ext4: pair trace_ext4_writepages & trace_ext4_writepages_result
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57
58 struct scan_control {
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 unsigned long hibernation_mode;
69
70 /* This context's GFP mask */
71 gfp_t gfp_mask;
72
73 int may_writepage;
74
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
77
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
81 int order;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
91
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130 * From 0 .. 100. Higher means more swappy.
131 */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146 return true;
147 }
148 #endif
149
150 unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152 int nr;
153
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
156
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
160
161 return nr;
162 }
163
164 bool zone_reclaimable(struct zone *zone)
165 {
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171 if (!mem_cgroup_disabled())
172 return mem_cgroup_get_lru_size(lruvec, lru);
173
174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176
177 /*
178 * Add a shrinker callback to be called from the vm.
179 */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182 size_t size = sizeof(*shrinker->nr_deferred);
183
184 /*
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
188 */
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 size *= nr_node_ids;
194
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
197 return -ENOMEM;
198
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
202 return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205
206 /*
207 * Remove one
208 */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
214 }
215 EXPORT_SYMBOL(unregister_shrinker);
216
217 #define SHRINK_BATCH 128
218
219 static unsigned long
220 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
221 unsigned long nr_pages_scanned, unsigned long lru_pages)
222 {
223 unsigned long freed = 0;
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 long nr;
228 long new_nr;
229 int nid = shrinkctl->nid;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
232
233 max_pass = shrinker->count_objects(shrinker, shrinkctl);
234 if (max_pass == 0)
235 return 0;
236
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
242 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
243
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR
251 "shrink_slab: %pF negative objects to delete nr=%ld\n",
252 shrinker->scan_objects, total_scan);
253 total_scan = max_pass;
254 }
255
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
278
279 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
283 while (total_scan >= batch_size) {
284 unsigned long ret;
285
286 shrinkctl->nr_to_scan = batch_size;
287 ret = shrinker->scan_objects(shrinker, shrinkctl);
288 if (ret == SHRINK_STOP)
289 break;
290 freed += ret;
291
292 count_vm_events(SLABS_SCANNED, batch_size);
293 total_scan -= batch_size;
294
295 cond_resched();
296 }
297
298 /*
299 * move the unused scan count back into the shrinker in a
300 * manner that handles concurrent updates. If we exhausted the
301 * scan, there is no need to do an update.
302 */
303 if (total_scan > 0)
304 new_nr = atomic_long_add_return(total_scan,
305 &shrinker->nr_deferred[nid]);
306 else
307 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
308
309 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
310 return freed;
311 }
312
313 /*
314 * Call the shrink functions to age shrinkable caches
315 *
316 * Here we assume it costs one seek to replace a lru page and that it also
317 * takes a seek to recreate a cache object. With this in mind we age equal
318 * percentages of the lru and ageable caches. This should balance the seeks
319 * generated by these structures.
320 *
321 * If the vm encountered mapped pages on the LRU it increase the pressure on
322 * slab to avoid swapping.
323 *
324 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
325 *
326 * `lru_pages' represents the number of on-LRU pages in all the zones which
327 * are eligible for the caller's allocation attempt. It is used for balancing
328 * slab reclaim versus page reclaim.
329 *
330 * Returns the number of slab objects which we shrunk.
331 */
332 unsigned long shrink_slab(struct shrink_control *shrinkctl,
333 unsigned long nr_pages_scanned,
334 unsigned long lru_pages)
335 {
336 struct shrinker *shrinker;
337 unsigned long freed = 0;
338
339 if (nr_pages_scanned == 0)
340 nr_pages_scanned = SWAP_CLUSTER_MAX;
341
342 if (!down_read_trylock(&shrinker_rwsem)) {
343 /*
344 * If we would return 0, our callers would understand that we
345 * have nothing else to shrink and give up trying. By returning
346 * 1 we keep it going and assume we'll be able to shrink next
347 * time.
348 */
349 freed = 1;
350 goto out;
351 }
352
353 list_for_each_entry(shrinker, &shrinker_list, list) {
354 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
355 if (!node_online(shrinkctl->nid))
356 continue;
357
358 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
359 (shrinkctl->nid != 0))
360 break;
361
362 freed += shrink_slab_node(shrinkctl, shrinker,
363 nr_pages_scanned, lru_pages);
364
365 }
366 }
367 up_read(&shrinker_rwsem);
368 out:
369 cond_resched();
370 return freed;
371 }
372
373 static inline int is_page_cache_freeable(struct page *page)
374 {
375 /*
376 * A freeable page cache page is referenced only by the caller
377 * that isolated the page, the page cache radix tree and
378 * optional buffer heads at page->private.
379 */
380 return page_count(page) - page_has_private(page) == 2;
381 }
382
383 static int may_write_to_queue(struct backing_dev_info *bdi,
384 struct scan_control *sc)
385 {
386 if (current->flags & PF_SWAPWRITE)
387 return 1;
388 if (!bdi_write_congested(bdi))
389 return 1;
390 if (bdi == current->backing_dev_info)
391 return 1;
392 return 0;
393 }
394
395 /*
396 * We detected a synchronous write error writing a page out. Probably
397 * -ENOSPC. We need to propagate that into the address_space for a subsequent
398 * fsync(), msync() or close().
399 *
400 * The tricky part is that after writepage we cannot touch the mapping: nothing
401 * prevents it from being freed up. But we have a ref on the page and once
402 * that page is locked, the mapping is pinned.
403 *
404 * We're allowed to run sleeping lock_page() here because we know the caller has
405 * __GFP_FS.
406 */
407 static void handle_write_error(struct address_space *mapping,
408 struct page *page, int error)
409 {
410 lock_page(page);
411 if (page_mapping(page) == mapping)
412 mapping_set_error(mapping, error);
413 unlock_page(page);
414 }
415
416 /* possible outcome of pageout() */
417 typedef enum {
418 /* failed to write page out, page is locked */
419 PAGE_KEEP,
420 /* move page to the active list, page is locked */
421 PAGE_ACTIVATE,
422 /* page has been sent to the disk successfully, page is unlocked */
423 PAGE_SUCCESS,
424 /* page is clean and locked */
425 PAGE_CLEAN,
426 } pageout_t;
427
428 /*
429 * pageout is called by shrink_page_list() for each dirty page.
430 * Calls ->writepage().
431 */
432 static pageout_t pageout(struct page *page, struct address_space *mapping,
433 struct scan_control *sc)
434 {
435 /*
436 * If the page is dirty, only perform writeback if that write
437 * will be non-blocking. To prevent this allocation from being
438 * stalled by pagecache activity. But note that there may be
439 * stalls if we need to run get_block(). We could test
440 * PagePrivate for that.
441 *
442 * If this process is currently in __generic_file_aio_write() against
443 * this page's queue, we can perform writeback even if that
444 * will block.
445 *
446 * If the page is swapcache, write it back even if that would
447 * block, for some throttling. This happens by accident, because
448 * swap_backing_dev_info is bust: it doesn't reflect the
449 * congestion state of the swapdevs. Easy to fix, if needed.
450 */
451 if (!is_page_cache_freeable(page))
452 return PAGE_KEEP;
453 if (!mapping) {
454 /*
455 * Some data journaling orphaned pages can have
456 * page->mapping == NULL while being dirty with clean buffers.
457 */
458 if (page_has_private(page)) {
459 if (try_to_free_buffers(page)) {
460 ClearPageDirty(page);
461 printk("%s: orphaned page\n", __func__);
462 return PAGE_CLEAN;
463 }
464 }
465 return PAGE_KEEP;
466 }
467 if (mapping->a_ops->writepage == NULL)
468 return PAGE_ACTIVATE;
469 if (!may_write_to_queue(mapping->backing_dev_info, sc))
470 return PAGE_KEEP;
471
472 if (clear_page_dirty_for_io(page)) {
473 int res;
474 struct writeback_control wbc = {
475 .sync_mode = WB_SYNC_NONE,
476 .nr_to_write = SWAP_CLUSTER_MAX,
477 .range_start = 0,
478 .range_end = LLONG_MAX,
479 .for_reclaim = 1,
480 };
481
482 SetPageReclaim(page);
483 res = mapping->a_ops->writepage(page, &wbc);
484 if (res < 0)
485 handle_write_error(mapping, page, res);
486 if (res == AOP_WRITEPAGE_ACTIVATE) {
487 ClearPageReclaim(page);
488 return PAGE_ACTIVATE;
489 }
490
491 if (!PageWriteback(page)) {
492 /* synchronous write or broken a_ops? */
493 ClearPageReclaim(page);
494 }
495 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
496 inc_zone_page_state(page, NR_VMSCAN_WRITE);
497 return PAGE_SUCCESS;
498 }
499
500 return PAGE_CLEAN;
501 }
502
503 /*
504 * Same as remove_mapping, but if the page is removed from the mapping, it
505 * gets returned with a refcount of 0.
506 */
507 static int __remove_mapping(struct address_space *mapping, struct page *page)
508 {
509 BUG_ON(!PageLocked(page));
510 BUG_ON(mapping != page_mapping(page));
511
512 spin_lock_irq(&mapping->tree_lock);
513 /*
514 * The non racy check for a busy page.
515 *
516 * Must be careful with the order of the tests. When someone has
517 * a ref to the page, it may be possible that they dirty it then
518 * drop the reference. So if PageDirty is tested before page_count
519 * here, then the following race may occur:
520 *
521 * get_user_pages(&page);
522 * [user mapping goes away]
523 * write_to(page);
524 * !PageDirty(page) [good]
525 * SetPageDirty(page);
526 * put_page(page);
527 * !page_count(page) [good, discard it]
528 *
529 * [oops, our write_to data is lost]
530 *
531 * Reversing the order of the tests ensures such a situation cannot
532 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
533 * load is not satisfied before that of page->_count.
534 *
535 * Note that if SetPageDirty is always performed via set_page_dirty,
536 * and thus under tree_lock, then this ordering is not required.
537 */
538 if (!page_freeze_refs(page, 2))
539 goto cannot_free;
540 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
541 if (unlikely(PageDirty(page))) {
542 page_unfreeze_refs(page, 2);
543 goto cannot_free;
544 }
545
546 if (PageSwapCache(page)) {
547 swp_entry_t swap = { .val = page_private(page) };
548 __delete_from_swap_cache(page);
549 spin_unlock_irq(&mapping->tree_lock);
550 swapcache_free(swap, page);
551 } else {
552 void (*freepage)(struct page *);
553
554 freepage = mapping->a_ops->freepage;
555
556 __delete_from_page_cache(page);
557 spin_unlock_irq(&mapping->tree_lock);
558 mem_cgroup_uncharge_cache_page(page);
559
560 if (freepage != NULL)
561 freepage(page);
562 }
563
564 return 1;
565
566 cannot_free:
567 spin_unlock_irq(&mapping->tree_lock);
568 return 0;
569 }
570
571 /*
572 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
573 * someone else has a ref on the page, abort and return 0. If it was
574 * successfully detached, return 1. Assumes the caller has a single ref on
575 * this page.
576 */
577 int remove_mapping(struct address_space *mapping, struct page *page)
578 {
579 if (__remove_mapping(mapping, page)) {
580 /*
581 * Unfreezing the refcount with 1 rather than 2 effectively
582 * drops the pagecache ref for us without requiring another
583 * atomic operation.
584 */
585 page_unfreeze_refs(page, 1);
586 return 1;
587 }
588 return 0;
589 }
590
591 /**
592 * putback_lru_page - put previously isolated page onto appropriate LRU list
593 * @page: page to be put back to appropriate lru list
594 *
595 * Add previously isolated @page to appropriate LRU list.
596 * Page may still be unevictable for other reasons.
597 *
598 * lru_lock must not be held, interrupts must be enabled.
599 */
600 void putback_lru_page(struct page *page)
601 {
602 bool is_unevictable;
603 int was_unevictable = PageUnevictable(page);
604
605 VM_BUG_ON(PageLRU(page));
606
607 redo:
608 ClearPageUnevictable(page);
609
610 if (page_evictable(page)) {
611 /*
612 * For evictable pages, we can use the cache.
613 * In event of a race, worst case is we end up with an
614 * unevictable page on [in]active list.
615 * We know how to handle that.
616 */
617 is_unevictable = false;
618 lru_cache_add(page);
619 } else {
620 /*
621 * Put unevictable pages directly on zone's unevictable
622 * list.
623 */
624 is_unevictable = true;
625 add_page_to_unevictable_list(page);
626 /*
627 * When racing with an mlock or AS_UNEVICTABLE clearing
628 * (page is unlocked) make sure that if the other thread
629 * does not observe our setting of PG_lru and fails
630 * isolation/check_move_unevictable_pages,
631 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
632 * the page back to the evictable list.
633 *
634 * The other side is TestClearPageMlocked() or shmem_lock().
635 */
636 smp_mb();
637 }
638
639 /*
640 * page's status can change while we move it among lru. If an evictable
641 * page is on unevictable list, it never be freed. To avoid that,
642 * check after we added it to the list, again.
643 */
644 if (is_unevictable && page_evictable(page)) {
645 if (!isolate_lru_page(page)) {
646 put_page(page);
647 goto redo;
648 }
649 /* This means someone else dropped this page from LRU
650 * So, it will be freed or putback to LRU again. There is
651 * nothing to do here.
652 */
653 }
654
655 if (was_unevictable && !is_unevictable)
656 count_vm_event(UNEVICTABLE_PGRESCUED);
657 else if (!was_unevictable && is_unevictable)
658 count_vm_event(UNEVICTABLE_PGCULLED);
659
660 put_page(page); /* drop ref from isolate */
661 }
662
663 enum page_references {
664 PAGEREF_RECLAIM,
665 PAGEREF_RECLAIM_CLEAN,
666 PAGEREF_KEEP,
667 PAGEREF_ACTIVATE,
668 };
669
670 static enum page_references page_check_references(struct page *page,
671 struct scan_control *sc)
672 {
673 int referenced_ptes, referenced_page;
674 unsigned long vm_flags;
675
676 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
677 &vm_flags);
678 referenced_page = TestClearPageReferenced(page);
679
680 /*
681 * Mlock lost the isolation race with us. Let try_to_unmap()
682 * move the page to the unevictable list.
