
888 bool force_reclaim)
889 {
890 LIST_HEAD(ret_pages);
891 LIST_HEAD(free_pages);
892 int pgactivate = 0;
893 unsigned long nr_unqueued_dirty = 0;
894 unsigned long nr_dirty = 0;
895 unsigned long nr_congested = 0;
896 unsigned long nr_reclaimed = 0;
897 unsigned long nr_writeback = 0;
898 unsigned long nr_immediate = 0;
899
900 cond_resched();
901
902 while (!list_empty(page_list)) {
903 struct address_space *mapping;
904 struct page *page;
905 int may_enter_fs;
906 enum page_references references = PAGEREF_RECLAIM_CLEAN;
907 bool dirty, writeback;
908 bool lazyfree = false;
909 int ret = SWAP_SUCCESS;
910
911 cond_resched();
912
913 page = lru_to_page(page_list);
914 list_del(&page->lru);
915
916 if (!trylock_page(page))
917 goto keep;
918
919 VM_BUG_ON_PAGE(PageActive(page), page);
920 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
921
922 sc->nr_scanned++;
923
924 if (unlikely(!page_evictable(page)))
925 goto cull_mlocked;
926
927 if (!sc->may_unmap && page_mapped(page))
928 goto keep_locked;
929
930 /* Double the slab pressure for mapped and swapcache pages */
931 if (page_mapped(page) || PageSwapCache(page))
932 sc->nr_scanned++;
933
934 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
935 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
936
937 /*
938 * The number of dirty pages determines if a zone is marked
939 * reclaim_congested which affects wait_iff_congested. kswapd
940 * will stall and start writing pages if the tail of the LRU
941 * is all dirty unqueued pages.
942 */
943 page_check_dirty_writeback(page, &dirty, &writeback);
944 if (dirty || writeback)
945 nr_dirty++;
946
947 if (dirty && !writeback)
948 nr_unqueued_dirty++;
949
950 /*
951 * Treat this page as congested if the underlying BDI is or if
952 * pages are cycling through the LRU so quickly that the
953 * pages marked for immediate reclaim are making it to the
954 * end of the LRU a second time.
955 */
956 mapping = page_mapping(page);
957 if (((dirty || writeback) && mapping &&
958 inode_write_congested(mapping->host)) ||
959 (writeback && PageReclaim(page)))
960 nr_congested++;
961
962 /*
963 * If a page at the tail of the LRU is under writeback, there
964 * are three cases to consider.
965 *
966 * 1) If reclaim is encountering an excessive number of pages
967 * under writeback and this page is both under writeback and
968 * PageReclaim then it indicates that pages are being queued
969 * for IO but are being recycled through the LRU before the
970 * IO can complete. Waiting on the page itself risks an
971 * indefinite stall if it is impossible to writeback the
972 * page due to IO error or disconnected storage so instead
973 * note that the LRU is being scanned too quickly and the
974 * caller can stall after page list has been processed.
975 *
976 * 2) Global or new memcg reclaim encounters a page that is
977 * not marked for immediate reclaim, or the caller does not
978 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
979 * not to fs). In this case mark the page for immediate
980 * reclaim and continue scanning.
981 *
982 * Require may_enter_fs because we would wait on fs, which
983 * may not have submitted IO yet. And the loop driver might
984 * enter reclaim, and deadlock if it waits on a page for
985 * which it is needed to do the write (loop masks off
986 * __GFP_IO|__GFP_FS for this reason); but more thought
987 * would probably show more reasons.
988 *
989 * 3) Legacy memcg encounters a page that is already marked
990 * PageReclaim. memcg does not have any dirty pages
991 * throttling so we could easily OOM just because too many
992 * pages are in writeback and there is nothing else to
993 * reclaim. Wait for the writeback to complete.
994 */
995 if (PageWriteback(page)) {
996 /* Case 1 above */
997 if (current_is_kswapd() &&
998 PageReclaim(page) &&
999 test_bit(ZONE_WRITEBACK, &zone->flags)) {
1000 nr_immediate++;
1001 goto keep_locked;
1002
1003 /* Case 2 above */
1004 } else if (sane_reclaim(sc) ||
1005 !PageReclaim(page) || !may_enter_fs) {
1006 /*
1007 * This is slightly racy - end_page_writeback()
1008 * might have just cleared PageReclaim, then
1009 * setting PageReclaim here end up interpreted
1010 * as PageReadahead - but that does not matter
1011 * enough to care. What we do want is for this
1012 * page to have PageReclaim set next time memcg
1013 * reclaim reaches the tests above, so it will
1014 * then wait_on_page_writeback() to avoid OOM;
1015 * and it's also appropriate in global reclaim.
1016 */
1017 SetPageReclaim(page);
1018 nr_writeback++;
1019 goto keep_locked;
1020
1021 /* Case 3 above */
1022 } else {
1023 unlock_page(page);
1024 wait_on_page_writeback(page);
1025 /* then go back and try same page again */
1026 list_add_tail(&page->lru, page_list);
1027 continue;
1028 }
1029 }
1030
1031 if (!force_reclaim)
1032 references = page_check_references(page, sc);
1033
1034 switch (references) {
1035 case PAGEREF_ACTIVATE:
1036 goto activate_locked;
1037 case PAGEREF_KEEP:
1038 goto keep_locked;
1039 case PAGEREF_RECLAIM:
1040 case PAGEREF_RECLAIM_CLEAN:
1041 ; /* try to reclaim the page below */
1042 }
1043
1044 /*
1045 * Anonymous process memory has backing store?
1046 * Try to allocate it some swap space here.
1047 */
1048 if (PageAnon(page) && !PageSwapCache(page)) {
1049 if (!(sc->gfp_mask & __GFP_IO))
1050 goto keep_locked;
1051 if (!add_to_swap(page, page_list))
1052 goto activate_locked;
1053 lazyfree = true;
1054 may_enter_fs = 1;
1055
1056 /* Adding to swap updated mapping */
1057 mapping = page_mapping(page);
1058 } else if (unlikely(PageTransHuge(page))) {
1059 /* Split file THP */
1060 if (split_huge_page_to_list(page, page_list))
1061 goto keep_locked;
1062 }
1063
1064 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1065
1066 /*
1067 * The page is mapped into the page tables of one or more
1068 * processes. Try to unmap it here.
1069 */
1070 if (page_mapped(page) && mapping) {
1071 switch (ret = try_to_unmap(page, lazyfree ?
1072 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1073 (ttu_flags | TTU_BATCH_FLUSH))) {
1074 case SWAP_FAIL:
1075 goto activate_locked;
1076 case SWAP_AGAIN:
1077 goto keep_locked;
1078 case SWAP_MLOCK:
1079 goto cull_mlocked;
1080 case SWAP_LZFREE:
1081 goto lazyfree;
1082 case SWAP_SUCCESS:
1083 ; /* try to free the page below */
1084 }
1085 }
1086
1087 if (PageDirty(page)) {
1088 /*
1089 * Only kswapd can writeback filesystem pages to
1090 * avoid risk of stack overflow but only writeback
1091 * if many dirty pages have been encountered.
1092 */
1093 if (page_is_file_cache(page) &&
1094 (!current_is_kswapd() ||
1095 !test_bit(ZONE_DIRTY, &zone->flags))) {
1096 /*
1097 * Immediately reclaim when written back.
1098 * Similar in principal to deactivate_page()
1099 * except we already have the page isolated
1100 * and know it's dirty
1101 */
1102 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1103 SetPageReclaim(page);
1104
1105 goto keep_locked;
1106 }
1107
1108 if (references == PAGEREF_RECLAIM_CLEAN)
1109 goto keep_locked;
1110 if (!may_enter_fs)
1111 goto keep_locked;
1112 if (!sc->may_writepage)
1113 goto keep_locked;
1114
1115 /*
1116 * Page is dirty. Flush the TLB if a writable entry
1117 * potentially exists to avoid CPU writes after IO
1118 * starts and then write it out here.
1119 */
1120 try_to_unmap_flush_dirty();
1121 switch (pageout(page, mapping, sc)) {
1122 case PAGE_KEEP:
1123 goto keep_locked;
1124 case PAGE_ACTIVATE:
1125 goto activate_locked;
1126 case PAGE_SUCCESS:
1127 if (PageWriteback(page))
1128 goto keep;
1129 if (PageDirty(page))
1130 goto keep;
1131
1132 /*
1133 * A synchronous write - probably a ramdisk. Go
1134 * ahead and try to reclaim the page.
1135 */
1136 if (!trylock_page(page))
1137 goto keep;
1138 if (PageDirty(page) || PageWriteback(page))
1139 goto keep_locked;
1140 mapping = page_mapping(page);
1141 case PAGE_CLEAN:
1142 ; /* try to free the page below */
1143 }
1144 }
1145
1146 /*
1147 * If the page has buffers, try to free the buffer mappings
1148 * associated with this page. If we succeed we try to free
1149 * the page as well.
1150 *
1151 * We do this even if the page is PageDirty().
1152 * try_to_release_page() does not perform I/O, but it is
1153 * possible for a page to have PageDirty set, but it is actually
1154 * clean (all its buffers are clean). This happens if the
1155 * buffers were written out directly, with submit_bh(). ext3
1156 * will do this, as well as the blockdev mapping.
1157 * try_to_release_page() will discover that cleanness and will
1158 * drop the buffers and mark the page clean - it can be freed.
1159 *
1160 * Rarely, pages can have buffers and no ->mapping. These are
1161 * the pages which were not successfully invalidated in
1162 * truncate_complete_page(). We try to drop those buffers here
1163 * and if that worked, and the page is no longer mapped into
1164 * process address space (page_count == 1) it can be freed.
1165 * Otherwise, leave the page on the LRU so it is swappable.
1166 */
1167 if (page_has_private(page)) {
1168 if (!try_to_release_page(page, sc->gfp_mask))
1169 goto activate_locked;
1170 if (!mapping && page_count(page) == 1) {
1171 unlock_page(page);
1172 if (put_page_testzero(page))
1173 goto free_it;
1174 else {
1175 /*
1176 * rare race with speculative reference.
1177 * the speculative reference will free
1178 * this page shortly, so we may
1179 * increment nr_reclaimed here (and
1180 * leave it off the LRU).
1181 */
1182 nr_reclaimed++;
1183 continue;
1184 }
1185 }
1186 }
1187
1188 lazyfree:
1189 if (!mapping || !__remove_mapping(mapping, page, true))
1190 goto keep_locked;
1191
1192 /*
1193 * At this point, we have no other references and there is
1194 * no way to pick any more up (removed from LRU, removed
1195 * from pagecache). Can use non-atomic bitops now (and
1196 * we obviously don't have to worry about waking up a process
1197 * waiting on the page lock, because there are no references.
