mm: compaction: add /proc trigger for memory compaction
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim;
60
61 unsigned long hibernation_mode;
62
63 /* This context's GFP mask */
64 gfp_t gfp_mask;
65
66 int may_writepage;
67
68 /* Can mapped pages be reclaimed? */
69 int may_unmap;
70
71 /* Can pages be swapped as part of reclaim? */
72 int may_swap;
73
74 int swappiness;
75
76 int all_unreclaimable;
77
78 int order;
79
80 /* Which cgroup do we reclaim from */
81 struct mem_cgroup *mem_cgroup;
82
83 /*
84 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 * are scanned.
86 */
87 nodemask_t *nodemask;
88
89 /* Pluggable isolate pages callback */
90 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
91 unsigned long *scanned, int order, int mode,
92 struct zone *z, struct mem_cgroup *mem_cont,
93 int active, int file);
94 };
95
96 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97
98 #ifdef ARCH_HAS_PREFETCH
99 #define prefetch_prev_lru_page(_page, _base, _field) \
100 do { \
101 if ((_page)->lru.prev != _base) { \
102 struct page *prev; \
103 \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetch(&prev->_field); \
106 } \
107 } while (0)
108 #else
109 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110 #endif
111
112 #ifdef ARCH_HAS_PREFETCHW
113 #define prefetchw_prev_lru_page(_page, _base, _field) \
114 do { \
115 if ((_page)->lru.prev != _base) { \
116 struct page *prev; \
117 \
118 prev = lru_to_page(&(_page->lru)); \
119 prefetchw(&prev->_field); \
120 } \
121 } while (0)
122 #else
123 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
124 #endif
125
126 /*
127 * From 0 .. 100. Higher means more swappy.
128 */
129 int vm_swappiness = 60;
130 long vm_total_pages; /* The total number of pages which the VM controls */
131
132 static LIST_HEAD(shrinker_list);
133 static DECLARE_RWSEM(shrinker_rwsem);
134
135 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
136 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
137 #else
138 #define scanning_global_lru(sc) (1)
139 #endif
140
141 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
142 struct scan_control *sc)
143 {
144 if (!scanning_global_lru(sc))
145 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
146
147 return &zone->reclaim_stat;
148 }
149
150 static unsigned long zone_nr_lru_pages(struct zone *zone,
151 struct scan_control *sc, enum lru_list lru)
152 {
153 if (!scanning_global_lru(sc))
154 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
155
156 return zone_page_state(zone, NR_LRU_BASE + lru);
157 }
158
159
160 /*
161 * Add a shrinker callback to be called from the vm
162 */
163 void register_shrinker(struct shrinker *shrinker)
164 {
165 shrinker->nr = 0;
166 down_write(&shrinker_rwsem);
167 list_add_tail(&shrinker->list, &shrinker_list);
168 up_write(&shrinker_rwsem);
169 }
170 EXPORT_SYMBOL(register_shrinker);
171
172 /*
173 * Remove one
174 */
175 void unregister_shrinker(struct shrinker *shrinker)
176 {
177 down_write(&shrinker_rwsem);
178 list_del(&shrinker->list);
179 up_write(&shrinker_rwsem);
180 }
181 EXPORT_SYMBOL(unregister_shrinker);
182
183 #define SHRINK_BATCH 128
184 /*
185 * Call the shrink functions to age shrinkable caches
186 *
187 * Here we assume it costs one seek to replace a lru page and that it also
188 * takes a seek to recreate a cache object. With this in mind we age equal
189 * percentages of the lru and ageable caches. This should balance the seeks
190 * generated by these structures.
191 *
192 * If the vm encountered mapped pages on the LRU it increase the pressure on
193 * slab to avoid swapping.
194 *
195 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
196 *
197 * `lru_pages' represents the number of on-LRU pages in all the zones which
198 * are eligible for the caller's allocation attempt. It is used for balancing
199 * slab reclaim versus page reclaim.
200 *
201 * Returns the number of slab objects which we shrunk.
202 */
203 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
204 unsigned long lru_pages)
205 {
206 struct shrinker *shrinker;
207 unsigned long ret = 0;
208
209 if (scanned == 0)
210 scanned = SWAP_CLUSTER_MAX;
211
212 if (!down_read_trylock(&shrinker_rwsem))
213 return 1; /* Assume we'll be able to shrink next time */
214
215 list_for_each_entry(shrinker, &shrinker_list, list) {
216 unsigned long long delta;
217 unsigned long total_scan;
218 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
219
220 delta = (4 * scanned) / shrinker->seeks;
221 delta *= max_pass;
222 do_div(delta, lru_pages + 1);
223 shrinker->nr += delta;
224 if (shrinker->nr < 0) {
225 printk(KERN_ERR "shrink_slab: %pF negative objects to "
226 "delete nr=%ld\n",
227 shrinker->shrink, shrinker->nr);
228 shrinker->nr = max_pass;
229 }
230
231 /*
232 * Avoid risking looping forever due to too large nr value:
233 * never try to free more than twice the estimate number of
234 * freeable entries.
235 */
236 if (shrinker->nr > max_pass * 2)
237 shrinker->nr = max_pass * 2;
238
239 total_scan = shrinker->nr;
240 shrinker->nr = 0;
241
242 while (total_scan >= SHRINK_BATCH) {
243 long this_scan = SHRINK_BATCH;
244 int shrink_ret;
245 int nr_before;
246
247 nr_before = (*shrinker->shrink)(0, gfp_mask);
248 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
249 if (shrink_ret == -1)
250 break;
251 if (shrink_ret < nr_before)
252 ret += nr_before - shrink_ret;
253 count_vm_events(SLABS_SCANNED, this_scan);
254 total_scan -= this_scan;
255
256 cond_resched();
257 }
258
259 shrinker->nr += total_scan;
260 }
261 up_read(&shrinker_rwsem);
262 return ret;
263 }
264
265 static inline int is_page_cache_freeable(struct page *page)
266 {
267 /*
268 * A freeable page cache page is referenced only by the caller
269 * that isolated the page, the page cache radix tree and
270 * optional buffer heads at page->private.
271 */
272 return page_count(page) - page_has_private(page) == 2;
273 }
274
275 static int may_write_to_queue(struct backing_dev_info *bdi)
276 {
277 if (current->flags & PF_SWAPWRITE)
278 return 1;
279 if (!bdi_write_congested(bdi))
280 return 1;
281 if (bdi == current->backing_dev_info)
282 return 1;
283 return 0;
284 }
285
286 /*
287 * We detected a synchronous write error writing a page out. Probably
288 * -ENOSPC. We need to propagate that into the address_space for a subsequent
289 * fsync(), msync() or close().
290 *
291 * The tricky part is that after writepage we cannot touch the mapping: nothing
292 * prevents it from being freed up. But we have a ref on the page and once
293 * that page is locked, the mapping is pinned.
294 *
295 * We're allowed to run sleeping lock_page() here because we know the caller has
296 * __GFP_FS.
297 */
298 static void handle_write_error(struct address_space *mapping,
299 struct page *page, int error)
300 {
301 lock_page(page);
302 if (page_mapping(page) == mapping)
303 mapping_set_error(mapping, error);
304 unlock_page(page);
305 }
306
307 /* Request for sync pageout. */
308 enum pageout_io {
309 PAGEOUT_IO_ASYNC,
310 PAGEOUT_IO_SYNC,
311 };
312
313 /* possible outcome of pageout() */
314 typedef enum {
315 /* failed to write page out, page is locked */
316 PAGE_KEEP,
317 /* move page to the active list, page is locked */
318 PAGE_ACTIVATE,
319 /* page has been sent to the disk successfully, page is unlocked */
320 PAGE_SUCCESS,
321 /* page is clean and locked */
322 PAGE_CLEAN,
323 } pageout_t;
324
325 /*
326 * pageout is called by shrink_page_list() for each dirty page.
327 * Calls ->writepage().
328 */
329 static pageout_t pageout(struct page *page, struct address_space *mapping,
330 enum pageout_io sync_writeback)
331 {
332 /*
333 * If the page is dirty, only perform writeback if that write
334 * will be non-blocking. To prevent this allocation from being
335 * stalled by pagecache activity. But note that there may be
336 * stalls if we need to run get_block(). We could test
337 * PagePrivate for that.
338 *
339 * If this process is currently in __generic_file_aio_write() against
340 * this page's queue, we can perform writeback even if that
341 * will block.
342 *
343 * If the page is swapcache, write it back even if that would
344 * block, for some throttling. This happens by accident, because
345 * swap_backing_dev_info is bust: it doesn't reflect the
346 * congestion state of the swapdevs. Easy to fix, if needed.
347 */
348 if (!is_page_cache_freeable(page))
349 return PAGE_KEEP;
350 if (!mapping) {
351 /*
352 * Some data journaling orphaned pages can have
353 * page->mapping == NULL while being dirty with clean buffers.
354 */
355 if (page_has_private(page)) {
356 if (try_to_free_buffers(page)) {
357 ClearPageDirty(page);
358 printk("%s: orphaned page\n", __func__);
359 return PAGE_CLEAN;
360 }
361 }
362 return PAGE_KEEP;
363 }
364 if (mapping->a_ops->writepage == NULL)
365 return PAGE_ACTIVATE;
366 if (!may_write_to_queue(mapping->backing_dev_info))
367 return PAGE_KEEP;
368
369 if (clear_page_dirty_for_io(page)) {
370 int res;
371 struct writeback_control wbc = {
372 .sync_mode = WB_SYNC_NONE,
373 .nr_to_write = SWAP_CLUSTER_MAX,
374 .range_start = 0,
375 .range_end = LLONG_MAX,
376 .nonblocking = 1,
377 .for_reclaim = 1,
378 };
379
380 SetPageReclaim(page);
381 res = mapping->a_ops->writepage(page, &wbc);
382 if (res < 0)
383 handle_write_error(mapping, page, res);
384 if (res == AOP_WRITEPAGE_ACTIVATE) {
385 ClearPageReclaim(page);
386 return PAGE_ACTIVATE;
387 }
388
389 /*
390 * Wait on writeback if requested to. This happens when
391 * direct reclaiming a large contiguous area and the
392 * first attempt to free a range of pages fails.
393 */
394 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
395 wait_on_page_writeback(page);
396
397 if (!PageWriteback(page)) {
398 /* synchronous write or broken a_ops? */
399 ClearPageReclaim(page);
400 }
401 inc_zone_page_state(page, NR_VMSCAN_WRITE);
402 return PAGE_SUCCESS;
403 }
404
405 return PAGE_CLEAN;
406 }
407
408 /*
409 * Same as remove_mapping, but if the page is removed from the mapping, it
410 * gets returned with a refcount of 0.
411 */
412 static int __remove_mapping(struct address_space *mapping, struct page *page)
413 {
414 BUG_ON(!PageLocked(page));
415 BUG_ON(mapping != page_mapping(page));
416
417 spin_lock_irq(&mapping->tree_lock);
418 /*
419 * The non racy check for a busy page.