683 */
684 if (vm_flags & VM_LOCKED)
685 return PAGEREF_RECLAIM;
686
687 if (referenced_ptes) {
688 if (PageSwapBacked(page))
689 return PAGEREF_ACTIVATE;
690 /*
691 * All mapped pages start out with page table
692 * references from the instantiating fault, so we need
693 * to look twice if a mapped file page is used more
694 * than once.
695 *
696 * Mark it and spare it for another trip around the
697 * inactive list. Another page table reference will
698 * lead to its activation.
699 *
700 * Note: the mark is set for activated pages as well
701 * so that recently deactivated but used pages are
702 * quickly recovered.
703 */
704 SetPageReferenced(page);
705
706 if (referenced_page || referenced_ptes > 1)
707 return PAGEREF_ACTIVATE;
708
709 /*
710 * Activate file-backed executable pages after first usage.
711 */
712 if (vm_flags & VM_EXEC)
713 return PAGEREF_ACTIVATE;
714
715 return PAGEREF_KEEP;
716 }
717
718 /* Reclaim if clean, defer dirty pages to writeback */
719 if (referenced_page && !PageSwapBacked(page))
720 return PAGEREF_RECLAIM_CLEAN;
721
722 return PAGEREF_RECLAIM;
723 }
724
725 /* Check if a page is dirty or under writeback */
726 static void page_check_dirty_writeback(struct page *page,
727 bool *dirty, bool *writeback)
728 {
729 struct address_space *mapping;
730
731 /*
732 * Anonymous pages are not handled by flushers and must be written
733 * from reclaim context. Do not stall reclaim based on them
734 */
735 if (!page_is_file_cache(page)) {
736 *dirty = false;
737 *writeback = false;
738 return;
739 }
740
741 /* By default assume that the page flags are accurate */
742 *dirty = PageDirty(page);
743 *writeback = PageWriteback(page);
744
745 /* Verify dirty/writeback state if the filesystem supports it */
746 if (!page_has_private(page))
747 return;
748
749 mapping = page_mapping(page);
750 if (mapping && mapping->a_ops->is_dirty_writeback)
751 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
752 }
753
754 /*
755 * shrink_page_list() returns the number of reclaimed pages
756 */
757 static unsigned long shrink_page_list(struct list_head *page_list,
758 struct zone *zone,
759 struct scan_control *sc,
760 enum ttu_flags ttu_flags,
761 unsigned long *ret_nr_dirty,
762 unsigned long *ret_nr_unqueued_dirty,
763 unsigned long *ret_nr_congested,
764 unsigned long *ret_nr_writeback,
765 unsigned long *ret_nr_immediate,
766 bool force_reclaim)
767 {
768 LIST_HEAD(ret_pages);
769 LIST_HEAD(free_pages);
770 int pgactivate = 0;
771 unsigned long nr_unqueued_dirty = 0;
772 unsigned long nr_dirty = 0;
773 unsigned long nr_congested = 0;
774 unsigned long nr_reclaimed = 0;
775 unsigned long nr_writeback = 0;
776 unsigned long nr_immediate = 0;
777
778 cond_resched();
779
780 mem_cgroup_uncharge_start();
781 while (!list_empty(page_list)) {
782 struct address_space *mapping;
783 struct page *page;
784 int may_enter_fs;
785 enum page_references references = PAGEREF_RECLAIM_CLEAN;
786 bool dirty, writeback;
787
788 cond_resched();
789
790 page = lru_to_page(page_list);
791 list_del(&page->lru);
792
793 if (!trylock_page(page))
794 goto keep;
795
796 VM_BUG_ON(PageActive(page));
797 VM_BUG_ON(page_zone(page) != zone);
798
799 sc->nr_scanned++;
800
801 if (unlikely(!page_evictable(page)))
802 goto cull_mlocked;
803
804 if (!sc->may_unmap && page_mapped(page))
805 goto keep_locked;
806
807 /* Double the slab pressure for mapped and swapcache pages */
808 if (page_mapped(page) || PageSwapCache(page))
809 sc->nr_scanned++;
810
811 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
812 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
813
814 /*
815 * The number of dirty pages determines if a zone is marked
816 * reclaim_congested which affects wait_iff_congested. kswapd
817 * will stall and start writing pages if the tail of the LRU
818 * is all dirty unqueued pages.
819 */
820 page_check_dirty_writeback(page, &dirty, &writeback);
821 if (dirty || writeback)
822 nr_dirty++;
823
824 if (dirty && !writeback)
825 nr_unqueued_dirty++;
826
827 /*
828 * Treat this page as congested if the underlying BDI is or if
829 * pages are cycling through the LRU so quickly that the
830 * pages marked for immediate reclaim are making it to the
831 * end of the LRU a second time.
832 */
833 mapping = page_mapping(page);
834 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
835 (writeback && PageReclaim(page)))
836 nr_congested++;
837
838 /*
839 * If a page at the tail of the LRU is under writeback, there
840 * are three cases to consider.
841 *
842 * 1) If reclaim is encountering an excessive number of pages
843 * under writeback and this page is both under writeback and
844 * PageReclaim then it indicates that pages are being queued
845 * for IO but are being recycled through the LRU before the
846 * IO can complete. Waiting on the page itself risks an
847 * indefinite stall if it is impossible to writeback the
848 * page due to IO error or disconnected storage so instead
849 * note that the LRU is being scanned too quickly and the
850 * caller can stall after page list has been processed.
851 *
852 * 2) Global reclaim encounters a page, memcg encounters a
853 * page that is not marked for immediate reclaim or
854 * the caller does not have __GFP_IO. In this case mark
855 * the page for immediate reclaim and continue scanning.
856 *
857 * __GFP_IO is checked because a loop driver thread might
858 * enter reclaim, and deadlock if it waits on a page for
859 * which it is needed to do the write (loop masks off
860 * __GFP_IO|__GFP_FS for this reason); but more thought
861 * would probably show more reasons.
862 *
863 * Don't require __GFP_FS, since we're not going into the
864 * FS, just waiting on its writeback completion. Worryingly,
865 * ext4 gfs2 and xfs allocate pages with
866 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
867 * may_enter_fs here is liable to OOM on them.
868 *
869 * 3) memcg encounters a page that is not already marked
870 * PageReclaim. memcg does not have any dirty pages
871 * throttling so we could easily OOM just because too many
872 * pages are in writeback and there is nothing else to
873 * reclaim. Wait for the writeback to complete.
874 */
875 if (PageWriteback(page)) {
876 /* Case 1 above */
877 if (current_is_kswapd() &&
878 PageReclaim(page) &&
879 zone_is_reclaim_writeback(zone)) {
880 nr_immediate++;
881 goto keep_locked;
882
883 /* Case 2 above */
884 } else if (global_reclaim(sc) ||
885 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
886 /*
887 * This is slightly racy - end_page_writeback()
888 * might have just cleared PageReclaim, then
889 * setting PageReclaim here end up interpreted
890 * as PageReadahead - but that does not matter
891 * enough to care. What we do want is for this
892 * page to have PageReclaim set next time memcg
893 * reclaim reaches the tests above, so it will
894 * then wait_on_page_writeback() to avoid OOM;
895 * and it's also appropriate in global reclaim.
896 */
897 SetPageReclaim(page);
898 nr_writeback++;
899
900 goto keep_locked;
901
902 /* Case 3 above */
903 } else {
904 wait_on_page_writeback(page);
905 }
906 }
907
908 if (!force_reclaim)
909 references = page_check_references(page, sc);
910
911 switch (references) {
912 case PAGEREF_ACTIVATE:
913 goto activate_locked;
914 case PAGEREF_KEEP:
915 goto keep_locked;
916 case PAGEREF_RECLAIM:
917 case PAGEREF_RECLAIM_CLEAN:
918 ; /* try to reclaim the page below */
919 }
920
921 /*
922 * Anonymous process memory has backing store?
923 * Try to allocate it some swap space here.
924 */
925 if (PageAnon(page) && !PageSwapCache(page)) {
926 if (!(sc->gfp_mask & __GFP_IO))
927 goto keep_locked;
928 if (!add_to_swap(page, page_list))
929 goto activate_locked;
930 may_enter_fs = 1;
931
932 /* Adding to swap updated mapping */
933 mapping = page_mapping(page);
934 }
935
936 /*
937 * The page is mapped into the page tables of one or more
938 * processes. Try to unmap it here.
939 */
940 if (page_mapped(page) && mapping) {
941 switch (try_to_unmap(page, ttu_flags)) {
942 case SWAP_FAIL:
943 goto activate_locked;
944 case SWAP_AGAIN:
945 goto keep_locked;
946 case SWAP_MLOCK:
947 goto cull_mlocked;
948 case SWAP_SUCCESS:
949 ; /* try to free the page below */
950 }
951 }
952
953 if (PageDirty(page)) {
954 /*
955 * Only kswapd can writeback filesystem pages to
956 * avoid risk of stack overflow but only writeback
957 * if many dirty pages have been encountered.
958 */
959 if (page_is_file_cache(page) &&
960 (!current_is_kswapd() ||
961 !zone_is_reclaim_dirty(zone))) {
962 /*
963 * Immediately reclaim when written back.
964 * Similar in principal to deactivate_page()
965 * except we already have the page isolated
966 * and know it's dirty
967 */
968 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
969 SetPageReclaim(page);
970
971 goto keep_locked;
972 }
973
974 if (references == PAGEREF_RECLAIM_CLEAN)
975 goto keep_locked;
976 if (!may_enter_fs)
977 goto keep_locked;
978 if (!sc->may_writepage)
979 goto keep_locked;
980
981 /* Page is dirty, try to write it out here */
982 switch (pageout(page, mapping, sc)) {
983 case PAGE_KEEP:
984 goto keep_locked;
985 case PAGE_ACTIVATE:
986 goto activate_locked;
987 case PAGE_SUCCESS:
988 if (PageWriteback(page))
989 goto keep;
990 if (PageDirty(page))
991 goto keep;
992
993 /*
994 * A synchronous write - probably a ramdisk. Go
995 * ahead and try to reclaim the page.
996 */
997 if (!trylock_page(page))
998 goto keep;
999 if (PageDirty(page) || PageWriteback(page))
1000 goto keep_locked;
1001 mapping = page_mapping(page);
1002 case PAGE_CLEAN:
1003 ; /* try to free the page below */
1004 }
1005 }
1006
1007 /*
1008 * If the page has buffers, try to free the buffer mappings
1009 * associated with this page. If we succeed we try to free
1010 * the page as well.
1011 *
1012 * We do this even if the page is PageDirty().
1013 * try_to_release_page() does not perform I/O, but it is
1014 * possible for a page to have PageDirty set, but it is actually
1015 * clean (all its buffers are clean). This happens if the
1016 * buffers were written out directly, with submit_bh(). ext3
1017 * will do this, as well as the blockdev mapping.
1018 * try_to_release_page() will discover that cleanness and will
1019 * drop the buffers and mark the page clean - it can be freed.
1020 *
1021 * Rarely, pages can have buffers and no ->mapping. These are
1022 * the pages which were not successfully invalidated in
1023 * truncate_complete_page(). We try to drop those buffers here
1024 * and if that worked, and the page is no longer mapped into
1025 * process address space (page_count == 1) it can be freed.
1026 * Otherwise, leave the page on the LRU so it is swappable.
1027 */
1028 if (page_has_private(page)) {
1029 if (!try_to_release_page(page, sc->gfp_mask))
1030 goto activate_locked;
1031 if (!mapping && page_count(page) == 1) {
1032 unlock_page(page);
1033 if (put_page_testzero(page))
1034 goto free_it;
1035 else {
1036 /*
1037 * rare race with speculative reference.
1038 * the speculative reference will free
1039 * this page shortly, so we may
1040 * increment nr_reclaimed here (and
1041 * leave it off the LRU).
1042 */
1043 nr_reclaimed++;
1044 continue;
1045 }
1046 }
1047 }
1048
1049 if (!mapping || !__remove_mapping(mapping, page))
1050 goto keep_locked;
1051
1052 /*
1053 * At this point, we have no other references and there is
1054 * no way to pick any more up (removed from LRU, removed
1055 * from pagecache). Can use non-atomic bitops now (and
1056 * we obviously don't have to worry about waking up a process
1057 * waiting on the page lock, because there are no references.
1058 */
1059 __clear_page_locked(page);
1060 free_it:
1061 nr_reclaimed++;
1062
1063 /*
1064 * Is there need to periodically free_page_list? It would
1065 * appear not as the counts should be low
1066 */
1067 list_add(&page->lru, &free_pages);
1068 continue;
1069
1070 cull_mlocked:
1071 if (PageSwapCache(page))
1072 try_to_free_swap(page);
1073 unlock_page(page);
1074 putback_lru_page(page);
1075 continue;
1076
1077 activate_locked:
1078 /* Not a candidate for swapping, so reclaim swap space. */
1079 if (PageSwapCache(page) && vm_swap_full())
1080 try_to_free_swap(page);
1081 VM_BUG_ON(PageActive(page));
1082 SetPageActive(page);
1083 pgactivate++;
1084 keep_locked:
1085 unlock_page(page);
1086 keep:
1087 list_add(&page->lru, &ret_pages);
1088 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1089 }
1090
1091 free_hot_cold_page_list(&free_pages, 1);
1092
1093 list_splice(&ret_pages, page_list);
1094 count_vm_events(PGACTIVATE, pgactivate);
1095 mem_cgroup_uncharge_end();
1096 *ret_nr_dirty += nr_dirty;
1097 *ret_nr_congested += nr_congested;
1098 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1099 *ret_nr_writeback += nr_writeback;
1100 *ret_nr_immediate += nr_immediate;
1101 return nr_reclaimed;
1102 }
1103
1104 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1105 struct list_head *page_list)
1106 {
1107 struct scan_control sc = {
1108 .gfp_mask = GFP_KERNEL,
1109 .priority = DEF_PRIORITY,
1110 .may_unmap = 1,
1111 };
1112 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1113 struct page *page, *next;
1114 LIST_HEAD(clean_pages);
1115
1116 list_for_each_entry_safe(page, next, page_list, lru) {
1117 if (page_is_file_cache(page) && !PageDirty(page) &&
1118 !isolated_balloon_page(page)) {
1119 ClearPageActive(page);
1120 list_move(&page->lru, &clean_pages);
1121 }
1122 }
1123
1124 ret = shrink_page_list(&clean_pages, zone, &sc,
1125 TTU_UNMAP|TTU_IGNORE_ACCESS,
1126 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1127 list_splice(&clean_pages, page_list);
1128 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1129 return ret;
1130 }
1131
1132 /*
1133 * Attempt to remove the specified page from its LRU. Only take this page
1134 * if it is of the appropriate PageActive status. Pages which are being
1135 * freed elsewhere are also ignored.
