983e407afc0900c367181e9630c16d0adf4e9011
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55
56 #include "internal.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
67
68 /* Allocation order */
69 int order;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
107 };
108
109 #ifdef ARCH_HAS_PREFETCH
110 #define prefetch_prev_lru_page(_page, _base, _field) \
111 do { \
112 if ((_page)->lru.prev != _base) { \
113 struct page *prev; \
114 \
115 prev = lru_to_page(&(_page->lru)); \
116 prefetch(&prev->_field); \
117 } \
118 } while (0)
119 #else
120 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
121 #endif
122
123 #ifdef ARCH_HAS_PREFETCHW
124 #define prefetchw_prev_lru_page(_page, _base, _field) \
125 do { \
126 if ((_page)->lru.prev != _base) { \
127 struct page *prev; \
128 \
129 prev = lru_to_page(&(_page->lru)); \
130 prefetchw(&prev->_field); \
131 } \
132 } while (0)
133 #else
134 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
135 #endif
136
137 /*
138 * From 0 .. 100. Higher means more swappy.
139 */
140 int vm_swappiness = 60;
141 /*
142 * The total number of pages which are beyond the high watermark within all
143 * zones.
144 */
145 unsigned long vm_total_pages;
146
147 static LIST_HEAD(shrinker_list);
148 static DECLARE_RWSEM(shrinker_rwsem);
149
150 #ifdef CONFIG_MEMCG
151 static bool global_reclaim(struct scan_control *sc)
152 {
153 return !sc->target_mem_cgroup;
154 }
155
156 /**
157 * sane_reclaim - is the usual dirty throttling mechanism operational?
158 * @sc: scan_control in question
159 *
160 * The normal page dirty throttling mechanism in balance_dirty_pages() is
161 * completely broken with the legacy memcg and direct stalling in
162 * shrink_page_list() is used for throttling instead, which lacks all the
163 * niceties such as fairness, adaptive pausing, bandwidth proportional
164 * allocation and configurability.
165 *
166 * This function tests whether the vmscan currently in progress can assume
167 * that the normal dirty throttling mechanism is operational.
168 */
169 static bool sane_reclaim(struct scan_control *sc)
170 {
171 struct mem_cgroup *memcg = sc->target_mem_cgroup;
172
173 if (!memcg)
174 return true;
175 #ifdef CONFIG_CGROUP_WRITEBACK
176 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
177 return true;
178 #endif
179 return false;
180 }
181 #else
182 static bool global_reclaim(struct scan_control *sc)
183 {
184 return true;
185 }
186
187 static bool sane_reclaim(struct scan_control *sc)
188 {
189 return true;
190 }
191 #endif
192
193 static unsigned long zone_reclaimable_pages(struct zone *zone)
194 {
195 unsigned long nr;
196
197 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
198 zone_page_state(zone, NR_INACTIVE_FILE) +
199 zone_page_state(zone, NR_ISOLATED_FILE);
200
201 if (get_nr_swap_pages() > 0)
202 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
203 zone_page_state(zone, NR_INACTIVE_ANON) +
204 zone_page_state(zone, NR_ISOLATED_ANON);
205
206 return nr;
207 }
208
209 bool zone_reclaimable(struct zone *zone)
210 {
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
213 }
214
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 if (!mem_cgroup_disabled())
218 return mem_cgroup_get_lru_size(lruvec, lru);
219
220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222
223 /*
224 * Add a shrinker callback to be called from the vm.
225 */
226 int register_shrinker(struct shrinker *shrinker)
227 {
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
248 return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251
252 /*
253 * Remove one
254 */
255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
260 kfree(shrinker->nr_deferred);
261 }
262 EXPORT_SYMBOL(unregister_shrinker);
263
264 #define SHRINK_BATCH 128
265
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
270 {
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
274 long freeable;
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
283 return 0;
284
285 /*
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
289 */
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291
292 total_scan = nr;
293 delta = (4 * nr_scanned) / shrinker->seeks;
294 delta *= freeable;
295 do_div(delta, nr_eligible + 1);
296 total_scan += delta;
297 if (total_scan < 0) {
298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
299 shrinker->scan_objects, total_scan);
300 total_scan = freeable;
301 }
302
303 /*
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
309 * freeable. This is bad for sustaining a working set in
310 * memory.
311 *
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
314 */
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
317
318 /*
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
322 */
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
325
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
329
330 /*
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
338 *
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
341 * than the total number of objects on slab (freeable), we must be
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
344 */
345 while (total_scan >= batch_size ||
346 total_scan >= freeable) {
347 unsigned long ret;
348 unsigned long nr_to_scan = min(batch_size, total_scan);
349
350 shrinkctl->nr_to_scan = nr_to_scan;
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
355
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
358
359 cond_resched();
360 }
361
362 /*
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
366 */
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372
373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
374 return freed;
375 }
376
377 /**
378 * shrink_slab - shrink slab caches
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
381 * @memcg: memory cgroup whose slab caches to target
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
384 *
385 * Call the shrink functions to age shrinkable caches.
386 *
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
389 *
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
395 *
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
403 *
404 * Returns the number of reclaimed slab objects.
405 */
406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
410 {
411 struct shrinker *shrinker;
412 unsigned long freed = 0;
413
414 if (memcg && !memcg_kmem_is_active(memcg))
415 return 0;
416
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
419
420 if (!down_read_trylock(&shrinker_rwsem)) {
421 /*
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
426 */
427 freed = 1;
428 goto out;
429 }
430
431 list_for_each_entry(shrinker, &shrinker_list, list) {
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
435 .memcg = memcg,
436 };
437
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
440
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
443
444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
445 }
446
447 up_read(&shrinker_rwsem);
448 out:
449 cond_resched();
450 return freed;
451 }
452
453 void drop_slab_node(int nid)
454 {
455 unsigned long freed;
456
457 do {
458 struct mem_cgroup *memcg = NULL;
459
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
466 }
467
468 void drop_slab(void)
469 {
470 int nid;
471
472 for_each_online_node(nid)
473 drop_slab_node(nid);
474 }
475
476 static inline int is_page_cache_freeable(struct page *page)
477 {
478 /*
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
482 */
483 return page_count(page) - page_has_private(page) == 2;
484 }
485
486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
487 {
488 if (current->flags & PF_SWAPWRITE)
489 return 1;
490 if (!inode_write_congested(inode))
491 return 1;
492 if (inode_to_bdi(inode) == current->backing_dev_info)
493 return 1;
494 return 0;
495 }
496
497 /*
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
501 *
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
505 *
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
508 */
509 static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
511 {
512 lock_page(page);
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
515 unlock_page(page);
516 }
517
518 /* possible outcome of pageout() */
519 typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528 } pageout_t;
529
530 /*
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
533 */
534 static pageout_t pageout(struct page *page, struct address_space *mapping,
535 struct scan_control *sc)
536 {
537 /*
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
543 *
544 * If this process is currently in __generic_file_write_iter() against
545 * this page's queue, we can perform writeback even if that
546 * will block.
547 *
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
552 */
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
556 /*
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
559 */
560 if (page_has_private(page)) {
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
563 pr_info("%s: orphaned page\n", __func__);
564 return PAGE_CLEAN;
565 }
566 }
567 return PAGE_KEEP;
568 }
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
571 if (!may_write_to_inode(mapping->host, sc))
572 return PAGE_KEEP;
573
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
579 .range_start = 0,
580 .range_end = LLONG_MAX,
581 .for_reclaim = 1,
582 };
583
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
588 if (res == AOP_WRITEPAGE_ACTIVATE) {
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
591 }
592
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
596 }
597 trace_mm_vmscan_writepage(page);
598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
599 return PAGE_SUCCESS;
600 }
601
602 return PAGE_CLEAN;
603 }
604
605 /*
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
608 */
609 static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
611 {
612 unsigned long flags;
613 struct mem_cgroup *memcg;
614
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
617
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
620 /*
621 * The non racy check for a busy page.
622 *
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
627 *
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
635 *
636 * [oops, our write_to data is lost]
637 *
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
641 *
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
644 */
645 if (!page_freeze_refs(page, 2))
646 goto cannot_free;
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
650 goto cannot_free;
651 }
652
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
655 mem_cgroup_swapout(page, swap);
656 __delete_from_swap_cache(page);
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
659 swapcache_free(swap);
660 } else {
661 void (*freepage)(struct page *);
662 void *shadow = NULL;
663
664 freepage = mapping->a_ops->freepage;
665 /*
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
668 *
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
674 */
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
681
682 if (freepage != NULL)
683 freepage(page);
684 }
685
686 return 1;
687
688 cannot_free:
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
691 return 0;
692 }
693
694 /*
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
699 */
700 int remove_mapping(struct address_space *mapping, struct page *page)
701 {
702 if (__remove_mapping(mapping, page, false)) {
703 /*
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
707 */
708 page_unfreeze_refs(page, 1);
709 return 1;
710 }
711 return 0;
712 }
713
714 /**
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
717 *
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
720 *
721 * lru_lock must not be held, interrupts must be enabled.
722 */
723 void putback_lru_page(struct page *page)
724 {
725 bool is_unevictable;
726 int was_unevictable = PageUnevictable(page);
727
728 VM_BUG_ON_PAGE(PageLRU(page), page);
729
730 redo:
731 ClearPageUnevictable(page);
732
733 if (page_evictable(page)) {
734 /*
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
739 */
740 is_unevictable = false;
741 lru_cache_add(page);
742 } else {
743 /*
744 * Put unevictable pages directly on zone's unevictable
745 * list.
746 */
747 is_unevictable = true;
748 add_page_to_unevictable_list(page);
749 /*
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
753 * isolation/check_move_unevictable_pages,
754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 * the page back to the evictable list.
756 *
757 * The other side is TestClearPageMlocked() or shmem_lock().
758 */
759 smp_mb();
760 }
761
762 /*
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
766 */
767 if (is_unevictable && page_evictable(page)) {
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
771 }
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
775 */
776 }
777
778 if (was_unevictable && !is_unevictable)
779 count_vm_event(UNEVICTABLE_PGRESCUED);
780 else if (!was_unevictable && is_unevictable)
781 count_vm_event(UNEVICTABLE_PGCULLED);
782
783 put_page(page); /* drop ref from isolate */
784 }
785
786 enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
789 PAGEREF_KEEP,
790 PAGEREF_ACTIVATE,
791 };
792
793 static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
795 {
796 int referenced_ptes, referenced_page;
797 unsigned long vm_flags;
798
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
801 referenced_page = TestClearPageReferenced(page);
802
803 /*
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
806 */
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
809
810 if (referenced_ptes) {
811 if (PageSwapBacked(page))
812 return PAGEREF_ACTIVATE;
813 /*
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
818 *
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
822 *
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
826 */
827 SetPageReferenced(page);
828
829 if (referenced_page || referenced_ptes > 1)
830 return PAGEREF_ACTIVATE;
831
832 /*
833 * Activate file-backed executable pages after first usage.
834 */
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
837
838 return PAGEREF_KEEP;
839 }
840
841 /* Reclaim if clean, defer dirty pages to writeback */
842 if (referenced_page && !PageSwapBacked(page))
843 return PAGEREF_RECLAIM_CLEAN;
844
845 return PAGEREF_RECLAIM;
846 }
847
848 /* Check if a page is dirty or under writeback */
849 static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
851 {
852 struct address_space *mapping;
853
854 /*
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
857 */
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
862 }
863
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
867
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
871
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
875 }
876
877 /*
878 * shrink_page_list() returns the number of reclaimed pages
879 */
880 static unsigned long shrink_page_list(struct list_head *page_list,
881 struct zone *zone,
882 struct scan_control *sc,
883 enum ttu_flags ttu_flags,
884 unsigned long *ret_nr_dirty,
885 unsigned long *ret_nr_unqueued_dirty,
886 unsigned long *ret_nr_congested,
887 unsigned long *ret_nr_writeback,
888 unsigned long *ret_nr_immediate,
889 bool force_reclaim)
890 {
891 LIST_HEAD(ret_pages);
892 LIST_HEAD(free_pages);
893 int pgactivate = 0;
894 unsigned long nr_unqueued_dirty = 0;
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
897 unsigned long nr_reclaimed = 0;
898 unsigned long nr_writeback = 0;
899 unsigned long nr_immediate = 0;
900
901 cond_resched();
902
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 bool dirty, writeback;
909
910 cond_resched();
911
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
914
915 if (!trylock_page(page))
916 goto keep;
917
918 VM_BUG_ON_PAGE(PageActive(page), page);
919 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
920
921 sc->nr_scanned++;
922
923 if (unlikely(!page_evictable(page)))
924 goto cull_mlocked;
925
926 if (!sc->may_unmap && page_mapped(page))
927 goto keep_locked;
928
929 /* Double the slab pressure for mapped and swapcache pages */
930 if (page_mapped(page) || PageSwapCache(page))
931 sc->nr_scanned++;
932
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935
936 /*
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
941 */
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
945
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
948
949 /*
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
954 */
955 mapping = page_mapping(page);
956 if (((dirty || writeback) && mapping &&
957 inode_write_congested(mapping->host)) ||
958 (writeback && PageReclaim(page)))
959 nr_congested++;
960
961 /*
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
964 *
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
974 *
975 * 2) Global or new memcg reclaim encounters a page that is
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
979 * reclaim and continue scanning.
