oom: move oom_killer_enable()/oom_killer_disable to where they belong
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
58 /* This context's GFP mask */
59 gfp_t gfp_mask;
60
61 int may_writepage;
62
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
65
66 /* Can pages be swapped as part of reclaim? */
67 int may_swap;
68
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
73 int swap_cluster_max;
74
75 int swappiness;
76
77 int all_unreclaimable;
78
79 int order;
80
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup *mem_cgroup;
83
84 /*
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
87 */
88 nodemask_t *nodemask;
89
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 unsigned long *scanned, int order, int mode,
93 struct zone *z, struct mem_cgroup *mem_cont,
94 int active, int file);
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #else
139 #define scanning_global_lru(sc) (1)
140 #endif
141
142 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144 {
145 if (!scanning_global_lru(sc))
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
148 return &zone->reclaim_stat;
149 }
150
151 static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
153 {
154 if (!scanning_global_lru(sc))
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158 }
159
160
161 /*
162 * Add a shrinker callback to be called from the vm
163 */
164 void register_shrinker(struct shrinker *shrinker)
165 {
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
170 }
171 EXPORT_SYMBOL(register_shrinker);
172
173 /*
174 * Remove one
175 */
176 void unregister_shrinker(struct shrinker *shrinker)
177 {
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
181 }
182 EXPORT_SYMBOL(unregister_shrinker);
183
184 #define SHRINK_BATCH 128
185 /*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
193 * If the vm encountered mapped pages on the LRU it increase the pressure on
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
201 *
202 * Returns the number of slab objects which we shrunk.
203 */
204 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
206 {
207 struct shrinker *shrinker;
208 unsigned long ret = 0;
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
214 return 1; /* Assume we'll be able to shrink next time */
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
220
221 delta = (4 * scanned) / shrinker->seeks;
222 delta *= max_pass;
223 do_div(delta, lru_pages + 1);
224 shrinker->nr += delta;
225 if (shrinker->nr < 0) {
226 printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 "delete nr=%ld\n",
228 shrinker->shrink, shrinker->nr);
229 shrinker->nr = max_pass;
230 }
231
232 /*
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
235 * freeable entries.
236 */
237 if (shrinker->nr > max_pass * 2)
238 shrinker->nr = max_pass * 2;
239
240 total_scan = shrinker->nr;
241 shrinker->nr = 0;
242
243 while (total_scan >= SHRINK_BATCH) {
244 long this_scan = SHRINK_BATCH;
245 int shrink_ret;
246 int nr_before;
247
248 nr_before = (*shrinker->shrink)(0, gfp_mask);
249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
250 if (shrink_ret == -1)
251 break;
252 if (shrink_ret < nr_before)
253 ret += nr_before - shrink_ret;
254 count_vm_events(SLABS_SCANNED, this_scan);
255 total_scan -= this_scan;
256
257 cond_resched();
258 }
259
260 shrinker->nr += total_scan;
261 }
262 up_read(&shrinker_rwsem);
263 return ret;
264 }
265
266 /* Called without lock on whether page is mapped, so answer is unstable */
267 static inline int page_mapping_inuse(struct page *page)
268 {
269 struct address_space *mapping;
270
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page))
273 return 1;
274
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page))
277 return 1;
278
279 mapping = page_mapping(page);
280 if (!mapping)
281 return 0;
282
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping);
285 }
286
287 static inline int is_page_cache_freeable(struct page *page)
288 {
289 /*
290 * A freeable page cache page is referenced only by the caller
291 * that isolated the page, the page cache radix tree and
292 * optional buffer heads at page->private.
293 */
294 return page_count(page) - page_has_private(page) == 2;
295 }
296
297 static int may_write_to_queue(struct backing_dev_info *bdi)
298 {
299 if (current->flags & PF_SWAPWRITE)
300 return 1;
301 if (!bdi_write_congested(bdi))
302 return 1;
303 if (bdi == current->backing_dev_info)
304 return 1;
305 return 0;
306 }
307
308 /*
309 * We detected a synchronous write error writing a page out. Probably
310 * -ENOSPC. We need to propagate that into the address_space for a subsequent
311 * fsync(), msync() or close().
312 *
313 * The tricky part is that after writepage we cannot touch the mapping: nothing
314 * prevents it from being freed up. But we have a ref on the page and once
315 * that page is locked, the mapping is pinned.
316 *
317 * We're allowed to run sleeping lock_page() here because we know the caller has
318 * __GFP_FS.
319 */
320 static void handle_write_error(struct address_space *mapping,
321 struct page *page, int error)
322 {
323 lock_page(page);
324 if (page_mapping(page) == mapping)
325 mapping_set_error(mapping, error);
326 unlock_page(page);
327 }
328
329 /* Request for sync pageout. */
330 enum pageout_io {
331 PAGEOUT_IO_ASYNC,
332 PAGEOUT_IO_SYNC,
333 };
334
335 /* possible outcome of pageout() */
336 typedef enum {
337 /* failed to write page out, page is locked */
338 PAGE_KEEP,
339 /* move page to the active list, page is locked */
340 PAGE_ACTIVATE,
341 /* page has been sent to the disk successfully, page is unlocked */
342 PAGE_SUCCESS,
343 /* page is clean and locked */
344 PAGE_CLEAN,
345 } pageout_t;
346
347 /*
348 * pageout is called by shrink_page_list() for each dirty page.
349 * Calls ->writepage().
350 */
351 static pageout_t pageout(struct page *page, struct address_space *mapping,
352 enum pageout_io sync_writeback)
353 {
354 /*
355 * If the page is dirty, only perform writeback if that write
356 * will be non-blocking. To prevent this allocation from being
357 * stalled by pagecache activity. But note that there may be
358 * stalls if we need to run get_block(). We could test
359 * PagePrivate for that.
360 *
361 * If this process is currently in generic_file_write() against
362 * this page's queue, we can perform writeback even if that
363 * will block.
364 *
365 * If the page is swapcache, write it back even if that would
366 * block, for some throttling. This happens by accident, because
367 * swap_backing_dev_info is bust: it doesn't reflect the
368 * congestion state of the swapdevs. Easy to fix, if needed.
369 * See swapfile.c:page_queue_congested().
370 */
371 if (!is_page_cache_freeable(page))
372 return PAGE_KEEP;
373 if (!mapping) {
374 /*
375 * Some data journaling orphaned pages can have
376 * page->mapping == NULL while being dirty with clean buffers.
377 */
378 if (page_has_private(page)) {
379 if (try_to_free_buffers(page)) {
380 ClearPageDirty(page);
381 printk("%s: orphaned page\n", __func__);
382 return PAGE_CLEAN;
383 }
384 }
385 return PAGE_KEEP;
386 }
387 if (mapping->a_ops->writepage == NULL)
388 return PAGE_ACTIVATE;
389 if (!may_write_to_queue(mapping->backing_dev_info))
390 return PAGE_KEEP;
391
392 if (clear_page_dirty_for_io(page)) {
393 int res;
394 struct writeback_control wbc = {
395 .sync_mode = WB_SYNC_NONE,
396 .nr_to_write = SWAP_CLUSTER_MAX,
397 .range_start = 0,
398 .range_end = LLONG_MAX,
399 .nonblocking = 1,
400 .for_reclaim = 1,
401 };
402
403 SetPageReclaim(page);
404 res = mapping->a_ops->writepage(page, &wbc);
405 if (res < 0)
406 handle_write_error(mapping, page, res);
407 if (res == AOP_WRITEPAGE_ACTIVATE) {
408 ClearPageReclaim(page);
409 return PAGE_ACTIVATE;
410 }
411
412 /*
413 * Wait on writeback if requested to. This happens when
414 * direct reclaiming a large contiguous area and the
415 * first attempt to free a range of pages fails.
416 */
417 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
418 wait_on_page_writeback(page);
419
420 if (!PageWriteback(page)) {
421 /* synchronous write or broken a_ops? */
422 ClearPageReclaim(page);
423 }
424 inc_zone_page_state(page, NR_VMSCAN_WRITE);
425 return PAGE_SUCCESS;
426 }
427
428 return PAGE_CLEAN;
429 }
430
431 /*
432 * Same as remove_mapping, but if the page is removed from the mapping, it
433 * gets returned with a refcount of 0.
434 */
435 static int __remove_mapping(struct address_space *mapping, struct page *page)
436 {
437 BUG_ON(!PageLocked(page));
438 BUG_ON(mapping != page_mapping(page));
439
440 spin_lock_irq(&mapping->tree_lock);
441 /*
442 * The non racy check for a busy page.
443 *
444 * Must be careful with the order of the tests. When someone has
445 * a ref to the page, it may be possible that they dirty it then
446 * drop the reference. So if PageDirty is tested before page_count
447 * here, then the following race may occur:
448 *
449 * get_user_pages(&page);
450 * [user mapping goes away]
451 * write_to(page);
452 * !PageDirty(page) [good]
453 * SetPageDirty(page);
454 * put_page(page);
455 * !page_count(page) [good, discard it]
456 *
457 * [oops, our write_to data is lost]
458 *
459 * Reversing the order of the tests ensures such a situation cannot
460 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
461 * load is not satisfied before that of page->_count.
462 *
463 * Note that if SetPageDirty is always performed via set_page_dirty,
464 * and thus under tree_lock, then this ordering is not required.
465 */
466 if (!page_freeze_refs(page, 2))
467 goto cannot_free;
468 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
469 if (unlikely(PageDirty(page))) {
470 page_unfreeze_refs(page, 2);
471 goto cannot_free;
472 }
473
474 if (PageSwapCache(page)) {
475 swp_entry_t swap = { .val = page_private(page) };
476 __delete_from_swap_cache(page);
477 spin_unlock_irq(&mapping->tree_lock);
478 swapcache_free(swap, page);
479 } else {
480 __remove_from_page_cache(page);
481 spin_unlock_irq(&mapping->tree_lock);
482 mem_cgroup_uncharge_cache_page(page);
483 }
484
485 return 1;
486
487 cannot_free:
488 spin_unlock_irq(&mapping->tree_lock);
489 return 0;
490 }
491
492 /*
493 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
494 * someone else has a ref on the page, abort and return 0. If it was
495 * successfully detached, return 1. Assumes the caller has a single ref on
496 * this page.