1136 *
1137 * page: page to consider
1138 * mode: one of the LRU isolation modes defined above
1139 *
1140 * returns 0 on success, -ve errno on failure.
1141 */
1142 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1143 {
1144 int ret = -EINVAL;
1145
1146 /* Only take pages on the LRU. */
1147 if (!PageLRU(page))
1148 return ret;
1149
1150 /* Compaction should not handle unevictable pages but CMA can do so */
1151 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1152 return ret;
1153
1154 ret = -EBUSY;
1155
1156 /*
1157 * To minimise LRU disruption, the caller can indicate that it only
1158 * wants to isolate pages it will be able to operate on without
1159 * blocking - clean pages for the most part.
1160 *
1161 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1162 * is used by reclaim when it is cannot write to backing storage
1163 *
1164 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1165 * that it is possible to migrate without blocking
1166 */
1167 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1168 /* All the caller can do on PageWriteback is block */
1169 if (PageWriteback(page))
1170 return ret;
1171
1172 if (PageDirty(page)) {
1173 struct address_space *mapping;
1174
1175 /* ISOLATE_CLEAN means only clean pages */
1176 if (mode & ISOLATE_CLEAN)
1177 return ret;
1178
1179 /*
1180 * Only pages without mappings or that have a
1181 * ->migratepage callback are possible to migrate
1182 * without blocking
1183 */
1184 mapping = page_mapping(page);
1185 if (mapping && !mapping->a_ops->migratepage)
1186 return ret;
1187 }
1188 }
1189
1190 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1191 return ret;
1192
1193 if (likely(get_page_unless_zero(page))) {
1194 /*
1195 * Be careful not to clear PageLRU until after we're
1196 * sure the page is not being freed elsewhere -- the
1197 * page release code relies on it.
1198 */
1199 ClearPageLRU(page);
1200 ret = 0;
1201 }
1202
1203 return ret;
1204 }
1205
1206 /*
1207 * zone->lru_lock is heavily contended. Some of the functions that
1208 * shrink the lists perform better by taking out a batch of pages
1209 * and working on them outside the LRU lock.
1210 *
1211 * For pagecache intensive workloads, this function is the hottest
1212 * spot in the kernel (apart from copy_*_user functions).
1213 *
1214 * Appropriate locks must be held before calling this function.
1215 *
1216 * @nr_to_scan: The number of pages to look through on the list.
1217 * @lruvec: The LRU vector to pull pages from.
1218 * @dst: The temp list to put pages on to.
1219 * @nr_scanned: The number of pages that were scanned.
1220 * @sc: The scan_control struct for this reclaim session
1221 * @mode: One of the LRU isolation modes
1222 * @lru: LRU list id for isolating
1223 *
1224 * returns how many pages were moved onto *@dst.
1225 */
1226 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1227 struct lruvec *lruvec, struct list_head *dst,
1228 unsigned long *nr_scanned, struct scan_control *sc,
1229 isolate_mode_t mode, enum lru_list lru)
1230 {
1231 struct list_head *src = &lruvec->lists[lru];
1232 unsigned long nr_taken = 0;
1233 unsigned long scan;
1234
1235 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1236 struct page *page;
1237 int nr_pages;
1238
1239 page = lru_to_page(src);
1240 prefetchw_prev_lru_page(page, src, flags);
1241
1242 VM_BUG_ON(!PageLRU(page));
1243
1244 switch (__isolate_lru_page(page, mode)) {
1245 case 0:
1246 nr_pages = hpage_nr_pages(page);
1247 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1248 list_move(&page->lru, dst);
1249 nr_taken += nr_pages;
1250 break;
1251
1252 case -EBUSY:
1253 /* else it is being freed elsewhere */
1254 list_move(&page->lru, src);
1255 continue;
1256
1257 default:
1258 BUG();
1259 }
1260 }
1261
1262 *nr_scanned = scan;
1263 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1264 nr_taken, mode, is_file_lru(lru));
1265 return nr_taken;
1266 }
1267
1268 /**
1269 * isolate_lru_page - tries to isolate a page from its LRU list
1270 * @page: page to isolate from its LRU list
1271 *
1272 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1273 * vmstat statistic corresponding to whatever LRU list the page was on.
1274 *
1275 * Returns 0 if the page was removed from an LRU list.
1276 * Returns -EBUSY if the page was not on an LRU list.
1277 *
1278 * The returned page will have PageLRU() cleared. If it was found on
1279 * the active list, it will have PageActive set. If it was found on
1280 * the unevictable list, it will have the PageUnevictable bit set. That flag
1281 * may need to be cleared by the caller before letting the page go.
1282 *
1283 * The vmstat statistic corresponding to the list on which the page was
1284 * found will be decremented.
1285 *
1286 * Restrictions:
1287 * (1) Must be called with an elevated refcount on the page. This is a
1288 * fundamentnal difference from isolate_lru_pages (which is called
1289 * without a stable reference).
1290 * (2) the lru_lock must not be held.
1291 * (3) interrupts must be enabled.
1292 */
1293 int isolate_lru_page(struct page *page)
1294 {
1295 int ret = -EBUSY;
1296
1297 VM_BUG_ON(!page_count(page));
1298
1299 if (PageLRU(page)) {
1300 struct zone *zone = page_zone(page);
1301 struct lruvec *lruvec;
1302
1303 spin_lock_irq(&zone->lru_lock);
1304 lruvec = mem_cgroup_page_lruvec(page, zone);
1305 if (PageLRU(page)) {
1306 int lru = page_lru(page);
1307 get_page(page);
1308 ClearPageLRU(page);
1309 del_page_from_lru_list(page, lruvec, lru);
1310 ret = 0;
1311 }
1312 spin_unlock_irq(&zone->lru_lock);
1313 }
1314 return ret;
1315 }
1316
1317 /*
1318 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1319 * then get resheduled. When there are massive number of tasks doing page
1320 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1321 * the LRU list will go small and be scanned faster than necessary, leading to
1322 * unnecessary swapping, thrashing and OOM.
1323 */
1324 static int too_many_isolated(struct zone *zone, int file,
1325 struct scan_control *sc)
1326 {
1327 unsigned long inactive, isolated;
1328
1329 if (current_is_kswapd())
1330 return 0;
1331
1332 if (!global_reclaim(sc))
1333 return 0;
1334
1335 if (file) {
1336 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1337 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1338 } else {
1339 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1340 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1341 }
1342
1343 /*
1344 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1345 * won't get blocked by normal direct-reclaimers, forming a circular
1346 * deadlock.
1347 */
1348 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1349 inactive >>= 3;
1350
1351 return isolated > inactive;
1352 }
1353
1354 static noinline_for_stack void
1355 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1356 {
1357 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1358 struct zone *zone = lruvec_zone(lruvec);
1359 LIST_HEAD(pages_to_free);
1360
1361 /*
1362 * Put back any unfreeable pages.
1363 */
1364 while (!list_empty(page_list)) {
1365 struct page *page = lru_to_page(page_list);
1366 int lru;
1367
1368 VM_BUG_ON(PageLRU(page));
1369 list_del(&page->lru);
1370 if (unlikely(!page_evictable(page))) {
1371 spin_unlock_irq(&zone->lru_lock);
1372 putback_lru_page(page);
1373 spin_lock_irq(&zone->lru_lock);
1374 continue;
1375 }
1376
1377 lruvec = mem_cgroup_page_lruvec(page, zone);
1378
1379 SetPageLRU(page);
1380 lru = page_lru(page);
1381 add_page_to_lru_list(page, lruvec, lru);
1382
1383 if (is_active_lru(lru)) {
1384 int file = is_file_lru(lru);
1385 int numpages = hpage_nr_pages(page);
1386 reclaim_stat->recent_rotated[file] += numpages;
1387 }
1388 if (put_page_testzero(page)) {
1389 __ClearPageLRU(page);
1390 __ClearPageActive(page);
1391 del_page_from_lru_list(page, lruvec, lru);
1392
1393 if (unlikely(PageCompound(page))) {
1394 spin_unlock_irq(&zone->lru_lock);
1395 (*get_compound_page_dtor(page))(page);
1396 spin_lock_irq(&zone->lru_lock);
1397 } else
1398 list_add(&page->lru, &pages_to_free);
1399 }
1400 }
1401
1402 /*
1403 * To save our caller's stack, now use input list for pages to free.
1404 */
1405 list_splice(&pages_to_free, page_list);
1406 }
1407
1408 /*
1409 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1410 * of reclaimed pages
1411 */
1412 static noinline_for_stack unsigned long
1413 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1414 struct scan_control *sc, enum lru_list lru)
1415 {
1416 LIST_HEAD(page_list);
1417 unsigned long nr_scanned;
1418 unsigned long nr_reclaimed = 0;
1419 unsigned long nr_taken;
1420 unsigned long nr_dirty = 0;
1421 unsigned long nr_congested = 0;
1422 unsigned long nr_unqueued_dirty = 0;
1423 unsigned long nr_writeback = 0;
1424 unsigned long nr_immediate = 0;
1425 isolate_mode_t isolate_mode = 0;
1426 int file = is_file_lru(lru);
1427 struct zone *zone = lruvec_zone(lruvec);
1428 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1429
1430 while (unlikely(too_many_isolated(zone, file, sc))) {
1431 congestion_wait(BLK_RW_ASYNC, HZ/10);
1432
1433 /* We are about to die and free our memory. Return now. */
1434 if (fatal_signal_pending(current))
1435 return SWAP_CLUSTER_MAX;
1436 }
1437
1438 lru_add_drain();
1439
1440 if (!sc->may_unmap)
1441 isolate_mode |= ISOLATE_UNMAPPED;
1442 if (!sc->may_writepage)
1443 isolate_mode |= ISOLATE_CLEAN;
1444
1445 spin_lock_irq(&zone->lru_lock);
1446
1447 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1448 &nr_scanned, sc, isolate_mode, lru);
1449
1450 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1451 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1452
1453 if (global_reclaim(sc)) {
1454 zone->pages_scanned += nr_scanned;
1455 if (current_is_kswapd())
1456 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1457 else
1458 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1459 }
1460 spin_unlock_irq(&zone->lru_lock);
1461
1462 if (nr_taken == 0)
1463 return 0;
1464
1465 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1466 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1467 &nr_writeback, &nr_immediate,
1468 false);
1469
1470 spin_lock_irq(&zone->lru_lock);
1471
1472 reclaim_stat->recent_scanned[file] += nr_taken;
1473
1474 if (global_reclaim(sc)) {
1475 if (current_is_kswapd())
1476 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1477 nr_reclaimed);
1478 else
1479 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1480 nr_reclaimed);
1481 }
1482
1483 putback_inactive_pages(lruvec, &page_list);
1484
1485 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1486
1487 spin_unlock_irq(&zone->lru_lock);
1488
1489 free_hot_cold_page_list(&page_list, 1);
1490
1491 /*
1492 * If reclaim is isolating dirty pages under writeback, it implies
1493 * that the long-lived page allocation rate is exceeding the page
1494 * laundering rate. Either the global limits are not being effective
1495 * at throttling processes due to the page distribution throughout
1496 * zones or there is heavy usage of a slow backing device. The
1497 * only option is to throttle from reclaim context which is not ideal
1498 * as there is no guarantee the dirtying process is throttled in the
1499 * same way balance_dirty_pages() manages.
1500 *
1501 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1502 * of pages under pages flagged for immediate reclaim and stall if any
1503 * are encountered in the nr_immediate check below.
1504 */
1505 if (nr_writeback && nr_writeback == nr_taken)
1506 zone_set_flag(zone, ZONE_WRITEBACK);
1507
1508 /*
1509 * memcg will stall in page writeback so only consider forcibly
1510 * stalling for global reclaim
1511 */
1512 if (global_reclaim(sc)) {
1513 /*
1514 * Tag a zone as congested if all the dirty pages scanned were
1515 * backed by a congested BDI and wait_iff_congested will stall.
1516 */
1517 if (nr_dirty && nr_dirty == nr_congested)
1518 zone_set_flag(zone, ZONE_CONGESTED);
1519
1520 /*
1521 * If dirty pages are scanned that are not queued for IO, it
1522 * implies that flushers are not keeping up. In this case, flag
1523 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1524 * pages from reclaim context. It will forcibly stall in the
1525 * next check.
1526 */
1527 if (nr_unqueued_dirty == nr_taken)
1528 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1529
1530 /*
1531 * In addition, if kswapd scans pages marked marked for
1532 * immediate reclaim and under writeback (nr_immediate), it
1533 * implies that pages are cycling through the LRU faster than
1534 * they are written so also forcibly stall.
1535 */
1536 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1537 congestion_wait(BLK_RW_ASYNC, HZ/10);
1538 }
1539
1540 /*
1541 * Stall direct reclaim for IO completions if underlying BDIs or zone
1542 * is congested. Allow kswapd to continue until it starts encountering
1543 * unqueued dirty pages or cycling through the LRU too quickly.
