memcg: fix reclaim result checks
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
58 /* This context's GFP mask */
59 gfp_t gfp_mask;
60
61 int may_writepage;
62
63 /* Can pages be swapped as part of reclaim? */
64 int may_swap;
65
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
70 int swap_cluster_max;
71
72 int swappiness;
73
74 int all_unreclaimable;
75
76 int order;
77
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup *mem_cgroup;
80
81 /* Pluggable isolate pages callback */
82 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
83 unsigned long *scanned, int order, int mode,
84 struct zone *z, struct mem_cgroup *mem_cont,
85 int active, int file);
86 };
87
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
89
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field) \
92 do { \
93 if ((_page)->lru.prev != _base) { \
94 struct page *prev; \
95 \
96 prev = lru_to_page(&(_page->lru)); \
97 prefetch(&prev->_field); \
98 } \
99 } while (0)
100 #else
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
102 #endif
103
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetchw(&prev->_field); \
112 } \
113 } while (0)
114 #else
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
116 #endif
117
118 /*
119 * From 0 .. 100. Higher means more swappy.
120 */
121 int vm_swappiness = 60;
122 long vm_total_pages; /* The total number of pages which the VM controls */
123
124 static LIST_HEAD(shrinker_list);
125 static DECLARE_RWSEM(shrinker_rwsem);
126
127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
128 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
129 #else
130 #define scan_global_lru(sc) (1)
131 #endif
132
133 /*
134 * Add a shrinker callback to be called from the vm
135 */
136 void register_shrinker(struct shrinker *shrinker)
137 {
138 shrinker->nr = 0;
139 down_write(&shrinker_rwsem);
140 list_add_tail(&shrinker->list, &shrinker_list);
141 up_write(&shrinker_rwsem);
142 }
143 EXPORT_SYMBOL(register_shrinker);
144
145 /*
146 * Remove one
147 */
148 void unregister_shrinker(struct shrinker *shrinker)
149 {
150 down_write(&shrinker_rwsem);
151 list_del(&shrinker->list);
152 up_write(&shrinker_rwsem);
153 }
154 EXPORT_SYMBOL(unregister_shrinker);
155
156 #define SHRINK_BATCH 128
157 /*
158 * Call the shrink functions to age shrinkable caches
159 *
160 * Here we assume it costs one seek to replace a lru page and that it also
161 * takes a seek to recreate a cache object. With this in mind we age equal
162 * percentages of the lru and ageable caches. This should balance the seeks
163 * generated by these structures.
164 *
165 * If the vm encountered mapped pages on the LRU it increase the pressure on
166 * slab to avoid swapping.
167 *
168 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
169 *
170 * `lru_pages' represents the number of on-LRU pages in all the zones which
171 * are eligible for the caller's allocation attempt. It is used for balancing
172 * slab reclaim versus page reclaim.
173 *
174 * Returns the number of slab objects which we shrunk.
175 */
176 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
177 unsigned long lru_pages)
178 {
179 struct shrinker *shrinker;
180 unsigned long ret = 0;
181
182 if (scanned == 0)
183 scanned = SWAP_CLUSTER_MAX;
184
185 if (!down_read_trylock(&shrinker_rwsem))
186 return 1; /* Assume we'll be able to shrink next time */
187
188 list_for_each_entry(shrinker, &shrinker_list, list) {
189 unsigned long long delta;
190 unsigned long total_scan;
191 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
192
193 delta = (4 * scanned) / shrinker->seeks;
194 delta *= max_pass;
195 do_div(delta, lru_pages + 1);
196 shrinker->nr += delta;
197 if (shrinker->nr < 0) {
198 printk(KERN_ERR "%s: nr=%ld\n",
199 __func__, shrinker->nr);
200 shrinker->nr = max_pass;
201 }
202
203 /*
204 * Avoid risking looping forever due to too large nr value:
205 * never try to free more than twice the estimate number of
206 * freeable entries.
207 */
208 if (shrinker->nr > max_pass * 2)
209 shrinker->nr = max_pass * 2;
210
211 total_scan = shrinker->nr;
212 shrinker->nr = 0;
213
214 while (total_scan >= SHRINK_BATCH) {
215 long this_scan = SHRINK_BATCH;
216 int shrink_ret;
217 int nr_before;
218
219 nr_before = (*shrinker->shrink)(0, gfp_mask);
220 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
221 if (shrink_ret == -1)
222 break;
223 if (shrink_ret < nr_before)
224 ret += nr_before - shrink_ret;
225 count_vm_events(SLABS_SCANNED, this_scan);
226 total_scan -= this_scan;
227
228 cond_resched();
229 }
230
231 shrinker->nr += total_scan;
232 }
233 up_read(&shrinker_rwsem);
234 return ret;
235 }
236
237 /* Called without lock on whether page is mapped, so answer is unstable */
238 static inline int page_mapping_inuse(struct page *page)
239 {
240 struct address_space *mapping;
241
242 /* Page is in somebody's page tables. */
243 if (page_mapped(page))
244 return 1;
245
246 /* Be more reluctant to reclaim swapcache than pagecache */
247 if (PageSwapCache(page))
248 return 1;
249
250 mapping = page_mapping(page);
251 if (!mapping)
252 return 0;
253
254 /* File is mmap'd by somebody? */
255 return mapping_mapped(mapping);
256 }
257
258 static inline int is_page_cache_freeable(struct page *page)
259 {
260 return page_count(page) - !!PagePrivate(page) == 2;
261 }
262
263 static int may_write_to_queue(struct backing_dev_info *bdi)
264 {
265 if (current->flags & PF_SWAPWRITE)
266 return 1;
267 if (!bdi_write_congested(bdi))
268 return 1;
269 if (bdi == current->backing_dev_info)
270 return 1;
271 return 0;
272 }
273
274 /*
275 * We detected a synchronous write error writing a page out. Probably
276 * -ENOSPC. We need to propagate that into the address_space for a subsequent
277 * fsync(), msync() or close().
278 *
279 * The tricky part is that after writepage we cannot touch the mapping: nothing
280 * prevents it from being freed up. But we have a ref on the page and once
281 * that page is locked, the mapping is pinned.
282 *
283 * We're allowed to run sleeping lock_page() here because we know the caller has
284 * __GFP_FS.
285 */
286 static void handle_write_error(struct address_space *mapping,
287 struct page *page, int error)
288 {
289 lock_page(page);
290 if (page_mapping(page) == mapping)
291 mapping_set_error(mapping, error);
292 unlock_page(page);
293 }
294
295 /* Request for sync pageout. */
296 enum pageout_io {
297 PAGEOUT_IO_ASYNC,
298 PAGEOUT_IO_SYNC,
299 };
300
301 /* possible outcome of pageout() */
302 typedef enum {
303 /* failed to write page out, page is locked */
304 PAGE_KEEP,
305 /* move page to the active list, page is locked */
306 PAGE_ACTIVATE,
307 /* page has been sent to the disk successfully, page is unlocked */
308 PAGE_SUCCESS,
309 /* page is clean and locked */
310 PAGE_CLEAN,
311 } pageout_t;
312
313 /*
314 * pageout is called by shrink_page_list() for each dirty page.
315 * Calls ->writepage().
316 */
317 static pageout_t pageout(struct page *page, struct address_space *mapping,
318 enum pageout_io sync_writeback)
319 {
320 /*
321 * If the page is dirty, only perform writeback if that write
322 * will be non-blocking. To prevent this allocation from being
323 * stalled by pagecache activity. But note that there may be
324 * stalls if we need to run get_block(). We could test
325 * PagePrivate for that.
326 *
327 * If this process is currently in generic_file_write() against
328 * this page's queue, we can perform writeback even if that
329 * will block.
330 *
331 * If the page is swapcache, write it back even if that would
332 * block, for some throttling. This happens by accident, because
333 * swap_backing_dev_info is bust: it doesn't reflect the
334 * congestion state of the swapdevs. Easy to fix, if needed.
335 * See swapfile.c:page_queue_congested().
336 */
337 if (!is_page_cache_freeable(page))
338 return PAGE_KEEP;
339 if (!mapping) {
340 /*
341 * Some data journaling orphaned pages can have
342 * page->mapping == NULL while being dirty with clean buffers.
343 */
344 if (PagePrivate(page)) {
345 if (try_to_free_buffers(page)) {
346 ClearPageDirty(page);
347 printk("%s: orphaned page\n", __func__);
348 return PAGE_CLEAN;
349 }
350 }
351 return PAGE_KEEP;
352 }
353 if (mapping->a_ops->writepage == NULL)
354 return PAGE_ACTIVATE;
355 if (!may_write_to_queue(mapping->backing_dev_info))
356 return PAGE_KEEP;
357
358 if (clear_page_dirty_for_io(page)) {
359 int res;
360 struct writeback_control wbc = {
361 .sync_mode = WB_SYNC_NONE,
362 .nr_to_write = SWAP_CLUSTER_MAX,
363 .range_start = 0,
364 .range_end = LLONG_MAX,
365 .nonblocking = 1,
366 .for_reclaim = 1,
367 };
368
369 SetPageReclaim(page);
370 res = mapping->a_ops->writepage(page, &wbc);
371 if (res < 0)
372 handle_write_error(mapping, page, res);
373 if (res == AOP_WRITEPAGE_ACTIVATE) {
374 ClearPageReclaim(page);
375 return PAGE_ACTIVATE;
376 }
377
378 /*
379 * Wait on writeback if requested to. This happens when
380 * direct reclaiming a large contiguous area and the
381 * first attempt to free a range of pages fails.
382 */
383 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
384 wait_on_page_writeback(page);
385
386 if (!PageWriteback(page)) {
387 /* synchronous write or broken a_ops? */
388 ClearPageReclaim(page);
389 }
390 inc_zone_page_state(page, NR_VMSCAN_WRITE);
391 return PAGE_SUCCESS;
392 }
393
394 return PAGE_CLEAN;
395 }
396
397 /*
398 * Same as remove_mapping, but if the page is removed from the mapping, it
399 * gets returned with a refcount of 0.