497 */
498 int remove_mapping(struct address_space *mapping, struct page *page)
499 {
500 if (__remove_mapping(mapping, page)) {
501 /*
502 * Unfreezing the refcount with 1 rather than 2 effectively
503 * drops the pagecache ref for us without requiring another
504 * atomic operation.
505 */
506 page_unfreeze_refs(page, 1);
507 return 1;
508 }
509 return 0;
510 }
511
512 /**
513 * putback_lru_page - put previously isolated page onto appropriate LRU list
514 * @page: page to be put back to appropriate lru list
515 *
516 * Add previously isolated @page to appropriate LRU list.
517 * Page may still be unevictable for other reasons.
518 *
519 * lru_lock must not be held, interrupts must be enabled.
520 */
521 void putback_lru_page(struct page *page)
522 {
523 int lru;
524 int active = !!TestClearPageActive(page);
525 int was_unevictable = PageUnevictable(page);
526
527 VM_BUG_ON(PageLRU(page));
528
529 redo:
530 ClearPageUnevictable(page);
531
532 if (page_evictable(page, NULL)) {
533 /*
534 * For evictable pages, we can use the cache.
535 * In event of a race, worst case is we end up with an
536 * unevictable page on [in]active list.
537 * We know how to handle that.
538 */
539 lru = active + page_lru_base_type(page);
540 lru_cache_add_lru(page, lru);
541 } else {
542 /*
543 * Put unevictable pages directly on zone's unevictable
544 * list.
545 */
546 lru = LRU_UNEVICTABLE;
547 add_page_to_unevictable_list(page);
548 }
549
550 /*
551 * page's status can change while we move it among lru. If an evictable
552 * page is on unevictable list, it never be freed. To avoid that,
553 * check after we added it to the list, again.
554 */
555 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
556 if (!isolate_lru_page(page)) {
557 put_page(page);
558 goto redo;
559 }
560 /* This means someone else dropped this page from LRU
561 * So, it will be freed or putback to LRU again. There is
562 * nothing to do here.
563 */
564 }
565
566 if (was_unevictable && lru != LRU_UNEVICTABLE)
567 count_vm_event(UNEVICTABLE_PGRESCUED);
568 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
569 count_vm_event(UNEVICTABLE_PGCULLED);
570
571 put_page(page); /* drop ref from isolate */
572 }
573
574 /*
575 * shrink_page_list() returns the number of reclaimed pages
576 */
577 static unsigned long shrink_page_list(struct list_head *page_list,
578 struct scan_control *sc,
579 enum pageout_io sync_writeback)
580 {
581 LIST_HEAD(ret_pages);
582 struct pagevec freed_pvec;
583 int pgactivate = 0;
584 unsigned long nr_reclaimed = 0;
585 unsigned long vm_flags;
586
587 cond_resched();
588
589 pagevec_init(&freed_pvec, 1);
590 while (!list_empty(page_list)) {
591 struct address_space *mapping;
592 struct page *page;
593 int may_enter_fs;
594 int referenced;
595
596 cond_resched();
597
598 page = lru_to_page(page_list);
599 list_del(&page->lru);
600
601 if (!trylock_page(page))
602 goto keep;
603
604 VM_BUG_ON(PageActive(page));
605
606 sc->nr_scanned++;
607
608 if (unlikely(!page_evictable(page, NULL)))
609 goto cull_mlocked;
610
611 if (!sc->may_unmap && page_mapped(page))
612 goto keep_locked;
613
614 /* Double the slab pressure for mapped and swapcache pages */
615 if (page_mapped(page) || PageSwapCache(page))
616 sc->nr_scanned++;
617
618 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
619 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
620
621 if (PageWriteback(page)) {
622 /*
623 * Synchronous reclaim is performed in two passes,
624 * first an asynchronous pass over the list to
625 * start parallel writeback, and a second synchronous
626 * pass to wait for the IO to complete. Wait here
627 * for any page for which writeback has already
628 * started.
629 */
630 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
631 wait_on_page_writeback(page);
632 else
633 goto keep_locked;
634 }
635
636 referenced = page_referenced(page, 1,
637 sc->mem_cgroup, &vm_flags);
638 /*
639 * In active use or really unfreeable? Activate it.
640 * If page which have PG_mlocked lost isoltation race,
641 * try_to_unmap moves it to unevictable list
642 */
643 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
644 referenced && page_mapping_inuse(page)
645 && !(vm_flags & VM_LOCKED))
646 goto activate_locked;
647
648 /*
649 * Anonymous process memory has backing store?
650 * Try to allocate it some swap space here.
651 */
652 if (PageAnon(page) && !PageSwapCache(page)) {
653 if (!(sc->gfp_mask & __GFP_IO))
654 goto keep_locked;
655 if (!add_to_swap(page))
656 goto activate_locked;
657 may_enter_fs = 1;
658 }
659
660 mapping = page_mapping(page);
661
662 /*
663 * The page is mapped into the page tables of one or more
664 * processes. Try to unmap it here.
665 */
666 if (page_mapped(page) && mapping) {
667 switch (try_to_unmap(page, 0)) {
668 case SWAP_FAIL:
669 goto activate_locked;
670 case SWAP_AGAIN:
671 goto keep_locked;
672 case SWAP_MLOCK:
673 goto cull_mlocked;
674 case SWAP_SUCCESS:
675 ; /* try to free the page below */
676 }
677 }
678
679 if (PageDirty(page)) {
680 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
681 goto keep_locked;
682 if (!may_enter_fs)
683 goto keep_locked;
684 if (!sc->may_writepage)
685 goto keep_locked;
686
687 /* Page is dirty, try to write it out here */
688 switch (pageout(page, mapping, sync_writeback)) {
689 case PAGE_KEEP:
690 goto keep_locked;
691 case PAGE_ACTIVATE:
692 goto activate_locked;
693 case PAGE_SUCCESS:
694 if (PageWriteback(page) || PageDirty(page))
695 goto keep;
696 /*
697 * A synchronous write - probably a ramdisk. Go
698 * ahead and try to reclaim the page.
699 */
700 if (!trylock_page(page))
701 goto keep;
702 if (PageDirty(page) || PageWriteback(page))
703 goto keep_locked;
704 mapping = page_mapping(page);
705 case PAGE_CLEAN:
706 ; /* try to free the page below */
707 }
708 }
709
710 /*
711 * If the page has buffers, try to free the buffer mappings
712 * associated with this page. If we succeed we try to free
713 * the page as well.
714 *
715 * We do this even if the page is PageDirty().
716 * try_to_release_page() does not perform I/O, but it is
717 * possible for a page to have PageDirty set, but it is actually
718 * clean (all its buffers are clean). This happens if the
719 * buffers were written out directly, with submit_bh(). ext3
720 * will do this, as well as the blockdev mapping.
721 * try_to_release_page() will discover that cleanness and will
722 * drop the buffers and mark the page clean - it can be freed.
723 *
724 * Rarely, pages can have buffers and no ->mapping. These are
725 * the pages which were not successfully invalidated in
726 * truncate_complete_page(). We try to drop those buffers here
727 * and if that worked, and the page is no longer mapped into
728 * process address space (page_count == 1) it can be freed.
729 * Otherwise, leave the page on the LRU so it is swappable.
730 */
731 if (page_has_private(page)) {
732 if (!try_to_release_page(page, sc->gfp_mask))
733 goto activate_locked;
734 if (!mapping && page_count(page) == 1) {
735 unlock_page(page);
736 if (put_page_testzero(page))
737 goto free_it;
738 else {
739 /*
740 * rare race with speculative reference.
741 * the speculative reference will free
742 * this page shortly, so we may
743 * increment nr_reclaimed here (and
744 * leave it off the LRU).
745 */
746 nr_reclaimed++;
747 continue;
748 }
749 }
750 }
751
752 if (!mapping || !__remove_mapping(mapping, page))
753 goto keep_locked;
754
755 /*
756 * At this point, we have no other references and there is
757 * no way to pick any more up (removed from LRU, removed
758 * from pagecache). Can use non-atomic bitops now (and
759 * we obviously don't have to worry about waking up a process
760 * waiting on the page lock, because there are no references.
761 */
762 __clear_page_locked(page);
763 free_it:
764 nr_reclaimed++;
765 if (!pagevec_add(&freed_pvec, page)) {
766 __pagevec_free(&freed_pvec);
767 pagevec_reinit(&freed_pvec);
768 }
769 continue;
770
771 cull_mlocked:
772 if (PageSwapCache(page))
773 try_to_free_swap(page);
774 unlock_page(page);
775 putback_lru_page(page);
776 continue;
777
778 activate_locked:
779 /* Not a candidate for swapping, so reclaim swap space. */
780 if (PageSwapCache(page) && vm_swap_full())
781 try_to_free_swap(page);
782 VM_BUG_ON(PageActive(page));
783 SetPageActive(page);
784 pgactivate++;
785 keep_locked:
786 unlock_page(page);
787 keep:
788 list_add(&page->lru, &ret_pages);
789 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
790 }
791 list_splice(&ret_pages, page_list);
792 if (pagevec_count(&freed_pvec))
793 __pagevec_free(&freed_pvec);
794 count_vm_events(PGACTIVATE, pgactivate);
795 return nr_reclaimed;
796 }
797
798 /* LRU Isolation modes. */
799 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
800 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
801 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
802
803 /*
804 * Attempt to remove the specified page from its LRU. Only take this page
805 * if it is of the appropriate PageActive status. Pages which are being
806 * freed elsewhere are also ignored.
807 *
808 * page: page to consider
809 * mode: one of the LRU isolation modes defined above
810 *
811 * returns 0 on success, -ve errno on failure.
812 */
813 int __isolate_lru_page(struct page *page, int mode, int file)
814 {
815 int ret = -EINVAL;
816
817 /* Only take pages on the LRU. */
818 if (!PageLRU(page))
819 return ret;
820
821 /*
822 * When checking the active state, we need to be sure we are
823 * dealing with comparible boolean values. Take the logical not
824 * of each.
825 */
826 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
827 return ret;
828
829 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
830 return ret;
831
832 /*
833 * When this function is being called for lumpy reclaim, we
834 * initially look into all LRU pages, active, inactive and
835 * unevictable; only give shrink_page_list evictable pages.
836 */
837 if (PageUnevictable(page))
838 return ret;
839
840 ret = -EBUSY;
841
842 if (likely(get_page_unless_zero(page))) {
843 /*
844 * Be careful not to clear PageLRU until after we're
845 * sure the page is not being freed elsewhere -- the
846 * page release code relies on it.
