rmap: move exclusively owned pages to own anon_vma in do_wp_page()
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim;
60
61 unsigned long hibernation_mode;
62
63 /* This context's GFP mask */
64 gfp_t gfp_mask;
65
66 int may_writepage;
67
68 /* Can mapped pages be reclaimed? */
69 int may_unmap;
70
71 /* Can pages be swapped as part of reclaim? */
72 int may_swap;
73
74 int swappiness;
75
76 int all_unreclaimable;
77
78 int order;
79
80 /* Which cgroup do we reclaim from */
81 struct mem_cgroup *mem_cgroup;
82
83 /*
84 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 * are scanned.
86 */
87 nodemask_t *nodemask;
88
89 /* Pluggable isolate pages callback */
90 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
91 unsigned long *scanned, int order, int mode,
92 struct zone *z, struct mem_cgroup *mem_cont,
93 int active, int file);
94 };
95
96 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97
98 #ifdef ARCH_HAS_PREFETCH
99 #define prefetch_prev_lru_page(_page, _base, _field) \
100 do { \
101 if ((_page)->lru.prev != _base) { \
102 struct page *prev; \
103 \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetch(&prev->_field); \
106 } \
107 } while (0)
108 #else
109 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110 #endif
111
112 #ifdef ARCH_HAS_PREFETCHW
113 #define prefetchw_prev_lru_page(_page, _base, _field) \
114 do { \
115 if ((_page)->lru.prev != _base) { \
116 struct page *prev; \
117 \
118 prev = lru_to_page(&(_page->lru)); \
119 prefetchw(&prev->_field); \
120 } \
121 } while (0)
122 #else
123 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
124 #endif
125
126 /*
127 * From 0 .. 100. Higher means more swappy.
128 */
129 int vm_swappiness = 60;
130 long vm_total_pages; /* The total number of pages which the VM controls */
131
132 static LIST_HEAD(shrinker_list);
133 static DECLARE_RWSEM(shrinker_rwsem);
134
135 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
136 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
137 #else
138 #define scanning_global_lru(sc) (1)
139 #endif
140
141 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
142 struct scan_control *sc)
143 {
144 if (!scanning_global_lru(sc))
145 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
146
147 return &zone->reclaim_stat;
148 }
149
150 static unsigned long zone_nr_lru_pages(struct zone *zone,
151 struct scan_control *sc, enum lru_list lru)
152 {
153 if (!scanning_global_lru(sc))
154 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
155
156 return zone_page_state(zone, NR_LRU_BASE + lru);
157 }
158
159
160 /*
161 * Add a shrinker callback to be called from the vm
162 */
163 void register_shrinker(struct shrinker *shrinker)
164 {
165 shrinker->nr = 0;
166 down_write(&shrinker_rwsem);
167 list_add_tail(&shrinker->list, &shrinker_list);
168 up_write(&shrinker_rwsem);
169 }
170 EXPORT_SYMBOL(register_shrinker);
171
172 /*
173 * Remove one
174 */
175 void unregister_shrinker(struct shrinker *shrinker)
176 {
177 down_write(&shrinker_rwsem);
178 list_del(&shrinker->list);
179 up_write(&shrinker_rwsem);
180 }
181 EXPORT_SYMBOL(unregister_shrinker);
182
183 #define SHRINK_BATCH 128
184 /*
185 * Call the shrink functions to age shrinkable caches
186 *
187 * Here we assume it costs one seek to replace a lru page and that it also
188 * takes a seek to recreate a cache object. With this in mind we age equal
189 * percentages of the lru and ageable caches. This should balance the seeks
190 * generated by these structures.
191 *
192 * If the vm encountered mapped pages on the LRU it increase the pressure on
193 * slab to avoid swapping.
194 *
195 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
196 *
197 * `lru_pages' represents the number of on-LRU pages in all the zones which
198 * are eligible for the caller's allocation attempt. It is used for balancing
199 * slab reclaim versus page reclaim.
200 *
201 * Returns the number of slab objects which we shrunk.
202 */
203 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
204 unsigned long lru_pages)
205 {
206 struct shrinker *shrinker;
207 unsigned long ret = 0;
208
209 if (scanned == 0)
210 scanned = SWAP_CLUSTER_MAX;
211
212 if (!down_read_trylock(&shrinker_rwsem))
213 return 1; /* Assume we'll be able to shrink next time */
214
215 list_for_each_entry(shrinker, &shrinker_list, list) {
216 unsigned long long delta;
217 unsigned long total_scan;
218 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
219
220 delta = (4 * scanned) / shrinker->seeks;
221 delta *= max_pass;
222 do_div(delta, lru_pages + 1);
223 shrinker->nr += delta;
224 if (shrinker->nr < 0) {
225 printk(KERN_ERR "shrink_slab: %pF negative objects to "
226 "delete nr=%ld\n",
227 shrinker->shrink, shrinker->nr);
228 shrinker->nr = max_pass;
229 }
230
231 /*
232 * Avoid risking looping forever due to too large nr value:
233 * never try to free more than twice the estimate number of
234 * freeable entries.
235 */
236 if (shrinker->nr > max_pass * 2)
237 shrinker->nr = max_pass * 2;
238
239 total_scan = shrinker->nr;
240 shrinker->nr = 0;
241
242 while (total_scan >= SHRINK_BATCH) {
243 long this_scan = SHRINK_BATCH;
244 int shrink_ret;
245 int nr_before;
246
247 nr_before = (*shrinker->shrink)(0, gfp_mask);
248 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
249 if (shrink_ret == -1)
250 break;
251 if (shrink_ret < nr_before)
252 ret += nr_before - shrink_ret;
253 count_vm_events(SLABS_SCANNED, this_scan);
254 total_scan -= this_scan;
255
256 cond_resched();
257 }
258
259 shrinker->nr += total_scan;
260 }
261 up_read(&shrinker_rwsem);
262 return ret;
263 }
264
265 /* Called without lock on whether page is mapped, so answer is unstable */
266 static inline int page_mapping_inuse(struct page *page)
267 {
268 struct address_space *mapping;
269
270 /* Page is in somebody's page tables. */
271 if (page_mapped(page))
272 return 1;
273
274 /* Be more reluctant to reclaim swapcache than pagecache */
275 if (PageSwapCache(page))
276 return 1;
277
278 mapping = page_mapping(page);
279 if (!mapping)
280 return 0;
281
282 /* File is mmap'd by somebody? */
283 return mapping_mapped(mapping);
284 }
285
286 static inline int is_page_cache_freeable(struct page *page)
287 {
288 /*
289 * A freeable page cache page is referenced only by the caller
290 * that isolated the page, the page cache radix tree and
291 * optional buffer heads at page->private.
292 */
293 return page_count(page) - page_has_private(page) == 2;
294 }
295
296 static int may_write_to_queue(struct backing_dev_info *bdi)
297 {
298 if (current->flags & PF_SWAPWRITE)
299 return 1;
300 if (!bdi_write_congested(bdi))
301 return 1;
302 if (bdi == current->backing_dev_info)
303 return 1;
304 return 0;
305 }
306
307 /*
308 * We detected a synchronous write error writing a page out. Probably
309 * -ENOSPC. We need to propagate that into the address_space for a subsequent
310 * fsync(), msync() or close().
311 *
312 * The tricky part is that after writepage we cannot touch the mapping: nothing
313 * prevents it from being freed up. But we have a ref on the page and once
314 * that page is locked, the mapping is pinned.
315 *
316 * We're allowed to run sleeping lock_page() here because we know the caller has
317 * __GFP_FS.
318 */
319 static void handle_write_error(struct address_space *mapping,
320 struct page *page, int error)
321 {
322 lock_page(page);
323 if (page_mapping(page) == mapping)
324 mapping_set_error(mapping, error);
325 unlock_page(page);
326 }
327
328 /* Request for sync pageout. */
329 enum pageout_io {
330 PAGEOUT_IO_ASYNC,
331 PAGEOUT_IO_SYNC,
332 };
333
334 /* possible outcome of pageout() */
335 typedef enum {
336 /* failed to write page out, page is locked */
337 PAGE_KEEP,
338 /* move page to the active list, page is locked */
339 PAGE_ACTIVATE,
340 /* page has been sent to the disk successfully, page is unlocked */
341 PAGE_SUCCESS,
342 /* page is clean and locked */
343 PAGE_CLEAN,
344 } pageout_t;
345
346 /*
347 * pageout is called by shrink_page_list() for each dirty page.
348 * Calls ->writepage().
349 */
350 static pageout_t pageout(struct page *page, struct address_space *mapping,
351 enum pageout_io sync_writeback)
352 {
353 /*
354 * If the page is dirty, only perform writeback if that write
355 * will be non-blocking. To prevent this allocation from being
356 * stalled by pagecache activity. But note that there may be
357 * stalls if we need to run get_block(). We could test
358 * PagePrivate for that.
359 *
360 * If this process is currently in __generic_file_aio_write() against
361 * this page's queue, we can perform writeback even if that
362 * will block.
363 *
364 * If the page is swapcache, write it back even if that would
365 * block, for some throttling. This happens by accident, because
366 * swap_backing_dev_info is bust: it doesn't reflect the
367 * congestion state of the swapdevs. Easy to fix, if needed.
368 */
369 if (!is_page_cache_freeable(page))
370 return PAGE_KEEP;
371 if (!mapping) {
372 /*
373 * Some data journaling orphaned pages can have
374 * page->mapping == NULL while being dirty with clean buffers.
375 */
376 if (page_has_private(page)) {
377 if (try_to_free_buffers(page)) {
378 ClearPageDirty(page);
379 printk("%s: orphaned page\n", __func__);
380 return PAGE_CLEAN;
381 }
382 }
383 return PAGE_KEEP;
384 }
385 if (mapping->a_ops->writepage == NULL)
386 return PAGE_ACTIVATE;
387 if (!may_write_to_queue(mapping->backing_dev_info))
388 return PAGE_KEEP;
389
390 if (clear_page_dirty_for_io(page)) {
391 int res;
392 struct writeback_control wbc = {
393 .sync_mode = WB_SYNC_NONE,
394 .nr_to_write = SWAP_CLUSTER_MAX,
395 .range_start = 0,
396 .range_end = LLONG_MAX,
397 .nonblocking = 1,
398 .for_reclaim = 1,
399 };
400
401 SetPageReclaim(page);
402 res = mapping->a_ops->writepage(page, &wbc);
403 if (res < 0)
404 handle_write_error(mapping, page, res);
405 if (res == AOP_WRITEPAGE_ACTIVATE) {
406 ClearPageReclaim(page);
407 return PAGE_ACTIVATE;
408 }
409
410 /*
411 * Wait on writeback if requested to. This happens when
412 * direct reclaiming a large contiguous area and the
413 * first attempt to free a range of pages fails.