400 */
401 static int __remove_mapping(struct address_space *mapping, struct page *page)
402 {
403 BUG_ON(!PageLocked(page));
404 BUG_ON(mapping != page_mapping(page));
405
406 spin_lock_irq(&mapping->tree_lock);
407 /*
408 * The non racy check for a busy page.
409 *
410 * Must be careful with the order of the tests. When someone has
411 * a ref to the page, it may be possible that they dirty it then
412 * drop the reference. So if PageDirty is tested before page_count
413 * here, then the following race may occur:
414 *
415 * get_user_pages(&page);
416 * [user mapping goes away]
417 * write_to(page);
418 * !PageDirty(page) [good]
419 * SetPageDirty(page);
420 * put_page(page);
421 * !page_count(page) [good, discard it]
422 *
423 * [oops, our write_to data is lost]
424 *
425 * Reversing the order of the tests ensures such a situation cannot
426 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
427 * load is not satisfied before that of page->_count.
428 *
429 * Note that if SetPageDirty is always performed via set_page_dirty,
430 * and thus under tree_lock, then this ordering is not required.
431 */
432 if (!page_freeze_refs(page, 2))
433 goto cannot_free;
434 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
435 if (unlikely(PageDirty(page))) {
436 page_unfreeze_refs(page, 2);
437 goto cannot_free;
438 }
439
440 if (PageSwapCache(page)) {
441 swp_entry_t swap = { .val = page_private(page) };
442 __delete_from_swap_cache(page);
443 spin_unlock_irq(&mapping->tree_lock);
444 swap_free(swap);
445 } else {
446 __remove_from_page_cache(page);
447 spin_unlock_irq(&mapping->tree_lock);
448 }
449
450 return 1;
451
452 cannot_free:
453 spin_unlock_irq(&mapping->tree_lock);
454 return 0;
455 }
456
457 /*
458 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
459 * someone else has a ref on the page, abort and return 0. If it was
460 * successfully detached, return 1. Assumes the caller has a single ref on
461 * this page.
462 */
463 int remove_mapping(struct address_space *mapping, struct page *page)
464 {
465 if (__remove_mapping(mapping, page)) {
466 /*
467 * Unfreezing the refcount with 1 rather than 2 effectively
468 * drops the pagecache ref for us without requiring another
469 * atomic operation.
470 */
471 page_unfreeze_refs(page, 1);
472 return 1;
473 }
474 return 0;
475 }
476
477 /**
478 * putback_lru_page - put previously isolated page onto appropriate LRU list
479 * @page: page to be put back to appropriate lru list
480 *
481 * Add previously isolated @page to appropriate LRU list.
482 * Page may still be unevictable for other reasons.
483 *
484 * lru_lock must not be held, interrupts must be enabled.
485 */
486 #ifdef CONFIG_UNEVICTABLE_LRU
487 void putback_lru_page(struct page *page)
488 {
489 int lru;
490 int active = !!TestClearPageActive(page);
491 int was_unevictable = PageUnevictable(page);
492
493 VM_BUG_ON(PageLRU(page));
494
495 redo:
496 ClearPageUnevictable(page);
497
498 if (page_evictable(page, NULL)) {
499 /*
500 * For evictable pages, we can use the cache.
501 * In event of a race, worst case is we end up with an
502 * unevictable page on [in]active list.
503 * We know how to handle that.
504 */
505 lru = active + page_is_file_cache(page);
506 lru_cache_add_lru(page, lru);
507 } else {
508 /*
509 * Put unevictable pages directly on zone's unevictable
510 * list.
511 */
512 lru = LRU_UNEVICTABLE;
513 add_page_to_unevictable_list(page);
514 }
515
516 /*
517 * page's status can change while we move it among lru. If an evictable
518 * page is on unevictable list, it never be freed. To avoid that,
519 * check after we added it to the list, again.
520 */
521 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
522 if (!isolate_lru_page(page)) {
523 put_page(page);
524 goto redo;
525 }
526 /* This means someone else dropped this page from LRU
527 * So, it will be freed or putback to LRU again. There is
528 * nothing to do here.
529 */
530 }
531
532 if (was_unevictable && lru != LRU_UNEVICTABLE)
533 count_vm_event(UNEVICTABLE_PGRESCUED);
534 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
535 count_vm_event(UNEVICTABLE_PGCULLED);
536
537 put_page(page); /* drop ref from isolate */
538 }
539
540 #else /* CONFIG_UNEVICTABLE_LRU */
541
542 void putback_lru_page(struct page *page)
543 {
544 int lru;
545 VM_BUG_ON(PageLRU(page));
546
547 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
548 lru_cache_add_lru(page, lru);
549 put_page(page);
550 }
551 #endif /* CONFIG_UNEVICTABLE_LRU */
552
553
554 /*
555 * shrink_page_list() returns the number of reclaimed pages
556 */
557 static unsigned long shrink_page_list(struct list_head *page_list,
558 struct scan_control *sc,
559 enum pageout_io sync_writeback)
560 {
561 LIST_HEAD(ret_pages);
562 struct pagevec freed_pvec;
563 int pgactivate = 0;
564 unsigned long nr_reclaimed = 0;
565
566 cond_resched();
567
568 pagevec_init(&freed_pvec, 1);
569 while (!list_empty(page_list)) {
570 struct address_space *mapping;
571 struct page *page;
572 int may_enter_fs;
573 int referenced;
574
575 cond_resched();
576
577 page = lru_to_page(page_list);
578 list_del(&page->lru);
579
580 if (!trylock_page(page))
581 goto keep;
582
583 VM_BUG_ON(PageActive(page));
584
585 sc->nr_scanned++;
586
587 if (unlikely(!page_evictable(page, NULL)))
588 goto cull_mlocked;
589
590 if (!sc->may_swap && page_mapped(page))
591 goto keep_locked;
592
593 /* Double the slab pressure for mapped and swapcache pages */
594 if (page_mapped(page) || PageSwapCache(page))
595 sc->nr_scanned++;
596
597 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
598 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
599
600 if (PageWriteback(page)) {
601 /*
602 * Synchronous reclaim is performed in two passes,
603 * first an asynchronous pass over the list to
604 * start parallel writeback, and a second synchronous
605 * pass to wait for the IO to complete. Wait here
606 * for any page for which writeback has already
607 * started.
608 */
609 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
610 wait_on_page_writeback(page);
611 else
612 goto keep_locked;
613 }
614
615 referenced = page_referenced(page, 1, sc->mem_cgroup);
616 /* In active use or really unfreeable? Activate it. */
617 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
618 referenced && page_mapping_inuse(page))
619 goto activate_locked;
620
621 /*
622 * Anonymous process memory has backing store?
623 * Try to allocate it some swap space here.
624 */
625 if (PageAnon(page) && !PageSwapCache(page)) {
626 if (!(sc->gfp_mask & __GFP_IO))
627 goto keep_locked;
628 if (!add_to_swap(page))
629 goto activate_locked;
630 may_enter_fs = 1;
631 }
632
633 mapping = page_mapping(page);
634
635 /*
636 * The page is mapped into the page tables of one or more
637 * processes. Try to unmap it here.
638 */
639 if (page_mapped(page) && mapping) {
640 switch (try_to_unmap(page, 0)) {
641 case SWAP_FAIL:
642 goto activate_locked;
643 case SWAP_AGAIN:
644 goto keep_locked;
645 case SWAP_MLOCK:
646 goto cull_mlocked;
647 case SWAP_SUCCESS:
648 ; /* try to free the page below */
649 }
650 }
651
652 if (PageDirty(page)) {
653 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
654 goto keep_locked;
655 if (!may_enter_fs)
656 goto keep_locked;
657 if (!sc->may_writepage)
658 goto keep_locked;
659
660 /* Page is dirty, try to write it out here */
661 switch (pageout(page, mapping, sync_writeback)) {
662 case PAGE_KEEP:
663 goto keep_locked;
664 case PAGE_ACTIVATE:
665 goto activate_locked;
666 case PAGE_SUCCESS:
667 if (PageWriteback(page) || PageDirty(page))
668 goto keep;
669 /*
670 * A synchronous write - probably a ramdisk. Go
671 * ahead and try to reclaim the page.
672 */
673 if (!trylock_page(page))
674 goto keep;
675 if (PageDirty(page) || PageWriteback(page))
676 goto keep_locked;
677 mapping = page_mapping(page);
678 case PAGE_CLEAN:
679 ; /* try to free the page below */
680 }
681 }
682
683 /*
684 * If the page has buffers, try to free the buffer mappings
685 * associated with this page. If we succeed we try to free
686 * the page as well.
687 *
688 * We do this even if the page is PageDirty().
689 * try_to_release_page() does not perform I/O, but it is
690 * possible for a page to have PageDirty set, but it is actually
691 * clean (all its buffers are clean). This happens if the
692 * buffers were written out directly, with submit_bh(). ext3
693 * will do this, as well as the blockdev mapping.
694 * try_to_release_page() will discover that cleanness and will
695 * drop the buffers and mark the page clean - it can be freed.
696 *
697 * Rarely, pages can have buffers and no ->mapping. These are
698 * the pages which were not successfully invalidated in
699 * truncate_complete_page(). We try to drop those buffers here
700 * and if that worked, and the page is no longer mapped into
701 * process address space (page_count == 1) it can be freed.
702 * Otherwise, leave the page on the LRU so it is swappable.
703 */
704 if (PagePrivate(page)) {
705 if (!try_to_release_page(page, sc->gfp_mask))
706 goto activate_locked;
707 if (!mapping && page_count(page) == 1) {
708 unlock_page(page);
709 if (put_page_testzero(page))
710 goto free_it;
711 else {
712 /*
713 * rare race with speculative reference.
