mm + fs: store shadow entries in page cache
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57
58 struct scan_control {
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 unsigned long hibernation_mode;
69
70 /* This context's GFP mask */
71 gfp_t gfp_mask;
72
73 int may_writepage;
74
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
77
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
81 int order;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
91
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130 * From 0 .. 100. Higher means more swappy.
131 */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146 return true;
147 }
148 #endif
149
150 static unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152 int nr;
153
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
156
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
160
161 return nr;
162 }
163
164 bool zone_reclaimable(struct zone *zone)
165 {
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171 if (!mem_cgroup_disabled())
172 return mem_cgroup_get_lru_size(lruvec, lru);
173
174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176
177 /*
178 * Add a shrinker callback to be called from the vm.
179 */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182 size_t size = sizeof(*shrinker->nr_deferred);
183
184 /*
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
188 */
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 size *= nr_node_ids;
194
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
197 return -ENOMEM;
198
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
202 return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205
206 /*
207 * Remove one
208 */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
214 kfree(shrinker->nr_deferred);
215 }
216 EXPORT_SYMBOL(unregister_shrinker);
217
218 #define SHRINK_BATCH 128
219
220 static unsigned long
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 unsigned long nr_pages_scanned, unsigned long lru_pages)
223 {
224 unsigned long freed = 0;
225 unsigned long long delta;
226 long total_scan;
227 long freeable;
228 long nr;
229 long new_nr;
230 int nid = shrinkctl->nid;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
234 freeable = shrinker->count_objects(shrinker, shrinkctl);
235 if (freeable == 0)
236 return 0;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= freeable;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR
252 "shrink_slab: %pF negative objects to delete nr=%ld\n",
253 shrinker->scan_objects, total_scan);
254 total_scan = freeable;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * freeable. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < freeable / 4)
270 total_scan = min(total_scan, freeable / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > freeable * 2)
278 total_scan = freeable * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 nr_pages_scanned, lru_pages,
282 freeable, delta, total_scan);
283
284 /*
285 * Normally, we should not scan less than batch_size objects in one
286 * pass to avoid too frequent shrinker calls, but if the slab has less
287 * than batch_size objects in total and we are really tight on memory,
288 * we will try to reclaim all available objects, otherwise we can end
289 * up failing allocations although there are plenty of reclaimable
290 * objects spread over several slabs with usage less than the
291 * batch_size.
292 *
293 * We detect the "tight on memory" situations by looking at the total
294 * number of objects we want to scan (total_scan). If it is greater
295 * than the total number of objects on slab (freeable), we must be
296 * scanning at high prio and therefore should try to reclaim as much as
297 * possible.
298 */
299 while (total_scan >= batch_size ||
300 total_scan >= freeable) {
301 unsigned long ret;
302 unsigned long nr_to_scan = min(batch_size, total_scan);
303
304 shrinkctl->nr_to_scan = nr_to_scan;
305 ret = shrinker->scan_objects(shrinker, shrinkctl);
306 if (ret == SHRINK_STOP)
307 break;
308 freed += ret;
309
310 count_vm_events(SLABS_SCANNED, nr_to_scan);
311 total_scan -= nr_to_scan;
312
313 cond_resched();
314 }
315
316 /*
317 * move the unused scan count back into the shrinker in a
318 * manner that handles concurrent updates. If we exhausted the
319 * scan, there is no need to do an update.
320 */
321 if (total_scan > 0)
322 new_nr = atomic_long_add_return(total_scan,
323 &shrinker->nr_deferred[nid]);
324 else
325 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
326
327 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
328 return freed;
329 }
330
331 /*
332 * Call the shrink functions to age shrinkable caches
333 *
334 * Here we assume it costs one seek to replace a lru page and that it also
335 * takes a seek to recreate a cache object. With this in mind we age equal
336 * percentages of the lru and ageable caches. This should balance the seeks
337 * generated by these structures.
338 *
339 * If the vm encountered mapped pages on the LRU it increase the pressure on
340 * slab to avoid swapping.
341 *
342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
343 *
344 * `lru_pages' represents the number of on-LRU pages in all the zones which
345 * are eligible for the caller's allocation attempt. It is used for balancing
346 * slab reclaim versus page reclaim.
347 *
348 * Returns the number of slab objects which we shrunk.
349 */
350 unsigned long shrink_slab(struct shrink_control *shrinkctl,
351 unsigned long nr_pages_scanned,
352 unsigned long lru_pages)
353 {
354 struct shrinker *shrinker;
355 unsigned long freed = 0;
356
357 if (nr_pages_scanned == 0)
358 nr_pages_scanned = SWAP_CLUSTER_MAX;
359
360 if (!down_read_trylock(&shrinker_rwsem)) {
361 /*
362 * If we would return 0, our callers would understand that we
363 * have nothing else to shrink and give up trying. By returning
364 * 1 we keep it going and assume we'll be able to shrink next
365 * time.
366 */
367 freed = 1;
368 goto out;
369 }
370
371 list_for_each_entry(shrinker, &shrinker_list, list) {
372 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
373 shrinkctl->nid = 0;
374 freed += shrink_slab_node(shrinkctl, shrinker,
375 nr_pages_scanned, lru_pages);
376 continue;
377 }
378
379 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
380 if (node_online(shrinkctl->nid))
381 freed += shrink_slab_node(shrinkctl, shrinker,
382 nr_pages_scanned, lru_pages);
383
384 }
385 }
386 up_read(&shrinker_rwsem);
387 out:
388 cond_resched();
389 return freed;
390 }
391
392 static inline int is_page_cache_freeable(struct page *page)
393 {
394 /*
395 * A freeable page cache page is referenced only by the caller
396 * that isolated the page, the page cache radix tree and
397 * optional buffer heads at page->private.
398 */
399 return page_count(page) - page_has_private(page) == 2;
400 }
401
402 static int may_write_to_queue(struct backing_dev_info *bdi,
403 struct scan_control *sc)
404 {
405 if (current->flags & PF_SWAPWRITE)
406 return 1;
407 if (!bdi_write_congested(bdi))
408 return 1;
409 if (bdi == current->backing_dev_info)
410 return 1;
411 return 0;
412 }
413
414 /*
415 * We detected a synchronous write error writing a page out. Probably
416 * -ENOSPC. We need to propagate that into the address_space for a subsequent
417 * fsync(), msync() or close().
418 *
419 * The tricky part is that after writepage we cannot touch the mapping: nothing
420 * prevents it from being freed up. But we have a ref on the page and once
421 * that page is locked, the mapping is pinned.
422 *
423 * We're allowed to run sleeping lock_page() here because we know the caller has
424 * __GFP_FS.
425 */
426 static void handle_write_error(struct address_space *mapping,
427 struct page *page, int error)
428 {
429 lock_page(page);
430 if (page_mapping(page) == mapping)
431 mapping_set_error(mapping, error);
432 unlock_page(page);
433 }
434
435 /* possible outcome of pageout() */
436 typedef enum {
437 /* failed to write page out, page is locked */
438 PAGE_KEEP,
439 /* move page to the active list, page is locked */
440 PAGE_ACTIVATE,
441 /* page has been sent to the disk successfully, page is unlocked */
442 PAGE_SUCCESS,
443 /* page is clean and locked */
444 PAGE_CLEAN,
445 } pageout_t;
446
447 /*
448 * pageout is called by shrink_page_list() for each dirty page.
449 * Calls ->writepage().
450 */
451 static pageout_t pageout(struct page *page, struct address_space *mapping,
452 struct scan_control *sc)
453 {
454 /*
455 * If the page is dirty, only perform writeback if that write
456 * will be non-blocking. To prevent this allocation from being
457 * stalled by pagecache activity. But note that there may be
458 * stalls if we need to run get_block(). We could test
459 * PagePrivate for that.
460 *
461 * If this process is currently in __generic_file_aio_write() against
462 * this page's queue, we can perform writeback even if that
463 * will block.
464 *
465 * If the page is swapcache, write it back even if that would
466 * block, for some throttling. This happens by accident, because
467 * swap_backing_dev_info is bust: it doesn't reflect the
468 * congestion state of the swapdevs. Easy to fix, if needed.
469 */
470 if (!is_page_cache_freeable(page))
471 return PAGE_KEEP;
472 if (!mapping) {
473 /*
474 * Some data journaling orphaned pages can have
475 * page->mapping == NULL while being dirty with clean buffers.
476 */
477 if (page_has_private(page)) {
478 if (try_to_free_buffers(page)) {
479 ClearPageDirty(page);
480 printk("%s: orphaned page\n", __func__);
481 return PAGE_CLEAN;
482 }
483 }
484 return PAGE_KEEP;
485 }
486 if (mapping->a_ops->writepage == NULL)
487 return PAGE_ACTIVATE;
488 if (!may_write_to_queue(mapping->backing_dev_info, sc))
489 return PAGE_KEEP;
490
491 if (clear_page_dirty_for_io(page)) {
492 int res;
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = SWAP_CLUSTER_MAX,
496 .range_start = 0,
497 .range_end = LLONG_MAX,
498 .for_reclaim = 1,
499 };
500
501 SetPageReclaim(page);
502 res = mapping->a_ops->writepage(page, &wbc);
503 if (res < 0)
504 handle_write_error(mapping, page, res);
505 if (res == AOP_WRITEPAGE_ACTIVATE) {
506 ClearPageReclaim(page);
507 return PAGE_ACTIVATE;
508 }
509
510 if (!PageWriteback(page)) {
511 /* synchronous write or broken a_ops? */
512 ClearPageReclaim(page);
513 }
514 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515 inc_zone_page_state(page, NR_VMSCAN_WRITE);
516 return PAGE_SUCCESS;
517 }
518
519 return PAGE_CLEAN;
520 }
521
522 /*
523 * Same as remove_mapping, but if the page is removed from the mapping, it
524 * gets returned with a refcount of 0.
525 */
526 static int __remove_mapping(struct address_space *mapping, struct page *page)
527 {
528 BUG_ON(!PageLocked(page));
529 BUG_ON(mapping != page_mapping(page));
530
531 spin_lock_irq(&mapping->tree_lock);
532 /*
533 * The non racy check for a busy page.
534 *
535 * Must be careful with the order of the tests. When someone has
536 * a ref to the page, it may be possible that they dirty it then
537 * drop the reference. So if PageDirty is tested before page_count
538 * here, then the following race may occur:
539 *
540 * get_user_pages(&page);
541 * [user mapping goes away]
542 * write_to(page);
543 * !PageDirty(page) [good]
544 * SetPageDirty(page);
545 * put_page(page);
546 * !page_count(page) [good, discard it]
547 *
548 * [oops, our write_to data is lost]
549 *
550 * Reversing the order of the tests ensures such a situation cannot
551 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
552 * load is not satisfied before that of page->_count.
553 *
554 * Note that if SetPageDirty is always performed via set_page_dirty,
555 * and thus under tree_lock, then this ordering is not required.
556 */
557 if (!page_freeze_refs(page, 2))
558 goto cannot_free;
559 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
560 if (unlikely(PageDirty(page))) {
561 page_unfreeze_refs(page, 2);
562 goto cannot_free;
563 }
564
565 if (PageSwapCache(page)) {
566 swp_entry_t swap = { .val = page_private(page) };
567 __delete_from_swap_cache(page);
568 spin_unlock_irq(&mapping->tree_lock);
569 swapcache_free(swap, page);
570 } else {
571 void (*freepage)(struct page *);
572
573 freepage = mapping->a_ops->freepage;
574
575 __delete_from_page_cache(page, NULL);
576 spin_unlock_irq(&mapping->tree_lock);
577 mem_cgroup_uncharge_cache_page(page);
578
579 if (freepage != NULL)
580 freepage(page);
581 }
582
583 return 1;
584
585 cannot_free:
586 spin_unlock_irq(&mapping->tree_lock);
587 return 0;
588 }
589
590 /*
591 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
592 * someone else has a ref on the page, abort and return 0. If it was
593 * successfully detached, return 1. Assumes the caller has a single ref on
594 * this page.
595 */
596 int remove_mapping(struct address_space *mapping, struct page *page)
597 {
598 if (__remove_mapping(mapping, page)) {
599 /*
600 * Unfreezing the refcount with 1 rather than 2 effectively
601 * drops the pagecache ref for us without requiring another
602 * atomic operation.
603 */
604 page_unfreeze_refs(page, 1);
605 return 1;
606 }
607 return 0;
608 }
609
610 /**
611 * putback_lru_page - put previously isolated page onto appropriate LRU list
612 * @page: page to be put back to appropriate lru list
613 *
614 * Add previously isolated @page to appropriate LRU list.
615 * Page may still be unevictable for other reasons.
616 *
617 * lru_lock must not be held, interrupts must be enabled.
618 */
619 void putback_lru_page(struct page *page)
620 {
621 bool is_unevictable;
622 int was_unevictable = PageUnevictable(page);
623
624 VM_BUG_ON_PAGE(PageLRU(page), page);
625
626 redo:
627 ClearPageUnevictable(page);
628
629 if (page_evictable(page)) {
630 /*
631 * For evictable pages, we can use the cache.
632 * In event of a race, worst case is we end up with an
633 * unevictable page on [in]active list.
634 * We know how to handle that.
635 */
636 is_unevictable = false;
637 lru_cache_add(page);
638 } else {
639 /*
640 * Put unevictable pages directly on zone's unevictable
641 * list.
642 */
643 is_unevictable = true;
644 add_page_to_unevictable_list(page);
645 /*
646 * When racing with an mlock or AS_UNEVICTABLE clearing
647 * (page is unlocked) make sure that if the other thread
648 * does not observe our setting of PG_lru and fails
649 * isolation/check_move_unevictable_pages,
650 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
651 * the page back to the evictable list.
652 *
653 * The other side is TestClearPageMlocked() or shmem_lock().
654 */
655 smp_mb();
656 }
657
658 /*
659 * page's status can change while we move it among lru. If an evictable
660 * page is on unevictable list, it never be freed. To avoid that,
661 * check after we added it to the list, again.