1198 */
1199 __ClearPageLocked(page);
1200 free_it:
1201 if (ret == SWAP_LZFREE)
1202 count_vm_event(PGLAZYFREED);
1203
1204 nr_reclaimed++;
1205
1206 /*
1207 * Is there need to periodically free_page_list? It would
1208 * appear not as the counts should be low
1209 */
1210 list_add(&page->lru, &free_pages);
1211 continue;
1212
1213 cull_mlocked:
1214 if (PageSwapCache(page))
1215 try_to_free_swap(page);
1216 unlock_page(page);
1217 list_add(&page->lru, &ret_pages);
1218 continue;
1219
1220 activate_locked:
1221 /* Not a candidate for swapping, so reclaim swap space. */
1222 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1223 try_to_free_swap(page);
1224 VM_BUG_ON_PAGE(PageActive(page), page);
1225 SetPageActive(page);
1226 pgactivate++;
1227 keep_locked:
1228 unlock_page(page);
1229 keep:
1230 list_add(&page->lru, &ret_pages);
1231 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1232 }
1233
1234 mem_cgroup_uncharge_list(&free_pages);
1235 try_to_unmap_flush();
1236 free_hot_cold_page_list(&free_pages, true);
1237
1238 list_splice(&ret_pages, page_list);
1239 count_vm_events(PGACTIVATE, pgactivate);
1240
1241 *ret_nr_dirty += nr_dirty;
1242 *ret_nr_congested += nr_congested;
1243 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1244 *ret_nr_writeback += nr_writeback;
1245 *ret_nr_immediate += nr_immediate;
1246 return nr_reclaimed;
1247 }
1248
1249 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1250 struct list_head *page_list)
1251 {
1252 struct scan_control sc = {
1253 .gfp_mask = GFP_KERNEL,
1254 .priority = DEF_PRIORITY,
1255 .may_unmap = 1,
1256 };
1257 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1258 struct page *page, *next;
1259 LIST_HEAD(clean_pages);
1260
1261 list_for_each_entry_safe(page, next, page_list, lru) {
1262 if (page_is_file_cache(page) && !PageDirty(page) &&
1263 !__PageMovable(page)) {
1264 ClearPageActive(page);
1265 list_move(&page->lru, &clean_pages);
1266 }
1267 }
1268
1269 ret = shrink_page_list(&clean_pages, zone, &sc,
1270 TTU_UNMAP|TTU_IGNORE_ACCESS,
1271 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1272 list_splice(&clean_pages, page_list);
1273 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1274 return ret;
1275 }
1276
1277 /*
1278 * Attempt to remove the specified page from its LRU. Only take this page
1279 * if it is of the appropriate PageActive status. Pages which are being
1280 * freed elsewhere are also ignored.
1281 *
1282 * page: page to consider
1283 * mode: one of the LRU isolation modes defined above
1284 *
1285 * returns 0 on success, -ve errno on failure.
1286 */
1287 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1288 {
1289 int ret = -EINVAL;
1290
1291 /* Only take pages on the LRU. */
1292 if (!PageLRU(page))
1293 return ret;
1294
1295 /* Compaction should not handle unevictable pages but CMA can do so */
1296 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1297 return ret;
1298
1299 ret = -EBUSY;
1300
1301 /*
1302 * To minimise LRU disruption, the caller can indicate that it only
1303 * wants to isolate pages it will be able to operate on without
1304 * blocking - clean pages for the most part.
1305 *
1306 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1307 * is used by reclaim when it is cannot write to backing storage
1308 *
1309 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1310 * that it is possible to migrate without blocking
1311 */
1312 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1313 /* All the caller can do on PageWriteback is block */
1314 if (PageWriteback(page))
1315 return ret;
1316
1317 if (PageDirty(page)) {
1318 struct address_space *mapping;
1319
1320 /* ISOLATE_CLEAN means only clean pages */
1321 if (mode & ISOLATE_CLEAN)
1322 return ret;
1323
1324 /*
1325 * Only pages without mappings or that have a
1326 * ->migratepage callback are possible to migrate
1327 * without blocking
1328 */
1329 mapping = page_mapping(page);
1330 if (mapping && !mapping->a_ops->migratepage)
1331 return ret;
1332 }
1333 }
1334
1335 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1336 return ret;
1337
1338 if (likely(get_page_unless_zero(page))) {
1339 /*
1340 * Be careful not to clear PageLRU until after we're
1341 * sure the page is not being freed elsewhere -- the
1342 * page release code relies on it.
1343 */
1344 ClearPageLRU(page);
1345 ret = 0;
1346 }
1347
1348 return ret;
1349 }
1350
1351 /*
1352 * zone->lru_lock is heavily contended. Some of the functions that
1353 * shrink the lists perform better by taking out a batch of pages
1354 * and working on them outside the LRU lock.
1355 *
1356 * For pagecache intensive workloads, this function is the hottest
1357 * spot in the kernel (apart from copy_*_user functions).
1358 *
1359 * Appropriate locks must be held before calling this function.
1360 *
1361 * @nr_to_scan: The number of pages to look through on the list.
1362 * @lruvec: The LRU vector to pull pages from.
1363 * @dst: The temp list to put pages on to.
1364 * @nr_scanned: The number of pages that were scanned.
1365 * @sc: The scan_control struct for this reclaim session
1366 * @mode: One of the LRU isolation modes
1367 * @lru: LRU list id for isolating
1368 *
1369 * returns how many pages were moved onto *@dst.
1370 */
1371 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1372 struct lruvec *lruvec, struct list_head *dst,
1373 unsigned long *nr_scanned, struct scan_control *sc,
1374 isolate_mode_t mode, enum lru_list lru)
1375 {
1376 struct list_head *src = &lruvec->lists[lru];
1377 unsigned long nr_taken = 0;
1378 unsigned long scan;
1379
1380 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1381 !list_empty(src); scan++) {
1382 struct page *page;
1383
1384 page = lru_to_page(src);
1385 prefetchw_prev_lru_page(page, src, flags);
1386
1387 VM_BUG_ON_PAGE(!PageLRU(page), page);
1388
1389 switch (__isolate_lru_page(page, mode)) {
1390 case 0:
1391 nr_taken += hpage_nr_pages(page);
1392 list_move(&page->lru, dst);
1393 break;
1394
1395 case -EBUSY:
1396 /* else it is being freed elsewhere */
1397 list_move(&page->lru, src);
1398 continue;
1399
1400 default:
1401 BUG();
1402 }
1403 }
1404
1405 *nr_scanned = scan;
1406 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1407 nr_taken, mode, is_file_lru(lru));
1408 return nr_taken;
1409 }
1410
1411 /**
1412 * isolate_lru_page - tries to isolate a page from its LRU list
1413 * @page: page to isolate from its LRU list
1414 *
1415 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1416 * vmstat statistic corresponding to whatever LRU list the page was on.
1417 *
1418 * Returns 0 if the page was removed from an LRU list.
1419 * Returns -EBUSY if the page was not on an LRU list.
1420 *
1421 * The returned page will have PageLRU() cleared. If it was found on
1422 * the active list, it will have PageActive set. If it was found on
1423 * the unevictable list, it will have the PageUnevictable bit set. That flag
1424 * may need to be cleared by the caller before letting the page go.
1425 *
1426 * The vmstat statistic corresponding to the list on which the page was
1427 * found will be decremented.
1428 *
1429 * Restrictions:
1430 * (1) Must be called with an elevated refcount on the page. This is a
1431 * fundamentnal difference from isolate_lru_pages (which is called
1432 * without a stable reference).
1433 * (2) the lru_lock must not be held.
1434 * (3) interrupts must be enabled.
1435 */
1436 int isolate_lru_page(struct page *page)
1437 {
1438 int ret = -EBUSY;
1439
1440 VM_BUG_ON_PAGE(!page_count(page), page);
1441 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1442
1443 if (PageLRU(page)) {
1444 struct zone *zone = page_zone(page);
1445 struct lruvec *lruvec;
1446
1447 spin_lock_irq(&zone->lru_lock);
1448 lruvec = mem_cgroup_page_lruvec(page, zone);
1449 if (PageLRU(page)) {
1450 int lru = page_lru(page);
1451 get_page(page);
1452 ClearPageLRU(page);
1453 del_page_from_lru_list(page, lruvec, lru);
1454 ret = 0;
1455 }
1456 spin_unlock_irq(&zone->lru_lock);
1457 }
1458 return ret;
1459 }
1460
1461 /*
1462 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1463 * then get resheduled. When there are massive number of tasks doing page
1464 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1465 * the LRU list will go small and be scanned faster than necessary, leading to
1466 * unnecessary swapping, thrashing and OOM.
1467 */
1468 static int too_many_isolated(struct zone *zone, int file,
1469 struct scan_control *sc)
1470 {
1471 unsigned long inactive, isolated;
1472
1473 if (current_is_kswapd())
1474 return 0;
1475
1476 if (!sane_reclaim(sc))
1477 return 0;
1478
1479 if (file) {
1480 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1481 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1482 } else {
1483 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1484 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1485 }
1486
1487 /*
1488 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1489 * won't get blocked by normal direct-reclaimers, forming a circular
1490 * deadlock.
1491 */
1492 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1493 inactive >>= 3;
1494
1495 return isolated > inactive;
1496 }
1497
1498 static noinline_for_stack void
1499 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1500 {
1501 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1502 struct zone *zone = lruvec_zone(lruvec);
1503 LIST_HEAD(pages_to_free);
1504
1505 /*
1506 * Put back any unfreeable pages.
1507 */
1508 while (!list_empty(page_list)) {
1509 struct page *page = lru_to_page(page_list);
1510 int lru;
1511
1512 VM_BUG_ON_PAGE(PageLRU(page), page);
1513 list_del(&page->lru);
1514 if (unlikely(!page_evictable(page))) {
1515 spin_unlock_irq(&zone->lru_lock);
1516 putback_lru_page(page);
1517 spin_lock_irq(&zone->lru_lock);
1518 continue;
1519 }
1520
1521 lruvec = mem_cgroup_page_lruvec(page, zone);
1522
1523 SetPageLRU(page);
1524 lru = page_lru(page);
1525 add_page_to_lru_list(page, lruvec, lru);
1526
1527 if (is_active_lru(lru)) {
1528 int file = is_file_lru(lru);
1529 int numpages = hpage_nr_pages(page);
1530 reclaim_stat->recent_rotated[file] += numpages;
1531 }
1532 if (put_page_testzero(page)) {
1533 __ClearPageLRU(page);
1534 __ClearPageActive(page);
1535 del_page_from_lru_list(page, lruvec, lru);
1536
1537 if (unlikely(PageCompound(page))) {
1538 spin_unlock_irq(&zone->lru_lock);
1539 mem_cgroup_uncharge(page);
1540 (*get_compound_page_dtor(page))(page);
1541 spin_lock_irq(&zone->lru_lock);
1542 } else
1543 list_add(&page->lru, &pages_to_free);
1544 }
1545 }
1546
1547 /*
1548 * To save our caller's stack, now use input list for pages to free.
1549 */
1550 list_splice(&pages_to_free, page_list);
1551 }
1552
1553 /*
1554 * If a kernel thread (such as nfsd for loop-back mounts) services
1555 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1556 * In that case we should only throttle if the backing device it is
1557 * writing to is congested. In other cases it is safe to throttle.