714 * the speculative reference will free
715 * this page shortly, so we may
716 * increment nr_reclaimed here (and
717 * leave it off the LRU).
718 */
719 nr_reclaimed++;
720 continue;
721 }
722 }
723 }
724
725 if (!mapping || !__remove_mapping(mapping, page))
726 goto keep_locked;
727
728 /*
729 * At this point, we have no other references and there is
730 * no way to pick any more up (removed from LRU, removed
731 * from pagecache). Can use non-atomic bitops now (and
732 * we obviously don't have to worry about waking up a process
733 * waiting on the page lock, because there are no references.
734 */
735 __clear_page_locked(page);
736 free_it:
737 nr_reclaimed++;
738 if (!pagevec_add(&freed_pvec, page)) {
739 __pagevec_free(&freed_pvec);
740 pagevec_reinit(&freed_pvec);
741 }
742 continue;
743
744 cull_mlocked:
745 if (PageSwapCache(page))
746 try_to_free_swap(page);
747 unlock_page(page);
748 putback_lru_page(page);
749 continue;
750
751 activate_locked:
752 /* Not a candidate for swapping, so reclaim swap space. */
753 if (PageSwapCache(page) && vm_swap_full())
754 try_to_free_swap(page);
755 VM_BUG_ON(PageActive(page));
756 SetPageActive(page);
757 pgactivate++;
758 keep_locked:
759 unlock_page(page);
760 keep:
761 list_add(&page->lru, &ret_pages);
762 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
763 }
764 list_splice(&ret_pages, page_list);
765 if (pagevec_count(&freed_pvec))
766 __pagevec_free(&freed_pvec);
767 count_vm_events(PGACTIVATE, pgactivate);
768 return nr_reclaimed;
769 }
770
771 /* LRU Isolation modes. */
772 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
773 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
774 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
775
776 /*
777 * Attempt to remove the specified page from its LRU. Only take this page
778 * if it is of the appropriate PageActive status. Pages which are being
779 * freed elsewhere are also ignored.
780 *
781 * page: page to consider
782 * mode: one of the LRU isolation modes defined above
783 *
784 * returns 0 on success, -ve errno on failure.
785 */
786 int __isolate_lru_page(struct page *page, int mode, int file)
787 {
788 int ret = -EINVAL;
789
790 /* Only take pages on the LRU. */
791 if (!PageLRU(page))
792 return ret;
793
794 /*
795 * When checking the active state, we need to be sure we are
796 * dealing with comparible boolean values. Take the logical not
797 * of each.
798 */
799 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
800 return ret;
801
802 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
803 return ret;
804
805 /*
806 * When this function is being called for lumpy reclaim, we
807 * initially look into all LRU pages, active, inactive and
808 * unevictable; only give shrink_page_list evictable pages.
809 */
810 if (PageUnevictable(page))
811 return ret;
812
813 ret = -EBUSY;
814
815 if (likely(get_page_unless_zero(page))) {
816 /*
817 * Be careful not to clear PageLRU until after we're
818 * sure the page is not being freed elsewhere -- the
819 * page release code relies on it.
820 */
821 ClearPageLRU(page);
822 ret = 0;
823 mem_cgroup_del_lru(page);
824 }
825
826 return ret;
827 }
828
829 /*
830 * zone->lru_lock is heavily contended. Some of the functions that
831 * shrink the lists perform better by taking out a batch of pages
832 * and working on them outside the LRU lock.
833 *
834 * For pagecache intensive workloads, this function is the hottest
835 * spot in the kernel (apart from copy_*_user functions).
836 *
837 * Appropriate locks must be held before calling this function.
838 *
839 * @nr_to_scan: The number of pages to look through on the list.
840 * @src: The LRU list to pull pages off.
841 * @dst: The temp list to put pages on to.
842 * @scanned: The number of pages that were scanned.
843 * @order: The caller's attempted allocation order
844 * @mode: One of the LRU isolation modes
845 * @file: True [1] if isolating file [!anon] pages
846 *
847 * returns how many pages were moved onto *@dst.
848 */
849 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
850 struct list_head *src, struct list_head *dst,
851 unsigned long *scanned, int order, int mode, int file)
852 {
853 unsigned long nr_taken = 0;
854 unsigned long scan;
855
856 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
857 struct page *page;
858 unsigned long pfn;
859 unsigned long end_pfn;
860 unsigned long page_pfn;
861 int zone_id;
862
863 page = lru_to_page(src);
864 prefetchw_prev_lru_page(page, src, flags);
865
866 VM_BUG_ON(!PageLRU(page));
867
868 switch (__isolate_lru_page(page, mode, file)) {
869 case 0:
870 list_move(&page->lru, dst);
871 nr_taken++;
872 break;
873
874 case -EBUSY:
875 /* else it is being freed elsewhere */
876 list_move(&page->lru, src);
877 continue;
878
879 default:
880 BUG();
881 }
882
883 if (!order)
884 continue;
885
886 /*
887 * Attempt to take all pages in the order aligned region
888 * surrounding the tag page. Only take those pages of
889 * the same active state as that tag page. We may safely
890 * round the target page pfn down to the requested order
891 * as the mem_map is guarenteed valid out to MAX_ORDER,
892 * where that page is in a different zone we will detect
893 * it from its zone id and abort this block scan.
894 */
895 zone_id = page_zone_id(page);
896 page_pfn = page_to_pfn(page);
897 pfn = page_pfn & ~((1 << order) - 1);
898 end_pfn = pfn + (1 << order);
899 for (; pfn < end_pfn; pfn++) {
900 struct page *cursor_page;
901
902 /* The target page is in the block, ignore it. */
903 if (unlikely(pfn == page_pfn))
904 continue;
905
906 /* Avoid holes within the zone. */
907 if (unlikely(!pfn_valid_within(pfn)))
908 break;
909
910 cursor_page = pfn_to_page(pfn);
911
912 /* Check that we have not crossed a zone boundary. */
913 if (unlikely(page_zone_id(cursor_page) != zone_id))
914 continue;
915 switch (__isolate_lru_page(cursor_page, mode, file)) {
916 case 0:
917 list_move(&cursor_page->lru, dst);
918 nr_taken++;
919 scan++;
920 break;
921
922 case -EBUSY:
923 /* else it is being freed elsewhere */
924 list_move(&cursor_page->lru, src);
925 default:
926 break; /* ! on LRU or wrong list */
927 }
928 }
929 }
930
931 *scanned = scan;
932 return nr_taken;
933 }
934
935 static unsigned long isolate_pages_global(unsigned long nr,
936 struct list_head *dst,
937 unsigned long *scanned, int order,
938 int mode, struct zone *z,
939 struct mem_cgroup *mem_cont,
940 int active, int file)
941 {
942 int lru = LRU_BASE;
943 if (active)
944 lru += LRU_ACTIVE;
945 if (file)
946 lru += LRU_FILE;
947 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
948 mode, !!file);
949 }
950
951 /*
952 * clear_active_flags() is a helper for shrink_active_list(), clearing
953 * any active bits from the pages in the list.
954 */
955 static unsigned long clear_active_flags(struct list_head *page_list,
956 unsigned int *count)
957 {
958 int nr_active = 0;
959 int lru;
960 struct page *page;
961
962 list_for_each_entry(page, page_list, lru) {
963 lru = page_is_file_cache(page);
964 if (PageActive(page)) {
965 lru += LRU_ACTIVE;
966 ClearPageActive(page);
967 nr_active++;
968 }
969 count[lru]++;
970 }
971
972 return nr_active;
973 }
974
975 /**
976 * isolate_lru_page - tries to isolate a page from its LRU list
977 * @page: page to isolate from its LRU list
978 *
979 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
980 * vmstat statistic corresponding to whatever LRU list the page was on.
981 *
982 * Returns 0 if the page was removed from an LRU list.
983 * Returns -EBUSY if the page was not on an LRU list.
984 *
985 * The returned page will have PageLRU() cleared. If it was found on
986 * the active list, it will have PageActive set. If it was found on
987 * the unevictable list, it will have the PageUnevictable bit set. That flag
988 * may need to be cleared by the caller before letting the page go.
989 *
990 * The vmstat statistic corresponding to the list on which the page was
991 * found will be decremented.
992 *
993 * Restrictions:
994 * (1) Must be called with an elevated refcount on the page. This is a
995 * fundamentnal difference from isolate_lru_pages (which is called
996 * without a stable reference).
997 * (2) the lru_lock must not be held.
998 * (3) interrupts must be enabled.
999 */
1000 int isolate_lru_page(struct page *page)
1001 {
1002 int ret = -EBUSY;
1003
1004 if (PageLRU(page)) {
1005 struct zone *zone = page_zone(page);
1006
1007 spin_lock_irq(&zone->lru_lock);
1008 if (PageLRU(page) && get_page_unless_zero(page)) {
1009 int lru = page_lru(page);
1010 ret = 0;
1011 ClearPageLRU(page);
1012
1013 del_page_from_lru_list(zone, page, lru);
1014 }
1015 spin_unlock_irq(&zone->lru_lock);
1016 }
1017 return ret;
1018 }
1019
1020 /*
1021 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1022 * of reclaimed pages
1023 */
1024 static unsigned long shrink_inactive_list(unsigned long max_scan,
1025 struct zone *zone, struct scan_control *sc,
1026 int priority, int file)
1027 {
1028 LIST_HEAD(page_list);
1029 struct pagevec pvec;
1030 unsigned long nr_scanned = 0;
1031 unsigned long nr_reclaimed = 0;
1032
1033 pagevec_init(&pvec, 1);
1034
1035 lru_add_drain();
1036 spin_lock_irq(&zone->lru_lock);
1037 do {
1038 struct page *page;
1039 unsigned long nr_taken;
1040 unsigned long nr_scan;
1041 unsigned long nr_freed;
1042 unsigned long nr_active;
1043 unsigned int count[NR_LRU_LISTS] = { 0, };
1044 int mode = ISOLATE_INACTIVE;
1045
1046 /*
1047 * If we need a large contiguous chunk of memory, or have
1048 * trouble getting a small set of contiguous pages, we
1049 * will reclaim both active and inactive pages.