980 *
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
987 *
988 * 3) Legacy memcg encounters a page that is already marked
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
993 */
994 if (PageWriteback(page)) {
995 /* Case 1 above */
996 if (current_is_kswapd() &&
997 PageReclaim(page) &&
998 test_bit(ZONE_WRITEBACK, &zone->flags)) {
999 nr_immediate++;
1000 goto keep_locked;
1001
1002 /* Case 2 above */
1003 } else if (sane_reclaim(sc) ||
1004 !PageReclaim(page) || !may_enter_fs) {
1005 /*
1006 * This is slightly racy - end_page_writeback()
1007 * might have just cleared PageReclaim, then
1008 * setting PageReclaim here end up interpreted
1009 * as PageReadahead - but that does not matter
1010 * enough to care. What we do want is for this
1011 * page to have PageReclaim set next time memcg
1012 * reclaim reaches the tests above, so it will
1013 * then wait_on_page_writeback() to avoid OOM;
1014 * and it's also appropriate in global reclaim.
1015 */
1016 SetPageReclaim(page);
1017 nr_writeback++;
1018 goto keep_locked;
1019
1020 /* Case 3 above */
1021 } else {
1022 unlock_page(page);
1023 wait_on_page_writeback(page);
1024 /* then go back and try same page again */
1025 list_add_tail(&page->lru, page_list);
1026 continue;
1027 }
1028 }
1029
1030 if (!force_reclaim)
1031 references = page_check_references(page, sc);
1032
1033 switch (references) {
1034 case PAGEREF_ACTIVATE:
1035 goto activate_locked;
1036 case PAGEREF_KEEP:
1037 goto keep_locked;
1038 case PAGEREF_RECLAIM:
1039 case PAGEREF_RECLAIM_CLEAN:
1040 ; /* try to reclaim the page below */
1041 }
1042
1043 /*
1044 * Anonymous process memory has backing store?
1045 * Try to allocate it some swap space here.
1046 */
1047 if (PageAnon(page) && !PageSwapCache(page)) {
1048 if (!(sc->gfp_mask & __GFP_IO))
1049 goto keep_locked;
1050 if (!add_to_swap(page, page_list))
1051 goto activate_locked;
1052 may_enter_fs = 1;
1053
1054 /* Adding to swap updated mapping */
1055 mapping = page_mapping(page);
1056 }
1057
1058 /*
1059 * The page is mapped into the page tables of one or more
1060 * processes. Try to unmap it here.
1061 */
1062 if (page_mapped(page) && mapping) {
1063 switch (try_to_unmap(page,
1064 ttu_flags|TTU_BATCH_FLUSH)) {
1065 case SWAP_FAIL:
1066 goto activate_locked;
1067 case SWAP_AGAIN:
1068 goto keep_locked;
1069 case SWAP_MLOCK:
1070 goto cull_mlocked;
1071 case SWAP_SUCCESS:
1072 ; /* try to free the page below */
1073 }
1074 }
1075
1076 if (PageDirty(page)) {
1077 /*
1078 * Only kswapd can writeback filesystem pages to
1079 * avoid risk of stack overflow but only writeback
1080 * if many dirty pages have been encountered.
1081 */
1082 if (page_is_file_cache(page) &&
1083 (!current_is_kswapd() ||
1084 !test_bit(ZONE_DIRTY, &zone->flags))) {
1085 /*
1086 * Immediately reclaim when written back.
1087 * Similar in principal to deactivate_page()
1088 * except we already have the page isolated
1089 * and know it's dirty
1090 */
1091 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1092 SetPageReclaim(page);
1093
1094 goto keep_locked;
1095 }
1096
1097 if (references == PAGEREF_RECLAIM_CLEAN)
1098 goto keep_locked;
1099 if (!may_enter_fs)
1100 goto keep_locked;
1101 if (!sc->may_writepage)
1102 goto keep_locked;
1103
1104 /*
1105 * Page is dirty. Flush the TLB if a writable entry
1106 * potentially exists to avoid CPU writes after IO
1107 * starts and then write it out here.
1108 */
1109 try_to_unmap_flush_dirty();
1110 switch (pageout(page, mapping, sc)) {
1111 case PAGE_KEEP:
1112 goto keep_locked;
1113 case PAGE_ACTIVATE:
1114 goto activate_locked;
1115 case PAGE_SUCCESS:
1116 if (PageWriteback(page))
1117 goto keep;
1118 if (PageDirty(page))
1119 goto keep;
1120
1121 /*
1122 * A synchronous write - probably a ramdisk. Go
1123 * ahead and try to reclaim the page.
1124 */
1125 if (!trylock_page(page))
1126 goto keep;
1127 if (PageDirty(page) || PageWriteback(page))
1128 goto keep_locked;
1129 mapping = page_mapping(page);
1130 case PAGE_CLEAN:
1131 ; /* try to free the page below */
1132 }
1133 }
1134
1135 /*
1136 * If the page has buffers, try to free the buffer mappings
1137 * associated with this page. If we succeed we try to free
1138 * the page as well.
1139 *
1140 * We do this even if the page is PageDirty().
1141 * try_to_release_page() does not perform I/O, but it is
1142 * possible for a page to have PageDirty set, but it is actually
1143 * clean (all its buffers are clean). This happens if the
1144 * buffers were written out directly, with submit_bh(). ext3
1145 * will do this, as well as the blockdev mapping.
1146 * try_to_release_page() will discover that cleanness and will
1147 * drop the buffers and mark the page clean - it can be freed.
1148 *
1149 * Rarely, pages can have buffers and no ->mapping. These are
1150 * the pages which were not successfully invalidated in
1151 * truncate_complete_page(). We try to drop those buffers here
1152 * and if that worked, and the page is no longer mapped into
1153 * process address space (page_count == 1) it can be freed.
1154 * Otherwise, leave the page on the LRU so it is swappable.
1155 */
1156 if (page_has_private(page)) {
1157 if (!try_to_release_page(page, sc->gfp_mask))
1158 goto activate_locked;
1159 if (!mapping && page_count(page) == 1) {
1160 unlock_page(page);
1161 if (put_page_testzero(page))
1162 goto free_it;
1163 else {
1164 /*
1165 * rare race with speculative reference.
1166 * the speculative reference will free
1167 * this page shortly, so we may
1168 * increment nr_reclaimed here (and
1169 * leave it off the LRU).
1170 */
1171 nr_reclaimed++;
1172 continue;
1173 }
1174 }
1175 }
1176
1177 if (!mapping || !__remove_mapping(mapping, page, true))
1178 goto keep_locked;
1179
1180 /*
1181 * At this point, we have no other references and there is
1182 * no way to pick any more up (removed from LRU, removed
1183 * from pagecache). Can use non-atomic bitops now (and
1184 * we obviously don't have to worry about waking up a process
1185 * waiting on the page lock, because there are no references.
1186 */
1187 __ClearPageLocked(page);
1188 free_it:
1189 nr_reclaimed++;
1190
1191 /*
1192 * Is there need to periodically free_page_list? It would
1193 * appear not as the counts should be low
1194 */
1195 list_add(&page->lru, &free_pages);
1196 continue;
1197
1198 cull_mlocked:
1199 if (PageSwapCache(page))
1200 try_to_free_swap(page);
1201 unlock_page(page);
1202 list_add(&page->lru, &ret_pages);
1203 continue;
1204
1205 activate_locked:
1206 /* Not a candidate for swapping, so reclaim swap space. */
1207 if (PageSwapCache(page) && vm_swap_full())
1208 try_to_free_swap(page);
1209 VM_BUG_ON_PAGE(PageActive(page), page);
1210 SetPageActive(page);
1211 pgactivate++;
1212 keep_locked:
1213 unlock_page(page);
1214 keep:
1215 list_add(&page->lru, &ret_pages);
1216 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1217 }
1218
1219 mem_cgroup_uncharge_list(&free_pages);
1220 try_to_unmap_flush();
1221 free_hot_cold_page_list(&free_pages, true);
1222
1223 list_splice(&ret_pages, page_list);
1224 count_vm_events(PGACTIVATE, pgactivate);
1225
1226 *ret_nr_dirty += nr_dirty;
1227 *ret_nr_congested += nr_congested;
1228 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1229 *ret_nr_writeback += nr_writeback;
1230 *ret_nr_immediate += nr_immediate;
1231 return nr_reclaimed;
1232 }
1233
1234 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1235 struct list_head *page_list)
1236 {
1237 struct scan_control sc = {
1238 .gfp_mask = GFP_KERNEL,
1239 .priority = DEF_PRIORITY,
1240 .may_unmap = 1,
1241 };
1242 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1243 struct page *page, *next;
1244 LIST_HEAD(clean_pages);
1245
1246 list_for_each_entry_safe(page, next, page_list, lru) {
1247 if (page_is_file_cache(page) && !PageDirty(page) &&
1248 !isolated_balloon_page(page)) {
1249 ClearPageActive(page);
1250 list_move(&page->lru, &clean_pages);
1251 }
1252 }
1253
1254 ret = shrink_page_list(&clean_pages, zone, &sc,
1255 TTU_UNMAP|TTU_IGNORE_ACCESS,
1256 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1257 list_splice(&clean_pages, page_list);
1258 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1259 return ret;
1260 }
1261
1262 /*
1263 * Attempt to remove the specified page from its LRU. Only take this page
1264 * if it is of the appropriate PageActive status. Pages which are being
1265 * freed elsewhere are also ignored.
1266 *
1267 * page: page to consider
1268 * mode: one of the LRU isolation modes defined above
1269 *
1270 * returns 0 on success, -ve errno on failure.
1271 */
1272 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1273 {
1274 int ret = -EINVAL;
1275
1276 /* Only take pages on the LRU. */
1277 if (!PageLRU(page))
1278 return ret;
1279
1280 /* Compaction should not handle unevictable pages but CMA can do so */
1281 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1282 return ret;
1283
1284 ret = -EBUSY;
1285
1286 /*
1287 * To minimise LRU disruption, the caller can indicate that it only
1288 * wants to isolate pages it will be able to operate on without
1289 * blocking - clean pages for the most part.
1290 *
1291 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1292 * is used by reclaim when it is cannot write to backing storage
1293 *
1294 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1295 * that it is possible to migrate without blocking
1296 */
1297 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1298 /* All the caller can do on PageWriteback is block */
1299 if (PageWriteback(page))
1300 return ret;
1301
1302 if (PageDirty(page)) {
1303 struct address_space *mapping;
1304
1305 /* ISOLATE_CLEAN means only clean pages */
1306 if (mode & ISOLATE_CLEAN)
1307 return ret;
1308
1309 /*
1310 * Only pages without mappings or that have a
1311 * ->migratepage callback are possible to migrate
1312 * without blocking
1313 */
1314 mapping = page_mapping(page);
1315 if (mapping && !mapping->a_ops->migratepage)
1316 return ret;
1317 }
1318 }
1319
1320 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1321 return ret;
1322
1323 if (likely(get_page_unless_zero(page))) {
1324 /*
1325 * Be careful not to clear PageLRU until after we're
1326 * sure the page is not being freed elsewhere -- the
1327 * page release code relies on it.
1328 */
1329 ClearPageLRU(page);
1330 ret = 0;
1331 }
1332
1333 return ret;
1334 }
1335
1336 /*
1337 * zone->lru_lock is heavily contended. Some of the functions that
1338 * shrink the lists perform better by taking out a batch of pages
1339 * and working on them outside the LRU lock.
1340 *
1341 * For pagecache intensive workloads, this function is the hottest
1342 * spot in the kernel (apart from copy_*_user functions).
1343 *
1344 * Appropriate locks must be held before calling this function.
1345 *
1346 * @nr_to_scan: The number of pages to look through on the list.
1347 * @lruvec: The LRU vector to pull pages from.