420 *
421 * Must be careful with the order of the tests. When someone has
422 * a ref to the page, it may be possible that they dirty it then
423 * drop the reference. So if PageDirty is tested before page_count
424 * here, then the following race may occur:
425 *
426 * get_user_pages(&page);
427 * [user mapping goes away]
428 * write_to(page);
429 * !PageDirty(page) [good]
430 * SetPageDirty(page);
431 * put_page(page);
432 * !page_count(page) [good, discard it]
433 *
434 * [oops, our write_to data is lost]
435 *
436 * Reversing the order of the tests ensures such a situation cannot
437 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
438 * load is not satisfied before that of page->_count.
439 *
440 * Note that if SetPageDirty is always performed via set_page_dirty,
441 * and thus under tree_lock, then this ordering is not required.
442 */
443 if (!page_freeze_refs(page, 2))
444 goto cannot_free;
445 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
446 if (unlikely(PageDirty(page))) {
447 page_unfreeze_refs(page, 2);
448 goto cannot_free;
449 }
450
451 if (PageSwapCache(page)) {
452 swp_entry_t swap = { .val = page_private(page) };
453 __delete_from_swap_cache(page);
454 spin_unlock_irq(&mapping->tree_lock);
455 swapcache_free(swap, page);
456 } else {
457 __remove_from_page_cache(page);
458 spin_unlock_irq(&mapping->tree_lock);
459 mem_cgroup_uncharge_cache_page(page);
460 }
461
462 return 1;
463
464 cannot_free:
465 spin_unlock_irq(&mapping->tree_lock);
466 return 0;
467 }
468
469 /*
470 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
471 * someone else has a ref on the page, abort and return 0. If it was
472 * successfully detached, return 1. Assumes the caller has a single ref on
473 * this page.
474 */
475 int remove_mapping(struct address_space *mapping, struct page *page)
476 {
477 if (__remove_mapping(mapping, page)) {
478 /*
479 * Unfreezing the refcount with 1 rather than 2 effectively
480 * drops the pagecache ref for us without requiring another
481 * atomic operation.
482 */
483 page_unfreeze_refs(page, 1);
484 return 1;
485 }
486 return 0;
487 }
488
489 /**
490 * putback_lru_page - put previously isolated page onto appropriate LRU list
491 * @page: page to be put back to appropriate lru list
492 *
493 * Add previously isolated @page to appropriate LRU list.
494 * Page may still be unevictable for other reasons.
495 *
496 * lru_lock must not be held, interrupts must be enabled.
497 */
498 void putback_lru_page(struct page *page)
499 {
500 int lru;
501 int active = !!TestClearPageActive(page);
502 int was_unevictable = PageUnevictable(page);
503
504 VM_BUG_ON(PageLRU(page));
505
506 redo:
507 ClearPageUnevictable(page);
508
509 if (page_evictable(page, NULL)) {
510 /*
511 * For evictable pages, we can use the cache.
512 * In event of a race, worst case is we end up with an
513 * unevictable page on [in]active list.
514 * We know how to handle that.
515 */
516 lru = active + page_lru_base_type(page);
517 lru_cache_add_lru(page, lru);
518 } else {
519 /*
520 * Put unevictable pages directly on zone's unevictable
521 * list.
522 */
523 lru = LRU_UNEVICTABLE;
524 add_page_to_unevictable_list(page);
525 /*
526 * When racing with an mlock clearing (page is
527 * unlocked), make sure that if the other thread does
528 * not observe our setting of PG_lru and fails
529 * isolation, we see PG_mlocked cleared below and move
530 * the page back to the evictable list.
531 *
532 * The other side is TestClearPageMlocked().
533 */
534 smp_mb();
535 }
536
537 /*
538 * page's status can change while we move it among lru. If an evictable
539 * page is on unevictable list, it never be freed. To avoid that,
540 * check after we added it to the list, again.
541 */
542 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
543 if (!isolate_lru_page(page)) {
544 put_page(page);
545 goto redo;
546 }
547 /* This means someone else dropped this page from LRU
548 * So, it will be freed or putback to LRU again. There is
549 * nothing to do here.
550 */
551 }
552
553 if (was_unevictable && lru != LRU_UNEVICTABLE)
554 count_vm_event(UNEVICTABLE_PGRESCUED);
555 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
556 count_vm_event(UNEVICTABLE_PGCULLED);
557
558 put_page(page); /* drop ref from isolate */
559 }
560
561 enum page_references {
562 PAGEREF_RECLAIM,
563 PAGEREF_RECLAIM_CLEAN,
564 PAGEREF_KEEP,
565 PAGEREF_ACTIVATE,
566 };
567
568 static enum page_references page_check_references(struct page *page,
569 struct scan_control *sc)
570 {
571 int referenced_ptes, referenced_page;
572 unsigned long vm_flags;
573
574 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
575 referenced_page = TestClearPageReferenced(page);
576
577 /* Lumpy reclaim - ignore references */
578 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
579 return PAGEREF_RECLAIM;
580
581 /*
582 * Mlock lost the isolation race with us. Let try_to_unmap()
583 * move the page to the unevictable list.
584 */
585 if (vm_flags & VM_LOCKED)
586 return PAGEREF_RECLAIM;
587
588 if (referenced_ptes) {
589 if (PageAnon(page))
590 return PAGEREF_ACTIVATE;
591 /*
592 * All mapped pages start out with page table
593 * references from the instantiating fault, so we need
594 * to look twice if a mapped file page is used more
595 * than once.
596 *
597 * Mark it and spare it for another trip around the
598 * inactive list. Another page table reference will
599 * lead to its activation.
600 *
601 * Note: the mark is set for activated pages as well
602 * so that recently deactivated but used pages are
603 * quickly recovered.
604 */
605 SetPageReferenced(page);
606
607 if (referenced_page)
608 return PAGEREF_ACTIVATE;
609
610 return PAGEREF_KEEP;
611 }
612
613 /* Reclaim if clean, defer dirty pages to writeback */
614 if (referenced_page)
615 return PAGEREF_RECLAIM_CLEAN;
616
617 return PAGEREF_RECLAIM;
618 }
619
620 /*
621 * shrink_page_list() returns the number of reclaimed pages
622 */
623 static unsigned long shrink_page_list(struct list_head *page_list,
624 struct scan_control *sc,
625 enum pageout_io sync_writeback)
626 {
627 LIST_HEAD(ret_pages);
628 struct pagevec freed_pvec;
629 int pgactivate = 0;
630 unsigned long nr_reclaimed = 0;
631
632 cond_resched();
633
634 pagevec_init(&freed_pvec, 1);
635 while (!list_empty(page_list)) {
636 enum page_references references;
637 struct address_space *mapping;
638 struct page *page;
639 int may_enter_fs;
640
641 cond_resched();
642
643 page = lru_to_page(page_list);
644 list_del(&page->lru);
645
646 if (!trylock_page(page))
647 goto keep;
648
649 VM_BUG_ON(PageActive(page));
650
651 sc->nr_scanned++;
652
653 if (unlikely(!page_evictable(page, NULL)))
654 goto cull_mlocked;
655
656 if (!sc->may_unmap && page_mapped(page))
657 goto keep_locked;
658
659 /* Double the slab pressure for mapped and swapcache pages */
660 if (page_mapped(page) || PageSwapCache(page))
661 sc->nr_scanned++;
662
663 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
664 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
665
666 if (PageWriteback(page)) {
667 /*
668 * Synchronous reclaim is performed in two passes,
669 * first an asynchronous pass over the list to
670 * start parallel writeback, and a second synchronous
671 * pass to wait for the IO to complete. Wait here
672 * for any page for which writeback has already
673 * started.
674 */
675 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
676 wait_on_page_writeback(page);
677 else
678 goto keep_locked;
679 }
680
681 references = page_check_references(page, sc);
682 switch (references) {
683 case PAGEREF_ACTIVATE:
684 goto activate_locked;
685 case PAGEREF_KEEP:
686 goto keep_locked;
687 case PAGEREF_RECLAIM:
688 case PAGEREF_RECLAIM_CLEAN:
689 ; /* try to reclaim the page below */
690 }
691
692 /*
693 * Anonymous process memory has backing store?
694 * Try to allocate it some swap space here.
695 */
696 if (PageAnon(page) && !PageSwapCache(page)) {
697 if (!(sc->gfp_mask & __GFP_IO))
698 goto keep_locked;
699 if (!add_to_swap(page))
700 goto activate_locked;
701 may_enter_fs = 1;
702 }
703
704 mapping = page_mapping(page);
705
706 /*
707 * The page is mapped into the page tables of one or more
708 * processes. Try to unmap it here.
709 */
710 if (page_mapped(page) && mapping) {
711 switch (try_to_unmap(page, TTU_UNMAP)) {
712 case SWAP_FAIL:
713 goto activate_locked;
714 case SWAP_AGAIN:
715 goto keep_locked;
716 case SWAP_MLOCK:
717 goto cull_mlocked;
718 case SWAP_SUCCESS:
719 ; /* try to free the page below */
720 }
721 }
722
723 if (PageDirty(page)) {
724 if (references == PAGEREF_RECLAIM_CLEAN)
725 goto keep_locked;
726 if (!may_enter_fs)
727 goto keep_locked;
728 if (!sc->may_writepage)
729 goto keep_locked;
730
731 /* Page is dirty, try to write it out here */
732 switch (pageout(page, mapping, sync_writeback)) {
733 case PAGE_KEEP:
734 goto keep_locked;
735 case PAGE_ACTIVATE:
736 goto activate_locked;
737 case PAGE_SUCCESS:
738 if (PageWriteback(page) || PageDirty(page))
739 goto keep;
740 /*
741 * A synchronous write - probably a ramdisk. Go
742 * ahead and try to reclaim the page.
743 */
744 if (!trylock_page(page))
745 goto keep;
746 if (PageDirty(page) || PageWriteback(page))
747 goto keep_locked;
748 mapping = page_mapping(page);
749 case PAGE_CLEAN:
750 ; /* try to free the page below */
751 }
752 }
753
754 /*
755 * If the page has buffers, try to free the buffer mappings
756 * associated with this page. If we succeed we try to free
757 * the page as well.
758 *
759 * We do this even if the page is PageDirty().
760 * try_to_release_page() does not perform I/O, but it is
761 * possible for a page to have PageDirty set, but it is actually
762 * clean (all its buffers are clean). This happens if the
763 * buffers were written out directly, with submit_bh(). ext3
764 * will do this, as well as the blockdev mapping.
765 * try_to_release_page() will discover that cleanness and will
766 * drop the buffers and mark the page clean - it can be freed.
767 *
768 * Rarely, pages can have buffers and no ->mapping. These are
769 * the pages which were not successfully invalidated in
770 * truncate_complete_page(). We try to drop those buffers here
771 * and if that worked, and the page is no longer mapped into
772 * process address space (page_count == 1) it can be freed.