662 */
663 if (is_unevictable && page_evictable(page)) {
664 if (!isolate_lru_page(page)) {
665 put_page(page);
666 goto redo;
667 }
668 /* This means someone else dropped this page from LRU
669 * So, it will be freed or putback to LRU again. There is
670 * nothing to do here.
671 */
672 }
673
674 if (was_unevictable && !is_unevictable)
675 count_vm_event(UNEVICTABLE_PGRESCUED);
676 else if (!was_unevictable && is_unevictable)
677 count_vm_event(UNEVICTABLE_PGCULLED);
678
679 put_page(page); /* drop ref from isolate */
680 }
681
682 enum page_references {
683 PAGEREF_RECLAIM,
684 PAGEREF_RECLAIM_CLEAN,
685 PAGEREF_KEEP,
686 PAGEREF_ACTIVATE,
687 };
688
689 static enum page_references page_check_references(struct page *page,
690 struct scan_control *sc)
691 {
692 int referenced_ptes, referenced_page;
693 unsigned long vm_flags;
694
695 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
696 &vm_flags);
697 referenced_page = TestClearPageReferenced(page);
698
699 /*
700 * Mlock lost the isolation race with us. Let try_to_unmap()
701 * move the page to the unevictable list.
702 */
703 if (vm_flags & VM_LOCKED)
704 return PAGEREF_RECLAIM;
705
706 if (referenced_ptes) {
707 if (PageSwapBacked(page))
708 return PAGEREF_ACTIVATE;
709 /*
710 * All mapped pages start out with page table
711 * references from the instantiating fault, so we need
712 * to look twice if a mapped file page is used more
713 * than once.
714 *
715 * Mark it and spare it for another trip around the
716 * inactive list. Another page table reference will
717 * lead to its activation.
718 *
719 * Note: the mark is set for activated pages as well
720 * so that recently deactivated but used pages are
721 * quickly recovered.
722 */
723 SetPageReferenced(page);
724
725 if (referenced_page || referenced_ptes > 1)
726 return PAGEREF_ACTIVATE;
727
728 /*
729 * Activate file-backed executable pages after first usage.
730 */
731 if (vm_flags & VM_EXEC)
732 return PAGEREF_ACTIVATE;
733
734 return PAGEREF_KEEP;
735 }
736
737 /* Reclaim if clean, defer dirty pages to writeback */
738 if (referenced_page && !PageSwapBacked(page))
739 return PAGEREF_RECLAIM_CLEAN;
740
741 return PAGEREF_RECLAIM;
742 }
743
744 /* Check if a page is dirty or under writeback */
745 static void page_check_dirty_writeback(struct page *page,
746 bool *dirty, bool *writeback)
747 {
748 struct address_space *mapping;
749
750 /*
751 * Anonymous pages are not handled by flushers and must be written
752 * from reclaim context. Do not stall reclaim based on them
753 */
754 if (!page_is_file_cache(page)) {
755 *dirty = false;
756 *writeback = false;
757 return;
758 }
759
760 /* By default assume that the page flags are accurate */
761 *dirty = PageDirty(page);
762 *writeback = PageWriteback(page);
763
764 /* Verify dirty/writeback state if the filesystem supports it */
765 if (!page_has_private(page))
766 return;
767
768 mapping = page_mapping(page);
769 if (mapping && mapping->a_ops->is_dirty_writeback)
770 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
771 }
772
773 /*
774 * shrink_page_list() returns the number of reclaimed pages
775 */
776 static unsigned long shrink_page_list(struct list_head *page_list,
777 struct zone *zone,
778 struct scan_control *sc,
779 enum ttu_flags ttu_flags,
780 unsigned long *ret_nr_dirty,
781 unsigned long *ret_nr_unqueued_dirty,
782 unsigned long *ret_nr_congested,
783 unsigned long *ret_nr_writeback,
784 unsigned long *ret_nr_immediate,
785 bool force_reclaim)
786 {
787 LIST_HEAD(ret_pages);
788 LIST_HEAD(free_pages);
789 int pgactivate = 0;
790 unsigned long nr_unqueued_dirty = 0;
791 unsigned long nr_dirty = 0;
792 unsigned long nr_congested = 0;
793 unsigned long nr_reclaimed = 0;
794 unsigned long nr_writeback = 0;
795 unsigned long nr_immediate = 0;
796
797 cond_resched();
798
799 mem_cgroup_uncharge_start();
800 while (!list_empty(page_list)) {
801 struct address_space *mapping;
802 struct page *page;
803 int may_enter_fs;
804 enum page_references references = PAGEREF_RECLAIM_CLEAN;
805 bool dirty, writeback;
806
807 cond_resched();
808
809 page = lru_to_page(page_list);
810 list_del(&page->lru);
811
812 if (!trylock_page(page))
813 goto keep;
814
815 VM_BUG_ON_PAGE(PageActive(page), page);
816 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
817
818 sc->nr_scanned++;
819
820 if (unlikely(!page_evictable(page)))
821 goto cull_mlocked;
822
823 if (!sc->may_unmap && page_mapped(page))
824 goto keep_locked;
825
826 /* Double the slab pressure for mapped and swapcache pages */
827 if (page_mapped(page) || PageSwapCache(page))
828 sc->nr_scanned++;
829
830 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
831 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
832
833 /*
834 * The number of dirty pages determines if a zone is marked
835 * reclaim_congested which affects wait_iff_congested. kswapd
836 * will stall and start writing pages if the tail of the LRU
837 * is all dirty unqueued pages.
838 */
839 page_check_dirty_writeback(page, &dirty, &writeback);
840 if (dirty || writeback)
841 nr_dirty++;
842
843 if (dirty && !writeback)
844 nr_unqueued_dirty++;
845
846 /*
847 * Treat this page as congested if the underlying BDI is or if
848 * pages are cycling through the LRU so quickly that the
849 * pages marked for immediate reclaim are making it to the
850 * end of the LRU a second time.
851 */
852 mapping = page_mapping(page);
853 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
854 (writeback && PageReclaim(page)))
855 nr_congested++;
856
857 /*
858 * If a page at the tail of the LRU is under writeback, there
859 * are three cases to consider.
860 *
861 * 1) If reclaim is encountering an excessive number of pages
862 * under writeback and this page is both under writeback and
863 * PageReclaim then it indicates that pages are being queued
864 * for IO but are being recycled through the LRU before the
865 * IO can complete. Waiting on the page itself risks an
866 * indefinite stall if it is impossible to writeback the
867 * page due to IO error or disconnected storage so instead
868 * note that the LRU is being scanned too quickly and the
869 * caller can stall after page list has been processed.
870 *
871 * 2) Global reclaim encounters a page, memcg encounters a
872 * page that is not marked for immediate reclaim or
873 * the caller does not have __GFP_IO. In this case mark
874 * the page for immediate reclaim and continue scanning.
875 *
876 * __GFP_IO is checked because a loop driver thread might
877 * enter reclaim, and deadlock if it waits on a page for
878 * which it is needed to do the write (loop masks off
879 * __GFP_IO|__GFP_FS for this reason); but more thought
880 * would probably show more reasons.
881 *
882 * Don't require __GFP_FS, since we're not going into the
883 * FS, just waiting on its writeback completion. Worryingly,
884 * ext4 gfs2 and xfs allocate pages with
885 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
886 * may_enter_fs here is liable to OOM on them.
887 *
888 * 3) memcg encounters a page that is not already marked
889 * PageReclaim. memcg does not have any dirty pages
890 * throttling so we could easily OOM just because too many
891 * pages are in writeback and there is nothing else to
892 * reclaim. Wait for the writeback to complete.
893 */
894 if (PageWriteback(page)) {
895 /* Case 1 above */
896 if (current_is_kswapd() &&
897 PageReclaim(page) &&
898 zone_is_reclaim_writeback(zone)) {
899 nr_immediate++;
900 goto keep_locked;
901
902 /* Case 2 above */
903 } else if (global_reclaim(sc) ||
904 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
905 /*
906 * This is slightly racy - end_page_writeback()
907 * might have just cleared PageReclaim, then
908 * setting PageReclaim here end up interpreted
909 * as PageReadahead - but that does not matter
910 * enough to care. What we do want is for this
911 * page to have PageReclaim set next time memcg
912 * reclaim reaches the tests above, so it will
913 * then wait_on_page_writeback() to avoid OOM;
914 * and it's also appropriate in global reclaim.
915 */
916 SetPageReclaim(page);
917 nr_writeback++;
918
919 goto keep_locked;
920
921 /* Case 3 above */
922 } else {
923 wait_on_page_writeback(page);
924 }
925 }
926
927 if (!force_reclaim)
928 references = page_check_references(page, sc);
929
930 switch (references) {
931 case PAGEREF_ACTIVATE:
932 goto activate_locked;
933 case PAGEREF_KEEP:
934 goto keep_locked;
935 case PAGEREF_RECLAIM:
936 case PAGEREF_RECLAIM_CLEAN:
937 ; /* try to reclaim the page below */
938 }
939
940 /*
941 * Anonymous process memory has backing store?
942 * Try to allocate it some swap space here.
943 */
944 if (PageAnon(page) && !PageSwapCache(page)) {
945 if (!(sc->gfp_mask & __GFP_IO))
946 goto keep_locked;
947 if (!add_to_swap(page, page_list))
948 goto activate_locked;
949 may_enter_fs = 1;
950
951 /* Adding to swap updated mapping */
952 mapping = page_mapping(page);
953 }
954
955 /*
956 * The page is mapped into the page tables of one or more
957 * processes. Try to unmap it here.
958 */
959 if (page_mapped(page) && mapping) {
960 switch (try_to_unmap(page, ttu_flags)) {
961 case SWAP_FAIL:
962 goto activate_locked;
963 case SWAP_AGAIN:
964 goto keep_locked;
965 case SWAP_MLOCK:
966 goto cull_mlocked;
967 case SWAP_SUCCESS:
968 ; /* try to free the page below */
969 }
970 }
971
972 if (PageDirty(page)) {
973 /*
974 * Only kswapd can writeback filesystem pages to
975 * avoid risk of stack overflow but only writeback
976 * if many dirty pages have been encountered.
977 */
978 if (page_is_file_cache(page) &&
979 (!current_is_kswapd() ||
980 !zone_is_reclaim_dirty(zone))) {
981 /*
982 * Immediately reclaim when written back.
983 * Similar in principal to deactivate_page()
984 * except we already have the page isolated
985 * and know it's dirty
986 */
987 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
988 SetPageReclaim(page);
989
990 goto keep_locked;
991 }
992
993 if (references == PAGEREF_RECLAIM_CLEAN)
994 goto keep_locked;
995 if (!may_enter_fs)
996 goto keep_locked;
997 if (!sc->may_writepage)
998 goto keep_locked;
999
1000 /* Page is dirty, try to write it out here */
1001 switch (pageout(page, mapping, sc)) {
1002 case PAGE_KEEP:
1003 goto keep_locked;
1004 case PAGE_ACTIVATE:
1005 goto activate_locked;
1006 case PAGE_SUCCESS:
1007 if (PageWriteback(page))
1008 goto keep;
1009 if (PageDirty(page))
1010 goto keep;
1011
1012 /*
1013 * A synchronous write - probably a ramdisk. Go
1014 * ahead and try to reclaim the page.
1015 */
1016 if (!trylock_page(page))
1017 goto keep;
1018 if (PageDirty(page) || PageWriteback(page))
1019 goto keep_locked;
1020 mapping = page_mapping(page);
1021 case PAGE_CLEAN:
1022 ; /* try to free the page below */
1023 }
1024 }
1025
1026 /*
1027 * If the page has buffers, try to free the buffer mappings
1028 * associated with this page. If we succeed we try to free
1029 * the page as well.
1030 *
1031 * We do this even if the page is PageDirty().
1032 * try_to_release_page() does not perform I/O, but it is
1033 * possible for a page to have PageDirty set, but it is actually
1034 * clean (all its buffers are clean). This happens if the
1035 * buffers were written out directly, with submit_bh(). ext3
1036 * will do this, as well as the blockdev mapping.
1037 * try_to_release_page() will discover that cleanness and will
1038 * drop the buffers and mark the page clean - it can be freed.
1039 *
1040 * Rarely, pages can have buffers and no ->mapping. These are
1041 * the pages which were not successfully invalidated in
1042 * truncate_complete_page(). We try to drop those buffers here
1043 * and if that worked, and the page is no longer mapped into
1044 * process address space (page_count == 1) it can be freed.
1045 * Otherwise, leave the page on the LRU so it is swappable.
1046 */
1047 if (page_has_private(page)) {
1048 if (!try_to_release_page(page, sc->gfp_mask))
1049 goto activate_locked;
1050 if (!mapping && page_count(page) == 1) {
1051 unlock_page(page);
1052 if (put_page_testzero(page))
1053 goto free_it;
1054 else {
1055 /*
1056 * rare race with speculative reference.
1057 * the speculative reference will free
1058 * this page shortly, so we may
1059 * increment nr_reclaimed here (and
1060 * leave it off the LRU).
1061 */
1062 nr_reclaimed++;
1063 continue;
1064 }
1065 }
1066 }
1067
1068 if (!mapping || !__remove_mapping(mapping, page))
1069 goto keep_locked;
1070
1071 /*
1072 * At this point, we have no other references and there is
1073 * no way to pick any more up (removed from LRU, removed
1074 * from pagecache). Can use non-atomic bitops now (and
1075 * we obviously don't have to worry about waking up a process
1076 * waiting on the page lock, because there are no references.