1544 */
1545 if (!sc->hibernation_mode && !current_is_kswapd())
1546 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1547
1548 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1549 zone_idx(zone),
1550 nr_scanned, nr_reclaimed,
1551 sc->priority,
1552 trace_shrink_flags(file));
1553 return nr_reclaimed;
1554 }
1555
1556 /*
1557 * This moves pages from the active list to the inactive list.
1558 *
1559 * We move them the other way if the page is referenced by one or more
1560 * processes, from rmap.
1561 *
1562 * If the pages are mostly unmapped, the processing is fast and it is
1563 * appropriate to hold zone->lru_lock across the whole operation. But if
1564 * the pages are mapped, the processing is slow (page_referenced()) so we
1565 * should drop zone->lru_lock around each page. It's impossible to balance
1566 * this, so instead we remove the pages from the LRU while processing them.
1567 * It is safe to rely on PG_active against the non-LRU pages in here because
1568 * nobody will play with that bit on a non-LRU page.
1569 *
1570 * The downside is that we have to touch page->_count against each page.
1571 * But we had to alter page->flags anyway.
1572 */
1573
1574 static void move_active_pages_to_lru(struct lruvec *lruvec,
1575 struct list_head *list,
1576 struct list_head *pages_to_free,
1577 enum lru_list lru)
1578 {
1579 struct zone *zone = lruvec_zone(lruvec);
1580 unsigned long pgmoved = 0;
1581 struct page *page;
1582 int nr_pages;
1583
1584 while (!list_empty(list)) {
1585 page = lru_to_page(list);
1586 lruvec = mem_cgroup_page_lruvec(page, zone);
1587
1588 VM_BUG_ON(PageLRU(page));
1589 SetPageLRU(page);
1590
1591 nr_pages = hpage_nr_pages(page);
1592 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1593 list_move(&page->lru, &lruvec->lists[lru]);
1594 pgmoved += nr_pages;
1595
1596 if (put_page_testzero(page)) {
1597 __ClearPageLRU(page);
1598 __ClearPageActive(page);
1599 del_page_from_lru_list(page, lruvec, lru);
1600
1601 if (unlikely(PageCompound(page))) {
1602 spin_unlock_irq(&zone->lru_lock);
1603 (*get_compound_page_dtor(page))(page);
1604 spin_lock_irq(&zone->lru_lock);
1605 } else
1606 list_add(&page->lru, pages_to_free);
1607 }
1608 }
1609 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1610 if (!is_active_lru(lru))
1611 __count_vm_events(PGDEACTIVATE, pgmoved);
1612 }
1613
1614 static void shrink_active_list(unsigned long nr_to_scan,
1615 struct lruvec *lruvec,
1616 struct scan_control *sc,
1617 enum lru_list lru)
1618 {
1619 unsigned long nr_taken;
1620 unsigned long nr_scanned;
1621 unsigned long vm_flags;
1622 LIST_HEAD(l_hold); /* The pages which were snipped off */
1623 LIST_HEAD(l_active);
1624 LIST_HEAD(l_inactive);
1625 struct page *page;
1626 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1627 unsigned long nr_rotated = 0;
1628 isolate_mode_t isolate_mode = 0;
1629 int file = is_file_lru(lru);
1630 struct zone *zone = lruvec_zone(lruvec);
1631
1632 lru_add_drain();
1633
1634 if (!sc->may_unmap)
1635 isolate_mode |= ISOLATE_UNMAPPED;
1636 if (!sc->may_writepage)
1637 isolate_mode |= ISOLATE_CLEAN;
1638
1639 spin_lock_irq(&zone->lru_lock);
1640
1641 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1642 &nr_scanned, sc, isolate_mode, lru);
1643 if (global_reclaim(sc))
1644 zone->pages_scanned += nr_scanned;
1645
1646 reclaim_stat->recent_scanned[file] += nr_taken;
1647
1648 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1649 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1650 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1651 spin_unlock_irq(&zone->lru_lock);
1652
1653 while (!list_empty(&l_hold)) {
1654 cond_resched();
1655 page = lru_to_page(&l_hold);
1656 list_del(&page->lru);
1657
1658 if (unlikely(!page_evictable(page))) {
1659 putback_lru_page(page);
1660 continue;
1661 }
1662
1663 if (unlikely(buffer_heads_over_limit)) {
1664 if (page_has_private(page) && trylock_page(page)) {
1665 if (page_has_private(page))
1666 try_to_release_page(page, 0);
1667 unlock_page(page);
1668 }
1669 }
1670
1671 if (page_referenced(page, 0, sc->target_mem_cgroup,
1672 &vm_flags)) {
1673 nr_rotated += hpage_nr_pages(page);
1674 /*
1675 * Identify referenced, file-backed active pages and
1676 * give them one more trip around the active list. So
1677 * that executable code get better chances to stay in
1678 * memory under moderate memory pressure. Anon pages
1679 * are not likely to be evicted by use-once streaming
1680 * IO, plus JVM can create lots of anon VM_EXEC pages,
1681 * so we ignore them here.
1682 */
1683 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1684 list_add(&page->lru, &l_active);
1685 continue;
1686 }
1687 }
1688
1689 ClearPageActive(page); /* we are de-activating */
1690 list_add(&page->lru, &l_inactive);
1691 }
1692
1693 /*
1694 * Move pages back to the lru list.
1695 */
1696 spin_lock_irq(&zone->lru_lock);
1697 /*
1698 * Count referenced pages from currently used mappings as rotated,
1699 * even though only some of them are actually re-activated. This
1700 * helps balance scan pressure between file and anonymous pages in
1701 * get_scan_ratio.
1702 */
1703 reclaim_stat->recent_rotated[file] += nr_rotated;
1704
1705 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1706 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1707 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1708 spin_unlock_irq(&zone->lru_lock);
1709
1710 free_hot_cold_page_list(&l_hold, 1);
1711 }
1712
1713 #ifdef CONFIG_SWAP
1714 static int inactive_anon_is_low_global(struct zone *zone)
1715 {
1716 unsigned long active, inactive;
1717
1718 active = zone_page_state(zone, NR_ACTIVE_ANON);
1719 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1720
1721 if (inactive * zone->inactive_ratio < active)
1722 return 1;
1723
1724 return 0;
1725 }
1726
1727 /**
1728 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1729 * @lruvec: LRU vector to check
1730 *
1731 * Returns true if the zone does not have enough inactive anon pages,
1732 * meaning some active anon pages need to be deactivated.
1733 */
1734 static int inactive_anon_is_low(struct lruvec *lruvec)
1735 {
1736 /*
1737 * If we don't have swap space, anonymous page deactivation
1738 * is pointless.
1739 */
1740 if (!total_swap_pages)
1741 return 0;
1742
1743 if (!mem_cgroup_disabled())
1744 return mem_cgroup_inactive_anon_is_low(lruvec);
1745
1746 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1747 }
1748 #else
1749 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1750 {
1751 return 0;
1752 }
1753 #endif
1754
1755 /**
1756 * inactive_file_is_low - check if file pages need to be deactivated
1757 * @lruvec: LRU vector to check
1758 *
1759 * When the system is doing streaming IO, memory pressure here
1760 * ensures that active file pages get deactivated, until more
1761 * than half of the file pages are on the inactive list.
1762 *
1763 * Once we get to that situation, protect the system's working
1764 * set from being evicted by disabling active file page aging.
1765 *
1766 * This uses a different ratio than the anonymous pages, because
1767 * the page cache uses a use-once replacement algorithm.
1768 */
1769 static int inactive_file_is_low(struct lruvec *lruvec)
1770 {
1771 unsigned long inactive;
1772 unsigned long active;
1773
1774 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1775 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1776
1777 return active > inactive;
1778 }
1779
1780 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1781 {
1782 if (is_file_lru(lru))
1783 return inactive_file_is_low(lruvec);
1784 else
1785 return inactive_anon_is_low(lruvec);
1786 }
1787
1788 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1789 struct lruvec *lruvec, struct scan_control *sc)
1790 {
1791 if (is_active_lru(lru)) {
1792 if (inactive_list_is_low(lruvec, lru))
1793 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1794 return 0;
1795 }
1796
1797 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1798 }
1799
1800 static int vmscan_swappiness(struct scan_control *sc)
1801 {
1802 if (global_reclaim(sc))
1803 return vm_swappiness;
1804 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1805 }
1806
1807 enum scan_balance {
1808 SCAN_EQUAL,
1809 SCAN_FRACT,
1810 SCAN_ANON,
1811 SCAN_FILE,
1812 };
1813
1814 /*
1815 * Determine how aggressively the anon and file LRU lists should be
1816 * scanned. The relative value of each set of LRU lists is determined
1817 * by looking at the fraction of the pages scanned we did rotate back
1818 * onto the active list instead of evict.
1819 *
1820 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1821 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1822 */
1823 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1824 unsigned long *nr)
1825 {
1826 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1827 u64 fraction[2];
1828 u64 denominator = 0; /* gcc */
1829 struct zone *zone = lruvec_zone(lruvec);
1830 unsigned long anon_prio, file_prio;
1831 enum scan_balance scan_balance;
1832 unsigned long anon, file, free;
1833 bool force_scan = false;
1834 unsigned long ap, fp;
1835 enum lru_list lru;
1836
1837 /*
1838 * If the zone or memcg is small, nr[l] can be 0. This
1839 * results in no scanning on this priority and a potential
1840 * priority drop. Global direct reclaim can go to the next
1841 * zone and tends to have no problems. Global kswapd is for
1842 * zone balancing and it needs to scan a minimum amount. When
1843 * reclaiming for a memcg, a priority drop can cause high
1844 * latencies, so it's better to scan a minimum amount there as
1845 * well.
1846 */
1847 if (current_is_kswapd() && !zone_reclaimable(zone))
1848 force_scan = true;
1849 if (!global_reclaim(sc))
1850 force_scan = true;
1851
1852 /* If we have no swap space, do not bother scanning anon pages. */
1853 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1854 scan_balance = SCAN_FILE;
1855 goto out;
1856 }
1857
1858 /*
1859 * Global reclaim will swap to prevent OOM even with no
1860 * swappiness, but memcg users want to use this knob to
1861 * disable swapping for individual groups completely when
1862 * using the memory controller's swap limit feature would be
1863 * too expensive.
1864 */
1865 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1866 scan_balance = SCAN_FILE;
1867 goto out;
1868 }
1869
1870 /*
1871 * Do not apply any pressure balancing cleverness when the
1872 * system is close to OOM, scan both anon and file equally
1873 * (unless the swappiness setting disagrees with swapping).
1874 */
1875 if (!sc->priority && vmscan_swappiness(sc)) {
1876 scan_balance = SCAN_EQUAL;
1877 goto out;
1878 }
1879
1880 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1881 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1882 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1883 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1884
1885 /*
1886 * If it's foreseeable that reclaiming the file cache won't be
1887 * enough to get the zone back into a desirable shape, we have
1888 * to swap. Better start now and leave the - probably heavily
1889 * thrashing - remaining file pages alone.
1890 */
1891 if (global_reclaim(sc)) {
1892 free = zone_page_state(zone, NR_FREE_PAGES);
1893 if (unlikely(file + free <= high_wmark_pages(zone))) {
1894 scan_balance = SCAN_ANON;
1895 goto out;
1896 }
1897 }
1898
1899 /*
1900 * There is enough inactive page cache, do not reclaim
1901 * anything from the anonymous working set right now.
1902 */
1903 if (!inactive_file_is_low(lruvec)) {
1904 scan_balance = SCAN_FILE;
1905 goto out;
1906 }
1907
1908 scan_balance = SCAN_FRACT;
1909
1910 /*
1911 * With swappiness at 100, anonymous and file have the same priority.
1912 * This scanning priority is essentially the inverse of IO cost.
1913 */
1914 anon_prio = vmscan_swappiness(sc);
1915 file_prio = 200 - anon_prio;
1916
1917 /*
1918 * OK, so we have swap space and a fair amount of page cache
1919 * pages. We use the recently rotated / recently scanned
1920 * ratios to determine how valuable each cache is.
1921 *
1922 * Because workloads change over time (and to avoid overflow)
1923 * we keep these statistics as a floating average, which ends
1924 * up weighing recent references more than old ones.
1925 *
1926 * anon in [0], file in [1]
1927 */
1928 spin_lock_irq(&zone->lru_lock);
1929 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1930 reclaim_stat->recent_scanned[0] /= 2;
1931 reclaim_stat->recent_rotated[0] /= 2;
1932 }
1933
1934 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1935 reclaim_stat->recent_scanned[1] /= 2;
1936 reclaim_stat->recent_rotated[1] /= 2;
1937 }
1938
1939 /*
1940 * The amount of pressure on anon vs file pages is inversely
1941 * proportional to the fraction of recently scanned pages on
1942 * each list that were recently referenced and in active use.
1943 */
1944 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1945 ap /= reclaim_stat->recent_rotated[0] + 1;
1946
1947 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1948 fp /= reclaim_stat->recent_rotated[1] + 1;
1949 spin_unlock_irq(&zone->lru_lock);
1950
1951 fraction[0] = ap;
1952 fraction[1] = fp;
1953 denominator = ap + fp + 1;
1954 out:
1955 for_each_evictable_lru(lru) {
1956 int file = is_file_lru(lru);
1957 unsigned long size;
1958 unsigned long scan;
1959
1960 size = get_lru_size(lruvec, lru);
1961 scan = size >> sc->priority;
1962
1963 if (!scan && force_scan)
1964 scan = min(size, SWAP_CLUSTER_MAX);
1965
1966 switch (scan_balance) {
1967 case SCAN_EQUAL:
1968 /* Scan lists relative to size */
1969 break;
1970 case SCAN_FRACT:
1971 /*
1972 * Scan types proportional to swappiness and
1973 * their relative recent reclaim efficiency.
