mm: take pagevecs off reclaim stack
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
67 */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
85 unsigned long hibernation_mode;
86
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
89
90 int may_writepage;
91
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
94
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
98 int order;
99
100 /*
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
103 */
104 reclaim_mode_t reclaim_mode;
105
106 /*
107 * The memory cgroup that hit its limit and as a result is the
108 * primary target of this reclaim invocation.
109 */
110 struct mem_cgroup *target_mem_cgroup;
111
112 /*
113 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114 * are scanned.
115 */
116 nodemask_t *nodemask;
117 };
118
119 struct mem_cgroup_zone {
120 struct mem_cgroup *mem_cgroup;
121 struct zone *zone;
122 };
123
124 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126 #ifdef ARCH_HAS_PREFETCH
127 #define prefetch_prev_lru_page(_page, _base, _field) \
128 do { \
129 if ((_page)->lru.prev != _base) { \
130 struct page *prev; \
131 \
132 prev = lru_to_page(&(_page->lru)); \
133 prefetch(&prev->_field); \
134 } \
135 } while (0)
136 #else
137 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138 #endif
139
140 #ifdef ARCH_HAS_PREFETCHW
141 #define prefetchw_prev_lru_page(_page, _base, _field) \
142 do { \
143 if ((_page)->lru.prev != _base) { \
144 struct page *prev; \
145 \
146 prev = lru_to_page(&(_page->lru)); \
147 prefetchw(&prev->_field); \
148 } \
149 } while (0)
150 #else
151 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152 #endif
153
154 /*
155 * From 0 .. 100. Higher means more swappy.
156 */
157 int vm_swappiness = 60;
158 long vm_total_pages; /* The total number of pages which the VM controls */
159
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
162
163 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
164 static bool global_reclaim(struct scan_control *sc)
165 {
166 return !sc->target_mem_cgroup;
167 }
168
169 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170 {
171 return !mz->mem_cgroup;
172 }
173 #else
174 static bool global_reclaim(struct scan_control *sc)
175 {
176 return true;
177 }
178
179 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180 {
181 return true;
182 }
183 #endif
184
185 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186 {
187 if (!scanning_global_lru(mz))
188 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
189
190 return &mz->zone->reclaim_stat;
191 }
192
193 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194 enum lru_list lru)
195 {
196 if (!scanning_global_lru(mz))
197 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198 zone_to_nid(mz->zone),
199 zone_idx(mz->zone),
200 BIT(lru));
201
202 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203 }
204
205
206 /*
207 * Add a shrinker callback to be called from the vm
208 */
209 void register_shrinker(struct shrinker *shrinker)
210 {
211 atomic_long_set(&shrinker->nr_in_batch, 0);
212 down_write(&shrinker_rwsem);
213 list_add_tail(&shrinker->list, &shrinker_list);
214 up_write(&shrinker_rwsem);
215 }
216 EXPORT_SYMBOL(register_shrinker);
217
218 /*
219 * Remove one
220 */
221 void unregister_shrinker(struct shrinker *shrinker)
222 {
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
226 }
227 EXPORT_SYMBOL(unregister_shrinker);
228
229 static inline int do_shrinker_shrink(struct shrinker *shrinker,
230 struct shrink_control *sc,
231 unsigned long nr_to_scan)
232 {
233 sc->nr_to_scan = nr_to_scan;
234 return (*shrinker->shrink)(shrinker, sc);
235 }
236
237 #define SHRINK_BATCH 128
238 /*
239 * Call the shrink functions to age shrinkable caches
240 *
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object. With this in mind we age equal
243 * percentages of the lru and ageable caches. This should balance the seeks
244 * generated by these structures.
245 *
246 * If the vm encountered mapped pages on the LRU it increase the pressure on
247 * slab to avoid swapping.
248 *
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250 *
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt. It is used for balancing
253 * slab reclaim versus page reclaim.
254 *
255 * Returns the number of slab objects which we shrunk.
256 */
257 unsigned long shrink_slab(struct shrink_control *shrink,
258 unsigned long nr_pages_scanned,
259 unsigned long lru_pages)
260 {
261 struct shrinker *shrinker;
262 unsigned long ret = 0;
263
264 if (nr_pages_scanned == 0)
265 nr_pages_scanned = SWAP_CLUSTER_MAX;
266
267 if (!down_read_trylock(&shrinker_rwsem)) {
268 /* Assume we'll be able to shrink next time */
269 ret = 1;
270 goto out;
271 }
272
273 list_for_each_entry(shrinker, &shrinker_list, list) {
274 unsigned long long delta;
275 long total_scan;
276 long max_pass;
277 int shrink_ret = 0;
278 long nr;
279 long new_nr;
280 long batch_size = shrinker->batch ? shrinker->batch
281 : SHRINK_BATCH;
282
283 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284 if (max_pass <= 0)
285 continue;
286
287 /*
288 * copy the current shrinker scan count into a local variable
289 * and zero it so that other concurrent shrinker invocations
290 * don't also do this scanning work.
291 */
292 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293
294 total_scan = nr;
295 delta = (4 * nr_pages_scanned) / shrinker->seeks;
296 delta *= max_pass;
297 do_div(delta, lru_pages + 1);
298 total_scan += delta;
299 if (total_scan < 0) {
300 printk(KERN_ERR "shrink_slab: %pF negative objects to "
301 "delete nr=%ld\n",
302 shrinker->shrink, total_scan);
303 total_scan = max_pass;
304 }
305
306 /*
307 * We need to avoid excessive windup on filesystem shrinkers
308 * due to large numbers of GFP_NOFS allocations causing the
309 * shrinkers to return -1 all the time. This results in a large
310 * nr being built up so when a shrink that can do some work
311 * comes along it empties the entire cache due to nr >>>
312 * max_pass. This is bad for sustaining a working set in
313 * memory.
314 *
315 * Hence only allow the shrinker to scan the entire cache when
316 * a large delta change is calculated directly.
317 */
318 if (delta < max_pass / 4)
319 total_scan = min(total_scan, max_pass / 2);
320
321 /*
322 * Avoid risking looping forever due to too large nr value:
323 * never try to free more than twice the estimate number of
324 * freeable entries.
325 */
326 if (total_scan > max_pass * 2)
327 total_scan = max_pass * 2;
328
329 trace_mm_shrink_slab_start(shrinker, shrink, nr,
330 nr_pages_scanned, lru_pages,
331 max_pass, delta, total_scan);
332
333 while (total_scan >= batch_size) {
334 int nr_before;
335
336 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337 shrink_ret = do_shrinker_shrink(shrinker, shrink,
338 batch_size);
339 if (shrink_ret == -1)
340 break;
341 if (shrink_ret < nr_before)
342 ret += nr_before - shrink_ret;
343 count_vm_events(SLABS_SCANNED, batch_size);
344 total_scan -= batch_size;
345
346 cond_resched();
347 }
348
349 /*
350 * move the unused scan count back into the shrinker in a
351 * manner that handles concurrent updates. If we exhausted the
352 * scan, there is no need to do an update.
353 */
354 if (total_scan > 0)
355 new_nr = atomic_long_add_return(total_scan,
356 &shrinker->nr_in_batch);
357 else
358 new_nr = atomic_long_read(&shrinker->nr_in_batch);
359
360 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
361 }
362 up_read(&shrinker_rwsem);
363 out:
364 cond_resched();
365 return ret;
366 }
367
368 static void set_reclaim_mode(int priority, struct scan_control *sc,
369 bool sync)
370 {
371 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372
373 /*
374 * Initially assume we are entering either lumpy reclaim or
375 * reclaim/compaction.Depending on the order, we will either set the
376 * sync mode or just reclaim order-0 pages later.
377 */
378 if (COMPACTION_BUILD)
379 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380 else
381 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382
383 /*
384 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385 * restricting when its set to either costly allocations or when
386 * under memory pressure
387 */
388 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389 sc->reclaim_mode |= syncmode;
390 else if (sc->order && priority < DEF_PRIORITY - 2)
391 sc->reclaim_mode |= syncmode;
392 else
393 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394 }
395
396 static void reset_reclaim_mode(struct scan_control *sc)
397 {
398 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399 }
400
401 static inline int is_page_cache_freeable(struct page *page)
402 {
403 /*
404 * A freeable page cache page is referenced only by the caller
405 * that isolated the page, the page cache radix tree and
406 * optional buffer heads at page->private.
407 */
408 return page_count(page) - page_has_private(page) == 2;
409 }
410
411 static int may_write_to_queue(struct backing_dev_info *bdi,
412 struct scan_control *sc)
413 {
414 if (current->flags & PF_SWAPWRITE)
415 return 1;
416 if (!bdi_write_congested(bdi))
417 return 1;
418 if (bdi == current->backing_dev_info)
419 return 1;
420
421 /* lumpy reclaim for hugepage often need a lot of write */
422 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423 return 1;
424 return 0;
425 }
426
427 /*
428 * We detected a synchronous write error writing a page out. Probably
429 * -ENOSPC. We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
431 *
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up. But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
435 *
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
438 */
439 static void handle_write_error(struct address_space *mapping,
440 struct page *page, int error)
441 {
442 lock_page(page);
443 if (page_mapping(page) == mapping)
444 mapping_set_error(mapping, error);
445 unlock_page(page);
446 }
447
448 /* possible outcome of pageout() */
449 typedef enum {
450 /* failed to write page out, page is locked */
451 PAGE_KEEP,
452 /* move page to the active list, page is locked */
453 PAGE_ACTIVATE,
454 /* page has been sent to the disk successfully, page is unlocked */
455 PAGE_SUCCESS,
456 /* page is clean and locked */
457 PAGE_CLEAN,
458 } pageout_t;
459
460 /*
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
463 */
464 static pageout_t pageout(struct page *page, struct address_space *mapping,
465 struct scan_control *sc)
466 {
467 /*
468 * If the page is dirty, only perform writeback if that write
469 * will be non-blocking. To prevent this allocation from being
470 * stalled by pagecache activity. But note that there may be
471 * stalls if we need to run get_block(). We could test
472 * PagePrivate for that.
473 *
474 * If this process is currently in __generic_file_aio_write() against
475 * this page's queue, we can perform writeback even if that
476 * will block.
477 *
478 * If the page is swapcache, write it back even if that would
479 * block, for some throttling. This happens by accident, because
480 * swap_backing_dev_info is bust: it doesn't reflect the
481 * congestion state of the swapdevs. Easy to fix, if needed.
482 */
483 if (!is_page_cache_freeable(page))
484 return PAGE_KEEP;
485 if (!mapping) {
486 /*
487 * Some data journaling orphaned pages can have
488 * page->mapping == NULL while being dirty with clean buffers.
489 */
490 if (page_has_private(page)) {
491 if (try_to_free_buffers(page)) {
492 ClearPageDirty(page);
493 printk("%s: orphaned page\n", __func__);
494 return PAGE_CLEAN;
495 }
496 }
497 return PAGE_KEEP;
498 }
499 if (mapping->a_ops->writepage == NULL)
500 return PAGE_ACTIVATE;
501 if (!may_write_to_queue(mapping->backing_dev_info, sc))
502 return PAGE_KEEP;
503
504 if (clear_page_dirty_for_io(page)) {
505 int res;
506 struct writeback_control wbc = {
507 .sync_mode = WB_SYNC_NONE,
508 .nr_to_write = SWAP_CLUSTER_MAX,
509 .range_start = 0,
510 .range_end = LLONG_MAX,
511 .for_reclaim = 1,
512 };
513
514 SetPageReclaim(page);
515 res = mapping->a_ops->writepage(page, &wbc);
516 if (res < 0)
517 handle_write_error(mapping, page, res);
518 if (res == AOP_WRITEPAGE_ACTIVATE) {
519 ClearPageReclaim(page);
520 return PAGE_ACTIVATE;
521 }
522
523 if (!PageWriteback(page)) {
524 /* synchronous write or broken a_ops? */
525 ClearPageReclaim(page);
526 }
527 trace_mm_vmscan_writepage(page,
528 trace_reclaim_flags(page, sc->reclaim_mode));
529 inc_zone_page_state(page, NR_VMSCAN_WRITE);
530 return PAGE_SUCCESS;
531 }
532
533 return PAGE_CLEAN;
534 }
535
536 /*
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
539 */
540 static int __remove_mapping(struct address_space *mapping, struct page *page)
541 {
542 BUG_ON(!PageLocked(page));
543 BUG_ON(mapping != page_mapping(page));
544
545 spin_lock_irq(&mapping->tree_lock);
546 /*
547 * The non racy check for a busy page.
548 *
549 * Must be careful with the order of the tests. When someone has
550 * a ref to the page, it may be possible that they dirty it then
551 * drop the reference. So if PageDirty is tested before page_count
552 * here, then the following race may occur:
553 *
554 * get_user_pages(&page);
555 * [user mapping goes away]
556 * write_to(page);
557 * !PageDirty(page) [good]
558 * SetPageDirty(page);
559 * put_page(page);
560 * !page_count(page) [good, discard it]
561 *
562 * [oops, our write_to data is lost]
563 *
564 * Reversing the order of the tests ensures such a situation cannot
565 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566 * load is not satisfied before that of page->_count.
567 *
568 * Note that if SetPageDirty is always performed via set_page_dirty,
569 * and thus under tree_lock, then this ordering is not required.