847 */
848 ClearPageLRU(page);
849 ret = 0;
850 }
851
852 return ret;
853 }
854
855 /*
856 * zone->lru_lock is heavily contended. Some of the functions that
857 * shrink the lists perform better by taking out a batch of pages
858 * and working on them outside the LRU lock.
859 *
860 * For pagecache intensive workloads, this function is the hottest
861 * spot in the kernel (apart from copy_*_user functions).
862 *
863 * Appropriate locks must be held before calling this function.
864 *
865 * @nr_to_scan: The number of pages to look through on the list.
866 * @src: The LRU list to pull pages off.
867 * @dst: The temp list to put pages on to.
868 * @scanned: The number of pages that were scanned.
869 * @order: The caller's attempted allocation order
870 * @mode: One of the LRU isolation modes
871 * @file: True [1] if isolating file [!anon] pages
872 *
873 * returns how many pages were moved onto *@dst.
874 */
875 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
876 struct list_head *src, struct list_head *dst,
877 unsigned long *scanned, int order, int mode, int file)
878 {
879 unsigned long nr_taken = 0;
880 unsigned long scan;
881
882 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
883 struct page *page;
884 unsigned long pfn;
885 unsigned long end_pfn;
886 unsigned long page_pfn;
887 int zone_id;
888
889 page = lru_to_page(src);
890 prefetchw_prev_lru_page(page, src, flags);
891
892 VM_BUG_ON(!PageLRU(page));
893
894 switch (__isolate_lru_page(page, mode, file)) {
895 case 0:
896 list_move(&page->lru, dst);
897 mem_cgroup_del_lru(page);
898 nr_taken++;
899 break;
900
901 case -EBUSY:
902 /* else it is being freed elsewhere */
903 list_move(&page->lru, src);
904 mem_cgroup_rotate_lru_list(page, page_lru(page));
905 continue;
906
907 default:
908 BUG();
909 }
910
911 if (!order)
912 continue;
913
914 /*
915 * Attempt to take all pages in the order aligned region
916 * surrounding the tag page. Only take those pages of
917 * the same active state as that tag page. We may safely
918 * round the target page pfn down to the requested order
919 * as the mem_map is guarenteed valid out to MAX_ORDER,
920 * where that page is in a different zone we will detect
921 * it from its zone id and abort this block scan.
922 */
923 zone_id = page_zone_id(page);
924 page_pfn = page_to_pfn(page);
925 pfn = page_pfn & ~((1 << order) - 1);
926 end_pfn = pfn + (1 << order);
927 for (; pfn < end_pfn; pfn++) {
928 struct page *cursor_page;
929
930 /* The target page is in the block, ignore it. */
931 if (unlikely(pfn == page_pfn))
932 continue;
933
934 /* Avoid holes within the zone. */
935 if (unlikely(!pfn_valid_within(pfn)))
936 break;
937
938 cursor_page = pfn_to_page(pfn);
939
940 /* Check that we have not crossed a zone boundary. */
941 if (unlikely(page_zone_id(cursor_page) != zone_id))
942 continue;
943
944 /*
945 * If we don't have enough swap space, reclaiming of
946 * anon page which don't already have a swap slot is
947 * pointless.
948 */
949 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
950 !PageSwapCache(cursor_page))
951 continue;
952
953 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
954 list_move(&cursor_page->lru, dst);
955 mem_cgroup_del_lru(cursor_page);
956 nr_taken++;
957 scan++;
958 }
959 }
960 }
961
962 *scanned = scan;
963 return nr_taken;
964 }
965
966 static unsigned long isolate_pages_global(unsigned long nr,
967 struct list_head *dst,
968 unsigned long *scanned, int order,
969 int mode, struct zone *z,
970 struct mem_cgroup *mem_cont,
971 int active, int file)
972 {
973 int lru = LRU_BASE;
974 if (active)
975 lru += LRU_ACTIVE;
976 if (file)
977 lru += LRU_FILE;
978 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
979 mode, file);
980 }
981
982 /*
983 * clear_active_flags() is a helper for shrink_active_list(), clearing
984 * any active bits from the pages in the list.
985 */
986 static unsigned long clear_active_flags(struct list_head *page_list,
987 unsigned int *count)
988 {
989 int nr_active = 0;
990 int lru;
991 struct page *page;
992
993 list_for_each_entry(page, page_list, lru) {
994 lru = page_lru_base_type(page);
995 if (PageActive(page)) {
996 lru += LRU_ACTIVE;
997 ClearPageActive(page);
998 nr_active++;
999 }
1000 count[lru]++;
1001 }
1002
1003 return nr_active;
1004 }
1005
1006 /**
1007 * isolate_lru_page - tries to isolate a page from its LRU list
1008 * @page: page to isolate from its LRU list
1009 *
1010 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1011 * vmstat statistic corresponding to whatever LRU list the page was on.
1012 *
1013 * Returns 0 if the page was removed from an LRU list.
1014 * Returns -EBUSY if the page was not on an LRU list.
1015 *
1016 * The returned page will have PageLRU() cleared. If it was found on
1017 * the active list, it will have PageActive set. If it was found on
1018 * the unevictable list, it will have the PageUnevictable bit set. That flag
1019 * may need to be cleared by the caller before letting the page go.
1020 *
1021 * The vmstat statistic corresponding to the list on which the page was
1022 * found will be decremented.
1023 *
1024 * Restrictions:
1025 * (1) Must be called with an elevated refcount on the page. This is a
1026 * fundamentnal difference from isolate_lru_pages (which is called
1027 * without a stable reference).
1028 * (2) the lru_lock must not be held.
1029 * (3) interrupts must be enabled.
1030 */
1031 int isolate_lru_page(struct page *page)
1032 {
1033 int ret = -EBUSY;
1034
1035 if (PageLRU(page)) {
1036 struct zone *zone = page_zone(page);
1037
1038 spin_lock_irq(&zone->lru_lock);
1039 if (PageLRU(page) && get_page_unless_zero(page)) {
1040 int lru = page_lru(page);
1041 ret = 0;
1042 ClearPageLRU(page);
1043
1044 del_page_from_lru_list(zone, page, lru);
1045 }
1046 spin_unlock_irq(&zone->lru_lock);
1047 }
1048 return ret;
1049 }
1050
1051 /*
1052 * Are there way too many processes in the direct reclaim path already?
1053 */
1054 static int too_many_isolated(struct zone *zone, int file,
1055 struct scan_control *sc)
1056 {
1057 unsigned long inactive, isolated;
1058
1059 if (current_is_kswapd())
1060 return 0;
1061
1062 if (!scanning_global_lru(sc))
1063 return 0;
1064
1065 if (file) {
1066 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1067 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1068 } else {
1069 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1070 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1071 }
1072
1073 return isolated > inactive;
1074 }
1075
1076 /*
1077 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1078 * of reclaimed pages
1079 */
1080 static unsigned long shrink_inactive_list(unsigned long max_scan,
1081 struct zone *zone, struct scan_control *sc,
1082 int priority, int file)
1083 {
1084 LIST_HEAD(page_list);
1085 struct pagevec pvec;
1086 unsigned long nr_scanned = 0;
1087 unsigned long nr_reclaimed = 0;
1088 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1089 int lumpy_reclaim = 0;
1090
1091 while (unlikely(too_many_isolated(zone, file, sc))) {
1092 congestion_wait(WRITE, HZ/10);
1093
1094 /* We are about to die and free our memory. Return now. */
1095 if (fatal_signal_pending(current))
1096 return SWAP_CLUSTER_MAX;
1097 }
1098
1099 /*
1100 * If we need a large contiguous chunk of memory, or have
1101 * trouble getting a small set of contiguous pages, we
1102 * will reclaim both active and inactive pages.
1103 *
1104 * We use the same threshold as pageout congestion_wait below.
1105 */
1106 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1107 lumpy_reclaim = 1;
1108 else if (sc->order && priority < DEF_PRIORITY - 2)
1109 lumpy_reclaim = 1;
1110
1111 pagevec_init(&pvec, 1);
1112
1113 lru_add_drain();
1114 spin_lock_irq(&zone->lru_lock);
1115 do {
1116 struct page *page;
1117 unsigned long nr_taken;
1118 unsigned long nr_scan;
1119 unsigned long nr_freed;
1120 unsigned long nr_active;
1121 unsigned int count[NR_LRU_LISTS] = { 0, };
1122 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1123 unsigned long nr_anon;
1124 unsigned long nr_file;
1125
1126 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1127 &page_list, &nr_scan, sc->order, mode,
1128 zone, sc->mem_cgroup, 0, file);
1129
1130 if (scanning_global_lru(sc)) {
1131 zone->pages_scanned += nr_scan;
1132 if (current_is_kswapd())
1133 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1134 nr_scan);
1135 else
1136 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1137 nr_scan);
1138 }
1139
1140 if (nr_taken == 0)
1141 goto done;
1142
1143 nr_active = clear_active_flags(&page_list, count);
1144 __count_vm_events(PGDEACTIVATE, nr_active);
1145
1146 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1147 -count[LRU_ACTIVE_FILE]);
1148 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1149 -count[LRU_INACTIVE_FILE]);
1150 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1151 -count[LRU_ACTIVE_ANON]);
1152 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1153 -count[LRU_INACTIVE_ANON]);
1154
1155 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1156 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1157 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1158 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1159
1160 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1161 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1162 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1163 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1164
1165 spin_unlock_irq(&zone->lru_lock);
1166
1167 nr_scanned += nr_scan;
1168 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1169
1170 /*
1171 * If we are direct reclaiming for contiguous pages and we do
1172 * not reclaim everything in the list, try again and wait
1173 * for IO to complete. This will stall high-order allocations
1174 * but that should be acceptable to the caller
1175 */
1176 if (nr_freed < nr_taken && !current_is_kswapd() &&
1177 lumpy_reclaim) {
1178 congestion_wait(BLK_RW_ASYNC, HZ/10);
1179
1180 /*
1181 * The attempt at page out may have made some
1182 * of the pages active, mark them inactive again.