773 * Otherwise, leave the page on the LRU so it is swappable.
774 */
775 if (page_has_private(page)) {
776 if (!try_to_release_page(page, sc->gfp_mask))
777 goto activate_locked;
778 if (!mapping && page_count(page) == 1) {
779 unlock_page(page);
780 if (put_page_testzero(page))
781 goto free_it;
782 else {
783 /*
784 * rare race with speculative reference.
785 * the speculative reference will free
786 * this page shortly, so we may
787 * increment nr_reclaimed here (and
788 * leave it off the LRU).
789 */
790 nr_reclaimed++;
791 continue;
792 }
793 }
794 }
795
796 if (!mapping || !__remove_mapping(mapping, page))
797 goto keep_locked;
798
799 /*
800 * At this point, we have no other references and there is
801 * no way to pick any more up (removed from LRU, removed
802 * from pagecache). Can use non-atomic bitops now (and
803 * we obviously don't have to worry about waking up a process
804 * waiting on the page lock, because there are no references.
805 */
806 __clear_page_locked(page);
807 free_it:
808 nr_reclaimed++;
809 if (!pagevec_add(&freed_pvec, page)) {
810 __pagevec_free(&freed_pvec);
811 pagevec_reinit(&freed_pvec);
812 }
813 continue;
814
815 cull_mlocked:
816 if (PageSwapCache(page))
817 try_to_free_swap(page);
818 unlock_page(page);
819 putback_lru_page(page);
820 continue;
821
822 activate_locked:
823 /* Not a candidate for swapping, so reclaim swap space. */
824 if (PageSwapCache(page) && vm_swap_full())
825 try_to_free_swap(page);
826 VM_BUG_ON(PageActive(page));
827 SetPageActive(page);
828 pgactivate++;
829 keep_locked:
830 unlock_page(page);
831 keep:
832 list_add(&page->lru, &ret_pages);
833 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
834 }
835 list_splice(&ret_pages, page_list);
836 if (pagevec_count(&freed_pvec))
837 __pagevec_free(&freed_pvec);
838 count_vm_events(PGACTIVATE, pgactivate);
839 return nr_reclaimed;
840 }
841
842 /*
843 * Attempt to remove the specified page from its LRU. Only take this page
844 * if it is of the appropriate PageActive status. Pages which are being
845 * freed elsewhere are also ignored.
846 *
847 * page: page to consider
848 * mode: one of the LRU isolation modes defined above
849 *
850 * returns 0 on success, -ve errno on failure.
851 */
852 int __isolate_lru_page(struct page *page, int mode, int file)
853 {
854 int ret = -EINVAL;
855
856 /* Only take pages on the LRU. */
857 if (!PageLRU(page))
858 return ret;
859
860 /*
861 * When checking the active state, we need to be sure we are
862 * dealing with comparible boolean values. Take the logical not
863 * of each.
864 */
865 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
866 return ret;
867
868 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
869 return ret;
870
871 /*
872 * When this function is being called for lumpy reclaim, we
873 * initially look into all LRU pages, active, inactive and
874 * unevictable; only give shrink_page_list evictable pages.
875 */
876 if (PageUnevictable(page))
877 return ret;
878
879 ret = -EBUSY;
880
881 if (likely(get_page_unless_zero(page))) {
882 /*
883 * Be careful not to clear PageLRU until after we're
884 * sure the page is not being freed elsewhere -- the
885 * page release code relies on it.
886 */
887 ClearPageLRU(page);
888 ret = 0;
889 }
890
891 return ret;
892 }
893
894 /*
895 * zone->lru_lock is heavily contended. Some of the functions that
896 * shrink the lists perform better by taking out a batch of pages
897 * and working on them outside the LRU lock.
898 *
899 * For pagecache intensive workloads, this function is the hottest
900 * spot in the kernel (apart from copy_*_user functions).
901 *
902 * Appropriate locks must be held before calling this function.
903 *
904 * @nr_to_scan: The number of pages to look through on the list.
905 * @src: The LRU list to pull pages off.
906 * @dst: The temp list to put pages on to.
907 * @scanned: The number of pages that were scanned.
908 * @order: The caller's attempted allocation order
909 * @mode: One of the LRU isolation modes
910 * @file: True [1] if isolating file [!anon] pages
911 *
912 * returns how many pages were moved onto *@dst.
913 */
914 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
915 struct list_head *src, struct list_head *dst,
916 unsigned long *scanned, int order, int mode, int file)
917 {
918 unsigned long nr_taken = 0;
919 unsigned long scan;
920
921 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
922 struct page *page;
923 unsigned long pfn;
924 unsigned long end_pfn;
925 unsigned long page_pfn;
926 int zone_id;
927
928 page = lru_to_page(src);
929 prefetchw_prev_lru_page(page, src, flags);
930
931 VM_BUG_ON(!PageLRU(page));
932
933 switch (__isolate_lru_page(page, mode, file)) {
934 case 0:
935 list_move(&page->lru, dst);
936 mem_cgroup_del_lru(page);
937 nr_taken++;
938 break;
939
940 case -EBUSY:
941 /* else it is being freed elsewhere */
942 list_move(&page->lru, src);
943 mem_cgroup_rotate_lru_list(page, page_lru(page));
944 continue;
945
946 default:
947 BUG();
948 }
949
950 if (!order)
951 continue;
952
953 /*
954 * Attempt to take all pages in the order aligned region
955 * surrounding the tag page. Only take those pages of
956 * the same active state as that tag page. We may safely
957 * round the target page pfn down to the requested order
958 * as the mem_map is guarenteed valid out to MAX_ORDER,
959 * where that page is in a different zone we will detect
960 * it from its zone id and abort this block scan.
961 */
962 zone_id = page_zone_id(page);
963 page_pfn = page_to_pfn(page);
964 pfn = page_pfn & ~((1 << order) - 1);
965 end_pfn = pfn + (1 << order);
966 for (; pfn < end_pfn; pfn++) {
967 struct page *cursor_page;
968
969 /* The target page is in the block, ignore it. */
970 if (unlikely(pfn == page_pfn))
971 continue;
972
973 /* Avoid holes within the zone. */
974 if (unlikely(!pfn_valid_within(pfn)))
975 break;
976
977 cursor_page = pfn_to_page(pfn);
978
979 /* Check that we have not crossed a zone boundary. */
980 if (unlikely(page_zone_id(cursor_page) != zone_id))
981 continue;
982
983 /*
984 * If we don't have enough swap space, reclaiming of
985 * anon page which don't already have a swap slot is
986 * pointless.
987 */
988 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
989 !PageSwapCache(cursor_page))
990 continue;
991
992 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
993 list_move(&cursor_page->lru, dst);
994 mem_cgroup_del_lru(cursor_page);
995 nr_taken++;
996 scan++;
997 }
998 }
999 }
1000
1001 *scanned = scan;
1002 return nr_taken;
1003 }
1004
1005 static unsigned long isolate_pages_global(unsigned long nr,
1006 struct list_head *dst,
1007 unsigned long *scanned, int order,
1008 int mode, struct zone *z,
1009 struct mem_cgroup *mem_cont,
1010 int active, int file)
1011 {
1012 int lru = LRU_BASE;
1013 if (active)
1014 lru += LRU_ACTIVE;
1015 if (file)
1016 lru += LRU_FILE;
1017 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1018 mode, file);
1019 }
1020
1021 /*
1022 * clear_active_flags() is a helper for shrink_active_list(), clearing
1023 * any active bits from the pages in the list.
1024 */
1025 static unsigned long clear_active_flags(struct list_head *page_list,
1026 unsigned int *count)
1027 {
1028 int nr_active = 0;
1029 int lru;
1030 struct page *page;
1031
1032 list_for_each_entry(page, page_list, lru) {
1033 lru = page_lru_base_type(page);
1034 if (PageActive(page)) {
1035 lru += LRU_ACTIVE;
1036 ClearPageActive(page);
1037 nr_active++;
1038 }
1039 count[lru]++;
1040 }
1041
1042 return nr_active;
1043 }
1044
1045 /**
1046 * isolate_lru_page - tries to isolate a page from its LRU list
1047 * @page: page to isolate from its LRU list
1048 *
1049 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1050 * vmstat statistic corresponding to whatever LRU list the page was on.
1051 *
1052 * Returns 0 if the page was removed from an LRU list.
1053 * Returns -EBUSY if the page was not on an LRU list.
1054 *
1055 * The returned page will have PageLRU() cleared. If it was found on
1056 * the active list, it will have PageActive set. If it was found on
1057 * the unevictable list, it will have the PageUnevictable bit set. That flag
1058 * may need to be cleared by the caller before letting the page go.
1059 *
1060 * The vmstat statistic corresponding to the list on which the page was
1061 * found will be decremented.
1062 *
1063 * Restrictions:
1064 * (1) Must be called with an elevated refcount on the page. This is a
1065 * fundamentnal difference from isolate_lru_pages (which is called
1066 * without a stable reference).
1067 * (2) the lru_lock must not be held.
1068 * (3) interrupts must be enabled.
1069 */
1070 int isolate_lru_page(struct page *page)
1071 {
1072 int ret = -EBUSY;
1073
1074 if (PageLRU(page)) {
1075 struct zone *zone = page_zone(page);
1076
1077 spin_lock_irq(&zone->lru_lock);
1078 if (PageLRU(page) && get_page_unless_zero(page)) {
1079 int lru = page_lru(page);
1080 ret = 0;
1081 ClearPageLRU(page);
1082
1083 del_page_from_lru_list(zone, page, lru);
1084 }
1085 spin_unlock_irq(&zone->lru_lock);
1086 }
1087 return ret;
1088 }
1089
1090 /*
1091 * Are there way too many processes in the direct reclaim path already?
1092 */
1093 static int too_many_isolated(struct zone *zone, int file,
1094 struct scan_control *sc)
1095 {
1096 unsigned long inactive, isolated;
1097
1098 if (current_is_kswapd())
1099 return 0;
1100
1101 if (!scanning_global_lru(sc))
1102 return 0;
1103
1104 if (file) {
1105 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1106 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1107 } else {
1108 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1109 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1110 }
1111
1112 return isolated > inactive;
1113 }
1114
1115 /*
1116 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1117 * of reclaimed pages
1118 */
1119 static unsigned long shrink_inactive_list(unsigned long max_scan,
1120 struct zone *zone, struct scan_control *sc,
1121 int priority, int file)
1122 {
1123 LIST_HEAD(page_list);
1124 struct pagevec pvec;
1125 unsigned long nr_scanned = 0;
1126 unsigned long nr_reclaimed = 0;
1127 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1128 int lumpy_reclaim = 0;
1129
1130 while (unlikely(too_many_isolated(zone, file, sc))) {
1131 congestion_wait(BLK_RW_ASYNC, HZ/10);
1132
1133 /* We are about to die and free our memory. Return now. */
1134 if (fatal_signal_pending(current))
1135 return SWAP_CLUSTER_MAX;
1136 }
1137
1138 /*
1139 * If we need a large contiguous chunk of memory, or have
1140 * trouble getting a small set of contiguous pages, we
1141 * will reclaim both active and inactive pages.