414 */
415 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
416 wait_on_page_writeback(page);
417
418 if (!PageWriteback(page)) {
419 /* synchronous write or broken a_ops? */
420 ClearPageReclaim(page);
421 }
422 inc_zone_page_state(page, NR_VMSCAN_WRITE);
423 return PAGE_SUCCESS;
424 }
425
426 return PAGE_CLEAN;
427 }
428
429 /*
430 * Same as remove_mapping, but if the page is removed from the mapping, it
431 * gets returned with a refcount of 0.
432 */
433 static int __remove_mapping(struct address_space *mapping, struct page *page)
434 {
435 BUG_ON(!PageLocked(page));
436 BUG_ON(mapping != page_mapping(page));
437
438 spin_lock_irq(&mapping->tree_lock);
439 /*
440 * The non racy check for a busy page.
441 *
442 * Must be careful with the order of the tests. When someone has
443 * a ref to the page, it may be possible that they dirty it then
444 * drop the reference. So if PageDirty is tested before page_count
445 * here, then the following race may occur:
446 *
447 * get_user_pages(&page);
448 * [user mapping goes away]
449 * write_to(page);
450 * !PageDirty(page) [good]
451 * SetPageDirty(page);
452 * put_page(page);
453 * !page_count(page) [good, discard it]
454 *
455 * [oops, our write_to data is lost]
456 *
457 * Reversing the order of the tests ensures such a situation cannot
458 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
459 * load is not satisfied before that of page->_count.
460 *
461 * Note that if SetPageDirty is always performed via set_page_dirty,
462 * and thus under tree_lock, then this ordering is not required.
463 */
464 if (!page_freeze_refs(page, 2))
465 goto cannot_free;
466 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
467 if (unlikely(PageDirty(page))) {
468 page_unfreeze_refs(page, 2);
469 goto cannot_free;
470 }
471
472 if (PageSwapCache(page)) {
473 swp_entry_t swap = { .val = page_private(page) };
474 __delete_from_swap_cache(page);
475 spin_unlock_irq(&mapping->tree_lock);
476 swapcache_free(swap, page);
477 } else {
478 __remove_from_page_cache(page);
479 spin_unlock_irq(&mapping->tree_lock);
480 mem_cgroup_uncharge_cache_page(page);
481 }
482
483 return 1;
484
485 cannot_free:
486 spin_unlock_irq(&mapping->tree_lock);
487 return 0;
488 }
489
490 /*
491 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
492 * someone else has a ref on the page, abort and return 0. If it was
493 * successfully detached, return 1. Assumes the caller has a single ref on
494 * this page.
495 */
496 int remove_mapping(struct address_space *mapping, struct page *page)
497 {
498 if (__remove_mapping(mapping, page)) {
499 /*
500 * Unfreezing the refcount with 1 rather than 2 effectively
501 * drops the pagecache ref for us without requiring another
502 * atomic operation.
503 */
504 page_unfreeze_refs(page, 1);
505 return 1;
506 }
507 return 0;
508 }
509
510 /**
511 * putback_lru_page - put previously isolated page onto appropriate LRU list
512 * @page: page to be put back to appropriate lru list
513 *
514 * Add previously isolated @page to appropriate LRU list.
515 * Page may still be unevictable for other reasons.
516 *
517 * lru_lock must not be held, interrupts must be enabled.
518 */
519 void putback_lru_page(struct page *page)
520 {
521 int lru;
522 int active = !!TestClearPageActive(page);
523 int was_unevictable = PageUnevictable(page);
524
525 VM_BUG_ON(PageLRU(page));
526
527 redo:
528 ClearPageUnevictable(page);
529
530 if (page_evictable(page, NULL)) {
531 /*
532 * For evictable pages, we can use the cache.
533 * In event of a race, worst case is we end up with an
534 * unevictable page on [in]active list.
535 * We know how to handle that.
536 */
537 lru = active + page_lru_base_type(page);
538 lru_cache_add_lru(page, lru);
539 } else {
540 /*
541 * Put unevictable pages directly on zone's unevictable
542 * list.
543 */
544 lru = LRU_UNEVICTABLE;
545 add_page_to_unevictable_list(page);
546 /*
547 * When racing with an mlock clearing (page is
548 * unlocked), make sure that if the other thread does
549 * not observe our setting of PG_lru and fails
550 * isolation, we see PG_mlocked cleared below and move
551 * the page back to the evictable list.
552 *
553 * The other side is TestClearPageMlocked().
554 */
555 smp_mb();
556 }
557
558 /*
559 * page's status can change while we move it among lru. If an evictable
560 * page is on unevictable list, it never be freed. To avoid that,
561 * check after we added it to the list, again.
562 */
563 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
564 if (!isolate_lru_page(page)) {
565 put_page(page);
566 goto redo;
567 }
568 /* This means someone else dropped this page from LRU
569 * So, it will be freed or putback to LRU again. There is
570 * nothing to do here.
571 */
572 }
573
574 if (was_unevictable && lru != LRU_UNEVICTABLE)
575 count_vm_event(UNEVICTABLE_PGRESCUED);
576 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
577 count_vm_event(UNEVICTABLE_PGCULLED);
578
579 put_page(page); /* drop ref from isolate */
580 }
581
582 /*
583 * shrink_page_list() returns the number of reclaimed pages
584 */
585 static unsigned long shrink_page_list(struct list_head *page_list,
586 struct scan_control *sc,
587 enum pageout_io sync_writeback)
588 {
589 LIST_HEAD(ret_pages);
590 struct pagevec freed_pvec;
591 int pgactivate = 0;
592 unsigned long nr_reclaimed = 0;
593 unsigned long vm_flags;
594
595 cond_resched();
596
597 pagevec_init(&freed_pvec, 1);
598 while (!list_empty(page_list)) {
599 struct address_space *mapping;
600 struct page *page;
601 int may_enter_fs;
602 int referenced;
603
604 cond_resched();
605
606 page = lru_to_page(page_list);
607 list_del(&page->lru);
608
609 if (!trylock_page(page))
610 goto keep;
611
612 VM_BUG_ON(PageActive(page));
613
614 sc->nr_scanned++;
615
616 if (unlikely(!page_evictable(page, NULL)))
617 goto cull_mlocked;
618
619 if (!sc->may_unmap && page_mapped(page))
620 goto keep_locked;
621
622 /* Double the slab pressure for mapped and swapcache pages */
623 if (page_mapped(page) || PageSwapCache(page))
624 sc->nr_scanned++;
625
626 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
627 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
628
629 if (PageWriteback(page)) {
630 /*
631 * Synchronous reclaim is performed in two passes,
632 * first an asynchronous pass over the list to
633 * start parallel writeback, and a second synchronous
634 * pass to wait for the IO to complete. Wait here
635 * for any page for which writeback has already
636 * started.
637 */
638 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
639 wait_on_page_writeback(page);
640 else
641 goto keep_locked;
642 }
643
644 referenced = page_referenced(page, 1,
645 sc->mem_cgroup, &vm_flags);
646 /*
647 * In active use or really unfreeable? Activate it.
648 * If page which have PG_mlocked lost isoltation race,
649 * try_to_unmap moves it to unevictable list
650 */
651 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
652 referenced && page_mapping_inuse(page)
653 && !(vm_flags & VM_LOCKED))
654 goto activate_locked;
655
656 /*
657 * Anonymous process memory has backing store?
658 * Try to allocate it some swap space here.
659 */
660 if (PageAnon(page) && !PageSwapCache(page)) {
661 if (!(sc->gfp_mask & __GFP_IO))
662 goto keep_locked;
663 if (!add_to_swap(page))
664 goto activate_locked;
665 may_enter_fs = 1;
666 }
667
668 mapping = page_mapping(page);
669
670 /*
671 * The page is mapped into the page tables of one or more
672 * processes. Try to unmap it here.
673 */
674 if (page_mapped(page) && mapping) {
675 switch (try_to_unmap(page, TTU_UNMAP)) {
676 case SWAP_FAIL:
677 goto activate_locked;
678 case SWAP_AGAIN:
679 goto keep_locked;
680 case SWAP_MLOCK:
681 goto cull_mlocked;
682 case SWAP_SUCCESS:
683 ; /* try to free the page below */
684 }
685 }
686
687 if (PageDirty(page)) {
688 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
689 goto keep_locked;
690 if (!may_enter_fs)
691 goto keep_locked;
692 if (!sc->may_writepage)
693 goto keep_locked;
694
695 /* Page is dirty, try to write it out here */
696 switch (pageout(page, mapping, sync_writeback)) {
697 case PAGE_KEEP:
698 goto keep_locked;
699 case PAGE_ACTIVATE:
700 goto activate_locked;
701 case PAGE_SUCCESS:
702 if (PageWriteback(page) || PageDirty(page))
703 goto keep;
704 /*
705 * A synchronous write - probably a ramdisk. Go
706 * ahead and try to reclaim the page.
707 */
708 if (!trylock_page(page))
709 goto keep;
710 if (PageDirty(page) || PageWriteback(page))
711 goto keep_locked;
712 mapping = page_mapping(page);
713 case PAGE_CLEAN:
714 ; /* try to free the page below */
715 }
716 }
717
718 /*
719 * If the page has buffers, try to free the buffer mappings
720 * associated with this page. If we succeed we try to free
721 * the page as well.
722 *
723 * We do this even if the page is PageDirty().
724 * try_to_release_page() does not perform I/O, but it is
725 * possible for a page to have PageDirty set, but it is actually
726 * clean (all its buffers are clean). This happens if the
727 * buffers were written out directly, with submit_bh(). ext3
728 * will do this, as well as the blockdev mapping.
729 * try_to_release_page() will discover that cleanness and will
730 * drop the buffers and mark the page clean - it can be freed.
731 *
732 * Rarely, pages can have buffers and no ->mapping. These are
733 * the pages which were not successfully invalidated in
734 * truncate_complete_page(). We try to drop those buffers here
735 * and if that worked, and the page is no longer mapped into
736 * process address space (page_count == 1) it can be freed.
737 * Otherwise, leave the page on the LRU so it is swappable.
738 */
739 if (page_has_private(page)) {
740 if (!try_to_release_page(page, sc->gfp_mask))
741 goto activate_locked;
742 if (!mapping && page_count(page) == 1) {
743 unlock_page(page);
744 if (put_page_testzero(page))
745 goto free_it;
746 else {
747 /*
748 * rare race with speculative reference.
749 * the speculative reference will free
750 * this page shortly, so we may
751 * increment nr_reclaimed here (and
752 * leave it off the LRU).
753 */
754 nr_reclaimed++;
755 continue;
756 }
757 }
758 }
759
760 if (!mapping || !__remove_mapping(mapping, page))
761 goto keep_locked;
762
763 /*
764 * At this point, we have no other references and there is
765 * no way to pick any more up (removed from LRU, removed
766 * from pagecache). Can use non-atomic bitops now (and
767 * we obviously don't have to worry about waking up a process
768 * waiting on the page lock, because there are no references.