1183 */
1184 nr_active = clear_active_flags(&page_list, count);
1185 count_vm_events(PGDEACTIVATE, nr_active);
1186
1187 nr_freed += shrink_page_list(&page_list, sc,
1188 PAGEOUT_IO_SYNC);
1189 }
1190
1191 nr_reclaimed += nr_freed;
1192
1193 local_irq_disable();
1194 if (current_is_kswapd())
1195 __count_vm_events(KSWAPD_STEAL, nr_freed);
1196 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1197
1198 spin_lock(&zone->lru_lock);
1199 /*
1200 * Put back any unfreeable pages.
1201 */
1202 while (!list_empty(&page_list)) {
1203 int lru;
1204 page = lru_to_page(&page_list);
1205 VM_BUG_ON(PageLRU(page));
1206 list_del(&page->lru);
1207 if (unlikely(!page_evictable(page, NULL))) {
1208 spin_unlock_irq(&zone->lru_lock);
1209 putback_lru_page(page);
1210 spin_lock_irq(&zone->lru_lock);
1211 continue;
1212 }
1213 SetPageLRU(page);
1214 lru = page_lru(page);
1215 add_page_to_lru_list(zone, page, lru);
1216 if (is_active_lru(lru)) {
1217 int file = is_file_lru(lru);
1218 reclaim_stat->recent_rotated[file]++;
1219 }
1220 if (!pagevec_add(&pvec, page)) {
1221 spin_unlock_irq(&zone->lru_lock);
1222 __pagevec_release(&pvec);
1223 spin_lock_irq(&zone->lru_lock);
1224 }
1225 }
1226 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1227 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1228
1229 } while (nr_scanned < max_scan);
1230
1231 done:
1232 spin_unlock_irq(&zone->lru_lock);
1233 pagevec_release(&pvec);
1234 return nr_reclaimed;
1235 }
1236
1237 /*
1238 * We are about to scan this zone at a certain priority level. If that priority
1239 * level is smaller (ie: more urgent) than the previous priority, then note
1240 * that priority level within the zone. This is done so that when the next
1241 * process comes in to scan this zone, it will immediately start out at this
1242 * priority level rather than having to build up its own scanning priority.
1243 * Here, this priority affects only the reclaim-mapped threshold.
1244 */
1245 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1246 {
1247 if (priority < zone->prev_priority)
1248 zone->prev_priority = priority;
1249 }
1250
1251 /*
1252 * This moves pages from the active list to the inactive list.
1253 *
1254 * We move them the other way if the page is referenced by one or more
1255 * processes, from rmap.
1256 *
1257 * If the pages are mostly unmapped, the processing is fast and it is
1258 * appropriate to hold zone->lru_lock across the whole operation. But if
1259 * the pages are mapped, the processing is slow (page_referenced()) so we
1260 * should drop zone->lru_lock around each page. It's impossible to balance
1261 * this, so instead we remove the pages from the LRU while processing them.
1262 * It is safe to rely on PG_active against the non-LRU pages in here because
1263 * nobody will play with that bit on a non-LRU page.
1264 *
1265 * The downside is that we have to touch page->_count against each page.
1266 * But we had to alter page->flags anyway.
1267 */
1268
1269 static void move_active_pages_to_lru(struct zone *zone,
1270 struct list_head *list,
1271 enum lru_list lru)
1272 {
1273 unsigned long pgmoved = 0;
1274 struct pagevec pvec;
1275 struct page *page;
1276
1277 pagevec_init(&pvec, 1);
1278
1279 while (!list_empty(list)) {
1280 page = lru_to_page(list);
1281
1282 VM_BUG_ON(PageLRU(page));
1283 SetPageLRU(page);
1284
1285 list_move(&page->lru, &zone->lru[lru].list);
1286 mem_cgroup_add_lru_list(page, lru);
1287 pgmoved++;
1288
1289 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1290 spin_unlock_irq(&zone->lru_lock);
1291 if (buffer_heads_over_limit)
1292 pagevec_strip(&pvec);
1293 __pagevec_release(&pvec);
1294 spin_lock_irq(&zone->lru_lock);
1295 }
1296 }
1297 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1298 if (!is_active_lru(lru))
1299 __count_vm_events(PGDEACTIVATE, pgmoved);
1300 }
1301
1302 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1303 struct scan_control *sc, int priority, int file)
1304 {
1305 unsigned long nr_taken;
1306 unsigned long pgscanned;
1307 unsigned long vm_flags;
1308 LIST_HEAD(l_hold); /* The pages which were snipped off */
1309 LIST_HEAD(l_active);
1310 LIST_HEAD(l_inactive);
1311 struct page *page;
1312 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1313 unsigned long nr_rotated = 0;
1314
1315 lru_add_drain();
1316 spin_lock_irq(&zone->lru_lock);
1317 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1318 ISOLATE_ACTIVE, zone,
1319 sc->mem_cgroup, 1, file);
1320 /*
1321 * zone->pages_scanned is used for detect zone's oom
1322 * mem_cgroup remembers nr_scan by itself.
1323 */
1324 if (scanning_global_lru(sc)) {
1325 zone->pages_scanned += pgscanned;
1326 }
1327 reclaim_stat->recent_scanned[file] += nr_taken;
1328
1329 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1330 if (file)
1331 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1332 else
1333 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1334 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1335 spin_unlock_irq(&zone->lru_lock);
1336
1337 while (!list_empty(&l_hold)) {
1338 cond_resched();
1339 page = lru_to_page(&l_hold);
1340 list_del(&page->lru);
1341
1342 if (unlikely(!page_evictable(page, NULL))) {
1343 putback_lru_page(page);
1344 continue;
1345 }
1346
1347 /* page_referenced clears PageReferenced */
1348 if (page_mapping_inuse(page) &&
1349 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1350 nr_rotated++;
1351 /*
1352 * Identify referenced, file-backed active pages and
1353 * give them one more trip around the active list. So
1354 * that executable code get better chances to stay in
1355 * memory under moderate memory pressure. Anon pages
1356 * are not likely to be evicted by use-once streaming
1357 * IO, plus JVM can create lots of anon VM_EXEC pages,
1358 * so we ignore them here.
1359 */
1360 if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1361 list_add(&page->lru, &l_active);
1362 continue;
1363 }
1364 }
1365
1366 ClearPageActive(page); /* we are de-activating */
1367 list_add(&page->lru, &l_inactive);
1368 }
1369
1370 /*
1371 * Move pages back to the lru list.
1372 */
1373 spin_lock_irq(&zone->lru_lock);
1374 /*
1375 * Count referenced pages from currently used mappings as rotated,
1376 * even though only some of them are actually re-activated. This
1377 * helps balance scan pressure between file and anonymous pages in
1378 * get_scan_ratio.
1379 */
1380 reclaim_stat->recent_rotated[file] += nr_rotated;
1381
1382 move_active_pages_to_lru(zone, &l_active,
1383 LRU_ACTIVE + file * LRU_FILE);
1384 move_active_pages_to_lru(zone, &l_inactive,
1385 LRU_BASE + file * LRU_FILE);
1386 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1387 spin_unlock_irq(&zone->lru_lock);
1388 }
1389
1390 static int inactive_anon_is_low_global(struct zone *zone)
1391 {
1392 unsigned long active, inactive;
1393
1394 active = zone_page_state(zone, NR_ACTIVE_ANON);
1395 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1396
1397 if (inactive * zone->inactive_ratio < active)
1398 return 1;
1399
1400 return 0;
1401 }
1402
1403 /**
1404 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1405 * @zone: zone to check
1406 * @sc: scan control of this context
1407 *
1408 * Returns true if the zone does not have enough inactive anon pages,
1409 * meaning some active anon pages need to be deactivated.
1410 */
1411 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1412 {
1413 int low;
1414
1415 if (scanning_global_lru(sc))
1416 low = inactive_anon_is_low_global(zone);
1417 else
1418 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1419 return low;
1420 }
1421
1422 static int inactive_file_is_low_global(struct zone *zone)
1423 {
1424 unsigned long active, inactive;
1425
1426 active = zone_page_state(zone, NR_ACTIVE_FILE);
1427 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1428
1429 return (active > inactive);
1430 }
1431
1432 /**
1433 * inactive_file_is_low - check if file pages need to be deactivated
1434 * @zone: zone to check
1435 * @sc: scan control of this context
1436 *
1437 * When the system is doing streaming IO, memory pressure here
1438 * ensures that active file pages get deactivated, until more
1439 * than half of the file pages are on the inactive list.
1440 *
1441 * Once we get to that situation, protect the system's working
1442 * set from being evicted by disabling active file page aging.
1443 *
1444 * This uses a different ratio than the anonymous pages, because
1445 * the page cache uses a use-once replacement algorithm.
1446 */
1447 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1448 {
1449 int low;
1450
1451 if (scanning_global_lru(sc))
1452 low = inactive_file_is_low_global(zone);
1453 else
1454 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1455 return low;
1456 }
1457
1458 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1459 struct zone *zone, struct scan_control *sc, int priority)
1460 {
1461 int file = is_file_lru(lru);
1462
1463 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1464 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1465 return 0;
1466 }
1467
1468 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1469 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1470 return 0;
1471 }
1472 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1473 }
1474
1475 /*
1476 * Determine how aggressively the anon and file LRU lists should be
1477 * scanned. The relative value of each set of LRU lists is determined
1478 * by looking at the fraction of the pages scanned we did rotate back
1479 * onto the active list instead of evict.
1480 *
1481 * percent[0] specifies how much pressure to put on ram/swap backed
1482 * memory, while percent[1] determines pressure on the file LRUs.
1483 */
1484 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1485 unsigned long *percent)
1486 {
1487 unsigned long anon, file, free;
1488 unsigned long anon_prio, file_prio;
1489 unsigned long ap, fp;
1490 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1491
1492 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1493 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1494 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1495 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1496
1497 if (scanning_global_lru(sc)) {
1498 free = zone_page_state(zone, NR_FREE_PAGES);
1499 /* If we have very few page cache pages,
1500 force-scan anon pages. */
1501 if (unlikely(file + free <= high_wmark_pages(zone))) {
1502 percent[0] = 100;
1503 percent[1] = 0;
1504 return;
1505 }
1506 }
1507
1508 /*
1509 * OK, so we have swap space and a fair amount of page cache
1510 * pages. We use the recently rotated / recently scanned
1511 * ratios to determine how valuable each cache is.
1512 *
1513 * Because workloads change over time (and to avoid overflow)
1514 * we keep these statistics as a floating average, which ends
1515 * up weighing recent references more than old ones.