1142 *
1143 * We use the same threshold as pageout congestion_wait below.
1144 */
1145 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1146 lumpy_reclaim = 1;
1147 else if (sc->order && priority < DEF_PRIORITY - 2)
1148 lumpy_reclaim = 1;
1149
1150 pagevec_init(&pvec, 1);
1151
1152 lru_add_drain();
1153 spin_lock_irq(&zone->lru_lock);
1154 do {
1155 struct page *page;
1156 unsigned long nr_taken;
1157 unsigned long nr_scan;
1158 unsigned long nr_freed;
1159 unsigned long nr_active;
1160 unsigned int count[NR_LRU_LISTS] = { 0, };
1161 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1162 unsigned long nr_anon;
1163 unsigned long nr_file;
1164
1165 nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1166 &page_list, &nr_scan, sc->order, mode,
1167 zone, sc->mem_cgroup, 0, file);
1168
1169 if (scanning_global_lru(sc)) {
1170 zone->pages_scanned += nr_scan;
1171 if (current_is_kswapd())
1172 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1173 nr_scan);
1174 else
1175 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1176 nr_scan);
1177 }
1178
1179 if (nr_taken == 0)
1180 goto done;
1181
1182 nr_active = clear_active_flags(&page_list, count);
1183 __count_vm_events(PGDEACTIVATE, nr_active);
1184
1185 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1186 -count[LRU_ACTIVE_FILE]);
1187 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1188 -count[LRU_INACTIVE_FILE]);
1189 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1190 -count[LRU_ACTIVE_ANON]);
1191 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1192 -count[LRU_INACTIVE_ANON]);
1193
1194 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1195 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1196 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1197 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1198
1199 reclaim_stat->recent_scanned[0] += nr_anon;
1200 reclaim_stat->recent_scanned[1] += nr_file;
1201
1202 spin_unlock_irq(&zone->lru_lock);
1203
1204 nr_scanned += nr_scan;
1205 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1206
1207 /*
1208 * If we are direct reclaiming for contiguous pages and we do
1209 * not reclaim everything in the list, try again and wait
1210 * for IO to complete. This will stall high-order allocations
1211 * but that should be acceptable to the caller
1212 */
1213 if (nr_freed < nr_taken && !current_is_kswapd() &&
1214 lumpy_reclaim) {
1215 congestion_wait(BLK_RW_ASYNC, HZ/10);
1216
1217 /*
1218 * The attempt at page out may have made some
1219 * of the pages active, mark them inactive again.
1220 */
1221 nr_active = clear_active_flags(&page_list, count);
1222 count_vm_events(PGDEACTIVATE, nr_active);
1223
1224 nr_freed += shrink_page_list(&page_list, sc,
1225 PAGEOUT_IO_SYNC);
1226 }
1227
1228 nr_reclaimed += nr_freed;
1229
1230 local_irq_disable();
1231 if (current_is_kswapd())
1232 __count_vm_events(KSWAPD_STEAL, nr_freed);
1233 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1234
1235 spin_lock(&zone->lru_lock);
1236 /*
1237 * Put back any unfreeable pages.
1238 */
1239 while (!list_empty(&page_list)) {
1240 int lru;
1241 page = lru_to_page(&page_list);
1242 VM_BUG_ON(PageLRU(page));
1243 list_del(&page->lru);
1244 if (unlikely(!page_evictable(page, NULL))) {
1245 spin_unlock_irq(&zone->lru_lock);
1246 putback_lru_page(page);
1247 spin_lock_irq(&zone->lru_lock);
1248 continue;
1249 }
1250 SetPageLRU(page);
1251 lru = page_lru(page);
1252 add_page_to_lru_list(zone, page, lru);
1253 if (is_active_lru(lru)) {
1254 int file = is_file_lru(lru);
1255 reclaim_stat->recent_rotated[file]++;
1256 }
1257 if (!pagevec_add(&pvec, page)) {
1258 spin_unlock_irq(&zone->lru_lock);
1259 __pagevec_release(&pvec);
1260 spin_lock_irq(&zone->lru_lock);
1261 }
1262 }
1263 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1264 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1265
1266 } while (nr_scanned < max_scan);
1267
1268 done:
1269 spin_unlock_irq(&zone->lru_lock);
1270 pagevec_release(&pvec);
1271 return nr_reclaimed;
1272 }
1273
1274 /*
1275 * We are about to scan this zone at a certain priority level. If that priority
1276 * level is smaller (ie: more urgent) than the previous priority, then note
1277 * that priority level within the zone. This is done so that when the next
1278 * process comes in to scan this zone, it will immediately start out at this
1279 * priority level rather than having to build up its own scanning priority.
1280 * Here, this priority affects only the reclaim-mapped threshold.
1281 */
1282 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1283 {
1284 if (priority < zone->prev_priority)
1285 zone->prev_priority = priority;
1286 }
1287
1288 /*
1289 * This moves pages from the active list to the inactive list.
1290 *
1291 * We move them the other way if the page is referenced by one or more
1292 * processes, from rmap.
1293 *
1294 * If the pages are mostly unmapped, the processing is fast and it is
1295 * appropriate to hold zone->lru_lock across the whole operation. But if
1296 * the pages are mapped, the processing is slow (page_referenced()) so we
1297 * should drop zone->lru_lock around each page. It's impossible to balance
1298 * this, so instead we remove the pages from the LRU while processing them.
1299 * It is safe to rely on PG_active against the non-LRU pages in here because
1300 * nobody will play with that bit on a non-LRU page.
1301 *
1302 * The downside is that we have to touch page->_count against each page.
1303 * But we had to alter page->flags anyway.
1304 */
1305
1306 static void move_active_pages_to_lru(struct zone *zone,
1307 struct list_head *list,
1308 enum lru_list lru)
1309 {
1310 unsigned long pgmoved = 0;
1311 struct pagevec pvec;
1312 struct page *page;
1313
1314 pagevec_init(&pvec, 1);
1315
1316 while (!list_empty(list)) {
1317 page = lru_to_page(list);
1318
1319 VM_BUG_ON(PageLRU(page));
1320 SetPageLRU(page);
1321
1322 list_move(&page->lru, &zone->lru[lru].list);
1323 mem_cgroup_add_lru_list(page, lru);
1324 pgmoved++;
1325
1326 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1327 spin_unlock_irq(&zone->lru_lock);
1328 if (buffer_heads_over_limit)
1329 pagevec_strip(&pvec);
1330 __pagevec_release(&pvec);
1331 spin_lock_irq(&zone->lru_lock);
1332 }
1333 }
1334 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1335 if (!is_active_lru(lru))
1336 __count_vm_events(PGDEACTIVATE, pgmoved);
1337 }
1338
1339 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1340 struct scan_control *sc, int priority, int file)
1341 {
1342 unsigned long nr_taken;
1343 unsigned long pgscanned;
1344 unsigned long vm_flags;
1345 LIST_HEAD(l_hold); /* The pages which were snipped off */
1346 LIST_HEAD(l_active);
1347 LIST_HEAD(l_inactive);
1348 struct page *page;
1349 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1350 unsigned long nr_rotated = 0;
1351
1352 lru_add_drain();
1353 spin_lock_irq(&zone->lru_lock);
1354 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1355 ISOLATE_ACTIVE, zone,
1356 sc->mem_cgroup, 1, file);
1357 /*
1358 * zone->pages_scanned is used for detect zone's oom
1359 * mem_cgroup remembers nr_scan by itself.
1360 */
1361 if (scanning_global_lru(sc)) {
1362 zone->pages_scanned += pgscanned;
1363 }
1364 reclaim_stat->recent_scanned[file] += nr_taken;
1365
1366 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1367 if (file)
1368 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1369 else
1370 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1371 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1372 spin_unlock_irq(&zone->lru_lock);
1373
1374 while (!list_empty(&l_hold)) {
1375 cond_resched();
1376 page = lru_to_page(&l_hold);
1377 list_del(&page->lru);
1378
1379 if (unlikely(!page_evictable(page, NULL))) {
1380 putback_lru_page(page);
1381 continue;
1382 }
1383
1384 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1385 nr_rotated++;
1386 /*
1387 * Identify referenced, file-backed active pages and
1388 * give them one more trip around the active list. So
1389 * that executable code get better chances to stay in
1390 * memory under moderate memory pressure. Anon pages
1391 * are not likely to be evicted by use-once streaming
1392 * IO, plus JVM can create lots of anon VM_EXEC pages,
1393 * so we ignore them here.
1394 */
1395 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1396 list_add(&page->lru, &l_active);
1397 continue;
1398 }
1399 }
1400
1401 ClearPageActive(page); /* we are de-activating */
1402 list_add(&page->lru, &l_inactive);
1403 }
1404
1405 /*
1406 * Move pages back to the lru list.
1407 */
1408 spin_lock_irq(&zone->lru_lock);
1409 /*
1410 * Count referenced pages from currently used mappings as rotated,
1411 * even though only some of them are actually re-activated. This
1412 * helps balance scan pressure between file and anonymous pages in
1413 * get_scan_ratio.
1414 */
1415 reclaim_stat->recent_rotated[file] += nr_rotated;
1416
1417 move_active_pages_to_lru(zone, &l_active,
1418 LRU_ACTIVE + file * LRU_FILE);
1419 move_active_pages_to_lru(zone, &l_inactive,
1420 LRU_BASE + file * LRU_FILE);
1421 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1422 spin_unlock_irq(&zone->lru_lock);
1423 }
1424
1425 static int inactive_anon_is_low_global(struct zone *zone)
1426 {
1427 unsigned long active, inactive;
1428
1429 active = zone_page_state(zone, NR_ACTIVE_ANON);
1430 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1431
1432 if (inactive * zone->inactive_ratio < active)
1433 return 1;
1434
1435 return 0;
1436 }
1437
1438 /**
1439 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1440 * @zone: zone to check
1441 * @sc: scan control of this context
1442 *
1443 * Returns true if the zone does not have enough inactive anon pages,
1444 * meaning some active anon pages need to be deactivated.
1445 */
1446 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1447 {
1448 int low;
1449
1450 if (scanning_global_lru(sc))
1451 low = inactive_anon_is_low_global(zone);
1452 else
1453 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1454 return low;
1455 }
1456
1457 static int inactive_file_is_low_global(struct zone *zone)
1458 {
1459 unsigned long active, inactive;
1460
1461 active = zone_page_state(zone, NR_ACTIVE_FILE);
1462 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1463
1464 return (active > inactive);
1465 }
1466
1467 /**
1468 * inactive_file_is_low - check if file pages need to be deactivated
1469 * @zone: zone to check
1470 * @sc: scan control of this context
1471 *
1472 * When the system is doing streaming IO, memory pressure here
1473 * ensures that active file pages get deactivated, until more
1474 * than half of the file pages are on the inactive list.