1558 */
1559 static int current_may_throttle(void)
1560 {
1561 return !(current->flags & PF_LESS_THROTTLE) ||
1562 current->backing_dev_info == NULL ||
1563 bdi_write_congested(current->backing_dev_info);
1564 }
1565
1566 /*
1567 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1568 * of reclaimed pages
1569 */
1570 static noinline_for_stack unsigned long
1571 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1572 struct scan_control *sc, enum lru_list lru)
1573 {
1574 LIST_HEAD(page_list);
1575 unsigned long nr_scanned;
1576 unsigned long nr_reclaimed = 0;
1577 unsigned long nr_taken;
1578 unsigned long nr_dirty = 0;
1579 unsigned long nr_congested = 0;
1580 unsigned long nr_unqueued_dirty = 0;
1581 unsigned long nr_writeback = 0;
1582 unsigned long nr_immediate = 0;
1583 isolate_mode_t isolate_mode = 0;
1584 int file = is_file_lru(lru);
1585 struct zone *zone = lruvec_zone(lruvec);
1586 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1587
1588 while (unlikely(too_many_isolated(zone, file, sc))) {
1589 congestion_wait(BLK_RW_ASYNC, HZ/10);
1590
1591 /* We are about to die and free our memory. Return now. */
1592 if (fatal_signal_pending(current))
1593 return SWAP_CLUSTER_MAX;
1594 }
1595
1596 lru_add_drain();
1597
1598 if (!sc->may_unmap)
1599 isolate_mode |= ISOLATE_UNMAPPED;
1600 if (!sc->may_writepage)
1601 isolate_mode |= ISOLATE_CLEAN;
1602
1603 spin_lock_irq(&zone->lru_lock);
1604
1605 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1606 &nr_scanned, sc, isolate_mode, lru);
1607
1608 update_lru_size(lruvec, lru, -nr_taken);
1609 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1610 reclaim_stat->recent_scanned[file] += nr_taken;
1611
1612 if (global_reclaim(sc)) {
1613 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1614 if (current_is_kswapd())
1615 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1616 else
1617 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1618 }
1619 spin_unlock_irq(&zone->lru_lock);
1620
1621 if (nr_taken == 0)
1622 return 0;
1623
1624 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1625 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1626 &nr_writeback, &nr_immediate,
1627 false);
1628
1629 spin_lock_irq(&zone->lru_lock);
1630
1631 if (global_reclaim(sc)) {
1632 if (current_is_kswapd())
1633 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1634 nr_reclaimed);
1635 else
1636 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1637 nr_reclaimed);
1638 }
1639
1640 putback_inactive_pages(lruvec, &page_list);
1641
1642 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1643
1644 spin_unlock_irq(&zone->lru_lock);
1645
1646 mem_cgroup_uncharge_list(&page_list);
1647 free_hot_cold_page_list(&page_list, true);
1648
1649 /*
1650 * If reclaim is isolating dirty pages under writeback, it implies
1651 * that the long-lived page allocation rate is exceeding the page
1652 * laundering rate. Either the global limits are not being effective
1653 * at throttling processes due to the page distribution throughout
1654 * zones or there is heavy usage of a slow backing device. The
1655 * only option is to throttle from reclaim context which is not ideal
1656 * as there is no guarantee the dirtying process is throttled in the
1657 * same way balance_dirty_pages() manages.
1658 *
1659 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1660 * of pages under pages flagged for immediate reclaim and stall if any
1661 * are encountered in the nr_immediate check below.
1662 */
1663 if (nr_writeback && nr_writeback == nr_taken)
1664 set_bit(ZONE_WRITEBACK, &zone->flags);
1665
1666 /*
1667 * Legacy memcg will stall in page writeback so avoid forcibly
1668 * stalling here.
1669 */
1670 if (sane_reclaim(sc)) {
1671 /*
1672 * Tag a zone as congested if all the dirty pages scanned were
1673 * backed by a congested BDI and wait_iff_congested will stall.
1674 */
1675 if (nr_dirty && nr_dirty == nr_congested)
1676 set_bit(ZONE_CONGESTED, &zone->flags);
1677
1678 /*
1679 * If dirty pages are scanned that are not queued for IO, it
1680 * implies that flushers are not keeping up. In this case, flag
1681 * the zone ZONE_DIRTY and kswapd will start writing pages from
1682 * reclaim context.
1683 */
1684 if (nr_unqueued_dirty == nr_taken)
1685 set_bit(ZONE_DIRTY, &zone->flags);
1686
1687 /*
1688 * If kswapd scans pages marked marked for immediate
1689 * reclaim and under writeback (nr_immediate), it implies
1690 * that pages are cycling through the LRU faster than
1691 * they are written so also forcibly stall.
1692 */
1693 if (nr_immediate && current_may_throttle())
1694 congestion_wait(BLK_RW_ASYNC, HZ/10);
1695 }
1696
1697 /*
1698 * Stall direct reclaim for IO completions if underlying BDIs or zone
1699 * is congested. Allow kswapd to continue until it starts encountering
1700 * unqueued dirty pages or cycling through the LRU too quickly.
1701 */
1702 if (!sc->hibernation_mode && !current_is_kswapd() &&
1703 current_may_throttle())
1704 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1705
1706 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1707 sc->priority, file);
1708 return nr_reclaimed;
1709 }
1710
1711 /*
1712 * This moves pages from the active list to the inactive list.
1713 *
1714 * We move them the other way if the page is referenced by one or more
1715 * processes, from rmap.
1716 *
1717 * If the pages are mostly unmapped, the processing is fast and it is
1718 * appropriate to hold zone->lru_lock across the whole operation. But if
1719 * the pages are mapped, the processing is slow (page_referenced()) so we
1720 * should drop zone->lru_lock around each page. It's impossible to balance
1721 * this, so instead we remove the pages from the LRU while processing them.
1722 * It is safe to rely on PG_active against the non-LRU pages in here because
1723 * nobody will play with that bit on a non-LRU page.
1724 *
1725 * The downside is that we have to touch page->_refcount against each page.
1726 * But we had to alter page->flags anyway.
1727 */
1728
1729 static void move_active_pages_to_lru(struct lruvec *lruvec,
1730 struct list_head *list,
1731 struct list_head *pages_to_free,
1732 enum lru_list lru)
1733 {
1734 struct zone *zone = lruvec_zone(lruvec);
1735 unsigned long pgmoved = 0;
1736 struct page *page;
1737 int nr_pages;
1738
1739 while (!list_empty(list)) {
1740 page = lru_to_page(list);
1741 lruvec = mem_cgroup_page_lruvec(page, zone);
1742
1743 VM_BUG_ON_PAGE(PageLRU(page), page);
1744 SetPageLRU(page);
1745
1746 nr_pages = hpage_nr_pages(page);
1747 update_lru_size(lruvec, lru, nr_pages);
1748 list_move(&page->lru, &lruvec->lists[lru]);
1749 pgmoved += nr_pages;
1750
1751 if (put_page_testzero(page)) {
1752 __ClearPageLRU(page);
1753 __ClearPageActive(page);
1754 del_page_from_lru_list(page, lruvec, lru);
1755
1756 if (unlikely(PageCompound(page))) {
1757 spin_unlock_irq(&zone->lru_lock);
1758 mem_cgroup_uncharge(page);
1759 (*get_compound_page_dtor(page))(page);
1760 spin_lock_irq(&zone->lru_lock);
1761 } else
1762 list_add(&page->lru, pages_to_free);
1763 }
1764 }
1765
1766 if (!is_active_lru(lru))
1767 __count_vm_events(PGDEACTIVATE, pgmoved);
1768 }
1769
1770 static void shrink_active_list(unsigned long nr_to_scan,
1771 struct lruvec *lruvec,
1772 struct scan_control *sc,
1773 enum lru_list lru)
1774 {
1775 unsigned long nr_taken;
1776 unsigned long nr_scanned;
1777 unsigned long vm_flags;
1778 LIST_HEAD(l_hold); /* The pages which were snipped off */
1779 LIST_HEAD(l_active);
1780 LIST_HEAD(l_inactive);
1781 struct page *page;
1782 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1783 unsigned long nr_rotated = 0;
1784 isolate_mode_t isolate_mode = 0;
1785 int file = is_file_lru(lru);
1786 struct zone *zone = lruvec_zone(lruvec);
1787
1788 lru_add_drain();
1789
1790 if (!sc->may_unmap)
1791 isolate_mode |= ISOLATE_UNMAPPED;
1792 if (!sc->may_writepage)
1793 isolate_mode |= ISOLATE_CLEAN;
1794
1795 spin_lock_irq(&zone->lru_lock);
1796
1797 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1798 &nr_scanned, sc, isolate_mode, lru);
1799
1800 update_lru_size(lruvec, lru, -nr_taken);
1801 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1802 reclaim_stat->recent_scanned[file] += nr_taken;
1803
1804 if (global_reclaim(sc))
1805 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1806 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1807
1808 spin_unlock_irq(&zone->lru_lock);
1809
1810 while (!list_empty(&l_hold)) {
1811 cond_resched();
1812 page = lru_to_page(&l_hold);
1813 list_del(&page->lru);
1814
1815 if (unlikely(!page_evictable(page))) {
1816 putback_lru_page(page);
1817 continue;
1818 }
1819
1820 if (unlikely(buffer_heads_over_limit)) {
1821 if (page_has_private(page) && trylock_page(page)) {
1822 if (page_has_private(page))
1823 try_to_release_page(page, 0);
1824 unlock_page(page);
1825 }
1826 }
1827
1828 if (page_referenced(page, 0, sc->target_mem_cgroup,
1829 &vm_flags)) {
1830 nr_rotated += hpage_nr_pages(page);
1831 /*
1832 * Identify referenced, file-backed active pages and
1833 * give them one more trip around the active list. So
1834 * that executable code get better chances to stay in
1835 * memory under moderate memory pressure. Anon pages
1836 * are not likely to be evicted by use-once streaming
1837 * IO, plus JVM can create lots of anon VM_EXEC pages,
1838 * so we ignore them here.
1839 */
1840 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1841 list_add(&page->lru, &l_active);
1842 continue;
1843 }
1844 }
1845
1846 ClearPageActive(page); /* we are de-activating */
1847 list_add(&page->lru, &l_inactive);
1848 }
1849
1850 /*
1851 * Move pages back to the lru list.
1852 */
1853 spin_lock_irq(&zone->lru_lock);
1854 /*
1855 * Count referenced pages from currently used mappings as rotated,
1856 * even though only some of them are actually re-activated. This
1857 * helps balance scan pressure between file and anonymous pages in
1858 * get_scan_count.
1859 */
1860 reclaim_stat->recent_rotated[file] += nr_rotated;
1861
1862 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1863 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1864 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1865 spin_unlock_irq(&zone->lru_lock);
1866
1867 mem_cgroup_uncharge_list(&l_hold);
1868 free_hot_cold_page_list(&l_hold, true);
1869 }
1870
1871 /*
1872 * The inactive anon list should be small enough that the VM never has
1873 * to do too much work.
1874 *
1875 * The inactive file list should be small enough to leave most memory
1876 * to the established workingset on the scan-resistant active list,
1877 * but large enough to avoid thrashing the aggregate readahead window.
1878 *
1879 * Both inactive lists should also be large enough that each inactive
1880 * page has a chance to be referenced again before it is reclaimed.
1881 *
1882 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1883 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1884 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1885 *
1886 * total target max
1887 * memory ratio inactive
1888 * -------------------------------------
1889 * 10MB 1 5MB
1890 * 100MB 1 50MB
1891 * 1GB 3 250MB
1892 * 10GB 10 0.9GB
1893 * 100GB 31 3GB
1894 * 1TB 101 10GB
1895 * 10TB 320 32GB
1896 */
1897 static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
1898 {
1899 unsigned long inactive_ratio;
1900 unsigned long inactive;
1901 unsigned long active;
1902 unsigned long gb;
1903
1904 /*
1905 * If we don't have swap space, anonymous page deactivation
1906 * is pointless.
1907 */
1908 if (!file && !total_swap_pages)
1909 return false;
1910
1911 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1912 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1913
1914 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1915 if (gb)
1916 inactive_ratio = int_sqrt(10 * gb);
1917 else
1918 inactive_ratio = 1;
1919
1920 return inactive * inactive_ratio < active;
1921 }
1922
1923 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1924 struct lruvec *lruvec, struct scan_control *sc)
1925 {
1926 if (is_active_lru(lru)) {
1927 if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1928 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1929 return 0;
1930 }
1931
1932 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1933 }
1934
1935 enum scan_balance {
1936 SCAN_EQUAL,
1937 SCAN_FRACT,
1938 SCAN_ANON,
1939 SCAN_FILE,
1940 };
1941
1942 /*
1943 * Determine how aggressively the anon and file LRU lists should be
1944 * scanned. The relative value of each set of LRU lists is determined
1945 * by looking at the fraction of the pages scanned we did rotate back
1946 * onto the active list instead of evict.