1348 * @dst: The temp list to put pages on to.
1349 * @nr_scanned: The number of pages that were scanned.
1350 * @sc: The scan_control struct for this reclaim session
1351 * @mode: One of the LRU isolation modes
1352 * @lru: LRU list id for isolating
1353 *
1354 * returns how many pages were moved onto *@dst.
1355 */
1356 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1357 struct lruvec *lruvec, struct list_head *dst,
1358 unsigned long *nr_scanned, struct scan_control *sc,
1359 isolate_mode_t mode, enum lru_list lru)
1360 {
1361 struct list_head *src = &lruvec->lists[lru];
1362 unsigned long nr_taken = 0;
1363 unsigned long scan;
1364
1365 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1366 !list_empty(src); scan++) {
1367 struct page *page;
1368 int nr_pages;
1369
1370 page = lru_to_page(src);
1371 prefetchw_prev_lru_page(page, src, flags);
1372
1373 VM_BUG_ON_PAGE(!PageLRU(page), page);
1374
1375 switch (__isolate_lru_page(page, mode)) {
1376 case 0:
1377 nr_pages = hpage_nr_pages(page);
1378 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1379 list_move(&page->lru, dst);
1380 nr_taken += nr_pages;
1381 break;
1382
1383 case -EBUSY:
1384 /* else it is being freed elsewhere */
1385 list_move(&page->lru, src);
1386 continue;
1387
1388 default:
1389 BUG();
1390 }
1391 }
1392
1393 *nr_scanned = scan;
1394 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1395 nr_taken, mode, is_file_lru(lru));
1396 return nr_taken;
1397 }
1398
1399 /**
1400 * isolate_lru_page - tries to isolate a page from its LRU list
1401 * @page: page to isolate from its LRU list
1402 *
1403 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1404 * vmstat statistic corresponding to whatever LRU list the page was on.
1405 *
1406 * Returns 0 if the page was removed from an LRU list.
1407 * Returns -EBUSY if the page was not on an LRU list.
1408 *
1409 * The returned page will have PageLRU() cleared. If it was found on
1410 * the active list, it will have PageActive set. If it was found on
1411 * the unevictable list, it will have the PageUnevictable bit set. That flag
1412 * may need to be cleared by the caller before letting the page go.
1413 *
1414 * The vmstat statistic corresponding to the list on which the page was
1415 * found will be decremented.
1416 *
1417 * Restrictions:
1418 * (1) Must be called with an elevated refcount on the page. This is a
1419 * fundamentnal difference from isolate_lru_pages (which is called
1420 * without a stable reference).
1421 * (2) the lru_lock must not be held.
1422 * (3) interrupts must be enabled.
1423 */
1424 int isolate_lru_page(struct page *page)
1425 {
1426 int ret = -EBUSY;
1427
1428 VM_BUG_ON_PAGE(!page_count(page), page);
1429 VM_BUG_ON_PAGE(PageTail(page), page);
1430
1431 if (PageLRU(page)) {
1432 struct zone *zone = page_zone(page);
1433 struct lruvec *lruvec;
1434
1435 spin_lock_irq(&zone->lru_lock);
1436 lruvec = mem_cgroup_page_lruvec(page, zone);
1437 if (PageLRU(page)) {
1438 int lru = page_lru(page);
1439 get_page(page);
1440 ClearPageLRU(page);
1441 del_page_from_lru_list(page, lruvec, lru);
1442 ret = 0;
1443 }
1444 spin_unlock_irq(&zone->lru_lock);
1445 }
1446 return ret;
1447 }
1448
1449 /*
1450 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1451 * then get resheduled. When there are massive number of tasks doing page
1452 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1453 * the LRU list will go small and be scanned faster than necessary, leading to
1454 * unnecessary swapping, thrashing and OOM.
1455 */
1456 static int too_many_isolated(struct zone *zone, int file,
1457 struct scan_control *sc)
1458 {
1459 unsigned long inactive, isolated;
1460
1461 if (current_is_kswapd())
1462 return 0;
1463
1464 if (!sane_reclaim(sc))
1465 return 0;
1466
1467 if (file) {
1468 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1469 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1470 } else {
1471 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1472 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1473 }
1474
1475 /*
1476 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1477 * won't get blocked by normal direct-reclaimers, forming a circular
1478 * deadlock.
1479 */
1480 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1481 inactive >>= 3;
1482
1483 return isolated > inactive;
1484 }
1485
1486 static noinline_for_stack void
1487 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1488 {
1489 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1490 struct zone *zone = lruvec_zone(lruvec);
1491 LIST_HEAD(pages_to_free);
1492
1493 /*
1494 * Put back any unfreeable pages.
1495 */
1496 while (!list_empty(page_list)) {
1497 struct page *page = lru_to_page(page_list);
1498 int lru;
1499
1500 VM_BUG_ON_PAGE(PageLRU(page), page);
1501 list_del(&page->lru);
1502 if (unlikely(!page_evictable(page))) {
1503 spin_unlock_irq(&zone->lru_lock);
1504 putback_lru_page(page);
1505 spin_lock_irq(&zone->lru_lock);
1506 continue;
1507 }
1508
1509 lruvec = mem_cgroup_page_lruvec(page, zone);
1510
1511 SetPageLRU(page);
1512 lru = page_lru(page);
1513 add_page_to_lru_list(page, lruvec, lru);
1514
1515 if (is_active_lru(lru)) {
1516 int file = is_file_lru(lru);
1517 int numpages = hpage_nr_pages(page);
1518 reclaim_stat->recent_rotated[file] += numpages;
1519 }
1520 if (put_page_testzero(page)) {
1521 __ClearPageLRU(page);
1522 __ClearPageActive(page);
1523 del_page_from_lru_list(page, lruvec, lru);
1524
1525 if (unlikely(PageCompound(page))) {
1526 spin_unlock_irq(&zone->lru_lock);
1527 mem_cgroup_uncharge(page);
1528 (*get_compound_page_dtor(page))(page);
1529 spin_lock_irq(&zone->lru_lock);
1530 } else
1531 list_add(&page->lru, &pages_to_free);
1532 }
1533 }
1534
1535 /*
1536 * To save our caller's stack, now use input list for pages to free.
1537 */
1538 list_splice(&pages_to_free, page_list);
1539 }
1540
1541 /*
1542 * If a kernel thread (such as nfsd for loop-back mounts) services
1543 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1544 * In that case we should only throttle if the backing device it is
1545 * writing to is congested. In other cases it is safe to throttle.
1546 */
1547 static int current_may_throttle(void)
1548 {
1549 return !(current->flags & PF_LESS_THROTTLE) ||
1550 current->backing_dev_info == NULL ||
1551 bdi_write_congested(current->backing_dev_info);
1552 }
1553
1554 /*
1555 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1556 * of reclaimed pages
1557 */
1558 static noinline_for_stack unsigned long
1559 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1560 struct scan_control *sc, enum lru_list lru)
1561 {
1562 LIST_HEAD(page_list);
1563 unsigned long nr_scanned;
1564 unsigned long nr_reclaimed = 0;
1565 unsigned long nr_taken;
1566 unsigned long nr_dirty = 0;
1567 unsigned long nr_congested = 0;
1568 unsigned long nr_unqueued_dirty = 0;
1569 unsigned long nr_writeback = 0;
1570 unsigned long nr_immediate = 0;
1571 isolate_mode_t isolate_mode = 0;
1572 int file = is_file_lru(lru);
1573 struct zone *zone = lruvec_zone(lruvec);
1574 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1575
1576 while (unlikely(too_many_isolated(zone, file, sc))) {
1577 congestion_wait(BLK_RW_ASYNC, HZ/10);
1578
1579 /* We are about to die and free our memory. Return now. */
1580 if (fatal_signal_pending(current))
1581 return SWAP_CLUSTER_MAX;
1582 }
1583
1584 lru_add_drain();
1585
1586 if (!sc->may_unmap)
1587 isolate_mode |= ISOLATE_UNMAPPED;
1588 if (!sc->may_writepage)
1589 isolate_mode |= ISOLATE_CLEAN;
1590
1591 spin_lock_irq(&zone->lru_lock);
1592
1593 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1594 &nr_scanned, sc, isolate_mode, lru);
1595
1596 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1597 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1598
1599 if (global_reclaim(sc)) {
1600 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1601 if (current_is_kswapd())
1602 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1603 else
1604 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1605 }
1606 spin_unlock_irq(&zone->lru_lock);
1607
1608 if (nr_taken == 0)
1609 return 0;
1610
1611 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1612 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1613 &nr_writeback, &nr_immediate,
1614 false);
1615
1616 spin_lock_irq(&zone->lru_lock);
1617
1618 reclaim_stat->recent_scanned[file] += nr_taken;
1619
1620 if (global_reclaim(sc)) {
1621 if (current_is_kswapd())
1622 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1623 nr_reclaimed);
1624 else
1625 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1626 nr_reclaimed);
1627 }
1628
1629 putback_inactive_pages(lruvec, &page_list);
1630
1631 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1632
1633 spin_unlock_irq(&zone->lru_lock);
1634
1635 mem_cgroup_uncharge_list(&page_list);
1636 free_hot_cold_page_list(&page_list, true);
1637
1638 /*
1639 * If reclaim is isolating dirty pages under writeback, it implies
1640 * that the long-lived page allocation rate is exceeding the page
1641 * laundering rate. Either the global limits are not being effective
1642 * at throttling processes due to the page distribution throughout
1643 * zones or there is heavy usage of a slow backing device. The
1644 * only option is to throttle from reclaim context which is not ideal
1645 * as there is no guarantee the dirtying process is throttled in the
1646 * same way balance_dirty_pages() manages.
1647 *
1648 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1649 * of pages under pages flagged for immediate reclaim and stall if any
1650 * are encountered in the nr_immediate check below.
1651 */
1652 if (nr_writeback && nr_writeback == nr_taken)
1653 set_bit(ZONE_WRITEBACK, &zone->flags);
1654
1655 /*
1656 * Legacy memcg will stall in page writeback so avoid forcibly
1657 * stalling here.
1658 */
1659 if (sane_reclaim(sc)) {
1660 /*
1661 * Tag a zone as congested if all the dirty pages scanned were
1662 * backed by a congested BDI and wait_iff_congested will stall.
1663 */
1664 if (nr_dirty && nr_dirty == nr_congested)
1665 set_bit(ZONE_CONGESTED, &zone->flags);
1666
1667 /*
1668 * If dirty pages are scanned that are not queued for IO, it
1669 * implies that flushers are not keeping up. In this case, flag
1670 * the zone ZONE_DIRTY and kswapd will start writing pages from
1671 * reclaim context.
1672 */
1673 if (nr_unqueued_dirty == nr_taken)
1674 set_bit(ZONE_DIRTY, &zone->flags);
1675
1676 /*
1677 * If kswapd scans pages marked marked for immediate
1678 * reclaim and under writeback (nr_immediate), it implies
1679 * that pages are cycling through the LRU faster than
1680 * they are written so also forcibly stall.
1681 */
1682 if (nr_immediate && current_may_throttle())
1683 congestion_wait(BLK_RW_ASYNC, HZ/10);
1684 }
1685
1686 /*
1687 * Stall direct reclaim for IO completions if underlying BDIs or zone
1688 * is congested. Allow kswapd to continue until it starts encountering
1689 * unqueued dirty pages or cycling through the LRU too quickly.
1690 */
1691 if (!sc->hibernation_mode && !current_is_kswapd() &&
1692 current_may_throttle())
1693 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1694
1695 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1696 sc->priority, file);
1697 return nr_reclaimed;
1698 }
1699
1700 /*
1701 * This moves pages from the active list to the inactive list.
1702 *
1703 * We move them the other way if the page is referenced by one or more
1704 * processes, from rmap.
1705 *
1706 * If the pages are mostly unmapped, the processing is fast and it is
1707 * appropriate to hold zone->lru_lock across the whole operation. But if
1708 * the pages are mapped, the processing is slow (page_referenced()) so we
1709 * should drop zone->lru_lock around each page. It's impossible to balance
1710 * this, so instead we remove the pages from the LRU while processing them.
1711 * It is safe to rely on PG_active against the non-LRU pages in here because
1712 * nobody will play with that bit on a non-LRU page.
1713 *
1714 * The downside is that we have to touch page->_count against each page.
1715 * But we had to alter page->flags anyway.