769 */
770 __clear_page_locked(page);
771 free_it:
772 nr_reclaimed++;
773 if (!pagevec_add(&freed_pvec, page)) {
774 __pagevec_free(&freed_pvec);
775 pagevec_reinit(&freed_pvec);
776 }
777 continue;
778
779 cull_mlocked:
780 if (PageSwapCache(page))
781 try_to_free_swap(page);
782 unlock_page(page);
783 putback_lru_page(page);
784 continue;
785
786 activate_locked:
787 /* Not a candidate for swapping, so reclaim swap space. */
788 if (PageSwapCache(page) && vm_swap_full())
789 try_to_free_swap(page);
790 VM_BUG_ON(PageActive(page));
791 SetPageActive(page);
792 pgactivate++;
793 keep_locked:
794 unlock_page(page);
795 keep:
796 list_add(&page->lru, &ret_pages);
797 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
798 }
799 list_splice(&ret_pages, page_list);
800 if (pagevec_count(&freed_pvec))
801 __pagevec_free(&freed_pvec);
802 count_vm_events(PGACTIVATE, pgactivate);
803 return nr_reclaimed;
804 }
805
806 /* LRU Isolation modes. */
807 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
808 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
809 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
810
811 /*
812 * Attempt to remove the specified page from its LRU. Only take this page
813 * if it is of the appropriate PageActive status. Pages which are being
814 * freed elsewhere are also ignored.
815 *
816 * page: page to consider
817 * mode: one of the LRU isolation modes defined above
818 *
819 * returns 0 on success, -ve errno on failure.
820 */
821 int __isolate_lru_page(struct page *page, int mode, int file)
822 {
823 int ret = -EINVAL;
824
825 /* Only take pages on the LRU. */
826 if (!PageLRU(page))
827 return ret;
828
829 /*
830 * When checking the active state, we need to be sure we are
831 * dealing with comparible boolean values. Take the logical not
832 * of each.
833 */
834 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
835 return ret;
836
837 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
838 return ret;
839
840 /*
841 * When this function is being called for lumpy reclaim, we
842 * initially look into all LRU pages, active, inactive and
843 * unevictable; only give shrink_page_list evictable pages.
844 */
845 if (PageUnevictable(page))
846 return ret;
847
848 ret = -EBUSY;
849
850 if (likely(get_page_unless_zero(page))) {
851 /*
852 * Be careful not to clear PageLRU until after we're
853 * sure the page is not being freed elsewhere -- the
854 * page release code relies on it.
855 */
856 ClearPageLRU(page);
857 ret = 0;
858 }
859
860 return ret;
861 }
862
863 /*
864 * zone->lru_lock is heavily contended. Some of the functions that
865 * shrink the lists perform better by taking out a batch of pages
866 * and working on them outside the LRU lock.
867 *
868 * For pagecache intensive workloads, this function is the hottest
869 * spot in the kernel (apart from copy_*_user functions).
870 *
871 * Appropriate locks must be held before calling this function.
872 *
873 * @nr_to_scan: The number of pages to look through on the list.
874 * @src: The LRU list to pull pages off.
875 * @dst: The temp list to put pages on to.
876 * @scanned: The number of pages that were scanned.
877 * @order: The caller's attempted allocation order
878 * @mode: One of the LRU isolation modes
879 * @file: True [1] if isolating file [!anon] pages
880 *
881 * returns how many pages were moved onto *@dst.
882 */
883 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
884 struct list_head *src, struct list_head *dst,
885 unsigned long *scanned, int order, int mode, int file)
886 {
887 unsigned long nr_taken = 0;
888 unsigned long scan;
889
890 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
891 struct page *page;
892 unsigned long pfn;
893 unsigned long end_pfn;
894 unsigned long page_pfn;
895 int zone_id;
896
897 page = lru_to_page(src);
898 prefetchw_prev_lru_page(page, src, flags);
899
900 VM_BUG_ON(!PageLRU(page));
901
902 switch (__isolate_lru_page(page, mode, file)) {
903 case 0:
904 list_move(&page->lru, dst);
905 mem_cgroup_del_lru(page);
906 nr_taken++;
907 break;
908
909 case -EBUSY:
910 /* else it is being freed elsewhere */
911 list_move(&page->lru, src);
912 mem_cgroup_rotate_lru_list(page, page_lru(page));
913 continue;
914
915 default:
916 BUG();
917 }
918
919 if (!order)
920 continue;
921
922 /*
923 * Attempt to take all pages in the order aligned region
924 * surrounding the tag page. Only take those pages of
925 * the same active state as that tag page. We may safely
926 * round the target page pfn down to the requested order
927 * as the mem_map is guarenteed valid out to MAX_ORDER,
928 * where that page is in a different zone we will detect
929 * it from its zone id and abort this block scan.
930 */
931 zone_id = page_zone_id(page);
932 page_pfn = page_to_pfn(page);
933 pfn = page_pfn & ~((1 << order) - 1);
934 end_pfn = pfn + (1 << order);
935 for (; pfn < end_pfn; pfn++) {
936 struct page *cursor_page;
937
938 /* The target page is in the block, ignore it. */
939 if (unlikely(pfn == page_pfn))
940 continue;
941
942 /* Avoid holes within the zone. */
943 if (unlikely(!pfn_valid_within(pfn)))
944 break;
945
946 cursor_page = pfn_to_page(pfn);
947
948 /* Check that we have not crossed a zone boundary. */
949 if (unlikely(page_zone_id(cursor_page) != zone_id))
950 continue;
951
952 /*
953 * If we don't have enough swap space, reclaiming of
954 * anon page which don't already have a swap slot is
955 * pointless.
956 */
957 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
958 !PageSwapCache(cursor_page))
959 continue;
960
961 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
962 list_move(&cursor_page->lru, dst);
963 mem_cgroup_del_lru(cursor_page);
964 nr_taken++;
965 scan++;
966 }
967 }
968 }
969
970 *scanned = scan;
971 return nr_taken;
972 }
973
974 static unsigned long isolate_pages_global(unsigned long nr,
975 struct list_head *dst,
976 unsigned long *scanned, int order,
977 int mode, struct zone *z,
978 struct mem_cgroup *mem_cont,
979 int active, int file)
980 {
981 int lru = LRU_BASE;
982 if (active)
983 lru += LRU_ACTIVE;
984 if (file)
985 lru += LRU_FILE;
986 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
987 mode, file);
988 }
989
990 /*
991 * clear_active_flags() is a helper for shrink_active_list(), clearing
992 * any active bits from the pages in the list.
993 */
994 static unsigned long clear_active_flags(struct list_head *page_list,
995 unsigned int *count)
996 {
997 int nr_active = 0;
998 int lru;
999 struct page *page;
1000
1001 list_for_each_entry(page, page_list, lru) {
1002 lru = page_lru_base_type(page);
1003 if (PageActive(page)) {
1004 lru += LRU_ACTIVE;
1005 ClearPageActive(page);
1006 nr_active++;
1007 }
1008 count[lru]++;
1009 }
1010
1011 return nr_active;
1012 }
1013
1014 /**
1015 * isolate_lru_page - tries to isolate a page from its LRU list
1016 * @page: page to isolate from its LRU list
1017 *
1018 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1019 * vmstat statistic corresponding to whatever LRU list the page was on.
1020 *
1021 * Returns 0 if the page was removed from an LRU list.
1022 * Returns -EBUSY if the page was not on an LRU list.
1023 *
1024 * The returned page will have PageLRU() cleared. If it was found on
1025 * the active list, it will have PageActive set. If it was found on
1026 * the unevictable list, it will have the PageUnevictable bit set. That flag
1027 * may need to be cleared by the caller before letting the page go.
1028 *
1029 * The vmstat statistic corresponding to the list on which the page was
1030 * found will be decremented.
1031 *
1032 * Restrictions:
1033 * (1) Must be called with an elevated refcount on the page. This is a
1034 * fundamentnal difference from isolate_lru_pages (which is called
1035 * without a stable reference).
1036 * (2) the lru_lock must not be held.
1037 * (3) interrupts must be enabled.
1038 */
1039 int isolate_lru_page(struct page *page)
1040 {
1041 int ret = -EBUSY;
1042
1043 if (PageLRU(page)) {
1044 struct zone *zone = page_zone(page);
1045
1046 spin_lock_irq(&zone->lru_lock);
1047 if (PageLRU(page) && get_page_unless_zero(page)) {
1048 int lru = page_lru(page);
1049 ret = 0;
1050 ClearPageLRU(page);
1051
1052 del_page_from_lru_list(zone, page, lru);
1053 }
1054 spin_unlock_irq(&zone->lru_lock);
1055 }
1056 return ret;
1057 }
1058
1059 /*
1060 * Are there way too many processes in the direct reclaim path already?
1061 */
1062 static int too_many_isolated(struct zone *zone, int file,
1063 struct scan_control *sc)
1064 {
1065 unsigned long inactive, isolated;
1066
1067 if (current_is_kswapd())
1068 return 0;
1069
1070 if (!scanning_global_lru(sc))
1071 return 0;
1072
1073 if (file) {
1074 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1075 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1076 } else {
1077 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1078 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1079 }
1080
1081 return isolated > inactive;
1082 }
1083
1084 /*
1085 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1086 * of reclaimed pages
1087 */
1088 static unsigned long shrink_inactive_list(unsigned long max_scan,
1089 struct zone *zone, struct scan_control *sc,
1090 int priority, int file)
1091 {
1092 LIST_HEAD(page_list);
1093 struct pagevec pvec;
1094 unsigned long nr_scanned = 0;
1095 unsigned long nr_reclaimed = 0;
1096 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1097 int lumpy_reclaim = 0;
1098
1099 while (unlikely(too_many_isolated(zone, file, sc))) {
1100 congestion_wait(BLK_RW_ASYNC, HZ/10);
1101
1102 /* We are about to die and free our memory. Return now. */
1103 if (fatal_signal_pending(current))
1104 return SWAP_CLUSTER_MAX;
1105 }
1106
1107 /*
1108 * If we need a large contiguous chunk of memory, or have
1109 * trouble getting a small set of contiguous pages, we
1110 * will reclaim both active and inactive pages.
1111 *
1112 * We use the same threshold as pageout congestion_wait below.