1947 *
1948 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1949 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1950 */
1951 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1952 struct scan_control *sc, unsigned long *nr,
1953 unsigned long *lru_pages)
1954 {
1955 int swappiness = mem_cgroup_swappiness(memcg);
1956 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1957 u64 fraction[2];
1958 u64 denominator = 0; /* gcc */
1959 struct zone *zone = lruvec_zone(lruvec);
1960 unsigned long anon_prio, file_prio;
1961 enum scan_balance scan_balance;
1962 unsigned long anon, file;
1963 bool force_scan = false;
1964 unsigned long ap, fp;
1965 enum lru_list lru;
1966 bool some_scanned;
1967 int pass;
1968
1969 /*
1970 * If the zone or memcg is small, nr[l] can be 0. This
1971 * results in no scanning on this priority and a potential
1972 * priority drop. Global direct reclaim can go to the next
1973 * zone and tends to have no problems. Global kswapd is for
1974 * zone balancing and it needs to scan a minimum amount. When
1975 * reclaiming for a memcg, a priority drop can cause high
1976 * latencies, so it's better to scan a minimum amount there as
1977 * well.
1978 */
1979 if (current_is_kswapd()) {
1980 if (!zone_reclaimable(zone))
1981 force_scan = true;
1982 if (!mem_cgroup_online(memcg))
1983 force_scan = true;
1984 }
1985 if (!global_reclaim(sc))
1986 force_scan = true;
1987
1988 /* If we have no swap space, do not bother scanning anon pages. */
1989 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
1990 scan_balance = SCAN_FILE;
1991 goto out;
1992 }
1993
1994 /*
1995 * Global reclaim will swap to prevent OOM even with no
1996 * swappiness, but memcg users want to use this knob to
1997 * disable swapping for individual groups completely when
1998 * using the memory controller's swap limit feature would be
1999 * too expensive.
2000 */
2001 if (!global_reclaim(sc) && !swappiness) {
2002 scan_balance = SCAN_FILE;
2003 goto out;
2004 }
2005
2006 /*
2007 * Do not apply any pressure balancing cleverness when the
2008 * system is close to OOM, scan both anon and file equally
2009 * (unless the swappiness setting disagrees with swapping).
2010 */
2011 if (!sc->priority && swappiness) {
2012 scan_balance = SCAN_EQUAL;
2013 goto out;
2014 }
2015
2016 /*
2017 * Prevent the reclaimer from falling into the cache trap: as
2018 * cache pages start out inactive, every cache fault will tip
2019 * the scan balance towards the file LRU. And as the file LRU
2020 * shrinks, so does the window for rotation from references.
2021 * This means we have a runaway feedback loop where a tiny
2022 * thrashing file LRU becomes infinitely more attractive than
2023 * anon pages. Try to detect this based on file LRU size.
2024 */
2025 if (global_reclaim(sc)) {
2026 unsigned long zonefile;
2027 unsigned long zonefree;
2028
2029 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2030 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2031 zone_page_state(zone, NR_INACTIVE_FILE);
2032
2033 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2034 scan_balance = SCAN_ANON;
2035 goto out;
2036 }
2037 }
2038
2039 /*
2040 * If there is enough inactive page cache, i.e. if the size of the
2041 * inactive list is greater than that of the active list *and* the
2042 * inactive list actually has some pages to scan on this priority, we
2043 * do not reclaim anything from the anonymous working set right now.
2044 * Without the second condition we could end up never scanning an
2045 * lruvec even if it has plenty of old anonymous pages unless the
2046 * system is under heavy pressure.
2047 */
2048 if (!inactive_list_is_low(lruvec, true) &&
2049 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2050 scan_balance = SCAN_FILE;
2051 goto out;
2052 }
2053
2054 scan_balance = SCAN_FRACT;
2055
2056 /*
2057 * With swappiness at 100, anonymous and file have the same priority.
2058 * This scanning priority is essentially the inverse of IO cost.
2059 */
2060 anon_prio = swappiness;
2061 file_prio = 200 - anon_prio;
2062
2063 /*
2064 * OK, so we have swap space and a fair amount of page cache
2065 * pages. We use the recently rotated / recently scanned
2066 * ratios to determine how valuable each cache is.
2067 *
2068 * Because workloads change over time (and to avoid overflow)
2069 * we keep these statistics as a floating average, which ends
2070 * up weighing recent references more than old ones.
2071 *
2072 * anon in [0], file in [1]
2073 */
2074
2075 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2076 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2077 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2078 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2079
2080 spin_lock_irq(&zone->lru_lock);
2081 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2082 reclaim_stat->recent_scanned[0] /= 2;
2083 reclaim_stat->recent_rotated[0] /= 2;
2084 }
2085
2086 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2087 reclaim_stat->recent_scanned[1] /= 2;
2088 reclaim_stat->recent_rotated[1] /= 2;
2089 }
2090
2091 /*
2092 * The amount of pressure on anon vs file pages is inversely
2093 * proportional to the fraction of recently scanned pages on
2094 * each list that were recently referenced and in active use.
2095 */
2096 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2097 ap /= reclaim_stat->recent_rotated[0] + 1;
2098
2099 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2100 fp /= reclaim_stat->recent_rotated[1] + 1;
2101 spin_unlock_irq(&zone->lru_lock);
2102
2103 fraction[0] = ap;
2104 fraction[1] = fp;
2105 denominator = ap + fp + 1;
2106 out:
2107 some_scanned = false;
2108 /* Only use force_scan on second pass. */
2109 for (pass = 0; !some_scanned && pass < 2; pass++) {
2110 *lru_pages = 0;
2111 for_each_evictable_lru(lru) {
2112 int file = is_file_lru(lru);
2113 unsigned long size;
2114 unsigned long scan;
2115
2116 size = lruvec_lru_size(lruvec, lru);
2117 scan = size >> sc->priority;
2118
2119 if (!scan && pass && force_scan)
2120 scan = min(size, SWAP_CLUSTER_MAX);
2121
2122 switch (scan_balance) {
2123 case SCAN_EQUAL:
2124 /* Scan lists relative to size */
2125 break;
2126 case SCAN_FRACT:
2127 /*
2128 * Scan types proportional to swappiness and
2129 * their relative recent reclaim efficiency.
2130 */
2131 scan = div64_u64(scan * fraction[file],
2132 denominator);
2133 break;
2134 case SCAN_FILE:
2135 case SCAN_ANON:
2136 /* Scan one type exclusively */
2137 if ((scan_balance == SCAN_FILE) != file) {
2138 size = 0;
2139 scan = 0;
2140 }
2141 break;
2142 default:
2143 /* Look ma, no brain */
2144 BUG();
2145 }
2146
2147 *lru_pages += size;
2148 nr[lru] = scan;
2149
2150 /*
2151 * Skip the second pass and don't force_scan,
2152 * if we found something to scan.
2153 */
2154 some_scanned |= !!scan;
2155 }
2156 }
2157 }
2158
2159 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2160 static void init_tlb_ubc(void)
2161 {
2162 /*
2163 * This deliberately does not clear the cpumask as it's expensive
2164 * and unnecessary. If there happens to be data in there then the
2165 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2166 * then will be cleared.
2167 */
2168 current->tlb_ubc.flush_required = false;
2169 }
2170 #else
2171 static inline void init_tlb_ubc(void)
2172 {
2173 }
2174 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2175
2176 /*
2177 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2178 */
2179 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2180 struct scan_control *sc, unsigned long *lru_pages)
2181 {
2182 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2183 unsigned long nr[NR_LRU_LISTS];
2184 unsigned long targets[NR_LRU_LISTS];
2185 unsigned long nr_to_scan;
2186 enum lru_list lru;
2187 unsigned long nr_reclaimed = 0;
2188 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2189 struct blk_plug plug;
2190 bool scan_adjusted;
2191
2192 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2193
2194 /* Record the original scan target for proportional adjustments later */
2195 memcpy(targets, nr, sizeof(nr));
2196
2197 /*
2198 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2199 * event that can occur when there is little memory pressure e.g.
2200 * multiple streaming readers/writers. Hence, we do not abort scanning
2201 * when the requested number of pages are reclaimed when scanning at
2202 * DEF_PRIORITY on the assumption that the fact we are direct
2203 * reclaiming implies that kswapd is not keeping up and it is best to
2204 * do a batch of work at once. For memcg reclaim one check is made to
2205 * abort proportional reclaim if either the file or anon lru has already
2206 * dropped to zero at the first pass.
2207 */
2208 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2209 sc->priority == DEF_PRIORITY);
2210
2211 init_tlb_ubc();
2212
2213 blk_start_plug(&plug);
2214 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2215 nr[LRU_INACTIVE_FILE]) {
2216 unsigned long nr_anon, nr_file, percentage;
2217 unsigned long nr_scanned;
2218
2219 for_each_evictable_lru(lru) {
2220 if (nr[lru]) {
2221 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2222 nr[lru] -= nr_to_scan;
2223
2224 nr_reclaimed += shrink_list(lru, nr_to_scan,
2225 lruvec, sc);
2226 }
2227 }
2228
2229 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2230 continue;
2231
2232 /*
2233 * For kswapd and memcg, reclaim at least the number of pages
2234 * requested. Ensure that the anon and file LRUs are scanned
2235 * proportionally what was requested by get_scan_count(). We
2236 * stop reclaiming one LRU and reduce the amount scanning
2237 * proportional to the original scan target.
2238 */
2239 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2240 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2241
2242 /*
2243 * It's just vindictive to attack the larger once the smaller
2244 * has gone to zero. And given the way we stop scanning the
2245 * smaller below, this makes sure that we only make one nudge
2246 * towards proportionality once we've got nr_to_reclaim.
2247 */
2248 if (!nr_file || !nr_anon)
2249 break;
2250
2251 if (nr_file > nr_anon) {
2252 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2253 targets[LRU_ACTIVE_ANON] + 1;
2254 lru = LRU_BASE;
2255 percentage = nr_anon * 100 / scan_target;
2256 } else {
2257 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2258 targets[LRU_ACTIVE_FILE] + 1;
2259 lru = LRU_FILE;
2260 percentage = nr_file * 100 / scan_target;
2261 }
2262
2263 /* Stop scanning the smaller of the LRU */
2264 nr[lru] = 0;
2265 nr[lru + LRU_ACTIVE] = 0;
2266
2267 /*
2268 * Recalculate the other LRU scan count based on its original
2269 * scan target and the percentage scanning already complete
2270 */
2271 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2272 nr_scanned = targets[lru] - nr[lru];
2273 nr[lru] = targets[lru] * (100 - percentage) / 100;
2274 nr[lru] -= min(nr[lru], nr_scanned);
2275
2276 lru += LRU_ACTIVE;
2277 nr_scanned = targets[lru] - nr[lru];
2278 nr[lru] = targets[lru] * (100 - percentage) / 100;
2279 nr[lru] -= min(nr[lru], nr_scanned);
2280
2281 scan_adjusted = true;
2282 }
2283 blk_finish_plug(&plug);
2284 sc->nr_reclaimed += nr_reclaimed;
2285
2286 /*
2287 * Even if we did not try to evict anon pages at all, we want to
2288 * rebalance the anon lru active/inactive ratio.
2289 */
2290 if (inactive_list_is_low(lruvec, false))
2291 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2292 sc, LRU_ACTIVE_ANON);
2293
2294 throttle_vm_writeout(sc->gfp_mask);
2295 }
2296
2297 /* Use reclaim/compaction for costly allocs or under memory pressure */
2298 static bool in_reclaim_compaction(struct scan_control *sc)
2299 {
2300 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2301 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2302 sc->priority < DEF_PRIORITY - 2))
2303 return true;
2304
2305 return false;
2306 }
2307
2308 /*
2309 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2310 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2311 * true if more pages should be reclaimed such that when the page allocator
2312 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2313 * It will give up earlier than that if there is difficulty reclaiming pages.