1077 */
1078 __clear_page_locked(page);
1079 free_it:
1080 nr_reclaimed++;
1081
1082 /*
1083 * Is there need to periodically free_page_list? It would
1084 * appear not as the counts should be low
1085 */
1086 list_add(&page->lru, &free_pages);
1087 continue;
1088
1089 cull_mlocked:
1090 if (PageSwapCache(page))
1091 try_to_free_swap(page);
1092 unlock_page(page);
1093 putback_lru_page(page);
1094 continue;
1095
1096 activate_locked:
1097 /* Not a candidate for swapping, so reclaim swap space. */
1098 if (PageSwapCache(page) && vm_swap_full())
1099 try_to_free_swap(page);
1100 VM_BUG_ON_PAGE(PageActive(page), page);
1101 SetPageActive(page);
1102 pgactivate++;
1103 keep_locked:
1104 unlock_page(page);
1105 keep:
1106 list_add(&page->lru, &ret_pages);
1107 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1108 }
1109
1110 free_hot_cold_page_list(&free_pages, 1);
1111
1112 list_splice(&ret_pages, page_list);
1113 count_vm_events(PGACTIVATE, pgactivate);
1114 mem_cgroup_uncharge_end();
1115 *ret_nr_dirty += nr_dirty;
1116 *ret_nr_congested += nr_congested;
1117 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1118 *ret_nr_writeback += nr_writeback;
1119 *ret_nr_immediate += nr_immediate;
1120 return nr_reclaimed;
1121 }
1122
1123 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1124 struct list_head *page_list)
1125 {
1126 struct scan_control sc = {
1127 .gfp_mask = GFP_KERNEL,
1128 .priority = DEF_PRIORITY,
1129 .may_unmap = 1,
1130 };
1131 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1132 struct page *page, *next;
1133 LIST_HEAD(clean_pages);
1134
1135 list_for_each_entry_safe(page, next, page_list, lru) {
1136 if (page_is_file_cache(page) && !PageDirty(page) &&
1137 !isolated_balloon_page(page)) {
1138 ClearPageActive(page);
1139 list_move(&page->lru, &clean_pages);
1140 }
1141 }
1142
1143 ret = shrink_page_list(&clean_pages, zone, &sc,
1144 TTU_UNMAP|TTU_IGNORE_ACCESS,
1145 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1146 list_splice(&clean_pages, page_list);
1147 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1148 return ret;
1149 }
1150
1151 /*
1152 * Attempt to remove the specified page from its LRU. Only take this page
1153 * if it is of the appropriate PageActive status. Pages which are being
1154 * freed elsewhere are also ignored.
1155 *
1156 * page: page to consider
1157 * mode: one of the LRU isolation modes defined above
1158 *
1159 * returns 0 on success, -ve errno on failure.
1160 */
1161 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1162 {
1163 int ret = -EINVAL;
1164
1165 /* Only take pages on the LRU. */
1166 if (!PageLRU(page))
1167 return ret;
1168
1169 /* Compaction should not handle unevictable pages but CMA can do so */
1170 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1171 return ret;
1172
1173 ret = -EBUSY;
1174
1175 /*
1176 * To minimise LRU disruption, the caller can indicate that it only
1177 * wants to isolate pages it will be able to operate on without
1178 * blocking - clean pages for the most part.
1179 *
1180 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1181 * is used by reclaim when it is cannot write to backing storage
1182 *
1183 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1184 * that it is possible to migrate without blocking
1185 */
1186 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1187 /* All the caller can do on PageWriteback is block */
1188 if (PageWriteback(page))
1189 return ret;
1190
1191 if (PageDirty(page)) {
1192 struct address_space *mapping;
1193
1194 /* ISOLATE_CLEAN means only clean pages */
1195 if (mode & ISOLATE_CLEAN)
1196 return ret;
1197
1198 /*
1199 * Only pages without mappings or that have a
1200 * ->migratepage callback are possible to migrate
1201 * without blocking
1202 */
1203 mapping = page_mapping(page);
1204 if (mapping && !mapping->a_ops->migratepage)
1205 return ret;
1206 }
1207 }
1208
1209 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1210 return ret;
1211
1212 if (likely(get_page_unless_zero(page))) {
1213 /*
1214 * Be careful not to clear PageLRU until after we're
1215 * sure the page is not being freed elsewhere -- the
1216 * page release code relies on it.
1217 */
1218 ClearPageLRU(page);
1219 ret = 0;
1220 }
1221
1222 return ret;
1223 }
1224
1225 /*
1226 * zone->lru_lock is heavily contended. Some of the functions that
1227 * shrink the lists perform better by taking out a batch of pages
1228 * and working on them outside the LRU lock.
1229 *
1230 * For pagecache intensive workloads, this function is the hottest
1231 * spot in the kernel (apart from copy_*_user functions).
1232 *
1233 * Appropriate locks must be held before calling this function.
1234 *
1235 * @nr_to_scan: The number of pages to look through on the list.
1236 * @lruvec: The LRU vector to pull pages from.
1237 * @dst: The temp list to put pages on to.
1238 * @nr_scanned: The number of pages that were scanned.
1239 * @sc: The scan_control struct for this reclaim session
1240 * @mode: One of the LRU isolation modes
1241 * @lru: LRU list id for isolating
1242 *
1243 * returns how many pages were moved onto *@dst.
1244 */
1245 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1246 struct lruvec *lruvec, struct list_head *dst,
1247 unsigned long *nr_scanned, struct scan_control *sc,
1248 isolate_mode_t mode, enum lru_list lru)
1249 {
1250 struct list_head *src = &lruvec->lists[lru];
1251 unsigned long nr_taken = 0;
1252 unsigned long scan;
1253
1254 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1255 struct page *page;
1256 int nr_pages;
1257
1258 page = lru_to_page(src);
1259 prefetchw_prev_lru_page(page, src, flags);
1260
1261 VM_BUG_ON_PAGE(!PageLRU(page), page);
1262
1263 switch (__isolate_lru_page(page, mode)) {
1264 case 0:
1265 nr_pages = hpage_nr_pages(page);
1266 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1267 list_move(&page->lru, dst);
1268 nr_taken += nr_pages;
1269 break;
1270
1271 case -EBUSY:
1272 /* else it is being freed elsewhere */
1273 list_move(&page->lru, src);
1274 continue;
1275
1276 default:
1277 BUG();
1278 }
1279 }
1280
1281 *nr_scanned = scan;
1282 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1283 nr_taken, mode, is_file_lru(lru));
1284 return nr_taken;
1285 }
1286
1287 /**
1288 * isolate_lru_page - tries to isolate a page from its LRU list
1289 * @page: page to isolate from its LRU list
1290 *
1291 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1292 * vmstat statistic corresponding to whatever LRU list the page was on.
1293 *
1294 * Returns 0 if the page was removed from an LRU list.
1295 * Returns -EBUSY if the page was not on an LRU list.
1296 *
1297 * The returned page will have PageLRU() cleared. If it was found on
1298 * the active list, it will have PageActive set. If it was found on
1299 * the unevictable list, it will have the PageUnevictable bit set. That flag
1300 * may need to be cleared by the caller before letting the page go.
1301 *
1302 * The vmstat statistic corresponding to the list on which the page was
1303 * found will be decremented.
1304 *
1305 * Restrictions:
1306 * (1) Must be called with an elevated refcount on the page. This is a
1307 * fundamentnal difference from isolate_lru_pages (which is called
1308 * without a stable reference).
1309 * (2) the lru_lock must not be held.
1310 * (3) interrupts must be enabled.
1311 */
1312 int isolate_lru_page(struct page *page)
1313 {
1314 int ret = -EBUSY;
1315
1316 VM_BUG_ON_PAGE(!page_count(page), page);
1317
1318 if (PageLRU(page)) {
1319 struct zone *zone = page_zone(page);
1320 struct lruvec *lruvec;
1321
1322 spin_lock_irq(&zone->lru_lock);
1323 lruvec = mem_cgroup_page_lruvec(page, zone);
1324 if (PageLRU(page)) {
1325 int lru = page_lru(page);
1326 get_page(page);
1327 ClearPageLRU(page);
1328 del_page_from_lru_list(page, lruvec, lru);
1329 ret = 0;
1330 }
1331 spin_unlock_irq(&zone->lru_lock);
1332 }
1333 return ret;
1334 }
1335
1336 /*
1337 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1338 * then get resheduled. When there are massive number of tasks doing page
1339 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1340 * the LRU list will go small and be scanned faster than necessary, leading to
1341 * unnecessary swapping, thrashing and OOM.
1342 */
1343 static int too_many_isolated(struct zone *zone, int file,
1344 struct scan_control *sc)
1345 {
1346 unsigned long inactive, isolated;
1347
1348 if (current_is_kswapd())
1349 return 0;
1350
1351 if (!global_reclaim(sc))
1352 return 0;
1353
1354 if (file) {
1355 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1356 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1357 } else {
1358 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1359 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1360 }
1361
1362 /*
1363 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1364 * won't get blocked by normal direct-reclaimers, forming a circular
1365 * deadlock.
1366 */
1367 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1368 inactive >>= 3;
1369
1370 return isolated > inactive;
1371 }
1372
1373 static noinline_for_stack void
1374 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1375 {
1376 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1377 struct zone *zone = lruvec_zone(lruvec);
1378 LIST_HEAD(pages_to_free);
1379
1380 /*
1381 * Put back any unfreeable pages.
1382 */
1383 while (!list_empty(page_list)) {
1384 struct page *page = lru_to_page(page_list);
1385 int lru;
1386
1387 VM_BUG_ON_PAGE(PageLRU(page), page);
1388 list_del(&page->lru);
1389 if (unlikely(!page_evictable(page))) {
1390 spin_unlock_irq(&zone->lru_lock);
1391 putback_lru_page(page);
1392 spin_lock_irq(&zone->lru_lock);
1393 continue;
1394 }
1395
1396 lruvec = mem_cgroup_page_lruvec(page, zone);
1397
1398 SetPageLRU(page);
1399 lru = page_lru(page);
1400 add_page_to_lru_list(page, lruvec, lru);
1401
1402 if (is_active_lru(lru)) {
1403 int file = is_file_lru(lru);
1404 int numpages = hpage_nr_pages(page);
1405 reclaim_stat->recent_rotated[file] += numpages;
1406 }
1407 if (put_page_testzero(page)) {
1408 __ClearPageLRU(page);
1409 __ClearPageActive(page);
1410 del_page_from_lru_list(page, lruvec, lru);
1411
1412 if (unlikely(PageCompound(page))) {
1413 spin_unlock_irq(&zone->lru_lock);
1414 (*get_compound_page_dtor(page))(page);
1415 spin_lock_irq(&zone->lru_lock);
1416 } else
1417 list_add(&page->lru, &pages_to_free);
1418 }
1419 }
1420
1421 /*
1422 * To save our caller's stack, now use input list for pages to free.
1423 */
1424 list_splice(&pages_to_free, page_list);
1425 }
1426
1427 /*
1428 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1429 * of reclaimed pages
1430 */
1431 static noinline_for_stack unsigned long
1432 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1433 struct scan_control *sc, enum lru_list lru)
1434 {
1435 LIST_HEAD(page_list);
1436 unsigned long nr_scanned;
1437 unsigned long nr_reclaimed = 0;
1438 unsigned long nr_taken;
1439 unsigned long nr_dirty = 0;
1440 unsigned long nr_congested = 0;
1441 unsigned long nr_unqueued_dirty = 0;
1442 unsigned long nr_writeback = 0;
1443 unsigned long nr_immediate = 0;
1444 isolate_mode_t isolate_mode = 0;
1445 int file = is_file_lru(lru);
1446 struct zone *zone = lruvec_zone(lruvec);
1447 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1448
1449 while (unlikely(too_many_isolated(zone, file, sc))) {
1450 congestion_wait(BLK_RW_ASYNC, HZ/10);
1451
1452 /* We are about to die and free our memory. Return now. */
1453 if (fatal_signal_pending(current))
1454 return SWAP_CLUSTER_MAX;
1455 }
1456
1457 lru_add_drain();
1458
1459 if (!sc->may_unmap)
1460 isolate_mode |= ISOLATE_UNMAPPED;
1461 if (!sc->may_writepage)
1462 isolate_mode |= ISOLATE_CLEAN;
1463
1464 spin_lock_irq(&zone->lru_lock);
1465
1466 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1467 &nr_scanned, sc, isolate_mode, lru);
1468
1469 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1470 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1471
1472 if (global_reclaim(sc)) {
1473 zone->pages_scanned += nr_scanned;
1474 if (current_is_kswapd())
1475 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1476 else
1477 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1478 }
1479 spin_unlock_irq(&zone->lru_lock);
1480
1481 if (nr_taken == 0)
1482 return 0;
1483
1484 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1485 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1486 &nr_writeback, &nr_immediate,
1487 false);
1488
1489 spin_lock_irq(&zone->lru_lock);
1490
1491 reclaim_stat->recent_scanned[file] += nr_taken;
1492
1493 if (global_reclaim(sc)) {
1494 if (current_is_kswapd())
1495 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1496 nr_reclaimed);
1497 else
1498 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1499 nr_reclaimed);
1500 }
1501
1502 putback_inactive_pages(lruvec, &page_list);
1503
1504 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1505
1506 spin_unlock_irq(&zone->lru_lock);
1507
1508 free_hot_cold_page_list(&page_list, 1);
1509
1510 /*
1511 * If reclaim is isolating dirty pages under writeback, it implies
1512 * that the long-lived page allocation rate is exceeding the page
1513 * laundering rate. Either the global limits are not being effective
1514 * at throttling processes due to the page distribution throughout
1515 * zones or there is heavy usage of a slow backing device. The
1516 * only option is to throttle from reclaim context which is not ideal
1517 * as there is no guarantee the dirtying process is throttled in the
1518 * same way balance_dirty_pages() manages.
1519 *
1520 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1521 * of pages under pages flagged for immediate reclaim and stall if any
1522 * are encountered in the nr_immediate check below.