570 */
571 if (!page_freeze_refs(page, 2))
572 goto cannot_free;
573 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574 if (unlikely(PageDirty(page))) {
575 page_unfreeze_refs(page, 2);
576 goto cannot_free;
577 }
578
579 if (PageSwapCache(page)) {
580 swp_entry_t swap = { .val = page_private(page) };
581 __delete_from_swap_cache(page);
582 spin_unlock_irq(&mapping->tree_lock);
583 swapcache_free(swap, page);
584 } else {
585 void (*freepage)(struct page *);
586
587 freepage = mapping->a_ops->freepage;
588
589 __delete_from_page_cache(page);
590 spin_unlock_irq(&mapping->tree_lock);
591 mem_cgroup_uncharge_cache_page(page);
592
593 if (freepage != NULL)
594 freepage(page);
595 }
596
597 return 1;
598
599 cannot_free:
600 spin_unlock_irq(&mapping->tree_lock);
601 return 0;
602 }
603
604 /*
605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
606 * someone else has a ref on the page, abort and return 0. If it was
607 * successfully detached, return 1. Assumes the caller has a single ref on
608 * this page.
609 */
610 int remove_mapping(struct address_space *mapping, struct page *page)
611 {
612 if (__remove_mapping(mapping, page)) {
613 /*
614 * Unfreezing the refcount with 1 rather than 2 effectively
615 * drops the pagecache ref for us without requiring another
616 * atomic operation.
617 */
618 page_unfreeze_refs(page, 1);
619 return 1;
620 }
621 return 0;
622 }
623
624 /**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633 void putback_lru_page(struct page *page)
634 {
635 int lru;
636 int active = !!TestClearPageActive(page);
637 int was_unevictable = PageUnevictable(page);
638
639 VM_BUG_ON(PageLRU(page));
640
641 redo:
642 ClearPageUnevictable(page);
643
644 if (page_evictable(page, NULL)) {
645 /*
646 * For evictable pages, we can use the cache.
647 * In event of a race, worst case is we end up with an
648 * unevictable page on [in]active list.
649 * We know how to handle that.
650 */
651 lru = active + page_lru_base_type(page);
652 lru_cache_add_lru(page, lru);
653 } else {
654 /*
655 * Put unevictable pages directly on zone's unevictable
656 * list.
657 */
658 lru = LRU_UNEVICTABLE;
659 add_page_to_unevictable_list(page);
660 /*
661 * When racing with an mlock or AS_UNEVICTABLE clearing
662 * (page is unlocked) make sure that if the other thread
663 * does not observe our setting of PG_lru and fails
664 * isolation/check_move_unevictable_page,
665 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666 * the page back to the evictable list.
667 *
668 * The other side is TestClearPageMlocked() or shmem_lock().
669 */
670 smp_mb();
671 }
672
673 /*
674 * page's status can change while we move it among lru. If an evictable
675 * page is on unevictable list, it never be freed. To avoid that,
676 * check after we added it to the list, again.
677 */
678 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679 if (!isolate_lru_page(page)) {
680 put_page(page);
681 goto redo;
682 }
683 /* This means someone else dropped this page from LRU
684 * So, it will be freed or putback to LRU again. There is
685 * nothing to do here.
686 */
687 }
688
689 if (was_unevictable && lru != LRU_UNEVICTABLE)
690 count_vm_event(UNEVICTABLE_PGRESCUED);
691 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692 count_vm_event(UNEVICTABLE_PGCULLED);
693
694 put_page(page); /* drop ref from isolate */
695 }
696
697 enum page_references {
698 PAGEREF_RECLAIM,
699 PAGEREF_RECLAIM_CLEAN,
700 PAGEREF_KEEP,
701 PAGEREF_ACTIVATE,
702 };
703
704 static enum page_references page_check_references(struct page *page,
705 struct mem_cgroup_zone *mz,
706 struct scan_control *sc)
707 {
708 int referenced_ptes, referenced_page;
709 unsigned long vm_flags;
710
711 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712 referenced_page = TestClearPageReferenced(page);
713
714 /* Lumpy reclaim - ignore references */
715 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716 return PAGEREF_RECLAIM;
717
718 /*
719 * Mlock lost the isolation race with us. Let try_to_unmap()
720 * move the page to the unevictable list.
721 */
722 if (vm_flags & VM_LOCKED)
723 return PAGEREF_RECLAIM;
724
725 if (referenced_ptes) {
726 if (PageAnon(page))
727 return PAGEREF_ACTIVATE;
728 /*
729 * All mapped pages start out with page table
730 * references from the instantiating fault, so we need
731 * to look twice if a mapped file page is used more
732 * than once.
733 *
734 * Mark it and spare it for another trip around the
735 * inactive list. Another page table reference will
736 * lead to its activation.
737 *
738 * Note: the mark is set for activated pages as well
739 * so that recently deactivated but used pages are
740 * quickly recovered.
741 */
742 SetPageReferenced(page);
743
744 if (referenced_page || referenced_ptes > 1)
745 return PAGEREF_ACTIVATE;
746
747 /*
748 * Activate file-backed executable pages after first usage.
749 */
750 if (vm_flags & VM_EXEC)
751 return PAGEREF_ACTIVATE;
752
753 return PAGEREF_KEEP;
754 }
755
756 /* Reclaim if clean, defer dirty pages to writeback */
757 if (referenced_page && !PageSwapBacked(page))
758 return PAGEREF_RECLAIM_CLEAN;
759
760 return PAGEREF_RECLAIM;
761 }
762
763 /*
764 * shrink_page_list() returns the number of reclaimed pages
765 */
766 static unsigned long shrink_page_list(struct list_head *page_list,
767 struct mem_cgroup_zone *mz,
768 struct scan_control *sc,
769 int priority,
770 unsigned long *ret_nr_dirty,
771 unsigned long *ret_nr_writeback)
772 {
773 LIST_HEAD(ret_pages);
774 LIST_HEAD(free_pages);
775 int pgactivate = 0;
776 unsigned long nr_dirty = 0;
777 unsigned long nr_congested = 0;
778 unsigned long nr_reclaimed = 0;
779 unsigned long nr_writeback = 0;
780
781 cond_resched();
782
783 while (!list_empty(page_list)) {
784 enum page_references references;
785 struct address_space *mapping;
786 struct page *page;
787 int may_enter_fs;
788
789 cond_resched();
790
791 page = lru_to_page(page_list);
792 list_del(&page->lru);
793
794 if (!trylock_page(page))
795 goto keep;
796
797 VM_BUG_ON(PageActive(page));
798 VM_BUG_ON(page_zone(page) != mz->zone);
799
800 sc->nr_scanned++;
801
802 if (unlikely(!page_evictable(page, NULL)))
803 goto cull_mlocked;
804
805 if (!sc->may_unmap && page_mapped(page))
806 goto keep_locked;
807
808 /* Double the slab pressure for mapped and swapcache pages */
809 if (page_mapped(page) || PageSwapCache(page))
810 sc->nr_scanned++;
811
812 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815 if (PageWriteback(page)) {
816 nr_writeback++;
817 /*
818 * Synchronous reclaim cannot queue pages for
819 * writeback due to the possibility of stack overflow
820 * but if it encounters a page under writeback, wait
821 * for the IO to complete.
822 */
823 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824 may_enter_fs)
825 wait_on_page_writeback(page);
826 else {
827 unlock_page(page);
828 goto keep_lumpy;
829 }
830 }
831
832 references = page_check_references(page, mz, sc);
833 switch (references) {
834 case PAGEREF_ACTIVATE:
835 goto activate_locked;
836 case PAGEREF_KEEP:
837 goto keep_locked;
838 case PAGEREF_RECLAIM:
839 case PAGEREF_RECLAIM_CLEAN:
840 ; /* try to reclaim the page below */
841 }
842
843 /*
844 * Anonymous process memory has backing store?
845 * Try to allocate it some swap space here.
846 */
847 if (PageAnon(page) && !PageSwapCache(page)) {
848 if (!(sc->gfp_mask & __GFP_IO))
849 goto keep_locked;
850 if (!add_to_swap(page))
851 goto activate_locked;
852 may_enter_fs = 1;
853 }
854
855 mapping = page_mapping(page);
856
857 /*
858 * The page is mapped into the page tables of one or more
859 * processes. Try to unmap it here.
860 */
861 if (page_mapped(page) && mapping) {
862 switch (try_to_unmap(page, TTU_UNMAP)) {
863 case SWAP_FAIL:
864 goto activate_locked;
865 case SWAP_AGAIN:
866 goto keep_locked;
867 case SWAP_MLOCK:
868 goto cull_mlocked;
869 case SWAP_SUCCESS:
870 ; /* try to free the page below */
871 }
872 }
873
874 if (PageDirty(page)) {
875 nr_dirty++;
876
877 /*
878 * Only kswapd can writeback filesystem pages to
879 * avoid risk of stack overflow but do not writeback
880 * unless under significant pressure.
881 */
882 if (page_is_file_cache(page) &&
883 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884 /*
885 * Immediately reclaim when written back.
886 * Similar in principal to deactivate_page()
887 * except we already have the page isolated
888 * and know it's dirty
889 */
890 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891 SetPageReclaim(page);
892
893 goto keep_locked;
894 }
895
896 if (references == PAGEREF_RECLAIM_CLEAN)
897 goto keep_locked;
898 if (!may_enter_fs)
899 goto keep_locked;
900 if (!sc->may_writepage)
901 goto keep_locked;
902
903 /* Page is dirty, try to write it out here */
904 switch (pageout(page, mapping, sc)) {
905 case PAGE_KEEP:
906 nr_congested++;
907 goto keep_locked;
908 case PAGE_ACTIVATE:
909 goto activate_locked;
910 case PAGE_SUCCESS:
911 if (PageWriteback(page))
912 goto keep_lumpy;
913 if (PageDirty(page))
914 goto keep;
915
916 /*
917 * A synchronous write - probably a ramdisk. Go
918 * ahead and try to reclaim the page.
919 */
920 if (!trylock_page(page))
921 goto keep;
922 if (PageDirty(page) || PageWriteback(page))
923 goto keep_locked;
924 mapping = page_mapping(page);
925 case PAGE_CLEAN:
926 ; /* try to free the page below */
927 }
928 }
929
930 /*
931 * If the page has buffers, try to free the buffer mappings
932 * associated with this page. If we succeed we try to free
933 * the page as well.
934 *
935 * We do this even if the page is PageDirty().
936 * try_to_release_page() does not perform I/O, but it is
937 * possible for a page to have PageDirty set, but it is actually
938 * clean (all its buffers are clean). This happens if the
939 * buffers were written out directly, with submit_bh(). ext3
940 * will do this, as well as the blockdev mapping.
941 * try_to_release_page() will discover that cleanness and will
942 * drop the buffers and mark the page clean - it can be freed.
943 *
944 * Rarely, pages can have buffers and no ->mapping. These are
945 * the pages which were not successfully invalidated in
946 * truncate_complete_page(). We try to drop those buffers here
947 * and if that worked, and the page is no longer mapped into
948 * process address space (page_count == 1) it can be freed.
949 * Otherwise, leave the page on the LRU so it is swappable.
950 */
951 if (page_has_private(page)) {
952 if (!try_to_release_page(page, sc->gfp_mask))
953 goto activate_locked;
954 if (!mapping && page_count(page) == 1) {
955 unlock_page(page);
956 if (put_page_testzero(page))
957 goto free_it;
958 else {
959 /*
960 * rare race with speculative reference.
961 * the speculative reference will free
962 * this page shortly, so we may
963 * increment nr_reclaimed here (and
964 * leave it off the LRU).
965 */
966 nr_reclaimed++;
967 continue;
968 }
969 }
970 }
971
972 if (!mapping || !__remove_mapping(mapping, page))
973 goto keep_locked;
974
975 /*
976 * At this point, we have no other references and there is
977 * no way to pick any more up (removed from LRU, removed
978 * from pagecache). Can use non-atomic bitops now (and
979 * we obviously don't have to worry about waking up a process
980 * waiting on the page lock, because there are no references.
981 */
982 __clear_page_locked(page);
983 free_it:
984 nr_reclaimed++;
985
986 /*
987 * Is there need to periodically free_page_list? It would
988 * appear not as the counts should be low
989 */
990 list_add(&page->lru, &free_pages);
991 continue;
992
993 cull_mlocked:
994 if (PageSwapCache(page))
995 try_to_free_swap(page);
996 unlock_page(page);
997 putback_lru_page(page);
998 reset_reclaim_mode(sc);
999 continue;
1000
1001 activate_locked:
1002 /* Not a candidate for swapping, so reclaim swap space. */
1003 if (PageSwapCache(page) && vm_swap_full())
1004 try_to_free_swap(page);
1005 VM_BUG_ON(PageActive(page));
1006 SetPageActive(page);
1007 pgactivate++;
1008 keep_locked:
1009 unlock_page(page);
1010 keep:
1011 reset_reclaim_mode(sc);
1012 keep_lumpy:
1013 list_add(&page->lru, &ret_pages);
1014 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1015 }
1016
1017 /*
1018 * Tag a zone as congested if all the dirty pages encountered were
1019 * backed by a congested BDI. In this case, reclaimers should just
1020 * back off and wait for congestion to clear because further reclaim
1021 * will encounter the same problem
1022 */
1023 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024 zone_set_flag(mz->zone, ZONE_CONGESTED);
1025
1026 free_hot_cold_page_list(&free_pages, 1);
1027
1028 list_splice(&ret_pages, page_list);
1029 count_vm_events(PGACTIVATE, pgactivate);
1030 *ret_nr_dirty += nr_dirty;
1031 *ret_nr_writeback += nr_writeback;
1032 return nr_reclaimed;
1033 }
1034
1035 /*
1036 * Attempt to remove the specified page from its LRU. Only take this page
1037 * if it is of the appropriate PageActive status. Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page: page to consider
1041 * mode: one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
1045 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1046 {
1047 bool all_lru_mode;
1048 int ret = -EINVAL;
1049
1050 /* Only take pages on the LRU. */
1051 if (!PageLRU(page))
1052 return ret;
1053
1054 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
1057 /*
1058 * When checking the active state, we need to be sure we are
1059 * dealing with comparible boolean values. Take the logical not
1060 * of each.