2314 */
2315 static inline bool should_continue_reclaim(struct zone *zone,
2316 unsigned long nr_reclaimed,
2317 unsigned long nr_scanned,
2318 struct scan_control *sc)
2319 {
2320 unsigned long pages_for_compaction;
2321 unsigned long inactive_lru_pages;
2322
2323 /* If not in reclaim/compaction mode, stop */
2324 if (!in_reclaim_compaction(sc))
2325 return false;
2326
2327 /* Consider stopping depending on scan and reclaim activity */
2328 if (sc->gfp_mask & __GFP_REPEAT) {
2329 /*
2330 * For __GFP_REPEAT allocations, stop reclaiming if the
2331 * full LRU list has been scanned and we are still failing
2332 * to reclaim pages. This full LRU scan is potentially
2333 * expensive but a __GFP_REPEAT caller really wants to succeed
2334 */
2335 if (!nr_reclaimed && !nr_scanned)
2336 return false;
2337 } else {
2338 /*
2339 * For non-__GFP_REPEAT allocations which can presumably
2340 * fail without consequence, stop if we failed to reclaim
2341 * any pages from the last SWAP_CLUSTER_MAX number of
2342 * pages that were scanned. This will return to the
2343 * caller faster at the risk reclaim/compaction and
2344 * the resulting allocation attempt fails
2345 */
2346 if (!nr_reclaimed)
2347 return false;
2348 }
2349
2350 /*
2351 * If we have not reclaimed enough pages for compaction and the
2352 * inactive lists are large enough, continue reclaiming
2353 */
2354 pages_for_compaction = (2UL << sc->order);
2355 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2356 if (get_nr_swap_pages() > 0)
2357 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2358 if (sc->nr_reclaimed < pages_for_compaction &&
2359 inactive_lru_pages > pages_for_compaction)
2360 return true;
2361
2362 /* If compaction would go ahead or the allocation would succeed, stop */
2363 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2364 case COMPACT_PARTIAL:
2365 case COMPACT_CONTINUE:
2366 return false;
2367 default:
2368 return true;
2369 }
2370 }
2371
2372 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2373 bool is_classzone)
2374 {
2375 struct reclaim_state *reclaim_state = current->reclaim_state;
2376 unsigned long nr_reclaimed, nr_scanned;
2377 bool reclaimable = false;
2378
2379 do {
2380 struct mem_cgroup *root = sc->target_mem_cgroup;
2381 struct mem_cgroup_reclaim_cookie reclaim = {
2382 .zone = zone,
2383 .priority = sc->priority,
2384 };
2385 unsigned long zone_lru_pages = 0;
2386 struct mem_cgroup *memcg;
2387
2388 nr_reclaimed = sc->nr_reclaimed;
2389 nr_scanned = sc->nr_scanned;
2390
2391 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2392 do {
2393 unsigned long lru_pages;
2394 unsigned long reclaimed;
2395 unsigned long scanned;
2396
2397 if (mem_cgroup_low(root, memcg)) {
2398 if (!sc->may_thrash)
2399 continue;
2400 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2401 }
2402
2403 reclaimed = sc->nr_reclaimed;
2404 scanned = sc->nr_scanned;
2405
2406 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2407 zone_lru_pages += lru_pages;
2408
2409 if (memcg && is_classzone)
2410 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2411 memcg, sc->nr_scanned - scanned,
2412 lru_pages);
2413
2414 /* Record the group's reclaim efficiency */
2415 vmpressure(sc->gfp_mask, memcg, false,
2416 sc->nr_scanned - scanned,
2417 sc->nr_reclaimed - reclaimed);
2418
2419 /*
2420 * Direct reclaim and kswapd have to scan all memory
2421 * cgroups to fulfill the overall scan target for the
2422 * zone.
2423 *
2424 * Limit reclaim, on the other hand, only cares about
2425 * nr_to_reclaim pages to be reclaimed and it will
2426 * retry with decreasing priority if one round over the
2427 * whole hierarchy is not sufficient.
2428 */
2429 if (!global_reclaim(sc) &&
2430 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2431 mem_cgroup_iter_break(root, memcg);
2432 break;
2433 }
2434 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2435
2436 /*
2437 * Shrink the slab caches in the same proportion that
2438 * the eligible LRU pages were scanned.
2439 */
2440 if (global_reclaim(sc) && is_classzone)
2441 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2442 sc->nr_scanned - nr_scanned,
2443 zone_lru_pages);
2444
2445 if (reclaim_state) {
2446 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2447 reclaim_state->reclaimed_slab = 0;
2448 }
2449
2450 /* Record the subtree's reclaim efficiency */
2451 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2452 sc->nr_scanned - nr_scanned,
2453 sc->nr_reclaimed - nr_reclaimed);
2454
2455 if (sc->nr_reclaimed - nr_reclaimed)
2456 reclaimable = true;
2457
2458 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2459 sc->nr_scanned - nr_scanned, sc));
2460
2461 return reclaimable;
2462 }
2463
2464 /*
2465 * Returns true if compaction should go ahead for a high-order request, or
2466 * the high-order allocation would succeed without compaction.
2467 */
2468 static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
2469 {
2470 unsigned long balance_gap, watermark;
2471 bool watermark_ok;
2472
2473 /*
2474 * Compaction takes time to run and there are potentially other
2475 * callers using the pages just freed. Continue reclaiming until
2476 * there is a buffer of free pages available to give compaction
2477 * a reasonable chance of completing and allocating the page
2478 */
2479 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2480 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2481 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2482 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
2483
2484 /*
2485 * If compaction is deferred, reclaim up to a point where
2486 * compaction will have a chance of success when re-enabled
2487 */
2488 if (compaction_deferred(zone, order))
2489 return watermark_ok;
2490
2491 /*
2492 * If compaction is not ready to start and allocation is not likely
2493 * to succeed without it, then keep reclaiming.
2494 */
2495 if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
2496 return false;
2497
2498 return watermark_ok;
2499 }
2500
2501 /*
2502 * This is the direct reclaim path, for page-allocating processes. We only
2503 * try to reclaim pages from zones which will satisfy the caller's allocation
2504 * request.
2505 *
2506 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2507 * Because:
2508 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2509 * allocation or
2510 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2511 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2512 * zone defense algorithm.
2513 *
2514 * If a zone is deemed to be full of pinned pages then just give it a light
2515 * scan then give up on it.
2516 */
2517 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2518 {
2519 struct zoneref *z;
2520 struct zone *zone;
2521 unsigned long nr_soft_reclaimed;
2522 unsigned long nr_soft_scanned;
2523 gfp_t orig_mask;
2524 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2525
2526 /*
2527 * If the number of buffer_heads in the machine exceeds the maximum
2528 * allowed level, force direct reclaim to scan the highmem zone as
2529 * highmem pages could be pinning lowmem pages storing buffer_heads
2530 */
2531 orig_mask = sc->gfp_mask;
2532 if (buffer_heads_over_limit)
2533 sc->gfp_mask |= __GFP_HIGHMEM;
2534
2535 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2536 gfp_zone(sc->gfp_mask), sc->nodemask) {
2537 enum zone_type classzone_idx;
2538
2539 if (!populated_zone(zone))
2540 continue;
2541
2542 classzone_idx = requested_highidx;
2543 while (!populated_zone(zone->zone_pgdat->node_zones +
2544 classzone_idx))
2545 classzone_idx--;
2546
2547 /*
2548 * Take care memory controller reclaiming has small influence
2549 * to global LRU.
2550 */
2551 if (global_reclaim(sc)) {
2552 if (!cpuset_zone_allowed(zone,
2553 GFP_KERNEL | __GFP_HARDWALL))
2554 continue;
2555
2556 if (sc->priority != DEF_PRIORITY &&
2557 !zone_reclaimable(zone))
2558 continue; /* Let kswapd poll it */
2559
2560 /*
2561 * If we already have plenty of memory free for
2562 * compaction in this zone, don't free any more.
2563 * Even though compaction is invoked for any
2564 * non-zero order, only frequent costly order
2565 * reclamation is disruptive enough to become a
2566 * noticeable problem, like transparent huge
2567 * page allocations.
2568 */
2569 if (IS_ENABLED(CONFIG_COMPACTION) &&
2570 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2571 zonelist_zone_idx(z) <= requested_highidx &&
2572 compaction_ready(zone, sc->order, requested_highidx)) {
2573 sc->compaction_ready = true;
2574 continue;
2575 }
2576
2577 /*
2578 * This steals pages from memory cgroups over softlimit
2579 * and returns the number of reclaimed pages and
2580 * scanned pages. This works for global memory pressure
2581 * and balancing, not for a memcg's limit.
2582 */
2583 nr_soft_scanned = 0;
2584 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2585 sc->order, sc->gfp_mask,
2586 &nr_soft_scanned);
2587 sc->nr_reclaimed += nr_soft_reclaimed;
2588 sc->nr_scanned += nr_soft_scanned;
2589 /* need some check for avoid more shrink_zone() */
2590 }
2591
2592 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
2593 }
2594
2595 /*
2596 * Restore to original mask to avoid the impact on the caller if we
2597 * promoted it to __GFP_HIGHMEM.
2598 */
2599 sc->gfp_mask = orig_mask;
2600 }
2601
2602 /*
2603 * This is the main entry point to direct page reclaim.
2604 *
2605 * If a full scan of the inactive list fails to free enough memory then we
2606 * are "out of memory" and something needs to be killed.
2607 *
2608 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2609 * high - the zone may be full of dirty or under-writeback pages, which this
2610 * caller can't do much about. We kick the writeback threads and take explicit
2611 * naps in the hope that some of these pages can be written. But if the
2612 * allocating task holds filesystem locks which prevent writeout this might not
2613 * work, and the allocation attempt will fail.
2614 *
2615 * returns: 0, if no pages reclaimed
2616 * else, the number of pages reclaimed
2617 */
2618 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2619 struct scan_control *sc)
2620 {
2621 int initial_priority = sc->priority;
2622 unsigned long total_scanned = 0;
2623 unsigned long writeback_threshold;
2624 retry:
2625 delayacct_freepages_start();
2626
2627 if (global_reclaim(sc))
2628 count_vm_event(ALLOCSTALL);
2629
2630 do {
2631 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2632 sc->priority);
2633 sc->nr_scanned = 0;
2634 shrink_zones(zonelist, sc);
2635
2636 total_scanned += sc->nr_scanned;
2637 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2638 break;
2639
2640 if (sc->compaction_ready)
2641 break;
2642
2643 /*
2644 * If we're getting trouble reclaiming, start doing
2645 * writepage even in laptop mode.
2646 */
2647 if (sc->priority < DEF_PRIORITY - 2)
2648 sc->may_writepage = 1;
2649
2650 /*
2651 * Try to write back as many pages as we just scanned. This
2652 * tends to cause slow streaming writers to write data to the
2653 * disk smoothly, at the dirtying rate, which is nice. But
2654 * that's undesirable in laptop mode, where we *want* lumpy
2655 * writeout. So in laptop mode, write out the whole world.