1475 *
1476 * Once we get to that situation, protect the system's working
1477 * set from being evicted by disabling active file page aging.
1478 *
1479 * This uses a different ratio than the anonymous pages, because
1480 * the page cache uses a use-once replacement algorithm.
1481 */
1482 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1483 {
1484 int low;
1485
1486 if (scanning_global_lru(sc))
1487 low = inactive_file_is_low_global(zone);
1488 else
1489 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1490 return low;
1491 }
1492
1493 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1494 int file)
1495 {
1496 if (file)
1497 return inactive_file_is_low(zone, sc);
1498 else
1499 return inactive_anon_is_low(zone, sc);
1500 }
1501
1502 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1503 struct zone *zone, struct scan_control *sc, int priority)
1504 {
1505 int file = is_file_lru(lru);
1506
1507 if (is_active_lru(lru)) {
1508 if (inactive_list_is_low(zone, sc, file))
1509 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1510 return 0;
1511 }
1512
1513 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1514 }
1515
1516 /*
1517 * Determine how aggressively the anon and file LRU lists should be
1518 * scanned. The relative value of each set of LRU lists is determined
1519 * by looking at the fraction of the pages scanned we did rotate back
1520 * onto the active list instead of evict.
1521 *
1522 * percent[0] specifies how much pressure to put on ram/swap backed
1523 * memory, while percent[1] determines pressure on the file LRUs.
1524 */
1525 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1526 unsigned long *percent)
1527 {
1528 unsigned long anon, file, free;
1529 unsigned long anon_prio, file_prio;
1530 unsigned long ap, fp;
1531 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1532
1533 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1534 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1535 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1536 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1537
1538 if (scanning_global_lru(sc)) {
1539 free = zone_page_state(zone, NR_FREE_PAGES);
1540 /* If we have very few page cache pages,
1541 force-scan anon pages. */
1542 if (unlikely(file + free <= high_wmark_pages(zone))) {
1543 percent[0] = 100;
1544 percent[1] = 0;
1545 return;
1546 }
1547 }
1548
1549 /*
1550 * OK, so we have swap space and a fair amount of page cache
1551 * pages. We use the recently rotated / recently scanned
1552 * ratios to determine how valuable each cache is.
1553 *
1554 * Because workloads change over time (and to avoid overflow)
1555 * we keep these statistics as a floating average, which ends
1556 * up weighing recent references more than old ones.
1557 *
1558 * anon in [0], file in [1]
1559 */
1560 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1561 spin_lock_irq(&zone->lru_lock);
1562 reclaim_stat->recent_scanned[0] /= 2;
1563 reclaim_stat->recent_rotated[0] /= 2;
1564 spin_unlock_irq(&zone->lru_lock);
1565 }
1566
1567 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1568 spin_lock_irq(&zone->lru_lock);
1569 reclaim_stat->recent_scanned[1] /= 2;
1570 reclaim_stat->recent_rotated[1] /= 2;
1571 spin_unlock_irq(&zone->lru_lock);
1572 }
1573
1574 /*
1575 * With swappiness at 100, anonymous and file have the same priority.
1576 * This scanning priority is essentially the inverse of IO cost.
1577 */
1578 anon_prio = sc->swappiness;
1579 file_prio = 200 - sc->swappiness;
1580
1581 /*
1582 * The amount of pressure on anon vs file pages is inversely
1583 * proportional to the fraction of recently scanned pages on
1584 * each list that were recently referenced and in active use.
1585 */
1586 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1587 ap /= reclaim_stat->recent_rotated[0] + 1;
1588
1589 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1590 fp /= reclaim_stat->recent_rotated[1] + 1;
1591
1592 /* Normalize to percentages */
1593 percent[0] = 100 * ap / (ap + fp + 1);
1594 percent[1] = 100 - percent[0];
1595 }
1596
1597 /*
1598 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1599 * until we collected @swap_cluster_max pages to scan.
1600 */
1601 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1602 unsigned long *nr_saved_scan)
1603 {
1604 unsigned long nr;
1605
1606 *nr_saved_scan += nr_to_scan;
1607 nr = *nr_saved_scan;
1608
1609 if (nr >= SWAP_CLUSTER_MAX)
1610 *nr_saved_scan = 0;
1611 else
1612 nr = 0;
1613
1614 return nr;
1615 }
1616
1617 /*
1618 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1619 */
1620 static void shrink_zone(int priority, struct zone *zone,
1621 struct scan_control *sc)
1622 {
1623 unsigned long nr[NR_LRU_LISTS];
1624 unsigned long nr_to_scan;
1625 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1626 enum lru_list l;
1627 unsigned long nr_reclaimed = sc->nr_reclaimed;
1628 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1629 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1630 int noswap = 0;
1631
1632 /* If we have no swap space, do not bother scanning anon pages. */
1633 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1634 noswap = 1;
1635 percent[0] = 0;
1636 percent[1] = 100;
1637 } else
1638 get_scan_ratio(zone, sc, percent);
1639
1640 for_each_evictable_lru(l) {
1641 int file = is_file_lru(l);
1642 unsigned long scan;
1643
1644 scan = zone_nr_lru_pages(zone, sc, l);
1645 if (priority || noswap) {
1646 scan >>= priority;
1647 scan = (scan * percent[file]) / 100;
1648 }
1649 nr[l] = nr_scan_try_batch(scan,
1650 &reclaim_stat->nr_saved_scan[l]);
1651 }
1652
1653 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1654 nr[LRU_INACTIVE_FILE]) {
1655 for_each_evictable_lru(l) {
1656 if (nr[l]) {
1657 nr_to_scan = min_t(unsigned long,
1658 nr[l], SWAP_CLUSTER_MAX);
1659 nr[l] -= nr_to_scan;
1660
1661 nr_reclaimed += shrink_list(l, nr_to_scan,
1662 zone, sc, priority);
1663 }
1664 }
1665 /*
1666 * On large memory systems, scan >> priority can become
1667 * really large. This is fine for the starting priority;
1668 * we want to put equal scanning pressure on each zone.
1669 * However, if the VM has a harder time of freeing pages,
1670 * with multiple processes reclaiming pages, the total
1671 * freeing target can get unreasonably large.
1672 */
1673 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1674 break;
1675 }
1676
1677 sc->nr_reclaimed = nr_reclaimed;
1678
1679 /*
1680 * Even if we did not try to evict anon pages at all, we want to
1681 * rebalance the anon lru active/inactive ratio.
1682 */
1683 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1684 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1685
1686 throttle_vm_writeout(sc->gfp_mask);
1687 }
1688
1689 /*
1690 * This is the direct reclaim path, for page-allocating processes. We only
1691 * try to reclaim pages from zones which will satisfy the caller's allocation
1692 * request.
1693 *
1694 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1695 * Because:
1696 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1697 * allocation or
1698 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1699 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1700 * zone defense algorithm.
1701 *
1702 * If a zone is deemed to be full of pinned pages then just give it a light
1703 * scan then give up on it.
1704 */
1705 static void shrink_zones(int priority, struct zonelist *zonelist,
1706 struct scan_control *sc)
1707 {
1708 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1709 struct zoneref *z;
1710 struct zone *zone;
1711
1712 sc->all_unreclaimable = 1;
1713 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1714 sc->nodemask) {
1715 if (!populated_zone(zone))
1716 continue;
1717 /*
1718 * Take care memory controller reclaiming has small influence
1719 * to global LRU.
1720 */
1721 if (scanning_global_lru(sc)) {
1722 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1723 continue;
1724 note_zone_scanning_priority(zone, priority);
1725
1726 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1727 continue; /* Let kswapd poll it */
1728 sc->all_unreclaimable = 0;
1729 } else {
1730 /*
1731 * Ignore cpuset limitation here. We just want to reduce
1732 * # of used pages by us regardless of memory shortage.
1733 */
1734 sc->all_unreclaimable = 0;
1735 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1736 priority);
1737 }
1738
1739 shrink_zone(priority, zone, sc);
1740 }
1741 }
1742
1743 /*
1744 * This is the main entry point to direct page reclaim.
1745 *
1746 * If a full scan of the inactive list fails to free enough memory then we
1747 * are "out of memory" and something needs to be killed.
1748 *
1749 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1750 * high - the zone may be full of dirty or under-writeback pages, which this
1751 * caller can't do much about. We kick the writeback threads and take explicit
1752 * naps in the hope that some of these pages can be written. But if the
1753 * allocating task holds filesystem locks which prevent writeout this might not
1754 * work, and the allocation attempt will fail.
1755 *
1756 * returns: 0, if no pages reclaimed
1757 * else, the number of pages reclaimed
1758 */
1759 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1760 struct scan_control *sc)
1761 {
1762 int priority;
1763 unsigned long ret = 0;
1764 unsigned long total_scanned = 0;
1765 struct reclaim_state *reclaim_state = current->reclaim_state;
1766 unsigned long lru_pages = 0;
1767 struct zoneref *z;
1768 struct zone *zone;
1769 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1770 unsigned long writeback_threshold;
1771
1772 get_mems_allowed();
1773 delayacct_freepages_start();
1774
1775 if (scanning_global_lru(sc))
1776 count_vm_event(ALLOCSTALL);
1777 /*
1778 * mem_cgroup will not do shrink_slab.
1779 */
1780 if (scanning_global_lru(sc)) {
1781 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1782
1783 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1784 continue;
1785
1786 lru_pages += zone_reclaimable_pages(zone);
1787 }
1788 }
1789
1790 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1791 sc->nr_scanned = 0;
1792 if (!priority)
1793 disable_swap_token();
1794 shrink_zones(priority, zonelist, sc);
1795 /*
1796 * Don't shrink slabs when reclaiming memory from
1797 * over limit cgroups
1798 */
1799 if (scanning_global_lru(sc)) {
1800 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1801 if (reclaim_state) {
1802 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1803 reclaim_state->reclaimed_slab = 0;
1804 }
1805 }
1806 total_scanned += sc->nr_scanned;
1807 if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1808 ret = sc->nr_reclaimed;
1809 goto out;
1810 }
1811
1812 /*
1813 * Try to write back as many pages as we just scanned. This
1814 * tends to cause slow streaming writers to write data to the
1815 * disk smoothly, at the dirtying rate, which is nice. But
1816 * that's undesirable in laptop mode, where we *want* lumpy
1817 * writeout. So in laptop mode, write out the whole world.
1818 */
1819 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1820 if (total_scanned > writeback_threshold) {
1821 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1822 sc->may_writepage = 1;
1823 }
1824
1825 /* Take a nap, wait for some writeback to complete */
1826 if (!sc->hibernation_mode && sc->nr_scanned &&
1827 priority < DEF_PRIORITY - 2)
1828 congestion_wait(BLK_RW_ASYNC, HZ/10);
1829 }
1830 /* top priority shrink_zones still had more to do? don't OOM, then */
1831 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1832 ret = sc->nr_reclaimed;
1833 out:
1834 /*
1835 * Now that we've scanned all the zones at this priority level, note
1836 * that level within the zone so that the next thread which performs
1837 * scanning of this zone will immediately start out at this priority
1838 * level. This affects only the decision whether or not to bring
1839 * mapped pages onto the inactive list.