1061 */
1062 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063 return ret;
1064
1065 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066 return ret;
1067
1068 /*
1069 * When this function is being called for lumpy reclaim, we
1070 * initially look into all LRU pages, active, inactive and
1071 * unevictable; only give shrink_page_list evictable pages.
1072 */
1073 if (PageUnevictable(page))
1074 return ret;
1075
1076 ret = -EBUSY;
1077
1078 /*
1079 * To minimise LRU disruption, the caller can indicate that it only
1080 * wants to isolate pages it will be able to operate on without
1081 * blocking - clean pages for the most part.
1082 *
1083 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1084 * is used by reclaim when it is cannot write to backing storage
1085 *
1086 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1087 * that it is possible to migrate without blocking
1088 */
1089 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1090 /* All the caller can do on PageWriteback is block */
1091 if (PageWriteback(page))
1092 return ret;
1093
1094 if (PageDirty(page)) {
1095 struct address_space *mapping;
1096
1097 /* ISOLATE_CLEAN means only clean pages */
1098 if (mode & ISOLATE_CLEAN)
1099 return ret;
1100
1101 /*
1102 * Only pages without mappings or that have a
1103 * ->migratepage callback are possible to migrate
1104 * without blocking
1105 */
1106 mapping = page_mapping(page);
1107 if (mapping && !mapping->a_ops->migratepage)
1108 return ret;
1109 }
1110 }
1111
1112 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1113 return ret;
1114
1115 if (likely(get_page_unless_zero(page))) {
1116 /*
1117 * Be careful not to clear PageLRU until after we're
1118 * sure the page is not being freed elsewhere -- the
1119 * page release code relies on it.
1120 */
1121 ClearPageLRU(page);
1122 ret = 0;
1123 }
1124
1125 return ret;
1126 }
1127
1128 /*
1129 * zone->lru_lock is heavily contended. Some of the functions that
1130 * shrink the lists perform better by taking out a batch of pages
1131 * and working on them outside the LRU lock.
1132 *
1133 * For pagecache intensive workloads, this function is the hottest
1134 * spot in the kernel (apart from copy_*_user functions).
1135 *
1136 * Appropriate locks must be held before calling this function.
1137 *
1138 * @nr_to_scan: The number of pages to look through on the list.
1139 * @src: The LRU list to pull pages off.
1140 * @dst: The temp list to put pages on to.
1141 * @scanned: The number of pages that were scanned.
1142 * @order: The caller's attempted allocation order
1143 * @mode: One of the LRU isolation modes
1144 * @file: True [1] if isolating file [!anon] pages
1145 *
1146 * returns how many pages were moved onto *@dst.
1147 */
1148 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149 struct list_head *src, struct list_head *dst,
1150 unsigned long *scanned, int order, isolate_mode_t mode,
1151 int file)
1152 {
1153 unsigned long nr_taken = 0;
1154 unsigned long nr_lumpy_taken = 0;
1155 unsigned long nr_lumpy_dirty = 0;
1156 unsigned long nr_lumpy_failed = 0;
1157 unsigned long scan;
1158
1159 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1160 struct page *page;
1161 unsigned long pfn;
1162 unsigned long end_pfn;
1163 unsigned long page_pfn;
1164 int zone_id;
1165
1166 page = lru_to_page(src);
1167 prefetchw_prev_lru_page(page, src, flags);
1168
1169 VM_BUG_ON(!PageLRU(page));
1170
1171 switch (__isolate_lru_page(page, mode, file)) {
1172 case 0:
1173 mem_cgroup_lru_del(page);
1174 list_move(&page->lru, dst);
1175 nr_taken += hpage_nr_pages(page);
1176 break;
1177
1178 case -EBUSY:
1179 /* else it is being freed elsewhere */
1180 list_move(&page->lru, src);
1181 continue;
1182
1183 default:
1184 BUG();
1185 }
1186
1187 if (!order)
1188 continue;
1189
1190 /*
1191 * Attempt to take all pages in the order aligned region
1192 * surrounding the tag page. Only take those pages of
1193 * the same active state as that tag page. We may safely
1194 * round the target page pfn down to the requested order
1195 * as the mem_map is guaranteed valid out to MAX_ORDER,
1196 * where that page is in a different zone we will detect
1197 * it from its zone id and abort this block scan.
1198 */
1199 zone_id = page_zone_id(page);
1200 page_pfn = page_to_pfn(page);
1201 pfn = page_pfn & ~((1 << order) - 1);
1202 end_pfn = pfn + (1 << order);
1203 for (; pfn < end_pfn; pfn++) {
1204 struct page *cursor_page;
1205
1206 /* The target page is in the block, ignore it. */
1207 if (unlikely(pfn == page_pfn))
1208 continue;
1209
1210 /* Avoid holes within the zone. */
1211 if (unlikely(!pfn_valid_within(pfn)))
1212 break;
1213
1214 cursor_page = pfn_to_page(pfn);
1215
1216 /* Check that we have not crossed a zone boundary. */
1217 if (unlikely(page_zone_id(cursor_page) != zone_id))
1218 break;
1219
1220 /*
1221 * If we don't have enough swap space, reclaiming of
1222 * anon page which don't already have a swap slot is
1223 * pointless.
1224 */
1225 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1226 !PageSwapCache(cursor_page))
1227 break;
1228
1229 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1230 unsigned int isolated_pages;
1231
1232 mem_cgroup_lru_del(cursor_page);
1233 list_move(&cursor_page->lru, dst);
1234 isolated_pages = hpage_nr_pages(cursor_page);
1235 nr_taken += isolated_pages;
1236 nr_lumpy_taken += isolated_pages;
1237 if (PageDirty(cursor_page))
1238 nr_lumpy_dirty += isolated_pages;
1239 scan++;
1240 pfn += isolated_pages - 1;
1241 } else {
1242 /*
1243 * Check if the page is freed already.
1244 *
1245 * We can't use page_count() as that
1246 * requires compound_head and we don't
1247 * have a pin on the page here. If a
1248 * page is tail, we may or may not
1249 * have isolated the head, so assume
1250 * it's not free, it'd be tricky to
1251 * track the head status without a
1252 * page pin.
1253 */
1254 if (!PageTail(cursor_page) &&
1255 !atomic_read(&cursor_page->_count))
1256 continue;
1257 break;
1258 }
1259 }
1260
1261 /* If we break out of the loop above, lumpy reclaim failed */
1262 if (pfn < end_pfn)
1263 nr_lumpy_failed++;
1264 }
1265
1266 *scanned = scan;
1267
1268 trace_mm_vmscan_lru_isolate(order,
1269 nr_to_scan, scan,
1270 nr_taken,
1271 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1272 mode, file);
1273 return nr_taken;
1274 }
1275
1276 static unsigned long isolate_pages(unsigned long nr, struct mem_cgroup_zone *mz,
1277 struct list_head *dst,
1278 unsigned long *scanned, int order,
1279 isolate_mode_t mode, int active, int file)
1280 {
1281 struct lruvec *lruvec;
1282 int lru = LRU_BASE;
1283
1284 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1285 if (active)
1286 lru += LRU_ACTIVE;
1287 if (file)
1288 lru += LRU_FILE;
1289 return isolate_lru_pages(nr, &lruvec->lists[lru], dst,
1290 scanned, order, mode, file);
1291 }
1292
1293 /*
1294 * clear_active_flags() is a helper for shrink_active_list(), clearing
1295 * any active bits from the pages in the list.
1296 */
1297 static unsigned long clear_active_flags(struct list_head *page_list,
1298 unsigned int *count)
1299 {
1300 int nr_active = 0;
1301 int lru;
1302 struct page *page;
1303
1304 list_for_each_entry(page, page_list, lru) {
1305 int numpages = hpage_nr_pages(page);
1306 lru = page_lru_base_type(page);
1307 if (PageActive(page)) {
1308 lru += LRU_ACTIVE;
1309 ClearPageActive(page);
1310 nr_active += numpages;
1311 }
1312 if (count)
1313 count[lru] += numpages;
1314 }
1315
1316 return nr_active;
1317 }
1318
1319 /**
1320 * isolate_lru_page - tries to isolate a page from its LRU list
1321 * @page: page to isolate from its LRU list
1322 *
1323 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1324 * vmstat statistic corresponding to whatever LRU list the page was on.
1325 *
1326 * Returns 0 if the page was removed from an LRU list.
1327 * Returns -EBUSY if the page was not on an LRU list.
1328 *
1329 * The returned page will have PageLRU() cleared. If it was found on
1330 * the active list, it will have PageActive set. If it was found on
1331 * the unevictable list, it will have the PageUnevictable bit set. That flag
1332 * may need to be cleared by the caller before letting the page go.
1333 *
1334 * The vmstat statistic corresponding to the list on which the page was
1335 * found will be decremented.
1336 *
1337 * Restrictions:
1338 * (1) Must be called with an elevated refcount on the page. This is a
1339 * fundamentnal difference from isolate_lru_pages (which is called
1340 * without a stable reference).
1341 * (2) the lru_lock must not be held.
1342 * (3) interrupts must be enabled.
1343 */
1344 int isolate_lru_page(struct page *page)
1345 {
1346 int ret = -EBUSY;
1347
1348 VM_BUG_ON(!page_count(page));
1349
1350 if (PageLRU(page)) {
1351 struct zone *zone = page_zone(page);
1352
1353 spin_lock_irq(&zone->lru_lock);
1354 if (PageLRU(page)) {
1355 int lru = page_lru(page);
1356 ret = 0;
1357 get_page(page);
1358 ClearPageLRU(page);
1359
1360 del_page_from_lru_list(zone, page, lru);
1361 }
1362 spin_unlock_irq(&zone->lru_lock);
1363 }
1364 return ret;
1365 }
1366
1367 /*
1368 * Are there way too many processes in the direct reclaim path already?
1369 */
1370 static int too_many_isolated(struct zone *zone, int file,
1371 struct scan_control *sc)
1372 {
1373 unsigned long inactive, isolated;
1374
1375 if (current_is_kswapd())
1376 return 0;
1377
1378 if (!global_reclaim(sc))
1379 return 0;
1380
1381 if (file) {
1382 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1383 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1384 } else {
1385 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1386 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1387 }
1388
1389 return isolated > inactive;
1390 }
1391
1392 /*
1393 * TODO: Try merging with migrations version of putback_lru_pages
1394 */
1395 static noinline_for_stack void
1396 putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
1397 unsigned long nr_anon, unsigned long nr_file,
1398 struct list_head *page_list)
1399 {
1400 struct page *page;
1401 LIST_HEAD(pages_to_free);
1402 struct zone *zone = mz->zone;
1403 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1404
1405 /*
1406 * Put back any unfreeable pages.
1407 */
1408 spin_lock(&zone->lru_lock);
1409 while (!list_empty(page_list)) {
1410 int lru;
1411 page = lru_to_page(page_list);
1412 VM_BUG_ON(PageLRU(page));
1413 list_del(&page->lru);
1414 if (unlikely(!page_evictable(page, NULL))) {
1415 spin_unlock_irq(&zone->lru_lock);
1416 putback_lru_page(page);
1417 spin_lock_irq(&zone->lru_lock);
1418 continue;
1419 }
1420 SetPageLRU(page);
1421 lru = page_lru(page);
1422 add_page_to_lru_list(zone, page, lru);
1423 if (is_active_lru(lru)) {
1424 int file = is_file_lru(lru);
1425 int numpages = hpage_nr_pages(page);
1426 reclaim_stat->recent_rotated[file] += numpages;
1427 }
1428 if (put_page_testzero(page)) {
1429 __ClearPageLRU(page);
1430 __ClearPageActive(page);
1431 del_page_from_lru_list(zone, page, lru);
1432
1433 if (unlikely(PageCompound(page))) {
1434 spin_unlock_irq(&zone->lru_lock);
1435 (*get_compound_page_dtor(page))(page);
1436 spin_lock_irq(&zone->lru_lock);
1437 } else
1438 list_add(&page->lru, &pages_to_free);
1439 }
1440 }
1441 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1442 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1443
1444 spin_unlock_irq(&zone->lru_lock);
1445 free_hot_cold_page_list(&pages_to_free, 1);
1446 }
1447
1448 static noinline_for_stack void
1449 update_isolated_counts(struct mem_cgroup_zone *mz,
1450 struct scan_control *sc,
1451 unsigned long *nr_anon,
1452 unsigned long *nr_file,
1453 struct list_head *isolated_list)
1454 {
1455 unsigned long nr_active;
1456 struct zone *zone = mz->zone;
1457 unsigned int count[NR_LRU_LISTS] = { 0, };
1458 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1459
1460 nr_active = clear_active_flags(isolated_list, count);
1461 __count_vm_events(PGDEACTIVATE, nr_active);
1462
1463 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1464 -count[LRU_ACTIVE_FILE]);
1465 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1466 -count[LRU_INACTIVE_FILE]);
1467 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1468 -count[LRU_ACTIVE_ANON]);
1469 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1470 -count[LRU_INACTIVE_ANON]);
1471
1472 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1473 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1474 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1475 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1476
1477 reclaim_stat->recent_scanned[0] += *nr_anon;
1478 reclaim_stat->recent_scanned[1] += *nr_file;
1479 }
1480
1481 /*
1482 * Returns true if a direct reclaim should wait on pages under writeback.