1113 */
1114 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1115 lumpy_reclaim = 1;
1116 else if (sc->order && priority < DEF_PRIORITY - 2)
1117 lumpy_reclaim = 1;
1118
1119 pagevec_init(&pvec, 1);
1120
1121 lru_add_drain();
1122 spin_lock_irq(&zone->lru_lock);
1123 do {
1124 struct page *page;
1125 unsigned long nr_taken;
1126 unsigned long nr_scan;
1127 unsigned long nr_freed;
1128 unsigned long nr_active;
1129 unsigned int count[NR_LRU_LISTS] = { 0, };
1130 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1131 unsigned long nr_anon;
1132 unsigned long nr_file;
1133
1134 nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1135 &page_list, &nr_scan, sc->order, mode,
1136 zone, sc->mem_cgroup, 0, file);
1137
1138 if (scanning_global_lru(sc)) {
1139 zone->pages_scanned += nr_scan;
1140 if (current_is_kswapd())
1141 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1142 nr_scan);
1143 else
1144 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1145 nr_scan);
1146 }
1147
1148 if (nr_taken == 0)
1149 goto done;
1150
1151 nr_active = clear_active_flags(&page_list, count);
1152 __count_vm_events(PGDEACTIVATE, nr_active);
1153
1154 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1155 -count[LRU_ACTIVE_FILE]);
1156 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1157 -count[LRU_INACTIVE_FILE]);
1158 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1159 -count[LRU_ACTIVE_ANON]);
1160 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1161 -count[LRU_INACTIVE_ANON]);
1162
1163 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1164 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1165 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1166 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1167
1168 reclaim_stat->recent_scanned[0] += nr_anon;
1169 reclaim_stat->recent_scanned[1] += nr_file;
1170
1171 spin_unlock_irq(&zone->lru_lock);
1172
1173 nr_scanned += nr_scan;
1174 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1175
1176 /*
1177 * If we are direct reclaiming for contiguous pages and we do
1178 * not reclaim everything in the list, try again and wait
1179 * for IO to complete. This will stall high-order allocations
1180 * but that should be acceptable to the caller
1181 */
1182 if (nr_freed < nr_taken && !current_is_kswapd() &&
1183 lumpy_reclaim) {
1184 congestion_wait(BLK_RW_ASYNC, HZ/10);
1185
1186 /*
1187 * The attempt at page out may have made some
1188 * of the pages active, mark them inactive again.
1189 */
1190 nr_active = clear_active_flags(&page_list, count);
1191 count_vm_events(PGDEACTIVATE, nr_active);
1192
1193 nr_freed += shrink_page_list(&page_list, sc,
1194 PAGEOUT_IO_SYNC);
1195 }
1196
1197 nr_reclaimed += nr_freed;
1198
1199 local_irq_disable();
1200 if (current_is_kswapd())
1201 __count_vm_events(KSWAPD_STEAL, nr_freed);
1202 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1203
1204 spin_lock(&zone->lru_lock);
1205 /*
1206 * Put back any unfreeable pages.
1207 */
1208 while (!list_empty(&page_list)) {
1209 int lru;
1210 page = lru_to_page(&page_list);
1211 VM_BUG_ON(PageLRU(page));
1212 list_del(&page->lru);
1213 if (unlikely(!page_evictable(page, NULL))) {
1214 spin_unlock_irq(&zone->lru_lock);
1215 putback_lru_page(page);
1216 spin_lock_irq(&zone->lru_lock);
1217 continue;
1218 }
1219 SetPageLRU(page);
1220 lru = page_lru(page);
1221 add_page_to_lru_list(zone, page, lru);
1222 if (is_active_lru(lru)) {
1223 int file = is_file_lru(lru);
1224 reclaim_stat->recent_rotated[file]++;
1225 }
1226 if (!pagevec_add(&pvec, page)) {
1227 spin_unlock_irq(&zone->lru_lock);
1228 __pagevec_release(&pvec);
1229 spin_lock_irq(&zone->lru_lock);
1230 }
1231 }
1232 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1233 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1234
1235 } while (nr_scanned < max_scan);
1236
1237 done:
1238 spin_unlock_irq(&zone->lru_lock);
1239 pagevec_release(&pvec);
1240 return nr_reclaimed;
1241 }
1242
1243 /*
1244 * We are about to scan this zone at a certain priority level. If that priority
1245 * level is smaller (ie: more urgent) than the previous priority, then note
1246 * that priority level within the zone. This is done so that when the next
1247 * process comes in to scan this zone, it will immediately start out at this
1248 * priority level rather than having to build up its own scanning priority.
1249 * Here, this priority affects only the reclaim-mapped threshold.
1250 */
1251 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1252 {
1253 if (priority < zone->prev_priority)
1254 zone->prev_priority = priority;
1255 }
1256
1257 /*
1258 * This moves pages from the active list to the inactive list.
1259 *
1260 * We move them the other way if the page is referenced by one or more
1261 * processes, from rmap.
1262 *
1263 * If the pages are mostly unmapped, the processing is fast and it is
1264 * appropriate to hold zone->lru_lock across the whole operation. But if
1265 * the pages are mapped, the processing is slow (page_referenced()) so we
1266 * should drop zone->lru_lock around each page. It's impossible to balance
1267 * this, so instead we remove the pages from the LRU while processing them.
1268 * It is safe to rely on PG_active against the non-LRU pages in here because
1269 * nobody will play with that bit on a non-LRU page.
1270 *
1271 * The downside is that we have to touch page->_count against each page.
1272 * But we had to alter page->flags anyway.
1273 */
1274
1275 static void move_active_pages_to_lru(struct zone *zone,
1276 struct list_head *list,
1277 enum lru_list lru)
1278 {
1279 unsigned long pgmoved = 0;
1280 struct pagevec pvec;
1281 struct page *page;
1282
1283 pagevec_init(&pvec, 1);
1284
1285 while (!list_empty(list)) {
1286 page = lru_to_page(list);
1287
1288 VM_BUG_ON(PageLRU(page));
1289 SetPageLRU(page);
1290
1291 list_move(&page->lru, &zone->lru[lru].list);
1292 mem_cgroup_add_lru_list(page, lru);
1293 pgmoved++;
1294
1295 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1296 spin_unlock_irq(&zone->lru_lock);
1297 if (buffer_heads_over_limit)
1298 pagevec_strip(&pvec);
1299 __pagevec_release(&pvec);
1300 spin_lock_irq(&zone->lru_lock);
1301 }
1302 }
1303 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1304 if (!is_active_lru(lru))
1305 __count_vm_events(PGDEACTIVATE, pgmoved);
1306 }
1307
1308 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1309 struct scan_control *sc, int priority, int file)
1310 {
1311 unsigned long nr_taken;
1312 unsigned long pgscanned;
1313 unsigned long vm_flags;
1314 LIST_HEAD(l_hold); /* The pages which were snipped off */
1315 LIST_HEAD(l_active);
1316 LIST_HEAD(l_inactive);
1317 struct page *page;
1318 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1319 unsigned long nr_rotated = 0;
1320
1321 lru_add_drain();
1322 spin_lock_irq(&zone->lru_lock);
1323 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1324 ISOLATE_ACTIVE, zone,
1325 sc->mem_cgroup, 1, file);
1326 /*
1327 * zone->pages_scanned is used for detect zone's oom
1328 * mem_cgroup remembers nr_scan by itself.
1329 */
1330 if (scanning_global_lru(sc)) {
1331 zone->pages_scanned += pgscanned;
1332 }
1333 reclaim_stat->recent_scanned[file] += nr_taken;
1334
1335 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1336 if (file)
1337 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1338 else
1339 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1340 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1341 spin_unlock_irq(&zone->lru_lock);
1342
1343 while (!list_empty(&l_hold)) {
1344 cond_resched();
1345 page = lru_to_page(&l_hold);
1346 list_del(&page->lru);
1347
1348 if (unlikely(!page_evictable(page, NULL))) {
1349 putback_lru_page(page);
1350 continue;
1351 }
1352
1353 /* page_referenced clears PageReferenced */
1354 if (page_mapping_inuse(page) &&
1355 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1356 nr_rotated++;
1357 /*
1358 * Identify referenced, file-backed active pages and
1359 * give them one more trip around the active list. So
1360 * that executable code get better chances to stay in
1361 * memory under moderate memory pressure. Anon pages
1362 * are not likely to be evicted by use-once streaming
1363 * IO, plus JVM can create lots of anon VM_EXEC pages,
1364 * so we ignore them here.
1365 */
1366 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1367 list_add(&page->lru, &l_active);
1368 continue;
1369 }
1370 }
1371
1372 ClearPageActive(page); /* we are de-activating */
1373 list_add(&page->lru, &l_inactive);
1374 }
1375
1376 /*
1377 * Move pages back to the lru list.
1378 */
1379 spin_lock_irq(&zone->lru_lock);
1380 /*
1381 * Count referenced pages from currently used mappings as rotated,
1382 * even though only some of them are actually re-activated. This
1383 * helps balance scan pressure between file and anonymous pages in
1384 * get_scan_ratio.
1385 */
1386 reclaim_stat->recent_rotated[file] += nr_rotated;
1387
1388 move_active_pages_to_lru(zone, &l_active,
1389 LRU_ACTIVE + file * LRU_FILE);
1390 move_active_pages_to_lru(zone, &l_inactive,
1391 LRU_BASE + file * LRU_FILE);
1392 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1393 spin_unlock_irq(&zone->lru_lock);
1394 }
1395
1396 static int inactive_anon_is_low_global(struct zone *zone)
1397 {
1398 unsigned long active, inactive;
1399
1400 active = zone_page_state(zone, NR_ACTIVE_ANON);
1401 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1402
1403 if (inactive * zone->inactive_ratio < active)
1404 return 1;
1405
1406 return 0;
1407 }
1408
1409 /**
1410 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1411 * @zone: zone to check
1412 * @sc: scan control of this context
1413 *
1414 * Returns true if the zone does not have enough inactive anon pages,
1415 * meaning some active anon pages need to be deactivated.
1416 */
1417 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1418 {
1419 int low;
1420
1421 if (scanning_global_lru(sc))
1422 low = inactive_anon_is_low_global(zone);
1423 else
1424 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1425 return low;
1426 }
1427
1428 static int inactive_file_is_low_global(struct zone *zone)
1429 {
1430 unsigned long active, inactive;
1431
1432 active = zone_page_state(zone, NR_ACTIVE_FILE);
1433 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1434
1435 return (active > inactive);
1436 }
1437
1438 /**
1439 * inactive_file_is_low - check if file pages need to be deactivated
1440 * @zone: zone to check
1441 * @sc: scan control of this context
1442 *
1443 * When the system is doing streaming IO, memory pressure here
1444 * ensures that active file pages get deactivated, until more
1445 * than half of the file pages are on the inactive list.
1446 *
1447 * Once we get to that situation, protect the system's working
1448 * set from being evicted by disabling active file page aging.
1449 *
1450 * This uses a different ratio than the anonymous pages, because
1451 * the page cache uses a use-once replacement algorithm.