1050 *
1051 * We use the same threshold as pageout congestion_wait below.
1052 */
1053 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1054 mode = ISOLATE_BOTH;
1055 else if (sc->order && priority < DEF_PRIORITY - 2)
1056 mode = ISOLATE_BOTH;
1057
1058 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1059 &page_list, &nr_scan, sc->order, mode,
1060 zone, sc->mem_cgroup, 0, file);
1061 nr_active = clear_active_flags(&page_list, count);
1062 __count_vm_events(PGDEACTIVATE, nr_active);
1063
1064 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1065 -count[LRU_ACTIVE_FILE]);
1066 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1067 -count[LRU_INACTIVE_FILE]);
1068 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1069 -count[LRU_ACTIVE_ANON]);
1070 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1071 -count[LRU_INACTIVE_ANON]);
1072
1073 if (scan_global_lru(sc)) {
1074 zone->pages_scanned += nr_scan;
1075 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1076 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1077 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1078 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1079 }
1080 spin_unlock_irq(&zone->lru_lock);
1081
1082 nr_scanned += nr_scan;
1083 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1084
1085 /*
1086 * If we are direct reclaiming for contiguous pages and we do
1087 * not reclaim everything in the list, try again and wait
1088 * for IO to complete. This will stall high-order allocations
1089 * but that should be acceptable to the caller
1090 */
1091 if (nr_freed < nr_taken && !current_is_kswapd() &&
1092 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
1093 congestion_wait(WRITE, HZ/10);
1094
1095 /*
1096 * The attempt at page out may have made some
1097 * of the pages active, mark them inactive again.
1098 */
1099 nr_active = clear_active_flags(&page_list, count);
1100 count_vm_events(PGDEACTIVATE, nr_active);
1101
1102 nr_freed += shrink_page_list(&page_list, sc,
1103 PAGEOUT_IO_SYNC);
1104 }
1105
1106 nr_reclaimed += nr_freed;
1107 local_irq_disable();
1108 if (current_is_kswapd()) {
1109 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1110 __count_vm_events(KSWAPD_STEAL, nr_freed);
1111 } else if (scan_global_lru(sc))
1112 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1113
1114 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1115
1116 if (nr_taken == 0)
1117 goto done;
1118
1119 spin_lock(&zone->lru_lock);
1120 /*
1121 * Put back any unfreeable pages.
1122 */
1123 while (!list_empty(&page_list)) {
1124 int lru;
1125 page = lru_to_page(&page_list);
1126 VM_BUG_ON(PageLRU(page));
1127 list_del(&page->lru);
1128 if (unlikely(!page_evictable(page, NULL))) {
1129 spin_unlock_irq(&zone->lru_lock);
1130 putback_lru_page(page);
1131 spin_lock_irq(&zone->lru_lock);
1132 continue;
1133 }
1134 SetPageLRU(page);
1135 lru = page_lru(page);
1136 add_page_to_lru_list(zone, page, lru);
1137 if (PageActive(page) && scan_global_lru(sc)) {
1138 int file = !!page_is_file_cache(page);
1139 zone->recent_rotated[file]++;
1140 }
1141 if (!pagevec_add(&pvec, page)) {
1142 spin_unlock_irq(&zone->lru_lock);
1143 __pagevec_release(&pvec);
1144 spin_lock_irq(&zone->lru_lock);
1145 }
1146 }
1147 } while (nr_scanned < max_scan);
1148 spin_unlock(&zone->lru_lock);
1149 done:
1150 local_irq_enable();
1151 pagevec_release(&pvec);
1152 return nr_reclaimed;
1153 }
1154
1155 /*
1156 * We are about to scan this zone at a certain priority level. If that priority
1157 * level is smaller (ie: more urgent) than the previous priority, then note
1158 * that priority level within the zone. This is done so that when the next
1159 * process comes in to scan this zone, it will immediately start out at this
1160 * priority level rather than having to build up its own scanning priority.
1161 * Here, this priority affects only the reclaim-mapped threshold.
1162 */
1163 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1164 {
1165 if (priority < zone->prev_priority)
1166 zone->prev_priority = priority;
1167 }
1168
1169 /*
1170 * This moves pages from the active list to the inactive list.
1171 *
1172 * We move them the other way if the page is referenced by one or more
1173 * processes, from rmap.
1174 *
1175 * If the pages are mostly unmapped, the processing is fast and it is
1176 * appropriate to hold zone->lru_lock across the whole operation. But if
1177 * the pages are mapped, the processing is slow (page_referenced()) so we
1178 * should drop zone->lru_lock around each page. It's impossible to balance
1179 * this, so instead we remove the pages from the LRU while processing them.
1180 * It is safe to rely on PG_active against the non-LRU pages in here because
1181 * nobody will play with that bit on a non-LRU page.
1182 *
1183 * The downside is that we have to touch page->_count against each page.
1184 * But we had to alter page->flags anyway.
1185 */
1186
1187
1188 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1189 struct scan_control *sc, int priority, int file)
1190 {
1191 unsigned long pgmoved;
1192 int pgdeactivate = 0;
1193 unsigned long pgscanned;
1194 LIST_HEAD(l_hold); /* The pages which were snipped off */
1195 LIST_HEAD(l_inactive);
1196 struct page *page;
1197 struct pagevec pvec;
1198 enum lru_list lru;
1199
1200 lru_add_drain();
1201 spin_lock_irq(&zone->lru_lock);
1202 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1203 ISOLATE_ACTIVE, zone,
1204 sc->mem_cgroup, 1, file);
1205 /*
1206 * zone->pages_scanned is used for detect zone's oom
1207 * mem_cgroup remembers nr_scan by itself.
1208 */
1209 if (scan_global_lru(sc)) {
1210 zone->pages_scanned += pgscanned;
1211 zone->recent_scanned[!!file] += pgmoved;
1212 }
1213
1214 if (file)
1215 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1216 else
1217 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1218 spin_unlock_irq(&zone->lru_lock);
1219
1220 pgmoved = 0;
1221 while (!list_empty(&l_hold)) {
1222 cond_resched();
1223 page = lru_to_page(&l_hold);
1224 list_del(&page->lru);
1225
1226 if (unlikely(!page_evictable(page, NULL))) {
1227 putback_lru_page(page);
1228 continue;
1229 }
1230
1231 /* page_referenced clears PageReferenced */
1232 if (page_mapping_inuse(page) &&
1233 page_referenced(page, 0, sc->mem_cgroup))
1234 pgmoved++;
1235
1236 list_add(&page->lru, &l_inactive);
1237 }
1238
1239 /*
1240 * Move the pages to the [file or anon] inactive list.
1241 */
1242 pagevec_init(&pvec, 1);
1243 pgmoved = 0;
1244 lru = LRU_BASE + file * LRU_FILE;
1245
1246 spin_lock_irq(&zone->lru_lock);
1247 /*
1248 * Count referenced pages from currently used mappings as
1249 * rotated, even though they are moved to the inactive list.
1250 * This helps balance scan pressure between file and anonymous
1251 * pages in get_scan_ratio.
1252 */
1253 if (scan_global_lru(sc))
1254 zone->recent_rotated[!!file] += pgmoved;
1255
1256 while (!list_empty(&l_inactive)) {
1257 page = lru_to_page(&l_inactive);
1258 prefetchw_prev_lru_page(page, &l_inactive, flags);
1259 VM_BUG_ON(PageLRU(page));
1260 SetPageLRU(page);
1261 VM_BUG_ON(!PageActive(page));
1262 ClearPageActive(page);
1263
1264 list_move(&page->lru, &zone->lru[lru].list);
1265 mem_cgroup_add_lru_list(page, lru);
1266 pgmoved++;
1267 if (!pagevec_add(&pvec, page)) {
1268 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1269 spin_unlock_irq(&zone->lru_lock);
1270 pgdeactivate += pgmoved;
1271 pgmoved = 0;
1272 if (buffer_heads_over_limit)
1273 pagevec_strip(&pvec);
1274 __pagevec_release(&pvec);
1275 spin_lock_irq(&zone->lru_lock);
1276 }
1277 }
1278 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1279 pgdeactivate += pgmoved;
1280 if (buffer_heads_over_limit) {
1281 spin_unlock_irq(&zone->lru_lock);
1282 pagevec_strip(&pvec);
1283 spin_lock_irq(&zone->lru_lock);
1284 }
1285 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1286 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1287 spin_unlock_irq(&zone->lru_lock);
1288 if (vm_swap_full())
1289 pagevec_swap_free(&pvec);
1290
1291 pagevec_release(&pvec);
1292 }
1293
1294 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1295 struct zone *zone, struct scan_control *sc, int priority)
1296 {
1297 int file = is_file_lru(lru);
1298
1299 if (lru == LRU_ACTIVE_FILE) {
1300 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1301 return 0;
1302 }
1303
1304 if (lru == LRU_ACTIVE_ANON &&
1305 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1306 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1307 return 0;
1308 }
1309 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1310 }
1311
1312 /*
1313 * Determine how aggressively the anon and file LRU lists should be
1314 * scanned. The relative value of each set of LRU lists is determined
1315 * by looking at the fraction of the pages scanned we did rotate back
1316 * onto the active list instead of evict.
1317 *
1318 * percent[0] specifies how much pressure to put on ram/swap backed
1319 * memory, while percent[1] determines pressure on the file LRUs.