1523 */
1524 if (nr_writeback && nr_writeback == nr_taken)
1525 zone_set_flag(zone, ZONE_WRITEBACK);
1526
1527 /*
1528 * memcg will stall in page writeback so only consider forcibly
1529 * stalling for global reclaim
1530 */
1531 if (global_reclaim(sc)) {
1532 /*
1533 * Tag a zone as congested if all the dirty pages scanned were
1534 * backed by a congested BDI and wait_iff_congested will stall.
1535 */
1536 if (nr_dirty && nr_dirty == nr_congested)
1537 zone_set_flag(zone, ZONE_CONGESTED);
1538
1539 /*
1540 * If dirty pages are scanned that are not queued for IO, it
1541 * implies that flushers are not keeping up. In this case, flag
1542 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1543 * pages from reclaim context. It will forcibly stall in the
1544 * next check.
1545 */
1546 if (nr_unqueued_dirty == nr_taken)
1547 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1548
1549 /*
1550 * In addition, if kswapd scans pages marked marked for
1551 * immediate reclaim and under writeback (nr_immediate), it
1552 * implies that pages are cycling through the LRU faster than
1553 * they are written so also forcibly stall.
1554 */
1555 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1556 congestion_wait(BLK_RW_ASYNC, HZ/10);
1557 }
1558
1559 /*
1560 * Stall direct reclaim for IO completions if underlying BDIs or zone
1561 * is congested. Allow kswapd to continue until it starts encountering
1562 * unqueued dirty pages or cycling through the LRU too quickly.
1563 */
1564 if (!sc->hibernation_mode && !current_is_kswapd())
1565 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1566
1567 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1568 zone_idx(zone),
1569 nr_scanned, nr_reclaimed,
1570 sc->priority,
1571 trace_shrink_flags(file));
1572 return nr_reclaimed;
1573 }
1574
1575 /*
1576 * This moves pages from the active list to the inactive list.
1577 *
1578 * We move them the other way if the page is referenced by one or more
1579 * processes, from rmap.
1580 *
1581 * If the pages are mostly unmapped, the processing is fast and it is
1582 * appropriate to hold zone->lru_lock across the whole operation. But if
1583 * the pages are mapped, the processing is slow (page_referenced()) so we
1584 * should drop zone->lru_lock around each page. It's impossible to balance
1585 * this, so instead we remove the pages from the LRU while processing them.
1586 * It is safe to rely on PG_active against the non-LRU pages in here because
1587 * nobody will play with that bit on a non-LRU page.
1588 *
1589 * The downside is that we have to touch page->_count against each page.
1590 * But we had to alter page->flags anyway.
1591 */
1592
1593 static void move_active_pages_to_lru(struct lruvec *lruvec,
1594 struct list_head *list,
1595 struct list_head *pages_to_free,
1596 enum lru_list lru)
1597 {
1598 struct zone *zone = lruvec_zone(lruvec);
1599 unsigned long pgmoved = 0;
1600 struct page *page;
1601 int nr_pages;
1602
1603 while (!list_empty(list)) {
1604 page = lru_to_page(list);
1605 lruvec = mem_cgroup_page_lruvec(page, zone);
1606
1607 VM_BUG_ON_PAGE(PageLRU(page), page);
1608 SetPageLRU(page);
1609
1610 nr_pages = hpage_nr_pages(page);
1611 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1612 list_move(&page->lru, &lruvec->lists[lru]);
1613 pgmoved += nr_pages;
1614
1615 if (put_page_testzero(page)) {
1616 __ClearPageLRU(page);
1617 __ClearPageActive(page);
1618 del_page_from_lru_list(page, lruvec, lru);
1619
1620 if (unlikely(PageCompound(page))) {
1621 spin_unlock_irq(&zone->lru_lock);
1622 (*get_compound_page_dtor(page))(page);
1623 spin_lock_irq(&zone->lru_lock);
1624 } else
1625 list_add(&page->lru, pages_to_free);
1626 }
1627 }
1628 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1629 if (!is_active_lru(lru))
1630 __count_vm_events(PGDEACTIVATE, pgmoved);
1631 }
1632
1633 static void shrink_active_list(unsigned long nr_to_scan,
1634 struct lruvec *lruvec,
1635 struct scan_control *sc,
1636 enum lru_list lru)
1637 {
1638 unsigned long nr_taken;
1639 unsigned long nr_scanned;
1640 unsigned long vm_flags;
1641 LIST_HEAD(l_hold); /* The pages which were snipped off */
1642 LIST_HEAD(l_active);
1643 LIST_HEAD(l_inactive);
1644 struct page *page;
1645 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1646 unsigned long nr_rotated = 0;
1647 isolate_mode_t isolate_mode = 0;
1648 int file = is_file_lru(lru);
1649 struct zone *zone = lruvec_zone(lruvec);
1650
1651 lru_add_drain();
1652
1653 if (!sc->may_unmap)
1654 isolate_mode |= ISOLATE_UNMAPPED;
1655 if (!sc->may_writepage)
1656 isolate_mode |= ISOLATE_CLEAN;
1657
1658 spin_lock_irq(&zone->lru_lock);
1659
1660 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1661 &nr_scanned, sc, isolate_mode, lru);
1662 if (global_reclaim(sc))
1663 zone->pages_scanned += nr_scanned;
1664
1665 reclaim_stat->recent_scanned[file] += nr_taken;
1666
1667 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1668 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1669 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1670 spin_unlock_irq(&zone->lru_lock);
1671
1672 while (!list_empty(&l_hold)) {
1673 cond_resched();
1674 page = lru_to_page(&l_hold);
1675 list_del(&page->lru);
1676
1677 if (unlikely(!page_evictable(page))) {
1678 putback_lru_page(page);
1679 continue;
1680 }
1681
1682 if (unlikely(buffer_heads_over_limit)) {
1683 if (page_has_private(page) && trylock_page(page)) {
1684 if (page_has_private(page))
1685 try_to_release_page(page, 0);
1686 unlock_page(page);
1687 }
1688 }
1689
1690 if (page_referenced(page, 0, sc->target_mem_cgroup,
1691 &vm_flags)) {
1692 nr_rotated += hpage_nr_pages(page);
1693 /*
1694 * Identify referenced, file-backed active pages and
1695 * give them one more trip around the active list. So
1696 * that executable code get better chances to stay in
1697 * memory under moderate memory pressure. Anon pages
1698 * are not likely to be evicted by use-once streaming
1699 * IO, plus JVM can create lots of anon VM_EXEC pages,
1700 * so we ignore them here.
1701 */
1702 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1703 list_add(&page->lru, &l_active);
1704 continue;
1705 }
1706 }
1707
1708 ClearPageActive(page); /* we are de-activating */
1709 list_add(&page->lru, &l_inactive);
1710 }
1711
1712 /*
1713 * Move pages back to the lru list.
1714 */
1715 spin_lock_irq(&zone->lru_lock);
1716 /*
1717 * Count referenced pages from currently used mappings as rotated,
1718 * even though only some of them are actually re-activated. This
1719 * helps balance scan pressure between file and anonymous pages in
1720 * get_scan_ratio.
1721 */
1722 reclaim_stat->recent_rotated[file] += nr_rotated;
1723
1724 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1725 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1726 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1727 spin_unlock_irq(&zone->lru_lock);
1728
1729 free_hot_cold_page_list(&l_hold, 1);
1730 }
1731
1732 #ifdef CONFIG_SWAP
1733 static int inactive_anon_is_low_global(struct zone *zone)
1734 {
1735 unsigned long active, inactive;
1736
1737 active = zone_page_state(zone, NR_ACTIVE_ANON);
1738 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1739
1740 if (inactive * zone->inactive_ratio < active)
1741 return 1;
1742
1743 return 0;
1744 }
1745
1746 /**
1747 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1748 * @lruvec: LRU vector to check
1749 *
1750 * Returns true if the zone does not have enough inactive anon pages,
1751 * meaning some active anon pages need to be deactivated.
1752 */
1753 static int inactive_anon_is_low(struct lruvec *lruvec)
1754 {
1755 /*
1756 * If we don't have swap space, anonymous page deactivation
1757 * is pointless.
1758 */
1759 if (!total_swap_pages)
1760 return 0;
1761
1762 if (!mem_cgroup_disabled())
1763 return mem_cgroup_inactive_anon_is_low(lruvec);
1764
1765 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1766 }
1767 #else
1768 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1769 {
1770 return 0;
1771 }
1772 #endif
1773
1774 /**
1775 * inactive_file_is_low - check if file pages need to be deactivated
1776 * @lruvec: LRU vector to check
1777 *
1778 * When the system is doing streaming IO, memory pressure here
1779 * ensures that active file pages get deactivated, until more
1780 * than half of the file pages are on the inactive list.
1781 *
1782 * Once we get to that situation, protect the system's working
1783 * set from being evicted by disabling active file page aging.
1784 *
1785 * This uses a different ratio than the anonymous pages, because
1786 * the page cache uses a use-once replacement algorithm.
1787 */
1788 static int inactive_file_is_low(struct lruvec *lruvec)
1789 {
1790 unsigned long inactive;
1791 unsigned long active;
1792
1793 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1794 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1795
1796 return active > inactive;
1797 }
1798
1799 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1800 {
1801 if (is_file_lru(lru))
1802 return inactive_file_is_low(lruvec);
1803 else
1804 return inactive_anon_is_low(lruvec);
1805 }
1806
1807 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1808 struct lruvec *lruvec, struct scan_control *sc)
1809 {
1810 if (is_active_lru(lru)) {
1811 if (inactive_list_is_low(lruvec, lru))
1812 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1813 return 0;
1814 }
1815
1816 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1817 }
1818
1819 static int vmscan_swappiness(struct scan_control *sc)
1820 {
1821 if (global_reclaim(sc))
1822 return vm_swappiness;
1823 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1824 }
1825
1826 enum scan_balance {
1827 SCAN_EQUAL,
1828 SCAN_FRACT,
1829 SCAN_ANON,
1830 SCAN_FILE,
1831 };
1832
1833 /*
1834 * Determine how aggressively the anon and file LRU lists should be
1835 * scanned. The relative value of each set of LRU lists is determined
1836 * by looking at the fraction of the pages scanned we did rotate back
1837 * onto the active list instead of evict.
1838 *
1839 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1840 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1841 */
1842 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1843 unsigned long *nr)
1844 {
1845 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1846 u64 fraction[2];
1847 u64 denominator = 0; /* gcc */
1848 struct zone *zone = lruvec_zone(lruvec);
1849 unsigned long anon_prio, file_prio;
1850 enum scan_balance scan_balance;
1851 unsigned long anon, file, free;
1852 bool force_scan = false;
1853 unsigned long ap, fp;
1854 enum lru_list lru;
1855
1856 /*
1857 * If the zone or memcg is small, nr[l] can be 0. This
1858 * results in no scanning on this priority and a potential
1859 * priority drop. Global direct reclaim can go to the next
1860 * zone and tends to have no problems. Global kswapd is for
1861 * zone balancing and it needs to scan a minimum amount. When
1862 * reclaiming for a memcg, a priority drop can cause high
1863 * latencies, so it's better to scan a minimum amount there as
1864 * well.
1865 */
1866 if (current_is_kswapd() && !zone_reclaimable(zone))
1867 force_scan = true;
1868 if (!global_reclaim(sc))
1869 force_scan = true;
1870
1871 /* If we have no swap space, do not bother scanning anon pages. */
1872 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1873 scan_balance = SCAN_FILE;
1874 goto out;
1875 }
1876
1877 /*
1878 * Global reclaim will swap to prevent OOM even with no
1879 * swappiness, but memcg users want to use this knob to
1880 * disable swapping for individual groups completely when
1881 * using the memory controller's swap limit feature would be
1882 * too expensive.
1883 */
1884 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1885 scan_balance = SCAN_FILE;
1886 goto out;
1887 }
1888
1889 /*
1890 * Do not apply any pressure balancing cleverness when the
1891 * system is close to OOM, scan both anon and file equally
1892 * (unless the swappiness setting disagrees with swapping).
1893 */
1894 if (!sc->priority && vmscan_swappiness(sc)) {
1895 scan_balance = SCAN_EQUAL;
1896 goto out;
1897 }
1898
1899 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1900 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1901 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1902 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1903
1904 /*
1905 * If it's foreseeable that reclaiming the file cache won't be
1906 * enough to get the zone back into a desirable shape, we have
1907 * to swap. Better start now and leave the - probably heavily
1908 * thrashing - remaining file pages alone.
1909 */
1910 if (global_reclaim(sc)) {
1911 free = zone_page_state(zone, NR_FREE_PAGES);
1912 if (unlikely(file + free <= high_wmark_pages(zone))) {
1913 scan_balance = SCAN_ANON;
1914 goto out;
1915 }
1916 }
1917
1918 /*
1919 * There is enough inactive page cache, do not reclaim
1920 * anything from the anonymous working set right now.
1921 */
1922 if (!inactive_file_is_low(lruvec)) {
1923 scan_balance = SCAN_FILE;
1924 goto out;
1925 }
1926
1927 scan_balance = SCAN_FRACT;
1928
1929 /*
1930 * With swappiness at 100, anonymous and file have the same priority.
1931 * This scanning priority is essentially the inverse of IO cost.
1932 */
1933 anon_prio = vmscan_swappiness(sc);
1934 file_prio = 200 - anon_prio;
1935
1936 /*
1937 * OK, so we have swap space and a fair amount of page cache
1938 * pages. We use the recently rotated / recently scanned
1939 * ratios to determine how valuable each cache is.
1940 *
1941 * Because workloads change over time (and to avoid overflow)
1942 * we keep these statistics as a floating average, which ends
1943 * up weighing recent references more than old ones.
1944 *
1945 * anon in [0], file in [1]
1946 */
1947 spin_lock_irq(&zone->lru_lock);
1948 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1949 reclaim_stat->recent_scanned[0] /= 2;
1950 reclaim_stat->recent_rotated[0] /= 2;
1951 }
1952
1953 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1954 reclaim_stat->recent_scanned[1] /= 2;
1955 reclaim_stat->recent_rotated[1] /= 2;
1956 }
1957
1958 /*
1959 * The amount of pressure on anon vs file pages is inversely
1960 * proportional to the fraction of recently scanned pages on
1961 * each list that were recently referenced and in active use.