2656 */
2657 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2658 if (total_scanned > writeback_threshold) {
2659 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2660 WB_REASON_TRY_TO_FREE_PAGES);
2661 sc->may_writepage = 1;
2662 }
2663 } while (--sc->priority >= 0);
2664
2665 delayacct_freepages_end();
2666
2667 if (sc->nr_reclaimed)
2668 return sc->nr_reclaimed;
2669
2670 /* Aborted reclaim to try compaction? don't OOM, then */
2671 if (sc->compaction_ready)
2672 return 1;
2673
2674 /* Untapped cgroup reserves? Don't OOM, retry. */
2675 if (!sc->may_thrash) {
2676 sc->priority = initial_priority;
2677 sc->may_thrash = 1;
2678 goto retry;
2679 }
2680
2681 return 0;
2682 }
2683
2684 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2685 {
2686 struct zone *zone;
2687 unsigned long pfmemalloc_reserve = 0;
2688 unsigned long free_pages = 0;
2689 int i;
2690 bool wmark_ok;
2691
2692 for (i = 0; i <= ZONE_NORMAL; i++) {
2693 zone = &pgdat->node_zones[i];
2694 if (!populated_zone(zone) ||
2695 zone_reclaimable_pages(zone) == 0)
2696 continue;
2697
2698 pfmemalloc_reserve += min_wmark_pages(zone);
2699 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2700 }
2701
2702 /* If there are no reserves (unexpected config) then do not throttle */
2703 if (!pfmemalloc_reserve)
2704 return true;
2705
2706 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2707
2708 /* kswapd must be awake if processes are being throttled */
2709 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2710 pgdat->classzone_idx = min(pgdat->classzone_idx,
2711 (enum zone_type)ZONE_NORMAL);
2712 wake_up_interruptible(&pgdat->kswapd_wait);
2713 }
2714
2715 return wmark_ok;
2716 }
2717
2718 /*
2719 * Throttle direct reclaimers if backing storage is backed by the network
2720 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2721 * depleted. kswapd will continue to make progress and wake the processes
2722 * when the low watermark is reached.
2723 *
2724 * Returns true if a fatal signal was delivered during throttling. If this
2725 * happens, the page allocator should not consider triggering the OOM killer.
2726 */
2727 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2728 nodemask_t *nodemask)
2729 {
2730 struct zoneref *z;
2731 struct zone *zone;
2732 pg_data_t *pgdat = NULL;
2733
2734 /*
2735 * Kernel threads should not be throttled as they may be indirectly
2736 * responsible for cleaning pages necessary for reclaim to make forward
2737 * progress. kjournald for example may enter direct reclaim while
2738 * committing a transaction where throttling it could forcing other
2739 * processes to block on log_wait_commit().
2740 */
2741 if (current->flags & PF_KTHREAD)
2742 goto out;
2743
2744 /*
2745 * If a fatal signal is pending, this process should not throttle.
2746 * It should return quickly so it can exit and free its memory
2747 */
2748 if (fatal_signal_pending(current))
2749 goto out;
2750
2751 /*
2752 * Check if the pfmemalloc reserves are ok by finding the first node
2753 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2754 * GFP_KERNEL will be required for allocating network buffers when
2755 * swapping over the network so ZONE_HIGHMEM is unusable.
2756 *
2757 * Throttling is based on the first usable node and throttled processes
2758 * wait on a queue until kswapd makes progress and wakes them. There
2759 * is an affinity then between processes waking up and where reclaim
2760 * progress has been made assuming the process wakes on the same node.
2761 * More importantly, processes running on remote nodes will not compete
2762 * for remote pfmemalloc reserves and processes on different nodes
2763 * should make reasonable progress.
2764 */
2765 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2766 gfp_zone(gfp_mask), nodemask) {
2767 if (zone_idx(zone) > ZONE_NORMAL)
2768 continue;
2769
2770 /* Throttle based on the first usable node */
2771 pgdat = zone->zone_pgdat;
2772 if (pfmemalloc_watermark_ok(pgdat))
2773 goto out;
2774 break;
2775 }
2776
2777 /* If no zone was usable by the allocation flags then do not throttle */
2778 if (!pgdat)
2779 goto out;
2780
2781 /* Account for the throttling */
2782 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2783
2784 /*
2785 * If the caller cannot enter the filesystem, it's possible that it
2786 * is due to the caller holding an FS lock or performing a journal
2787 * transaction in the case of a filesystem like ext[3|4]. In this case,
2788 * it is not safe to block on pfmemalloc_wait as kswapd could be
2789 * blocked waiting on the same lock. Instead, throttle for up to a
2790 * second before continuing.
2791 */
2792 if (!(gfp_mask & __GFP_FS)) {
2793 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2794 pfmemalloc_watermark_ok(pgdat), HZ);
2795
2796 goto check_pending;
2797 }
2798
2799 /* Throttle until kswapd wakes the process */
2800 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2801 pfmemalloc_watermark_ok(pgdat));
2802
2803 check_pending:
2804 if (fatal_signal_pending(current))
2805 return true;
2806
2807 out:
2808 return false;
2809 }
2810
2811 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2812 gfp_t gfp_mask, nodemask_t *nodemask)
2813 {
2814 unsigned long nr_reclaimed;
2815 struct scan_control sc = {
2816 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2817 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2818 .order = order,
2819 .nodemask = nodemask,
2820 .priority = DEF_PRIORITY,
2821 .may_writepage = !laptop_mode,
2822 .may_unmap = 1,
2823 .may_swap = 1,
2824 };
2825
2826 /*
2827 * Do not enter reclaim if fatal signal was delivered while throttled.
2828 * 1 is returned so that the page allocator does not OOM kill at this
2829 * point.
2830 */
2831 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2832 return 1;
2833
2834 trace_mm_vmscan_direct_reclaim_begin(order,
2835 sc.may_writepage,
2836 gfp_mask);
2837
2838 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2839
2840 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2841
2842 return nr_reclaimed;
2843 }
2844
2845 #ifdef CONFIG_MEMCG
2846
2847 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2848 gfp_t gfp_mask, bool noswap,
2849 struct zone *zone,
2850 unsigned long *nr_scanned)
2851 {
2852 struct scan_control sc = {
2853 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2854 .target_mem_cgroup = memcg,
2855 .may_writepage = !laptop_mode,
2856 .may_unmap = 1,
2857 .may_swap = !noswap,
2858 };
2859 unsigned long lru_pages;
2860
2861 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2862 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2863
2864 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2865 sc.may_writepage,
2866 sc.gfp_mask);
2867
2868 /*
2869 * NOTE: Although we can get the priority field, using it
2870 * here is not a good idea, since it limits the pages we can scan.
2871 * if we don't reclaim here, the shrink_zone from balance_pgdat
2872 * will pick up pages from other mem cgroup's as well. We hack
2873 * the priority and make it zero.
2874 */
2875 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2876
2877 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2878
2879 *nr_scanned = sc.nr_scanned;
2880 return sc.nr_reclaimed;
2881 }
2882
2883 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2884 unsigned long nr_pages,
2885 gfp_t gfp_mask,
2886 bool may_swap)
2887 {
2888 struct zonelist *zonelist;
2889 unsigned long nr_reclaimed;
2890 int nid;
2891 struct scan_control sc = {
2892 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2893 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2894 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2895 .target_mem_cgroup = memcg,
2896 .priority = DEF_PRIORITY,
2897 .may_writepage = !laptop_mode,
2898 .may_unmap = 1,
2899 .may_swap = may_swap,
2900 };
2901
2902 /*
2903 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2904 * take care of from where we get pages. So the node where we start the
2905 * scan does not need to be the current node.
2906 */
2907 nid = mem_cgroup_select_victim_node(memcg);
2908
2909 zonelist = NODE_DATA(nid)->node_zonelists;
2910
2911 trace_mm_vmscan_memcg_reclaim_begin(0,
2912 sc.may_writepage,
2913 sc.gfp_mask);
2914
2915 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2916
2917 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2918
2919 return nr_reclaimed;
2920 }
2921 #endif
2922
2923 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2924 {
2925 struct mem_cgroup *memcg;
2926
2927 if (!total_swap_pages)
2928 return;
2929
2930 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2931 do {
2932 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2933
2934 if (inactive_list_is_low(lruvec, false))
2935 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2936 sc, LRU_ACTIVE_ANON);
2937
2938 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2939 } while (memcg);
2940 }
2941
2942 static bool zone_balanced(struct zone *zone, int order, bool highorder,
2943 unsigned long balance_gap, int classzone_idx)
2944 {
2945 unsigned long mark = high_wmark_pages(zone) + balance_gap;
2946
2947 /*
2948 * When checking from pgdat_balanced(), kswapd should stop and sleep
2949 * when it reaches the high order-0 watermark and let kcompactd take
2950 * over. Other callers such as wakeup_kswapd() want to determine the
2951 * true high-order watermark.
2952 */
2953 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2954 mark += (1UL << order);
2955 order = 0;
2956 }
2957
2958 return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
2959 }
2960
2961 /*
2962 * pgdat_balanced() is used when checking if a node is balanced.
2963 *
2964 * For order-0, all zones must be balanced!
2965 *
2966 * For high-order allocations only zones that meet watermarks and are in a
2967 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2968 * total of balanced pages must be at least 25% of the zones allowed by
2969 * classzone_idx for the node to be considered balanced. Forcing all zones to
2970 * be balanced for high orders can cause excessive reclaim when there are
2971 * imbalanced zones.
2972 * The choice of 25% is due to
2973 * o a 16M DMA zone that is balanced will not balance a zone on any
2974 * reasonable sized machine
2975 * o On all other machines, the top zone must be at least a reasonable
2976 * percentage of the middle zones. For example, on 32-bit x86, highmem
2977 * would need to be at least 256M for it to be balance a whole node.
2978 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2979 * to balance a node on its own. These seemed like reasonable ratios.
2980 */
2981 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2982 {
2983 unsigned long managed_pages = 0;
2984 unsigned long balanced_pages = 0;
2985 int i;
2986
2987 /* Check the watermark levels */
2988 for (i = 0; i <= classzone_idx; i++) {
2989 struct zone *zone = pgdat->node_zones + i;
2990
2991 if (!populated_zone(zone))
2992 continue;
2993
2994 managed_pages += zone->managed_pages;
2995
2996 /*
2997 * A special case here:
2998 *
2999 * balance_pgdat() skips over all_unreclaimable after
3000 * DEF_PRIORITY. Effectively, it considers them balanced so
3001 * they must be considered balanced here as well!
3002 */
3003 if (!zone_reclaimable(zone)) {
3004 balanced_pages += zone->managed_pages;
3005 continue;
3006 }
3007
3008 if (zone_balanced(zone, order, false, 0, i))
3009 balanced_pages += zone->managed_pages;
3010 else if (!order)
3011 return false;
3012 }
3013
3014 if (order)
3015 return balanced_pages >= (managed_pages >> 2);
3016 else
3017 return true;
3018 }
3019
3020 /*
3021 * Prepare kswapd for sleeping. This verifies that there are no processes
3022 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3023 *
3024 * Returns true if kswapd is ready to sleep
3025 */
3026 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3027 int classzone_idx)
3028 {
3029 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3030 if (remaining)
3031 return false;
3032
3033 /*
3034 * The throttled processes are normally woken up in balance_pgdat() as
3035 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3036 * race between when kswapd checks the watermarks and a process gets
3037 * throttled. There is also a potential race if processes get
3038 * throttled, kswapd wakes, a large process exits thereby balancing the
3039 * zones, which causes kswapd to exit balance_pgdat() before reaching
3040 * the wake up checks. If kswapd is going to sleep, no process should
3041 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3042 * the wake up is premature, processes will wake kswapd and get
3043 * throttled again. The difference from wake ups in balance_pgdat() is
3044 * that here we are under prepare_to_wait().
3045 */
3046 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3047 wake_up_all(&pgdat->pfmemalloc_wait);
3048
3049 return pgdat_balanced(pgdat, order, classzone_idx);
3050 }
3051
3052 /*
3053 * kswapd shrinks the zone by the number of pages required to reach
3054 * the high watermark.
3055 *
3056 * Returns true if kswapd scanned at least the requested number of pages to
3057 * reclaim or if the lack of progress was due to pages under writeback.