1320 */
1321 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1322 unsigned long *percent)
1323 {
1324 unsigned long anon, file, free;
1325 unsigned long anon_prio, file_prio;
1326 unsigned long ap, fp;
1327
1328 /* If we have no swap space, do not bother scanning anon pages. */
1329 if (nr_swap_pages <= 0) {
1330 percent[0] = 0;
1331 percent[1] = 100;
1332 return;
1333 }
1334
1335 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1336 zone_page_state(zone, NR_INACTIVE_ANON);
1337 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1338 zone_page_state(zone, NR_INACTIVE_FILE);
1339 free = zone_page_state(zone, NR_FREE_PAGES);
1340
1341 /* If we have very few page cache pages, force-scan anon pages. */
1342 if (unlikely(file + free <= zone->pages_high)) {
1343 percent[0] = 100;
1344 percent[1] = 0;
1345 return;
1346 }
1347
1348 /*
1349 * OK, so we have swap space and a fair amount of page cache
1350 * pages. We use the recently rotated / recently scanned
1351 * ratios to determine how valuable each cache is.
1352 *
1353 * Because workloads change over time (and to avoid overflow)
1354 * we keep these statistics as a floating average, which ends
1355 * up weighing recent references more than old ones.
1356 *
1357 * anon in [0], file in [1]
1358 */
1359 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1360 spin_lock_irq(&zone->lru_lock);
1361 zone->recent_scanned[0] /= 2;
1362 zone->recent_rotated[0] /= 2;
1363 spin_unlock_irq(&zone->lru_lock);
1364 }
1365
1366 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1367 spin_lock_irq(&zone->lru_lock);
1368 zone->recent_scanned[1] /= 2;
1369 zone->recent_rotated[1] /= 2;
1370 spin_unlock_irq(&zone->lru_lock);
1371 }
1372
1373 /*
1374 * With swappiness at 100, anonymous and file have the same priority.
1375 * This scanning priority is essentially the inverse of IO cost.
1376 */
1377 anon_prio = sc->swappiness;
1378 file_prio = 200 - sc->swappiness;
1379
1380 /*
1381 * The amount of pressure on anon vs file pages is inversely
1382 * proportional to the fraction of recently scanned pages on
1383 * each list that were recently referenced and in active use.
1384 */
1385 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1386 ap /= zone->recent_rotated[0] + 1;
1387
1388 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1389 fp /= zone->recent_rotated[1] + 1;
1390
1391 /* Normalize to percentages */
1392 percent[0] = 100 * ap / (ap + fp + 1);
1393 percent[1] = 100 - percent[0];
1394 }
1395
1396
1397 /*
1398 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1399 */
1400 static void shrink_zone(int priority, struct zone *zone,
1401 struct scan_control *sc)
1402 {
1403 unsigned long nr[NR_LRU_LISTS];
1404 unsigned long nr_to_scan;
1405 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1406 enum lru_list l;
1407 unsigned long nr_reclaimed = sc->nr_reclaimed;
1408 unsigned long swap_cluster_max = sc->swap_cluster_max;
1409
1410 get_scan_ratio(zone, sc, percent);
1411
1412 for_each_evictable_lru(l) {
1413 if (scan_global_lru(sc)) {
1414 int file = is_file_lru(l);
1415 int scan;
1416
1417 scan = zone_page_state(zone, NR_LRU_BASE + l);
1418 if (priority) {
1419 scan >>= priority;
1420 scan = (scan * percent[file]) / 100;
1421 }
1422 zone->lru[l].nr_scan += scan;
1423 nr[l] = zone->lru[l].nr_scan;
1424 if (nr[l] >= swap_cluster_max)
1425 zone->lru[l].nr_scan = 0;
1426 else
1427 nr[l] = 0;
1428 } else {
1429 /*
1430 * This reclaim occurs not because zone memory shortage
1431 * but because memory controller hits its limit.
1432 * Don't modify zone reclaim related data.
1433 */
1434 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1435 priority, l);
1436 }
1437 }
1438
1439 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1440 nr[LRU_INACTIVE_FILE]) {
1441 for_each_evictable_lru(l) {
1442 if (nr[l]) {
1443 nr_to_scan = min(nr[l], swap_cluster_max);
1444 nr[l] -= nr_to_scan;
1445
1446 nr_reclaimed += shrink_list(l, nr_to_scan,
1447 zone, sc, priority);
1448 }
1449 }
1450 /*
1451 * On large memory systems, scan >> priority can become
1452 * really large. This is fine for the starting priority;
1453 * we want to put equal scanning pressure on each zone.
1454 * However, if the VM has a harder time of freeing pages,
1455 * with multiple processes reclaiming pages, the total
1456 * freeing target can get unreasonably large.
1457 */
1458 if (nr_reclaimed > swap_cluster_max &&
1459 priority < DEF_PRIORITY && !current_is_kswapd())
1460 break;
1461 }
1462
1463 sc->nr_reclaimed = nr_reclaimed;
1464
1465 /*
1466 * Even if we did not try to evict anon pages at all, we want to
1467 * rebalance the anon lru active/inactive ratio.
1468 */
1469 if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1470 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1471 else if (!scan_global_lru(sc))
1472 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1473
1474 throttle_vm_writeout(sc->gfp_mask);
1475 }
1476
1477 /*
1478 * This is the direct reclaim path, for page-allocating processes. We only
1479 * try to reclaim pages from zones which will satisfy the caller's allocation
1480 * request.
1481 *
1482 * We reclaim from a zone even if that zone is over pages_high. Because:
1483 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1484 * allocation or
1485 * b) The zones may be over pages_high but they must go *over* pages_high to
1486 * satisfy the `incremental min' zone defense algorithm.
1487 *
1488 * If a zone is deemed to be full of pinned pages then just give it a light
1489 * scan then give up on it.
1490 */
1491 static void shrink_zones(int priority, struct zonelist *zonelist,
1492 struct scan_control *sc)
1493 {
1494 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1495 struct zoneref *z;
1496 struct zone *zone;
1497
1498 sc->all_unreclaimable = 1;
1499 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1500 if (!populated_zone(zone))
1501 continue;
1502 /*
1503 * Take care memory controller reclaiming has small influence
1504 * to global LRU.
1505 */
1506 if (scan_global_lru(sc)) {
1507 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1508 continue;
1509 note_zone_scanning_priority(zone, priority);
1510
1511 if (zone_is_all_unreclaimable(zone) &&
1512 priority != DEF_PRIORITY)
1513 continue; /* Let kswapd poll it */
1514 sc->all_unreclaimable = 0;
1515 } else {
1516 /*
1517 * Ignore cpuset limitation here. We just want to reduce
1518 * # of used pages by us regardless of memory shortage.
1519 */
1520 sc->all_unreclaimable = 0;
1521 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1522 priority);
1523 }
1524
1525 shrink_zone(priority, zone, sc);
1526 }
1527 }
1528
1529 /*
1530 * This is the main entry point to direct page reclaim.
1531 *
1532 * If a full scan of the inactive list fails to free enough memory then we
1533 * are "out of memory" and something needs to be killed.
1534 *
1535 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1536 * high - the zone may be full of dirty or under-writeback pages, which this
1537 * caller can't do much about. We kick pdflush and take explicit naps in the
1538 * hope that some of these pages can be written. But if the allocating task
1539 * holds filesystem locks which prevent writeout this might not work, and the
1540 * allocation attempt will fail.
1541 *
1542 * returns: 0, if no pages reclaimed
1543 * else, the number of pages reclaimed
1544 */
1545 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1546 struct scan_control *sc)
1547 {
1548 int priority;
1549 unsigned long ret = 0;
1550 unsigned long total_scanned = 0;
1551 struct reclaim_state *reclaim_state = current->reclaim_state;
1552 unsigned long lru_pages = 0;
1553 struct zoneref *z;
1554 struct zone *zone;
1555 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1556
1557 delayacct_freepages_start();
1558
1559 if (scan_global_lru(sc))
1560 count_vm_event(ALLOCSTALL);
1561 /*
1562 * mem_cgroup will not do shrink_slab.
1563 */
1564 if (scan_global_lru(sc)) {
1565 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1566
1567 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1568 continue;
1569
1570 lru_pages += zone_lru_pages(zone);
1571 }
1572 }
1573
1574 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1575 sc->nr_scanned = 0;
1576 if (!priority)
1577 disable_swap_token();
1578 shrink_zones(priority, zonelist, sc);
1579 /*
1580 * Don't shrink slabs when reclaiming memory from
1581 * over limit cgroups
1582 */
1583 if (scan_global_lru(sc)) {
1584 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1585 if (reclaim_state) {
1586 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1587 reclaim_state->reclaimed_slab = 0;
1588 }
1589 }
1590 total_scanned += sc->nr_scanned;
1591 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1592 ret = sc->nr_reclaimed;
1593 goto out;
1594 }
1595
1596 /*
1597 * Try to write back as many pages as we just scanned. This
1598 * tends to cause slow streaming writers to write data to the
1599 * disk smoothly, at the dirtying rate, which is nice. But
1600 * that's undesirable in laptop mode, where we *want* lumpy
1601 * writeout. So in laptop mode, write out the whole world.
1602 */
1603 if (total_scanned > sc->swap_cluster_max +
1604 sc->swap_cluster_max / 2) {
1605 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1606 sc->may_writepage = 1;
1607 }
1608
1609 /* Take a nap, wait for some writeback to complete */
1610 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1611 congestion_wait(WRITE, HZ/10);
1612 }
1613 /* top priority shrink_zones still had more to do? don't OOM, then */
1614 if (!sc->all_unreclaimable && scan_global_lru(sc))
1615 ret = sc->nr_reclaimed;
1616 out:
1617 /*
1618 * Now that we've scanned all the zones at this priority level, note
1619 * that level within the zone so that the next thread which performs
1620 * scanning of this zone will immediately start out at this priority
1621 * level. This affects only the decision whether or not to bring
1622 * mapped pages onto the inactive list.