1452 */
1453 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1454 {
1455 int low;
1456
1457 if (scanning_global_lru(sc))
1458 low = inactive_file_is_low_global(zone);
1459 else
1460 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1461 return low;
1462 }
1463
1464 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1465 int file)
1466 {
1467 if (file)
1468 return inactive_file_is_low(zone, sc);
1469 else
1470 return inactive_anon_is_low(zone, sc);
1471 }
1472
1473 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1474 struct zone *zone, struct scan_control *sc, int priority)
1475 {
1476 int file = is_file_lru(lru);
1477
1478 if (is_active_lru(lru)) {
1479 if (inactive_list_is_low(zone, sc, file))
1480 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1481 return 0;
1482 }
1483
1484 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1485 }
1486
1487 /*
1488 * Determine how aggressively the anon and file LRU lists should be
1489 * scanned. The relative value of each set of LRU lists is determined
1490 * by looking at the fraction of the pages scanned we did rotate back
1491 * onto the active list instead of evict.
1492 *
1493 * percent[0] specifies how much pressure to put on ram/swap backed
1494 * memory, while percent[1] determines pressure on the file LRUs.
1495 */
1496 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1497 unsigned long *percent)
1498 {
1499 unsigned long anon, file, free;
1500 unsigned long anon_prio, file_prio;
1501 unsigned long ap, fp;
1502 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1503
1504 /* If we have no swap space, do not bother scanning anon pages. */
1505 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1506 percent[0] = 0;
1507 percent[1] = 100;
1508 return;
1509 }
1510
1511 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1512 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1513 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1514 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1515
1516 if (scanning_global_lru(sc)) {
1517 free = zone_page_state(zone, NR_FREE_PAGES);
1518 /* If we have very few page cache pages,
1519 force-scan anon pages. */
1520 if (unlikely(file + free <= high_wmark_pages(zone))) {
1521 percent[0] = 100;
1522 percent[1] = 0;
1523 return;
1524 }
1525 }
1526
1527 /*
1528 * OK, so we have swap space and a fair amount of page cache
1529 * pages. We use the recently rotated / recently scanned
1530 * ratios to determine how valuable each cache is.
1531 *
1532 * Because workloads change over time (and to avoid overflow)
1533 * we keep these statistics as a floating average, which ends
1534 * up weighing recent references more than old ones.
1535 *
1536 * anon in [0], file in [1]
1537 */
1538 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1539 spin_lock_irq(&zone->lru_lock);
1540 reclaim_stat->recent_scanned[0] /= 2;
1541 reclaim_stat->recent_rotated[0] /= 2;
1542 spin_unlock_irq(&zone->lru_lock);
1543 }
1544
1545 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1546 spin_lock_irq(&zone->lru_lock);
1547 reclaim_stat->recent_scanned[1] /= 2;
1548 reclaim_stat->recent_rotated[1] /= 2;
1549 spin_unlock_irq(&zone->lru_lock);
1550 }
1551
1552 /*
1553 * With swappiness at 100, anonymous and file have the same priority.
1554 * This scanning priority is essentially the inverse of IO cost.
1555 */
1556 anon_prio = sc->swappiness;
1557 file_prio = 200 - sc->swappiness;
1558
1559 /*
1560 * The amount of pressure on anon vs file pages is inversely
1561 * proportional to the fraction of recently scanned pages on
1562 * each list that were recently referenced and in active use.
1563 */
1564 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1565 ap /= reclaim_stat->recent_rotated[0] + 1;
1566
1567 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1568 fp /= reclaim_stat->recent_rotated[1] + 1;
1569
1570 /* Normalize to percentages */
1571 percent[0] = 100 * ap / (ap + fp + 1);
1572 percent[1] = 100 - percent[0];
1573 }
1574
1575 /*
1576 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1577 * until we collected @swap_cluster_max pages to scan.
1578 */
1579 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1580 unsigned long *nr_saved_scan)
1581 {
1582 unsigned long nr;
1583
1584 *nr_saved_scan += nr_to_scan;
1585 nr = *nr_saved_scan;
1586
1587 if (nr >= SWAP_CLUSTER_MAX)
1588 *nr_saved_scan = 0;
1589 else
1590 nr = 0;
1591
1592 return nr;
1593 }
1594
1595 /*
1596 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1597 */
1598 static void shrink_zone(int priority, struct zone *zone,
1599 struct scan_control *sc)
1600 {
1601 unsigned long nr[NR_LRU_LISTS];
1602 unsigned long nr_to_scan;
1603 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1604 enum lru_list l;
1605 unsigned long nr_reclaimed = sc->nr_reclaimed;
1606 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1607 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1608
1609 get_scan_ratio(zone, sc, percent);
1610
1611 for_each_evictable_lru(l) {
1612 int file = is_file_lru(l);
1613 unsigned long scan;
1614
1615 if (percent[file] == 0) {
1616 nr[l] = 0;
1617 continue;
1618 }
1619
1620 scan = zone_nr_lru_pages(zone, sc, l);
1621 if (priority) {
1622 scan >>= priority;
1623 scan = (scan * percent[file]) / 100;
1624 }
1625 nr[l] = nr_scan_try_batch(scan,
1626 &reclaim_stat->nr_saved_scan[l]);
1627 }
1628
1629 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1630 nr[LRU_INACTIVE_FILE]) {
1631 for_each_evictable_lru(l) {
1632 if (nr[l]) {
1633 nr_to_scan = min_t(unsigned long,
1634 nr[l], SWAP_CLUSTER_MAX);
1635 nr[l] -= nr_to_scan;
1636
1637 nr_reclaimed += shrink_list(l, nr_to_scan,
1638 zone, sc, priority);
1639 }
1640 }
1641 /*
1642 * On large memory systems, scan >> priority can become
1643 * really large. This is fine for the starting priority;
1644 * we want to put equal scanning pressure on each zone.
1645 * However, if the VM has a harder time of freeing pages,
1646 * with multiple processes reclaiming pages, the total
1647 * freeing target can get unreasonably large.
1648 */
1649 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1650 break;
1651 }
1652
1653 sc->nr_reclaimed = nr_reclaimed;
1654
1655 /*
1656 * Even if we did not try to evict anon pages at all, we want to
1657 * rebalance the anon lru active/inactive ratio.
1658 */
1659 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1660 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1661
1662 throttle_vm_writeout(sc->gfp_mask);
1663 }
1664
1665 /*
1666 * This is the direct reclaim path, for page-allocating processes. We only
1667 * try to reclaim pages from zones which will satisfy the caller's allocation
1668 * request.
1669 *
1670 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1671 * Because:
1672 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1673 * allocation or
1674 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1675 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1676 * zone defense algorithm.
1677 *
1678 * If a zone is deemed to be full of pinned pages then just give it a light
1679 * scan then give up on it.
1680 */
1681 static void shrink_zones(int priority, struct zonelist *zonelist,
1682 struct scan_control *sc)
1683 {
1684 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1685 struct zoneref *z;
1686 struct zone *zone;
1687
1688 sc->all_unreclaimable = 1;
1689 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1690 sc->nodemask) {
1691 if (!populated_zone(zone))
1692 continue;
1693 /*
1694 * Take care memory controller reclaiming has small influence
1695 * to global LRU.
1696 */
1697 if (scanning_global_lru(sc)) {
1698 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1699 continue;
1700 note_zone_scanning_priority(zone, priority);
1701
1702 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1703 continue; /* Let kswapd poll it */
1704 sc->all_unreclaimable = 0;
1705 } else {
1706 /*
1707 * Ignore cpuset limitation here. We just want to reduce
1708 * # of used pages by us regardless of memory shortage.
1709 */
1710 sc->all_unreclaimable = 0;
1711 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1712 priority);
1713 }
1714
1715 shrink_zone(priority, zone, sc);
1716 }
1717 }
1718
1719 /*
1720 * This is the main entry point to direct page reclaim.
1721 *
1722 * If a full scan of the inactive list fails to free enough memory then we
1723 * are "out of memory" and something needs to be killed.
1724 *
1725 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1726 * high - the zone may be full of dirty or under-writeback pages, which this
1727 * caller can't do much about. We kick the writeback threads and take explicit
1728 * naps in the hope that some of these pages can be written. But if the
1729 * allocating task holds filesystem locks which prevent writeout this might not
1730 * work, and the allocation attempt will fail.
1731 *
1732 * returns: 0, if no pages reclaimed
1733 * else, the number of pages reclaimed
1734 */
1735 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1736 struct scan_control *sc)
1737 {
1738 int priority;
1739 unsigned long ret = 0;
1740 unsigned long total_scanned = 0;
1741 struct reclaim_state *reclaim_state = current->reclaim_state;
1742 unsigned long lru_pages = 0;
1743 struct zoneref *z;
1744 struct zone *zone;
1745 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1746 unsigned long writeback_threshold;
1747
1748 delayacct_freepages_start();
1749
1750 if (scanning_global_lru(sc))
1751 count_vm_event(ALLOCSTALL);
1752 /*
1753 * mem_cgroup will not do shrink_slab.
1754 */
1755 if (scanning_global_lru(sc)) {
1756 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1757
1758 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1759 continue;
1760
1761 lru_pages += zone_reclaimable_pages(zone);
1762 }
1763 }
1764
1765 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1766 sc->nr_scanned = 0;
1767 if (!priority)
1768 disable_swap_token();
1769 shrink_zones(priority, zonelist, sc);
1770 /*
1771 * Don't shrink slabs when reclaiming memory from
1772 * over limit cgroups
1773 */
1774 if (scanning_global_lru(sc)) {
1775 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1776 if (reclaim_state) {
1777 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1778 reclaim_state->reclaimed_slab = 0;
1779 }
1780 }
1781 total_scanned += sc->nr_scanned;
1782 if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1783 ret = sc->nr_reclaimed;
1784 goto out;
1785 }
1786
1787 /*
1788 * Try to write back as many pages as we just scanned. This
1789 * tends to cause slow streaming writers to write data to the
1790 * disk smoothly, at the dirtying rate, which is nice. But
1791 * that's undesirable in laptop mode, where we *want* lumpy
1792 * writeout. So in laptop mode, write out the whole world.
1793 */
1794 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1795 if (total_scanned > writeback_threshold) {
1796 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1797 sc->may_writepage = 1;
1798 }
1799
1800 /* Take a nap, wait for some writeback to complete */
1801 if (!sc->hibernation_mode && sc->nr_scanned &&
1802 priority < DEF_PRIORITY - 2)
1803 congestion_wait(BLK_RW_ASYNC, HZ/10);
1804 }
1805 /* top priority shrink_zones still had more to do? don't OOM, then */
1806 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1807 ret = sc->nr_reclaimed;
1808 out:
1809 /*
1810 * Now that we've scanned all the zones at this priority level, note
1811 * that level within the zone so that the next thread which performs
1812 * scanning of this zone will immediately start out at this priority
1813 * level. This affects only the decision whether or not to bring
1814 * mapped pages onto the inactive list.