1974 */
1975 scan = div64_u64(scan * fraction[file], denominator);
1976 break;
1977 case SCAN_FILE:
1978 case SCAN_ANON:
1979 /* Scan one type exclusively */
1980 if ((scan_balance == SCAN_FILE) != file)
1981 scan = 0;
1982 break;
1983 default:
1984 /* Look ma, no brain */
1985 BUG();
1986 }
1987 nr[lru] = scan;
1988 }
1989 }
1990
1991 /*
1992 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1993 */
1994 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1995 {
1996 unsigned long nr[NR_LRU_LISTS];
1997 unsigned long targets[NR_LRU_LISTS];
1998 unsigned long nr_to_scan;
1999 enum lru_list lru;
2000 unsigned long nr_reclaimed = 0;
2001 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2002 struct blk_plug plug;
2003 bool scan_adjusted = false;
2004
2005 get_scan_count(lruvec, sc, nr);
2006
2007 /* Record the original scan target for proportional adjustments later */
2008 memcpy(targets, nr, sizeof(nr));
2009
2010 blk_start_plug(&plug);
2011 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2012 nr[LRU_INACTIVE_FILE]) {
2013 unsigned long nr_anon, nr_file, percentage;
2014 unsigned long nr_scanned;
2015
2016 for_each_evictable_lru(lru) {
2017 if (nr[lru]) {
2018 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2019 nr[lru] -= nr_to_scan;
2020
2021 nr_reclaimed += shrink_list(lru, nr_to_scan,
2022 lruvec, sc);
2023 }
2024 }
2025
2026 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2027 continue;
2028
2029 /*
2030 * For global direct reclaim, reclaim only the number of pages
2031 * requested. Less care is taken to scan proportionally as it
2032 * is more important to minimise direct reclaim stall latency
2033 * than it is to properly age the LRU lists.
2034 */
2035 if (global_reclaim(sc) && !current_is_kswapd())
2036 break;
2037
2038 /*
2039 * For kswapd and memcg, reclaim at least the number of pages
2040 * requested. Ensure that the anon and file LRUs shrink
2041 * proportionally what was requested by get_scan_count(). We
2042 * stop reclaiming one LRU and reduce the amount scanning
2043 * proportional to the original scan target.
2044 */
2045 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2046 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2047
2048 if (nr_file > nr_anon) {
2049 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2050 targets[LRU_ACTIVE_ANON] + 1;
2051 lru = LRU_BASE;
2052 percentage = nr_anon * 100 / scan_target;
2053 } else {
2054 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2055 targets[LRU_ACTIVE_FILE] + 1;
2056 lru = LRU_FILE;
2057 percentage = nr_file * 100 / scan_target;
2058 }
2059
2060 /* Stop scanning the smaller of the LRU */
2061 nr[lru] = 0;
2062 nr[lru + LRU_ACTIVE] = 0;
2063
2064 /*
2065 * Recalculate the other LRU scan count based on its original
2066 * scan target and the percentage scanning already complete
2067 */
2068 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2069 nr_scanned = targets[lru] - nr[lru];
2070 nr[lru] = targets[lru] * (100 - percentage) / 100;
2071 nr[lru] -= min(nr[lru], nr_scanned);
2072
2073 lru += LRU_ACTIVE;
2074 nr_scanned = targets[lru] - nr[lru];
2075 nr[lru] = targets[lru] * (100 - percentage) / 100;
2076 nr[lru] -= min(nr[lru], nr_scanned);
2077
2078 scan_adjusted = true;
2079 }
2080 blk_finish_plug(&plug);
2081 sc->nr_reclaimed += nr_reclaimed;
2082
2083 /*
2084 * Even if we did not try to evict anon pages at all, we want to
2085 * rebalance the anon lru active/inactive ratio.
2086 */
2087 if (inactive_anon_is_low(lruvec))
2088 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2089 sc, LRU_ACTIVE_ANON);
2090
2091 throttle_vm_writeout(sc->gfp_mask);
2092 }
2093
2094 /* Use reclaim/compaction for costly allocs or under memory pressure */
2095 static bool in_reclaim_compaction(struct scan_control *sc)
2096 {
2097 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2098 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2099 sc->priority < DEF_PRIORITY - 2))
2100 return true;
2101
2102 return false;
2103 }
2104
2105 /*
2106 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2107 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2108 * true if more pages should be reclaimed such that when the page allocator
2109 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2110 * It will give up earlier than that if there is difficulty reclaiming pages.
2111 */
2112 static inline bool should_continue_reclaim(struct zone *zone,
2113 unsigned long nr_reclaimed,
2114 unsigned long nr_scanned,
2115 struct scan_control *sc)
2116 {
2117 unsigned long pages_for_compaction;
2118 unsigned long inactive_lru_pages;
2119
2120 /* If not in reclaim/compaction mode, stop */
2121 if (!in_reclaim_compaction(sc))
2122 return false;
2123
2124 /* Consider stopping depending on scan and reclaim activity */
2125 if (sc->gfp_mask & __GFP_REPEAT) {
2126 /*
2127 * For __GFP_REPEAT allocations, stop reclaiming if the
2128 * full LRU list has been scanned and we are still failing
2129 * to reclaim pages. This full LRU scan is potentially
2130 * expensive but a __GFP_REPEAT caller really wants to succeed
2131 */
2132 if (!nr_reclaimed && !nr_scanned)
2133 return false;
2134 } else {
2135 /*
2136 * For non-__GFP_REPEAT allocations which can presumably
2137 * fail without consequence, stop if we failed to reclaim
2138 * any pages from the last SWAP_CLUSTER_MAX number of
2139 * pages that were scanned. This will return to the
2140 * caller faster at the risk reclaim/compaction and
2141 * the resulting allocation attempt fails
2142 */
2143 if (!nr_reclaimed)
2144 return false;
2145 }
2146
2147 /*
2148 * If we have not reclaimed enough pages for compaction and the
2149 * inactive lists are large enough, continue reclaiming
2150 */
2151 pages_for_compaction = (2UL << sc->order);
2152 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2153 if (get_nr_swap_pages() > 0)
2154 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2155 if (sc->nr_reclaimed < pages_for_compaction &&
2156 inactive_lru_pages > pages_for_compaction)
2157 return true;
2158
2159 /* If compaction would go ahead or the allocation would succeed, stop */
2160 switch (compaction_suitable(zone, sc->order)) {
2161 case COMPACT_PARTIAL:
2162 case COMPACT_CONTINUE:
2163 return false;
2164 default:
2165 return true;
2166 }
2167 }
2168
2169 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2170 {
2171 unsigned long nr_reclaimed, nr_scanned;
2172
2173 do {
2174 struct mem_cgroup *root = sc->target_mem_cgroup;
2175 struct mem_cgroup_reclaim_cookie reclaim = {
2176 .zone = zone,
2177 .priority = sc->priority,
2178 };
2179 struct mem_cgroup *memcg;
2180
2181 nr_reclaimed = sc->nr_reclaimed;
2182 nr_scanned = sc->nr_scanned;
2183
2184 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2185 do {
2186 struct lruvec *lruvec;
2187
2188 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2189
2190 shrink_lruvec(lruvec, sc);
2191
2192 /*
2193 * Direct reclaim and kswapd have to scan all memory
2194 * cgroups to fulfill the overall scan target for the
2195 * zone.
2196 *
2197 * Limit reclaim, on the other hand, only cares about
2198 * nr_to_reclaim pages to be reclaimed and it will
2199 * retry with decreasing priority if one round over the
2200 * whole hierarchy is not sufficient.
2201 */
2202 if (!global_reclaim(sc) &&
2203 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2204 mem_cgroup_iter_break(root, memcg);
2205 break;
2206 }
2207 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2208 } while (memcg);
2209
2210 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2211 sc->nr_scanned - nr_scanned,
2212 sc->nr_reclaimed - nr_reclaimed);
2213
2214 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2215 sc->nr_scanned - nr_scanned, sc));
2216 }
2217
2218 /* Returns true if compaction should go ahead for a high-order request */
2219 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2220 {
2221 unsigned long balance_gap, watermark;
2222 bool watermark_ok;
2223
2224 /* Do not consider compaction for orders reclaim is meant to satisfy */
2225 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2226 return false;
2227
2228 /*
2229 * Compaction takes time to run and there are potentially other
2230 * callers using the pages just freed. Continue reclaiming until
2231 * there is a buffer of free pages available to give compaction
2232 * a reasonable chance of completing and allocating the page
2233 */
2234 balance_gap = min(low_wmark_pages(zone),
2235 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2236 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2237 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2238 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2239
2240 /*
2241 * If compaction is deferred, reclaim up to a point where
2242 * compaction will have a chance of success when re-enabled
2243 */
2244 if (compaction_deferred(zone, sc->order))
2245 return watermark_ok;
2246
2247 /* If compaction is not ready to start, keep reclaiming */
2248 if (!compaction_suitable(zone, sc->order))
2249 return false;
2250
2251 return watermark_ok;
2252 }
2253
2254 /*
2255 * This is the direct reclaim path, for page-allocating processes. We only
2256 * try to reclaim pages from zones which will satisfy the caller's allocation
2257 * request.
2258 *
2259 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2260 * Because:
2261 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2262 * allocation or
2263 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2264 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2265 * zone defense algorithm.
2266 *
2267 * If a zone is deemed to be full of pinned pages then just give it a light
2268 * scan then give up on it.
2269 *
2270 * This function returns true if a zone is being reclaimed for a costly
2271 * high-order allocation and compaction is ready to begin. This indicates to
2272 * the caller that it should consider retrying the allocation instead of
2273 * further reclaim.
2274 */
2275 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2276 {
2277 struct zoneref *z;
2278 struct zone *zone;
2279 unsigned long nr_soft_reclaimed;
2280 unsigned long nr_soft_scanned;
2281 bool aborted_reclaim = false;
2282
2283 /*
2284 * If the number of buffer_heads in the machine exceeds the maximum
2285 * allowed level, force direct reclaim to scan the highmem zone as
2286 * highmem pages could be pinning lowmem pages storing buffer_heads
2287 */
2288 if (buffer_heads_over_limit)
2289 sc->gfp_mask |= __GFP_HIGHMEM;
2290
2291 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2292 gfp_zone(sc->gfp_mask), sc->nodemask) {
2293 if (!populated_zone(zone))
2294 continue;
2295 /*
2296 * Take care memory controller reclaiming has small influence
2297 * to global LRU.
2298 */
2299 if (global_reclaim(sc)) {
2300 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2301 continue;
2302 if (sc->priority != DEF_PRIORITY &&
2303 !zone_reclaimable(zone))
2304 continue; /* Let kswapd poll it */
2305 if (IS_ENABLED(CONFIG_COMPACTION)) {
2306 /*
2307 * If we already have plenty of memory free for
2308 * compaction in this zone, don't free any more.
2309 * Even though compaction is invoked for any
2310 * non-zero order, only frequent costly order
2311 * reclamation is disruptive enough to become a
2312 * noticeable problem, like transparent huge
2313 * page allocations.
2314 */
2315 if (compaction_ready(zone, sc)) {
2316 aborted_reclaim = true;
2317 continue;
2318 }
2319 }
2320 /*
2321 * This steals pages from memory cgroups over softlimit
2322 * and returns the number of reclaimed pages and
2323 * scanned pages. This works for global memory pressure
2324 * and balancing, not for a memcg's limit.
2325 */
2326 nr_soft_scanned = 0;
2327 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2328 sc->order, sc->gfp_mask,
2329 &nr_soft_scanned);
2330 sc->nr_reclaimed += nr_soft_reclaimed;
2331 sc->nr_scanned += nr_soft_scanned;
2332 /* need some check for avoid more shrink_zone() */
2333 }
2334
2335 shrink_zone(zone, sc);
2336 }
2337
2338 return aborted_reclaim;
2339 }
2340
2341 /* All zones in zonelist are unreclaimable? */
2342 static bool all_unreclaimable(struct zonelist *zonelist,
2343 struct scan_control *sc)
2344 {
2345 struct zoneref *z;
2346 struct zone *zone;
2347
2348 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2349 gfp_zone(sc->gfp_mask), sc->nodemask) {
2350 if (!populated_zone(zone))
2351 continue;
2352 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2353 continue;
2354 if (zone_reclaimable(zone))
2355 return false;
2356 }
2357
2358 return true;
2359 }
2360
2361 /*
2362 * This is the main entry point to direct page reclaim.
2363 *
2364 * If a full scan of the inactive list fails to free enough memory then we
2365 * are "out of memory" and something needs to be killed.
2366 *
2367 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2368 * high - the zone may be full of dirty or under-writeback pages, which this
2369 * caller can't do much about. We kick the writeback threads and take explicit
2370 * naps in the hope that some of these pages can be written. But if the
2371 * allocating task holds filesystem locks which prevent writeout this might not
2372 * work, and the allocation attempt will fail.
2373 *
2374 * returns: 0, if no pages reclaimed
2375 * else, the number of pages reclaimed
2376 */
2377 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2378 struct scan_control *sc,
2379 struct shrink_control *shrink)
2380 {
2381 unsigned long total_scanned = 0;
2382 struct reclaim_state *reclaim_state = current->reclaim_state;
2383 struct zoneref *z;
2384 struct zone *zone;
2385 unsigned long writeback_threshold;
2386 bool aborted_reclaim;
2387
2388 delayacct_freepages_start();
2389
2390 if (global_reclaim(sc))
2391 count_vm_event(ALLOCSTALL);
2392
2393 do {
2394 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2395 sc->priority);
2396 sc->nr_scanned = 0;
2397 aborted_reclaim = shrink_zones(zonelist, sc);
2398
2399 /*
2400 * Don't shrink slabs when reclaiming memory from over limit
2401 * cgroups but do shrink slab at least once when aborting
2402 * reclaim for compaction to avoid unevenly scanning file/anon
2403 * LRU pages over slab pages.