3058 * This is used to determine if the scanning priority needs to be raised.
3059 */
3060 static bool kswapd_shrink_zone(struct zone *zone,
3061 int classzone_idx,
3062 struct scan_control *sc)
3063 {
3064 unsigned long balance_gap;
3065 bool lowmem_pressure;
3066
3067 /* Reclaim above the high watermark. */
3068 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3069
3070 /*
3071 * We put equal pressure on every zone, unless one zone has way too
3072 * many pages free already. The "too many pages" is defined as the
3073 * high wmark plus a "gap" where the gap is either the low
3074 * watermark or 1% of the zone, whichever is smaller.
3075 */
3076 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3077 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3078
3079 /*
3080 * If there is no low memory pressure or the zone is balanced then no
3081 * reclaim is necessary
3082 */
3083 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3084 if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
3085 balance_gap, classzone_idx))
3086 return true;
3087
3088 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3089
3090 clear_bit(ZONE_WRITEBACK, &zone->flags);
3091
3092 /*
3093 * If a zone reaches its high watermark, consider it to be no longer
3094 * congested. It's possible there are dirty pages backed by congested
3095 * BDIs but as pressure is relieved, speculatively avoid congestion
3096 * waits.
3097 */
3098 if (zone_reclaimable(zone) &&
3099 zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
3100 clear_bit(ZONE_CONGESTED, &zone->flags);
3101 clear_bit(ZONE_DIRTY, &zone->flags);
3102 }
3103
3104 return sc->nr_scanned >= sc->nr_to_reclaim;
3105 }
3106
3107 /*
3108 * For kswapd, balance_pgdat() will work across all this node's zones until
3109 * they are all at high_wmark_pages(zone).
3110 *
3111 * Returns the highest zone idx kswapd was reclaiming at
3112 *
3113 * There is special handling here for zones which are full of pinned pages.
3114 * This can happen if the pages are all mlocked, or if they are all used by
3115 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3116 * What we do is to detect the case where all pages in the zone have been
3117 * scanned twice and there has been zero successful reclaim. Mark the zone as
3118 * dead and from now on, only perform a short scan. Basically we're polling
3119 * the zone for when the problem goes away.
3120 *
3121 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3122 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3123 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3124 * lower zones regardless of the number of free pages in the lower zones. This
3125 * interoperates with the page allocator fallback scheme to ensure that aging
3126 * of pages is balanced across the zones.
3127 */
3128 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3129 {
3130 int i;
3131 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3132 unsigned long nr_soft_reclaimed;
3133 unsigned long nr_soft_scanned;
3134 struct scan_control sc = {
3135 .gfp_mask = GFP_KERNEL,
3136 .order = order,
3137 .priority = DEF_PRIORITY,
3138 .may_writepage = !laptop_mode,
3139 .may_unmap = 1,
3140 .may_swap = 1,
3141 };
3142 count_vm_event(PAGEOUTRUN);
3143
3144 do {
3145 bool raise_priority = true;
3146
3147 sc.nr_reclaimed = 0;
3148
3149 /*
3150 * Scan in the highmem->dma direction for the highest
3151 * zone which needs scanning
3152 */
3153 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3154 struct zone *zone = pgdat->node_zones + i;
3155
3156 if (!populated_zone(zone))
3157 continue;
3158
3159 if (sc.priority != DEF_PRIORITY &&
3160 !zone_reclaimable(zone))
3161 continue;
3162
3163 /*
3164 * Do some background aging of the anon list, to give
3165 * pages a chance to be referenced before reclaiming.
3166 */
3167 age_active_anon(zone, &sc);
3168
3169 /*
3170 * If the number of buffer_heads in the machine
3171 * exceeds the maximum allowed level and this node
3172 * has a highmem zone, force kswapd to reclaim from
3173 * it to relieve lowmem pressure.
3174 */
3175 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3176 end_zone = i;
3177 break;
3178 }
3179
3180 if (!zone_balanced(zone, order, false, 0, 0)) {
3181 end_zone = i;
3182 break;
3183 } else {
3184 /*
3185 * If balanced, clear the dirty and congested
3186 * flags
3187 */
3188 clear_bit(ZONE_CONGESTED, &zone->flags);
3189 clear_bit(ZONE_DIRTY, &zone->flags);
3190 }
3191 }
3192
3193 if (i < 0)
3194 goto out;
3195
3196 /*
3197 * If we're getting trouble reclaiming, start doing writepage
3198 * even in laptop mode.
3199 */
3200 if (sc.priority < DEF_PRIORITY - 2)
3201 sc.may_writepage = 1;
3202
3203 /*
3204 * Now scan the zone in the dma->highmem direction, stopping
3205 * at the last zone which needs scanning.
3206 *
3207 * We do this because the page allocator works in the opposite
3208 * direction. This prevents the page allocator from allocating
3209 * pages behind kswapd's direction of progress, which would
3210 * cause too much scanning of the lower zones.
3211 */
3212 for (i = 0; i <= end_zone; i++) {
3213 struct zone *zone = pgdat->node_zones + i;
3214
3215 if (!populated_zone(zone))
3216 continue;
3217
3218 if (sc.priority != DEF_PRIORITY &&
3219 !zone_reclaimable(zone))
3220 continue;
3221
3222 sc.nr_scanned = 0;
3223
3224 nr_soft_scanned = 0;
3225 /*
3226 * Call soft limit reclaim before calling shrink_zone.
3227 */
3228 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3229 order, sc.gfp_mask,
3230 &nr_soft_scanned);
3231 sc.nr_reclaimed += nr_soft_reclaimed;
3232
3233 /*
3234 * There should be no need to raise the scanning
3235 * priority if enough pages are already being scanned
3236 * that that high watermark would be met at 100%
3237 * efficiency.
3238 */
3239 if (kswapd_shrink_zone(zone, end_zone, &sc))
3240 raise_priority = false;
3241 }
3242
3243 /*
3244 * If the low watermark is met there is no need for processes
3245 * to be throttled on pfmemalloc_wait as they should not be
3246 * able to safely make forward progress. Wake them
3247 */
3248 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3249 pfmemalloc_watermark_ok(pgdat))
3250 wake_up_all(&pgdat->pfmemalloc_wait);
3251
3252 /* Check if kswapd should be suspending */
3253 if (try_to_freeze() || kthread_should_stop())
3254 break;
3255
3256 /*
3257 * Raise priority if scanning rate is too low or there was no
3258 * progress in reclaiming pages
3259 */
3260 if (raise_priority || !sc.nr_reclaimed)
3261 sc.priority--;
3262 } while (sc.priority >= 1 &&
3263 !pgdat_balanced(pgdat, order, classzone_idx));
3264
3265 out:
3266 /*
3267 * Return the highest zone idx we were reclaiming at so
3268 * prepare_kswapd_sleep() makes the same decisions as here.
3269 */
3270 return end_zone;
3271 }
3272
3273 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3274 int classzone_idx, int balanced_classzone_idx)
3275 {
3276 long remaining = 0;
3277 DEFINE_WAIT(wait);
3278
3279 if (freezing(current) || kthread_should_stop())
3280 return;
3281
3282 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3283
3284 /* Try to sleep for a short interval */
3285 if (prepare_kswapd_sleep(pgdat, order, remaining,
3286 balanced_classzone_idx)) {
3287 /*
3288 * Compaction records what page blocks it recently failed to
3289 * isolate pages from and skips them in the future scanning.
3290 * When kswapd is going to sleep, it is reasonable to assume
3291 * that pages and compaction may succeed so reset the cache.
3292 */
3293 reset_isolation_suitable(pgdat);
3294
3295 /*
3296 * We have freed the memory, now we should compact it to make
3297 * allocation of the requested order possible.
3298 */
3299 wakeup_kcompactd(pgdat, order, classzone_idx);
3300
3301 remaining = schedule_timeout(HZ/10);
3302 finish_wait(&pgdat->kswapd_wait, &wait);
3303 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3304 }
3305
3306 /*
3307 * After a short sleep, check if it was a premature sleep. If not, then
3308 * go fully to sleep until explicitly woken up.
3309 */
3310 if (prepare_kswapd_sleep(pgdat, order, remaining,
3311 balanced_classzone_idx)) {
3312 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3313
3314 /*
3315 * vmstat counters are not perfectly accurate and the estimated
3316 * value for counters such as NR_FREE_PAGES can deviate from the
3317 * true value by nr_online_cpus * threshold. To avoid the zone
3318 * watermarks being breached while under pressure, we reduce the
3319 * per-cpu vmstat threshold while kswapd is awake and restore
3320 * them before going back to sleep.
3321 */
3322 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3323
3324 if (!kthread_should_stop())
3325 schedule();
3326
3327 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3328 } else {
3329 if (remaining)
3330 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3331 else
3332 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3333 }
3334 finish_wait(&pgdat->kswapd_wait, &wait);
3335 }
3336
3337 /*
3338 * The background pageout daemon, started as a kernel thread
3339 * from the init process.
3340 *
3341 * This basically trickles out pages so that we have _some_
3342 * free memory available even if there is no other activity
3343 * that frees anything up. This is needed for things like routing
3344 * etc, where we otherwise might have all activity going on in
3345 * asynchronous contexts that cannot page things out.
3346 *
3347 * If there are applications that are active memory-allocators
3348 * (most normal use), this basically shouldn't matter.
3349 */
3350 static int kswapd(void *p)
3351 {
3352 unsigned long order, new_order;
3353 int classzone_idx, new_classzone_idx;
3354 int balanced_classzone_idx;
3355 pg_data_t *pgdat = (pg_data_t*)p;
3356 struct task_struct *tsk = current;
3357
3358 struct reclaim_state reclaim_state = {
3359 .reclaimed_slab = 0,
3360 };
3361 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3362
3363 lockdep_set_current_reclaim_state(GFP_KERNEL);
3364
3365 if (!cpumask_empty(cpumask))
3366 set_cpus_allowed_ptr(tsk, cpumask);
3367 current->reclaim_state = &reclaim_state;
3368
3369 /*
3370 * Tell the memory management that we're a "memory allocator",
3371 * and that if we need more memory we should get access to it
3372 * regardless (see "__alloc_pages()"). "kswapd" should
3373 * never get caught in the normal page freeing logic.
3374 *
3375 * (Kswapd normally doesn't need memory anyway, but sometimes
3376 * you need a small amount of memory in order to be able to
3377 * page out something else, and this flag essentially protects
3378 * us from recursively trying to free more memory as we're
3379 * trying to free the first piece of memory in the first place).
3380 */
3381 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3382 set_freezable();
3383
3384 order = new_order = 0;
3385 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3386 balanced_classzone_idx = classzone_idx;
3387 for ( ; ; ) {
3388 bool ret;
3389
3390 /*
3391 * While we were reclaiming, there might have been another
3392 * wakeup, so check the values.
3393 */
3394 new_order = pgdat->kswapd_max_order;
3395 new_classzone_idx = pgdat->classzone_idx;
3396 pgdat->kswapd_max_order = 0;
3397 pgdat->classzone_idx = pgdat->nr_zones - 1;
3398
3399 if (order < new_order || classzone_idx > new_classzone_idx) {
3400 /*
3401 * Don't sleep if someone wants a larger 'order'
3402 * allocation or has tigher zone constraints
3403 */
3404 order = new_order;
3405 classzone_idx = new_classzone_idx;
3406 } else {
3407 kswapd_try_to_sleep(pgdat, order, classzone_idx,
3408 balanced_classzone_idx);
3409 order = pgdat->kswapd_max_order;
3410 classzone_idx = pgdat->classzone_idx;
3411 new_order = order;
3412 new_classzone_idx = classzone_idx;
3413 pgdat->kswapd_max_order = 0;
3414 pgdat->classzone_idx = pgdat->nr_zones - 1;
3415 }
3416
3417 ret = try_to_freeze();
3418 if (kthread_should_stop())
3419 break;
3420
3421 /*
3422 * We can speed up thawing tasks if we don't call balance_pgdat
3423 * after returning from the refrigerator
3424 */
3425 if (!ret) {
3426 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3427 balanced_classzone_idx = balance_pgdat(pgdat, order,
3428 classzone_idx);
3429 }
3430 }
3431
3432 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3433 current->reclaim_state = NULL;
3434 lockdep_clear_current_reclaim_state();
3435
3436 return 0;
3437 }
3438
3439 /*
3440 * A zone is low on free memory, so wake its kswapd task to service it.