1840 */
1841 if (priority < 0)
1842 priority = 0;
1843
1844 if (scanning_global_lru(sc)) {
1845 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1846
1847 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1848 continue;
1849
1850 zone->prev_priority = priority;
1851 }
1852 } else
1853 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1854
1855 delayacct_freepages_end();
1856 put_mems_allowed();
1857
1858 return ret;
1859 }
1860
1861 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1862 gfp_t gfp_mask, nodemask_t *nodemask)
1863 {
1864 struct scan_control sc = {
1865 .gfp_mask = gfp_mask,
1866 .may_writepage = !laptop_mode,
1867 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1868 .may_unmap = 1,
1869 .may_swap = 1,
1870 .swappiness = vm_swappiness,
1871 .order = order,
1872 .mem_cgroup = NULL,
1873 .isolate_pages = isolate_pages_global,
1874 .nodemask = nodemask,
1875 };
1876
1877 return do_try_to_free_pages(zonelist, &sc);
1878 }
1879
1880 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1881
1882 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1883 gfp_t gfp_mask, bool noswap,
1884 unsigned int swappiness,
1885 struct zone *zone, int nid)
1886 {
1887 struct scan_control sc = {
1888 .may_writepage = !laptop_mode,
1889 .may_unmap = 1,
1890 .may_swap = !noswap,
1891 .swappiness = swappiness,
1892 .order = 0,
1893 .mem_cgroup = mem,
1894 .isolate_pages = mem_cgroup_isolate_pages,
1895 };
1896 nodemask_t nm = nodemask_of_node(nid);
1897
1898 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1899 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1900 sc.nodemask = &nm;
1901 sc.nr_reclaimed = 0;
1902 sc.nr_scanned = 0;
1903 /*
1904 * NOTE: Although we can get the priority field, using it
1905 * here is not a good idea, since it limits the pages we can scan.
1906 * if we don't reclaim here, the shrink_zone from balance_pgdat
1907 * will pick up pages from other mem cgroup's as well. We hack
1908 * the priority and make it zero.
1909 */
1910 shrink_zone(0, zone, &sc);
1911 return sc.nr_reclaimed;
1912 }
1913
1914 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1915 gfp_t gfp_mask,
1916 bool noswap,
1917 unsigned int swappiness)
1918 {
1919 struct zonelist *zonelist;
1920 struct scan_control sc = {
1921 .may_writepage = !laptop_mode,
1922 .may_unmap = 1,
1923 .may_swap = !noswap,
1924 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1925 .swappiness = swappiness,
1926 .order = 0,
1927 .mem_cgroup = mem_cont,
1928 .isolate_pages = mem_cgroup_isolate_pages,
1929 .nodemask = NULL, /* we don't care the placement */
1930 };
1931
1932 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1933 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1934 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1935 return do_try_to_free_pages(zonelist, &sc);
1936 }
1937 #endif
1938
1939 /* is kswapd sleeping prematurely? */
1940 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1941 {
1942 int i;
1943
1944 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1945 if (remaining)
1946 return 1;
1947
1948 /* If after HZ/10, a zone is below the high mark, it's premature */
1949 for (i = 0; i < pgdat->nr_zones; i++) {
1950 struct zone *zone = pgdat->node_zones + i;
1951
1952 if (!populated_zone(zone))
1953 continue;
1954
1955 if (zone->all_unreclaimable)
1956 continue;
1957
1958 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1959 0, 0))
1960 return 1;
1961 }
1962
1963 return 0;
1964 }
1965
1966 /*
1967 * For kswapd, balance_pgdat() will work across all this node's zones until
1968 * they are all at high_wmark_pages(zone).
1969 *
1970 * Returns the number of pages which were actually freed.
1971 *
1972 * There is special handling here for zones which are full of pinned pages.
1973 * This can happen if the pages are all mlocked, or if they are all used by
1974 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1975 * What we do is to detect the case where all pages in the zone have been
1976 * scanned twice and there has been zero successful reclaim. Mark the zone as
1977 * dead and from now on, only perform a short scan. Basically we're polling
1978 * the zone for when the problem goes away.
1979 *
1980 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1981 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1982 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1983 * lower zones regardless of the number of free pages in the lower zones. This
1984 * interoperates with the page allocator fallback scheme to ensure that aging
1985 * of pages is balanced across the zones.
1986 */
1987 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1988 {
1989 int all_zones_ok;
1990 int priority;
1991 int i;
1992 unsigned long total_scanned;
1993 struct reclaim_state *reclaim_state = current->reclaim_state;
1994 struct scan_control sc = {
1995 .gfp_mask = GFP_KERNEL,
1996 .may_unmap = 1,
1997 .may_swap = 1,
1998 /*
1999 * kswapd doesn't want to be bailed out while reclaim. because
2000 * we want to put equal scanning pressure on each zone.
2001 */
2002 .nr_to_reclaim = ULONG_MAX,
2003 .swappiness = vm_swappiness,
2004 .order = order,
2005 .mem_cgroup = NULL,
2006 .isolate_pages = isolate_pages_global,
2007 };
2008 /*
2009 * temp_priority is used to remember the scanning priority at which
2010 * this zone was successfully refilled to
2011 * free_pages == high_wmark_pages(zone).
2012 */
2013 int temp_priority[MAX_NR_ZONES];
2014
2015 loop_again:
2016 total_scanned = 0;
2017 sc.nr_reclaimed = 0;
2018 sc.may_writepage = !laptop_mode;
2019 count_vm_event(PAGEOUTRUN);
2020
2021 for (i = 0; i < pgdat->nr_zones; i++)
2022 temp_priority[i] = DEF_PRIORITY;
2023
2024 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2025 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2026 unsigned long lru_pages = 0;
2027 int has_under_min_watermark_zone = 0;
2028
2029 /* The swap token gets in the way of swapout... */
2030 if (!priority)
2031 disable_swap_token();
2032
2033 all_zones_ok = 1;
2034
2035 /*
2036 * Scan in the highmem->dma direction for the highest
2037 * zone which needs scanning
2038 */
2039 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2040 struct zone *zone = pgdat->node_zones + i;
2041
2042 if (!populated_zone(zone))
2043 continue;
2044
2045 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2046 continue;
2047
2048 /*
2049 * Do some background aging of the anon list, to give
2050 * pages a chance to be referenced before reclaiming.
2051 */
2052 if (inactive_anon_is_low(zone, &sc))
2053 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2054 &sc, priority, 0);
2055
2056 if (!zone_watermark_ok(zone, order,
2057 high_wmark_pages(zone), 0, 0)) {
2058 end_zone = i;
2059 break;
2060 }
2061 }
2062 if (i < 0)
2063 goto out;
2064
2065 for (i = 0; i <= end_zone; i++) {
2066 struct zone *zone = pgdat->node_zones + i;
2067
2068 lru_pages += zone_reclaimable_pages(zone);
2069 }
2070
2071 /*
2072 * Now scan the zone in the dma->highmem direction, stopping
2073 * at the last zone which needs scanning.
2074 *
2075 * We do this because the page allocator works in the opposite
2076 * direction. This prevents the page allocator from allocating
2077 * pages behind kswapd's direction of progress, which would
2078 * cause too much scanning of the lower zones.
2079 */
2080 for (i = 0; i <= end_zone; i++) {
2081 struct zone *zone = pgdat->node_zones + i;
2082 int nr_slab;
2083 int nid, zid;
2084
2085 if (!populated_zone(zone))
2086 continue;
2087
2088 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2089 continue;
2090
2091 temp_priority[i] = priority;
2092 sc.nr_scanned = 0;
2093 note_zone_scanning_priority(zone, priority);
2094
2095 nid = pgdat->node_id;
2096 zid = zone_idx(zone);
2097 /*
2098 * Call soft limit reclaim before calling shrink_zone.
2099 * For now we ignore the return value
2100 */
2101 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2102 nid, zid);
2103 /*
2104 * We put equal pressure on every zone, unless one
2105 * zone has way too many pages free already.
2106 */
2107 if (!zone_watermark_ok(zone, order,
2108 8*high_wmark_pages(zone), end_zone, 0))
2109 shrink_zone(priority, zone, &sc);
2110 reclaim_state->reclaimed_slab = 0;
2111 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2112 lru_pages);
2113 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2114 total_scanned += sc.nr_scanned;
2115 if (zone->all_unreclaimable)
2116 continue;
2117 if (nr_slab == 0 &&
2118 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2119 zone->all_unreclaimable = 1;
2120 /*
2121 * If we've done a decent amount of scanning and
2122 * the reclaim ratio is low, start doing writepage
2123 * even in laptop mode
2124 */
2125 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2126 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2127 sc.may_writepage = 1;
2128
2129 if (!zone_watermark_ok(zone, order,
2130 high_wmark_pages(zone), end_zone, 0)) {
2131 all_zones_ok = 0;
2132 /*
2133 * We are still under min water mark. This
2134 * means that we have a GFP_ATOMIC allocation
2135 * failure risk. Hurry up!
2136 */
2137 if (!zone_watermark_ok(zone, order,
2138 min_wmark_pages(zone), end_zone, 0))
2139 has_under_min_watermark_zone = 1;
2140 }
2141
2142 }
2143 if (all_zones_ok)
2144 break; /* kswapd: all done */
2145 /*
2146 * OK, kswapd is getting into trouble. Take a nap, then take
2147 * another pass across the zones.
2148 */
2149 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2150 if (has_under_min_watermark_zone)
2151 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2152 else
2153 congestion_wait(BLK_RW_ASYNC, HZ/10);
2154 }
2155
2156 /*
2157 * We do this so kswapd doesn't build up large priorities for
2158 * example when it is freeing in parallel with allocators. It
2159 * matches the direct reclaim path behaviour in terms of impact
2160 * on zone->*_priority.
2161 */
2162 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2163 break;
2164 }
2165 out:
2166 /*
2167 * Note within each zone the priority level at which this zone was
2168 * brought into a happy state. So that the next thread which scans this
2169 * zone will start out at that priority level.
2170 */
2171 for (i = 0; i < pgdat->nr_zones; i++) {
2172 struct zone *zone = pgdat->node_zones + i;
2173
2174 zone->prev_priority = temp_priority[i];
2175 }
2176 if (!all_zones_ok) {
2177 cond_resched();
2178
2179 try_to_freeze();
2180
2181 /*
2182 * Fragmentation may mean that the system cannot be
2183 * rebalanced for high-order allocations in all zones.
2184 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2185 * it means the zones have been fully scanned and are still
2186 * not balanced. For high-order allocations, there is
2187 * little point trying all over again as kswapd may
2188 * infinite loop.