2404 */
2405 if (global_reclaim(sc)) {
2406 unsigned long lru_pages = 0;
2407
2408 nodes_clear(shrink->nodes_to_scan);
2409 for_each_zone_zonelist(zone, z, zonelist,
2410 gfp_zone(sc->gfp_mask)) {
2411 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2412 continue;
2413
2414 lru_pages += zone_reclaimable_pages(zone);
2415 node_set(zone_to_nid(zone),
2416 shrink->nodes_to_scan);
2417 }
2418
2419 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2420 if (reclaim_state) {
2421 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2422 reclaim_state->reclaimed_slab = 0;
2423 }
2424 }
2425 total_scanned += sc->nr_scanned;
2426 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2427 goto out;
2428
2429 /*
2430 * If we're getting trouble reclaiming, start doing
2431 * writepage even in laptop mode.
2432 */
2433 if (sc->priority < DEF_PRIORITY - 2)
2434 sc->may_writepage = 1;
2435
2436 /*
2437 * Try to write back as many pages as we just scanned. This
2438 * tends to cause slow streaming writers to write data to the
2439 * disk smoothly, at the dirtying rate, which is nice. But
2440 * that's undesirable in laptop mode, where we *want* lumpy
2441 * writeout. So in laptop mode, write out the whole world.
2442 */
2443 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2444 if (total_scanned > writeback_threshold) {
2445 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2446 WB_REASON_TRY_TO_FREE_PAGES);
2447 sc->may_writepage = 1;
2448 }
2449 } while (--sc->priority >= 0 && !aborted_reclaim);
2450
2451 out:
2452 delayacct_freepages_end();
2453
2454 if (sc->nr_reclaimed)
2455 return sc->nr_reclaimed;
2456
2457 /*
2458 * As hibernation is going on, kswapd is freezed so that it can't mark
2459 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2460 * check.
2461 */
2462 if (oom_killer_disabled)
2463 return 0;
2464
2465 /* Aborted reclaim to try compaction? don't OOM, then */
2466 if (aborted_reclaim)
2467 return 1;
2468
2469 /* top priority shrink_zones still had more to do? don't OOM, then */
2470 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2471 return 1;
2472
2473 return 0;
2474 }
2475
2476 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2477 {
2478 struct zone *zone;
2479 unsigned long pfmemalloc_reserve = 0;
2480 unsigned long free_pages = 0;
2481 int i;
2482 bool wmark_ok;
2483
2484 for (i = 0; i <= ZONE_NORMAL; i++) {
2485 zone = &pgdat->node_zones[i];
2486 pfmemalloc_reserve += min_wmark_pages(zone);
2487 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2488 }
2489
2490 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2491
2492 /* kswapd must be awake if processes are being throttled */
2493 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2494 pgdat->classzone_idx = min(pgdat->classzone_idx,
2495 (enum zone_type)ZONE_NORMAL);
2496 wake_up_interruptible(&pgdat->kswapd_wait);
2497 }
2498
2499 return wmark_ok;
2500 }
2501
2502 /*
2503 * Throttle direct reclaimers if backing storage is backed by the network
2504 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2505 * depleted. kswapd will continue to make progress and wake the processes
2506 * when the low watermark is reached.
2507 *
2508 * Returns true if a fatal signal was delivered during throttling. If this
2509 * happens, the page allocator should not consider triggering the OOM killer.
2510 */
2511 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2512 nodemask_t *nodemask)
2513 {
2514 struct zone *zone;
2515 int high_zoneidx = gfp_zone(gfp_mask);
2516 pg_data_t *pgdat;
2517
2518 /*
2519 * Kernel threads should not be throttled as they may be indirectly
2520 * responsible for cleaning pages necessary for reclaim to make forward
2521 * progress. kjournald for example may enter direct reclaim while
2522 * committing a transaction where throttling it could forcing other
2523 * processes to block on log_wait_commit().
2524 */
2525 if (current->flags & PF_KTHREAD)
2526 goto out;
2527
2528 /*
2529 * If a fatal signal is pending, this process should not throttle.
2530 * It should return quickly so it can exit and free its memory
2531 */
2532 if (fatal_signal_pending(current))
2533 goto out;
2534
2535 /* Check if the pfmemalloc reserves are ok */
2536 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2537 pgdat = zone->zone_pgdat;
2538 if (pfmemalloc_watermark_ok(pgdat))
2539 goto out;
2540
2541 /* Account for the throttling */
2542 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2543
2544 /*
2545 * If the caller cannot enter the filesystem, it's possible that it
2546 * is due to the caller holding an FS lock or performing a journal
2547 * transaction in the case of a filesystem like ext[3|4]. In this case,
2548 * it is not safe to block on pfmemalloc_wait as kswapd could be
2549 * blocked waiting on the same lock. Instead, throttle for up to a
2550 * second before continuing.
2551 */
2552 if (!(gfp_mask & __GFP_FS)) {
2553 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2554 pfmemalloc_watermark_ok(pgdat), HZ);
2555
2556 goto check_pending;
2557 }
2558
2559 /* Throttle until kswapd wakes the process */
2560 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2561 pfmemalloc_watermark_ok(pgdat));
2562
2563 check_pending:
2564 if (fatal_signal_pending(current))
2565 return true;
2566
2567 out:
2568 return false;
2569 }
2570
2571 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2572 gfp_t gfp_mask, nodemask_t *nodemask)
2573 {
2574 unsigned long nr_reclaimed;
2575 struct scan_control sc = {
2576 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2577 .may_writepage = !laptop_mode,
2578 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2579 .may_unmap = 1,
2580 .may_swap = 1,
2581 .order = order,
2582 .priority = DEF_PRIORITY,
2583 .target_mem_cgroup = NULL,
2584 .nodemask = nodemask,
2585 };
2586 struct shrink_control shrink = {
2587 .gfp_mask = sc.gfp_mask,
2588 };
2589
2590 /*
2591 * Do not enter reclaim if fatal signal was delivered while throttled.
2592 * 1 is returned so that the page allocator does not OOM kill at this
2593 * point.
2594 */
2595 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2596 return 1;
2597
2598 trace_mm_vmscan_direct_reclaim_begin(order,
2599 sc.may_writepage,
2600 gfp_mask);
2601
2602 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2603
2604 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2605
2606 return nr_reclaimed;
2607 }
2608
2609 #ifdef CONFIG_MEMCG
2610
2611 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2612 gfp_t gfp_mask, bool noswap,
2613 struct zone *zone,
2614 unsigned long *nr_scanned)
2615 {
2616 struct scan_control sc = {
2617 .nr_scanned = 0,
2618 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2619 .may_writepage = !laptop_mode,
2620 .may_unmap = 1,
2621 .may_swap = !noswap,
2622 .order = 0,
2623 .priority = 0,
2624 .target_mem_cgroup = memcg,
2625 };
2626 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2627
2628 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2629 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2630
2631 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2632 sc.may_writepage,
2633 sc.gfp_mask);
2634
2635 /*
2636 * NOTE: Although we can get the priority field, using it
2637 * here is not a good idea, since it limits the pages we can scan.
2638 * if we don't reclaim here, the shrink_zone from balance_pgdat
2639 * will pick up pages from other mem cgroup's as well. We hack
2640 * the priority and make it zero.
2641 */
2642 shrink_lruvec(lruvec, &sc);
2643
2644 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2645
2646 *nr_scanned = sc.nr_scanned;
2647 return sc.nr_reclaimed;
2648 }
2649
2650 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2651 gfp_t gfp_mask,
2652 bool noswap)
2653 {
2654 struct zonelist *zonelist;
2655 unsigned long nr_reclaimed;
2656 int nid;
2657 struct scan_control sc = {
2658 .may_writepage = !laptop_mode,
2659 .may_unmap = 1,
2660 .may_swap = !noswap,
2661 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2662 .order = 0,
2663 .priority = DEF_PRIORITY,
2664 .target_mem_cgroup = memcg,
2665 .nodemask = NULL, /* we don't care the placement */
2666 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2667 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2668 };
2669 struct shrink_control shrink = {
2670 .gfp_mask = sc.gfp_mask,
2671 };
2672
2673 /*
2674 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2675 * take care of from where we get pages. So the node where we start the
2676 * scan does not need to be the current node.
2677 */
2678 nid = mem_cgroup_select_victim_node(memcg);
2679
2680 zonelist = NODE_DATA(nid)->node_zonelists;
2681
2682 trace_mm_vmscan_memcg_reclaim_begin(0,
2683 sc.may_writepage,
2684 sc.gfp_mask);
2685
2686 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2687
2688 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2689
2690 return nr_reclaimed;
2691 }
2692 #endif
2693
2694 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2695 {
2696 struct mem_cgroup *memcg;
2697
2698 if (!total_swap_pages)
2699 return;
2700
2701 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2702 do {
2703 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2704
2705 if (inactive_anon_is_low(lruvec))
2706 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2707 sc, LRU_ACTIVE_ANON);
2708
2709 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2710 } while (memcg);
2711 }
2712
2713 static bool zone_balanced(struct zone *zone, int order,
2714 unsigned long balance_gap, int classzone_idx)
2715 {
2716 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2717 balance_gap, classzone_idx, 0))
2718 return false;
2719
2720 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2721 !compaction_suitable(zone, order))
2722 return false;
2723
2724 return true;
2725 }
2726
2727 /*
2728 * pgdat_balanced() is used when checking if a node is balanced.
2729 *
2730 * For order-0, all zones must be balanced!
2731 *
2732 * For high-order allocations only zones that meet watermarks and are in a
2733 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2734 * total of balanced pages must be at least 25% of the zones allowed by
2735 * classzone_idx for the node to be considered balanced. Forcing all zones to
2736 * be balanced for high orders can cause excessive reclaim when there are
2737 * imbalanced zones.
2738 * The choice of 25% is due to
2739 * o a 16M DMA zone that is balanced will not balance a zone on any
2740 * reasonable sized machine
2741 * o On all other machines, the top zone must be at least a reasonable
2742 * percentage of the middle zones. For example, on 32-bit x86, highmem
2743 * would need to be at least 256M for it to be balance a whole node.
2744 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2745 * to balance a node on its own. These seemed like reasonable ratios.
2746 */
2747 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2748 {
2749 unsigned long managed_pages = 0;
2750 unsigned long balanced_pages = 0;
2751 int i;
2752
2753 /* Check the watermark levels */
2754 for (i = 0; i <= classzone_idx; i++) {
2755 struct zone *zone = pgdat->node_zones + i;
2756
2757 if (!populated_zone(zone))
2758 continue;
2759
2760 managed_pages += zone->managed_pages;
2761
2762 /*
2763 * A special case here:
2764 *
2765 * balance_pgdat() skips over all_unreclaimable after
2766 * DEF_PRIORITY. Effectively, it considers them balanced so
2767 * they must be considered balanced here as well!
2768 */
2769 if (!zone_reclaimable(zone)) {
2770 balanced_pages += zone->managed_pages;
2771 continue;
2772 }
2773
2774 if (zone_balanced(zone, order, 0, i))
2775 balanced_pages += zone->managed_pages;
2776 else if (!order)
2777 return false;
2778 }
2779
2780 if (order)
2781 return balanced_pages >= (managed_pages >> 2);
2782 else
2783 return true;
2784 }
2785
2786 /*
2787 * Prepare kswapd for sleeping. This verifies that there are no processes
2788 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2789 *
2790 * Returns true if kswapd is ready to sleep
2791 */
2792 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2793 int classzone_idx)
2794 {
2795 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2796 if (remaining)
2797 return false;
2798
2799 /*
2800 * There is a potential race between when kswapd checks its watermarks
2801 * and a process gets throttled. There is also a potential race if
2802 * processes get throttled, kswapd wakes, a large process exits therby
2803 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2804 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2805 * so wake them now if necessary. If necessary, processes will wake
2806 * kswapd and get throttled again
2807 */
2808 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2809 wake_up(&pgdat->pfmemalloc_wait);
2810 return false;
2811 }
2812
2813 return pgdat_balanced(pgdat, order, classzone_idx);
2814 }
2815
2816 /*
2817 * kswapd shrinks the zone by the number of pages required to reach
2818 * the high watermark.
2819 *
2820 * Returns true if kswapd scanned at least the requested number of pages to
2821 * reclaim or if the lack of progress was due to pages under writeback.
2822 * This is used to determine if the scanning priority needs to be raised.
2823 */
2824 static bool kswapd_shrink_zone(struct zone *zone,
2825 int classzone_idx,
2826 struct scan_control *sc,
2827 unsigned long lru_pages,
2828 unsigned long *nr_attempted)
2829 {
2830 int testorder = sc->order;
2831 unsigned long balance_gap;
2832 struct reclaim_state *reclaim_state = current->reclaim_state;
2833 struct shrink_control shrink = {
2834 .gfp_mask = sc->gfp_mask,
2835 };
2836 bool lowmem_pressure;
2837
2838 /* Reclaim above the high watermark. */
2839 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2840
2841 /*
2842 * Kswapd reclaims only single pages with compaction enabled. Trying
2843 * too hard to reclaim until contiguous free pages have become
2844 * available can hurt performance by evicting too much useful data
2845 * from memory. Do not reclaim more than needed for compaction.
2846 */
2847 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2848 compaction_suitable(zone, sc->order) !=
2849 COMPACT_SKIPPED)
2850 testorder = 0;
2851
2852 /*
2853 * We put equal pressure on every zone, unless one zone has way too
2854 * many pages free already. The "too many pages" is defined as the
2855 * high wmark plus a "gap" where the gap is either the low
2856 * watermark or 1% of the zone, whichever is smaller.