1623 */
1624 if (priority < 0)
1625 priority = 0;
1626
1627 if (scan_global_lru(sc)) {
1628 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1629
1630 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1631 continue;
1632
1633 zone->prev_priority = priority;
1634 }
1635 } else
1636 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1637
1638 delayacct_freepages_end();
1639
1640 return ret;
1641 }
1642
1643 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1644 gfp_t gfp_mask)
1645 {
1646 struct scan_control sc = {
1647 .gfp_mask = gfp_mask,
1648 .may_writepage = !laptop_mode,
1649 .swap_cluster_max = SWAP_CLUSTER_MAX,
1650 .may_swap = 1,
1651 .swappiness = vm_swappiness,
1652 .order = order,
1653 .mem_cgroup = NULL,
1654 .isolate_pages = isolate_pages_global,
1655 };
1656
1657 return do_try_to_free_pages(zonelist, &sc);
1658 }
1659
1660 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1661
1662 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1663 gfp_t gfp_mask,
1664 bool noswap)
1665 {
1666 struct scan_control sc = {
1667 .may_writepage = !laptop_mode,
1668 .may_swap = 1,
1669 .swap_cluster_max = SWAP_CLUSTER_MAX,
1670 .swappiness = vm_swappiness,
1671 .order = 0,
1672 .mem_cgroup = mem_cont,
1673 .isolate_pages = mem_cgroup_isolate_pages,
1674 };
1675 struct zonelist *zonelist;
1676
1677 if (noswap)
1678 sc.may_swap = 0;
1679
1680 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1681 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1682 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1683 return do_try_to_free_pages(zonelist, &sc);
1684 }
1685 #endif
1686
1687 /*
1688 * For kswapd, balance_pgdat() will work across all this node's zones until
1689 * they are all at pages_high.
1690 *
1691 * Returns the number of pages which were actually freed.
1692 *
1693 * There is special handling here for zones which are full of pinned pages.
1694 * This can happen if the pages are all mlocked, or if they are all used by
1695 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1696 * What we do is to detect the case where all pages in the zone have been
1697 * scanned twice and there has been zero successful reclaim. Mark the zone as
1698 * dead and from now on, only perform a short scan. Basically we're polling
1699 * the zone for when the problem goes away.
1700 *
1701 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1702 * zones which have free_pages > pages_high, but once a zone is found to have
1703 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1704 * of the number of free pages in the lower zones. This interoperates with
1705 * the page allocator fallback scheme to ensure that aging of pages is balanced
1706 * across the zones.
1707 */
1708 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1709 {
1710 int all_zones_ok;
1711 int priority;
1712 int i;
1713 unsigned long total_scanned;
1714 struct reclaim_state *reclaim_state = current->reclaim_state;
1715 struct scan_control sc = {
1716 .gfp_mask = GFP_KERNEL,
1717 .may_swap = 1,
1718 .swap_cluster_max = SWAP_CLUSTER_MAX,
1719 .swappiness = vm_swappiness,
1720 .order = order,
1721 .mem_cgroup = NULL,
1722 .isolate_pages = isolate_pages_global,
1723 };
1724 /*
1725 * temp_priority is used to remember the scanning priority at which
1726 * this zone was successfully refilled to free_pages == pages_high.
1727 */
1728 int temp_priority[MAX_NR_ZONES];
1729
1730 loop_again:
1731 total_scanned = 0;
1732 sc.nr_reclaimed = 0;
1733 sc.may_writepage = !laptop_mode;
1734 count_vm_event(PAGEOUTRUN);
1735
1736 for (i = 0; i < pgdat->nr_zones; i++)
1737 temp_priority[i] = DEF_PRIORITY;
1738
1739 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1740 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1741 unsigned long lru_pages = 0;
1742
1743 /* The swap token gets in the way of swapout... */
1744 if (!priority)
1745 disable_swap_token();
1746
1747 all_zones_ok = 1;
1748
1749 /*
1750 * Scan in the highmem->dma direction for the highest
1751 * zone which needs scanning
1752 */
1753 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1754 struct zone *zone = pgdat->node_zones + i;
1755
1756 if (!populated_zone(zone))
1757 continue;
1758
1759 if (zone_is_all_unreclaimable(zone) &&
1760 priority != DEF_PRIORITY)
1761 continue;
1762
1763 /*
1764 * Do some background aging of the anon list, to give
1765 * pages a chance to be referenced before reclaiming.
1766 */
1767 if (inactive_anon_is_low(zone))
1768 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1769 &sc, priority, 0);
1770
1771 if (!zone_watermark_ok(zone, order, zone->pages_high,
1772 0, 0)) {
1773 end_zone = i;
1774 break;
1775 }
1776 }
1777 if (i < 0)
1778 goto out;
1779
1780 for (i = 0; i <= end_zone; i++) {
1781 struct zone *zone = pgdat->node_zones + i;
1782
1783 lru_pages += zone_lru_pages(zone);
1784 }
1785
1786 /*
1787 * Now scan the zone in the dma->highmem direction, stopping
1788 * at the last zone which needs scanning.
1789 *
1790 * We do this because the page allocator works in the opposite
1791 * direction. This prevents the page allocator from allocating
1792 * pages behind kswapd's direction of progress, which would
1793 * cause too much scanning of the lower zones.
1794 */
1795 for (i = 0; i <= end_zone; i++) {
1796 struct zone *zone = pgdat->node_zones + i;
1797 int nr_slab;
1798
1799 if (!populated_zone(zone))
1800 continue;
1801
1802 if (zone_is_all_unreclaimable(zone) &&
1803 priority != DEF_PRIORITY)
1804 continue;
1805
1806 if (!zone_watermark_ok(zone, order, zone->pages_high,
1807 end_zone, 0))
1808 all_zones_ok = 0;
1809 temp_priority[i] = priority;
1810 sc.nr_scanned = 0;
1811 note_zone_scanning_priority(zone, priority);
1812 /*
1813 * We put equal pressure on every zone, unless one
1814 * zone has way too many pages free already.
1815 */
1816 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1817 end_zone, 0))
1818 shrink_zone(priority, zone, &sc);
1819 reclaim_state->reclaimed_slab = 0;
1820 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1821 lru_pages);
1822 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1823 total_scanned += sc.nr_scanned;
1824 if (zone_is_all_unreclaimable(zone))
1825 continue;
1826 if (nr_slab == 0 && zone->pages_scanned >=
1827 (zone_lru_pages(zone) * 6))
1828 zone_set_flag(zone,
1829 ZONE_ALL_UNRECLAIMABLE);
1830 /*
1831 * If we've done a decent amount of scanning and
1832 * the reclaim ratio is low, start doing writepage
1833 * even in laptop mode
1834 */
1835 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1836 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1837 sc.may_writepage = 1;
1838 }
1839 if (all_zones_ok)
1840 break; /* kswapd: all done */
1841 /*
1842 * OK, kswapd is getting into trouble. Take a nap, then take
1843 * another pass across the zones.
1844 */
1845 if (total_scanned && priority < DEF_PRIORITY - 2)
1846 congestion_wait(WRITE, HZ/10);
1847
1848 /*
1849 * We do this so kswapd doesn't build up large priorities for
1850 * example when it is freeing in parallel with allocators. It
1851 * matches the direct reclaim path behaviour in terms of impact
1852 * on zone->*_priority.
1853 */
1854 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1855 break;
1856 }
1857 out:
1858 /*
1859 * Note within each zone the priority level at which this zone was
1860 * brought into a happy state. So that the next thread which scans this
1861 * zone will start out at that priority level.
1862 */
1863 for (i = 0; i < pgdat->nr_zones; i++) {
1864 struct zone *zone = pgdat->node_zones + i;
1865
1866 zone->prev_priority = temp_priority[i];
1867 }
1868 if (!all_zones_ok) {
1869 cond_resched();
1870
1871 try_to_freeze();
1872
1873 /*
1874 * Fragmentation may mean that the system cannot be
1875 * rebalanced for high-order allocations in all zones.
1876 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1877 * it means the zones have been fully scanned and are still
1878 * not balanced. For high-order allocations, there is
1879 * little point trying all over again as kswapd may
1880 * infinite loop.
1881 *
1882 * Instead, recheck all watermarks at order-0 as they
1883 * are the most important. If watermarks are ok, kswapd will go
1884 * back to sleep. High-order users can still perform direct
1885 * reclaim if they wish.
1886 */
1887 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1888 order = sc.order = 0;
1889
1890 goto loop_again;
1891 }
1892
1893 return sc.nr_reclaimed;
1894 }
1895
1896 /*
1897 * The background pageout daemon, started as a kernel thread
1898 * from the init process.
1899 *
1900 * This basically trickles out pages so that we have _some_
1901 * free memory available even if there is no other activity
1902 * that frees anything up. This is needed for things like routing
1903 * etc, where we otherwise might have all activity going on in
1904 * asynchronous contexts that cannot page things out.
1905 *
1906 * If there are applications that are active memory-allocators
1907 * (most normal use), this basically shouldn't matter.
1908 */
1909 static int kswapd(void *p)
1910 {
1911 unsigned long order;
1912 pg_data_t *pgdat = (pg_data_t*)p;
1913 struct task_struct *tsk = current;
1914 DEFINE_WAIT(wait);
1915 struct reclaim_state reclaim_state = {
1916 .reclaimed_slab = 0,
1917 };
1918 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1919
1920 if (!cpumask_empty(cpumask))
1921 set_cpus_allowed_ptr(tsk, cpumask);
1922 current->reclaim_state = &reclaim_state;
1923
1924 /*
1925 * Tell the memory management that we're a "memory allocator",
1926 * and that if we need more memory we should get access to it
1927 * regardless (see "__alloc_pages()"). "kswapd" should
1928 * never get caught in the normal page freeing logic.
1929 *
1930 * (Kswapd normally doesn't need memory anyway, but sometimes
1931 * you need a small amount of memory in order to be able to
1932 * page out something else, and this flag essentially protects
1933 * us from recursively trying to free more memory as we're
1934 * trying to free the first piece of memory in the first place).