2189 *
2190 * Instead, recheck all watermarks at order-0 as they
2191 * are the most important. If watermarks are ok, kswapd will go
2192 * back to sleep. High-order users can still perform direct
2193 * reclaim if they wish.
2194 */
2195 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2196 order = sc.order = 0;
2197
2198 goto loop_again;
2199 }
2200
2201 return sc.nr_reclaimed;
2202 }
2203
2204 /*
2205 * The background pageout daemon, started as a kernel thread
2206 * from the init process.
2207 *
2208 * This basically trickles out pages so that we have _some_
2209 * free memory available even if there is no other activity
2210 * that frees anything up. This is needed for things like routing
2211 * etc, where we otherwise might have all activity going on in
2212 * asynchronous contexts that cannot page things out.
2213 *
2214 * If there are applications that are active memory-allocators
2215 * (most normal use), this basically shouldn't matter.
2216 */
2217 static int kswapd(void *p)
2218 {
2219 unsigned long order;
2220 pg_data_t *pgdat = (pg_data_t*)p;
2221 struct task_struct *tsk = current;
2222 DEFINE_WAIT(wait);
2223 struct reclaim_state reclaim_state = {
2224 .reclaimed_slab = 0,
2225 };
2226 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2227
2228 lockdep_set_current_reclaim_state(GFP_KERNEL);
2229
2230 if (!cpumask_empty(cpumask))
2231 set_cpus_allowed_ptr(tsk, cpumask);
2232 current->reclaim_state = &reclaim_state;
2233
2234 /*
2235 * Tell the memory management that we're a "memory allocator",
2236 * and that if we need more memory we should get access to it
2237 * regardless (see "__alloc_pages()"). "kswapd" should
2238 * never get caught in the normal page freeing logic.
2239 *
2240 * (Kswapd normally doesn't need memory anyway, but sometimes
2241 * you need a small amount of memory in order to be able to
2242 * page out something else, and this flag essentially protects
2243 * us from recursively trying to free more memory as we're
2244 * trying to free the first piece of memory in the first place).
2245 */
2246 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2247 set_freezable();
2248
2249 order = 0;
2250 for ( ; ; ) {
2251 unsigned long new_order;
2252 int ret;
2253
2254 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2255 new_order = pgdat->kswapd_max_order;
2256 pgdat->kswapd_max_order = 0;
2257 if (order < new_order) {
2258 /*
2259 * Don't sleep if someone wants a larger 'order'
2260 * allocation
2261 */
2262 order = new_order;
2263 } else {
2264 if (!freezing(current) && !kthread_should_stop()) {
2265 long remaining = 0;
2266
2267 /* Try to sleep for a short interval */
2268 if (!sleeping_prematurely(pgdat, order, remaining)) {
2269 remaining = schedule_timeout(HZ/10);
2270 finish_wait(&pgdat->kswapd_wait, &wait);
2271 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2272 }
2273
2274 /*
2275 * After a short sleep, check if it was a
2276 * premature sleep. If not, then go fully
2277 * to sleep until explicitly woken up
2278 */
2279 if (!sleeping_prematurely(pgdat, order, remaining))
2280 schedule();
2281 else {
2282 if (remaining)
2283 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2284 else
2285 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2286 }
2287 }
2288
2289 order = pgdat->kswapd_max_order;
2290 }
2291 finish_wait(&pgdat->kswapd_wait, &wait);
2292
2293 ret = try_to_freeze();
2294 if (kthread_should_stop())
2295 break;
2296
2297 /*
2298 * We can speed up thawing tasks if we don't call balance_pgdat
2299 * after returning from the refrigerator
2300 */
2301 if (!ret)
2302 balance_pgdat(pgdat, order);
2303 }
2304 return 0;
2305 }
2306
2307 /*
2308 * A zone is low on free memory, so wake its kswapd task to service it.
2309 */
2310 void wakeup_kswapd(struct zone *zone, int order)
2311 {
2312 pg_data_t *pgdat;
2313
2314 if (!populated_zone(zone))
2315 return;
2316
2317 pgdat = zone->zone_pgdat;
2318 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2319 return;
2320 if (pgdat->kswapd_max_order < order)
2321 pgdat->kswapd_max_order = order;
2322 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2323 return;
2324 if (!waitqueue_active(&pgdat->kswapd_wait))
2325 return;
2326 wake_up_interruptible(&pgdat->kswapd_wait);
2327 }
2328
2329 /*
2330 * The reclaimable count would be mostly accurate.
2331 * The less reclaimable pages may be
2332 * - mlocked pages, which will be moved to unevictable list when encountered
2333 * - mapped pages, which may require several travels to be reclaimed
2334 * - dirty pages, which is not "instantly" reclaimable
2335 */
2336 unsigned long global_reclaimable_pages(void)
2337 {
2338 int nr;
2339
2340 nr = global_page_state(NR_ACTIVE_FILE) +
2341 global_page_state(NR_INACTIVE_FILE);
2342
2343 if (nr_swap_pages > 0)
2344 nr += global_page_state(NR_ACTIVE_ANON) +
2345 global_page_state(NR_INACTIVE_ANON);
2346
2347 return nr;
2348 }
2349
2350 unsigned long zone_reclaimable_pages(struct zone *zone)
2351 {
2352 int nr;
2353
2354 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2355 zone_page_state(zone, NR_INACTIVE_FILE);
2356
2357 if (nr_swap_pages > 0)
2358 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2359 zone_page_state(zone, NR_INACTIVE_ANON);
2360
2361 return nr;
2362 }
2363
2364 #ifdef CONFIG_HIBERNATION
2365 /*
2366 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2367 * freed pages.
2368 *
2369 * Rather than trying to age LRUs the aim is to preserve the overall
2370 * LRU order by reclaiming preferentially
2371 * inactive > active > active referenced > active mapped
2372 */
2373 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2374 {
2375 struct reclaim_state reclaim_state;
2376 struct scan_control sc = {
2377 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2378 .may_swap = 1,
2379 .may_unmap = 1,
2380 .may_writepage = 1,
2381 .nr_to_reclaim = nr_to_reclaim,
2382 .hibernation_mode = 1,
2383 .swappiness = vm_swappiness,
2384 .order = 0,
2385 .isolate_pages = isolate_pages_global,
2386 };
2387 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2388 struct task_struct *p = current;
2389 unsigned long nr_reclaimed;
2390
2391 p->flags |= PF_MEMALLOC;
2392 lockdep_set_current_reclaim_state(sc.gfp_mask);
2393 reclaim_state.reclaimed_slab = 0;
2394 p->reclaim_state = &reclaim_state;
2395
2396 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2397
2398 p->reclaim_state = NULL;
2399 lockdep_clear_current_reclaim_state();
2400 p->flags &= ~PF_MEMALLOC;
2401
2402 return nr_reclaimed;
2403 }
2404 #endif /* CONFIG_HIBERNATION */
2405
2406 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2407 not required for correctness. So if the last cpu in a node goes
2408 away, we get changed to run anywhere: as the first one comes back,
2409 restore their cpu bindings. */
2410 static int __devinit cpu_callback(struct notifier_block *nfb,
2411 unsigned long action, void *hcpu)
2412 {
2413 int nid;
2414
2415 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2416 for_each_node_state(nid, N_HIGH_MEMORY) {
2417 pg_data_t *pgdat = NODE_DATA(nid);
2418 const struct cpumask *mask;
2419
2420 mask = cpumask_of_node(pgdat->node_id);
2421
2422 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2423 /* One of our CPUs online: restore mask */
2424 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2425 }
2426 }
2427 return NOTIFY_OK;
2428 }
2429
2430 /*
2431 * This kswapd start function will be called by init and node-hot-add.
2432 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2433 */
2434 int kswapd_run(int nid)
2435 {
2436 pg_data_t *pgdat = NODE_DATA(nid);
2437 int ret = 0;
2438
2439 if (pgdat->kswapd)
2440 return 0;
2441
2442 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2443 if (IS_ERR(pgdat->kswapd)) {
2444 /* failure at boot is fatal */
2445 BUG_ON(system_state == SYSTEM_BOOTING);
2446 printk("Failed to start kswapd on node %d\n",nid);
2447 ret = -1;
2448 }
2449 return ret;
2450 }
2451
2452 /*
2453 * Called by memory hotplug when all memory in a node is offlined.
2454 */
2455 void kswapd_stop(int nid)
2456 {
2457 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2458
2459 if (kswapd)
2460 kthread_stop(kswapd);
2461 }
2462
2463 static int __init kswapd_init(void)
2464 {
2465 int nid;
2466
2467 swap_setup();
2468 for_each_node_state(nid, N_HIGH_MEMORY)
2469 kswapd_run(nid);
2470 hotcpu_notifier(cpu_callback, 0);
2471 return 0;
2472 }
2473
2474 module_init(kswapd_init)
2475
2476 #ifdef CONFIG_NUMA
2477 /*
2478 * Zone reclaim mode
2479 *
2480 * If non-zero call zone_reclaim when the number of free pages falls below
2481 * the watermarks.
2482 */
2483 int zone_reclaim_mode __read_mostly;
2484
2485 #define RECLAIM_OFF 0
2486 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2487 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2488 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2489
2490 /*
2491 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2492 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2493 * a zone.
2494 */
2495 #define ZONE_RECLAIM_PRIORITY 4
2496
2497 /*
2498 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2499 * occur.
2500 */
2501 int sysctl_min_unmapped_ratio = 1;
2502
2503 /*
2504 * If the number of slab pages in a zone grows beyond this percentage then
2505 * slab reclaim needs to occur.
2506 */
2507 int sysctl_min_slab_ratio = 5;
2508
2509 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2510 {
2511 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2512 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2513 zone_page_state(zone, NR_ACTIVE_FILE);
2514
2515 /*
2516 * It's possible for there to be more file mapped pages than
2517 * accounted for by the pages on the file LRU lists because
2518 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2519 */
2520 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2521 }
2522
2523 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2524 static long zone_pagecache_reclaimable(struct zone *zone)
2525 {
2526 long nr_pagecache_reclaimable;
2527 long delta = 0;
2528
2529 /*
2530 * If RECLAIM_SWAP is set, then all file pages are considered
2531 * potentially reclaimable. Otherwise, we have to worry about
2532 * pages like swapcache and zone_unmapped_file_pages() provides
2533 * a better estimate
2534 */
2535 if (zone_reclaim_mode & RECLAIM_SWAP)
2536 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2537 else
2538 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2539
2540 /* If we can't clean pages, remove dirty pages from consideration */
2541 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2542 delta += zone_page_state(zone, NR_FILE_DIRTY);
2543
2544 /* Watch for any possible underflows due to delta */
2545 if (unlikely(delta > nr_pagecache_reclaimable))
2546 delta = nr_pagecache_reclaimable;
2547
2548 return nr_pagecache_reclaimable - delta;
2549 }
2550
2551 /*
2552 * Try to free up some pages from this zone through reclaim.