2857 */
2858 balance_gap = min(low_wmark_pages(zone),
2859 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2860 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2861
2862 /*
2863 * If there is no low memory pressure or the zone is balanced then no
2864 * reclaim is necessary
2865 */
2866 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2867 if (!lowmem_pressure && zone_balanced(zone, testorder,
2868 balance_gap, classzone_idx))
2869 return true;
2870
2871 shrink_zone(zone, sc);
2872 nodes_clear(shrink.nodes_to_scan);
2873 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2874
2875 reclaim_state->reclaimed_slab = 0;
2876 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2877 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2878
2879 /* Account for the number of pages attempted to reclaim */
2880 *nr_attempted += sc->nr_to_reclaim;
2881
2882 zone_clear_flag(zone, ZONE_WRITEBACK);
2883
2884 /*
2885 * If a zone reaches its high watermark, consider it to be no longer
2886 * congested. It's possible there are dirty pages backed by congested
2887 * BDIs but as pressure is relieved, speculatively avoid congestion
2888 * waits.
2889 */
2890 if (zone_reclaimable(zone) &&
2891 zone_balanced(zone, testorder, 0, classzone_idx)) {
2892 zone_clear_flag(zone, ZONE_CONGESTED);
2893 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2894 }
2895
2896 return sc->nr_scanned >= sc->nr_to_reclaim;
2897 }
2898
2899 /*
2900 * For kswapd, balance_pgdat() will work across all this node's zones until
2901 * they are all at high_wmark_pages(zone).
2902 *
2903 * Returns the final order kswapd was reclaiming at
2904 *
2905 * There is special handling here for zones which are full of pinned pages.
2906 * This can happen if the pages are all mlocked, or if they are all used by
2907 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2908 * What we do is to detect the case where all pages in the zone have been
2909 * scanned twice and there has been zero successful reclaim. Mark the zone as
2910 * dead and from now on, only perform a short scan. Basically we're polling
2911 * the zone for when the problem goes away.
2912 *
2913 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2914 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2915 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2916 * lower zones regardless of the number of free pages in the lower zones. This
2917 * interoperates with the page allocator fallback scheme to ensure that aging
2918 * of pages is balanced across the zones.
2919 */
2920 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2921 int *classzone_idx)
2922 {
2923 int i;
2924 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2925 unsigned long nr_soft_reclaimed;
2926 unsigned long nr_soft_scanned;
2927 struct scan_control sc = {
2928 .gfp_mask = GFP_KERNEL,
2929 .priority = DEF_PRIORITY,
2930 .may_unmap = 1,
2931 .may_swap = 1,
2932 .may_writepage = !laptop_mode,
2933 .order = order,
2934 .target_mem_cgroup = NULL,
2935 };
2936 count_vm_event(PAGEOUTRUN);
2937
2938 do {
2939 unsigned long lru_pages = 0;
2940 unsigned long nr_attempted = 0;
2941 bool raise_priority = true;
2942 bool pgdat_needs_compaction = (order > 0);
2943
2944 sc.nr_reclaimed = 0;
2945
2946 /*
2947 * Scan in the highmem->dma direction for the highest
2948 * zone which needs scanning
2949 */
2950 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2951 struct zone *zone = pgdat->node_zones + i;
2952
2953 if (!populated_zone(zone))
2954 continue;
2955
2956 if (sc.priority != DEF_PRIORITY &&
2957 !zone_reclaimable(zone))
2958 continue;
2959
2960 /*
2961 * Do some background aging of the anon list, to give
2962 * pages a chance to be referenced before reclaiming.
2963 */
2964 age_active_anon(zone, &sc);
2965
2966 /*
2967 * If the number of buffer_heads in the machine
2968 * exceeds the maximum allowed level and this node
2969 * has a highmem zone, force kswapd to reclaim from
2970 * it to relieve lowmem pressure.
2971 */
2972 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2973 end_zone = i;
2974 break;
2975 }
2976
2977 if (!zone_balanced(zone, order, 0, 0)) {
2978 end_zone = i;
2979 break;
2980 } else {
2981 /*
2982 * If balanced, clear the dirty and congested
2983 * flags
2984 */
2985 zone_clear_flag(zone, ZONE_CONGESTED);
2986 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2987 }
2988 }
2989
2990 if (i < 0)
2991 goto out;
2992
2993 for (i = 0; i <= end_zone; i++) {
2994 struct zone *zone = pgdat->node_zones + i;
2995
2996 if (!populated_zone(zone))
2997 continue;
2998
2999 lru_pages += zone_reclaimable_pages(zone);
3000
3001 /*
3002 * If any zone is currently balanced then kswapd will
3003 * not call compaction as it is expected that the
3004 * necessary pages are already available.
3005 */
3006 if (pgdat_needs_compaction &&
3007 zone_watermark_ok(zone, order,
3008 low_wmark_pages(zone),
3009 *classzone_idx, 0))
3010 pgdat_needs_compaction = false;
3011 }
3012
3013 /*
3014 * If we're getting trouble reclaiming, start doing writepage
3015 * even in laptop mode.
3016 */
3017 if (sc.priority < DEF_PRIORITY - 2)
3018 sc.may_writepage = 1;
3019
3020 /*
3021 * Now scan the zone in the dma->highmem direction, stopping
3022 * at the last zone which needs scanning.
3023 *
3024 * We do this because the page allocator works in the opposite
3025 * direction. This prevents the page allocator from allocating
3026 * pages behind kswapd's direction of progress, which would
3027 * cause too much scanning of the lower zones.
3028 */
3029 for (i = 0; i <= end_zone; i++) {
3030 struct zone *zone = pgdat->node_zones + i;
3031
3032 if (!populated_zone(zone))
3033 continue;
3034
3035 if (sc.priority != DEF_PRIORITY &&
3036 !zone_reclaimable(zone))
3037 continue;
3038
3039 sc.nr_scanned = 0;
3040
3041 nr_soft_scanned = 0;
3042 /*
3043 * Call soft limit reclaim before calling shrink_zone.
3044 */
3045 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3046 order, sc.gfp_mask,
3047 &nr_soft_scanned);
3048 sc.nr_reclaimed += nr_soft_reclaimed;
3049
3050 /*
3051 * There should be no need to raise the scanning
3052 * priority if enough pages are already being scanned
3053 * that that high watermark would be met at 100%
3054 * efficiency.
3055 */
3056 if (kswapd_shrink_zone(zone, end_zone, &sc,
3057 lru_pages, &nr_attempted))
3058 raise_priority = false;
3059 }
3060
3061 /*
3062 * If the low watermark is met there is no need for processes
3063 * to be throttled on pfmemalloc_wait as they should not be
3064 * able to safely make forward progress. Wake them
3065 */
3066 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3067 pfmemalloc_watermark_ok(pgdat))
3068 wake_up(&pgdat->pfmemalloc_wait);
3069
3070 /*
3071 * Fragmentation may mean that the system cannot be rebalanced
3072 * for high-order allocations in all zones. If twice the
3073 * allocation size has been reclaimed and the zones are still
3074 * not balanced then recheck the watermarks at order-0 to
3075 * prevent kswapd reclaiming excessively. Assume that a
3076 * process requested a high-order can direct reclaim/compact.
3077 */
3078 if (order && sc.nr_reclaimed >= 2UL << order)
3079 order = sc.order = 0;
3080
3081 /* Check if kswapd should be suspending */
3082 if (try_to_freeze() || kthread_should_stop())
3083 break;
3084
3085 /*
3086 * Compact if necessary and kswapd is reclaiming at least the
3087 * high watermark number of pages as requsted
3088 */
3089 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3090 compact_pgdat(pgdat, order);
3091
3092 /*
3093 * Raise priority if scanning rate is too low or there was no
3094 * progress in reclaiming pages
3095 */
3096 if (raise_priority || !sc.nr_reclaimed)
3097 sc.priority--;
3098 } while (sc.priority >= 1 &&
3099 !pgdat_balanced(pgdat, order, *classzone_idx));
3100
3101 out:
3102 /*
3103 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3104 * makes a decision on the order we were last reclaiming at. However,
3105 * if another caller entered the allocator slow path while kswapd
3106 * was awake, order will remain at the higher level
3107 */
3108 *classzone_idx = end_zone;
3109 return order;
3110 }
3111
3112 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3113 {
3114 long remaining = 0;
3115 DEFINE_WAIT(wait);
3116
3117 if (freezing(current) || kthread_should_stop())
3118 return;
3119
3120 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3121
3122 /* Try to sleep for a short interval */
3123 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3124 remaining = schedule_timeout(HZ/10);
3125 finish_wait(&pgdat->kswapd_wait, &wait);
3126 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3127 }
3128
3129 /*
3130 * After a short sleep, check if it was a premature sleep. If not, then
3131 * go fully to sleep until explicitly woken up.
3132 */
3133 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3134 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3135
3136 /*
3137 * vmstat counters are not perfectly accurate and the estimated
3138 * value for counters such as NR_FREE_PAGES can deviate from the
3139 * true value by nr_online_cpus * threshold. To avoid the zone
3140 * watermarks being breached while under pressure, we reduce the
3141 * per-cpu vmstat threshold while kswapd is awake and restore
3142 * them before going back to sleep.
3143 */
3144 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3145
3146 /*
3147 * Compaction records what page blocks it recently failed to
3148 * isolate pages from and skips them in the future scanning.
3149 * When kswapd is going to sleep, it is reasonable to assume
3150 * that pages and compaction may succeed so reset the cache.
3151 */
3152 reset_isolation_suitable(pgdat);
3153
3154 if (!kthread_should_stop())
3155 schedule();
3156
3157 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3158 } else {
3159 if (remaining)
3160 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3161 else
3162 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3163 }
3164 finish_wait(&pgdat->kswapd_wait, &wait);
3165 }
3166
3167 /*
3168 * The background pageout daemon, started as a kernel thread
3169 * from the init process.
3170 *
3171 * This basically trickles out pages so that we have _some_
3172 * free memory available even if there is no other activity
3173 * that frees anything up. This is needed for things like routing
3174 * etc, where we otherwise might have all activity going on in
3175 * asynchronous contexts that cannot page things out.
3176 *
3177 * If there are applications that are active memory-allocators
3178 * (most normal use), this basically shouldn't matter.
3179 */
3180 static int kswapd(void *p)
3181 {
3182 unsigned long order, new_order;
3183 unsigned balanced_order;
3184 int classzone_idx, new_classzone_idx;
3185 int balanced_classzone_idx;
3186 pg_data_t *pgdat = (pg_data_t*)p;
3187 struct task_struct *tsk = current;
3188
3189 struct reclaim_state reclaim_state = {
3190 .reclaimed_slab = 0,
3191 };
3192 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3193
3194 lockdep_set_current_reclaim_state(GFP_KERNEL);
3195
3196 if (!cpumask_empty(cpumask))
3197 set_cpus_allowed_ptr(tsk, cpumask);
3198 current->reclaim_state = &reclaim_state;
3199
3200 /*
3201 * Tell the memory management that we're a "memory allocator",
3202 * and that if we need more memory we should get access to it
3203 * regardless (see "__alloc_pages()"). "kswapd" should
3204 * never get caught in the normal page freeing logic.
3205 *
3206 * (Kswapd normally doesn't need memory anyway, but sometimes
3207 * you need a small amount of memory in order to be able to
3208 * page out something else, and this flag essentially protects
3209 * us from recursively trying to free more memory as we're
3210 * trying to free the first piece of memory in the first place).
3211 */
3212 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3213 set_freezable();
3214
3215 order = new_order = 0;
3216 balanced_order = 0;
3217 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3218 balanced_classzone_idx = classzone_idx;
3219 for ( ; ; ) {
3220 bool ret;
3221
3222 /*
3223 * If the last balance_pgdat was unsuccessful it's unlikely a
3224 * new request of a similar or harder type will succeed soon
3225 * so consider going to sleep on the basis we reclaimed at
3226 */
3227 if (balanced_classzone_idx >= new_classzone_idx &&
3228 balanced_order == new_order) {
3229 new_order = pgdat->kswapd_max_order;
3230 new_classzone_idx = pgdat->classzone_idx;
3231 pgdat->kswapd_max_order = 0;
3232 pgdat->classzone_idx = pgdat->nr_zones - 1;
3233 }
3234
3235 if (order < new_order || classzone_idx > new_classzone_idx) {
3236 /*
3237 * Don't sleep if someone wants a larger 'order'
3238 * allocation or has tigher zone constraints
3239 */
3240 order = new_order;
3241 classzone_idx = new_classzone_idx;
3242 } else {
3243 kswapd_try_to_sleep(pgdat, balanced_order,
3244 balanced_classzone_idx);
3245 order = pgdat->kswapd_max_order;
3246 classzone_idx = pgdat->classzone_idx;
3247 new_order = order;
3248 new_classzone_idx = classzone_idx;
3249 pgdat->kswapd_max_order = 0;
3250 pgdat->classzone_idx = pgdat->nr_zones - 1;
3251 }
3252
3253 ret = try_to_freeze();
3254 if (kthread_should_stop())
3255 break;
3256
3257 /*
3258 * We can speed up thawing tasks if we don't call balance_pgdat
3259 * after returning from the refrigerator
3260 */
3261 if (!ret) {
3262 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3263 balanced_classzone_idx = classzone_idx;
3264 balanced_order = balance_pgdat(pgdat, order,
3265 &balanced_classzone_idx);
3266 }
3267 }
3268
3269 current->reclaim_state = NULL;
3270 return 0;
3271 }
3272
3273 /*
3274 * A zone is low on free memory, so wake its kswapd task to service it.
3275 */
3276 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3277 {
3278 pg_data_t *pgdat;
3279
3280 if (!populated_zone(zone))
3281 return;
3282
3283 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3284 return;
3285 pgdat = zone->zone_pgdat;
3286 if (pgdat->kswapd_max_order < order) {
3287 pgdat->kswapd_max_order = order;
3288 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3289 }
3290 if (!waitqueue_active(&pgdat->kswapd_wait))
3291 return;
3292 if (zone_balanced(zone, order, 0, 0))
3293 return;
3294
3295 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3296 wake_up_interruptible(&pgdat->kswapd_wait);
3297 }
3298
3299 /*
3300 * The reclaimable count would be mostly accurate.