1815 */
1816 if (priority < 0)
1817 priority = 0;
1818
1819 if (scanning_global_lru(sc)) {
1820 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1821
1822 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1823 continue;
1824
1825 zone->prev_priority = priority;
1826 }
1827 } else
1828 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1829
1830 delayacct_freepages_end();
1831
1832 return ret;
1833 }
1834
1835 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1836 gfp_t gfp_mask, nodemask_t *nodemask)
1837 {
1838 struct scan_control sc = {
1839 .gfp_mask = gfp_mask,
1840 .may_writepage = !laptop_mode,
1841 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1842 .may_unmap = 1,
1843 .may_swap = 1,
1844 .swappiness = vm_swappiness,
1845 .order = order,
1846 .mem_cgroup = NULL,
1847 .isolate_pages = isolate_pages_global,
1848 .nodemask = nodemask,
1849 };
1850
1851 return do_try_to_free_pages(zonelist, &sc);
1852 }
1853
1854 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1855
1856 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1857 gfp_t gfp_mask, bool noswap,
1858 unsigned int swappiness,
1859 struct zone *zone, int nid)
1860 {
1861 struct scan_control sc = {
1862 .may_writepage = !laptop_mode,
1863 .may_unmap = 1,
1864 .may_swap = !noswap,
1865 .swappiness = swappiness,
1866 .order = 0,
1867 .mem_cgroup = mem,
1868 .isolate_pages = mem_cgroup_isolate_pages,
1869 };
1870 nodemask_t nm = nodemask_of_node(nid);
1871
1872 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1873 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1874 sc.nodemask = &nm;
1875 sc.nr_reclaimed = 0;
1876 sc.nr_scanned = 0;
1877 /*
1878 * NOTE: Although we can get the priority field, using it
1879 * here is not a good idea, since it limits the pages we can scan.
1880 * if we don't reclaim here, the shrink_zone from balance_pgdat
1881 * will pick up pages from other mem cgroup's as well. We hack
1882 * the priority and make it zero.
1883 */
1884 shrink_zone(0, zone, &sc);
1885 return sc.nr_reclaimed;
1886 }
1887
1888 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1889 gfp_t gfp_mask,
1890 bool noswap,
1891 unsigned int swappiness)
1892 {
1893 struct zonelist *zonelist;
1894 struct scan_control sc = {
1895 .may_writepage = !laptop_mode,
1896 .may_unmap = 1,
1897 .may_swap = !noswap,
1898 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1899 .swappiness = swappiness,
1900 .order = 0,
1901 .mem_cgroup = mem_cont,
1902 .isolate_pages = mem_cgroup_isolate_pages,
1903 .nodemask = NULL, /* we don't care the placement */
1904 };
1905
1906 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1907 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1908 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1909 return do_try_to_free_pages(zonelist, &sc);
1910 }
1911 #endif
1912
1913 /* is kswapd sleeping prematurely? */
1914 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1915 {
1916 int i;
1917
1918 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1919 if (remaining)
1920 return 1;
1921
1922 /* If after HZ/10, a zone is below the high mark, it's premature */
1923 for (i = 0; i < pgdat->nr_zones; i++) {
1924 struct zone *zone = pgdat->node_zones + i;
1925
1926 if (!populated_zone(zone))
1927 continue;
1928
1929 if (zone->all_unreclaimable)
1930 continue;
1931
1932 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1933 0, 0))
1934 return 1;
1935 }
1936
1937 return 0;
1938 }
1939
1940 /*
1941 * For kswapd, balance_pgdat() will work across all this node's zones until
1942 * they are all at high_wmark_pages(zone).
1943 *
1944 * Returns the number of pages which were actually freed.
1945 *
1946 * There is special handling here for zones which are full of pinned pages.
1947 * This can happen if the pages are all mlocked, or if they are all used by
1948 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1949 * What we do is to detect the case where all pages in the zone have been
1950 * scanned twice and there has been zero successful reclaim. Mark the zone as
1951 * dead and from now on, only perform a short scan. Basically we're polling
1952 * the zone for when the problem goes away.
1953 *
1954 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1955 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1956 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1957 * lower zones regardless of the number of free pages in the lower zones. This
1958 * interoperates with the page allocator fallback scheme to ensure that aging
1959 * of pages is balanced across the zones.
1960 */
1961 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1962 {
1963 int all_zones_ok;
1964 int priority;
1965 int i;
1966 unsigned long total_scanned;
1967 struct reclaim_state *reclaim_state = current->reclaim_state;
1968 struct scan_control sc = {
1969 .gfp_mask = GFP_KERNEL,
1970 .may_unmap = 1,
1971 .may_swap = 1,
1972 /*
1973 * kswapd doesn't want to be bailed out while reclaim. because
1974 * we want to put equal scanning pressure on each zone.
1975 */
1976 .nr_to_reclaim = ULONG_MAX,
1977 .swappiness = vm_swappiness,
1978 .order = order,
1979 .mem_cgroup = NULL,
1980 .isolate_pages = isolate_pages_global,
1981 };
1982 /*
1983 * temp_priority is used to remember the scanning priority at which
1984 * this zone was successfully refilled to
1985 * free_pages == high_wmark_pages(zone).
1986 */
1987 int temp_priority[MAX_NR_ZONES];
1988
1989 loop_again:
1990 total_scanned = 0;
1991 sc.nr_reclaimed = 0;
1992 sc.may_writepage = !laptop_mode;
1993 count_vm_event(PAGEOUTRUN);
1994
1995 for (i = 0; i < pgdat->nr_zones; i++)
1996 temp_priority[i] = DEF_PRIORITY;
1997
1998 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1999 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2000 unsigned long lru_pages = 0;
2001 int has_under_min_watermark_zone = 0;
2002
2003 /* The swap token gets in the way of swapout... */
2004 if (!priority)
2005 disable_swap_token();
2006
2007 all_zones_ok = 1;
2008
2009 /*
2010 * Scan in the highmem->dma direction for the highest
2011 * zone which needs scanning
2012 */
2013 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2014 struct zone *zone = pgdat->node_zones + i;
2015
2016 if (!populated_zone(zone))
2017 continue;
2018
2019 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2020 continue;
2021
2022 /*
2023 * Do some background aging of the anon list, to give
2024 * pages a chance to be referenced before reclaiming.
2025 */
2026 if (inactive_anon_is_low(zone, &sc))
2027 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2028 &sc, priority, 0);
2029
2030 if (!zone_watermark_ok(zone, order,
2031 high_wmark_pages(zone), 0, 0)) {
2032 end_zone = i;
2033 break;
2034 }
2035 }
2036 if (i < 0)
2037 goto out;
2038
2039 for (i = 0; i <= end_zone; i++) {
2040 struct zone *zone = pgdat->node_zones + i;
2041
2042 lru_pages += zone_reclaimable_pages(zone);
2043 }
2044
2045 /*
2046 * Now scan the zone in the dma->highmem direction, stopping
2047 * at the last zone which needs scanning.
2048 *
2049 * We do this because the page allocator works in the opposite
2050 * direction. This prevents the page allocator from allocating
2051 * pages behind kswapd's direction of progress, which would
2052 * cause too much scanning of the lower zones.
2053 */
2054 for (i = 0; i <= end_zone; i++) {
2055 struct zone *zone = pgdat->node_zones + i;
2056 int nr_slab;
2057 int nid, zid;
2058
2059 if (!populated_zone(zone))
2060 continue;
2061
2062 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2063 continue;
2064
2065 temp_priority[i] = priority;
2066 sc.nr_scanned = 0;
2067 note_zone_scanning_priority(zone, priority);
2068
2069 nid = pgdat->node_id;
2070 zid = zone_idx(zone);
2071 /*
2072 * Call soft limit reclaim before calling shrink_zone.
2073 * For now we ignore the return value
2074 */
2075 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2076 nid, zid);
2077 /*
2078 * We put equal pressure on every zone, unless one
2079 * zone has way too many pages free already.
2080 */
2081 if (!zone_watermark_ok(zone, order,
2082 8*high_wmark_pages(zone), end_zone, 0))
2083 shrink_zone(priority, zone, &sc);
2084 reclaim_state->reclaimed_slab = 0;
2085 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2086 lru_pages);
2087 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2088 total_scanned += sc.nr_scanned;
2089 if (zone->all_unreclaimable)
2090 continue;
2091 if (nr_slab == 0 &&
2092 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2093 zone->all_unreclaimable = 1;
2094 /*
2095 * If we've done a decent amount of scanning and
2096 * the reclaim ratio is low, start doing writepage
2097 * even in laptop mode
2098 */
2099 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2100 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2101 sc.may_writepage = 1;
2102
2103 if (!zone_watermark_ok(zone, order,
2104 high_wmark_pages(zone), end_zone, 0)) {
2105 all_zones_ok = 0;
2106 /*
2107 * We are still under min water mark. This
2108 * means that we have a GFP_ATOMIC allocation
2109 * failure risk. Hurry up!
2110 */
2111 if (!zone_watermark_ok(zone, order,
2112 min_wmark_pages(zone), end_zone, 0))
2113 has_under_min_watermark_zone = 1;
2114 }
2115
2116 }
2117 if (all_zones_ok)
2118 break; /* kswapd: all done */
2119 /*
2120 * OK, kswapd is getting into trouble. Take a nap, then take
2121 * another pass across the zones.
2122 */
2123 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2124 if (has_under_min_watermark_zone)
2125 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2126 else
2127 congestion_wait(BLK_RW_ASYNC, HZ/10);
2128 }
2129
2130 /*
2131 * We do this so kswapd doesn't build up large priorities for
2132 * example when it is freeing in parallel with allocators. It
2133 * matches the direct reclaim path behaviour in terms of impact
2134 * on zone->*_priority.
2135 */
2136 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2137 break;
2138 }
2139 out:
2140 /*
2141 * Note within each zone the priority level at which this zone was
2142 * brought into a happy state. So that the next thread which scans this
2143 * zone will start out at that priority level.
2144 */
2145 for (i = 0; i < pgdat->nr_zones; i++) {
2146 struct zone *zone = pgdat->node_zones + i;
2147
2148 zone->prev_priority = temp_priority[i];
2149 }
2150 if (!all_zones_ok) {
2151 cond_resched();
2152
2153 try_to_freeze();
2154
2155 /*
2156 * Fragmentation may mean that the system cannot be
2157 * rebalanced for high-order allocations in all zones.
2158 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2159 * it means the zones have been fully scanned and are still
2160 * not balanced. For high-order allocations, there is
2161 * little point trying all over again as kswapd may
2162 * infinite loop.
2163 *
2164 * Instead, recheck all watermarks at order-0 as they
2165 * are the most important. If watermarks are ok, kswapd will go
2166 * back to sleep. High-order users can still perform direct
2167 * reclaim if they wish.