1516 *
1517 * anon in [0], file in [1]
1518 */
1519 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1520 spin_lock_irq(&zone->lru_lock);
1521 reclaim_stat->recent_scanned[0] /= 2;
1522 reclaim_stat->recent_rotated[0] /= 2;
1523 spin_unlock_irq(&zone->lru_lock);
1524 }
1525
1526 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1527 spin_lock_irq(&zone->lru_lock);
1528 reclaim_stat->recent_scanned[1] /= 2;
1529 reclaim_stat->recent_rotated[1] /= 2;
1530 spin_unlock_irq(&zone->lru_lock);
1531 }
1532
1533 /*
1534 * With swappiness at 100, anonymous and file have the same priority.
1535 * This scanning priority is essentially the inverse of IO cost.
1536 */
1537 anon_prio = sc->swappiness;
1538 file_prio = 200 - sc->swappiness;
1539
1540 /*
1541 * The amount of pressure on anon vs file pages is inversely
1542 * proportional to the fraction of recently scanned pages on
1543 * each list that were recently referenced and in active use.
1544 */
1545 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1546 ap /= reclaim_stat->recent_rotated[0] + 1;
1547
1548 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1549 fp /= reclaim_stat->recent_rotated[1] + 1;
1550
1551 /* Normalize to percentages */
1552 percent[0] = 100 * ap / (ap + fp + 1);
1553 percent[1] = 100 - percent[0];
1554 }
1555
1556 /*
1557 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1558 * until we collected @swap_cluster_max pages to scan.
1559 */
1560 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1561 unsigned long *nr_saved_scan,
1562 unsigned long swap_cluster_max)
1563 {
1564 unsigned long nr;
1565
1566 *nr_saved_scan += nr_to_scan;
1567 nr = *nr_saved_scan;
1568
1569 if (nr >= swap_cluster_max)
1570 *nr_saved_scan = 0;
1571 else
1572 nr = 0;
1573
1574 return nr;
1575 }
1576
1577 /*
1578 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1579 */
1580 static void shrink_zone(int priority, struct zone *zone,
1581 struct scan_control *sc)
1582 {
1583 unsigned long nr[NR_LRU_LISTS];
1584 unsigned long nr_to_scan;
1585 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1586 enum lru_list l;
1587 unsigned long nr_reclaimed = sc->nr_reclaimed;
1588 unsigned long swap_cluster_max = sc->swap_cluster_max;
1589 int noswap = 0;
1590
1591 /* If we have no swap space, do not bother scanning anon pages. */
1592 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1593 noswap = 1;
1594 percent[0] = 0;
1595 percent[1] = 100;
1596 } else
1597 get_scan_ratio(zone, sc, percent);
1598
1599 for_each_evictable_lru(l) {
1600 int file = is_file_lru(l);
1601 unsigned long scan;
1602
1603 scan = zone_nr_lru_pages(zone, sc, l);
1604 if (priority || noswap) {
1605 scan >>= priority;
1606 scan = (scan * percent[file]) / 100;
1607 }
1608 if (scanning_global_lru(sc))
1609 nr[l] = nr_scan_try_batch(scan,
1610 &zone->lru[l].nr_saved_scan,
1611 swap_cluster_max);
1612 else
1613 nr[l] = scan;
1614 }
1615
1616 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1617 nr[LRU_INACTIVE_FILE]) {
1618 for_each_evictable_lru(l) {
1619 if (nr[l]) {
1620 nr_to_scan = min(nr[l], swap_cluster_max);
1621 nr[l] -= nr_to_scan;
1622
1623 nr_reclaimed += shrink_list(l, nr_to_scan,
1624 zone, sc, priority);
1625 }
1626 }
1627 /*
1628 * On large memory systems, scan >> priority can become
1629 * really large. This is fine for the starting priority;
1630 * we want to put equal scanning pressure on each zone.
1631 * However, if the VM has a harder time of freeing pages,
1632 * with multiple processes reclaiming pages, the total
1633 * freeing target can get unreasonably large.
1634 */
1635 if (nr_reclaimed > swap_cluster_max &&
1636 priority < DEF_PRIORITY && !current_is_kswapd())
1637 break;
1638 }
1639
1640 sc->nr_reclaimed = nr_reclaimed;
1641
1642 /*
1643 * Even if we did not try to evict anon pages at all, we want to
1644 * rebalance the anon lru active/inactive ratio.
1645 */
1646 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1647 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1648
1649 throttle_vm_writeout(sc->gfp_mask);
1650 }
1651
1652 /*
1653 * This is the direct reclaim path, for page-allocating processes. We only
1654 * try to reclaim pages from zones which will satisfy the caller's allocation
1655 * request.
1656 *
1657 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1658 * Because:
1659 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1660 * allocation or
1661 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1662 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1663 * zone defense algorithm.
1664 *
1665 * If a zone is deemed to be full of pinned pages then just give it a light
1666 * scan then give up on it.
1667 */
1668 static void shrink_zones(int priority, struct zonelist *zonelist,
1669 struct scan_control *sc)
1670 {
1671 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1672 struct zoneref *z;
1673 struct zone *zone;
1674
1675 sc->all_unreclaimable = 1;
1676 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1677 sc->nodemask) {
1678 if (!populated_zone(zone))
1679 continue;
1680 /*
1681 * Take care memory controller reclaiming has small influence
1682 * to global LRU.
1683 */
1684 if (scanning_global_lru(sc)) {
1685 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1686 continue;
1687 note_zone_scanning_priority(zone, priority);
1688
1689 if (zone_is_all_unreclaimable(zone) &&
1690 priority != DEF_PRIORITY)
1691 continue; /* Let kswapd poll it */
1692 sc->all_unreclaimable = 0;
1693 } else {
1694 /*
1695 * Ignore cpuset limitation here. We just want to reduce
1696 * # of used pages by us regardless of memory shortage.
1697 */
1698 sc->all_unreclaimable = 0;
1699 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1700 priority);
1701 }
1702
1703 shrink_zone(priority, zone, sc);
1704 }
1705 }
1706
1707 /*
1708 * This is the main entry point to direct page reclaim.
1709 *
1710 * If a full scan of the inactive list fails to free enough memory then we
1711 * are "out of memory" and something needs to be killed.
1712 *
1713 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1714 * high - the zone may be full of dirty or under-writeback pages, which this
1715 * caller can't do much about. We kick pdflush and take explicit naps in the
1716 * hope that some of these pages can be written. But if the allocating task
1717 * holds filesystem locks which prevent writeout this might not work, and the
1718 * allocation attempt will fail.
1719 *
1720 * returns: 0, if no pages reclaimed
1721 * else, the number of pages reclaimed
1722 */
1723 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1724 struct scan_control *sc)
1725 {
1726 int priority;
1727 unsigned long ret = 0;
1728 unsigned long total_scanned = 0;
1729 struct reclaim_state *reclaim_state = current->reclaim_state;
1730 unsigned long lru_pages = 0;
1731 struct zoneref *z;
1732 struct zone *zone;
1733 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1734
1735 delayacct_freepages_start();
1736
1737 if (scanning_global_lru(sc))
1738 count_vm_event(ALLOCSTALL);
1739 /*
1740 * mem_cgroup will not do shrink_slab.
1741 */
1742 if (scanning_global_lru(sc)) {
1743 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1744
1745 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1746 continue;
1747
1748 lru_pages += zone_reclaimable_pages(zone);
1749 }
1750 }
1751
1752 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1753 sc->nr_scanned = 0;
1754 if (!priority)
1755 disable_swap_token();
1756 shrink_zones(priority, zonelist, sc);
1757 /*
1758 * Don't shrink slabs when reclaiming memory from
1759 * over limit cgroups
1760 */
1761 if (scanning_global_lru(sc)) {
1762 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1763 if (reclaim_state) {
1764 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1765 reclaim_state->reclaimed_slab = 0;
1766 }
1767 }
1768 total_scanned += sc->nr_scanned;
1769 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1770 ret = sc->nr_reclaimed;
1771 goto out;
1772 }
1773
1774 /*
1775 * Try to write back as many pages as we just scanned. This
1776 * tends to cause slow streaming writers to write data to the
1777 * disk smoothly, at the dirtying rate, which is nice. But
1778 * that's undesirable in laptop mode, where we *want* lumpy
1779 * writeout. So in laptop mode, write out the whole world.
1780 */
1781 if (total_scanned > sc->swap_cluster_max +
1782 sc->swap_cluster_max / 2) {
1783 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1784 sc->may_writepage = 1;
1785 }
1786
1787 /* Take a nap, wait for some writeback to complete */
1788 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1789 congestion_wait(BLK_RW_ASYNC, HZ/10);
1790 }
1791 /* top priority shrink_zones still had more to do? don't OOM, then */
1792 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1793 ret = sc->nr_reclaimed;
1794 out:
1795 /*
1796 * Now that we've scanned all the zones at this priority level, note
1797 * that level within the zone so that the next thread which performs
1798 * scanning of this zone will immediately start out at this priority
1799 * level. This affects only the decision whether or not to bring
1800 * mapped pages onto the inactive list.
1801 */
1802 if (priority < 0)
1803 priority = 0;
1804
1805 if (scanning_global_lru(sc)) {
1806 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1807
1808 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1809 continue;
1810
1811 zone->prev_priority = priority;
1812 }
1813 } else
1814 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1815
1816 delayacct_freepages_end();
1817
1818 return ret;
1819 }
1820
1821 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1822 gfp_t gfp_mask, nodemask_t *nodemask)
1823 {
1824 struct scan_control sc = {
1825 .gfp_mask = gfp_mask,
1826 .may_writepage = !laptop_mode,
1827 .swap_cluster_max = SWAP_CLUSTER_MAX,
1828 .may_unmap = 1,
1829 .may_swap = 1,
1830 .swappiness = vm_swappiness,
1831 .order = order,
1832 .mem_cgroup = NULL,
1833 .isolate_pages = isolate_pages_global,
1834 .nodemask = nodemask,
1835 };
1836
1837 return do_try_to_free_pages(zonelist, &sc);
1838 }
1839
1840 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1841
1842 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1843 gfp_t gfp_mask,
1844 bool noswap,
1845 unsigned int swappiness)
1846 {
1847 struct scan_control sc = {
1848 .may_writepage = !laptop_mode,
1849 .may_unmap = 1,
1850 .may_swap = !noswap,
1851 .swap_cluster_max = SWAP_CLUSTER_MAX,
1852 .swappiness = swappiness,
1853 .order = 0,
1854 .mem_cgroup = mem_cont,
1855 .isolate_pages = mem_cgroup_isolate_pages,
1856 .nodemask = NULL, /* we don't care the placement */
1857 };
1858 struct zonelist *zonelist;
1859
1860 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1861 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1862 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1863 return do_try_to_free_pages(zonelist, &sc);
1864 }
1865 #endif
1866
1867 /*
1868 * For kswapd, balance_pgdat() will work across all this node's zones until
1869 * they are all at high_wmark_pages(zone).