1962 */
1963 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1964 ap /= reclaim_stat->recent_rotated[0] + 1;
1965
1966 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1967 fp /= reclaim_stat->recent_rotated[1] + 1;
1968 spin_unlock_irq(&zone->lru_lock);
1969
1970 fraction[0] = ap;
1971 fraction[1] = fp;
1972 denominator = ap + fp + 1;
1973 out:
1974 for_each_evictable_lru(lru) {
1975 int file = is_file_lru(lru);
1976 unsigned long size;
1977 unsigned long scan;
1978
1979 size = get_lru_size(lruvec, lru);
1980 scan = size >> sc->priority;
1981
1982 if (!scan && force_scan)
1983 scan = min(size, SWAP_CLUSTER_MAX);
1984
1985 switch (scan_balance) {
1986 case SCAN_EQUAL:
1987 /* Scan lists relative to size */
1988 break;
1989 case SCAN_FRACT:
1990 /*
1991 * Scan types proportional to swappiness and
1992 * their relative recent reclaim efficiency.
1993 */
1994 scan = div64_u64(scan * fraction[file], denominator);
1995 break;
1996 case SCAN_FILE:
1997 case SCAN_ANON:
1998 /* Scan one type exclusively */
1999 if ((scan_balance == SCAN_FILE) != file)
2000 scan = 0;
2001 break;
2002 default:
2003 /* Look ma, no brain */
2004 BUG();
2005 }
2006 nr[lru] = scan;
2007 }
2008 }
2009
2010 /*
2011 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2012 */
2013 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2014 {
2015 unsigned long nr[NR_LRU_LISTS];
2016 unsigned long targets[NR_LRU_LISTS];
2017 unsigned long nr_to_scan;
2018 enum lru_list lru;
2019 unsigned long nr_reclaimed = 0;
2020 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2021 struct blk_plug plug;
2022 bool scan_adjusted = false;
2023
2024 get_scan_count(lruvec, sc, nr);
2025
2026 /* Record the original scan target for proportional adjustments later */
2027 memcpy(targets, nr, sizeof(nr));
2028
2029 blk_start_plug(&plug);
2030 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2031 nr[LRU_INACTIVE_FILE]) {
2032 unsigned long nr_anon, nr_file, percentage;
2033 unsigned long nr_scanned;
2034
2035 for_each_evictable_lru(lru) {
2036 if (nr[lru]) {
2037 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2038 nr[lru] -= nr_to_scan;
2039
2040 nr_reclaimed += shrink_list(lru, nr_to_scan,
2041 lruvec, sc);
2042 }
2043 }
2044
2045 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2046 continue;
2047
2048 /*
2049 * For global direct reclaim, reclaim only the number of pages
2050 * requested. Less care is taken to scan proportionally as it
2051 * is more important to minimise direct reclaim stall latency
2052 * than it is to properly age the LRU lists.
2053 */
2054 if (global_reclaim(sc) && !current_is_kswapd())
2055 break;
2056
2057 /*
2058 * For kswapd and memcg, reclaim at least the number of pages
2059 * requested. Ensure that the anon and file LRUs shrink
2060 * proportionally what was requested by get_scan_count(). We
2061 * stop reclaiming one LRU and reduce the amount scanning
2062 * proportional to the original scan target.
2063 */
2064 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2065 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2066
2067 if (nr_file > nr_anon) {
2068 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2069 targets[LRU_ACTIVE_ANON] + 1;
2070 lru = LRU_BASE;
2071 percentage = nr_anon * 100 / scan_target;
2072 } else {
2073 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2074 targets[LRU_ACTIVE_FILE] + 1;
2075 lru = LRU_FILE;
2076 percentage = nr_file * 100 / scan_target;
2077 }
2078
2079 /* Stop scanning the smaller of the LRU */
2080 nr[lru] = 0;
2081 nr[lru + LRU_ACTIVE] = 0;
2082
2083 /*
2084 * Recalculate the other LRU scan count based on its original
2085 * scan target and the percentage scanning already complete
2086 */
2087 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2088 nr_scanned = targets[lru] - nr[lru];
2089 nr[lru] = targets[lru] * (100 - percentage) / 100;
2090 nr[lru] -= min(nr[lru], nr_scanned);
2091
2092 lru += LRU_ACTIVE;
2093 nr_scanned = targets[lru] - nr[lru];
2094 nr[lru] = targets[lru] * (100 - percentage) / 100;
2095 nr[lru] -= min(nr[lru], nr_scanned);
2096
2097 scan_adjusted = true;
2098 }
2099 blk_finish_plug(&plug);
2100 sc->nr_reclaimed += nr_reclaimed;
2101
2102 /*
2103 * Even if we did not try to evict anon pages at all, we want to
2104 * rebalance the anon lru active/inactive ratio.
2105 */
2106 if (inactive_anon_is_low(lruvec))
2107 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2108 sc, LRU_ACTIVE_ANON);
2109
2110 throttle_vm_writeout(sc->gfp_mask);
2111 }
2112
2113 /* Use reclaim/compaction for costly allocs or under memory pressure */
2114 static bool in_reclaim_compaction(struct scan_control *sc)
2115 {
2116 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2117 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2118 sc->priority < DEF_PRIORITY - 2))
2119 return true;
2120
2121 return false;
2122 }
2123
2124 /*
2125 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2126 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2127 * true if more pages should be reclaimed such that when the page allocator
2128 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2129 * It will give up earlier than that if there is difficulty reclaiming pages.
2130 */
2131 static inline bool should_continue_reclaim(struct zone *zone,
2132 unsigned long nr_reclaimed,
2133 unsigned long nr_scanned,
2134 struct scan_control *sc)
2135 {
2136 unsigned long pages_for_compaction;
2137 unsigned long inactive_lru_pages;
2138
2139 /* If not in reclaim/compaction mode, stop */
2140 if (!in_reclaim_compaction(sc))
2141 return false;
2142
2143 /* Consider stopping depending on scan and reclaim activity */
2144 if (sc->gfp_mask & __GFP_REPEAT) {
2145 /*
2146 * For __GFP_REPEAT allocations, stop reclaiming if the
2147 * full LRU list has been scanned and we are still failing
2148 * to reclaim pages. This full LRU scan is potentially
2149 * expensive but a __GFP_REPEAT caller really wants to succeed
2150 */
2151 if (!nr_reclaimed && !nr_scanned)
2152 return false;
2153 } else {
2154 /*
2155 * For non-__GFP_REPEAT allocations which can presumably
2156 * fail without consequence, stop if we failed to reclaim
2157 * any pages from the last SWAP_CLUSTER_MAX number of
2158 * pages that were scanned. This will return to the
2159 * caller faster at the risk reclaim/compaction and
2160 * the resulting allocation attempt fails
2161 */
2162 if (!nr_reclaimed)
2163 return false;
2164 }
2165
2166 /*
2167 * If we have not reclaimed enough pages for compaction and the
2168 * inactive lists are large enough, continue reclaiming
2169 */
2170 pages_for_compaction = (2UL << sc->order);
2171 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2172 if (get_nr_swap_pages() > 0)
2173 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2174 if (sc->nr_reclaimed < pages_for_compaction &&
2175 inactive_lru_pages > pages_for_compaction)
2176 return true;
2177
2178 /* If compaction would go ahead or the allocation would succeed, stop */
2179 switch (compaction_suitable(zone, sc->order)) {
2180 case COMPACT_PARTIAL:
2181 case COMPACT_CONTINUE:
2182 return false;
2183 default:
2184 return true;
2185 }
2186 }
2187
2188 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2189 {
2190 unsigned long nr_reclaimed, nr_scanned;
2191
2192 do {
2193 struct mem_cgroup *root = sc->target_mem_cgroup;
2194 struct mem_cgroup_reclaim_cookie reclaim = {
2195 .zone = zone,
2196 .priority = sc->priority,
2197 };
2198 struct mem_cgroup *memcg;
2199
2200 nr_reclaimed = sc->nr_reclaimed;
2201 nr_scanned = sc->nr_scanned;
2202
2203 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2204 do {
2205 struct lruvec *lruvec;
2206
2207 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2208
2209 shrink_lruvec(lruvec, sc);
2210
2211 /*
2212 * Direct reclaim and kswapd have to scan all memory
2213 * cgroups to fulfill the overall scan target for the
2214 * zone.
2215 *
2216 * Limit reclaim, on the other hand, only cares about
2217 * nr_to_reclaim pages to be reclaimed and it will
2218 * retry with decreasing priority if one round over the
2219 * whole hierarchy is not sufficient.
2220 */
2221 if (!global_reclaim(sc) &&
2222 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2223 mem_cgroup_iter_break(root, memcg);
2224 break;
2225 }
2226 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2227 } while (memcg);
2228
2229 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2230 sc->nr_scanned - nr_scanned,
2231 sc->nr_reclaimed - nr_reclaimed);
2232
2233 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2234 sc->nr_scanned - nr_scanned, sc));
2235 }
2236
2237 /* Returns true if compaction should go ahead for a high-order request */
2238 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2239 {
2240 unsigned long balance_gap, watermark;
2241 bool watermark_ok;
2242
2243 /* Do not consider compaction for orders reclaim is meant to satisfy */
2244 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2245 return false;
2246
2247 /*
2248 * Compaction takes time to run and there are potentially other
2249 * callers using the pages just freed. Continue reclaiming until
2250 * there is a buffer of free pages available to give compaction
2251 * a reasonable chance of completing and allocating the page
2252 */
2253 balance_gap = min(low_wmark_pages(zone),
2254 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2255 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2256 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2257 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2258
2259 /*
2260 * If compaction is deferred, reclaim up to a point where
2261 * compaction will have a chance of success when re-enabled
2262 */
2263 if (compaction_deferred(zone, sc->order))
2264 return watermark_ok;
2265
2266 /* If compaction is not ready to start, keep reclaiming */
2267 if (!compaction_suitable(zone, sc->order))
2268 return false;
2269
2270 return watermark_ok;
2271 }
2272
2273 /*
2274 * This is the direct reclaim path, for page-allocating processes. We only
2275 * try to reclaim pages from zones which will satisfy the caller's allocation
2276 * request.
2277 *
2278 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2279 * Because:
2280 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2281 * allocation or
2282 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2283 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2284 * zone defense algorithm.
2285 *
2286 * If a zone is deemed to be full of pinned pages then just give it a light
2287 * scan then give up on it.
2288 *
2289 * This function returns true if a zone is being reclaimed for a costly
2290 * high-order allocation and compaction is ready to begin. This indicates to
2291 * the caller that it should consider retrying the allocation instead of
2292 * further reclaim.
2293 */
2294 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2295 {
2296 struct zoneref *z;
2297 struct zone *zone;
2298 unsigned long nr_soft_reclaimed;
2299 unsigned long nr_soft_scanned;
2300 unsigned long lru_pages = 0;
2301 bool aborted_reclaim = false;
2302 struct reclaim_state *reclaim_state = current->reclaim_state;
2303 struct shrink_control shrink = {
2304 .gfp_mask = sc->gfp_mask,
2305 };
2306
2307 /*
2308 * If the number of buffer_heads in the machine exceeds the maximum
2309 * allowed level, force direct reclaim to scan the highmem zone as
2310 * highmem pages could be pinning lowmem pages storing buffer_heads
2311 */
2312 if (buffer_heads_over_limit)
2313 sc->gfp_mask |= __GFP_HIGHMEM;
2314
2315 nodes_clear(shrink.nodes_to_scan);
2316
2317 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2318 gfp_zone(sc->gfp_mask), sc->nodemask) {
2319 if (!populated_zone(zone))
2320 continue;
2321 /*
2322 * Take care memory controller reclaiming has small influence
2323 * to global LRU.
2324 */
2325 if (global_reclaim(sc)) {
2326 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2327 continue;
2328
2329 lru_pages += zone_reclaimable_pages(zone);
2330 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2331
2332 if (sc->priority != DEF_PRIORITY &&
2333 !zone_reclaimable(zone))
2334 continue; /* Let kswapd poll it */
2335 if (IS_ENABLED(CONFIG_COMPACTION)) {
2336 /*
2337 * If we already have plenty of memory free for
2338 * compaction in this zone, don't free any more.
2339 * Even though compaction is invoked for any
2340 * non-zero order, only frequent costly order
2341 * reclamation is disruptive enough to become a
2342 * noticeable problem, like transparent huge
2343 * page allocations.
2344 */
2345 if (compaction_ready(zone, sc)) {
2346 aborted_reclaim = true;
2347 continue;
2348 }
2349 }
2350 /*
2351 * This steals pages from memory cgroups over softlimit
2352 * and returns the number of reclaimed pages and
2353 * scanned pages. This works for global memory pressure
2354 * and balancing, not for a memcg's limit.
2355 */
2356 nr_soft_scanned = 0;
2357 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2358 sc->order, sc->gfp_mask,
2359 &nr_soft_scanned);
2360 sc->nr_reclaimed += nr_soft_reclaimed;
2361 sc->nr_scanned += nr_soft_scanned;
2362 /* need some check for avoid more shrink_zone() */
2363 }
2364
2365 shrink_zone(zone, sc);
2366 }
2367
2368 /*
2369 * Don't shrink slabs when reclaiming memory from over limit cgroups
2370 * but do shrink slab at least once when aborting reclaim for
2371 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2372 * pages.