2553 */
2554 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2555 {
2556 /* Minimum pages needed in order to stay on node */
2557 const unsigned long nr_pages = 1 << order;
2558 struct task_struct *p = current;
2559 struct reclaim_state reclaim_state;
2560 int priority;
2561 struct scan_control sc = {
2562 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2563 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2564 .may_swap = 1,
2565 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2566 SWAP_CLUSTER_MAX),
2567 .gfp_mask = gfp_mask,
2568 .swappiness = vm_swappiness,
2569 .order = order,
2570 .isolate_pages = isolate_pages_global,
2571 };
2572 unsigned long slab_reclaimable;
2573
2574 disable_swap_token();
2575 cond_resched();
2576 /*
2577 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2578 * and we also need to be able to write out pages for RECLAIM_WRITE
2579 * and RECLAIM_SWAP.
2580 */
2581 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2582 lockdep_set_current_reclaim_state(gfp_mask);
2583 reclaim_state.reclaimed_slab = 0;
2584 p->reclaim_state = &reclaim_state;
2585
2586 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2587 /*
2588 * Free memory by calling shrink zone with increasing
2589 * priorities until we have enough memory freed.
2590 */
2591 priority = ZONE_RECLAIM_PRIORITY;
2592 do {
2593 note_zone_scanning_priority(zone, priority);
2594 shrink_zone(priority, zone, &sc);
2595 priority--;
2596 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2597 }
2598
2599 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2600 if (slab_reclaimable > zone->min_slab_pages) {
2601 /*
2602 * shrink_slab() does not currently allow us to determine how
2603 * many pages were freed in this zone. So we take the current
2604 * number of slab pages and shake the slab until it is reduced
2605 * by the same nr_pages that we used for reclaiming unmapped
2606 * pages.
2607 *
2608 * Note that shrink_slab will free memory on all zones and may
2609 * take a long time.
2610 */
2611 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2612 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2613 slab_reclaimable - nr_pages)
2614 ;
2615
2616 /*
2617 * Update nr_reclaimed by the number of slab pages we
2618 * reclaimed from this zone.
2619 */
2620 sc.nr_reclaimed += slab_reclaimable -
2621 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2622 }
2623
2624 p->reclaim_state = NULL;
2625 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2626 lockdep_clear_current_reclaim_state();
2627 return sc.nr_reclaimed >= nr_pages;
2628 }
2629
2630 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2631 {
2632 int node_id;
2633 int ret;
2634
2635 /*
2636 * Zone reclaim reclaims unmapped file backed pages and
2637 * slab pages if we are over the defined limits.
2638 *
2639 * A small portion of unmapped file backed pages is needed for
2640 * file I/O otherwise pages read by file I/O will be immediately
2641 * thrown out if the zone is overallocated. So we do not reclaim
2642 * if less than a specified percentage of the zone is used by
2643 * unmapped file backed pages.
2644 */
2645 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2646 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2647 return ZONE_RECLAIM_FULL;
2648
2649 if (zone->all_unreclaimable)
2650 return ZONE_RECLAIM_FULL;
2651
2652 /*
2653 * Do not scan if the allocation should not be delayed.
2654 */
2655 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2656 return ZONE_RECLAIM_NOSCAN;
2657
2658 /*
2659 * Only run zone reclaim on the local zone or on zones that do not
2660 * have associated processors. This will favor the local processor
2661 * over remote processors and spread off node memory allocations
2662 * as wide as possible.
2663 */
2664 node_id = zone_to_nid(zone);
2665 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2666 return ZONE_RECLAIM_NOSCAN;
2667
2668 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2669 return ZONE_RECLAIM_NOSCAN;
2670
2671 ret = __zone_reclaim(zone, gfp_mask, order);
2672 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2673
2674 if (!ret)
2675 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2676
2677 return ret;
2678 }
2679 #endif
2680
2681 /*
2682 * page_evictable - test whether a page is evictable
2683 * @page: the page to test
2684 * @vma: the VMA in which the page is or will be mapped, may be NULL
2685 *
2686 * Test whether page is evictable--i.e., should be placed on active/inactive
2687 * lists vs unevictable list. The vma argument is !NULL when called from the
2688 * fault path to determine how to instantate a new page.
2689 *
2690 * Reasons page might not be evictable:
2691 * (1) page's mapping marked unevictable
2692 * (2) page is part of an mlocked VMA
2693 *
2694 */
2695 int page_evictable(struct page *page, struct vm_area_struct *vma)
2696 {
2697
2698 if (mapping_unevictable(page_mapping(page)))
2699 return 0;
2700
2701 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2702 return 0;
2703
2704 return 1;
2705 }
2706
2707 /**
2708 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2709 * @page: page to check evictability and move to appropriate lru list
2710 * @zone: zone page is in
2711 *
2712 * Checks a page for evictability and moves the page to the appropriate
2713 * zone lru list.
2714 *
2715 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2716 * have PageUnevictable set.
2717 */
2718 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2719 {
2720 VM_BUG_ON(PageActive(page));
2721
2722 retry:
2723 ClearPageUnevictable(page);
2724 if (page_evictable(page, NULL)) {
2725 enum lru_list l = page_lru_base_type(page);
2726
2727 __dec_zone_state(zone, NR_UNEVICTABLE);
2728 list_move(&page->lru, &zone->lru[l].list);
2729 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2730 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2731 __count_vm_event(UNEVICTABLE_PGRESCUED);
2732 } else {
2733 /*
2734 * rotate unevictable list
2735 */
2736 SetPageUnevictable(page);
2737 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2738 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2739 if (page_evictable(page, NULL))
2740 goto retry;
2741 }
2742 }
2743
2744 /**
2745 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2746 * @mapping: struct address_space to scan for evictable pages
2747 *
2748 * Scan all pages in mapping. Check unevictable pages for
2749 * evictability and move them to the appropriate zone lru list.
2750 */
2751 void scan_mapping_unevictable_pages(struct address_space *mapping)
2752 {
2753 pgoff_t next = 0;
2754 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2755 PAGE_CACHE_SHIFT;
2756 struct zone *zone;
2757 struct pagevec pvec;
2758
2759 if (mapping->nrpages == 0)
2760 return;
2761
2762 pagevec_init(&pvec, 0);
2763 while (next < end &&
2764 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2765 int i;
2766 int pg_scanned = 0;
2767
2768 zone = NULL;
2769
2770 for (i = 0; i < pagevec_count(&pvec); i++) {
2771 struct page *page = pvec.pages[i];
2772 pgoff_t page_index = page->index;
2773 struct zone *pagezone = page_zone(page);
2774
2775 pg_scanned++;
2776 if (page_index > next)
2777 next = page_index;
2778 next++;
2779
2780 if (pagezone != zone) {
2781 if (zone)
2782 spin_unlock_irq(&zone->lru_lock);
2783 zone = pagezone;
2784 spin_lock_irq(&zone->lru_lock);
2785 }
2786
2787 if (PageLRU(page) && PageUnevictable(page))
2788 check_move_unevictable_page(page, zone);
2789 }
2790 if (zone)
2791 spin_unlock_irq(&zone->lru_lock);
2792 pagevec_release(&pvec);
2793
2794 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2795 }
2796
2797 }
2798
2799 /**
2800 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2801 * @zone - zone of which to scan the unevictable list
2802 *
2803 * Scan @zone's unevictable LRU lists to check for pages that have become
2804 * evictable. Move those that have to @zone's inactive list where they
2805 * become candidates for reclaim, unless shrink_inactive_zone() decides
2806 * to reactivate them. Pages that are still unevictable are rotated
2807 * back onto @zone's unevictable list.
2808 */
2809 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2810 static void scan_zone_unevictable_pages(struct zone *zone)
2811 {
2812 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2813 unsigned long scan;
2814 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2815
2816 while (nr_to_scan > 0) {
2817 unsigned long batch_size = min(nr_to_scan,
2818 SCAN_UNEVICTABLE_BATCH_SIZE);
2819
2820 spin_lock_irq(&zone->lru_lock);
2821 for (scan = 0; scan < batch_size; scan++) {
2822 struct page *page = lru_to_page(l_unevictable);
2823
2824 if (!trylock_page(page))
2825 continue;
2826
2827 prefetchw_prev_lru_page(page, l_unevictable, flags);
2828
2829 if (likely(PageLRU(page) && PageUnevictable(page)))
2830 check_move_unevictable_page(page, zone);
2831
2832 unlock_page(page);
2833 }
2834 spin_unlock_irq(&zone->lru_lock);
2835
2836 nr_to_scan -= batch_size;
2837 }
2838 }
2839
2840
2841 /**
2842 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2843 *
2844 * A really big hammer: scan all zones' unevictable LRU lists to check for
2845 * pages that have become evictable. Move those back to the zones'
2846 * inactive list where they become candidates for reclaim.
2847 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2848 * and we add swap to the system. As such, it runs in the context of a task
2849 * that has possibly/probably made some previously unevictable pages
2850 * evictable.
2851 */
2852 static void scan_all_zones_unevictable_pages(void)
2853 {
2854 struct zone *zone;
2855
2856 for_each_zone(zone) {
2857 scan_zone_unevictable_pages(zone);
2858 }
2859 }
2860
2861 /*
2862 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2863 * all nodes' unevictable lists for evictable pages
2864 */
2865 unsigned long scan_unevictable_pages;
2866
2867 int scan_unevictable_handler(struct ctl_table *table, int write,
2868 void __user *buffer,
2869 size_t *length, loff_t *ppos)
2870 {
2871 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2872
2873 if (write && *(unsigned long *)table->data)
2874 scan_all_zones_unevictable_pages();
2875
2876 scan_unevictable_pages = 0;
2877 return 0;
2878 }
2879
2880 /*
2881 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2882 * a specified node's per zone unevictable lists for evictable pages.
2883 */
2884
2885 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2886 struct sysdev_attribute *attr,
2887 char *buf)
2888 {
2889 return sprintf(buf, "0\n"); /* always zero; should fit... */
2890 }
2891
2892 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2893 struct sysdev_attribute *attr,
2894 const char *buf, size_t count)
2895 {
2896 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2897 struct zone *zone;
2898 unsigned long res;
2899 unsigned long req = strict_strtoul(buf, 10, &res);
2900
2901 if (!req)
2902 return 1; /* zero is no-op */
2903
2904 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2905 if (!populated_zone(zone))
2906 continue;
2907 scan_zone_unevictable_pages(zone);
2908 }
2909 return 1;
2910 }
2911
2912
2913 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2914 read_scan_unevictable_node,
2915 write_scan_unevictable_node);
2916
2917 int scan_unevictable_register_node(struct node *node)
2918 {
2919 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2920 }
2921
2922 void scan_unevictable_unregister_node(struct node *node)
2923 {
2924 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2925 }
2926
This page took 0.090662 seconds and 5 git commands to generate.