1483 *
1484 * If we are direct reclaiming for contiguous pages and we do not reclaim
1485 * everything in the list, try again and wait for writeback IO to complete.
1486 * This will stall high-order allocations noticeably. Only do that when really
1487 * need to free the pages under high memory pressure.
1488 */
1489 static inline bool should_reclaim_stall(unsigned long nr_taken,
1490 unsigned long nr_freed,
1491 int priority,
1492 struct scan_control *sc)
1493 {
1494 int lumpy_stall_priority;
1495
1496 /* kswapd should not stall on sync IO */
1497 if (current_is_kswapd())
1498 return false;
1499
1500 /* Only stall on lumpy reclaim */
1501 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1502 return false;
1503
1504 /* If we have reclaimed everything on the isolated list, no stall */
1505 if (nr_freed == nr_taken)
1506 return false;
1507
1508 /*
1509 * For high-order allocations, there are two stall thresholds.
1510 * High-cost allocations stall immediately where as lower
1511 * order allocations such as stacks require the scanning
1512 * priority to be much higher before stalling.
1513 */
1514 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1515 lumpy_stall_priority = DEF_PRIORITY;
1516 else
1517 lumpy_stall_priority = DEF_PRIORITY / 3;
1518
1519 return priority <= lumpy_stall_priority;
1520 }
1521
1522 /*
1523 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1524 * of reclaimed pages
1525 */
1526 static noinline_for_stack unsigned long
1527 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1528 struct scan_control *sc, int priority, int file)
1529 {
1530 LIST_HEAD(page_list);
1531 unsigned long nr_scanned;
1532 unsigned long nr_reclaimed = 0;
1533 unsigned long nr_taken;
1534 unsigned long nr_anon;
1535 unsigned long nr_file;
1536 unsigned long nr_dirty = 0;
1537 unsigned long nr_writeback = 0;
1538 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1539 struct zone *zone = mz->zone;
1540
1541 while (unlikely(too_many_isolated(zone, file, sc))) {
1542 congestion_wait(BLK_RW_ASYNC, HZ/10);
1543
1544 /* We are about to die and free our memory. Return now. */
1545 if (fatal_signal_pending(current))
1546 return SWAP_CLUSTER_MAX;
1547 }
1548
1549 set_reclaim_mode(priority, sc, false);
1550 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1551 reclaim_mode |= ISOLATE_ACTIVE;
1552
1553 lru_add_drain();
1554
1555 if (!sc->may_unmap)
1556 reclaim_mode |= ISOLATE_UNMAPPED;
1557 if (!sc->may_writepage)
1558 reclaim_mode |= ISOLATE_CLEAN;
1559
1560 spin_lock_irq(&zone->lru_lock);
1561
1562 nr_taken = isolate_pages(nr_to_scan, mz, &page_list,
1563 &nr_scanned, sc->order,
1564 reclaim_mode, 0, file);
1565 if (global_reclaim(sc)) {
1566 zone->pages_scanned += nr_scanned;
1567 if (current_is_kswapd())
1568 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1569 nr_scanned);
1570 else
1571 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1572 nr_scanned);
1573 }
1574
1575 if (nr_taken == 0) {
1576 spin_unlock_irq(&zone->lru_lock);
1577 return 0;
1578 }
1579
1580 update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
1581
1582 spin_unlock_irq(&zone->lru_lock);
1583
1584 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1585 &nr_dirty, &nr_writeback);
1586
1587 /* Check if we should syncronously wait for writeback */
1588 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1589 set_reclaim_mode(priority, sc, true);
1590 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1591 priority, &nr_dirty, &nr_writeback);
1592 }
1593
1594 local_irq_disable();
1595 if (current_is_kswapd())
1596 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1597 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1598
1599 putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1600
1601 /*
1602 * If reclaim is isolating dirty pages under writeback, it implies
1603 * that the long-lived page allocation rate is exceeding the page
1604 * laundering rate. Either the global limits are not being effective
1605 * at throttling processes due to the page distribution throughout
1606 * zones or there is heavy usage of a slow backing device. The
1607 * only option is to throttle from reclaim context which is not ideal
1608 * as there is no guarantee the dirtying process is throttled in the
1609 * same way balance_dirty_pages() manages.
1610 *
1611 * This scales the number of dirty pages that must be under writeback
1612 * before throttling depending on priority. It is a simple backoff
1613 * function that has the most effect in the range DEF_PRIORITY to
1614 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1615 * in trouble and reclaim is considered to be in trouble.
1616 *
1617 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1618 * DEF_PRIORITY-1 50% must be PageWriteback
1619 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1620 * ...
1621 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1622 * isolated page is PageWriteback
1623 */
1624 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1625 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1626
1627 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1628 zone_idx(zone),
1629 nr_scanned, nr_reclaimed,
1630 priority,
1631 trace_shrink_flags(file, sc->reclaim_mode));
1632 return nr_reclaimed;
1633 }
1634
1635 /*
1636 * This moves pages from the active list to the inactive list.
1637 *
1638 * We move them the other way if the page is referenced by one or more
1639 * processes, from rmap.
1640 *
1641 * If the pages are mostly unmapped, the processing is fast and it is
1642 * appropriate to hold zone->lru_lock across the whole operation. But if
1643 * the pages are mapped, the processing is slow (page_referenced()) so we
1644 * should drop zone->lru_lock around each page. It's impossible to balance
1645 * this, so instead we remove the pages from the LRU while processing them.
1646 * It is safe to rely on PG_active against the non-LRU pages in here because
1647 * nobody will play with that bit on a non-LRU page.
1648 *
1649 * The downside is that we have to touch page->_count against each page.
1650 * But we had to alter page->flags anyway.
1651 */
1652
1653 static void move_active_pages_to_lru(struct zone *zone,
1654 struct list_head *list,
1655 struct list_head *pages_to_free,
1656 enum lru_list lru)
1657 {
1658 unsigned long pgmoved = 0;
1659 struct page *page;
1660
1661 if (buffer_heads_over_limit) {
1662 spin_unlock_irq(&zone->lru_lock);
1663 list_for_each_entry(page, list, lru) {
1664 if (page_has_private(page) && trylock_page(page)) {
1665 if (page_has_private(page))
1666 try_to_release_page(page, 0);
1667 unlock_page(page);
1668 }
1669 }
1670 spin_lock_irq(&zone->lru_lock);
1671 }
1672
1673 while (!list_empty(list)) {
1674 struct lruvec *lruvec;
1675
1676 page = lru_to_page(list);
1677
1678 VM_BUG_ON(PageLRU(page));
1679 SetPageLRU(page);
1680
1681 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1682 list_move(&page->lru, &lruvec->lists[lru]);
1683 pgmoved += hpage_nr_pages(page);
1684
1685 if (put_page_testzero(page)) {
1686 __ClearPageLRU(page);
1687 __ClearPageActive(page);
1688 del_page_from_lru_list(zone, page, lru);
1689
1690 if (unlikely(PageCompound(page))) {
1691 spin_unlock_irq(&zone->lru_lock);
1692 (*get_compound_page_dtor(page))(page);
1693 spin_lock_irq(&zone->lru_lock);
1694 } else
1695 list_add(&page->lru, pages_to_free);
1696 }
1697 }
1698 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1699 if (!is_active_lru(lru))
1700 __count_vm_events(PGDEACTIVATE, pgmoved);
1701 }
1702
1703 static void shrink_active_list(unsigned long nr_pages,
1704 struct mem_cgroup_zone *mz,
1705 struct scan_control *sc,
1706 int priority, int file)
1707 {
1708 unsigned long nr_taken;
1709 unsigned long pgscanned;
1710 unsigned long vm_flags;
1711 LIST_HEAD(l_hold); /* The pages which were snipped off */
1712 LIST_HEAD(l_active);
1713 LIST_HEAD(l_inactive);
1714 struct page *page;
1715 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1716 unsigned long nr_rotated = 0;
1717 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1718 struct zone *zone = mz->zone;
1719
1720 lru_add_drain();
1721
1722 if (!sc->may_unmap)
1723 reclaim_mode |= ISOLATE_UNMAPPED;
1724 if (!sc->may_writepage)
1725 reclaim_mode |= ISOLATE_CLEAN;
1726
1727 spin_lock_irq(&zone->lru_lock);
1728
1729 nr_taken = isolate_pages(nr_pages, mz, &l_hold,
1730 &pgscanned, sc->order,
1731 reclaim_mode, 1, file);
1732
1733 if (global_reclaim(sc))
1734 zone->pages_scanned += pgscanned;
1735
1736 reclaim_stat->recent_scanned[file] += nr_taken;
1737
1738 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1739 if (file)
1740 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1741 else
1742 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1743 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1744 spin_unlock_irq(&zone->lru_lock);
1745
1746 while (!list_empty(&l_hold)) {
1747 cond_resched();
1748 page = lru_to_page(&l_hold);
1749 list_del(&page->lru);
1750
1751 if (unlikely(!page_evictable(page, NULL))) {
1752 putback_lru_page(page);
1753 continue;
1754 }
1755
1756 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1757 nr_rotated += hpage_nr_pages(page);
1758 /*
1759 * Identify referenced, file-backed active pages and
1760 * give them one more trip around the active list. So
1761 * that executable code get better chances to stay in
1762 * memory under moderate memory pressure. Anon pages
1763 * are not likely to be evicted by use-once streaming
1764 * IO, plus JVM can create lots of anon VM_EXEC pages,
1765 * so we ignore them here.
1766 */
1767 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1768 list_add(&page->lru, &l_active);
1769 continue;
1770 }
1771 }
1772
1773 ClearPageActive(page); /* we are de-activating */
1774 list_add(&page->lru, &l_inactive);
1775 }
1776
1777 /*
1778 * Move pages back to the lru list.
1779 */
1780 spin_lock_irq(&zone->lru_lock);
1781 /*
1782 * Count referenced pages from currently used mappings as rotated,
1783 * even though only some of them are actually re-activated. This
1784 * helps balance scan pressure between file and anonymous pages in
1785 * get_scan_ratio.
1786 */
1787 reclaim_stat->recent_rotated[file] += nr_rotated;
1788
1789 move_active_pages_to_lru(zone, &l_active, &l_hold,
1790 LRU_ACTIVE + file * LRU_FILE);
1791 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1792 LRU_BASE + file * LRU_FILE);
1793 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1794 spin_unlock_irq(&zone->lru_lock);
1795
1796 free_hot_cold_page_list(&l_hold, 1);
1797 }
1798
1799 #ifdef CONFIG_SWAP
1800 static int inactive_anon_is_low_global(struct zone *zone)
1801 {
1802 unsigned long active, inactive;
1803
1804 active = zone_page_state(zone, NR_ACTIVE_ANON);
1805 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1806
1807 if (inactive * zone->inactive_ratio < active)
1808 return 1;
1809
1810 return 0;
1811 }
1812
1813 /**
1814 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1815 * @zone: zone to check
1816 * @sc: scan control of this context
1817 *
1818 * Returns true if the zone does not have enough inactive anon pages,
1819 * meaning some active anon pages need to be deactivated.
1820 */
1821 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1822 {
1823 /*
1824 * If we don't have swap space, anonymous page deactivation
1825 * is pointless.
1826 */
1827 if (!total_swap_pages)
1828 return 0;
1829
1830 if (!scanning_global_lru(mz))
1831 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1832 mz->zone);
1833
1834 return inactive_anon_is_low_global(mz->zone);
1835 }
1836 #else
1837 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1838 {
1839 return 0;
1840 }
1841 #endif
1842
1843 static int inactive_file_is_low_global(struct zone *zone)
1844 {
1845 unsigned long active, inactive;
1846
1847 active = zone_page_state(zone, NR_ACTIVE_FILE);
1848 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1849
1850 return (active > inactive);
1851 }
1852
1853 /**
1854 * inactive_file_is_low - check if file pages need to be deactivated
1855 * @mz: memory cgroup and zone to check
1856 *
1857 * When the system is doing streaming IO, memory pressure here
1858 * ensures that active file pages get deactivated, until more
1859 * than half of the file pages are on the inactive list.
1860 *
1861 * Once we get to that situation, protect the system's working
1862 * set from being evicted by disabling active file page aging.
1863 *
1864 * This uses a different ratio than the anonymous pages, because
1865 * the page cache uses a use-once replacement algorithm.
1866 */
1867 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1868 {
1869 if (!scanning_global_lru(mz))
1870 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1871 mz->zone);
1872
1873 return inactive_file_is_low_global(mz->zone);
1874 }
1875
1876 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1877 {
1878 if (file)
1879 return inactive_file_is_low(mz);
1880 else
1881 return inactive_anon_is_low(mz);
1882 }
1883
1884 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1885 struct mem_cgroup_zone *mz,
1886 struct scan_control *sc, int priority)
1887 {
1888 int file = is_file_lru(lru);
1889
1890 if (is_active_lru(lru)) {
1891 if (inactive_list_is_low(mz, file))
1892 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1893 return 0;
1894 }
1895
1896 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1897 }
1898
1899 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1900 struct scan_control *sc)
1901 {
1902 if (global_reclaim(sc))
1903 return vm_swappiness;
1904 return mem_cgroup_swappiness(mz->mem_cgroup);
1905 }
1906
1907 /*
1908 * Determine how aggressively the anon and file LRU lists should be
1909 * scanned. The relative value of each set of LRU lists is determined
1910 * by looking at the fraction of the pages scanned we did rotate back
1911 * onto the active list instead of evict.