2168 */
2169 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2170 order = sc.order = 0;
2171
2172 goto loop_again;
2173 }
2174
2175 return sc.nr_reclaimed;
2176 }
2177
2178 /*
2179 * The background pageout daemon, started as a kernel thread
2180 * from the init process.
2181 *
2182 * This basically trickles out pages so that we have _some_
2183 * free memory available even if there is no other activity
2184 * that frees anything up. This is needed for things like routing
2185 * etc, where we otherwise might have all activity going on in
2186 * asynchronous contexts that cannot page things out.
2187 *
2188 * If there are applications that are active memory-allocators
2189 * (most normal use), this basically shouldn't matter.
2190 */
2191 static int kswapd(void *p)
2192 {
2193 unsigned long order;
2194 pg_data_t *pgdat = (pg_data_t*)p;
2195 struct task_struct *tsk = current;
2196 DEFINE_WAIT(wait);
2197 struct reclaim_state reclaim_state = {
2198 .reclaimed_slab = 0,
2199 };
2200 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2201
2202 lockdep_set_current_reclaim_state(GFP_KERNEL);
2203
2204 if (!cpumask_empty(cpumask))
2205 set_cpus_allowed_ptr(tsk, cpumask);
2206 current->reclaim_state = &reclaim_state;
2207
2208 /*
2209 * Tell the memory management that we're a "memory allocator",
2210 * and that if we need more memory we should get access to it
2211 * regardless (see "__alloc_pages()"). "kswapd" should
2212 * never get caught in the normal page freeing logic.
2213 *
2214 * (Kswapd normally doesn't need memory anyway, but sometimes
2215 * you need a small amount of memory in order to be able to
2216 * page out something else, and this flag essentially protects
2217 * us from recursively trying to free more memory as we're
2218 * trying to free the first piece of memory in the first place).
2219 */
2220 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2221 set_freezable();
2222
2223 order = 0;
2224 for ( ; ; ) {
2225 unsigned long new_order;
2226 int ret;
2227
2228 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2229 new_order = pgdat->kswapd_max_order;
2230 pgdat->kswapd_max_order = 0;
2231 if (order < new_order) {
2232 /*
2233 * Don't sleep if someone wants a larger 'order'
2234 * allocation
2235 */
2236 order = new_order;
2237 } else {
2238 if (!freezing(current) && !kthread_should_stop()) {
2239 long remaining = 0;
2240
2241 /* Try to sleep for a short interval */
2242 if (!sleeping_prematurely(pgdat, order, remaining)) {
2243 remaining = schedule_timeout(HZ/10);
2244 finish_wait(&pgdat->kswapd_wait, &wait);
2245 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2246 }
2247
2248 /*
2249 * After a short sleep, check if it was a
2250 * premature sleep. If not, then go fully
2251 * to sleep until explicitly woken up
2252 */
2253 if (!sleeping_prematurely(pgdat, order, remaining))
2254 schedule();
2255 else {
2256 if (remaining)
2257 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2258 else
2259 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2260 }
2261 }
2262
2263 order = pgdat->kswapd_max_order;
2264 }
2265 finish_wait(&pgdat->kswapd_wait, &wait);
2266
2267 ret = try_to_freeze();
2268 if (kthread_should_stop())
2269 break;
2270
2271 /*
2272 * We can speed up thawing tasks if we don't call balance_pgdat
2273 * after returning from the refrigerator
2274 */
2275 if (!ret)
2276 balance_pgdat(pgdat, order);
2277 }
2278 return 0;
2279 }
2280
2281 /*
2282 * A zone is low on free memory, so wake its kswapd task to service it.
2283 */
2284 void wakeup_kswapd(struct zone *zone, int order)
2285 {
2286 pg_data_t *pgdat;
2287
2288 if (!populated_zone(zone))
2289 return;
2290
2291 pgdat = zone->zone_pgdat;
2292 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2293 return;
2294 if (pgdat->kswapd_max_order < order)
2295 pgdat->kswapd_max_order = order;
2296 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2297 return;
2298 if (!waitqueue_active(&pgdat->kswapd_wait))
2299 return;
2300 wake_up_interruptible(&pgdat->kswapd_wait);
2301 }
2302
2303 /*
2304 * The reclaimable count would be mostly accurate.
2305 * The less reclaimable pages may be
2306 * - mlocked pages, which will be moved to unevictable list when encountered
2307 * - mapped pages, which may require several travels to be reclaimed
2308 * - dirty pages, which is not "instantly" reclaimable
2309 */
2310 unsigned long global_reclaimable_pages(void)
2311 {
2312 int nr;
2313
2314 nr = global_page_state(NR_ACTIVE_FILE) +
2315 global_page_state(NR_INACTIVE_FILE);
2316
2317 if (nr_swap_pages > 0)
2318 nr += global_page_state(NR_ACTIVE_ANON) +
2319 global_page_state(NR_INACTIVE_ANON);
2320
2321 return nr;
2322 }
2323
2324 unsigned long zone_reclaimable_pages(struct zone *zone)
2325 {
2326 int nr;
2327
2328 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2329 zone_page_state(zone, NR_INACTIVE_FILE);
2330
2331 if (nr_swap_pages > 0)
2332 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2333 zone_page_state(zone, NR_INACTIVE_ANON);
2334
2335 return nr;
2336 }
2337
2338 #ifdef CONFIG_HIBERNATION
2339 /*
2340 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2341 * freed pages.
2342 *
2343 * Rather than trying to age LRUs the aim is to preserve the overall
2344 * LRU order by reclaiming preferentially
2345 * inactive > active > active referenced > active mapped
2346 */
2347 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2348 {
2349 struct reclaim_state reclaim_state;
2350 struct scan_control sc = {
2351 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2352 .may_swap = 1,
2353 .may_unmap = 1,
2354 .may_writepage = 1,
2355 .nr_to_reclaim = nr_to_reclaim,
2356 .hibernation_mode = 1,
2357 .swappiness = vm_swappiness,
2358 .order = 0,
2359 .isolate_pages = isolate_pages_global,
2360 };
2361 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2362 struct task_struct *p = current;
2363 unsigned long nr_reclaimed;
2364
2365 p->flags |= PF_MEMALLOC;
2366 lockdep_set_current_reclaim_state(sc.gfp_mask);
2367 reclaim_state.reclaimed_slab = 0;
2368 p->reclaim_state = &reclaim_state;
2369
2370 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2371
2372 p->reclaim_state = NULL;
2373 lockdep_clear_current_reclaim_state();
2374 p->flags &= ~PF_MEMALLOC;
2375
2376 return nr_reclaimed;
2377 }
2378 #endif /* CONFIG_HIBERNATION */
2379
2380 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2381 not required for correctness. So if the last cpu in a node goes
2382 away, we get changed to run anywhere: as the first one comes back,
2383 restore their cpu bindings. */
2384 static int __devinit cpu_callback(struct notifier_block *nfb,
2385 unsigned long action, void *hcpu)
2386 {
2387 int nid;
2388
2389 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2390 for_each_node_state(nid, N_HIGH_MEMORY) {
2391 pg_data_t *pgdat = NODE_DATA(nid);
2392 const struct cpumask *mask;
2393
2394 mask = cpumask_of_node(pgdat->node_id);
2395
2396 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2397 /* One of our CPUs online: restore mask */
2398 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2399 }
2400 }
2401 return NOTIFY_OK;
2402 }
2403
2404 /*
2405 * This kswapd start function will be called by init and node-hot-add.
2406 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2407 */
2408 int kswapd_run(int nid)
2409 {
2410 pg_data_t *pgdat = NODE_DATA(nid);
2411 int ret = 0;
2412
2413 if (pgdat->kswapd)
2414 return 0;
2415
2416 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2417 if (IS_ERR(pgdat->kswapd)) {
2418 /* failure at boot is fatal */
2419 BUG_ON(system_state == SYSTEM_BOOTING);
2420 printk("Failed to start kswapd on node %d\n",nid);
2421 ret = -1;
2422 }
2423 return ret;
2424 }
2425
2426 /*
2427 * Called by memory hotplug when all memory in a node is offlined.
2428 */
2429 void kswapd_stop(int nid)
2430 {
2431 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2432
2433 if (kswapd)
2434 kthread_stop(kswapd);
2435 }
2436
2437 static int __init kswapd_init(void)
2438 {
2439 int nid;
2440
2441 swap_setup();
2442 for_each_node_state(nid, N_HIGH_MEMORY)
2443 kswapd_run(nid);
2444 hotcpu_notifier(cpu_callback, 0);
2445 return 0;
2446 }
2447
2448 module_init(kswapd_init)
2449
2450 #ifdef CONFIG_NUMA
2451 /*
2452 * Zone reclaim mode
2453 *
2454 * If non-zero call zone_reclaim when the number of free pages falls below
2455 * the watermarks.
2456 */
2457 int zone_reclaim_mode __read_mostly;
2458
2459 #define RECLAIM_OFF 0
2460 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2461 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2462 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2463
2464 /*
2465 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2466 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2467 * a zone.
2468 */
2469 #define ZONE_RECLAIM_PRIORITY 4
2470
2471 /*
2472 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2473 * occur.
2474 */
2475 int sysctl_min_unmapped_ratio = 1;
2476
2477 /*
2478 * If the number of slab pages in a zone grows beyond this percentage then
2479 * slab reclaim needs to occur.
2480 */
2481 int sysctl_min_slab_ratio = 5;
2482
2483 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2484 {
2485 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2486 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2487 zone_page_state(zone, NR_ACTIVE_FILE);
2488
2489 /*
2490 * It's possible for there to be more file mapped pages than
2491 * accounted for by the pages on the file LRU lists because
2492 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2493 */
2494 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2495 }
2496
2497 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2498 static long zone_pagecache_reclaimable(struct zone *zone)
2499 {
2500 long nr_pagecache_reclaimable;
2501 long delta = 0;
2502
2503 /*
2504 * If RECLAIM_SWAP is set, then all file pages are considered
2505 * potentially reclaimable. Otherwise, we have to worry about
2506 * pages like swapcache and zone_unmapped_file_pages() provides
2507 * a better estimate
2508 */
2509 if (zone_reclaim_mode & RECLAIM_SWAP)
2510 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2511 else
2512 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2513
2514 /* If we can't clean pages, remove dirty pages from consideration */
2515 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2516 delta += zone_page_state(zone, NR_FILE_DIRTY);
2517
2518 /* Watch for any possible underflows due to delta */
2519 if (unlikely(delta > nr_pagecache_reclaimable))
2520 delta = nr_pagecache_reclaimable;
2521
2522 return nr_pagecache_reclaimable - delta;
2523 }
2524
2525 /*
2526 * Try to free up some pages from this zone through reclaim.