1935 */
1936 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1937 set_freezable();
1938
1939 order = 0;
1940 for ( ; ; ) {
1941 unsigned long new_order;
1942
1943 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1944 new_order = pgdat->kswapd_max_order;
1945 pgdat->kswapd_max_order = 0;
1946 if (order < new_order) {
1947 /*
1948 * Don't sleep if someone wants a larger 'order'
1949 * allocation
1950 */
1951 order = new_order;
1952 } else {
1953 if (!freezing(current))
1954 schedule();
1955
1956 order = pgdat->kswapd_max_order;
1957 }
1958 finish_wait(&pgdat->kswapd_wait, &wait);
1959
1960 if (!try_to_freeze()) {
1961 /* We can speed up thawing tasks if we don't call
1962 * balance_pgdat after returning from the refrigerator
1963 */
1964 balance_pgdat(pgdat, order);
1965 }
1966 }
1967 return 0;
1968 }
1969
1970 /*
1971 * A zone is low on free memory, so wake its kswapd task to service it.
1972 */
1973 void wakeup_kswapd(struct zone *zone, int order)
1974 {
1975 pg_data_t *pgdat;
1976
1977 if (!populated_zone(zone))
1978 return;
1979
1980 pgdat = zone->zone_pgdat;
1981 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1982 return;
1983 if (pgdat->kswapd_max_order < order)
1984 pgdat->kswapd_max_order = order;
1985 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1986 return;
1987 if (!waitqueue_active(&pgdat->kswapd_wait))
1988 return;
1989 wake_up_interruptible(&pgdat->kswapd_wait);
1990 }
1991
1992 unsigned long global_lru_pages(void)
1993 {
1994 return global_page_state(NR_ACTIVE_ANON)
1995 + global_page_state(NR_ACTIVE_FILE)
1996 + global_page_state(NR_INACTIVE_ANON)
1997 + global_page_state(NR_INACTIVE_FILE);
1998 }
1999
2000 #ifdef CONFIG_PM
2001 /*
2002 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2003 * from LRU lists system-wide, for given pass and priority, and returns the
2004 * number of reclaimed pages
2005 *
2006 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2007 */
2008 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
2009 int pass, struct scan_control *sc)
2010 {
2011 struct zone *zone;
2012 unsigned long nr_to_scan, ret = 0;
2013 enum lru_list l;
2014
2015 for_each_zone(zone) {
2016
2017 if (!populated_zone(zone))
2018 continue;
2019
2020 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2021 continue;
2022
2023 for_each_evictable_lru(l) {
2024 /* For pass = 0, we don't shrink the active list */
2025 if (pass == 0 &&
2026 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
2027 continue;
2028
2029 zone->lru[l].nr_scan +=
2030 (zone_page_state(zone, NR_LRU_BASE + l)
2031 >> prio) + 1;
2032 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
2033 zone->lru[l].nr_scan = 0;
2034 nr_to_scan = min(nr_pages,
2035 zone_page_state(zone,
2036 NR_LRU_BASE + l));
2037 ret += shrink_list(l, nr_to_scan, zone,
2038 sc, prio);
2039 if (ret >= nr_pages)
2040 return ret;
2041 }
2042 }
2043 }
2044
2045 return ret;
2046 }
2047
2048 /*
2049 * Try to free `nr_pages' of memory, system-wide, and return the number of
2050 * freed pages.
2051 *
2052 * Rather than trying to age LRUs the aim is to preserve the overall
2053 * LRU order by reclaiming preferentially
2054 * inactive > active > active referenced > active mapped
2055 */
2056 unsigned long shrink_all_memory(unsigned long nr_pages)
2057 {
2058 unsigned long lru_pages, nr_slab;
2059 unsigned long ret = 0;
2060 int pass;
2061 struct reclaim_state reclaim_state;
2062 struct scan_control sc = {
2063 .gfp_mask = GFP_KERNEL,
2064 .may_swap = 0,
2065 .swap_cluster_max = nr_pages,
2066 .may_writepage = 1,
2067 .swappiness = vm_swappiness,
2068 .isolate_pages = isolate_pages_global,
2069 };
2070
2071 current->reclaim_state = &reclaim_state;
2072
2073 lru_pages = global_lru_pages();
2074 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2075 /* If slab caches are huge, it's better to hit them first */
2076 while (nr_slab >= lru_pages) {
2077 reclaim_state.reclaimed_slab = 0;
2078 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2079 if (!reclaim_state.reclaimed_slab)
2080 break;
2081
2082 ret += reclaim_state.reclaimed_slab;
2083 if (ret >= nr_pages)
2084 goto out;
2085
2086 nr_slab -= reclaim_state.reclaimed_slab;
2087 }
2088
2089 /*
2090 * We try to shrink LRUs in 5 passes:
2091 * 0 = Reclaim from inactive_list only
2092 * 1 = Reclaim from active list but don't reclaim mapped
2093 * 2 = 2nd pass of type 1
2094 * 3 = Reclaim mapped (normal reclaim)
2095 * 4 = 2nd pass of type 3
2096 */
2097 for (pass = 0; pass < 5; pass++) {
2098 int prio;
2099
2100 /* Force reclaiming mapped pages in the passes #3 and #4 */
2101 if (pass > 2) {
2102 sc.may_swap = 1;
2103 sc.swappiness = 100;
2104 }
2105
2106 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2107 unsigned long nr_to_scan = nr_pages - ret;
2108
2109 sc.nr_scanned = 0;
2110 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
2111 if (ret >= nr_pages)
2112 goto out;
2113
2114 reclaim_state.reclaimed_slab = 0;
2115 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2116 global_lru_pages());
2117 ret += reclaim_state.reclaimed_slab;
2118 if (ret >= nr_pages)
2119 goto out;
2120
2121 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2122 congestion_wait(WRITE, HZ / 10);
2123 }
2124 }
2125
2126 /*
2127 * If ret = 0, we could not shrink LRUs, but there may be something
2128 * in slab caches
2129 */
2130 if (!ret) {
2131 do {
2132 reclaim_state.reclaimed_slab = 0;
2133 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
2134 ret += reclaim_state.reclaimed_slab;
2135 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
2136 }
2137
2138 out:
2139 current->reclaim_state = NULL;
2140
2141 return ret;
2142 }
2143 #endif
2144
2145 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2146 not required for correctness. So if the last cpu in a node goes
2147 away, we get changed to run anywhere: as the first one comes back,
2148 restore their cpu bindings. */
2149 static int __devinit cpu_callback(struct notifier_block *nfb,
2150 unsigned long action, void *hcpu)
2151 {
2152 int nid;
2153
2154 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2155 for_each_node_state(nid, N_HIGH_MEMORY) {
2156 pg_data_t *pgdat = NODE_DATA(nid);
2157 node_to_cpumask_ptr(mask, pgdat->node_id);
2158
2159 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2160 /* One of our CPUs online: restore mask */
2161 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2162 }
2163 }
2164 return NOTIFY_OK;
2165 }
2166
2167 /*
2168 * This kswapd start function will be called by init and node-hot-add.
2169 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2170 */
2171 int kswapd_run(int nid)
2172 {
2173 pg_data_t *pgdat = NODE_DATA(nid);
2174 int ret = 0;
2175
2176 if (pgdat->kswapd)
2177 return 0;
2178
2179 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2180 if (IS_ERR(pgdat->kswapd)) {
2181 /* failure at boot is fatal */
2182 BUG_ON(system_state == SYSTEM_BOOTING);
2183 printk("Failed to start kswapd on node %d\n",nid);
2184 ret = -1;
2185 }
2186 return ret;
2187 }
2188
2189 static int __init kswapd_init(void)
2190 {
2191 int nid;
2192
2193 swap_setup();
2194 for_each_node_state(nid, N_HIGH_MEMORY)
2195 kswapd_run(nid);
2196 hotcpu_notifier(cpu_callback, 0);
2197 return 0;
2198 }
2199
2200 module_init(kswapd_init)
2201
2202 #ifdef CONFIG_NUMA
2203 /*
2204 * Zone reclaim mode
2205 *
2206 * If non-zero call zone_reclaim when the number of free pages falls below
2207 * the watermarks.
2208 */
2209 int zone_reclaim_mode __read_mostly;
2210
2211 #define RECLAIM_OFF 0
2212 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2213 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2214 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2215
2216 /*
2217 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2218 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2219 * a zone.
2220 */
2221 #define ZONE_RECLAIM_PRIORITY 4
2222
2223 /*
2224 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2225 * occur.
2226 */
2227 int sysctl_min_unmapped_ratio = 1;
2228
2229 /*
2230 * If the number of slab pages in a zone grows beyond this percentage then
2231 * slab reclaim needs to occur.
2232 */
2233 int sysctl_min_slab_ratio = 5;
2234
2235 /*
2236 * Try to free up some pages from this zone through reclaim.
2237 */
2238 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2239 {
2240 /* Minimum pages needed in order to stay on node */
2241 const unsigned long nr_pages = 1 << order;
2242 struct task_struct *p = current;
2243 struct reclaim_state reclaim_state;
2244 int priority;
2245 struct scan_control sc = {
2246 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2247 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2248 .swap_cluster_max = max_t(unsigned long, nr_pages,
2249 SWAP_CLUSTER_MAX),
2250 .gfp_mask = gfp_mask,
2251 .swappiness = vm_swappiness,
2252 .isolate_pages = isolate_pages_global,
2253 };
2254 unsigned long slab_reclaimable;
2255
2256 disable_swap_token();
2257 cond_resched();
2258 /*
2259 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2260 * and we also need to be able to write out pages for RECLAIM_WRITE
2261 * and RECLAIM_SWAP.