1912 *
1913 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1914 */
1915 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1916 unsigned long *nr, int priority)
1917 {
1918 unsigned long anon, file, free;
1919 unsigned long anon_prio, file_prio;
1920 unsigned long ap, fp;
1921 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1922 u64 fraction[2], denominator;
1923 enum lru_list l;
1924 int noswap = 0;
1925 bool force_scan = false;
1926
1927 /*
1928 * If the zone or memcg is small, nr[l] can be 0. This
1929 * results in no scanning on this priority and a potential
1930 * priority drop. Global direct reclaim can go to the next
1931 * zone and tends to have no problems. Global kswapd is for
1932 * zone balancing and it needs to scan a minimum amount. When
1933 * reclaiming for a memcg, a priority drop can cause high
1934 * latencies, so it's better to scan a minimum amount there as
1935 * well.
1936 */
1937 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1938 force_scan = true;
1939 if (!global_reclaim(sc))
1940 force_scan = true;
1941
1942 /* If we have no swap space, do not bother scanning anon pages. */
1943 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1944 noswap = 1;
1945 fraction[0] = 0;
1946 fraction[1] = 1;
1947 denominator = 1;
1948 goto out;
1949 }
1950
1951 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1952 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1953 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1954 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1955
1956 if (global_reclaim(sc)) {
1957 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1958 /* If we have very few page cache pages,
1959 force-scan anon pages. */
1960 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1961 fraction[0] = 1;
1962 fraction[1] = 0;
1963 denominator = 1;
1964 goto out;
1965 }
1966 }
1967
1968 /*
1969 * With swappiness at 100, anonymous and file have the same priority.
1970 * This scanning priority is essentially the inverse of IO cost.
1971 */
1972 anon_prio = vmscan_swappiness(mz, sc);
1973 file_prio = 200 - vmscan_swappiness(mz, sc);
1974
1975 /*
1976 * OK, so we have swap space and a fair amount of page cache
1977 * pages. We use the recently rotated / recently scanned
1978 * ratios to determine how valuable each cache is.
1979 *
1980 * Because workloads change over time (and to avoid overflow)
1981 * we keep these statistics as a floating average, which ends
1982 * up weighing recent references more than old ones.
1983 *
1984 * anon in [0], file in [1]
1985 */
1986 spin_lock_irq(&mz->zone->lru_lock);
1987 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1988 reclaim_stat->recent_scanned[0] /= 2;
1989 reclaim_stat->recent_rotated[0] /= 2;
1990 }
1991
1992 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1993 reclaim_stat->recent_scanned[1] /= 2;
1994 reclaim_stat->recent_rotated[1] /= 2;
1995 }
1996
1997 /*
1998 * The amount of pressure on anon vs file pages is inversely
1999 * proportional to the fraction of recently scanned pages on
2000 * each list that were recently referenced and in active use.
2001 */
2002 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
2003 ap /= reclaim_stat->recent_rotated[0] + 1;
2004
2005 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
2006 fp /= reclaim_stat->recent_rotated[1] + 1;
2007 spin_unlock_irq(&mz->zone->lru_lock);
2008
2009 fraction[0] = ap;
2010 fraction[1] = fp;
2011 denominator = ap + fp + 1;
2012 out:
2013 for_each_evictable_lru(l) {
2014 int file = is_file_lru(l);
2015 unsigned long scan;
2016
2017 scan = zone_nr_lru_pages(mz, l);
2018 if (priority || noswap) {
2019 scan >>= priority;
2020 if (!scan && force_scan)
2021 scan = SWAP_CLUSTER_MAX;
2022 scan = div64_u64(scan * fraction[file], denominator);
2023 }
2024 nr[l] = scan;
2025 }
2026 }
2027
2028 /*
2029 * Reclaim/compaction depends on a number of pages being freed. To avoid
2030 * disruption to the system, a small number of order-0 pages continue to be
2031 * rotated and reclaimed in the normal fashion. However, by the time we get
2032 * back to the allocator and call try_to_compact_zone(), we ensure that
2033 * there are enough free pages for it to be likely successful
2034 */
2035 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2036 unsigned long nr_reclaimed,
2037 unsigned long nr_scanned,
2038 struct scan_control *sc)
2039 {
2040 unsigned long pages_for_compaction;
2041 unsigned long inactive_lru_pages;
2042
2043 /* If not in reclaim/compaction mode, stop */
2044 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2045 return false;
2046
2047 /* Consider stopping depending on scan and reclaim activity */
2048 if (sc->gfp_mask & __GFP_REPEAT) {
2049 /*
2050 * For __GFP_REPEAT allocations, stop reclaiming if the
2051 * full LRU list has been scanned and we are still failing
2052 * to reclaim pages. This full LRU scan is potentially
2053 * expensive but a __GFP_REPEAT caller really wants to succeed
2054 */
2055 if (!nr_reclaimed && !nr_scanned)
2056 return false;
2057 } else {
2058 /*
2059 * For non-__GFP_REPEAT allocations which can presumably
2060 * fail without consequence, stop if we failed to reclaim
2061 * any pages from the last SWAP_CLUSTER_MAX number of
2062 * pages that were scanned. This will return to the
2063 * caller faster at the risk reclaim/compaction and
2064 * the resulting allocation attempt fails
2065 */
2066 if (!nr_reclaimed)
2067 return false;
2068 }
2069
2070 /*
2071 * If we have not reclaimed enough pages for compaction and the
2072 * inactive lists are large enough, continue reclaiming
2073 */
2074 pages_for_compaction = (2UL << sc->order);
2075 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2076 if (nr_swap_pages > 0)
2077 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2078 if (sc->nr_reclaimed < pages_for_compaction &&
2079 inactive_lru_pages > pages_for_compaction)
2080 return true;
2081
2082 /* If compaction would go ahead or the allocation would succeed, stop */
2083 switch (compaction_suitable(mz->zone, sc->order)) {
2084 case COMPACT_PARTIAL:
2085 case COMPACT_CONTINUE:
2086 return false;
2087 default:
2088 return true;
2089 }
2090 }
2091
2092 /*
2093 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2094 */
2095 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2096 struct scan_control *sc)
2097 {
2098 unsigned long nr[NR_LRU_LISTS];
2099 unsigned long nr_to_scan;
2100 enum lru_list l;
2101 unsigned long nr_reclaimed, nr_scanned;
2102 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2103 struct blk_plug plug;
2104
2105 restart:
2106 nr_reclaimed = 0;
2107 nr_scanned = sc->nr_scanned;
2108 get_scan_count(mz, sc, nr, priority);
2109
2110 blk_start_plug(&plug);
2111 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2112 nr[LRU_INACTIVE_FILE]) {
2113 for_each_evictable_lru(l) {
2114 if (nr[l]) {
2115 nr_to_scan = min_t(unsigned long,
2116 nr[l], SWAP_CLUSTER_MAX);
2117 nr[l] -= nr_to_scan;
2118
2119 nr_reclaimed += shrink_list(l, nr_to_scan,
2120 mz, sc, priority);
2121 }
2122 }
2123 /*
2124 * On large memory systems, scan >> priority can become
2125 * really large. This is fine for the starting priority;
2126 * we want to put equal scanning pressure on each zone.
2127 * However, if the VM has a harder time of freeing pages,
2128 * with multiple processes reclaiming pages, the total
2129 * freeing target can get unreasonably large.
2130 */
2131 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2132 break;
2133 }
2134 blk_finish_plug(&plug);
2135 sc->nr_reclaimed += nr_reclaimed;
2136
2137 /*
2138 * Even if we did not try to evict anon pages at all, we want to
2139 * rebalance the anon lru active/inactive ratio.
2140 */
2141 if (inactive_anon_is_low(mz))
2142 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2143
2144 /* reclaim/compaction might need reclaim to continue */
2145 if (should_continue_reclaim(mz, nr_reclaimed,
2146 sc->nr_scanned - nr_scanned, sc))
2147 goto restart;
2148
2149 throttle_vm_writeout(sc->gfp_mask);
2150 }
2151
2152 static void shrink_zone(int priority, struct zone *zone,
2153 struct scan_control *sc)
2154 {
2155 struct mem_cgroup *root = sc->target_mem_cgroup;
2156 struct mem_cgroup_reclaim_cookie reclaim = {
2157 .zone = zone,
2158 .priority = priority,
2159 };
2160 struct mem_cgroup *memcg;
2161
2162 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2163 do {
2164 struct mem_cgroup_zone mz = {
2165 .mem_cgroup = memcg,
2166 .zone = zone,
2167 };
2168
2169 shrink_mem_cgroup_zone(priority, &mz, sc);
2170 /*
2171 * Limit reclaim has historically picked one memcg and
2172 * scanned it with decreasing priority levels until
2173 * nr_to_reclaim had been reclaimed. This priority
2174 * cycle is thus over after a single memcg.
2175 *
2176 * Direct reclaim and kswapd, on the other hand, have
2177 * to scan all memory cgroups to fulfill the overall
2178 * scan target for the zone.
2179 */
2180 if (!global_reclaim(sc)) {
2181 mem_cgroup_iter_break(root, memcg);
2182 break;
2183 }
2184 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2185 } while (memcg);
2186 }
2187
2188 /* Returns true if compaction should go ahead for a high-order request */
2189 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2190 {
2191 unsigned long balance_gap, watermark;
2192 bool watermark_ok;
2193
2194 /* Do not consider compaction for orders reclaim is meant to satisfy */
2195 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2196 return false;
2197
2198 /*
2199 * Compaction takes time to run and there are potentially other
2200 * callers using the pages just freed. Continue reclaiming until
2201 * there is a buffer of free pages available to give compaction
2202 * a reasonable chance of completing and allocating the page
2203 */
2204 balance_gap = min(low_wmark_pages(zone),
2205 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2206 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2207 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2208 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2209
2210 /*
2211 * If compaction is deferred, reclaim up to a point where
2212 * compaction will have a chance of success when re-enabled
2213 */
2214 if (compaction_deferred(zone))
2215 return watermark_ok;
2216
2217 /* If compaction is not ready to start, keep reclaiming */
2218 if (!compaction_suitable(zone, sc->order))
2219 return false;
2220
2221 return watermark_ok;
2222 }
2223
2224 /*
2225 * This is the direct reclaim path, for page-allocating processes. We only
2226 * try to reclaim pages from zones which will satisfy the caller's allocation
2227 * request.
2228 *
2229 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2230 * Because:
2231 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2232 * allocation or
2233 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2234 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2235 * zone defense algorithm.
2236 *
2237 * If a zone is deemed to be full of pinned pages then just give it a light
2238 * scan then give up on it.
2239 *
2240 * This function returns true if a zone is being reclaimed for a costly
2241 * high-order allocation and compaction is ready to begin. This indicates to
2242 * the caller that it should consider retrying the allocation instead of
2243 * further reclaim.
2244 */
2245 static bool shrink_zones(int priority, struct zonelist *zonelist,
2246 struct scan_control *sc)
2247 {
2248 struct zoneref *z;
2249 struct zone *zone;
2250 unsigned long nr_soft_reclaimed;
2251 unsigned long nr_soft_scanned;
2252 bool aborted_reclaim = false;
2253
2254 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2255 gfp_zone(sc->gfp_mask), sc->nodemask) {
2256 if (!populated_zone(zone))
2257 continue;
2258 /*
2259 * Take care memory controller reclaiming has small influence
2260 * to global LRU.
2261 */
2262 if (global_reclaim(sc)) {
2263 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2264 continue;
2265 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2266 continue; /* Let kswapd poll it */
2267 if (COMPACTION_BUILD) {
2268 /*
2269 * If we already have plenty of memory free for
2270 * compaction in this zone, don't free any more.
2271 * Even though compaction is invoked for any
2272 * non-zero order, only frequent costly order
2273 * reclamation is disruptive enough to become a
2274 * noticable problem, like transparent huge page
2275 * allocations.
2276 */
2277 if (compaction_ready(zone, sc)) {
2278 aborted_reclaim = true;
2279 continue;
2280 }
2281 }
2282 /*
2283 * This steals pages from memory cgroups over softlimit
2284 * and returns the number of reclaimed pages and
2285 * scanned pages. This works for global memory pressure
2286 * and balancing, not for a memcg's limit.
2287 */
2288 nr_soft_scanned = 0;
2289 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2290 sc->order, sc->gfp_mask,
2291 &nr_soft_scanned);
2292 sc->nr_reclaimed += nr_soft_reclaimed;
2293 sc->nr_scanned += nr_soft_scanned;
2294 /* need some check for avoid more shrink_zone() */
2295 }
2296
2297 shrink_zone(priority, zone, sc);
2298 }
2299
2300 return aborted_reclaim;
2301 }
2302
2303 static bool zone_reclaimable(struct zone *zone)
2304 {
2305 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2306 }
2307
2308 /* All zones in zonelist are unreclaimable? */
2309 static bool all_unreclaimable(struct zonelist *zonelist,
2310 struct scan_control *sc)
2311 {
2312 struct zoneref *z;
2313 struct zone *zone;
2314
2315 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2316 gfp_zone(sc->gfp_mask), sc->nodemask) {
2317 if (!populated_zone(zone))
2318 continue;
2319 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2320 continue;
2321 if (!zone->all_unreclaimable)
2322 return false;
2323 }
2324
2325 return true;
2326 }
2327
2328 /*
2329 * This is the main entry point to direct page reclaim.