2373 */
2374 if (global_reclaim(sc)) {
2375 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2376 if (reclaim_state) {
2377 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2378 reclaim_state->reclaimed_slab = 0;
2379 }
2380 }
2381
2382 return aborted_reclaim;
2383 }
2384
2385 /* All zones in zonelist are unreclaimable? */
2386 static bool all_unreclaimable(struct zonelist *zonelist,
2387 struct scan_control *sc)
2388 {
2389 struct zoneref *z;
2390 struct zone *zone;
2391
2392 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2393 gfp_zone(sc->gfp_mask), sc->nodemask) {
2394 if (!populated_zone(zone))
2395 continue;
2396 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2397 continue;
2398 if (zone_reclaimable(zone))
2399 return false;
2400 }
2401
2402 return true;
2403 }
2404
2405 /*
2406 * This is the main entry point to direct page reclaim.
2407 *
2408 * If a full scan of the inactive list fails to free enough memory then we
2409 * are "out of memory" and something needs to be killed.
2410 *
2411 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2412 * high - the zone may be full of dirty or under-writeback pages, which this
2413 * caller can't do much about. We kick the writeback threads and take explicit
2414 * naps in the hope that some of these pages can be written. But if the
2415 * allocating task holds filesystem locks which prevent writeout this might not
2416 * work, and the allocation attempt will fail.
2417 *
2418 * returns: 0, if no pages reclaimed
2419 * else, the number of pages reclaimed
2420 */
2421 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2422 struct scan_control *sc)
2423 {
2424 unsigned long total_scanned = 0;
2425 unsigned long writeback_threshold;
2426 bool aborted_reclaim;
2427
2428 delayacct_freepages_start();
2429
2430 if (global_reclaim(sc))
2431 count_vm_event(ALLOCSTALL);
2432
2433 do {
2434 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2435 sc->priority);
2436 sc->nr_scanned = 0;
2437 aborted_reclaim = shrink_zones(zonelist, sc);
2438
2439 total_scanned += sc->nr_scanned;
2440 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2441 goto out;
2442
2443 /*
2444 * If we're getting trouble reclaiming, start doing
2445 * writepage even in laptop mode.
2446 */
2447 if (sc->priority < DEF_PRIORITY - 2)
2448 sc->may_writepage = 1;
2449
2450 /*
2451 * Try to write back as many pages as we just scanned. This
2452 * tends to cause slow streaming writers to write data to the
2453 * disk smoothly, at the dirtying rate, which is nice. But
2454 * that's undesirable in laptop mode, where we *want* lumpy
2455 * writeout. So in laptop mode, write out the whole world.
2456 */
2457 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2458 if (total_scanned > writeback_threshold) {
2459 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2460 WB_REASON_TRY_TO_FREE_PAGES);
2461 sc->may_writepage = 1;
2462 }
2463 } while (--sc->priority >= 0 && !aborted_reclaim);
2464
2465 out:
2466 delayacct_freepages_end();
2467
2468 if (sc->nr_reclaimed)
2469 return sc->nr_reclaimed;
2470
2471 /*
2472 * As hibernation is going on, kswapd is freezed so that it can't mark
2473 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2474 * check.
2475 */
2476 if (oom_killer_disabled)
2477 return 0;
2478
2479 /* Aborted reclaim to try compaction? don't OOM, then */
2480 if (aborted_reclaim)
2481 return 1;
2482
2483 /* top priority shrink_zones still had more to do? don't OOM, then */
2484 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2485 return 1;
2486
2487 return 0;
2488 }
2489
2490 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2491 {
2492 struct zone *zone;
2493 unsigned long pfmemalloc_reserve = 0;
2494 unsigned long free_pages = 0;
2495 int i;
2496 bool wmark_ok;
2497
2498 for (i = 0; i <= ZONE_NORMAL; i++) {
2499 zone = &pgdat->node_zones[i];
2500 pfmemalloc_reserve += min_wmark_pages(zone);
2501 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2502 }
2503
2504 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2505
2506 /* kswapd must be awake if processes are being throttled */
2507 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2508 pgdat->classzone_idx = min(pgdat->classzone_idx,
2509 (enum zone_type)ZONE_NORMAL);
2510 wake_up_interruptible(&pgdat->kswapd_wait);
2511 }
2512
2513 return wmark_ok;
2514 }
2515
2516 /*
2517 * Throttle direct reclaimers if backing storage is backed by the network
2518 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2519 * depleted. kswapd will continue to make progress and wake the processes
2520 * when the low watermark is reached.
2521 *
2522 * Returns true if a fatal signal was delivered during throttling. If this
2523 * happens, the page allocator should not consider triggering the OOM killer.
2524 */
2525 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2526 nodemask_t *nodemask)
2527 {
2528 struct zone *zone;
2529 int high_zoneidx = gfp_zone(gfp_mask);
2530 pg_data_t *pgdat;
2531
2532 /*
2533 * Kernel threads should not be throttled as they may be indirectly
2534 * responsible for cleaning pages necessary for reclaim to make forward
2535 * progress. kjournald for example may enter direct reclaim while
2536 * committing a transaction where throttling it could forcing other
2537 * processes to block on log_wait_commit().
2538 */
2539 if (current->flags & PF_KTHREAD)
2540 goto out;
2541
2542 /*
2543 * If a fatal signal is pending, this process should not throttle.
2544 * It should return quickly so it can exit and free its memory
2545 */
2546 if (fatal_signal_pending(current))
2547 goto out;
2548
2549 /* Check if the pfmemalloc reserves are ok */
2550 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2551 pgdat = zone->zone_pgdat;
2552 if (pfmemalloc_watermark_ok(pgdat))
2553 goto out;
2554
2555 /* Account for the throttling */
2556 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2557
2558 /*
2559 * If the caller cannot enter the filesystem, it's possible that it
2560 * is due to the caller holding an FS lock or performing a journal
2561 * transaction in the case of a filesystem like ext[3|4]. In this case,
2562 * it is not safe to block on pfmemalloc_wait as kswapd could be
2563 * blocked waiting on the same lock. Instead, throttle for up to a
2564 * second before continuing.
2565 */
2566 if (!(gfp_mask & __GFP_FS)) {
2567 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2568 pfmemalloc_watermark_ok(pgdat), HZ);
2569
2570 goto check_pending;
2571 }
2572
2573 /* Throttle until kswapd wakes the process */
2574 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2575 pfmemalloc_watermark_ok(pgdat));
2576
2577 check_pending:
2578 if (fatal_signal_pending(current))
2579 return true;
2580
2581 out:
2582 return false;
2583 }
2584
2585 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2586 gfp_t gfp_mask, nodemask_t *nodemask)
2587 {
2588 unsigned long nr_reclaimed;
2589 struct scan_control sc = {
2590 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2591 .may_writepage = !laptop_mode,
2592 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2593 .may_unmap = 1,
2594 .may_swap = 1,
2595 .order = order,
2596 .priority = DEF_PRIORITY,
2597 .target_mem_cgroup = NULL,
2598 .nodemask = nodemask,
2599 };
2600
2601 /*
2602 * Do not enter reclaim if fatal signal was delivered while throttled.
2603 * 1 is returned so that the page allocator does not OOM kill at this
2604 * point.
2605 */
2606 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2607 return 1;
2608
2609 trace_mm_vmscan_direct_reclaim_begin(order,
2610 sc.may_writepage,
2611 gfp_mask);
2612
2613 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2614
2615 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2616
2617 return nr_reclaimed;
2618 }
2619
2620 #ifdef CONFIG_MEMCG
2621
2622 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2623 gfp_t gfp_mask, bool noswap,
2624 struct zone *zone,
2625 unsigned long *nr_scanned)
2626 {
2627 struct scan_control sc = {
2628 .nr_scanned = 0,
2629 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2630 .may_writepage = !laptop_mode,
2631 .may_unmap = 1,
2632 .may_swap = !noswap,
2633 .order = 0,
2634 .priority = 0,
2635 .target_mem_cgroup = memcg,
2636 };
2637 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2638
2639 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2640 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2641
2642 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2643 sc.may_writepage,
2644 sc.gfp_mask);
2645
2646 /*
2647 * NOTE: Although we can get the priority field, using it
2648 * here is not a good idea, since it limits the pages we can scan.
2649 * if we don't reclaim here, the shrink_zone from balance_pgdat
2650 * will pick up pages from other mem cgroup's as well. We hack
2651 * the priority and make it zero.
2652 */
2653 shrink_lruvec(lruvec, &sc);
2654
2655 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2656
2657 *nr_scanned = sc.nr_scanned;
2658 return sc.nr_reclaimed;
2659 }
2660
2661 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2662 gfp_t gfp_mask,
2663 bool noswap)
2664 {
2665 struct zonelist *zonelist;
2666 unsigned long nr_reclaimed;
2667 int nid;
2668 struct scan_control sc = {
2669 .may_writepage = !laptop_mode,
2670 .may_unmap = 1,
2671 .may_swap = !noswap,
2672 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2673 .order = 0,
2674 .priority = DEF_PRIORITY,
2675 .target_mem_cgroup = memcg,
2676 .nodemask = NULL, /* we don't care the placement */
2677 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2678 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2679 };
2680
2681 /*
2682 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2683 * take care of from where we get pages. So the node where we start the
2684 * scan does not need to be the current node.
2685 */
2686 nid = mem_cgroup_select_victim_node(memcg);
2687
2688 zonelist = NODE_DATA(nid)->node_zonelists;
2689
2690 trace_mm_vmscan_memcg_reclaim_begin(0,
2691 sc.may_writepage,
2692 sc.gfp_mask);
2693
2694 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2695
2696 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2697
2698 return nr_reclaimed;
2699 }
2700 #endif
2701
2702 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2703 {
2704 struct mem_cgroup *memcg;
2705
2706 if (!total_swap_pages)
2707 return;
2708
2709 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2710 do {
2711 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2712
2713 if (inactive_anon_is_low(lruvec))
2714 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2715 sc, LRU_ACTIVE_ANON);
2716
2717 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2718 } while (memcg);
2719 }
2720
2721 static bool zone_balanced(struct zone *zone, int order,
2722 unsigned long balance_gap, int classzone_idx)
2723 {
2724 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2725 balance_gap, classzone_idx, 0))
2726 return false;
2727
2728 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2729 !compaction_suitable(zone, order))
2730 return false;
2731
2732 return true;
2733 }
2734
2735 /*
2736 * pgdat_balanced() is used when checking if a node is balanced.
2737 *
2738 * For order-0, all zones must be balanced!
2739 *
2740 * For high-order allocations only zones that meet watermarks and are in a
2741 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2742 * total of balanced pages must be at least 25% of the zones allowed by
2743 * classzone_idx for the node to be considered balanced. Forcing all zones to
2744 * be balanced for high orders can cause excessive reclaim when there are
2745 * imbalanced zones.
2746 * The choice of 25% is due to
2747 * o a 16M DMA zone that is balanced will not balance a zone on any
2748 * reasonable sized machine
2749 * o On all other machines, the top zone must be at least a reasonable
2750 * percentage of the middle zones. For example, on 32-bit x86, highmem
2751 * would need to be at least 256M for it to be balance a whole node.
2752 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2753 * to balance a node on its own. These seemed like reasonable ratios.
2754 */
2755 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2756 {
2757 unsigned long managed_pages = 0;
2758 unsigned long balanced_pages = 0;
2759 int i;
2760
2761 /* Check the watermark levels */
2762 for (i = 0; i <= classzone_idx; i++) {
2763 struct zone *zone = pgdat->node_zones + i;
2764
2765 if (!populated_zone(zone))
2766 continue;
2767
2768 managed_pages += zone->managed_pages;
2769
2770 /*
2771 * A special case here:
2772 *
2773 * balance_pgdat() skips over all_unreclaimable after
2774 * DEF_PRIORITY. Effectively, it considers them balanced so
2775 * they must be considered balanced here as well!
2776 */
2777 if (!zone_reclaimable(zone)) {
2778 balanced_pages += zone->managed_pages;
2779 continue;
2780 }
2781
2782 if (zone_balanced(zone, order, 0, i))
2783 balanced_pages += zone->managed_pages;
2784 else if (!order)
2785 return false;
2786 }
2787
2788 if (order)
2789 return balanced_pages >= (managed_pages >> 2);
2790 else
2791 return true;
2792 }
2793
2794 /*
2795 * Prepare kswapd for sleeping. This verifies that there are no processes
2796 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2797 *
2798 * Returns true if kswapd is ready to sleep
2799 */
2800 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2801 int classzone_idx)
2802 {
2803 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2804 if (remaining)
2805 return false;
2806
2807 /*
2808 * There is a potential race between when kswapd checks its watermarks
2809 * and a process gets throttled. There is also a potential race if
2810 * processes get throttled, kswapd wakes, a large process exits therby
2811 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2812 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2813 * so wake them now if necessary. If necessary, processes will wake
2814 * kswapd and get throttled again
2815 */
2816 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2817 wake_up(&pgdat->pfmemalloc_wait);
2818 return false;
2819 }
2820
2821 return pgdat_balanced(pgdat, order, classzone_idx);
2822 }
2823
2824 /*
2825 * kswapd shrinks the zone by the number of pages required to reach
2826 * the high watermark.
2827 *
2828 * Returns true if kswapd scanned at least the requested number of pages to
2829 * reclaim or if the lack of progress was due to pages under writeback.
2830 * This is used to determine if the scanning priority needs to be raised.
2831 */
2832 static bool kswapd_shrink_zone(struct zone *zone,
2833 int classzone_idx,
2834 struct scan_control *sc,
2835 unsigned long lru_pages,
2836 unsigned long *nr_attempted)
2837 {
2838 int testorder = sc->order;
2839 unsigned long balance_gap;
2840 struct reclaim_state *reclaim_state = current->reclaim_state;
2841 struct shrink_control shrink = {
2842 .gfp_mask = sc->gfp_mask,
2843 };
2844 bool lowmem_pressure;
2845
2846 /* Reclaim above the high watermark. */
2847 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2848
2849 /*
2850 * Kswapd reclaims only single pages with compaction enabled. Trying
2851 * too hard to reclaim until contiguous free pages have become
2852 * available can hurt performance by evicting too much useful data
2853 * from memory. Do not reclaim more than needed for compaction.