2527 */
2528 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2529 {
2530 /* Minimum pages needed in order to stay on node */
2531 const unsigned long nr_pages = 1 << order;
2532 struct task_struct *p = current;
2533 struct reclaim_state reclaim_state;
2534 int priority;
2535 struct scan_control sc = {
2536 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2537 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2538 .may_swap = 1,
2539 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2540 SWAP_CLUSTER_MAX),
2541 .gfp_mask = gfp_mask,
2542 .swappiness = vm_swappiness,
2543 .order = order,
2544 .isolate_pages = isolate_pages_global,
2545 };
2546 unsigned long slab_reclaimable;
2547
2548 disable_swap_token();
2549 cond_resched();
2550 /*
2551 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2552 * and we also need to be able to write out pages for RECLAIM_WRITE
2553 * and RECLAIM_SWAP.
2554 */
2555 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2556 lockdep_set_current_reclaim_state(gfp_mask);
2557 reclaim_state.reclaimed_slab = 0;
2558 p->reclaim_state = &reclaim_state;
2559
2560 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2561 /*
2562 * Free memory by calling shrink zone with increasing
2563 * priorities until we have enough memory freed.
2564 */
2565 priority = ZONE_RECLAIM_PRIORITY;
2566 do {
2567 note_zone_scanning_priority(zone, priority);
2568 shrink_zone(priority, zone, &sc);
2569 priority--;
2570 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2571 }
2572
2573 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2574 if (slab_reclaimable > zone->min_slab_pages) {
2575 /*
2576 * shrink_slab() does not currently allow us to determine how
2577 * many pages were freed in this zone. So we take the current
2578 * number of slab pages and shake the slab until it is reduced
2579 * by the same nr_pages that we used for reclaiming unmapped
2580 * pages.
2581 *
2582 * Note that shrink_slab will free memory on all zones and may
2583 * take a long time.
2584 */
2585 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2586 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2587 slab_reclaimable - nr_pages)
2588 ;
2589
2590 /*
2591 * Update nr_reclaimed by the number of slab pages we
2592 * reclaimed from this zone.
2593 */
2594 sc.nr_reclaimed += slab_reclaimable -
2595 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2596 }
2597
2598 p->reclaim_state = NULL;
2599 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2600 lockdep_clear_current_reclaim_state();
2601 return sc.nr_reclaimed >= nr_pages;
2602 }
2603
2604 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2605 {
2606 int node_id;
2607 int ret;
2608
2609 /*
2610 * Zone reclaim reclaims unmapped file backed pages and
2611 * slab pages if we are over the defined limits.
2612 *
2613 * A small portion of unmapped file backed pages is needed for
2614 * file I/O otherwise pages read by file I/O will be immediately
2615 * thrown out if the zone is overallocated. So we do not reclaim
2616 * if less than a specified percentage of the zone is used by
2617 * unmapped file backed pages.
2618 */
2619 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2620 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2621 return ZONE_RECLAIM_FULL;
2622
2623 if (zone->all_unreclaimable)
2624 return ZONE_RECLAIM_FULL;
2625
2626 /*
2627 * Do not scan if the allocation should not be delayed.
2628 */
2629 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2630 return ZONE_RECLAIM_NOSCAN;
2631
2632 /*
2633 * Only run zone reclaim on the local zone or on zones that do not
2634 * have associated processors. This will favor the local processor
2635 * over remote processors and spread off node memory allocations
2636 * as wide as possible.
2637 */
2638 node_id = zone_to_nid(zone);
2639 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2640 return ZONE_RECLAIM_NOSCAN;
2641
2642 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2643 return ZONE_RECLAIM_NOSCAN;
2644
2645 ret = __zone_reclaim(zone, gfp_mask, order);
2646 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2647
2648 if (!ret)
2649 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2650
2651 return ret;
2652 }
2653 #endif
2654
2655 /*
2656 * page_evictable - test whether a page is evictable
2657 * @page: the page to test
2658 * @vma: the VMA in which the page is or will be mapped, may be NULL
2659 *
2660 * Test whether page is evictable--i.e., should be placed on active/inactive
2661 * lists vs unevictable list. The vma argument is !NULL when called from the
2662 * fault path to determine how to instantate a new page.
2663 *
2664 * Reasons page might not be evictable:
2665 * (1) page's mapping marked unevictable
2666 * (2) page is part of an mlocked VMA
2667 *
2668 */
2669 int page_evictable(struct page *page, struct vm_area_struct *vma)
2670 {
2671
2672 if (mapping_unevictable(page_mapping(page)))
2673 return 0;
2674
2675 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2676 return 0;
2677
2678 return 1;
2679 }
2680
2681 /**
2682 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2683 * @page: page to check evictability and move to appropriate lru list
2684 * @zone: zone page is in
2685 *
2686 * Checks a page for evictability and moves the page to the appropriate
2687 * zone lru list.
2688 *
2689 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2690 * have PageUnevictable set.
2691 */
2692 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2693 {
2694 VM_BUG_ON(PageActive(page));
2695
2696 retry:
2697 ClearPageUnevictable(page);
2698 if (page_evictable(page, NULL)) {
2699 enum lru_list l = page_lru_base_type(page);
2700
2701 __dec_zone_state(zone, NR_UNEVICTABLE);
2702 list_move(&page->lru, &zone->lru[l].list);
2703 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2704 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2705 __count_vm_event(UNEVICTABLE_PGRESCUED);
2706 } else {
2707 /*
2708 * rotate unevictable list
2709 */
2710 SetPageUnevictable(page);
2711 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2712 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2713 if (page_evictable(page, NULL))
2714 goto retry;
2715 }
2716 }
2717
2718 /**
2719 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2720 * @mapping: struct address_space to scan for evictable pages
2721 *
2722 * Scan all pages in mapping. Check unevictable pages for
2723 * evictability and move them to the appropriate zone lru list.
2724 */
2725 void scan_mapping_unevictable_pages(struct address_space *mapping)
2726 {
2727 pgoff_t next = 0;
2728 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2729 PAGE_CACHE_SHIFT;
2730 struct zone *zone;
2731 struct pagevec pvec;
2732
2733 if (mapping->nrpages == 0)
2734 return;
2735
2736 pagevec_init(&pvec, 0);
2737 while (next < end &&
2738 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2739 int i;
2740 int pg_scanned = 0;
2741
2742 zone = NULL;
2743
2744 for (i = 0; i < pagevec_count(&pvec); i++) {
2745 struct page *page = pvec.pages[i];
2746 pgoff_t page_index = page->index;
2747 struct zone *pagezone = page_zone(page);
2748
2749 pg_scanned++;
2750 if (page_index > next)
2751 next = page_index;
2752 next++;
2753
2754 if (pagezone != zone) {
2755 if (zone)
2756 spin_unlock_irq(&zone->lru_lock);
2757 zone = pagezone;
2758 spin_lock_irq(&zone->lru_lock);
2759 }
2760
2761 if (PageLRU(page) && PageUnevictable(page))
2762 check_move_unevictable_page(page, zone);
2763 }
2764 if (zone)
2765 spin_unlock_irq(&zone->lru_lock);
2766 pagevec_release(&pvec);
2767
2768 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2769 }
2770
2771 }
2772
2773 /**
2774 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2775 * @zone - zone of which to scan the unevictable list
2776 *
2777 * Scan @zone's unevictable LRU lists to check for pages that have become
2778 * evictable. Move those that have to @zone's inactive list where they
2779 * become candidates for reclaim, unless shrink_inactive_zone() decides
2780 * to reactivate them. Pages that are still unevictable are rotated
2781 * back onto @zone's unevictable list.
2782 */
2783 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2784 static void scan_zone_unevictable_pages(struct zone *zone)
2785 {
2786 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2787 unsigned long scan;
2788 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2789
2790 while (nr_to_scan > 0) {
2791 unsigned long batch_size = min(nr_to_scan,
2792 SCAN_UNEVICTABLE_BATCH_SIZE);
2793
2794 spin_lock_irq(&zone->lru_lock);
2795 for (scan = 0; scan < batch_size; scan++) {
2796 struct page *page = lru_to_page(l_unevictable);
2797
2798 if (!trylock_page(page))
2799 continue;
2800
2801 prefetchw_prev_lru_page(page, l_unevictable, flags);
2802
2803 if (likely(PageLRU(page) && PageUnevictable(page)))
2804 check_move_unevictable_page(page, zone);
2805
2806 unlock_page(page);
2807 }
2808 spin_unlock_irq(&zone->lru_lock);
2809
2810 nr_to_scan -= batch_size;
2811 }
2812 }
2813
2814
2815 /**
2816 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2817 *
2818 * A really big hammer: scan all zones' unevictable LRU lists to check for
2819 * pages that have become evictable. Move those back to the zones'
2820 * inactive list where they become candidates for reclaim.
2821 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2822 * and we add swap to the system. As such, it runs in the context of a task
2823 * that has possibly/probably made some previously unevictable pages
2824 * evictable.
2825 */
2826 static void scan_all_zones_unevictable_pages(void)
2827 {
2828 struct zone *zone;
2829
2830 for_each_zone(zone) {
2831 scan_zone_unevictable_pages(zone);
2832 }
2833 }
2834
2835 /*
2836 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2837 * all nodes' unevictable lists for evictable pages
2838 */
2839 unsigned long scan_unevictable_pages;
2840
2841 int scan_unevictable_handler(struct ctl_table *table, int write,
2842 void __user *buffer,
2843 size_t *length, loff_t *ppos)
2844 {
2845 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2846
2847 if (write && *(unsigned long *)table->data)
2848 scan_all_zones_unevictable_pages();
2849
2850 scan_unevictable_pages = 0;
2851 return 0;
2852 }
2853
2854 /*
2855 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2856 * a specified node's per zone unevictable lists for evictable pages.
2857 */
2858
2859 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2860 struct sysdev_attribute *attr,
2861 char *buf)
2862 {
2863 return sprintf(buf, "0\n"); /* always zero; should fit... */
2864 }
2865
2866 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2867 struct sysdev_attribute *attr,
2868 const char *buf, size_t count)
2869 {
2870 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2871 struct zone *zone;
2872 unsigned long res;
2873 unsigned long req = strict_strtoul(buf, 10, &res);
2874
2875 if (!req)
2876 return 1; /* zero is no-op */
2877
2878 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2879 if (!populated_zone(zone))
2880 continue;
2881 scan_zone_unevictable_pages(zone);
2882 }
2883 return 1;
2884 }
2885
2886
2887 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2888 read_scan_unevictable_node,
2889 write_scan_unevictable_node);
2890
2891 int scan_unevictable_register_node(struct node *node)
2892 {
2893 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2894 }
2895
2896 void scan_unevictable_unregister_node(struct node *node)
2897 {
2898 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2899 }
2900
This page took 0.089776 seconds and 5 git commands to generate.