2330 *
2331 * If a full scan of the inactive list fails to free enough memory then we
2332 * are "out of memory" and something needs to be killed.
2333 *
2334 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2335 * high - the zone may be full of dirty or under-writeback pages, which this
2336 * caller can't do much about. We kick the writeback threads and take explicit
2337 * naps in the hope that some of these pages can be written. But if the
2338 * allocating task holds filesystem locks which prevent writeout this might not
2339 * work, and the allocation attempt will fail.
2340 *
2341 * returns: 0, if no pages reclaimed
2342 * else, the number of pages reclaimed
2343 */
2344 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2345 struct scan_control *sc,
2346 struct shrink_control *shrink)
2347 {
2348 int priority;
2349 unsigned long total_scanned = 0;
2350 struct reclaim_state *reclaim_state = current->reclaim_state;
2351 struct zoneref *z;
2352 struct zone *zone;
2353 unsigned long writeback_threshold;
2354 bool aborted_reclaim;
2355
2356 get_mems_allowed();
2357 delayacct_freepages_start();
2358
2359 if (global_reclaim(sc))
2360 count_vm_event(ALLOCSTALL);
2361
2362 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2363 sc->nr_scanned = 0;
2364 if (!priority)
2365 disable_swap_token(sc->target_mem_cgroup);
2366 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2367
2368 /*
2369 * Don't shrink slabs when reclaiming memory from
2370 * over limit cgroups
2371 */
2372 if (global_reclaim(sc)) {
2373 unsigned long lru_pages = 0;
2374 for_each_zone_zonelist(zone, z, zonelist,
2375 gfp_zone(sc->gfp_mask)) {
2376 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2377 continue;
2378
2379 lru_pages += zone_reclaimable_pages(zone);
2380 }
2381
2382 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2383 if (reclaim_state) {
2384 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2385 reclaim_state->reclaimed_slab = 0;
2386 }
2387 }
2388 total_scanned += sc->nr_scanned;
2389 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2390 goto out;
2391
2392 /*
2393 * Try to write back as many pages as we just scanned. This
2394 * tends to cause slow streaming writers to write data to the
2395 * disk smoothly, at the dirtying rate, which is nice. But
2396 * that's undesirable in laptop mode, where we *want* lumpy
2397 * writeout. So in laptop mode, write out the whole world.
2398 */
2399 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2400 if (total_scanned > writeback_threshold) {
2401 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2402 WB_REASON_TRY_TO_FREE_PAGES);
2403 sc->may_writepage = 1;
2404 }
2405
2406 /* Take a nap, wait for some writeback to complete */
2407 if (!sc->hibernation_mode && sc->nr_scanned &&
2408 priority < DEF_PRIORITY - 2) {
2409 struct zone *preferred_zone;
2410
2411 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2412 &cpuset_current_mems_allowed,
2413 &preferred_zone);
2414 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2415 }
2416 }
2417
2418 out:
2419 delayacct_freepages_end();
2420 put_mems_allowed();
2421
2422 if (sc->nr_reclaimed)
2423 return sc->nr_reclaimed;
2424
2425 /*
2426 * As hibernation is going on, kswapd is freezed so that it can't mark
2427 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2428 * check.
2429 */
2430 if (oom_killer_disabled)
2431 return 0;
2432
2433 /* Aborted reclaim to try compaction? don't OOM, then */
2434 if (aborted_reclaim)
2435 return 1;
2436
2437 /* top priority shrink_zones still had more to do? don't OOM, then */
2438 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2439 return 1;
2440
2441 return 0;
2442 }
2443
2444 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2445 gfp_t gfp_mask, nodemask_t *nodemask)
2446 {
2447 unsigned long nr_reclaimed;
2448 struct scan_control sc = {
2449 .gfp_mask = gfp_mask,
2450 .may_writepage = !laptop_mode,
2451 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2452 .may_unmap = 1,
2453 .may_swap = 1,
2454 .order = order,
2455 .target_mem_cgroup = NULL,
2456 .nodemask = nodemask,
2457 };
2458 struct shrink_control shrink = {
2459 .gfp_mask = sc.gfp_mask,
2460 };
2461
2462 trace_mm_vmscan_direct_reclaim_begin(order,
2463 sc.may_writepage,
2464 gfp_mask);
2465
2466 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2467
2468 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2469
2470 return nr_reclaimed;
2471 }
2472
2473 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2474
2475 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2476 gfp_t gfp_mask, bool noswap,
2477 struct zone *zone,
2478 unsigned long *nr_scanned)
2479 {
2480 struct scan_control sc = {
2481 .nr_scanned = 0,
2482 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2483 .may_writepage = !laptop_mode,
2484 .may_unmap = 1,
2485 .may_swap = !noswap,
2486 .order = 0,
2487 .target_mem_cgroup = memcg,
2488 };
2489 struct mem_cgroup_zone mz = {
2490 .mem_cgroup = memcg,
2491 .zone = zone,
2492 };
2493
2494 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2495 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2496
2497 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2498 sc.may_writepage,
2499 sc.gfp_mask);
2500
2501 /*
2502 * NOTE: Although we can get the priority field, using it
2503 * here is not a good idea, since it limits the pages we can scan.
2504 * if we don't reclaim here, the shrink_zone from balance_pgdat
2505 * will pick up pages from other mem cgroup's as well. We hack
2506 * the priority and make it zero.
2507 */
2508 shrink_mem_cgroup_zone(0, &mz, &sc);
2509
2510 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2511
2512 *nr_scanned = sc.nr_scanned;
2513 return sc.nr_reclaimed;
2514 }
2515
2516 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2517 gfp_t gfp_mask,
2518 bool noswap)
2519 {
2520 struct zonelist *zonelist;
2521 unsigned long nr_reclaimed;
2522 int nid;
2523 struct scan_control sc = {
2524 .may_writepage = !laptop_mode,
2525 .may_unmap = 1,
2526 .may_swap = !noswap,
2527 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2528 .order = 0,
2529 .target_mem_cgroup = memcg,
2530 .nodemask = NULL, /* we don't care the placement */
2531 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2532 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2533 };
2534 struct shrink_control shrink = {
2535 .gfp_mask = sc.gfp_mask,
2536 };
2537
2538 /*
2539 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2540 * take care of from where we get pages. So the node where we start the
2541 * scan does not need to be the current node.
2542 */
2543 nid = mem_cgroup_select_victim_node(memcg);
2544
2545 zonelist = NODE_DATA(nid)->node_zonelists;
2546
2547 trace_mm_vmscan_memcg_reclaim_begin(0,
2548 sc.may_writepage,
2549 sc.gfp_mask);
2550
2551 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2552
2553 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2554
2555 return nr_reclaimed;
2556 }
2557 #endif
2558
2559 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2560 int priority)
2561 {
2562 struct mem_cgroup *memcg;
2563
2564 if (!total_swap_pages)
2565 return;
2566
2567 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2568 do {
2569 struct mem_cgroup_zone mz = {
2570 .mem_cgroup = memcg,
2571 .zone = zone,
2572 };
2573
2574 if (inactive_anon_is_low(&mz))
2575 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2576 sc, priority, 0);
2577
2578 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2579 } while (memcg);
2580 }
2581
2582 /*
2583 * pgdat_balanced is used when checking if a node is balanced for high-order
2584 * allocations. Only zones that meet watermarks and are in a zone allowed
2585 * by the callers classzone_idx are added to balanced_pages. The total of
2586 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2587 * for the node to be considered balanced. Forcing all zones to be balanced
2588 * for high orders can cause excessive reclaim when there are imbalanced zones.
2589 * The choice of 25% is due to
2590 * o a 16M DMA zone that is balanced will not balance a zone on any
2591 * reasonable sized machine
2592 * o On all other machines, the top zone must be at least a reasonable
2593 * percentage of the middle zones. For example, on 32-bit x86, highmem
2594 * would need to be at least 256M for it to be balance a whole node.
2595 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2596 * to balance a node on its own. These seemed like reasonable ratios.
2597 */
2598 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2599 int classzone_idx)
2600 {
2601 unsigned long present_pages = 0;
2602 int i;
2603
2604 for (i = 0; i <= classzone_idx; i++)
2605 present_pages += pgdat->node_zones[i].present_pages;
2606
2607 /* A special case here: if zone has no page, we think it's balanced */
2608 return balanced_pages >= (present_pages >> 2);
2609 }
2610
2611 /* is kswapd sleeping prematurely? */
2612 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2613 int classzone_idx)
2614 {
2615 int i;
2616 unsigned long balanced = 0;
2617 bool all_zones_ok = true;
2618
2619 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2620 if (remaining)
2621 return true;
2622
2623 /* Check the watermark levels */
2624 for (i = 0; i <= classzone_idx; i++) {
2625 struct zone *zone = pgdat->node_zones + i;
2626
2627 if (!populated_zone(zone))
2628 continue;
2629
2630 /*
2631 * balance_pgdat() skips over all_unreclaimable after
2632 * DEF_PRIORITY. Effectively, it considers them balanced so
2633 * they must be considered balanced here as well if kswapd
2634 * is to sleep
2635 */
2636 if (zone->all_unreclaimable) {
2637 balanced += zone->present_pages;
2638 continue;
2639 }
2640
2641 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2642 i, 0))
2643 all_zones_ok = false;
2644 else
2645 balanced += zone->present_pages;
2646 }
2647
2648 /*
2649 * For high-order requests, the balanced zones must contain at least
2650 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2651 * must be balanced
2652 */
2653 if (order)
2654 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2655 else
2656 return !all_zones_ok;
2657 }
2658
2659 /*
2660 * For kswapd, balance_pgdat() will work across all this node's zones until
2661 * they are all at high_wmark_pages(zone).
2662 *
2663 * Returns the final order kswapd was reclaiming at
2664 *
2665 * There is special handling here for zones which are full of pinned pages.
2666 * This can happen if the pages are all mlocked, or if they are all used by
2667 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2668 * What we do is to detect the case where all pages in the zone have been
2669 * scanned twice and there has been zero successful reclaim. Mark the zone as
2670 * dead and from now on, only perform a short scan. Basically we're polling
2671 * the zone for when the problem goes away.
2672 *
2673 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2674 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2675 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2676 * lower zones regardless of the number of free pages in the lower zones. This
2677 * interoperates with the page allocator fallback scheme to ensure that aging
2678 * of pages is balanced across the zones.
2679 */
2680 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2681 int *classzone_idx)
2682 {
2683 int all_zones_ok;
2684 unsigned long balanced;
2685 int priority;
2686 int i;
2687 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2688 unsigned long total_scanned;
2689 struct reclaim_state *reclaim_state = current->reclaim_state;
2690 unsigned long nr_soft_reclaimed;
2691 unsigned long nr_soft_scanned;
2692 struct scan_control sc = {
2693 .gfp_mask = GFP_KERNEL,
2694 .may_unmap = 1,
2695 .may_swap = 1,
2696 /*
2697 * kswapd doesn't want to be bailed out while reclaim. because
2698 * we want to put equal scanning pressure on each zone.
2699 */
2700 .nr_to_reclaim = ULONG_MAX,
2701 .order = order,
2702 .target_mem_cgroup = NULL,
2703 };
2704 struct shrink_control shrink = {
2705 .gfp_mask = sc.gfp_mask,
2706 };
2707 loop_again:
2708 total_scanned = 0;
2709 sc.nr_reclaimed = 0;
2710 sc.may_writepage = !laptop_mode;
2711 count_vm_event(PAGEOUTRUN);
2712
2713 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2714 unsigned long lru_pages = 0;
2715 int has_under_min_watermark_zone = 0;
2716
2717 /* The swap token gets in the way of swapout... */
2718 if (!priority)
2719 disable_swap_token(NULL);
2720
2721 all_zones_ok = 1;
2722 balanced = 0;
2723
2724 /*
2725 * Scan in the highmem->dma direction for the highest
2726 * zone which needs scanning
2727 */
2728 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2729 struct zone *zone = pgdat->node_zones + i;
2730
2731 if (!populated_zone(zone))
2732 continue;
2733
2734 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2735 continue;
2736
2737 /*
2738 * Do some background aging of the anon list, to give
2739 * pages a chance to be referenced before reclaiming.
2740 */
2741 age_active_anon(zone, &sc, priority);
2742
2743 if (!zone_watermark_ok_safe(zone, order,
2744 high_wmark_pages(zone), 0, 0)) {
2745 end_zone = i;
2746 break;
2747 } else {
2748 /* If balanced, clear the congested flag */
2749 zone_clear_flag(zone, ZONE_CONGESTED);
2750 }
2751 }
2752 if (i < 0)
2753 goto out;
2754
2755 for (i = 0; i <= end_zone; i++) {
2756 struct zone *zone = pgdat->node_zones + i;
2757
2758 lru_pages += zone_reclaimable_pages(zone);
2759 }
2760
2761 /*
2762 * Now scan the zone in the dma->highmem direction, stopping
2763 * at the last zone which needs scanning.
2764 *
2765 * We do this because the page allocator works in the opposite
2766 * direction. This prevents the page allocator from allocating
2767 * pages behind kswapd's direction of progress, which would
2768 * cause too much scanning of the lower zones.
2769 */
2770 for (i = 0; i <= end_zone; i++) {
2771 struct zone *zone = pgdat->node_zones + i;
2772 int nr_slab;
2773 unsigned long balance_gap;
2774
2775 if (!populated_zone(zone))
2776 continue;
2777
2778 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2779 continue;
2780
2781 sc.nr_scanned = 0;
2782
2783 nr_soft_scanned = 0;
2784 /*
2785 * Call soft limit reclaim before calling shrink_zone.