1870 *
1871 * Returns the number of pages which were actually freed.
1872 *
1873 * There is special handling here for zones which are full of pinned pages.
1874 * This can happen if the pages are all mlocked, or if they are all used by
1875 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1876 * What we do is to detect the case where all pages in the zone have been
1877 * scanned twice and there has been zero successful reclaim. Mark the zone as
1878 * dead and from now on, only perform a short scan. Basically we're polling
1879 * the zone for when the problem goes away.
1880 *
1881 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1882 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1883 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1884 * lower zones regardless of the number of free pages in the lower zones. This
1885 * interoperates with the page allocator fallback scheme to ensure that aging
1886 * of pages is balanced across the zones.
1887 */
1888 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1889 {
1890 int all_zones_ok;
1891 int priority;
1892 int i;
1893 unsigned long total_scanned;
1894 struct reclaim_state *reclaim_state = current->reclaim_state;
1895 struct scan_control sc = {
1896 .gfp_mask = GFP_KERNEL,
1897 .may_unmap = 1,
1898 .may_swap = 1,
1899 .swap_cluster_max = SWAP_CLUSTER_MAX,
1900 .swappiness = vm_swappiness,
1901 .order = order,
1902 .mem_cgroup = NULL,
1903 .isolate_pages = isolate_pages_global,
1904 };
1905 /*
1906 * temp_priority is used to remember the scanning priority at which
1907 * this zone was successfully refilled to
1908 * free_pages == high_wmark_pages(zone).
1909 */
1910 int temp_priority[MAX_NR_ZONES];
1911
1912 loop_again:
1913 total_scanned = 0;
1914 sc.nr_reclaimed = 0;
1915 sc.may_writepage = !laptop_mode;
1916 count_vm_event(PAGEOUTRUN);
1917
1918 for (i = 0; i < pgdat->nr_zones; i++)
1919 temp_priority[i] = DEF_PRIORITY;
1920
1921 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1922 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1923 unsigned long lru_pages = 0;
1924
1925 /* The swap token gets in the way of swapout... */
1926 if (!priority)
1927 disable_swap_token();
1928
1929 all_zones_ok = 1;
1930
1931 /*
1932 * Scan in the highmem->dma direction for the highest
1933 * zone which needs scanning
1934 */
1935 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1936 struct zone *zone = pgdat->node_zones + i;
1937
1938 if (!populated_zone(zone))
1939 continue;
1940
1941 if (zone_is_all_unreclaimable(zone) &&
1942 priority != DEF_PRIORITY)
1943 continue;
1944
1945 /*
1946 * Do some background aging of the anon list, to give
1947 * pages a chance to be referenced before reclaiming.
1948 */
1949 if (inactive_anon_is_low(zone, &sc))
1950 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1951 &sc, priority, 0);
1952
1953 if (!zone_watermark_ok(zone, order,
1954 high_wmark_pages(zone), 0, 0)) {
1955 end_zone = i;
1956 break;
1957 }
1958 }
1959 if (i < 0)
1960 goto out;
1961
1962 for (i = 0; i <= end_zone; i++) {
1963 struct zone *zone = pgdat->node_zones + i;
1964
1965 lru_pages += zone_reclaimable_pages(zone);
1966 }
1967
1968 /*
1969 * Now scan the zone in the dma->highmem direction, stopping
1970 * at the last zone which needs scanning.
1971 *
1972 * We do this because the page allocator works in the opposite
1973 * direction. This prevents the page allocator from allocating
1974 * pages behind kswapd's direction of progress, which would
1975 * cause too much scanning of the lower zones.
1976 */
1977 for (i = 0; i <= end_zone; i++) {
1978 struct zone *zone = pgdat->node_zones + i;
1979 int nr_slab;
1980
1981 if (!populated_zone(zone))
1982 continue;
1983
1984 if (zone_is_all_unreclaimable(zone) &&
1985 priority != DEF_PRIORITY)
1986 continue;
1987
1988 if (!zone_watermark_ok(zone, order,
1989 high_wmark_pages(zone), end_zone, 0))
1990 all_zones_ok = 0;
1991 temp_priority[i] = priority;
1992 sc.nr_scanned = 0;
1993 note_zone_scanning_priority(zone, priority);
1994 /*
1995 * We put equal pressure on every zone, unless one
1996 * zone has way too many pages free already.
1997 */
1998 if (!zone_watermark_ok(zone, order,
1999 8*high_wmark_pages(zone), end_zone, 0))
2000 shrink_zone(priority, zone, &sc);
2001 reclaim_state->reclaimed_slab = 0;
2002 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2003 lru_pages);
2004 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2005 total_scanned += sc.nr_scanned;
2006 if (zone_is_all_unreclaimable(zone))
2007 continue;
2008 if (nr_slab == 0 && zone->pages_scanned >=
2009 (zone_reclaimable_pages(zone) * 6))
2010 zone_set_flag(zone,
2011 ZONE_ALL_UNRECLAIMABLE);
2012 /*
2013 * If we've done a decent amount of scanning and
2014 * the reclaim ratio is low, start doing writepage
2015 * even in laptop mode
2016 */
2017 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2018 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2019 sc.may_writepage = 1;
2020 }
2021 if (all_zones_ok)
2022 break; /* kswapd: all done */
2023 /*
2024 * OK, kswapd is getting into trouble. Take a nap, then take
2025 * another pass across the zones.
2026 */
2027 if (total_scanned && priority < DEF_PRIORITY - 2)
2028 congestion_wait(BLK_RW_ASYNC, HZ/10);
2029
2030 /*
2031 * We do this so kswapd doesn't build up large priorities for
2032 * example when it is freeing in parallel with allocators. It
2033 * matches the direct reclaim path behaviour in terms of impact
2034 * on zone->*_priority.
2035 */
2036 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2037 break;
2038 }
2039 out:
2040 /*
2041 * Note within each zone the priority level at which this zone was
2042 * brought into a happy state. So that the next thread which scans this
2043 * zone will start out at that priority level.
2044 */
2045 for (i = 0; i < pgdat->nr_zones; i++) {
2046 struct zone *zone = pgdat->node_zones + i;
2047
2048 zone->prev_priority = temp_priority[i];
2049 }
2050 if (!all_zones_ok) {
2051 cond_resched();
2052
2053 try_to_freeze();
2054
2055 /*
2056 * Fragmentation may mean that the system cannot be
2057 * rebalanced for high-order allocations in all zones.
2058 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2059 * it means the zones have been fully scanned and are still
2060 * not balanced. For high-order allocations, there is
2061 * little point trying all over again as kswapd may
2062 * infinite loop.
2063 *
2064 * Instead, recheck all watermarks at order-0 as they
2065 * are the most important. If watermarks are ok, kswapd will go
2066 * back to sleep. High-order users can still perform direct
2067 * reclaim if they wish.
2068 */
2069 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2070 order = sc.order = 0;
2071
2072 goto loop_again;
2073 }
2074
2075 return sc.nr_reclaimed;
2076 }
2077
2078 /*
2079 * The background pageout daemon, started as a kernel thread
2080 * from the init process.
2081 *
2082 * This basically trickles out pages so that we have _some_
2083 * free memory available even if there is no other activity
2084 * that frees anything up. This is needed for things like routing
2085 * etc, where we otherwise might have all activity going on in
2086 * asynchronous contexts that cannot page things out.
2087 *
2088 * If there are applications that are active memory-allocators
2089 * (most normal use), this basically shouldn't matter.
2090 */
2091 static int kswapd(void *p)
2092 {
2093 unsigned long order;
2094 pg_data_t *pgdat = (pg_data_t*)p;
2095 struct task_struct *tsk = current;
2096 DEFINE_WAIT(wait);
2097 struct reclaim_state reclaim_state = {
2098 .reclaimed_slab = 0,
2099 };
2100 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2101
2102 lockdep_set_current_reclaim_state(GFP_KERNEL);
2103
2104 if (!cpumask_empty(cpumask))
2105 set_cpus_allowed_ptr(tsk, cpumask);
2106 current->reclaim_state = &reclaim_state;
2107
2108 /*
2109 * Tell the memory management that we're a "memory allocator",
2110 * and that if we need more memory we should get access to it
2111 * regardless (see "__alloc_pages()"). "kswapd" should
2112 * never get caught in the normal page freeing logic.
2113 *
2114 * (Kswapd normally doesn't need memory anyway, but sometimes
2115 * you need a small amount of memory in order to be able to
2116 * page out something else, and this flag essentially protects
2117 * us from recursively trying to free more memory as we're
2118 * trying to free the first piece of memory in the first place).
2119 */
2120 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2121 set_freezable();
2122
2123 order = 0;
2124 for ( ; ; ) {
2125 unsigned long new_order;
2126
2127 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2128 new_order = pgdat->kswapd_max_order;
2129 pgdat->kswapd_max_order = 0;
2130 if (order < new_order) {
2131 /*
2132 * Don't sleep if someone wants a larger 'order'
2133 * allocation
2134 */
2135 order = new_order;
2136 } else {
2137 if (!freezing(current))
2138 schedule();
2139
2140 order = pgdat->kswapd_max_order;
2141 }
2142 finish_wait(&pgdat->kswapd_wait, &wait);
2143
2144 if (!try_to_freeze()) {
2145 /* We can speed up thawing tasks if we don't call
2146 * balance_pgdat after returning from the refrigerator
2147 */
2148 balance_pgdat(pgdat, order);
2149 }
2150 }
2151 return 0;
2152 }
2153
2154 /*
2155 * A zone is low on free memory, so wake its kswapd task to service it.