1716 */
1717
1718 static void move_active_pages_to_lru(struct lruvec *lruvec,
1719 struct list_head *list,
1720 struct list_head *pages_to_free,
1721 enum lru_list lru)
1722 {
1723 struct zone *zone = lruvec_zone(lruvec);
1724 unsigned long pgmoved = 0;
1725 struct page *page;
1726 int nr_pages;
1727
1728 while (!list_empty(list)) {
1729 page = lru_to_page(list);
1730 lruvec = mem_cgroup_page_lruvec(page, zone);
1731
1732 VM_BUG_ON_PAGE(PageLRU(page), page);
1733 SetPageLRU(page);
1734
1735 nr_pages = hpage_nr_pages(page);
1736 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1737 list_move(&page->lru, &lruvec->lists[lru]);
1738 pgmoved += nr_pages;
1739
1740 if (put_page_testzero(page)) {
1741 __ClearPageLRU(page);
1742 __ClearPageActive(page);
1743 del_page_from_lru_list(page, lruvec, lru);
1744
1745 if (unlikely(PageCompound(page))) {
1746 spin_unlock_irq(&zone->lru_lock);
1747 mem_cgroup_uncharge(page);
1748 (*get_compound_page_dtor(page))(page);
1749 spin_lock_irq(&zone->lru_lock);
1750 } else
1751 list_add(&page->lru, pages_to_free);
1752 }
1753 }
1754 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1755 if (!is_active_lru(lru))
1756 __count_vm_events(PGDEACTIVATE, pgmoved);
1757 }
1758
1759 static void shrink_active_list(unsigned long nr_to_scan,
1760 struct lruvec *lruvec,
1761 struct scan_control *sc,
1762 enum lru_list lru)
1763 {
1764 unsigned long nr_taken;
1765 unsigned long nr_scanned;
1766 unsigned long vm_flags;
1767 LIST_HEAD(l_hold); /* The pages which were snipped off */
1768 LIST_HEAD(l_active);
1769 LIST_HEAD(l_inactive);
1770 struct page *page;
1771 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1772 unsigned long nr_rotated = 0;
1773 isolate_mode_t isolate_mode = 0;
1774 int file = is_file_lru(lru);
1775 struct zone *zone = lruvec_zone(lruvec);
1776
1777 lru_add_drain();
1778
1779 if (!sc->may_unmap)
1780 isolate_mode |= ISOLATE_UNMAPPED;
1781 if (!sc->may_writepage)
1782 isolate_mode |= ISOLATE_CLEAN;
1783
1784 spin_lock_irq(&zone->lru_lock);
1785
1786 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1787 &nr_scanned, sc, isolate_mode, lru);
1788 if (global_reclaim(sc))
1789 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1790
1791 reclaim_stat->recent_scanned[file] += nr_taken;
1792
1793 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1794 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1795 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1796 spin_unlock_irq(&zone->lru_lock);
1797
1798 while (!list_empty(&l_hold)) {
1799 cond_resched();
1800 page = lru_to_page(&l_hold);
1801 list_del(&page->lru);
1802
1803 if (unlikely(!page_evictable(page))) {
1804 putback_lru_page(page);
1805 continue;
1806 }
1807
1808 if (unlikely(buffer_heads_over_limit)) {
1809 if (page_has_private(page) && trylock_page(page)) {
1810 if (page_has_private(page))
1811 try_to_release_page(page, 0);
1812 unlock_page(page);
1813 }
1814 }
1815
1816 if (page_referenced(page, 0, sc->target_mem_cgroup,
1817 &vm_flags)) {
1818 nr_rotated += hpage_nr_pages(page);
1819 /*
1820 * Identify referenced, file-backed active pages and
1821 * give them one more trip around the active list. So
1822 * that executable code get better chances to stay in
1823 * memory under moderate memory pressure. Anon pages
1824 * are not likely to be evicted by use-once streaming
1825 * IO, plus JVM can create lots of anon VM_EXEC pages,
1826 * so we ignore them here.
1827 */
1828 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1829 list_add(&page->lru, &l_active);
1830 continue;
1831 }
1832 }
1833
1834 ClearPageActive(page); /* we are de-activating */
1835 list_add(&page->lru, &l_inactive);
1836 }
1837
1838 /*
1839 * Move pages back to the lru list.
1840 */
1841 spin_lock_irq(&zone->lru_lock);
1842 /*
1843 * Count referenced pages from currently used mappings as rotated,
1844 * even though only some of them are actually re-activated. This
1845 * helps balance scan pressure between file and anonymous pages in
1846 * get_scan_count.
1847 */
1848 reclaim_stat->recent_rotated[file] += nr_rotated;
1849
1850 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1851 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1852 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1853 spin_unlock_irq(&zone->lru_lock);
1854
1855 mem_cgroup_uncharge_list(&l_hold);
1856 free_hot_cold_page_list(&l_hold, true);
1857 }
1858
1859 #ifdef CONFIG_SWAP
1860 static bool inactive_anon_is_low_global(struct zone *zone)
1861 {
1862 unsigned long active, inactive;
1863
1864 active = zone_page_state(zone, NR_ACTIVE_ANON);
1865 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1866
1867 return inactive * zone->inactive_ratio < active;
1868 }
1869
1870 /**
1871 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1872 * @lruvec: LRU vector to check
1873 *
1874 * Returns true if the zone does not have enough inactive anon pages,
1875 * meaning some active anon pages need to be deactivated.
1876 */
1877 static bool inactive_anon_is_low(struct lruvec *lruvec)
1878 {
1879 /*
1880 * If we don't have swap space, anonymous page deactivation
1881 * is pointless.
1882 */
1883 if (!total_swap_pages)
1884 return false;
1885
1886 if (!mem_cgroup_disabled())
1887 return mem_cgroup_inactive_anon_is_low(lruvec);
1888
1889 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1890 }
1891 #else
1892 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1893 {
1894 return false;
1895 }
1896 #endif
1897
1898 /**
1899 * inactive_file_is_low - check if file pages need to be deactivated
1900 * @lruvec: LRU vector to check
1901 *
1902 * When the system is doing streaming IO, memory pressure here
1903 * ensures that active file pages get deactivated, until more
1904 * than half of the file pages are on the inactive list.
1905 *
1906 * Once we get to that situation, protect the system's working
1907 * set from being evicted by disabling active file page aging.
1908 *
1909 * This uses a different ratio than the anonymous pages, because
1910 * the page cache uses a use-once replacement algorithm.
1911 */
1912 static bool inactive_file_is_low(struct lruvec *lruvec)
1913 {
1914 unsigned long inactive;
1915 unsigned long active;
1916
1917 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1918 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1919
1920 return active > inactive;
1921 }
1922
1923 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1924 {
1925 if (is_file_lru(lru))
1926 return inactive_file_is_low(lruvec);
1927 else
1928 return inactive_anon_is_low(lruvec);
1929 }
1930
1931 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1932 struct lruvec *lruvec, struct scan_control *sc)
1933 {
1934 if (is_active_lru(lru)) {
1935 if (inactive_list_is_low(lruvec, lru))
1936 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1937 return 0;
1938 }
1939
1940 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1941 }
1942
1943 enum scan_balance {
1944 SCAN_EQUAL,
1945 SCAN_FRACT,
1946 SCAN_ANON,
1947 SCAN_FILE,
1948 };
1949
1950 /*
1951 * Determine how aggressively the anon and file LRU lists should be
1952 * scanned. The relative value of each set of LRU lists is determined
1953 * by looking at the fraction of the pages scanned we did rotate back
1954 * onto the active list instead of evict.
1955 *
1956 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1957 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1958 */
1959 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1960 struct scan_control *sc, unsigned long *nr,
1961 unsigned long *lru_pages)
1962 {
1963 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1964 u64 fraction[2];
1965 u64 denominator = 0; /* gcc */
1966 struct zone *zone = lruvec_zone(lruvec);
1967 unsigned long anon_prio, file_prio;
1968 enum scan_balance scan_balance;
1969 unsigned long anon, file;
1970 bool force_scan = false;
1971 unsigned long ap, fp;
1972 enum lru_list lru;
1973 bool some_scanned;
1974 int pass;
1975
1976 /*
1977 * If the zone or memcg is small, nr[l] can be 0. This
1978 * results in no scanning on this priority and a potential
1979 * priority drop. Global direct reclaim can go to the next
1980 * zone and tends to have no problems. Global kswapd is for
1981 * zone balancing and it needs to scan a minimum amount. When
1982 * reclaiming for a memcg, a priority drop can cause high
1983 * latencies, so it's better to scan a minimum amount there as
1984 * well.
1985 */
1986 if (current_is_kswapd()) {
1987 if (!zone_reclaimable(zone))
1988 force_scan = true;
1989 if (!mem_cgroup_lruvec_online(lruvec))
1990 force_scan = true;
1991 }
1992 if (!global_reclaim(sc))
1993 force_scan = true;
1994
1995 /* If we have no swap space, do not bother scanning anon pages. */
1996 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1997 scan_balance = SCAN_FILE;
1998 goto out;
1999 }
2000
2001 /*
2002 * Global reclaim will swap to prevent OOM even with no
2003 * swappiness, but memcg users want to use this knob to
2004 * disable swapping for individual groups completely when
2005 * using the memory controller's swap limit feature would be
2006 * too expensive.
2007 */
2008 if (!global_reclaim(sc) && !swappiness) {
2009 scan_balance = SCAN_FILE;
2010 goto out;
2011 }
2012
2013 /*
2014 * Do not apply any pressure balancing cleverness when the
2015 * system is close to OOM, scan both anon and file equally
2016 * (unless the swappiness setting disagrees with swapping).
2017 */
2018 if (!sc->priority && swappiness) {
2019 scan_balance = SCAN_EQUAL;
2020 goto out;
2021 }
2022
2023 /*
2024 * Prevent the reclaimer from falling into the cache trap: as
2025 * cache pages start out inactive, every cache fault will tip
2026 * the scan balance towards the file LRU. And as the file LRU
2027 * shrinks, so does the window for rotation from references.
2028 * This means we have a runaway feedback loop where a tiny
2029 * thrashing file LRU becomes infinitely more attractive than
2030 * anon pages. Try to detect this based on file LRU size.
2031 */
2032 if (global_reclaim(sc)) {
2033 unsigned long zonefile;
2034 unsigned long zonefree;
2035
2036 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2037 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2038 zone_page_state(zone, NR_INACTIVE_FILE);
2039
2040 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2041 scan_balance = SCAN_ANON;
2042 goto out;
2043 }
2044 }
2045
2046 /*
2047 * If there is enough inactive page cache, i.e. if the size of the
2048 * inactive list is greater than that of the active list *and* the
2049 * inactive list actually has some pages to scan on this priority, we
2050 * do not reclaim anything from the anonymous working set right now.
2051 * Without the second condition we could end up never scanning an
2052 * lruvec even if it has plenty of old anonymous pages unless the
2053 * system is under heavy pressure.
2054 */
2055 if (!inactive_file_is_low(lruvec) &&
2056 get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2057 scan_balance = SCAN_FILE;
2058 goto out;
2059 }
2060
2061 scan_balance = SCAN_FRACT;
2062
2063 /*
2064 * With swappiness at 100, anonymous and file have the same priority.
2065 * This scanning priority is essentially the inverse of IO cost.
2066 */
2067 anon_prio = swappiness;
2068 file_prio = 200 - anon_prio;
2069
2070 /*
2071 * OK, so we have swap space and a fair amount of page cache
2072 * pages. We use the recently rotated / recently scanned
2073 * ratios to determine how valuable each cache is.
2074 *
2075 * Because workloads change over time (and to avoid overflow)
2076 * we keep these statistics as a floating average, which ends
2077 * up weighing recent references more than old ones.
2078 *
2079 * anon in [0], file in [1]
2080 */
2081
2082 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2083 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2084 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2085 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2086
2087 spin_lock_irq(&zone->lru_lock);
2088 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2089 reclaim_stat->recent_scanned[0] /= 2;
2090 reclaim_stat->recent_rotated[0] /= 2;
2091 }
2092
2093 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2094 reclaim_stat->recent_scanned[1] /= 2;
2095 reclaim_stat->recent_rotated[1] /= 2;
2096 }
2097
2098 /*
2099 * The amount of pressure on anon vs file pages is inversely
2100 * proportional to the fraction of recently scanned pages on
2101 * each list that were recently referenced and in active use.