2262 */
2263 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2264 reclaim_state.reclaimed_slab = 0;
2265 p->reclaim_state = &reclaim_state;
2266
2267 if (zone_page_state(zone, NR_FILE_PAGES) -
2268 zone_page_state(zone, NR_FILE_MAPPED) >
2269 zone->min_unmapped_pages) {
2270 /*
2271 * Free memory by calling shrink zone with increasing
2272 * priorities until we have enough memory freed.
2273 */
2274 priority = ZONE_RECLAIM_PRIORITY;
2275 do {
2276 note_zone_scanning_priority(zone, priority);
2277 shrink_zone(priority, zone, &sc);
2278 priority--;
2279 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2280 }
2281
2282 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2283 if (slab_reclaimable > zone->min_slab_pages) {
2284 /*
2285 * shrink_slab() does not currently allow us to determine how
2286 * many pages were freed in this zone. So we take the current
2287 * number of slab pages and shake the slab until it is reduced
2288 * by the same nr_pages that we used for reclaiming unmapped
2289 * pages.
2290 *
2291 * Note that shrink_slab will free memory on all zones and may
2292 * take a long time.
2293 */
2294 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2295 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2296 slab_reclaimable - nr_pages)
2297 ;
2298
2299 /*
2300 * Update nr_reclaimed by the number of slab pages we
2301 * reclaimed from this zone.
2302 */
2303 sc.nr_reclaimed += slab_reclaimable -
2304 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2305 }
2306
2307 p->reclaim_state = NULL;
2308 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2309 return sc.nr_reclaimed >= nr_pages;
2310 }
2311
2312 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2313 {
2314 int node_id;
2315 int ret;
2316
2317 /*
2318 * Zone reclaim reclaims unmapped file backed pages and
2319 * slab pages if we are over the defined limits.
2320 *
2321 * A small portion of unmapped file backed pages is needed for
2322 * file I/O otherwise pages read by file I/O will be immediately
2323 * thrown out if the zone is overallocated. So we do not reclaim
2324 * if less than a specified percentage of the zone is used by
2325 * unmapped file backed pages.
2326 */
2327 if (zone_page_state(zone, NR_FILE_PAGES) -
2328 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2329 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2330 <= zone->min_slab_pages)
2331 return 0;
2332
2333 if (zone_is_all_unreclaimable(zone))
2334 return 0;
2335
2336 /*
2337 * Do not scan if the allocation should not be delayed.
2338 */
2339 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2340 return 0;
2341
2342 /*
2343 * Only run zone reclaim on the local zone or on zones that do not
2344 * have associated processors. This will favor the local processor
2345 * over remote processors and spread off node memory allocations
2346 * as wide as possible.
2347 */
2348 node_id = zone_to_nid(zone);
2349 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2350 return 0;
2351
2352 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2353 return 0;
2354 ret = __zone_reclaim(zone, gfp_mask, order);
2355 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2356
2357 return ret;
2358 }
2359 #endif
2360
2361 #ifdef CONFIG_UNEVICTABLE_LRU
2362 /*
2363 * page_evictable - test whether a page is evictable
2364 * @page: the page to test
2365 * @vma: the VMA in which the page is or will be mapped, may be NULL
2366 *
2367 * Test whether page is evictable--i.e., should be placed on active/inactive
2368 * lists vs unevictable list. The vma argument is !NULL when called from the
2369 * fault path to determine how to instantate a new page.
2370 *
2371 * Reasons page might not be evictable:
2372 * (1) page's mapping marked unevictable
2373 * (2) page is part of an mlocked VMA
2374 *
2375 */
2376 int page_evictable(struct page *page, struct vm_area_struct *vma)
2377 {
2378
2379 if (mapping_unevictable(page_mapping(page)))
2380 return 0;
2381
2382 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2383 return 0;
2384
2385 return 1;
2386 }
2387
2388 /**
2389 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2390 * @page: page to check evictability and move to appropriate lru list
2391 * @zone: zone page is in
2392 *
2393 * Checks a page for evictability and moves the page to the appropriate
2394 * zone lru list.
2395 *
2396 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2397 * have PageUnevictable set.
2398 */
2399 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2400 {
2401 VM_BUG_ON(PageActive(page));
2402
2403 retry:
2404 ClearPageUnevictable(page);
2405 if (page_evictable(page, NULL)) {
2406 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
2407
2408 __dec_zone_state(zone, NR_UNEVICTABLE);
2409 list_move(&page->lru, &zone->lru[l].list);
2410 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2411 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2412 __count_vm_event(UNEVICTABLE_PGRESCUED);
2413 } else {
2414 /*
2415 * rotate unevictable list
2416 */
2417 SetPageUnevictable(page);
2418 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2419 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2420 if (page_evictable(page, NULL))
2421 goto retry;
2422 }
2423 }
2424
2425 /**
2426 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2427 * @mapping: struct address_space to scan for evictable pages
2428 *
2429 * Scan all pages in mapping. Check unevictable pages for
2430 * evictability and move them to the appropriate zone lru list.
2431 */
2432 void scan_mapping_unevictable_pages(struct address_space *mapping)
2433 {
2434 pgoff_t next = 0;
2435 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2436 PAGE_CACHE_SHIFT;
2437 struct zone *zone;
2438 struct pagevec pvec;
2439
2440 if (mapping->nrpages == 0)
2441 return;
2442
2443 pagevec_init(&pvec, 0);
2444 while (next < end &&
2445 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2446 int i;
2447 int pg_scanned = 0;
2448
2449 zone = NULL;
2450
2451 for (i = 0; i < pagevec_count(&pvec); i++) {
2452 struct page *page = pvec.pages[i];
2453 pgoff_t page_index = page->index;
2454 struct zone *pagezone = page_zone(page);
2455
2456 pg_scanned++;
2457 if (page_index > next)
2458 next = page_index;
2459 next++;
2460
2461 if (pagezone != zone) {
2462 if (zone)
2463 spin_unlock_irq(&zone->lru_lock);
2464 zone = pagezone;
2465 spin_lock_irq(&zone->lru_lock);
2466 }
2467
2468 if (PageLRU(page) && PageUnevictable(page))
2469 check_move_unevictable_page(page, zone);
2470 }
2471 if (zone)
2472 spin_unlock_irq(&zone->lru_lock);
2473 pagevec_release(&pvec);
2474
2475 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2476 }
2477
2478 }
2479
2480 /**
2481 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2482 * @zone - zone of which to scan the unevictable list
2483 *
2484 * Scan @zone's unevictable LRU lists to check for pages that have become
2485 * evictable. Move those that have to @zone's inactive list where they
2486 * become candidates for reclaim, unless shrink_inactive_zone() decides
2487 * to reactivate them. Pages that are still unevictable are rotated
2488 * back onto @zone's unevictable list.
2489 */
2490 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2491 static void scan_zone_unevictable_pages(struct zone *zone)
2492 {
2493 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2494 unsigned long scan;
2495 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2496
2497 while (nr_to_scan > 0) {
2498 unsigned long batch_size = min(nr_to_scan,
2499 SCAN_UNEVICTABLE_BATCH_SIZE);
2500
2501 spin_lock_irq(&zone->lru_lock);
2502 for (scan = 0; scan < batch_size; scan++) {
2503 struct page *page = lru_to_page(l_unevictable);
2504
2505 if (!trylock_page(page))
2506 continue;
2507
2508 prefetchw_prev_lru_page(page, l_unevictable, flags);
2509
2510 if (likely(PageLRU(page) && PageUnevictable(page)))
2511 check_move_unevictable_page(page, zone);
2512
2513 unlock_page(page);
2514 }
2515 spin_unlock_irq(&zone->lru_lock);
2516
2517 nr_to_scan -= batch_size;
2518 }
2519 }
2520
2521
2522 /**
2523 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2524 *
2525 * A really big hammer: scan all zones' unevictable LRU lists to check for
2526 * pages that have become evictable. Move those back to the zones'
2527 * inactive list where they become candidates for reclaim.
2528 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2529 * and we add swap to the system. As such, it runs in the context of a task
2530 * that has possibly/probably made some previously unevictable pages
2531 * evictable.
2532 */
2533 static void scan_all_zones_unevictable_pages(void)
2534 {
2535 struct zone *zone;
2536
2537 for_each_zone(zone) {
2538 scan_zone_unevictable_pages(zone);
2539 }
2540 }
2541
2542 /*
2543 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2544 * all nodes' unevictable lists for evictable pages
2545 */
2546 unsigned long scan_unevictable_pages;
2547
2548 int scan_unevictable_handler(struct ctl_table *table, int write,
2549 struct file *file, void __user *buffer,
2550 size_t *length, loff_t *ppos)
2551 {
2552 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2553
2554 if (write && *(unsigned long *)table->data)
2555 scan_all_zones_unevictable_pages();
2556
2557 scan_unevictable_pages = 0;
2558 return 0;
2559 }
2560
2561 /*
2562 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2563 * a specified node's per zone unevictable lists for evictable pages.
2564 */
2565
2566 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2567 struct sysdev_attribute *attr,
2568 char *buf)
2569 {
2570 return sprintf(buf, "0\n"); /* always zero; should fit... */
2571 }
2572
2573 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2574 struct sysdev_attribute *attr,
2575 const char *buf, size_t count)
2576 {
2577 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2578 struct zone *zone;
2579 unsigned long res;
2580 unsigned long req = strict_strtoul(buf, 10, &res);
2581
2582 if (!req)
2583 return 1; /* zero is no-op */
2584
2585 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2586 if (!populated_zone(zone))
2587 continue;
2588 scan_zone_unevictable_pages(zone);
2589 }
2590 return 1;
2591 }
2592
2593
2594 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2595 read_scan_unevictable_node,
2596 write_scan_unevictable_node);
2597
2598 int scan_unevictable_register_node(struct node *node)
2599 {
2600 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2601 }
2602
2603 void scan_unevictable_unregister_node(struct node *node)
2604 {
2605 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2606 }
2607
2608 #endif
This page took 0.084276 seconds and 5 git commands to generate.