3301 * The less reclaimable pages may be
3302 * - mlocked pages, which will be moved to unevictable list when encountered
3303 * - mapped pages, which may require several travels to be reclaimed
3304 * - dirty pages, which is not "instantly" reclaimable
3305 */
3306 unsigned long global_reclaimable_pages(void)
3307 {
3308 int nr;
3309
3310 nr = global_page_state(NR_ACTIVE_FILE) +
3311 global_page_state(NR_INACTIVE_FILE);
3312
3313 if (get_nr_swap_pages() > 0)
3314 nr += global_page_state(NR_ACTIVE_ANON) +
3315 global_page_state(NR_INACTIVE_ANON);
3316
3317 return nr;
3318 }
3319
3320 #ifdef CONFIG_HIBERNATION
3321 /*
3322 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3323 * freed pages.
3324 *
3325 * Rather than trying to age LRUs the aim is to preserve the overall
3326 * LRU order by reclaiming preferentially
3327 * inactive > active > active referenced > active mapped
3328 */
3329 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3330 {
3331 struct reclaim_state reclaim_state;
3332 struct scan_control sc = {
3333 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3334 .may_swap = 1,
3335 .may_unmap = 1,
3336 .may_writepage = 1,
3337 .nr_to_reclaim = nr_to_reclaim,
3338 .hibernation_mode = 1,
3339 .order = 0,
3340 .priority = DEF_PRIORITY,
3341 };
3342 struct shrink_control shrink = {
3343 .gfp_mask = sc.gfp_mask,
3344 };
3345 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3346 struct task_struct *p = current;
3347 unsigned long nr_reclaimed;
3348
3349 p->flags |= PF_MEMALLOC;
3350 lockdep_set_current_reclaim_state(sc.gfp_mask);
3351 reclaim_state.reclaimed_slab = 0;
3352 p->reclaim_state = &reclaim_state;
3353
3354 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3355
3356 p->reclaim_state = NULL;
3357 lockdep_clear_current_reclaim_state();
3358 p->flags &= ~PF_MEMALLOC;
3359
3360 return nr_reclaimed;
3361 }
3362 #endif /* CONFIG_HIBERNATION */
3363
3364 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3365 not required for correctness. So if the last cpu in a node goes
3366 away, we get changed to run anywhere: as the first one comes back,
3367 restore their cpu bindings. */
3368 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3369 void *hcpu)
3370 {
3371 int nid;
3372
3373 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3374 for_each_node_state(nid, N_MEMORY) {
3375 pg_data_t *pgdat = NODE_DATA(nid);
3376 const struct cpumask *mask;
3377
3378 mask = cpumask_of_node(pgdat->node_id);
3379
3380 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3381 /* One of our CPUs online: restore mask */
3382 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3383 }
3384 }
3385 return NOTIFY_OK;
3386 }
3387
3388 /*
3389 * This kswapd start function will be called by init and node-hot-add.
3390 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3391 */
3392 int kswapd_run(int nid)
3393 {
3394 pg_data_t *pgdat = NODE_DATA(nid);
3395 int ret = 0;
3396
3397 if (pgdat->kswapd)
3398 return 0;
3399
3400 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3401 if (IS_ERR(pgdat->kswapd)) {
3402 /* failure at boot is fatal */
3403 BUG_ON(system_state == SYSTEM_BOOTING);
3404 pr_err("Failed to start kswapd on node %d\n", nid);
3405 ret = PTR_ERR(pgdat->kswapd);
3406 pgdat->kswapd = NULL;
3407 }
3408 return ret;
3409 }
3410
3411 /*
3412 * Called by memory hotplug when all memory in a node is offlined. Caller must
3413 * hold lock_memory_hotplug().
3414 */
3415 void kswapd_stop(int nid)
3416 {
3417 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3418
3419 if (kswapd) {
3420 kthread_stop(kswapd);
3421 NODE_DATA(nid)->kswapd = NULL;
3422 }
3423 }
3424
3425 static int __init kswapd_init(void)
3426 {
3427 int nid;
3428
3429 swap_setup();
3430 for_each_node_state(nid, N_MEMORY)
3431 kswapd_run(nid);
3432 hotcpu_notifier(cpu_callback, 0);
3433 return 0;
3434 }
3435
3436 module_init(kswapd_init)
3437
3438 #ifdef CONFIG_NUMA
3439 /*
3440 * Zone reclaim mode
3441 *
3442 * If non-zero call zone_reclaim when the number of free pages falls below
3443 * the watermarks.
3444 */
3445 int zone_reclaim_mode __read_mostly;
3446
3447 #define RECLAIM_OFF 0
3448 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3449 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3450 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3451
3452 /*
3453 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3454 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3455 * a zone.
3456 */
3457 #define ZONE_RECLAIM_PRIORITY 4
3458
3459 /*
3460 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3461 * occur.
3462 */
3463 int sysctl_min_unmapped_ratio = 1;
3464
3465 /*
3466 * If the number of slab pages in a zone grows beyond this percentage then
3467 * slab reclaim needs to occur.
3468 */
3469 int sysctl_min_slab_ratio = 5;
3470
3471 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3472 {
3473 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3474 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3475 zone_page_state(zone, NR_ACTIVE_FILE);
3476
3477 /*
3478 * It's possible for there to be more file mapped pages than
3479 * accounted for by the pages on the file LRU lists because
3480 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3481 */
3482 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3483 }
3484
3485 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3486 static long zone_pagecache_reclaimable(struct zone *zone)
3487 {
3488 long nr_pagecache_reclaimable;
3489 long delta = 0;
3490
3491 /*
3492 * If RECLAIM_SWAP is set, then all file pages are considered
3493 * potentially reclaimable. Otherwise, we have to worry about
3494 * pages like swapcache and zone_unmapped_file_pages() provides
3495 * a better estimate
3496 */
3497 if (zone_reclaim_mode & RECLAIM_SWAP)
3498 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3499 else
3500 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3501
3502 /* If we can't clean pages, remove dirty pages from consideration */
3503 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3504 delta += zone_page_state(zone, NR_FILE_DIRTY);
3505
3506 /* Watch for any possible underflows due to delta */
3507 if (unlikely(delta > nr_pagecache_reclaimable))
3508 delta = nr_pagecache_reclaimable;
3509
3510 return nr_pagecache_reclaimable - delta;
3511 }
3512
3513 /*
3514 * Try to free up some pages from this zone through reclaim.
3515 */
3516 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3517 {
3518 /* Minimum pages needed in order to stay on node */
3519 const unsigned long nr_pages = 1 << order;
3520 struct task_struct *p = current;
3521 struct reclaim_state reclaim_state;
3522 struct scan_control sc = {
3523 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3524 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3525 .may_swap = 1,
3526 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3527 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3528 .order = order,
3529 .priority = ZONE_RECLAIM_PRIORITY,
3530 };
3531 struct shrink_control shrink = {
3532 .gfp_mask = sc.gfp_mask,
3533 };
3534 unsigned long nr_slab_pages0, nr_slab_pages1;
3535
3536 cond_resched();
3537 /*
3538 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3539 * and we also need to be able to write out pages for RECLAIM_WRITE
3540 * and RECLAIM_SWAP.
3541 */
3542 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3543 lockdep_set_current_reclaim_state(gfp_mask);
3544 reclaim_state.reclaimed_slab = 0;
3545 p->reclaim_state = &reclaim_state;
3546
3547 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3548 /*
3549 * Free memory by calling shrink zone with increasing
3550 * priorities until we have enough memory freed.
3551 */
3552 do {
3553 shrink_zone(zone, &sc);
3554 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3555 }
3556
3557 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3558 if (nr_slab_pages0 > zone->min_slab_pages) {
3559 /*
3560 * shrink_slab() does not currently allow us to determine how
3561 * many pages were freed in this zone. So we take the current
3562 * number of slab pages and shake the slab until it is reduced
3563 * by the same nr_pages that we used for reclaiming unmapped
3564 * pages.
3565 */
3566 nodes_clear(shrink.nodes_to_scan);
3567 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3568 for (;;) {
3569 unsigned long lru_pages = zone_reclaimable_pages(zone);
3570
3571 /* No reclaimable slab or very low memory pressure */
3572 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3573 break;
3574
3575 /* Freed enough memory */
3576 nr_slab_pages1 = zone_page_state(zone,
3577 NR_SLAB_RECLAIMABLE);
3578 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3579 break;
3580 }
3581
3582 /*
3583 * Update nr_reclaimed by the number of slab pages we
3584 * reclaimed from this zone.
3585 */
3586 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3587 if (nr_slab_pages1 < nr_slab_pages0)
3588 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3589 }
3590
3591 p->reclaim_state = NULL;
3592 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3593 lockdep_clear_current_reclaim_state();
3594 return sc.nr_reclaimed >= nr_pages;
3595 }
3596
3597 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3598 {
3599 int node_id;
3600 int ret;
3601
3602 /*
3603 * Zone reclaim reclaims unmapped file backed pages and
3604 * slab pages if we are over the defined limits.
3605 *
3606 * A small portion of unmapped file backed pages is needed for
3607 * file I/O otherwise pages read by file I/O will be immediately
3608 * thrown out if the zone is overallocated. So we do not reclaim
3609 * if less than a specified percentage of the zone is used by
3610 * unmapped file backed pages.
3611 */
3612 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3613 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3614 return ZONE_RECLAIM_FULL;
3615
3616 if (!zone_reclaimable(zone))
3617 return ZONE_RECLAIM_FULL;
3618
3619 /*
3620 * Do not scan if the allocation should not be delayed.
3621 */
3622 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3623 return ZONE_RECLAIM_NOSCAN;
3624
3625 /*
3626 * Only run zone reclaim on the local zone or on zones that do not
3627 * have associated processors. This will favor the local processor
3628 * over remote processors and spread off node memory allocations
3629 * as wide as possible.
3630 */
3631 node_id = zone_to_nid(zone);
3632 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3633 return ZONE_RECLAIM_NOSCAN;
3634
3635 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3636 return ZONE_RECLAIM_NOSCAN;
3637
3638 ret = __zone_reclaim(zone, gfp_mask, order);
3639 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3640
3641 if (!ret)
3642 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3643
3644 return ret;
3645 }
3646 #endif
3647
3648 /*
3649 * page_evictable - test whether a page is evictable
3650 * @page: the page to test
3651 *
3652 * Test whether page is evictable--i.e., should be placed on active/inactive
3653 * lists vs unevictable list.
3654 *
3655 * Reasons page might not be evictable:
3656 * (1) page's mapping marked unevictable
3657 * (2) page is part of an mlocked VMA
3658 *
3659 */
3660 int page_evictable(struct page *page)
3661 {
3662 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3663 }
3664
3665 #ifdef CONFIG_SHMEM
3666 /**
3667 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3668 * @pages: array of pages to check
3669 * @nr_pages: number of pages to check
3670 *
3671 * Checks pages for evictability and moves them to the appropriate lru list.
3672 *
3673 * This function is only used for SysV IPC SHM_UNLOCK.
3674 */
3675 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3676 {
3677 struct lruvec *lruvec;
3678 struct zone *zone = NULL;
3679 int pgscanned = 0;
3680 int pgrescued = 0;
3681 int i;
3682
3683 for (i = 0; i < nr_pages; i++) {
3684 struct page *page = pages[i];
3685 struct zone *pagezone;
3686
3687 pgscanned++;
3688 pagezone = page_zone(page);
3689 if (pagezone != zone) {
3690 if (zone)
3691 spin_unlock_irq(&zone->lru_lock);
3692 zone = pagezone;
3693 spin_lock_irq(&zone->lru_lock);
3694 }
3695 lruvec = mem_cgroup_page_lruvec(page, zone);
3696
3697 if (!PageLRU(page) || !PageUnevictable(page))
3698 continue;
3699
3700 if (page_evictable(page)) {
3701 enum lru_list lru = page_lru_base_type(page);
3702
3703 VM_BUG_ON(PageActive(page));
3704 ClearPageUnevictable(page);
3705 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3706 add_page_to_lru_list(page, lruvec, lru);
3707 pgrescued++;
3708 }
3709 }
3710
3711 if (zone) {
3712 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3713 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3714 spin_unlock_irq(&zone->lru_lock);
3715 }
3716 }
3717 #endif /* CONFIG_SHMEM */
3718
3719 static void warn_scan_unevictable_pages(void)
3720 {
3721 printk_once(KERN_WARNING
3722 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3723 "disabled for lack of a legitimate use case. If you have "
3724 "one, please send an email to linux-mm@kvack.org.\n",
3725 current->comm);
3726 }
3727
3728 /*
3729 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3730 * all nodes' unevictable lists for evictable pages
3731 */
3732 unsigned long scan_unevictable_pages;
3733
3734 int scan_unevictable_handler(struct ctl_table *table, int write,
3735 void __user *buffer,
3736 size_t *length, loff_t *ppos)
3737 {
3738 warn_scan_unevictable_pages();
3739 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3740 scan_unevictable_pages = 0;
3741 return 0;
3742 }
3743
3744 #ifdef CONFIG_NUMA
3745 /*
3746 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3747 * a specified node's per zone unevictable lists for evictable pages.
3748 */
3749
3750 static ssize_t read_scan_unevictable_node(struct device *dev,
3751 struct device_attribute *attr,
3752 char *buf)
3753 {
3754 warn_scan_unevictable_pages();
3755 return sprintf(buf, "0\n"); /* always zero; should fit... */
3756 }
3757
3758 static ssize_t write_scan_unevictable_node(struct device *dev,
3759 struct device_attribute *attr,
3760 const char *buf, size_t count)
3761 {
3762 warn_scan_unevictable_pages();
3763 return 1;
3764 }
3765
3766
3767 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3768 read_scan_unevictable_node,
3769 write_scan_unevictable_node);
3770
3771 int scan_unevictable_register_node(struct node *node)
3772 {
3773 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3774 }
3775
3776 void scan_unevictable_unregister_node(struct node *node)
3777 {
3778 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3779 }
3780 #endif
This page took 0.106647 seconds and 5 git commands to generate.