2102 */
2103 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2104 ap /= reclaim_stat->recent_rotated[0] + 1;
2105
2106 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2107 fp /= reclaim_stat->recent_rotated[1] + 1;
2108 spin_unlock_irq(&zone->lru_lock);
2109
2110 fraction[0] = ap;
2111 fraction[1] = fp;
2112 denominator = ap + fp + 1;
2113 out:
2114 some_scanned = false;
2115 /* Only use force_scan on second pass. */
2116 for (pass = 0; !some_scanned && pass < 2; pass++) {
2117 *lru_pages = 0;
2118 for_each_evictable_lru(lru) {
2119 int file = is_file_lru(lru);
2120 unsigned long size;
2121 unsigned long scan;
2122
2123 size = get_lru_size(lruvec, lru);
2124 scan = size >> sc->priority;
2125
2126 if (!scan && pass && force_scan)
2127 scan = min(size, SWAP_CLUSTER_MAX);
2128
2129 switch (scan_balance) {
2130 case SCAN_EQUAL:
2131 /* Scan lists relative to size */
2132 break;
2133 case SCAN_FRACT:
2134 /*
2135 * Scan types proportional to swappiness and
2136 * their relative recent reclaim efficiency.
2137 */
2138 scan = div64_u64(scan * fraction[file],
2139 denominator);
2140 break;
2141 case SCAN_FILE:
2142 case SCAN_ANON:
2143 /* Scan one type exclusively */
2144 if ((scan_balance == SCAN_FILE) != file) {
2145 size = 0;
2146 scan = 0;
2147 }
2148 break;
2149 default:
2150 /* Look ma, no brain */
2151 BUG();
2152 }
2153
2154 *lru_pages += size;
2155 nr[lru] = scan;
2156
2157 /*
2158 * Skip the second pass and don't force_scan,
2159 * if we found something to scan.
2160 */
2161 some_scanned |= !!scan;
2162 }
2163 }
2164 }
2165
2166 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2167 static void init_tlb_ubc(void)
2168 {
2169 /*
2170 * This deliberately does not clear the cpumask as it's expensive
2171 * and unnecessary. If there happens to be data in there then the
2172 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2173 * then will be cleared.
2174 */
2175 current->tlb_ubc.flush_required = false;
2176 }
2177 #else
2178 static inline void init_tlb_ubc(void)
2179 {
2180 }
2181 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2182
2183 /*
2184 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2185 */
2186 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2187 struct scan_control *sc, unsigned long *lru_pages)
2188 {
2189 unsigned long nr[NR_LRU_LISTS];
2190 unsigned long targets[NR_LRU_LISTS];
2191 unsigned long nr_to_scan;
2192 enum lru_list lru;
2193 unsigned long nr_reclaimed = 0;
2194 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2195 struct blk_plug plug;
2196 bool scan_adjusted;
2197
2198 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2199
2200 /* Record the original scan target for proportional adjustments later */
2201 memcpy(targets, nr, sizeof(nr));
2202
2203 /*
2204 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2205 * event that can occur when there is little memory pressure e.g.
2206 * multiple streaming readers/writers. Hence, we do not abort scanning
2207 * when the requested number of pages are reclaimed when scanning at
2208 * DEF_PRIORITY on the assumption that the fact we are direct
2209 * reclaiming implies that kswapd is not keeping up and it is best to
2210 * do a batch of work at once. For memcg reclaim one check is made to
2211 * abort proportional reclaim if either the file or anon lru has already
2212 * dropped to zero at the first pass.
2213 */
2214 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2215 sc->priority == DEF_PRIORITY);
2216
2217 init_tlb_ubc();
2218
2219 blk_start_plug(&plug);
2220 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2221 nr[LRU_INACTIVE_FILE]) {
2222 unsigned long nr_anon, nr_file, percentage;
2223 unsigned long nr_scanned;
2224
2225 for_each_evictable_lru(lru) {
2226 if (nr[lru]) {
2227 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2228 nr[lru] -= nr_to_scan;
2229
2230 nr_reclaimed += shrink_list(lru, nr_to_scan,
2231 lruvec, sc);
2232 }
2233 }
2234
2235 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2236 continue;
2237
2238 /*
2239 * For kswapd and memcg, reclaim at least the number of pages
2240 * requested. Ensure that the anon and file LRUs are scanned
2241 * proportionally what was requested by get_scan_count(). We
2242 * stop reclaiming one LRU and reduce the amount scanning
2243 * proportional to the original scan target.
2244 */
2245 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2246 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2247
2248 /*
2249 * It's just vindictive to attack the larger once the smaller
2250 * has gone to zero. And given the way we stop scanning the
2251 * smaller below, this makes sure that we only make one nudge
2252 * towards proportionality once we've got nr_to_reclaim.
2253 */
2254 if (!nr_file || !nr_anon)
2255 break;
2256
2257 if (nr_file > nr_anon) {
2258 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2259 targets[LRU_ACTIVE_ANON] + 1;
2260 lru = LRU_BASE;
2261 percentage = nr_anon * 100 / scan_target;
2262 } else {
2263 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2264 targets[LRU_ACTIVE_FILE] + 1;
2265 lru = LRU_FILE;
2266 percentage = nr_file * 100 / scan_target;
2267 }
2268
2269 /* Stop scanning the smaller of the LRU */
2270 nr[lru] = 0;
2271 nr[lru + LRU_ACTIVE] = 0;
2272
2273 /*
2274 * Recalculate the other LRU scan count based on its original
2275 * scan target and the percentage scanning already complete
2276 */
2277 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2278 nr_scanned = targets[lru] - nr[lru];
2279 nr[lru] = targets[lru] * (100 - percentage) / 100;
2280 nr[lru] -= min(nr[lru], nr_scanned);
2281
2282 lru += LRU_ACTIVE;
2283 nr_scanned = targets[lru] - nr[lru];
2284 nr[lru] = targets[lru] * (100 - percentage) / 100;
2285 nr[lru] -= min(nr[lru], nr_scanned);
2286
2287 scan_adjusted = true;
2288 }
2289 blk_finish_plug(&plug);
2290 sc->nr_reclaimed += nr_reclaimed;
2291
2292 /*
2293 * Even if we did not try to evict anon pages at all, we want to
2294 * rebalance the anon lru active/inactive ratio.
2295 */
2296 if (inactive_anon_is_low(lruvec))
2297 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2298 sc, LRU_ACTIVE_ANON);
2299
2300 throttle_vm_writeout(sc->gfp_mask);
2301 }
2302
2303 /* Use reclaim/compaction for costly allocs or under memory pressure */
2304 static bool in_reclaim_compaction(struct scan_control *sc)
2305 {
2306 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2307 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2308 sc->priority < DEF_PRIORITY - 2))
2309 return true;
2310
2311 return false;
2312 }
2313
2314 /*
2315 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2316 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2317 * true if more pages should be reclaimed such that when the page allocator
2318 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2319 * It will give up earlier than that if there is difficulty reclaiming pages.
2320 */
2321 static inline bool should_continue_reclaim(struct zone *zone,
2322 unsigned long nr_reclaimed,
2323 unsigned long nr_scanned,
2324 struct scan_control *sc)
2325 {
2326 unsigned long pages_for_compaction;
2327 unsigned long inactive_lru_pages;
2328
2329 /* If not in reclaim/compaction mode, stop */
2330 if (!in_reclaim_compaction(sc))
2331 return false;
2332
2333 /* Consider stopping depending on scan and reclaim activity */
2334 if (sc->gfp_mask & __GFP_REPEAT) {
2335 /*
2336 * For __GFP_REPEAT allocations, stop reclaiming if the
2337 * full LRU list has been scanned and we are still failing
2338 * to reclaim pages. This full LRU scan is potentially
2339 * expensive but a __GFP_REPEAT caller really wants to succeed
2340 */
2341 if (!nr_reclaimed && !nr_scanned)
2342 return false;
2343 } else {
2344 /*
2345 * For non-__GFP_REPEAT allocations which can presumably
2346 * fail without consequence, stop if we failed to reclaim
2347 * any pages from the last SWAP_CLUSTER_MAX number of
2348 * pages that were scanned. This will return to the
2349 * caller faster at the risk reclaim/compaction and
2350 * the resulting allocation attempt fails
2351 */
2352 if (!nr_reclaimed)
2353 return false;
2354 }
2355
2356 /*
2357 * If we have not reclaimed enough pages for compaction and the
2358 * inactive lists are large enough, continue reclaiming
2359 */
2360 pages_for_compaction = (2UL << sc->order);
2361 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2362 if (get_nr_swap_pages() > 0)
2363 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2364 if (sc->nr_reclaimed < pages_for_compaction &&
2365 inactive_lru_pages > pages_for_compaction)
2366 return true;
2367
2368 /* If compaction would go ahead or the allocation would succeed, stop */
2369 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2370 case COMPACT_PARTIAL:
2371 case COMPACT_CONTINUE:
2372 return false;
2373 default:
2374 return true;
2375 }
2376 }
2377
2378 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2379 bool is_classzone)
2380 {
2381 struct reclaim_state *reclaim_state = current->reclaim_state;
2382 unsigned long nr_reclaimed, nr_scanned;
2383 bool reclaimable = false;
2384
2385 do {
2386 struct mem_cgroup *root = sc->target_mem_cgroup;
2387 struct mem_cgroup_reclaim_cookie reclaim = {
2388 .zone = zone,
2389 .priority = sc->priority,
2390 };
2391 unsigned long zone_lru_pages = 0;
2392 struct mem_cgroup *memcg;
2393
2394 nr_reclaimed = sc->nr_reclaimed;
2395 nr_scanned = sc->nr_scanned;
2396
2397 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2398 do {
2399 unsigned long lru_pages;
2400 unsigned long reclaimed;
2401 unsigned long scanned;
2402 struct lruvec *lruvec;
2403 int swappiness;
2404
2405 if (mem_cgroup_low(root, memcg)) {
2406 if (!sc->may_thrash)
2407 continue;
2408 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2409 }
2410
2411 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2412 swappiness = mem_cgroup_swappiness(memcg);
2413 reclaimed = sc->nr_reclaimed;
2414 scanned = sc->nr_scanned;
2415
2416 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2417 zone_lru_pages += lru_pages;
2418
2419 if (memcg && is_classzone)
2420 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2421 memcg, sc->nr_scanned - scanned,
2422 lru_pages);
2423
2424 /* Record the group's reclaim efficiency */
2425 vmpressure(sc->gfp_mask, memcg, false,
2426 sc->nr_scanned - scanned,
2427 sc->nr_reclaimed - reclaimed);
2428
2429 /*
2430 * Direct reclaim and kswapd have to scan all memory
2431 * cgroups to fulfill the overall scan target for the
2432 * zone.
2433 *
2434 * Limit reclaim, on the other hand, only cares about
2435 * nr_to_reclaim pages to be reclaimed and it will
2436 * retry with decreasing priority if one round over the
2437 * whole hierarchy is not sufficient.
2438 */
2439 if (!global_reclaim(sc) &&
2440 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2441 mem_cgroup_iter_break(root, memcg);
2442 break;
2443 }
2444 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2445
2446 /*
2447 * Shrink the slab caches in the same proportion that
2448 * the eligible LRU pages were scanned.
2449 */
2450 if (global_reclaim(sc) && is_classzone)
2451 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2452 sc->nr_scanned - nr_scanned,
2453 zone_lru_pages);
2454
2455 if (reclaim_state) {
2456 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2457 reclaim_state->reclaimed_slab = 0;
2458 }
2459
2460 /* Record the subtree's reclaim efficiency */
2461 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2462 sc->nr_scanned - nr_scanned,
2463 sc->nr_reclaimed - nr_reclaimed);
2464
2465 if (sc->nr_reclaimed - nr_reclaimed)
2466 reclaimable = true;
2467
2468 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2469 sc->nr_scanned - nr_scanned, sc));
2470
2471 return reclaimable;
2472 }
2473
2474 /*
2475 * Returns true if compaction should go ahead for a high-order request, or
2476 * the high-order allocation would succeed without compaction.
2477 */
2478 static inline bool compaction_ready(struct zone *zone, int order)
2479 {
2480 unsigned long balance_gap, watermark;
2481 bool watermark_ok;
2482
2483 /*
2484 * Compaction takes time to run and there are potentially other
2485 * callers using the pages just freed. Continue reclaiming until
2486 * there is a buffer of free pages available to give compaction
2487 * a reasonable chance of completing and allocating the page
2488 */
2489 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2490 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2491 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2492 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2493
2494 /*
2495 * If compaction is deferred, reclaim up to a point where
2496 * compaction will have a chance of success when re-enabled
2497 */
2498 if (compaction_deferred(zone, order))
2499 return watermark_ok;
2500
2501 /*
2502 * If compaction is not ready to start and allocation is not likely
2503 * to succeed without it, then keep reclaiming.