2786 */
2787 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2788 order, sc.gfp_mask,
2789 &nr_soft_scanned);
2790 sc.nr_reclaimed += nr_soft_reclaimed;
2791 total_scanned += nr_soft_scanned;
2792
2793 /*
2794 * We put equal pressure on every zone, unless
2795 * one zone has way too many pages free
2796 * already. The "too many pages" is defined
2797 * as the high wmark plus a "gap" where the
2798 * gap is either the low watermark or 1%
2799 * of the zone, whichever is smaller.
2800 */
2801 balance_gap = min(low_wmark_pages(zone),
2802 (zone->present_pages +
2803 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2804 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2805 if (!zone_watermark_ok_safe(zone, order,
2806 high_wmark_pages(zone) + balance_gap,
2807 end_zone, 0)) {
2808 shrink_zone(priority, zone, &sc);
2809
2810 reclaim_state->reclaimed_slab = 0;
2811 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2812 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2813 total_scanned += sc.nr_scanned;
2814
2815 if (nr_slab == 0 && !zone_reclaimable(zone))
2816 zone->all_unreclaimable = 1;
2817 }
2818
2819 /*
2820 * If we've done a decent amount of scanning and
2821 * the reclaim ratio is low, start doing writepage
2822 * even in laptop mode
2823 */
2824 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2825 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2826 sc.may_writepage = 1;
2827
2828 if (zone->all_unreclaimable) {
2829 if (end_zone && end_zone == i)
2830 end_zone--;
2831 continue;
2832 }
2833
2834 if (!zone_watermark_ok_safe(zone, order,
2835 high_wmark_pages(zone), end_zone, 0)) {
2836 all_zones_ok = 0;
2837 /*
2838 * We are still under min water mark. This
2839 * means that we have a GFP_ATOMIC allocation
2840 * failure risk. Hurry up!
2841 */
2842 if (!zone_watermark_ok_safe(zone, order,
2843 min_wmark_pages(zone), end_zone, 0))
2844 has_under_min_watermark_zone = 1;
2845 } else {
2846 /*
2847 * If a zone reaches its high watermark,
2848 * consider it to be no longer congested. It's
2849 * possible there are dirty pages backed by
2850 * congested BDIs but as pressure is relieved,
2851 * spectulatively avoid congestion waits
2852 */
2853 zone_clear_flag(zone, ZONE_CONGESTED);
2854 if (i <= *classzone_idx)
2855 balanced += zone->present_pages;
2856 }
2857
2858 }
2859 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2860 break; /* kswapd: all done */
2861 /*
2862 * OK, kswapd is getting into trouble. Take a nap, then take
2863 * another pass across the zones.
2864 */
2865 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2866 if (has_under_min_watermark_zone)
2867 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2868 else
2869 congestion_wait(BLK_RW_ASYNC, HZ/10);
2870 }
2871
2872 /*
2873 * We do this so kswapd doesn't build up large priorities for
2874 * example when it is freeing in parallel with allocators. It
2875 * matches the direct reclaim path behaviour in terms of impact
2876 * on zone->*_priority.
2877 */
2878 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2879 break;
2880 }
2881 out:
2882
2883 /*
2884 * order-0: All zones must meet high watermark for a balanced node
2885 * high-order: Balanced zones must make up at least 25% of the node
2886 * for the node to be balanced
2887 */
2888 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2889 cond_resched();
2890
2891 try_to_freeze();
2892
2893 /*
2894 * Fragmentation may mean that the system cannot be
2895 * rebalanced for high-order allocations in all zones.
2896 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2897 * it means the zones have been fully scanned and are still
2898 * not balanced. For high-order allocations, there is
2899 * little point trying all over again as kswapd may
2900 * infinite loop.
2901 *
2902 * Instead, recheck all watermarks at order-0 as they
2903 * are the most important. If watermarks are ok, kswapd will go
2904 * back to sleep. High-order users can still perform direct
2905 * reclaim if they wish.
2906 */
2907 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2908 order = sc.order = 0;
2909
2910 goto loop_again;
2911 }
2912
2913 /*
2914 * If kswapd was reclaiming at a higher order, it has the option of
2915 * sleeping without all zones being balanced. Before it does, it must
2916 * ensure that the watermarks for order-0 on *all* zones are met and
2917 * that the congestion flags are cleared. The congestion flag must
2918 * be cleared as kswapd is the only mechanism that clears the flag
2919 * and it is potentially going to sleep here.
2920 */
2921 if (order) {
2922 for (i = 0; i <= end_zone; i++) {
2923 struct zone *zone = pgdat->node_zones + i;
2924
2925 if (!populated_zone(zone))
2926 continue;
2927
2928 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2929 continue;
2930
2931 /* Confirm the zone is balanced for order-0 */
2932 if (!zone_watermark_ok(zone, 0,
2933 high_wmark_pages(zone), 0, 0)) {
2934 order = sc.order = 0;
2935 goto loop_again;
2936 }
2937
2938 /* If balanced, clear the congested flag */
2939 zone_clear_flag(zone, ZONE_CONGESTED);
2940 if (i <= *classzone_idx)
2941 balanced += zone->present_pages;
2942 }
2943 }
2944
2945 /*
2946 * Return the order we were reclaiming at so sleeping_prematurely()
2947 * makes a decision on the order we were last reclaiming at. However,
2948 * if another caller entered the allocator slow path while kswapd
2949 * was awake, order will remain at the higher level
2950 */
2951 *classzone_idx = end_zone;
2952 return order;
2953 }
2954
2955 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2956 {
2957 long remaining = 0;
2958 DEFINE_WAIT(wait);
2959
2960 if (freezing(current) || kthread_should_stop())
2961 return;
2962
2963 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2964
2965 /* Try to sleep for a short interval */
2966 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2967 remaining = schedule_timeout(HZ/10);
2968 finish_wait(&pgdat->kswapd_wait, &wait);
2969 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2970 }
2971
2972 /*
2973 * After a short sleep, check if it was a premature sleep. If not, then
2974 * go fully to sleep until explicitly woken up.
2975 */
2976 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2977 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2978
2979 /*
2980 * vmstat counters are not perfectly accurate and the estimated
2981 * value for counters such as NR_FREE_PAGES can deviate from the
2982 * true value by nr_online_cpus * threshold. To avoid the zone
2983 * watermarks being breached while under pressure, we reduce the
2984 * per-cpu vmstat threshold while kswapd is awake and restore
2985 * them before going back to sleep.
2986 */
2987 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2988 schedule();
2989 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2990 } else {
2991 if (remaining)
2992 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2993 else
2994 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2995 }
2996 finish_wait(&pgdat->kswapd_wait, &wait);
2997 }
2998
2999 /*
3000 * The background pageout daemon, started as a kernel thread
3001 * from the init process.
3002 *
3003 * This basically trickles out pages so that we have _some_
3004 * free memory available even if there is no other activity
3005 * that frees anything up. This is needed for things like routing
3006 * etc, where we otherwise might have all activity going on in
3007 * asynchronous contexts that cannot page things out.
3008 *
3009 * If there are applications that are active memory-allocators
3010 * (most normal use), this basically shouldn't matter.
3011 */
3012 static int kswapd(void *p)
3013 {
3014 unsigned long order, new_order;
3015 unsigned balanced_order;
3016 int classzone_idx, new_classzone_idx;
3017 int balanced_classzone_idx;
3018 pg_data_t *pgdat = (pg_data_t*)p;
3019 struct task_struct *tsk = current;
3020
3021 struct reclaim_state reclaim_state = {
3022 .reclaimed_slab = 0,
3023 };
3024 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3025
3026 lockdep_set_current_reclaim_state(GFP_KERNEL);
3027
3028 if (!cpumask_empty(cpumask))
3029 set_cpus_allowed_ptr(tsk, cpumask);
3030 current->reclaim_state = &reclaim_state;
3031
3032 /*
3033 * Tell the memory management that we're a "memory allocator",
3034 * and that if we need more memory we should get access to it
3035 * regardless (see "__alloc_pages()"). "kswapd" should
3036 * never get caught in the normal page freeing logic.
3037 *
3038 * (Kswapd normally doesn't need memory anyway, but sometimes
3039 * you need a small amount of memory in order to be able to
3040 * page out something else, and this flag essentially protects
3041 * us from recursively trying to free more memory as we're
3042 * trying to free the first piece of memory in the first place).
3043 */
3044 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3045 set_freezable();
3046
3047 order = new_order = 0;
3048 balanced_order = 0;
3049 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3050 balanced_classzone_idx = classzone_idx;
3051 for ( ; ; ) {
3052 int ret;
3053
3054 /*
3055 * If the last balance_pgdat was unsuccessful it's unlikely a
3056 * new request of a similar or harder type will succeed soon
3057 * so consider going to sleep on the basis we reclaimed at
3058 */
3059 if (balanced_classzone_idx >= new_classzone_idx &&
3060 balanced_order == new_order) {
3061 new_order = pgdat->kswapd_max_order;
3062 new_classzone_idx = pgdat->classzone_idx;
3063 pgdat->kswapd_max_order = 0;
3064 pgdat->classzone_idx = pgdat->nr_zones - 1;
3065 }
3066
3067 if (order < new_order || classzone_idx > new_classzone_idx) {
3068 /*
3069 * Don't sleep if someone wants a larger 'order'
3070 * allocation or has tigher zone constraints
3071 */
3072 order = new_order;
3073 classzone_idx = new_classzone_idx;
3074 } else {
3075 kswapd_try_to_sleep(pgdat, balanced_order,
3076 balanced_classzone_idx);
3077 order = pgdat->kswapd_max_order;
3078 classzone_idx = pgdat->classzone_idx;
3079 new_order = order;
3080 new_classzone_idx = classzone_idx;
3081 pgdat->kswapd_max_order = 0;
3082 pgdat->classzone_idx = pgdat->nr_zones - 1;
3083 }
3084
3085 ret = try_to_freeze();
3086 if (kthread_should_stop())
3087 break;
3088
3089 /*
3090 * We can speed up thawing tasks if we don't call balance_pgdat
3091 * after returning from the refrigerator
3092 */
3093 if (!ret) {
3094 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3095 balanced_classzone_idx = classzone_idx;
3096 balanced_order = balance_pgdat(pgdat, order,
3097 &balanced_classzone_idx);
3098 }
3099 }
3100 return 0;
3101 }
3102
3103 /*
3104 * A zone is low on free memory, so wake its kswapd task to service it.
3105 */
3106 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3107 {
3108 pg_data_t *pgdat;
3109
3110 if (!populated_zone(zone))
3111 return;
3112
3113 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3114 return;
3115 pgdat = zone->zone_pgdat;
3116 if (pgdat->kswapd_max_order < order) {
3117 pgdat->kswapd_max_order = order;
3118 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3119 }
3120 if (!waitqueue_active(&pgdat->kswapd_wait))
3121 return;
3122 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3123 return;
3124
3125 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3126 wake_up_interruptible(&pgdat->kswapd_wait);
3127 }
3128
3129 /*
3130 * The reclaimable count would be mostly accurate.
3131 * The less reclaimable pages may be
3132 * - mlocked pages, which will be moved to unevictable list when encountered
3133 * - mapped pages, which may require several travels to be reclaimed
3134 * - dirty pages, which is not "instantly" reclaimable
3135 */
3136 unsigned long global_reclaimable_pages(void)
3137 {
3138 int nr;
3139
3140 nr = global_page_state(NR_ACTIVE_FILE) +
3141 global_page_state(NR_INACTIVE_FILE);
3142
3143 if (nr_swap_pages > 0)
3144 nr += global_page_state(NR_ACTIVE_ANON) +
3145 global_page_state(NR_INACTIVE_ANON);
3146
3147 return nr;
3148 }
3149
3150 unsigned long zone_reclaimable_pages(struct zone *zone)
3151 {
3152 int nr;
3153
3154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3155 zone_page_state(zone, NR_INACTIVE_FILE);
3156
3157 if (nr_swap_pages > 0)
3158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3159 zone_page_state(zone, NR_INACTIVE_ANON);
3160
3161 return nr;
3162 }
3163
3164 #ifdef CONFIG_HIBERNATION
3165 /*
3166 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3167 * freed pages.
3168 *
3169 * Rather than trying to age LRUs the aim is to preserve the overall
3170 * LRU order by reclaiming preferentially
3171 * inactive > active > active referenced > active mapped
3172 */
3173 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3174 {
3175 struct reclaim_state reclaim_state;
3176 struct scan_control sc = {
3177 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3178 .may_swap = 1,
3179 .may_unmap = 1,
3180 .may_writepage = 1,
3181 .nr_to_reclaim = nr_to_reclaim,
3182 .hibernation_mode = 1,
3183 .order = 0,
3184 };
3185 struct shrink_control shrink = {
3186 .gfp_mask = sc.gfp_mask,
3187 };
3188 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3189 struct task_struct *p = current;
3190 unsigned long nr_reclaimed;
3191
3192 p->flags |= PF_MEMALLOC;
3193 lockdep_set_current_reclaim_state(sc.gfp_mask);
3194 reclaim_state.reclaimed_slab = 0;
3195 p->reclaim_state = &reclaim_state;
3196
3197 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3198
3199 p->reclaim_state = NULL;
3200 lockdep_clear_current_reclaim_state();
3201 p->flags &= ~PF_MEMALLOC;
3202
3203 return nr_reclaimed;
3204 }
3205 #endif /* CONFIG_HIBERNATION */
3206
3207 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3208 not required for correctness. So if the last cpu in a node goes
3209 away, we get changed to run anywhere: as the first one comes back,
3210 restore their cpu bindings. */
3211 static int __devinit cpu_callback(struct notifier_block *nfb,
3212 unsigned long action, void *hcpu)
3213 {
3214 int nid;
3215
3216 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3217 for_each_node_state(nid, N_HIGH_MEMORY) {
3218 pg_data_t *pgdat = NODE_DATA(nid);
3219 const struct cpumask *mask;
3220
3221 mask = cpumask_of_node(pgdat->node_id);
3222
3223 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3224 /* One of our CPUs online: restore mask */
3225 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3226 }
3227 }
3228 return NOTIFY_OK;
3229 }
3230
3231 /*
3232 * This kswapd start function will be called by init and node-hot-add.