2854 */
2855 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2856 compaction_suitable(zone, sc->order) !=
2857 COMPACT_SKIPPED)
2858 testorder = 0;
2859
2860 /*
2861 * We put equal pressure on every zone, unless one zone has way too
2862 * many pages free already. The "too many pages" is defined as the
2863 * high wmark plus a "gap" where the gap is either the low
2864 * watermark or 1% of the zone, whichever is smaller.
2865 */
2866 balance_gap = min(low_wmark_pages(zone),
2867 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2868 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2869
2870 /*
2871 * If there is no low memory pressure or the zone is balanced then no
2872 * reclaim is necessary
2873 */
2874 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2875 if (!lowmem_pressure && zone_balanced(zone, testorder,
2876 balance_gap, classzone_idx))
2877 return true;
2878
2879 shrink_zone(zone, sc);
2880 nodes_clear(shrink.nodes_to_scan);
2881 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2882
2883 reclaim_state->reclaimed_slab = 0;
2884 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2885 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2886
2887 /* Account for the number of pages attempted to reclaim */
2888 *nr_attempted += sc->nr_to_reclaim;
2889
2890 zone_clear_flag(zone, ZONE_WRITEBACK);
2891
2892 /*
2893 * If a zone reaches its high watermark, consider it to be no longer
2894 * congested. It's possible there are dirty pages backed by congested
2895 * BDIs but as pressure is relieved, speculatively avoid congestion
2896 * waits.
2897 */
2898 if (zone_reclaimable(zone) &&
2899 zone_balanced(zone, testorder, 0, classzone_idx)) {
2900 zone_clear_flag(zone, ZONE_CONGESTED);
2901 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2902 }
2903
2904 return sc->nr_scanned >= sc->nr_to_reclaim;
2905 }
2906
2907 /*
2908 * For kswapd, balance_pgdat() will work across all this node's zones until
2909 * they are all at high_wmark_pages(zone).
2910 *
2911 * Returns the final order kswapd was reclaiming at
2912 *
2913 * There is special handling here for zones which are full of pinned pages.
2914 * This can happen if the pages are all mlocked, or if they are all used by
2915 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2916 * What we do is to detect the case where all pages in the zone have been
2917 * scanned twice and there has been zero successful reclaim. Mark the zone as
2918 * dead and from now on, only perform a short scan. Basically we're polling
2919 * the zone for when the problem goes away.
2920 *
2921 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2922 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2923 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2924 * lower zones regardless of the number of free pages in the lower zones. This
2925 * interoperates with the page allocator fallback scheme to ensure that aging
2926 * of pages is balanced across the zones.
2927 */
2928 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2929 int *classzone_idx)
2930 {
2931 int i;
2932 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2933 unsigned long nr_soft_reclaimed;
2934 unsigned long nr_soft_scanned;
2935 struct scan_control sc = {
2936 .gfp_mask = GFP_KERNEL,
2937 .priority = DEF_PRIORITY,
2938 .may_unmap = 1,
2939 .may_swap = 1,
2940 .may_writepage = !laptop_mode,
2941 .order = order,
2942 .target_mem_cgroup = NULL,
2943 };
2944 count_vm_event(PAGEOUTRUN);
2945
2946 do {
2947 unsigned long lru_pages = 0;
2948 unsigned long nr_attempted = 0;
2949 bool raise_priority = true;
2950 bool pgdat_needs_compaction = (order > 0);
2951
2952 sc.nr_reclaimed = 0;
2953
2954 /*
2955 * Scan in the highmem->dma direction for the highest
2956 * zone which needs scanning
2957 */
2958 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2959 struct zone *zone = pgdat->node_zones + i;
2960
2961 if (!populated_zone(zone))
2962 continue;
2963
2964 if (sc.priority != DEF_PRIORITY &&
2965 !zone_reclaimable(zone))
2966 continue;
2967
2968 /*
2969 * Do some background aging of the anon list, to give
2970 * pages a chance to be referenced before reclaiming.
2971 */
2972 age_active_anon(zone, &sc);
2973
2974 /*
2975 * If the number of buffer_heads in the machine
2976 * exceeds the maximum allowed level and this node
2977 * has a highmem zone, force kswapd to reclaim from
2978 * it to relieve lowmem pressure.
2979 */
2980 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2981 end_zone = i;
2982 break;
2983 }
2984
2985 if (!zone_balanced(zone, order, 0, 0)) {
2986 end_zone = i;
2987 break;
2988 } else {
2989 /*
2990 * If balanced, clear the dirty and congested
2991 * flags
2992 */
2993 zone_clear_flag(zone, ZONE_CONGESTED);
2994 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2995 }
2996 }
2997
2998 if (i < 0)
2999 goto out;
3000
3001 for (i = 0; i <= end_zone; i++) {
3002 struct zone *zone = pgdat->node_zones + i;
3003
3004 if (!populated_zone(zone))
3005 continue;
3006
3007 lru_pages += zone_reclaimable_pages(zone);
3008
3009 /*
3010 * If any zone is currently balanced then kswapd will
3011 * not call compaction as it is expected that the
3012 * necessary pages are already available.
3013 */
3014 if (pgdat_needs_compaction &&
3015 zone_watermark_ok(zone, order,
3016 low_wmark_pages(zone),
3017 *classzone_idx, 0))
3018 pgdat_needs_compaction = false;
3019 }
3020
3021 /*
3022 * If we're getting trouble reclaiming, start doing writepage
3023 * even in laptop mode.
3024 */
3025 if (sc.priority < DEF_PRIORITY - 2)
3026 sc.may_writepage = 1;
3027
3028 /*
3029 * Now scan the zone in the dma->highmem direction, stopping
3030 * at the last zone which needs scanning.
3031 *
3032 * We do this because the page allocator works in the opposite
3033 * direction. This prevents the page allocator from allocating
3034 * pages behind kswapd's direction of progress, which would
3035 * cause too much scanning of the lower zones.
3036 */
3037 for (i = 0; i <= end_zone; i++) {
3038 struct zone *zone = pgdat->node_zones + i;
3039
3040 if (!populated_zone(zone))
3041 continue;
3042
3043 if (sc.priority != DEF_PRIORITY &&
3044 !zone_reclaimable(zone))
3045 continue;
3046
3047 sc.nr_scanned = 0;
3048
3049 nr_soft_scanned = 0;
3050 /*
3051 * Call soft limit reclaim before calling shrink_zone.
3052 */
3053 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3054 order, sc.gfp_mask,
3055 &nr_soft_scanned);
3056 sc.nr_reclaimed += nr_soft_reclaimed;
3057
3058 /*
3059 * There should be no need to raise the scanning
3060 * priority if enough pages are already being scanned
3061 * that that high watermark would be met at 100%
3062 * efficiency.
3063 */
3064 if (kswapd_shrink_zone(zone, end_zone, &sc,
3065 lru_pages, &nr_attempted))
3066 raise_priority = false;
3067 }
3068
3069 /*
3070 * If the low watermark is met there is no need for processes
3071 * to be throttled on pfmemalloc_wait as they should not be
3072 * able to safely make forward progress. Wake them
3073 */
3074 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3075 pfmemalloc_watermark_ok(pgdat))
3076 wake_up(&pgdat->pfmemalloc_wait);
3077
3078 /*
3079 * Fragmentation may mean that the system cannot be rebalanced
3080 * for high-order allocations in all zones. If twice the
3081 * allocation size has been reclaimed and the zones are still
3082 * not balanced then recheck the watermarks at order-0 to
3083 * prevent kswapd reclaiming excessively. Assume that a
3084 * process requested a high-order can direct reclaim/compact.
3085 */
3086 if (order && sc.nr_reclaimed >= 2UL << order)
3087 order = sc.order = 0;
3088
3089 /* Check if kswapd should be suspending */
3090 if (try_to_freeze() || kthread_should_stop())
3091 break;
3092
3093 /*
3094 * Compact if necessary and kswapd is reclaiming at least the
3095 * high watermark number of pages as requsted
3096 */
3097 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3098 compact_pgdat(pgdat, order);
3099
3100 /*
3101 * Raise priority if scanning rate is too low or there was no
3102 * progress in reclaiming pages
3103 */
3104 if (raise_priority || !sc.nr_reclaimed)
3105 sc.priority--;
3106 } while (sc.priority >= 1 &&
3107 !pgdat_balanced(pgdat, order, *classzone_idx));
3108
3109 out:
3110 /*
3111 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3112 * makes a decision on the order we were last reclaiming at. However,
3113 * if another caller entered the allocator slow path while kswapd
3114 * was awake, order will remain at the higher level
3115 */
3116 *classzone_idx = end_zone;
3117 return order;
3118 }
3119
3120 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3121 {
3122 long remaining = 0;
3123 DEFINE_WAIT(wait);
3124
3125 if (freezing(current) || kthread_should_stop())
3126 return;
3127
3128 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3129
3130 /* Try to sleep for a short interval */
3131 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3132 remaining = schedule_timeout(HZ/10);
3133 finish_wait(&pgdat->kswapd_wait, &wait);
3134 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3135 }
3136
3137 /*
3138 * After a short sleep, check if it was a premature sleep. If not, then
3139 * go fully to sleep until explicitly woken up.
3140 */
3141 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3142 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3143
3144 /*
3145 * vmstat counters are not perfectly accurate and the estimated
3146 * value for counters such as NR_FREE_PAGES can deviate from the
3147 * true value by nr_online_cpus * threshold. To avoid the zone
3148 * watermarks being breached while under pressure, we reduce the
3149 * per-cpu vmstat threshold while kswapd is awake and restore
3150 * them before going back to sleep.
3151 */
3152 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3153
3154 /*
3155 * Compaction records what page blocks it recently failed to
3156 * isolate pages from and skips them in the future scanning.
3157 * When kswapd is going to sleep, it is reasonable to assume
3158 * that pages and compaction may succeed so reset the cache.
3159 */
3160 reset_isolation_suitable(pgdat);
3161
3162 if (!kthread_should_stop())
3163 schedule();
3164
3165 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3166 } else {
3167 if (remaining)
3168 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3169 else
3170 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3171 }
3172 finish_wait(&pgdat->kswapd_wait, &wait);
3173 }
3174
3175 /*
3176 * The background pageout daemon, started as a kernel thread
3177 * from the init process.
3178 *
3179 * This basically trickles out pages so that we have _some_
3180 * free memory available even if there is no other activity
3181 * that frees anything up. This is needed for things like routing
3182 * etc, where we otherwise might have all activity going on in
3183 * asynchronous contexts that cannot page things out.
3184 *
3185 * If there are applications that are active memory-allocators
3186 * (most normal use), this basically shouldn't matter.
3187 */
3188 static int kswapd(void *p)
3189 {
3190 unsigned long order, new_order;
3191 unsigned balanced_order;
3192 int classzone_idx, new_classzone_idx;
3193 int balanced_classzone_idx;
3194 pg_data_t *pgdat = (pg_data_t*)p;
3195 struct task_struct *tsk = current;
3196
3197 struct reclaim_state reclaim_state = {
3198 .reclaimed_slab = 0,
3199 };
3200 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3201
3202 lockdep_set_current_reclaim_state(GFP_KERNEL);
3203
3204 if (!cpumask_empty(cpumask))
3205 set_cpus_allowed_ptr(tsk, cpumask);
3206 current->reclaim_state = &reclaim_state;
3207
3208 /*
3209 * Tell the memory management that we're a "memory allocator",
3210 * and that if we need more memory we should get access to it
3211 * regardless (see "__alloc_pages()"). "kswapd" should
3212 * never get caught in the normal page freeing logic.
3213 *
3214 * (Kswapd normally doesn't need memory anyway, but sometimes
3215 * you need a small amount of memory in order to be able to
3216 * page out something else, and this flag essentially protects
3217 * us from recursively trying to free more memory as we're
3218 * trying to free the first piece of memory in the first place).
3219 */
3220 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3221 set_freezable();
3222
3223 order = new_order = 0;
3224 balanced_order = 0;
3225 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3226 balanced_classzone_idx = classzone_idx;
3227 for ( ; ; ) {
3228 bool ret;
3229
3230 /*
3231 * If the last balance_pgdat was unsuccessful it's unlikely a
3232 * new request of a similar or harder type will succeed soon
3233 * so consider going to sleep on the basis we reclaimed at
3234 */
3235 if (balanced_classzone_idx >= new_classzone_idx &&
3236 balanced_order == new_order) {
3237 new_order = pgdat->kswapd_max_order;
3238 new_classzone_idx = pgdat->classzone_idx;
3239 pgdat->kswapd_max_order = 0;
3240 pgdat->classzone_idx = pgdat->nr_zones - 1;
3241 }
3242
3243 if (order < new_order || classzone_idx > new_classzone_idx) {
3244 /*
3245 * Don't sleep if someone wants a larger 'order'
3246 * allocation or has tigher zone constraints
3247 */
3248 order = new_order;
3249 classzone_idx = new_classzone_idx;
3250 } else {
3251 kswapd_try_to_sleep(pgdat, balanced_order,
3252 balanced_classzone_idx);
3253 order = pgdat->kswapd_max_order;
3254 classzone_idx = pgdat->classzone_idx;
3255 new_order = order;
3256 new_classzone_idx = classzone_idx;
3257 pgdat->kswapd_max_order = 0;
3258 pgdat->classzone_idx = pgdat->nr_zones - 1;
3259 }
3260
3261 ret = try_to_freeze();
3262 if (kthread_should_stop())
3263 break;
3264
3265 /*
3266 * We can speed up thawing tasks if we don't call balance_pgdat
3267 * after returning from the refrigerator
3268 */
3269 if (!ret) {
3270 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3271 balanced_classzone_idx = classzone_idx;
3272 balanced_order = balance_pgdat(pgdat, order,
3273 &balanced_classzone_idx);
3274 }
3275 }
3276
3277 current->reclaim_state = NULL;
3278 return 0;
3279 }
3280
3281 /*
3282 * A zone is low on free memory, so wake its kswapd task to service it.