2156 */
2157 void wakeup_kswapd(struct zone *zone, int order)
2158 {
2159 pg_data_t *pgdat;
2160
2161 if (!populated_zone(zone))
2162 return;
2163
2164 pgdat = zone->zone_pgdat;
2165 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2166 return;
2167 if (pgdat->kswapd_max_order < order)
2168 pgdat->kswapd_max_order = order;
2169 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2170 return;
2171 if (!waitqueue_active(&pgdat->kswapd_wait))
2172 return;
2173 wake_up_interruptible(&pgdat->kswapd_wait);
2174 }
2175
2176 /*
2177 * The reclaimable count would be mostly accurate.
2178 * The less reclaimable pages may be
2179 * - mlocked pages, which will be moved to unevictable list when encountered
2180 * - mapped pages, which may require several travels to be reclaimed
2181 * - dirty pages, which is not "instantly" reclaimable
2182 */
2183 unsigned long global_reclaimable_pages(void)
2184 {
2185 int nr;
2186
2187 nr = global_page_state(NR_ACTIVE_FILE) +
2188 global_page_state(NR_INACTIVE_FILE);
2189
2190 if (nr_swap_pages > 0)
2191 nr += global_page_state(NR_ACTIVE_ANON) +
2192 global_page_state(NR_INACTIVE_ANON);
2193
2194 return nr;
2195 }
2196
2197 unsigned long zone_reclaimable_pages(struct zone *zone)
2198 {
2199 int nr;
2200
2201 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2202 zone_page_state(zone, NR_INACTIVE_FILE);
2203
2204 if (nr_swap_pages > 0)
2205 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2206 zone_page_state(zone, NR_INACTIVE_ANON);
2207
2208 return nr;
2209 }
2210
2211 #ifdef CONFIG_HIBERNATION
2212 /*
2213 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2214 * from LRU lists system-wide, for given pass and priority.
2215 *
2216 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2217 */
2218 static void shrink_all_zones(unsigned long nr_pages, int prio,
2219 int pass, struct scan_control *sc)
2220 {
2221 struct zone *zone;
2222 unsigned long nr_reclaimed = 0;
2223
2224 for_each_populated_zone(zone) {
2225 enum lru_list l;
2226
2227 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2228 continue;
2229
2230 for_each_evictable_lru(l) {
2231 enum zone_stat_item ls = NR_LRU_BASE + l;
2232 unsigned long lru_pages = zone_page_state(zone, ls);
2233
2234 /* For pass = 0, we don't shrink the active list */
2235 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2236 l == LRU_ACTIVE_FILE))
2237 continue;
2238
2239 zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2240 if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
2241 unsigned long nr_to_scan;
2242
2243 zone->lru[l].nr_saved_scan = 0;
2244 nr_to_scan = min(nr_pages, lru_pages);
2245 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2246 sc, prio);
2247 if (nr_reclaimed >= nr_pages) {
2248 sc->nr_reclaimed += nr_reclaimed;
2249 return;
2250 }
2251 }
2252 }
2253 }
2254 sc->nr_reclaimed += nr_reclaimed;
2255 }
2256
2257 /*
2258 * Try to free `nr_pages' of memory, system-wide, and return the number of
2259 * freed pages.
2260 *
2261 * Rather than trying to age LRUs the aim is to preserve the overall
2262 * LRU order by reclaiming preferentially
2263 * inactive > active > active referenced > active mapped
2264 */
2265 unsigned long shrink_all_memory(unsigned long nr_pages)
2266 {
2267 unsigned long lru_pages, nr_slab;
2268 int pass;
2269 struct reclaim_state reclaim_state;
2270 struct scan_control sc = {
2271 .gfp_mask = GFP_KERNEL,
2272 .may_unmap = 0,
2273 .may_writepage = 1,
2274 .isolate_pages = isolate_pages_global,
2275 .nr_reclaimed = 0,
2276 };
2277
2278 current->reclaim_state = &reclaim_state;
2279
2280 lru_pages = global_reclaimable_pages();
2281 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2282 /* If slab caches are huge, it's better to hit them first */
2283 while (nr_slab >= lru_pages) {
2284 reclaim_state.reclaimed_slab = 0;
2285 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2286 if (!reclaim_state.reclaimed_slab)
2287 break;
2288
2289 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2290 if (sc.nr_reclaimed >= nr_pages)
2291 goto out;
2292
2293 nr_slab -= reclaim_state.reclaimed_slab;
2294 }
2295
2296 /*
2297 * We try to shrink LRUs in 5 passes:
2298 * 0 = Reclaim from inactive_list only
2299 * 1 = Reclaim from active list but don't reclaim mapped
2300 * 2 = 2nd pass of type 1
2301 * 3 = Reclaim mapped (normal reclaim)
2302 * 4 = 2nd pass of type 3
2303 */
2304 for (pass = 0; pass < 5; pass++) {
2305 int prio;
2306
2307 /* Force reclaiming mapped pages in the passes #3 and #4 */
2308 if (pass > 2)
2309 sc.may_unmap = 1;
2310
2311 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2312 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2313
2314 sc.nr_scanned = 0;
2315 sc.swap_cluster_max = nr_to_scan;
2316 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2317 if (sc.nr_reclaimed >= nr_pages)
2318 goto out;
2319
2320 reclaim_state.reclaimed_slab = 0;
2321 shrink_slab(sc.nr_scanned, sc.gfp_mask,
2322 global_reclaimable_pages());
2323 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2324 if (sc.nr_reclaimed >= nr_pages)
2325 goto out;
2326
2327 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2328 congestion_wait(BLK_RW_ASYNC, HZ / 10);
2329 }
2330 }
2331
2332 /*
2333 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2334 * something in slab caches
2335 */
2336 if (!sc.nr_reclaimed) {
2337 do {
2338 reclaim_state.reclaimed_slab = 0;
2339 shrink_slab(nr_pages, sc.gfp_mask,
2340 global_reclaimable_pages());
2341 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2342 } while (sc.nr_reclaimed < nr_pages &&
2343 reclaim_state.reclaimed_slab > 0);
2344 }
2345
2346
2347 out:
2348 current->reclaim_state = NULL;
2349
2350 return sc.nr_reclaimed;
2351 }
2352 #endif /* CONFIG_HIBERNATION */
2353
2354 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2355 not required for correctness. So if the last cpu in a node goes
2356 away, we get changed to run anywhere: as the first one comes back,
2357 restore their cpu bindings. */
2358 static int __devinit cpu_callback(struct notifier_block *nfb,
2359 unsigned long action, void *hcpu)
2360 {
2361 int nid;
2362
2363 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2364 for_each_node_state(nid, N_HIGH_MEMORY) {
2365 pg_data_t *pgdat = NODE_DATA(nid);
2366 const struct cpumask *mask;
2367
2368 mask = cpumask_of_node(pgdat->node_id);
2369
2370 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2371 /* One of our CPUs online: restore mask */
2372 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2373 }
2374 }
2375 return NOTIFY_OK;
2376 }
2377
2378 /*
2379 * This kswapd start function will be called by init and node-hot-add.
2380 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2381 */
2382 int kswapd_run(int nid)
2383 {
2384 pg_data_t *pgdat = NODE_DATA(nid);
2385 int ret = 0;
2386
2387 if (pgdat->kswapd)
2388 return 0;
2389
2390 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2391 if (IS_ERR(pgdat->kswapd)) {
2392 /* failure at boot is fatal */
2393 BUG_ON(system_state == SYSTEM_BOOTING);
2394 printk("Failed to start kswapd on node %d\n",nid);
2395 ret = -1;
2396 }
2397 return ret;
2398 }
2399
2400 static int __init kswapd_init(void)
2401 {
2402 int nid;
2403
2404 swap_setup();
2405 for_each_node_state(nid, N_HIGH_MEMORY)
2406 kswapd_run(nid);
2407 hotcpu_notifier(cpu_callback, 0);
2408 return 0;
2409 }
2410
2411 module_init(kswapd_init)
2412
2413 #ifdef CONFIG_NUMA
2414 /*
2415 * Zone reclaim mode
2416 *
2417 * If non-zero call zone_reclaim when the number of free pages falls below
2418 * the watermarks.
2419 */
2420 int zone_reclaim_mode __read_mostly;
2421
2422 #define RECLAIM_OFF 0
2423 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2424 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2425 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2426
2427 /*
2428 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2429 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2430 * a zone.
2431 */
2432 #define ZONE_RECLAIM_PRIORITY 4
2433
2434 /*
2435 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2436 * occur.
2437 */
2438 int sysctl_min_unmapped_ratio = 1;
2439
2440 /*
2441 * If the number of slab pages in a zone grows beyond this percentage then
2442 * slab reclaim needs to occur.
2443 */
2444 int sysctl_min_slab_ratio = 5;
2445
2446 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2447 {
2448 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2449 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2450 zone_page_state(zone, NR_ACTIVE_FILE);
2451
2452 /*
2453 * It's possible for there to be more file mapped pages than
2454 * accounted for by the pages on the file LRU lists because
2455 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2456 */
2457 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2458 }
2459
2460 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2461 static long zone_pagecache_reclaimable(struct zone *zone)
2462 {
2463 long nr_pagecache_reclaimable;
2464 long delta = 0;
2465
2466 /*
2467 * If RECLAIM_SWAP is set, then all file pages are considered
2468 * potentially reclaimable. Otherwise, we have to worry about
2469 * pages like swapcache and zone_unmapped_file_pages() provides
2470 * a better estimate
2471 */
2472 if (zone_reclaim_mode & RECLAIM_SWAP)
2473 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2474 else
2475 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2476
2477 /* If we can't clean pages, remove dirty pages from consideration */
2478 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2479 delta += zone_page_state(zone, NR_FILE_DIRTY);
2480
2481 /* Watch for any possible underflows due to delta */
2482 if (unlikely(delta > nr_pagecache_reclaimable))
2483 delta = nr_pagecache_reclaimable;
2484
2485 return nr_pagecache_reclaimable - delta;
2486 }
2487
2488 /*
2489 * Try to free up some pages from this zone through reclaim.
2490 */
2491 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2492 {
2493 /* Minimum pages needed in order to stay on node */
2494 const unsigned long nr_pages = 1 << order;
2495 struct task_struct *p = current;
2496 struct reclaim_state reclaim_state;
2497 int priority;
2498 struct scan_control sc = {
2499 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2500 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2501 .may_swap = 1,
2502 .swap_cluster_max = max_t(unsigned long, nr_pages,
2503 SWAP_CLUSTER_MAX),
2504 .gfp_mask = gfp_mask,
2505 .swappiness = vm_swappiness,
2506 .order = order,
2507 .isolate_pages = isolate_pages_global,
2508 };
2509 unsigned long slab_reclaimable;
2510
2511 disable_swap_token();
2512 cond_resched();
2513 /*
2514 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2515 * and we also need to be able to write out pages for RECLAIM_WRITE
2516 * and RECLAIM_SWAP.