3233 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3234 */
3235 int kswapd_run(int nid)
3236 {
3237 pg_data_t *pgdat = NODE_DATA(nid);
3238 int ret = 0;
3239
3240 if (pgdat->kswapd)
3241 return 0;
3242
3243 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3244 if (IS_ERR(pgdat->kswapd)) {
3245 /* failure at boot is fatal */
3246 BUG_ON(system_state == SYSTEM_BOOTING);
3247 printk("Failed to start kswapd on node %d\n",nid);
3248 ret = -1;
3249 }
3250 return ret;
3251 }
3252
3253 /*
3254 * Called by memory hotplug when all memory in a node is offlined.
3255 */
3256 void kswapd_stop(int nid)
3257 {
3258 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3259
3260 if (kswapd)
3261 kthread_stop(kswapd);
3262 }
3263
3264 static int __init kswapd_init(void)
3265 {
3266 int nid;
3267
3268 swap_setup();
3269 for_each_node_state(nid, N_HIGH_MEMORY)
3270 kswapd_run(nid);
3271 hotcpu_notifier(cpu_callback, 0);
3272 return 0;
3273 }
3274
3275 module_init(kswapd_init)
3276
3277 #ifdef CONFIG_NUMA
3278 /*
3279 * Zone reclaim mode
3280 *
3281 * If non-zero call zone_reclaim when the number of free pages falls below
3282 * the watermarks.
3283 */
3284 int zone_reclaim_mode __read_mostly;
3285
3286 #define RECLAIM_OFF 0
3287 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3288 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3289 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3290
3291 /*
3292 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3293 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3294 * a zone.
3295 */
3296 #define ZONE_RECLAIM_PRIORITY 4
3297
3298 /*
3299 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3300 * occur.
3301 */
3302 int sysctl_min_unmapped_ratio = 1;
3303
3304 /*
3305 * If the number of slab pages in a zone grows beyond this percentage then
3306 * slab reclaim needs to occur.
3307 */
3308 int sysctl_min_slab_ratio = 5;
3309
3310 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3311 {
3312 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3313 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3314 zone_page_state(zone, NR_ACTIVE_FILE);
3315
3316 /*
3317 * It's possible for there to be more file mapped pages than
3318 * accounted for by the pages on the file LRU lists because
3319 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3320 */
3321 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3322 }
3323
3324 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3325 static long zone_pagecache_reclaimable(struct zone *zone)
3326 {
3327 long nr_pagecache_reclaimable;
3328 long delta = 0;
3329
3330 /*
3331 * If RECLAIM_SWAP is set, then all file pages are considered
3332 * potentially reclaimable. Otherwise, we have to worry about
3333 * pages like swapcache and zone_unmapped_file_pages() provides
3334 * a better estimate
3335 */
3336 if (zone_reclaim_mode & RECLAIM_SWAP)
3337 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3338 else
3339 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3340
3341 /* If we can't clean pages, remove dirty pages from consideration */
3342 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3343 delta += zone_page_state(zone, NR_FILE_DIRTY);
3344
3345 /* Watch for any possible underflows due to delta */
3346 if (unlikely(delta > nr_pagecache_reclaimable))
3347 delta = nr_pagecache_reclaimable;
3348
3349 return nr_pagecache_reclaimable - delta;
3350 }
3351
3352 /*
3353 * Try to free up some pages from this zone through reclaim.
3354 */
3355 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3356 {
3357 /* Minimum pages needed in order to stay on node */
3358 const unsigned long nr_pages = 1 << order;
3359 struct task_struct *p = current;
3360 struct reclaim_state reclaim_state;
3361 int priority;
3362 struct scan_control sc = {
3363 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3364 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3365 .may_swap = 1,
3366 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3367 SWAP_CLUSTER_MAX),
3368 .gfp_mask = gfp_mask,
3369 .order = order,
3370 };
3371 struct shrink_control shrink = {
3372 .gfp_mask = sc.gfp_mask,
3373 };
3374 unsigned long nr_slab_pages0, nr_slab_pages1;
3375
3376 cond_resched();
3377 /*
3378 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3379 * and we also need to be able to write out pages for RECLAIM_WRITE
3380 * and RECLAIM_SWAP.
3381 */
3382 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3383 lockdep_set_current_reclaim_state(gfp_mask);
3384 reclaim_state.reclaimed_slab = 0;
3385 p->reclaim_state = &reclaim_state;
3386
3387 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3388 /*
3389 * Free memory by calling shrink zone with increasing
3390 * priorities until we have enough memory freed.
3391 */
3392 priority = ZONE_RECLAIM_PRIORITY;
3393 do {
3394 shrink_zone(priority, zone, &sc);
3395 priority--;
3396 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3397 }
3398
3399 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3400 if (nr_slab_pages0 > zone->min_slab_pages) {
3401 /*
3402 * shrink_slab() does not currently allow us to determine how
3403 * many pages were freed in this zone. So we take the current
3404 * number of slab pages and shake the slab until it is reduced
3405 * by the same nr_pages that we used for reclaiming unmapped
3406 * pages.
3407 *
3408 * Note that shrink_slab will free memory on all zones and may
3409 * take a long time.
3410 */
3411 for (;;) {
3412 unsigned long lru_pages = zone_reclaimable_pages(zone);
3413
3414 /* No reclaimable slab or very low memory pressure */
3415 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3416 break;
3417
3418 /* Freed enough memory */
3419 nr_slab_pages1 = zone_page_state(zone,
3420 NR_SLAB_RECLAIMABLE);
3421 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3422 break;
3423 }
3424
3425 /*
3426 * Update nr_reclaimed by the number of slab pages we
3427 * reclaimed from this zone.
3428 */
3429 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3430 if (nr_slab_pages1 < nr_slab_pages0)
3431 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3432 }
3433
3434 p->reclaim_state = NULL;
3435 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3436 lockdep_clear_current_reclaim_state();
3437 return sc.nr_reclaimed >= nr_pages;
3438 }
3439
3440 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3441 {
3442 int node_id;
3443 int ret;
3444
3445 /*
3446 * Zone reclaim reclaims unmapped file backed pages and
3447 * slab pages if we are over the defined limits.
3448 *
3449 * A small portion of unmapped file backed pages is needed for
3450 * file I/O otherwise pages read by file I/O will be immediately
3451 * thrown out if the zone is overallocated. So we do not reclaim
3452 * if less than a specified percentage of the zone is used by
3453 * unmapped file backed pages.
3454 */
3455 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3456 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3457 return ZONE_RECLAIM_FULL;
3458
3459 if (zone->all_unreclaimable)
3460 return ZONE_RECLAIM_FULL;
3461
3462 /*
3463 * Do not scan if the allocation should not be delayed.
3464 */
3465 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3466 return ZONE_RECLAIM_NOSCAN;
3467
3468 /*
3469 * Only run zone reclaim on the local zone or on zones that do not
3470 * have associated processors. This will favor the local processor
3471 * over remote processors and spread off node memory allocations
3472 * as wide as possible.
3473 */
3474 node_id = zone_to_nid(zone);
3475 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3476 return ZONE_RECLAIM_NOSCAN;
3477
3478 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3479 return ZONE_RECLAIM_NOSCAN;
3480
3481 ret = __zone_reclaim(zone, gfp_mask, order);
3482 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3483
3484 if (!ret)
3485 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3486
3487 return ret;
3488 }
3489 #endif
3490
3491 /*
3492 * page_evictable - test whether a page is evictable
3493 * @page: the page to test
3494 * @vma: the VMA in which the page is or will be mapped, may be NULL
3495 *
3496 * Test whether page is evictable--i.e., should be placed on active/inactive
3497 * lists vs unevictable list. The vma argument is !NULL when called from the
3498 * fault path to determine how to instantate a new page.
3499 *
3500 * Reasons page might not be evictable:
3501 * (1) page's mapping marked unevictable
3502 * (2) page is part of an mlocked VMA
3503 *
3504 */
3505 int page_evictable(struct page *page, struct vm_area_struct *vma)
3506 {
3507
3508 if (mapping_unevictable(page_mapping(page)))
3509 return 0;
3510
3511 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3512 return 0;
3513
3514 return 1;
3515 }
3516
3517 /**
3518 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3519 * @page: page to check evictability and move to appropriate lru list
3520 * @zone: zone page is in
3521 *
3522 * Checks a page for evictability and moves the page to the appropriate
3523 * zone lru list.
3524 *
3525 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3526 * have PageUnevictable set.
3527 */
3528 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3529 {
3530 struct lruvec *lruvec;
3531
3532 VM_BUG_ON(PageActive(page));
3533 retry:
3534 ClearPageUnevictable(page);
3535 if (page_evictable(page, NULL)) {
3536 enum lru_list l = page_lru_base_type(page);
3537
3538 __dec_zone_state(zone, NR_UNEVICTABLE);
3539 lruvec = mem_cgroup_lru_move_lists(zone, page,
3540 LRU_UNEVICTABLE, l);
3541 list_move(&page->lru, &lruvec->lists[l]);
3542 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3543 __count_vm_event(UNEVICTABLE_PGRESCUED);
3544 } else {
3545 /*
3546 * rotate unevictable list
3547 */
3548 SetPageUnevictable(page);
3549 lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3550 LRU_UNEVICTABLE);
3551 list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3552 if (page_evictable(page, NULL))
3553 goto retry;
3554 }
3555 }
3556
3557 /**
3558 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3559 * @mapping: struct address_space to scan for evictable pages
3560 *
3561 * Scan all pages in mapping. Check unevictable pages for
3562 * evictability and move them to the appropriate zone lru list.
3563 */
3564 void scan_mapping_unevictable_pages(struct address_space *mapping)
3565 {
3566 pgoff_t next = 0;
3567 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3568 PAGE_CACHE_SHIFT;
3569 struct zone *zone;
3570 struct pagevec pvec;
3571
3572 if (mapping->nrpages == 0)
3573 return;
3574
3575 pagevec_init(&pvec, 0);
3576 while (next < end &&
3577 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3578 int i;
3579 int pg_scanned = 0;
3580
3581 zone = NULL;
3582
3583 for (i = 0; i < pagevec_count(&pvec); i++) {
3584 struct page *page = pvec.pages[i];
3585 pgoff_t page_index = page->index;
3586 struct zone *pagezone = page_zone(page);
3587
3588 pg_scanned++;
3589 if (page_index > next)
3590 next = page_index;
3591 next++;
3592
3593 if (pagezone != zone) {
3594 if (zone)
3595 spin_unlock_irq(&zone->lru_lock);
3596 zone = pagezone;
3597 spin_lock_irq(&zone->lru_lock);
3598 }
3599
3600 if (PageLRU(page) && PageUnevictable(page))
3601 check_move_unevictable_page(page, zone);
3602 }
3603 if (zone)
3604 spin_unlock_irq(&zone->lru_lock);
3605 pagevec_release(&pvec);
3606
3607 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3608 }
3609
3610 }
3611
3612 static void warn_scan_unevictable_pages(void)
3613 {
3614 printk_once(KERN_WARNING
3615 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3616 "disabled for lack of a legitimate use case. If you have "
3617 "one, please send an email to linux-mm@kvack.org.\n",
3618 current->comm);
3619 }
3620
3621 /*
3622 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3623 * all nodes' unevictable lists for evictable pages
3624 */
3625 unsigned long scan_unevictable_pages;
3626
3627 int scan_unevictable_handler(struct ctl_table *table, int write,
3628 void __user *buffer,
3629 size_t *length, loff_t *ppos)
3630 {
3631 warn_scan_unevictable_pages();
3632 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3633 scan_unevictable_pages = 0;
3634 return 0;
3635 }
3636
3637 #ifdef CONFIG_NUMA
3638 /*
3639 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3640 * a specified node's per zone unevictable lists for evictable pages.
3641 */
3642
3643 static ssize_t read_scan_unevictable_node(struct device *dev,
3644 struct device_attribute *attr,
3645 char *buf)
3646 {
3647 warn_scan_unevictable_pages();
3648 return sprintf(buf, "0\n"); /* always zero; should fit... */
3649 }
3650
3651 static ssize_t write_scan_unevictable_node(struct device *dev,
3652 struct device_attribute *attr,
3653 const char *buf, size_t count)
3654 {
3655 warn_scan_unevictable_pages();
3656 return 1;
3657 }
3658
3659
3660 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3661 read_scan_unevictable_node,
3662 write_scan_unevictable_node);
3663
3664 int scan_unevictable_register_node(struct node *node)
3665 {
3666 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3667 }
3668
3669 void scan_unevictable_unregister_node(struct node *node)
3670 {
3671 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3672 }
3673 #endif
This page took 0.108089 seconds and 5 git commands to generate.