2504 */
2505 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2506 return false;
2507
2508 return watermark_ok;
2509 }
2510
2511 /*
2512 * This is the direct reclaim path, for page-allocating processes. We only
2513 * try to reclaim pages from zones which will satisfy the caller's allocation
2514 * request.
2515 *
2516 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2517 * Because:
2518 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2519 * allocation or
2520 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2521 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2522 * zone defense algorithm.
2523 *
2524 * If a zone is deemed to be full of pinned pages then just give it a light
2525 * scan then give up on it.
2526 *
2527 * Returns true if a zone was reclaimable.
2528 */
2529 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2530 {
2531 struct zoneref *z;
2532 struct zone *zone;
2533 unsigned long nr_soft_reclaimed;
2534 unsigned long nr_soft_scanned;
2535 gfp_t orig_mask;
2536 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2537 bool reclaimable = false;
2538
2539 /*
2540 * If the number of buffer_heads in the machine exceeds the maximum
2541 * allowed level, force direct reclaim to scan the highmem zone as
2542 * highmem pages could be pinning lowmem pages storing buffer_heads
2543 */
2544 orig_mask = sc->gfp_mask;
2545 if (buffer_heads_over_limit)
2546 sc->gfp_mask |= __GFP_HIGHMEM;
2547
2548 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2549 requested_highidx, sc->nodemask) {
2550 enum zone_type classzone_idx;
2551
2552 if (!populated_zone(zone))
2553 continue;
2554
2555 classzone_idx = requested_highidx;
2556 while (!populated_zone(zone->zone_pgdat->node_zones +
2557 classzone_idx))
2558 classzone_idx--;
2559
2560 /*
2561 * Take care memory controller reclaiming has small influence
2562 * to global LRU.
2563 */
2564 if (global_reclaim(sc)) {
2565 if (!cpuset_zone_allowed(zone,
2566 GFP_KERNEL | __GFP_HARDWALL))
2567 continue;
2568
2569 if (sc->priority != DEF_PRIORITY &&
2570 !zone_reclaimable(zone))
2571 continue; /* Let kswapd poll it */
2572
2573 /*
2574 * If we already have plenty of memory free for
2575 * compaction in this zone, don't free any more.
2576 * Even though compaction is invoked for any
2577 * non-zero order, only frequent costly order
2578 * reclamation is disruptive enough to become a
2579 * noticeable problem, like transparent huge
2580 * page allocations.
2581 */
2582 if (IS_ENABLED(CONFIG_COMPACTION) &&
2583 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2584 zonelist_zone_idx(z) <= requested_highidx &&
2585 compaction_ready(zone, sc->order)) {
2586 sc->compaction_ready = true;
2587 continue;
2588 }
2589
2590 /*
2591 * This steals pages from memory cgroups over softlimit
2592 * and returns the number of reclaimed pages and
2593 * scanned pages. This works for global memory pressure
2594 * and balancing, not for a memcg's limit.
2595 */
2596 nr_soft_scanned = 0;
2597 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2598 sc->order, sc->gfp_mask,
2599 &nr_soft_scanned);
2600 sc->nr_reclaimed += nr_soft_reclaimed;
2601 sc->nr_scanned += nr_soft_scanned;
2602 if (nr_soft_reclaimed)
2603 reclaimable = true;
2604 /* need some check for avoid more shrink_zone() */
2605 }
2606
2607 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2608 reclaimable = true;
2609
2610 if (global_reclaim(sc) &&
2611 !reclaimable && zone_reclaimable(zone))
2612 reclaimable = true;
2613 }
2614
2615 /*
2616 * Restore to original mask to avoid the impact on the caller if we
2617 * promoted it to __GFP_HIGHMEM.
2618 */
2619 sc->gfp_mask = orig_mask;
2620
2621 return reclaimable;
2622 }
2623
2624 /*
2625 * This is the main entry point to direct page reclaim.
2626 *
2627 * If a full scan of the inactive list fails to free enough memory then we
2628 * are "out of memory" and something needs to be killed.
2629 *
2630 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2631 * high - the zone may be full of dirty or under-writeback pages, which this
2632 * caller can't do much about. We kick the writeback threads and take explicit
2633 * naps in the hope that some of these pages can be written. But if the
2634 * allocating task holds filesystem locks which prevent writeout this might not
2635 * work, and the allocation attempt will fail.
2636 *
2637 * returns: 0, if no pages reclaimed
2638 * else, the number of pages reclaimed
2639 */
2640 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2641 struct scan_control *sc)
2642 {
2643 int initial_priority = sc->priority;
2644 unsigned long total_scanned = 0;
2645 unsigned long writeback_threshold;
2646 bool zones_reclaimable;
2647 retry:
2648 delayacct_freepages_start();
2649
2650 if (global_reclaim(sc))
2651 count_vm_event(ALLOCSTALL);
2652
2653 do {
2654 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2655 sc->priority);
2656 sc->nr_scanned = 0;
2657 zones_reclaimable = shrink_zones(zonelist, sc);
2658
2659 total_scanned += sc->nr_scanned;
2660 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2661 break;
2662
2663 if (sc->compaction_ready)
2664 break;
2665
2666 /*
2667 * If we're getting trouble reclaiming, start doing
2668 * writepage even in laptop mode.
2669 */
2670 if (sc->priority < DEF_PRIORITY - 2)
2671 sc->may_writepage = 1;
2672
2673 /*
2674 * Try to write back as many pages as we just scanned. This
2675 * tends to cause slow streaming writers to write data to the
2676 * disk smoothly, at the dirtying rate, which is nice. But
2677 * that's undesirable in laptop mode, where we *want* lumpy
2678 * writeout. So in laptop mode, write out the whole world.
2679 */
2680 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2681 if (total_scanned > writeback_threshold) {
2682 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2683 WB_REASON_TRY_TO_FREE_PAGES);
2684 sc->may_writepage = 1;
2685 }
2686 } while (--sc->priority >= 0);
2687
2688 delayacct_freepages_end();
2689
2690 if (sc->nr_reclaimed)
2691 return sc->nr_reclaimed;
2692
2693 /* Aborted reclaim to try compaction? don't OOM, then */
2694 if (sc->compaction_ready)
2695 return 1;
2696
2697 /* Untapped cgroup reserves? Don't OOM, retry. */
2698 if (!sc->may_thrash) {
2699 sc->priority = initial_priority;
2700 sc->may_thrash = 1;
2701 goto retry;
2702 }
2703
2704 /* Any of the zones still reclaimable? Don't OOM. */
2705 if (zones_reclaimable)
2706 return 1;
2707
2708 return 0;
2709 }
2710
2711 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2712 {
2713 struct zone *zone;
2714 unsigned long pfmemalloc_reserve = 0;
2715 unsigned long free_pages = 0;
2716 int i;
2717 bool wmark_ok;
2718
2719 for (i = 0; i <= ZONE_NORMAL; i++) {
2720 zone = &pgdat->node_zones[i];
2721 if (!populated_zone(zone) ||
2722 zone_reclaimable_pages(zone) == 0)
2723 continue;
2724
2725 pfmemalloc_reserve += min_wmark_pages(zone);
2726 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2727 }
2728
2729 /* If there are no reserves (unexpected config) then do not throttle */
2730 if (!pfmemalloc_reserve)
2731 return true;
2732
2733 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2734
2735 /* kswapd must be awake if processes are being throttled */
2736 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2737 pgdat->classzone_idx = min(pgdat->classzone_idx,
2738 (enum zone_type)ZONE_NORMAL);
2739 wake_up_interruptible(&pgdat->kswapd_wait);
2740 }
2741
2742 return wmark_ok;
2743 }
2744
2745 /*
2746 * Throttle direct reclaimers if backing storage is backed by the network
2747 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2748 * depleted. kswapd will continue to make progress and wake the processes
2749 * when the low watermark is reached.
2750 *
2751 * Returns true if a fatal signal was delivered during throttling. If this
2752 * happens, the page allocator should not consider triggering the OOM killer.
2753 */
2754 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2755 nodemask_t *nodemask)
2756 {
2757 struct zoneref *z;
2758 struct zone *zone;
2759 pg_data_t *pgdat = NULL;
2760
2761 /*
2762 * Kernel threads should not be throttled as they may be indirectly
2763 * responsible for cleaning pages necessary for reclaim to make forward
2764 * progress. kjournald for example may enter direct reclaim while
2765 * committing a transaction where throttling it could forcing other
2766 * processes to block on log_wait_commit().
2767 */
2768 if (current->flags & PF_KTHREAD)
2769 goto out;
2770
2771 /*
2772 * If a fatal signal is pending, this process should not throttle.
2773 * It should return quickly so it can exit and free its memory
2774 */
2775 if (fatal_signal_pending(current))
2776 goto out;
2777
2778 /*
2779 * Check if the pfmemalloc reserves are ok by finding the first node
2780 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2781 * GFP_KERNEL will be required for allocating network buffers when
2782 * swapping over the network so ZONE_HIGHMEM is unusable.
2783 *
2784 * Throttling is based on the first usable node and throttled processes
2785 * wait on a queue until kswapd makes progress and wakes them. There
2786 * is an affinity then between processes waking up and where reclaim
2787 * progress has been made assuming the process wakes on the same node.
2788 * More importantly, processes running on remote nodes will not compete
2789 * for remote pfmemalloc reserves and processes on different nodes
2790 * should make reasonable progress.
2791 */
2792 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2793 gfp_zone(gfp_mask), nodemask) {
2794 if (zone_idx(zone) > ZONE_NORMAL)
2795 continue;
2796
2797 /* Throttle based on the first usable node */
2798 pgdat = zone->zone_pgdat;
2799 if (pfmemalloc_watermark_ok(pgdat))
2800 goto out;
2801 break;
2802 }
2803
2804 /* If no zone was usable by the allocation flags then do not throttle */
2805 if (!pgdat)
2806 goto out;
2807
2808 /* Account for the throttling */
2809 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2810
2811 /*
2812 * If the caller cannot enter the filesystem, it's possible that it
2813 * is due to the caller holding an FS lock or performing a journal
2814 * transaction in the case of a filesystem like ext[3|4]. In this case,
2815 * it is not safe to block on pfmemalloc_wait as kswapd could be
2816 * blocked waiting on the same lock. Instead, throttle for up to a
2817 * second before continuing.
2818 */
2819 if (!(gfp_mask & __GFP_FS)) {
2820 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2821 pfmemalloc_watermark_ok(pgdat), HZ);
2822
2823 goto check_pending;
2824 }
2825
2826 /* Throttle until kswapd wakes the process */
2827 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2828 pfmemalloc_watermark_ok(pgdat));
2829
2830 check_pending:
2831 if (fatal_signal_pending(current))
2832 return true;
2833
2834 out:
2835 return false;
2836 }
2837
2838 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2839 gfp_t gfp_mask, nodemask_t *nodemask)
2840 {
2841 unsigned long nr_reclaimed;
2842 struct scan_control sc = {
2843 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2844 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2845 .order = order,
2846 .nodemask = nodemask,
2847 .priority = DEF_PRIORITY,
2848 .may_writepage = !laptop_mode,
2849 .may_unmap = 1,
2850 .may_swap = 1,
2851 };
2852
2853 /*
2854 * Do not enter reclaim if fatal signal was delivered while throttled.
2855 * 1 is returned so that the page allocator does not OOM kill at this
2856 * point.
2857 */
2858 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2859 return 1;
2860
2861 trace_mm_vmscan_direct_reclaim_begin(order,
2862 sc.may_writepage,
2863 gfp_mask);
2864
2865 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2866
2867 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2868
2869 return nr_reclaimed;
2870 }
2871
2872 #ifdef CONFIG_MEMCG
2873
2874 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2875 gfp_t gfp_mask, bool noswap,
2876 struct zone *zone,
2877 unsigned long *nr_scanned)
2878 {
2879 struct scan_control sc = {
2880 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2881 .target_mem_cgroup = memcg,
2882 .may_writepage = !laptop_mode,
2883 .may_unmap = 1,
2884 .may_swap = !noswap,
2885 };
2886 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2887 int swappiness = mem_cgroup_swappiness(memcg);
2888 unsigned long lru_pages;
2889
2890 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2891 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2892
2893 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2894 sc.may_writepage,
2895 sc.gfp_mask);
2896
2897 /*
2898 * NOTE: Although we can get the priority field, using it
2899 * here is not a good idea, since it limits the pages we can scan.
2900 * if we don't reclaim here, the shrink_zone from balance_pgdat
2901 * will pick up pages from other mem cgroup's as well. We hack
2902 * the priority and make it zero.