3283 */
3284 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3285 {
3286 pg_data_t *pgdat;
3287
3288 if (!populated_zone(zone))
3289 return;
3290
3291 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3292 return;
3293 pgdat = zone->zone_pgdat;
3294 if (pgdat->kswapd_max_order < order) {
3295 pgdat->kswapd_max_order = order;
3296 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3297 }
3298 if (!waitqueue_active(&pgdat->kswapd_wait))
3299 return;
3300 if (zone_balanced(zone, order, 0, 0))
3301 return;
3302
3303 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3304 wake_up_interruptible(&pgdat->kswapd_wait);
3305 }
3306
3307 #ifdef CONFIG_HIBERNATION
3308 /*
3309 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3310 * freed pages.
3311 *
3312 * Rather than trying to age LRUs the aim is to preserve the overall
3313 * LRU order by reclaiming preferentially
3314 * inactive > active > active referenced > active mapped
3315 */
3316 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3317 {
3318 struct reclaim_state reclaim_state;
3319 struct scan_control sc = {
3320 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3321 .may_swap = 1,
3322 .may_unmap = 1,
3323 .may_writepage = 1,
3324 .nr_to_reclaim = nr_to_reclaim,
3325 .hibernation_mode = 1,
3326 .order = 0,
3327 .priority = DEF_PRIORITY,
3328 };
3329 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3330 struct task_struct *p = current;
3331 unsigned long nr_reclaimed;
3332
3333 p->flags |= PF_MEMALLOC;
3334 lockdep_set_current_reclaim_state(sc.gfp_mask);
3335 reclaim_state.reclaimed_slab = 0;
3336 p->reclaim_state = &reclaim_state;
3337
3338 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3339
3340 p->reclaim_state = NULL;
3341 lockdep_clear_current_reclaim_state();
3342 p->flags &= ~PF_MEMALLOC;
3343
3344 return nr_reclaimed;
3345 }
3346 #endif /* CONFIG_HIBERNATION */
3347
3348 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3349 not required for correctness. So if the last cpu in a node goes
3350 away, we get changed to run anywhere: as the first one comes back,
3351 restore their cpu bindings. */
3352 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3353 void *hcpu)
3354 {
3355 int nid;
3356
3357 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3358 for_each_node_state(nid, N_MEMORY) {
3359 pg_data_t *pgdat = NODE_DATA(nid);
3360 const struct cpumask *mask;
3361
3362 mask = cpumask_of_node(pgdat->node_id);
3363
3364 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3365 /* One of our CPUs online: restore mask */
3366 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3367 }
3368 }
3369 return NOTIFY_OK;
3370 }
3371
3372 /*
3373 * This kswapd start function will be called by init and node-hot-add.
3374 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3375 */
3376 int kswapd_run(int nid)
3377 {
3378 pg_data_t *pgdat = NODE_DATA(nid);
3379 int ret = 0;
3380
3381 if (pgdat->kswapd)
3382 return 0;
3383
3384 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3385 if (IS_ERR(pgdat->kswapd)) {
3386 /* failure at boot is fatal */
3387 BUG_ON(system_state == SYSTEM_BOOTING);
3388 pr_err("Failed to start kswapd on node %d\n", nid);
3389 ret = PTR_ERR(pgdat->kswapd);
3390 pgdat->kswapd = NULL;
3391 }
3392 return ret;
3393 }
3394
3395 /*
3396 * Called by memory hotplug when all memory in a node is offlined. Caller must
3397 * hold lock_memory_hotplug().
3398 */
3399 void kswapd_stop(int nid)
3400 {
3401 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3402
3403 if (kswapd) {
3404 kthread_stop(kswapd);
3405 NODE_DATA(nid)->kswapd = NULL;
3406 }
3407 }
3408
3409 static int __init kswapd_init(void)
3410 {
3411 int nid;
3412
3413 swap_setup();
3414 for_each_node_state(nid, N_MEMORY)
3415 kswapd_run(nid);
3416 hotcpu_notifier(cpu_callback, 0);
3417 return 0;
3418 }
3419
3420 module_init(kswapd_init)
3421
3422 #ifdef CONFIG_NUMA
3423 /*
3424 * Zone reclaim mode
3425 *
3426 * If non-zero call zone_reclaim when the number of free pages falls below
3427 * the watermarks.
3428 */
3429 int zone_reclaim_mode __read_mostly;
3430
3431 #define RECLAIM_OFF 0
3432 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3433 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3434 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3435
3436 /*
3437 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3438 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3439 * a zone.
3440 */
3441 #define ZONE_RECLAIM_PRIORITY 4
3442
3443 /*
3444 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3445 * occur.
3446 */
3447 int sysctl_min_unmapped_ratio = 1;
3448
3449 /*
3450 * If the number of slab pages in a zone grows beyond this percentage then
3451 * slab reclaim needs to occur.
3452 */
3453 int sysctl_min_slab_ratio = 5;
3454
3455 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3456 {
3457 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3458 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3459 zone_page_state(zone, NR_ACTIVE_FILE);
3460
3461 /*
3462 * It's possible for there to be more file mapped pages than
3463 * accounted for by the pages on the file LRU lists because
3464 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3465 */
3466 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3467 }
3468
3469 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3470 static long zone_pagecache_reclaimable(struct zone *zone)
3471 {
3472 long nr_pagecache_reclaimable;
3473 long delta = 0;
3474
3475 /*
3476 * If RECLAIM_SWAP is set, then all file pages are considered
3477 * potentially reclaimable. Otherwise, we have to worry about
3478 * pages like swapcache and zone_unmapped_file_pages() provides
3479 * a better estimate
3480 */
3481 if (zone_reclaim_mode & RECLAIM_SWAP)
3482 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3483 else
3484 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3485
3486 /* If we can't clean pages, remove dirty pages from consideration */
3487 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3488 delta += zone_page_state(zone, NR_FILE_DIRTY);
3489
3490 /* Watch for any possible underflows due to delta */
3491 if (unlikely(delta > nr_pagecache_reclaimable))
3492 delta = nr_pagecache_reclaimable;
3493
3494 return nr_pagecache_reclaimable - delta;
3495 }
3496
3497 /*
3498 * Try to free up some pages from this zone through reclaim.
3499 */
3500 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3501 {
3502 /* Minimum pages needed in order to stay on node */
3503 const unsigned long nr_pages = 1 << order;
3504 struct task_struct *p = current;
3505 struct reclaim_state reclaim_state;
3506 struct scan_control sc = {
3507 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3508 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3509 .may_swap = 1,
3510 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3511 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3512 .order = order,
3513 .priority = ZONE_RECLAIM_PRIORITY,
3514 };
3515 struct shrink_control shrink = {
3516 .gfp_mask = sc.gfp_mask,
3517 };
3518 unsigned long nr_slab_pages0, nr_slab_pages1;
3519
3520 cond_resched();
3521 /*
3522 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3523 * and we also need to be able to write out pages for RECLAIM_WRITE
3524 * and RECLAIM_SWAP.
3525 */
3526 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3527 lockdep_set_current_reclaim_state(gfp_mask);
3528 reclaim_state.reclaimed_slab = 0;
3529 p->reclaim_state = &reclaim_state;
3530
3531 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3532 /*
3533 * Free memory by calling shrink zone with increasing
3534 * priorities until we have enough memory freed.
3535 */
3536 do {
3537 shrink_zone(zone, &sc);
3538 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3539 }
3540
3541 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3542 if (nr_slab_pages0 > zone->min_slab_pages) {
3543 /*
3544 * shrink_slab() does not currently allow us to determine how
3545 * many pages were freed in this zone. So we take the current
3546 * number of slab pages and shake the slab until it is reduced
3547 * by the same nr_pages that we used for reclaiming unmapped
3548 * pages.
3549 */
3550 nodes_clear(shrink.nodes_to_scan);
3551 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3552 for (;;) {
3553 unsigned long lru_pages = zone_reclaimable_pages(zone);
3554
3555 /* No reclaimable slab or very low memory pressure */
3556 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3557 break;
3558
3559 /* Freed enough memory */
3560 nr_slab_pages1 = zone_page_state(zone,
3561 NR_SLAB_RECLAIMABLE);
3562 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3563 break;
3564 }
3565
3566 /*
3567 * Update nr_reclaimed by the number of slab pages we
3568 * reclaimed from this zone.
3569 */
3570 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3571 if (nr_slab_pages1 < nr_slab_pages0)
3572 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3573 }
3574
3575 p->reclaim_state = NULL;
3576 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3577 lockdep_clear_current_reclaim_state();
3578 return sc.nr_reclaimed >= nr_pages;
3579 }
3580
3581 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3582 {
3583 int node_id;
3584 int ret;
3585
3586 /*
3587 * Zone reclaim reclaims unmapped file backed pages and
3588 * slab pages if we are over the defined limits.
3589 *
3590 * A small portion of unmapped file backed pages is needed for
3591 * file I/O otherwise pages read by file I/O will be immediately
3592 * thrown out if the zone is overallocated. So we do not reclaim
3593 * if less than a specified percentage of the zone is used by
3594 * unmapped file backed pages.
3595 */
3596 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3597 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3598 return ZONE_RECLAIM_FULL;
3599
3600 if (!zone_reclaimable(zone))
3601 return ZONE_RECLAIM_FULL;
3602
3603 /*
3604 * Do not scan if the allocation should not be delayed.
3605 */
3606 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3607 return ZONE_RECLAIM_NOSCAN;
3608
3609 /*
3610 * Only run zone reclaim on the local zone or on zones that do not
3611 * have associated processors. This will favor the local processor
3612 * over remote processors and spread off node memory allocations
3613 * as wide as possible.
3614 */
3615 node_id = zone_to_nid(zone);
3616 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3617 return ZONE_RECLAIM_NOSCAN;
3618
3619 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3620 return ZONE_RECLAIM_NOSCAN;
3621
3622 ret = __zone_reclaim(zone, gfp_mask, order);
3623 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3624
3625 if (!ret)
3626 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3627
3628 return ret;
3629 }
3630 #endif
3631
3632 /*
3633 * page_evictable - test whether a page is evictable
3634 * @page: the page to test
3635 *
3636 * Test whether page is evictable--i.e., should be placed on active/inactive
3637 * lists vs unevictable list.
3638 *
3639 * Reasons page might not be evictable:
3640 * (1) page's mapping marked unevictable
3641 * (2) page is part of an mlocked VMA
3642 *
3643 */
3644 int page_evictable(struct page *page)
3645 {
3646 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3647 }
3648
3649 #ifdef CONFIG_SHMEM
3650 /**
3651 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3652 * @pages: array of pages to check
3653 * @nr_pages: number of pages to check
3654 *
3655 * Checks pages for evictability and moves them to the appropriate lru list.
3656 *
3657 * This function is only used for SysV IPC SHM_UNLOCK.
3658 */
3659 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3660 {
3661 struct lruvec *lruvec;
3662 struct zone *zone = NULL;
3663 int pgscanned = 0;
3664 int pgrescued = 0;
3665 int i;
3666
3667 for (i = 0; i < nr_pages; i++) {
3668 struct page *page = pages[i];
3669 struct zone *pagezone;
3670
3671 pgscanned++;
3672 pagezone = page_zone(page);
3673 if (pagezone != zone) {
3674 if (zone)
3675 spin_unlock_irq(&zone->lru_lock);
3676 zone = pagezone;
3677 spin_lock_irq(&zone->lru_lock);
3678 }
3679 lruvec = mem_cgroup_page_lruvec(page, zone);
3680
3681 if (!PageLRU(page) || !PageUnevictable(page))
3682 continue;
3683
3684 if (page_evictable(page)) {
3685 enum lru_list lru = page_lru_base_type(page);
3686
3687 VM_BUG_ON_PAGE(PageActive(page), page);
3688 ClearPageUnevictable(page);
3689 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3690 add_page_to_lru_list(page, lruvec, lru);
3691 pgrescued++;
3692 }
3693 }
3694
3695 if (zone) {
3696 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3697 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3698 spin_unlock_irq(&zone->lru_lock);
3699 }
3700 }
3701 #endif /* CONFIG_SHMEM */
3702
3703 static void warn_scan_unevictable_pages(void)
3704 {
3705 printk_once(KERN_WARNING
3706 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3707 "disabled for lack of a legitimate use case. If you have "
3708 "one, please send an email to linux-mm@kvack.org.\n",
3709 current->comm);
3710 }
3711
3712 /*
3713 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3714 * all nodes' unevictable lists for evictable pages
3715 */
3716 unsigned long scan_unevictable_pages;
3717
3718 int scan_unevictable_handler(struct ctl_table *table, int write,
3719 void __user *buffer,
3720 size_t *length, loff_t *ppos)
3721 {
3722 warn_scan_unevictable_pages();
3723 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3724 scan_unevictable_pages = 0;
3725 return 0;
3726 }
3727
3728 #ifdef CONFIG_NUMA
3729 /*
3730 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3731 * a specified node's per zone unevictable lists for evictable pages.
3732 */
3733
3734 static ssize_t read_scan_unevictable_node(struct device *dev,
3735 struct device_attribute *attr,
3736 char *buf)
3737 {
3738 warn_scan_unevictable_pages();
3739 return sprintf(buf, "0\n"); /* always zero; should fit... */
3740 }
3741
3742 static ssize_t write_scan_unevictable_node(struct device *dev,
3743 struct device_attribute *attr,
3744 const char *buf, size_t count)
3745 {
3746 warn_scan_unevictable_pages();
3747 return 1;
3748 }
3749
3750
3751 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3752 read_scan_unevictable_node,
3753 write_scan_unevictable_node);
3754
3755 int scan_unevictable_register_node(struct node *node)
3756 {
3757 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3758 }
3759
3760 void scan_unevictable_unregister_node(struct node *node)
3761 {
3762 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3763 }
3764 #endif
This page took 0.143609 seconds and 5 git commands to generate.