3441 */
3442 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3443 {
3444 pg_data_t *pgdat;
3445
3446 if (!populated_zone(zone))
3447 return;
3448
3449 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3450 return;
3451 pgdat = zone->zone_pgdat;
3452 if (pgdat->kswapd_max_order < order) {
3453 pgdat->kswapd_max_order = order;
3454 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3455 }
3456 if (!waitqueue_active(&pgdat->kswapd_wait))
3457 return;
3458 if (zone_balanced(zone, order, true, 0, 0))
3459 return;
3460
3461 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3462 wake_up_interruptible(&pgdat->kswapd_wait);
3463 }
3464
3465 #ifdef CONFIG_HIBERNATION
3466 /*
3467 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3468 * freed pages.
3469 *
3470 * Rather than trying to age LRUs the aim is to preserve the overall
3471 * LRU order by reclaiming preferentially
3472 * inactive > active > active referenced > active mapped
3473 */
3474 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3475 {
3476 struct reclaim_state reclaim_state;
3477 struct scan_control sc = {
3478 .nr_to_reclaim = nr_to_reclaim,
3479 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3480 .priority = DEF_PRIORITY,
3481 .may_writepage = 1,
3482 .may_unmap = 1,
3483 .may_swap = 1,
3484 .hibernation_mode = 1,
3485 };
3486 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3487 struct task_struct *p = current;
3488 unsigned long nr_reclaimed;
3489
3490 p->flags |= PF_MEMALLOC;
3491 lockdep_set_current_reclaim_state(sc.gfp_mask);
3492 reclaim_state.reclaimed_slab = 0;
3493 p->reclaim_state = &reclaim_state;
3494
3495 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3496
3497 p->reclaim_state = NULL;
3498 lockdep_clear_current_reclaim_state();
3499 p->flags &= ~PF_MEMALLOC;
3500
3501 return nr_reclaimed;
3502 }
3503 #endif /* CONFIG_HIBERNATION */
3504
3505 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3506 not required for correctness. So if the last cpu in a node goes
3507 away, we get changed to run anywhere: as the first one comes back,
3508 restore their cpu bindings. */
3509 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3510 void *hcpu)
3511 {
3512 int nid;
3513
3514 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3515 for_each_node_state(nid, N_MEMORY) {
3516 pg_data_t *pgdat = NODE_DATA(nid);
3517 const struct cpumask *mask;
3518
3519 mask = cpumask_of_node(pgdat->node_id);
3520
3521 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3522 /* One of our CPUs online: restore mask */
3523 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3524 }
3525 }
3526 return NOTIFY_OK;
3527 }
3528
3529 /*
3530 * This kswapd start function will be called by init and node-hot-add.
3531 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3532 */
3533 int kswapd_run(int nid)
3534 {
3535 pg_data_t *pgdat = NODE_DATA(nid);
3536 int ret = 0;
3537
3538 if (pgdat->kswapd)
3539 return 0;
3540
3541 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3542 if (IS_ERR(pgdat->kswapd)) {
3543 /* failure at boot is fatal */
3544 BUG_ON(system_state == SYSTEM_BOOTING);
3545 pr_err("Failed to start kswapd on node %d\n", nid);
3546 ret = PTR_ERR(pgdat->kswapd);
3547 pgdat->kswapd = NULL;
3548 }
3549 return ret;
3550 }
3551
3552 /*
3553 * Called by memory hotplug when all memory in a node is offlined. Caller must
3554 * hold mem_hotplug_begin/end().
3555 */
3556 void kswapd_stop(int nid)
3557 {
3558 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3559
3560 if (kswapd) {
3561 kthread_stop(kswapd);
3562 NODE_DATA(nid)->kswapd = NULL;
3563 }
3564 }
3565
3566 static int __init kswapd_init(void)
3567 {
3568 int nid;
3569
3570 swap_setup();
3571 for_each_node_state(nid, N_MEMORY)
3572 kswapd_run(nid);
3573 hotcpu_notifier(cpu_callback, 0);
3574 return 0;
3575 }
3576
3577 module_init(kswapd_init)
3578
3579 #ifdef CONFIG_NUMA
3580 /*
3581 * Zone reclaim mode
3582 *
3583 * If non-zero call zone_reclaim when the number of free pages falls below
3584 * the watermarks.
3585 */
3586 int zone_reclaim_mode __read_mostly;
3587
3588 #define RECLAIM_OFF 0
3589 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3590 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3591 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3592
3593 /*
3594 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3595 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3596 * a zone.
3597 */
3598 #define ZONE_RECLAIM_PRIORITY 4
3599
3600 /*
3601 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3602 * occur.
3603 */
3604 int sysctl_min_unmapped_ratio = 1;
3605
3606 /*
3607 * If the number of slab pages in a zone grows beyond this percentage then
3608 * slab reclaim needs to occur.
3609 */
3610 int sysctl_min_slab_ratio = 5;
3611
3612 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3613 {
3614 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3615 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3616 zone_page_state(zone, NR_ACTIVE_FILE);
3617
3618 /*
3619 * It's possible for there to be more file mapped pages than
3620 * accounted for by the pages on the file LRU lists because
3621 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3622 */
3623 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3624 }
3625
3626 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3627 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3628 {
3629 unsigned long nr_pagecache_reclaimable;
3630 unsigned long delta = 0;
3631
3632 /*
3633 * If RECLAIM_UNMAP is set, then all file pages are considered
3634 * potentially reclaimable. Otherwise, we have to worry about
3635 * pages like swapcache and zone_unmapped_file_pages() provides
3636 * a better estimate
3637 */
3638 if (zone_reclaim_mode & RECLAIM_UNMAP)
3639 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3640 else
3641 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3642
3643 /* If we can't clean pages, remove dirty pages from consideration */
3644 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3645 delta += zone_page_state(zone, NR_FILE_DIRTY);
3646
3647 /* Watch for any possible underflows due to delta */
3648 if (unlikely(delta > nr_pagecache_reclaimable))
3649 delta = nr_pagecache_reclaimable;
3650
3651 return nr_pagecache_reclaimable - delta;
3652 }
3653
3654 /*
3655 * Try to free up some pages from this zone through reclaim.
3656 */
3657 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3658 {
3659 /* Minimum pages needed in order to stay on node */
3660 const unsigned long nr_pages = 1 << order;
3661 struct task_struct *p = current;
3662 struct reclaim_state reclaim_state;
3663 struct scan_control sc = {
3664 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3665 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3666 .order = order,
3667 .priority = ZONE_RECLAIM_PRIORITY,
3668 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3669 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3670 .may_swap = 1,
3671 };
3672
3673 cond_resched();
3674 /*
3675 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3676 * and we also need to be able to write out pages for RECLAIM_WRITE
3677 * and RECLAIM_UNMAP.
3678 */
3679 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3680 lockdep_set_current_reclaim_state(gfp_mask);
3681 reclaim_state.reclaimed_slab = 0;
3682 p->reclaim_state = &reclaim_state;
3683
3684 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3685 /*
3686 * Free memory by calling shrink zone with increasing
3687 * priorities until we have enough memory freed.
3688 */
3689 do {
3690 shrink_zone(zone, &sc, true);
3691 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3692 }
3693
3694 p->reclaim_state = NULL;
3695 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3696 lockdep_clear_current_reclaim_state();
3697 return sc.nr_reclaimed >= nr_pages;
3698 }
3699
3700 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3701 {
3702 int node_id;
3703 int ret;
3704
3705 /*
3706 * Zone reclaim reclaims unmapped file backed pages and
3707 * slab pages if we are over the defined limits.
3708 *
3709 * A small portion of unmapped file backed pages is needed for
3710 * file I/O otherwise pages read by file I/O will be immediately
3711 * thrown out if the zone is overallocated. So we do not reclaim
3712 * if less than a specified percentage of the zone is used by
3713 * unmapped file backed pages.
3714 */
3715 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3716 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3717 return ZONE_RECLAIM_FULL;
3718
3719 if (!zone_reclaimable(zone))
3720 return ZONE_RECLAIM_FULL;
3721
3722 /*
3723 * Do not scan if the allocation should not be delayed.
3724 */
3725 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3726 return ZONE_RECLAIM_NOSCAN;
3727
3728 /*
3729 * Only run zone reclaim on the local zone or on zones that do not
3730 * have associated processors. This will favor the local processor
3731 * over remote processors and spread off node memory allocations
3732 * as wide as possible.
3733 */
3734 node_id = zone_to_nid(zone);
3735 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3736 return ZONE_RECLAIM_NOSCAN;
3737
3738 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3739 return ZONE_RECLAIM_NOSCAN;
3740
3741 ret = __zone_reclaim(zone, gfp_mask, order);
3742 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3743
3744 if (!ret)
3745 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3746
3747 return ret;
3748 }
3749 #endif
3750
3751 /*
3752 * page_evictable - test whether a page is evictable
3753 * @page: the page to test
3754 *
3755 * Test whether page is evictable--i.e., should be placed on active/inactive
3756 * lists vs unevictable list.
3757 *
3758 * Reasons page might not be evictable:
3759 * (1) page's mapping marked unevictable
3760 * (2) page is part of an mlocked VMA
3761 *
3762 */
3763 int page_evictable(struct page *page)
3764 {
3765 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3766 }
3767
3768 #ifdef CONFIG_SHMEM
3769 /**
3770 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3771 * @pages: array of pages to check
3772 * @nr_pages: number of pages to check
3773 *
3774 * Checks pages for evictability and moves them to the appropriate lru list.
3775 *
3776 * This function is only used for SysV IPC SHM_UNLOCK.
3777 */
3778 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3779 {
3780 struct lruvec *lruvec;
3781 struct zone *zone = NULL;
3782 int pgscanned = 0;
3783 int pgrescued = 0;
3784 int i;
3785
3786 for (i = 0; i < nr_pages; i++) {
3787 struct page *page = pages[i];
3788 struct zone *pagezone;
3789
3790 pgscanned++;
3791 pagezone = page_zone(page);
3792 if (pagezone != zone) {
3793 if (zone)
3794 spin_unlock_irq(&zone->lru_lock);
3795 zone = pagezone;
3796 spin_lock_irq(&zone->lru_lock);
3797 }
3798 lruvec = mem_cgroup_page_lruvec(page, zone);
3799
3800 if (!PageLRU(page) || !PageUnevictable(page))
3801 continue;
3802
3803 if (page_evictable(page)) {
3804 enum lru_list lru = page_lru_base_type(page);
3805
3806 VM_BUG_ON_PAGE(PageActive(page), page);
3807 ClearPageUnevictable(page);
3808 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3809 add_page_to_lru_list(page, lruvec, lru);
3810 pgrescued++;
3811 }
3812 }
3813
3814 if (zone) {
3815 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3816 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3817 spin_unlock_irq(&zone->lru_lock);
3818 }
3819 }
3820 #endif /* CONFIG_SHMEM */
This page took 0.107546 seconds and 5 git commands to generate.