2517 */
2518 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2519 reclaim_state.reclaimed_slab = 0;
2520 p->reclaim_state = &reclaim_state;
2521
2522 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2523 /*
2524 * Free memory by calling shrink zone with increasing
2525 * priorities until we have enough memory freed.
2526 */
2527 priority = ZONE_RECLAIM_PRIORITY;
2528 do {
2529 note_zone_scanning_priority(zone, priority);
2530 shrink_zone(priority, zone, &sc);
2531 priority--;
2532 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2533 }
2534
2535 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2536 if (slab_reclaimable > zone->min_slab_pages) {
2537 /*
2538 * shrink_slab() does not currently allow us to determine how
2539 * many pages were freed in this zone. So we take the current
2540 * number of slab pages and shake the slab until it is reduced
2541 * by the same nr_pages that we used for reclaiming unmapped
2542 * pages.
2543 *
2544 * Note that shrink_slab will free memory on all zones and may
2545 * take a long time.
2546 */
2547 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2548 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2549 slab_reclaimable - nr_pages)
2550 ;
2551
2552 /*
2553 * Update nr_reclaimed by the number of slab pages we
2554 * reclaimed from this zone.
2555 */
2556 sc.nr_reclaimed += slab_reclaimable -
2557 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2558 }
2559
2560 p->reclaim_state = NULL;
2561 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2562 return sc.nr_reclaimed >= nr_pages;
2563 }
2564
2565 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2566 {
2567 int node_id;
2568 int ret;
2569
2570 /*
2571 * Zone reclaim reclaims unmapped file backed pages and
2572 * slab pages if we are over the defined limits.
2573 *
2574 * A small portion of unmapped file backed pages is needed for
2575 * file I/O otherwise pages read by file I/O will be immediately
2576 * thrown out if the zone is overallocated. So we do not reclaim
2577 * if less than a specified percentage of the zone is used by
2578 * unmapped file backed pages.
2579 */
2580 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2581 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2582 return ZONE_RECLAIM_FULL;
2583
2584 if (zone_is_all_unreclaimable(zone))
2585 return ZONE_RECLAIM_FULL;
2586
2587 /*
2588 * Do not scan if the allocation should not be delayed.
2589 */
2590 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2591 return ZONE_RECLAIM_NOSCAN;
2592
2593 /*
2594 * Only run zone reclaim on the local zone or on zones that do not
2595 * have associated processors. This will favor the local processor
2596 * over remote processors and spread off node memory allocations
2597 * as wide as possible.
2598 */
2599 node_id = zone_to_nid(zone);
2600 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2601 return ZONE_RECLAIM_NOSCAN;
2602
2603 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2604 return ZONE_RECLAIM_NOSCAN;
2605
2606 ret = __zone_reclaim(zone, gfp_mask, order);
2607 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2608
2609 if (!ret)
2610 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2611
2612 return ret;
2613 }
2614 #endif
2615
2616 /*
2617 * page_evictable - test whether a page is evictable
2618 * @page: the page to test
2619 * @vma: the VMA in which the page is or will be mapped, may be NULL
2620 *
2621 * Test whether page is evictable--i.e., should be placed on active/inactive
2622 * lists vs unevictable list. The vma argument is !NULL when called from the
2623 * fault path to determine how to instantate a new page.
2624 *
2625 * Reasons page might not be evictable:
2626 * (1) page's mapping marked unevictable
2627 * (2) page is part of an mlocked VMA
2628 *
2629 */
2630 int page_evictable(struct page *page, struct vm_area_struct *vma)
2631 {
2632
2633 if (mapping_unevictable(page_mapping(page)))
2634 return 0;
2635
2636 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2637 return 0;
2638
2639 return 1;
2640 }
2641
2642 /**
2643 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2644 * @page: page to check evictability and move to appropriate lru list
2645 * @zone: zone page is in
2646 *
2647 * Checks a page for evictability and moves the page to the appropriate
2648 * zone lru list.
2649 *
2650 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2651 * have PageUnevictable set.
2652 */
2653 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2654 {
2655 VM_BUG_ON(PageActive(page));
2656
2657 retry:
2658 ClearPageUnevictable(page);
2659 if (page_evictable(page, NULL)) {
2660 enum lru_list l = page_lru_base_type(page);
2661
2662 __dec_zone_state(zone, NR_UNEVICTABLE);
2663 list_move(&page->lru, &zone->lru[l].list);
2664 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2665 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2666 __count_vm_event(UNEVICTABLE_PGRESCUED);
2667 } else {
2668 /*
2669 * rotate unevictable list
2670 */
2671 SetPageUnevictable(page);
2672 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2673 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2674 if (page_evictable(page, NULL))
2675 goto retry;
2676 }
2677 }
2678
2679 /**
2680 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2681 * @mapping: struct address_space to scan for evictable pages
2682 *
2683 * Scan all pages in mapping. Check unevictable pages for
2684 * evictability and move them to the appropriate zone lru list.
2685 */
2686 void scan_mapping_unevictable_pages(struct address_space *mapping)
2687 {
2688 pgoff_t next = 0;
2689 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2690 PAGE_CACHE_SHIFT;
2691 struct zone *zone;
2692 struct pagevec pvec;
2693
2694 if (mapping->nrpages == 0)
2695 return;
2696
2697 pagevec_init(&pvec, 0);
2698 while (next < end &&
2699 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2700 int i;
2701 int pg_scanned = 0;
2702
2703 zone = NULL;
2704
2705 for (i = 0; i < pagevec_count(&pvec); i++) {
2706 struct page *page = pvec.pages[i];
2707 pgoff_t page_index = page->index;
2708 struct zone *pagezone = page_zone(page);
2709
2710 pg_scanned++;
2711 if (page_index > next)
2712 next = page_index;
2713 next++;
2714
2715 if (pagezone != zone) {
2716 if (zone)
2717 spin_unlock_irq(&zone->lru_lock);
2718 zone = pagezone;
2719 spin_lock_irq(&zone->lru_lock);
2720 }
2721
2722 if (PageLRU(page) && PageUnevictable(page))
2723 check_move_unevictable_page(page, zone);
2724 }
2725 if (zone)
2726 spin_unlock_irq(&zone->lru_lock);
2727 pagevec_release(&pvec);
2728
2729 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2730 }
2731
2732 }
2733
2734 /**
2735 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2736 * @zone - zone of which to scan the unevictable list
2737 *
2738 * Scan @zone's unevictable LRU lists to check for pages that have become
2739 * evictable. Move those that have to @zone's inactive list where they
2740 * become candidates for reclaim, unless shrink_inactive_zone() decides
2741 * to reactivate them. Pages that are still unevictable are rotated
2742 * back onto @zone's unevictable list.
2743 */
2744 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2745 static void scan_zone_unevictable_pages(struct zone *zone)
2746 {
2747 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2748 unsigned long scan;
2749 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2750
2751 while (nr_to_scan > 0) {
2752 unsigned long batch_size = min(nr_to_scan,
2753 SCAN_UNEVICTABLE_BATCH_SIZE);
2754
2755 spin_lock_irq(&zone->lru_lock);
2756 for (scan = 0; scan < batch_size; scan++) {
2757 struct page *page = lru_to_page(l_unevictable);
2758
2759 if (!trylock_page(page))
2760 continue;
2761
2762 prefetchw_prev_lru_page(page, l_unevictable, flags);
2763
2764 if (likely(PageLRU(page) && PageUnevictable(page)))
2765 check_move_unevictable_page(page, zone);
2766
2767 unlock_page(page);
2768 }
2769 spin_unlock_irq(&zone->lru_lock);
2770
2771 nr_to_scan -= batch_size;
2772 }
2773 }
2774
2775
2776 /**
2777 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2778 *
2779 * A really big hammer: scan all zones' unevictable LRU lists to check for
2780 * pages that have become evictable. Move those back to the zones'
2781 * inactive list where they become candidates for reclaim.
2782 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2783 * and we add swap to the system. As such, it runs in the context of a task
2784 * that has possibly/probably made some previously unevictable pages
2785 * evictable.
2786 */
2787 static void scan_all_zones_unevictable_pages(void)
2788 {
2789 struct zone *zone;
2790
2791 for_each_zone(zone) {
2792 scan_zone_unevictable_pages(zone);
2793 }
2794 }
2795
2796 /*
2797 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2798 * all nodes' unevictable lists for evictable pages
2799 */
2800 unsigned long scan_unevictable_pages;
2801
2802 int scan_unevictable_handler(struct ctl_table *table, int write,
2803 struct file *file, void __user *buffer,
2804 size_t *length, loff_t *ppos)
2805 {
2806 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2807
2808 if (write && *(unsigned long *)table->data)
2809 scan_all_zones_unevictable_pages();
2810
2811 scan_unevictable_pages = 0;
2812 return 0;
2813 }
2814
2815 /*
2816 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2817 * a specified node's per zone unevictable lists for evictable pages.
2818 */
2819
2820 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2821 struct sysdev_attribute *attr,
2822 char *buf)
2823 {
2824 return sprintf(buf, "0\n"); /* always zero; should fit... */
2825 }
2826
2827 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2828 struct sysdev_attribute *attr,
2829 const char *buf, size_t count)
2830 {
2831 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2832 struct zone *zone;
2833 unsigned long res;
2834 unsigned long req = strict_strtoul(buf, 10, &res);
2835
2836 if (!req)
2837 return 1; /* zero is no-op */
2838
2839 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2840 if (!populated_zone(zone))
2841 continue;
2842 scan_zone_unevictable_pages(zone);
2843 }
2844 return 1;
2845 }
2846
2847
2848 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2849 read_scan_unevictable_node,
2850 write_scan_unevictable_node);
2851
2852 int scan_unevictable_register_node(struct node *node)
2853 {
2854 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2855 }
2856
2857 void scan_unevictable_unregister_node(struct node *node)
2858 {
2859 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2860 }
2861
This page took 0.242698 seconds and 5 git commands to generate.