2903 */
2904 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2905
2906 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2907
2908 *nr_scanned = sc.nr_scanned;
2909 return sc.nr_reclaimed;
2910 }
2911
2912 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2913 unsigned long nr_pages,
2914 gfp_t gfp_mask,
2915 bool may_swap)
2916 {
2917 struct zonelist *zonelist;
2918 unsigned long nr_reclaimed;
2919 int nid;
2920 struct scan_control sc = {
2921 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2922 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2923 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2924 .target_mem_cgroup = memcg,
2925 .priority = DEF_PRIORITY,
2926 .may_writepage = !laptop_mode,
2927 .may_unmap = 1,
2928 .may_swap = may_swap,
2929 };
2930
2931 /*
2932 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2933 * take care of from where we get pages. So the node where we start the
2934 * scan does not need to be the current node.
2935 */
2936 nid = mem_cgroup_select_victim_node(memcg);
2937
2938 zonelist = NODE_DATA(nid)->node_zonelists;
2939
2940 trace_mm_vmscan_memcg_reclaim_begin(0,
2941 sc.may_writepage,
2942 sc.gfp_mask);
2943
2944 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2945
2946 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2947
2948 return nr_reclaimed;
2949 }
2950 #endif
2951
2952 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2953 {
2954 struct mem_cgroup *memcg;
2955
2956 if (!total_swap_pages)
2957 return;
2958
2959 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2960 do {
2961 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2962
2963 if (inactive_anon_is_low(lruvec))
2964 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2965 sc, LRU_ACTIVE_ANON);
2966
2967 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2968 } while (memcg);
2969 }
2970
2971 static bool zone_balanced(struct zone *zone, int order,
2972 unsigned long balance_gap, int classzone_idx)
2973 {
2974 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2975 balance_gap, classzone_idx))
2976 return false;
2977
2978 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2979 order, 0, classzone_idx) == COMPACT_SKIPPED)
2980 return false;
2981
2982 return true;
2983 }
2984
2985 /*
2986 * pgdat_balanced() is used when checking if a node is balanced.
2987 *
2988 * For order-0, all zones must be balanced!
2989 *
2990 * For high-order allocations only zones that meet watermarks and are in a
2991 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2992 * total of balanced pages must be at least 25% of the zones allowed by
2993 * classzone_idx for the node to be considered balanced. Forcing all zones to
2994 * be balanced for high orders can cause excessive reclaim when there are
2995 * imbalanced zones.
2996 * The choice of 25% is due to
2997 * o a 16M DMA zone that is balanced will not balance a zone on any
2998 * reasonable sized machine
2999 * o On all other machines, the top zone must be at least a reasonable
3000 * percentage of the middle zones. For example, on 32-bit x86, highmem
3001 * would need to be at least 256M for it to be balance a whole node.
3002 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3003 * to balance a node on its own. These seemed like reasonable ratios.
3004 */
3005 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3006 {
3007 unsigned long managed_pages = 0;
3008 unsigned long balanced_pages = 0;
3009 int i;
3010
3011 /* Check the watermark levels */
3012 for (i = 0; i <= classzone_idx; i++) {
3013 struct zone *zone = pgdat->node_zones + i;
3014
3015 if (!populated_zone(zone))
3016 continue;
3017
3018 managed_pages += zone->managed_pages;
3019
3020 /*
3021 * A special case here:
3022 *
3023 * balance_pgdat() skips over all_unreclaimable after
3024 * DEF_PRIORITY. Effectively, it considers them balanced so
3025 * they must be considered balanced here as well!
3026 */
3027 if (!zone_reclaimable(zone)) {
3028 balanced_pages += zone->managed_pages;
3029 continue;
3030 }
3031
3032 if (zone_balanced(zone, order, 0, i))
3033 balanced_pages += zone->managed_pages;
3034 else if (!order)
3035 return false;
3036 }
3037
3038 if (order)
3039 return balanced_pages >= (managed_pages >> 2);
3040 else
3041 return true;
3042 }
3043
3044 /*
3045 * Prepare kswapd for sleeping. This verifies that there are no processes
3046 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3047 *
3048 * Returns true if kswapd is ready to sleep
3049 */
3050 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3051 int classzone_idx)
3052 {
3053 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3054 if (remaining)
3055 return false;
3056
3057 /*
3058 * The throttled processes are normally woken up in balance_pgdat() as
3059 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3060 * race between when kswapd checks the watermarks and a process gets
3061 * throttled. There is also a potential race if processes get
3062 * throttled, kswapd wakes, a large process exits thereby balancing the
3063 * zones, which causes kswapd to exit balance_pgdat() before reaching
3064 * the wake up checks. If kswapd is going to sleep, no process should
3065 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3066 * the wake up is premature, processes will wake kswapd and get
3067 * throttled again. The difference from wake ups in balance_pgdat() is
3068 * that here we are under prepare_to_wait().
3069 */
3070 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3071 wake_up_all(&pgdat->pfmemalloc_wait);
3072
3073 return pgdat_balanced(pgdat, order, classzone_idx);
3074 }
3075
3076 /*
3077 * kswapd shrinks the zone by the number of pages required to reach
3078 * the high watermark.
3079 *
3080 * Returns true if kswapd scanned at least the requested number of pages to
3081 * reclaim or if the lack of progress was due to pages under writeback.
3082 * This is used to determine if the scanning priority needs to be raised.
3083 */
3084 static bool kswapd_shrink_zone(struct zone *zone,
3085 int classzone_idx,
3086 struct scan_control *sc,
3087 unsigned long *nr_attempted)
3088 {
3089 int testorder = sc->order;
3090 unsigned long balance_gap;
3091 bool lowmem_pressure;
3092
3093 /* Reclaim above the high watermark. */
3094 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3095
3096 /*
3097 * Kswapd reclaims only single pages with compaction enabled. Trying
3098 * too hard to reclaim until contiguous free pages have become
3099 * available can hurt performance by evicting too much useful data
3100 * from memory. Do not reclaim more than needed for compaction.
3101 */
3102 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3103 compaction_suitable(zone, sc->order, 0, classzone_idx)
3104 != COMPACT_SKIPPED)
3105 testorder = 0;
3106
3107 /*
3108 * We put equal pressure on every zone, unless one zone has way too
3109 * many pages free already. The "too many pages" is defined as the
3110 * high wmark plus a "gap" where the gap is either the low
3111 * watermark or 1% of the zone, whichever is smaller.
3112 */
3113 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3114 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3115
3116 /*
3117 * If there is no low memory pressure or the zone is balanced then no
3118 * reclaim is necessary
3119 */
3120 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3121 if (!lowmem_pressure && zone_balanced(zone, testorder,
3122 balance_gap, classzone_idx))
3123 return true;
3124
3125 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3126
3127 /* Account for the number of pages attempted to reclaim */
3128 *nr_attempted += sc->nr_to_reclaim;
3129
3130 clear_bit(ZONE_WRITEBACK, &zone->flags);
3131
3132 /*
3133 * If a zone reaches its high watermark, consider it to be no longer
3134 * congested. It's possible there are dirty pages backed by congested
3135 * BDIs but as pressure is relieved, speculatively avoid congestion
3136 * waits.
3137 */
3138 if (zone_reclaimable(zone) &&
3139 zone_balanced(zone, testorder, 0, classzone_idx)) {
3140 clear_bit(ZONE_CONGESTED, &zone->flags);
3141 clear_bit(ZONE_DIRTY, &zone->flags);
3142 }
3143
3144 return sc->nr_scanned >= sc->nr_to_reclaim;
3145 }
3146
3147 /*
3148 * For kswapd, balance_pgdat() will work across all this node's zones until
3149 * they are all at high_wmark_pages(zone).
3150 *
3151 * Returns the final order kswapd was reclaiming at
3152 *
3153 * There is special handling here for zones which are full of pinned pages.
3154 * This can happen if the pages are all mlocked, or if they are all used by
3155 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3156 * What we do is to detect the case where all pages in the zone have been
3157 * scanned twice and there has been zero successful reclaim. Mark the zone as
3158 * dead and from now on, only perform a short scan. Basically we're polling
3159 * the zone for when the problem goes away.
3160 *
3161 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3162 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3163 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3164 * lower zones regardless of the number of free pages in the lower zones. This
3165 * interoperates with the page allocator fallback scheme to ensure that aging
3166 * of pages is balanced across the zones.
3167 */
3168 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3169 int *classzone_idx)
3170 {
3171 int i;
3172 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3173 unsigned long nr_soft_reclaimed;
3174 unsigned long nr_soft_scanned;
3175 struct scan_control sc = {
3176 .gfp_mask = GFP_KERNEL,
3177 .order = order,
3178 .priority = DEF_PRIORITY,
3179 .may_writepage = !laptop_mode,
3180 .may_unmap = 1,
3181 .may_swap = 1,
3182 };
3183 count_vm_event(PAGEOUTRUN);
3184
3185 do {
3186 unsigned long nr_attempted = 0;
3187 bool raise_priority = true;
3188 bool pgdat_needs_compaction = (order > 0);
3189
3190 sc.nr_reclaimed = 0;
3191
3192 /*
3193 * Scan in the highmem->dma direction for the highest
3194 * zone which needs scanning
3195 */
3196 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3197 struct zone *zone = pgdat->node_zones + i;
3198
3199 if (!populated_zone(zone))
3200 continue;
3201
3202 if (sc.priority != DEF_PRIORITY &&
3203 !zone_reclaimable(zone))
3204 continue;
3205
3206 /*
3207 * Do some background aging of the anon list, to give
3208 * pages a chance to be referenced before reclaiming.
3209 */
3210 age_active_anon(zone, &sc);
3211
3212 /*
3213 * If the number of buffer_heads in the machine
3214 * exceeds the maximum allowed level and this node
3215 * has a highmem zone, force kswapd to reclaim from
3216 * it to relieve lowmem pressure.
3217 */
3218 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3219 end_zone = i;
3220 break;
3221 }
3222
3223 if (!zone_balanced(zone, order, 0, 0)) {
3224 end_zone = i;
3225 break;
3226 } else {
3227 /*
3228 * If balanced, clear the dirty and congested
3229 * flags
3230 */
3231 clear_bit(ZONE_CONGESTED, &zone->flags);
3232 clear_bit(ZONE_DIRTY, &zone->flags);
3233 }
3234 }
3235
3236 if (i < 0)
3237 goto out;
3238
3239 for (i = 0; i <= end_zone; i++) {
3240 struct zone *zone = pgdat->node_zones + i;
3241
3242 if (!populated_zone(zone))
3243 continue;
3244
3245 /*
3246 * If any zone is currently balanced then kswapd will
3247 * not call compaction as it is expected that the
3248 * necessary pages are already available.
3249 */
3250 if (pgdat_needs_compaction &&
3251 zone_watermark_ok(zone, order,
3252 low_wmark_pages(zone),
3253 *classzone_idx, 0))
3254 pgdat_needs_compaction = false;
3255 }
3256
3257 /*
3258 * If we're getting trouble reclaiming, start doing writepage
3259 * even in laptop mode.
3260 */
3261 if (sc.priority < DEF_PRIORITY - 2)
3262 sc.may_writepage = 1;
3263
3264 /*
3265 * Now scan the zone in the dma->highmem direction, stopping
3266 * at the last zone which needs scanning.
3267 *
3268 * We do this because the page allocator works in the opposite
3269 * direction. This prevents the page allocator from allocating
3270 * pages behind kswapd's direction of progress, which would
3271 * cause too much scanning of the lower zones.
3272 */
3273 for (i = 0; i <= end_zone; i++) {
3274 struct zone *zone = pgdat->node_zones + i;
3275
3276 if (!populated_zone(zone))
3277 continue;
3278
3279 if (sc.priority != DEF_PRIORITY &&
3280 !zone_reclaimable(zone))
3281 continue;
3282
3283 sc.nr_scanned = 0;
3284
3285 nr_soft_scanned = 0;
3286 /*
3287 * Call soft limit reclaim before calling shrink_zone.
3288 */
3289 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3290 order, sc.gfp_mask,
3291 &nr_soft_scanned);
3292 sc.nr_reclaimed += nr_soft_reclaimed;
3293
3294 /*
3295 * There should be no need to raise the scanning
3296 * priority if enough pages are already being scanned
3297 * that that high watermark would be met at 100%
3298 * efficiency.
3299 */
3300 if (kswapd_shrink_zone(zone, end_zone,
3301 &sc, &nr_attempted))
3302 raise_priority = false;
3303 }
3304
3305 /*
3306 * If the low watermark is met there is no need for processes
3307 * to be throttled on pfmemalloc_wait as they should not be
3308 * able to safely make forward progress. Wake them
3309 */
3310 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3311 pfmemalloc_watermark_ok(pgdat))
3312 wake_up_all(&pgdat->pfmemalloc_wait);
3313
3314 /*
3315 * Fragmentation may mean that the system cannot be rebalanced
3316 * for high-order allocations in all zones. If twice the
3317 * allocation size has been reclaimed and the zones are still
3318 * not balanced then recheck the watermarks at order-0 to
3319 * prevent kswapd reclaiming excessively. Assume that a
3320 * process requested a high-order can direct reclaim/compact.
3321 */
3322 if (order && sc.nr_reclaimed >= 2UL << order)
3323 order = sc.order = 0;
3324
3325 /* Check if kswapd should be suspending */
3326 if (try_to_freeze() || kthread_should_stop())
3327 break;
3328
3329 /*
3330 * Compact if necessary and kswapd is reclaiming at least the
3331 * high watermark number of pages as requsted
3332 */
3333 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3334 compact_pgdat(pgdat, order);
3335
3336 /*
3337 * Raise priority if scanning rate is too low or there was no
3338 * progress in reclaiming pages
3339 */
3340 if (raise_priority || !sc.nr_reclaimed)
3341 sc.priority--;
3342 } while (sc.priority >= 1 &&
3343 !pgdat_balanced(pgdat, order, *classzone_idx));
3344
3345 out:
3346 /*
3347 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3348 * makes a decision on the order we were last reclaiming at. However,
3349 * if another caller entered the allocator slow path while kswapd
3350 * was awake, order will remain at the higher level
3351 */
3352 *classzone_idx = end_zone;
3353 return order;
3354 }
3355
3356 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3357 {
3358 long remaining = 0;
3359 DEFINE_WAIT(wait);
3360
3361 if (freezing(current) || kthread_should_stop())
3362 return;
3363
3364 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3365
3366 /* Try to sleep for a short interval */
3367 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3368 remaining = schedule_timeout(HZ/10);
3369 finish_wait(&pgdat->kswapd_wait, &wait);
3370 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3371 }
3372
3373 /*
3374 * After a short sleep, check if it was a premature sleep. If not, then
3375 * go fully to sleep until explicitly woken up.
3376 */
3377 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3378 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3379
3380 /*
3381 * vmstat counters are not perfectly accurate and the estimated
3382 * value for counters such as NR_FREE_PAGES can deviate from the
3383 * true value by nr_online_cpus * threshold. To avoid the zone
3384 * watermarks being breached while under pressure, we reduce the
3385 * per-cpu vmstat threshold while kswapd is awake and restore
3386 * them before going back to sleep.
3387 */
3388 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3389
3390 /*
3391 * Compaction records what page blocks it recently failed to
3392 * isolate pages from and skips them in the future scanning.
3393 * When kswapd is going to sleep, it is reasonable to assume
3394 * that pages and compaction may succeed so reset the cache.
3395 */
3396 reset_isolation_suitable(pgdat);
3397
3398 if (!kthread_should_stop())
3399 schedule();
3400
3401 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3402 } else {
3403 if (remaining)
3404 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3405 else
3406 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3407 }
3408 finish_wait(&pgdat->kswapd_wait, &wait);
3409 }
3410
3411 /*
3412 * The background pageout daemon, started as a kernel thread
3413 * from the init process.
3414 *
3415 * This basically trickles out pages so that we have _some_
3416 * free memory available even if there is no other activity
3417 * that frees anything up. This is needed for things like routing
3418 * etc, where we otherwise might have all activity going on in
3419 * asynchronous contexts that cannot page things out.
3420 *
3421 * If there are applications that are active memory-allocators
3422 * (most normal use), this basically shouldn't matter.
3423 */
3424 static int kswapd(void *p)
3425 {
3426 unsigned long order, new_order;
3427 unsigned balanced_order;
3428 int classzone_idx, new_classzone_idx;
3429 int balanced_classzone_idx;
3430 pg_data_t *pgdat = (pg_data_t*)p;
3431 struct task_struct *tsk = current;
3432
3433 struct reclaim_state reclaim_state = {
3434 .reclaimed_slab = 0,
3435 };
3436 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3437
3438 lockdep_set_current_reclaim_state(GFP_KERNEL);
3439
3440 if (!cpumask_empty(cpumask))
3441 set_cpus_allowed_ptr(tsk, cpumask);
3442 current->reclaim_state = &reclaim_state;
3443
3444 /*
3445 * Tell the memory management that we're a "memory allocator",
3446 * and that if we need more memory we should get access to it
3447 * regardless (see "__alloc_pages()"). "kswapd" should
3448 * never get caught in the normal page freeing logic.
3449 *
3450 * (Kswapd normally doesn't need memory anyway, but sometimes
3451 * you need a small amount of memory in order to be able to
3452 * page out something else, and this flag essentially protects
3453 * us from recursively trying to free more memory as we're
3454 * trying to free the first piece of memory in the first place).
3455 */
3456 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3457 set_freezable();
3458
3459 order = new_order = 0;
3460 balanced_order = 0;
3461 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3462 balanced_classzone_idx = classzone_idx;
3463 for ( ; ; ) {
3464 bool ret;
3465
3466 /*
3467 * If the last balance_pgdat was unsuccessful it's unlikely a
3468 * new request of a similar or harder type will succeed soon
3469 * so consider going to sleep on the basis we reclaimed at
3470 */
3471 if (balanced_classzone_idx >= new_classzone_idx &&
3472 balanced_order == new_order) {
3473 new_order = pgdat->kswapd_max_order;
3474 new_classzone_idx = pgdat->classzone_idx;
3475 pgdat->kswapd_max_order = 0;
3476 pgdat->classzone_idx = pgdat->nr_zones - 1;
3477 }
3478
3479 if (order < new_order || classzone_idx > new_classzone_idx) {
3480 /*
3481 * Don't sleep if someone wants a larger 'order'
3482 * allocation or has tigher zone constraints
3483 */
3484 order = new_order;
3485 classzone_idx = new_classzone_idx;
3486 } else {
3487 kswapd_try_to_sleep(pgdat, balanced_order,
3488 balanced_classzone_idx);
3489 order = pgdat->kswapd_max_order;
3490 classzone_idx = pgdat->classzone_idx;
3491 new_order = order;
3492 new_classzone_idx = classzone_idx;
3493 pgdat->kswapd_max_order = 0;
3494 pgdat->classzone_idx = pgdat->nr_zones - 1;
3495 }
3496
3497 ret = try_to_freeze();
3498 if (kthread_should_stop())
3499 break;
3500
3501 /*
3502 * We can speed up thawing tasks if we don't call balance_pgdat
3503 * after returning from the refrigerator
3504 */
3505 if (!ret) {
3506 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3507 balanced_classzone_idx = classzone_idx;
3508 balanced_order = balance_pgdat(pgdat, order,
3509 &balanced_classzone_idx);
3510 }
3511 }
3512
3513 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3514 current->reclaim_state = NULL;
3515 lockdep_clear_current_reclaim_state();
3516
3517 return 0;
3518 }
3519
3520 /*
3521 * A zone is low on free memory, so wake its kswapd task to service it.
3522 */
3523 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3524 {
3525 pg_data_t *pgdat;
3526
3527 if (!populated_zone(zone))
3528 return;
3529
3530 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3531 return;
3532 pgdat = zone->zone_pgdat;
3533 if (pgdat->kswapd_max_order < order) {
3534 pgdat->kswapd_max_order = order;
3535 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3536 }
3537 if (!waitqueue_active(&pgdat->kswapd_wait))
3538 return;
3539 if (zone_balanced(zone, order, 0, 0))
3540 return;
3541
3542 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3543 wake_up_interruptible(&pgdat->kswapd_wait);
3544 }
3545
3546 #ifdef CONFIG_HIBERNATION
3547 /*
3548 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3549 * freed pages.
3550 *
3551 * Rather than trying to age LRUs the aim is to preserve the overall
3552 * LRU order by reclaiming preferentially
3553 * inactive > active > active referenced > active mapped
3554 */
3555 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3556 {
3557 struct reclaim_state reclaim_state;
3558 struct scan_control sc = {
3559 .nr_to_reclaim = nr_to_reclaim,
3560 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3561 .priority = DEF_PRIORITY,
3562 .may_writepage = 1,
3563 .may_unmap = 1,
3564 .may_swap = 1,
3565 .hibernation_mode = 1,
3566 };
3567 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3568 struct task_struct *p = current;
3569 unsigned long nr_reclaimed;
3570
3571 p->flags |= PF_MEMALLOC;
3572 lockdep_set_current_reclaim_state(sc.gfp_mask);
3573 reclaim_state.reclaimed_slab = 0;
3574 p->reclaim_state = &reclaim_state;
3575
3576 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3577
3578 p->reclaim_state = NULL;
3579 lockdep_clear_current_reclaim_state();
3580 p->flags &= ~PF_MEMALLOC;
3581
3582 return nr_reclaimed;
3583 }
3584 #endif /* CONFIG_HIBERNATION */
3585
3586 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3587 not required for correctness. So if the last cpu in a node goes
3588 away, we get changed to run anywhere: as the first one comes back,
3589 restore their cpu bindings. */
3590 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3591 void *hcpu)
3592 {
3593 int nid;
3594
3595 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3596 for_each_node_state(nid, N_MEMORY) {
3597 pg_data_t *pgdat = NODE_DATA(nid);
3598 const struct cpumask *mask;
3599
3600 mask = cpumask_of_node(pgdat->node_id);
3601
3602 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3603 /* One of our CPUs online: restore mask */
3604 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3605 }
3606 }
3607 return NOTIFY_OK;
3608 }
3609
3610 /*
3611 * This kswapd start function will be called by init and node-hot-add.
3612 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3613 */
3614 int kswapd_run(int nid)
3615 {
3616 pg_data_t *pgdat = NODE_DATA(nid);
3617 int ret = 0;
3618
3619 if (pgdat->kswapd)
3620 return 0;
3621
3622 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3623 if (IS_ERR(pgdat->kswapd)) {
3624 /* failure at boot is fatal */
3625 BUG_ON(system_state == SYSTEM_BOOTING);
3626 pr_err("Failed to start kswapd on node %d\n", nid);
3627 ret = PTR_ERR(pgdat->kswapd);
3628 pgdat->kswapd = NULL;
3629 }
3630 return ret;
3631 }
3632
3633 /*
3634 * Called by memory hotplug when all memory in a node is offlined. Caller must
3635 * hold mem_hotplug_begin/end().
3636 */
3637 void kswapd_stop(int nid)
3638 {
3639 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3640
3641 if (kswapd) {
3642 kthread_stop(kswapd);
3643 NODE_DATA(nid)->kswapd = NULL;
3644 }
3645 }
3646
3647 static int __init kswapd_init(void)
3648 {
3649 int nid;
3650
3651 swap_setup();
3652 for_each_node_state(nid, N_MEMORY)
3653 kswapd_run(nid);
3654 hotcpu_notifier(cpu_callback, 0);
3655 return 0;
3656 }
3657
3658 module_init(kswapd_init)
3659
3660 #ifdef CONFIG_NUMA
3661 /*
3662 * Zone reclaim mode
3663 *
3664 * If non-zero call zone_reclaim when the number of free pages falls below
3665 * the watermarks.
3666 */
3667 int zone_reclaim_mode __read_mostly;
3668
3669 #define RECLAIM_OFF 0
3670 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3671 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3672 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3673
3674 /*
3675 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3676 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3677 * a zone.
3678 */
3679 #define ZONE_RECLAIM_PRIORITY 4
3680
3681 /*
3682 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3683 * occur.
3684 */
3685 int sysctl_min_unmapped_ratio = 1;
3686
3687 /*
3688 * If the number of slab pages in a zone grows beyond this percentage then
3689 * slab reclaim needs to occur.
3690 */
3691 int sysctl_min_slab_ratio = 5;
3692
3693 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3694 {
3695 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3696 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3697 zone_page_state(zone, NR_ACTIVE_FILE);
3698
3699 /*
3700 * It's possible for there to be more file mapped pages than
3701 * accounted for by the pages on the file LRU lists because
3702 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3703 */
3704 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3705 }
3706
3707 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3708 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3709 {
3710 unsigned long nr_pagecache_reclaimable;
3711 unsigned long delta = 0;
3712
3713 /*
3714 * If RECLAIM_UNMAP is set, then all file pages are considered
3715 * potentially reclaimable. Otherwise, we have to worry about
3716 * pages like swapcache and zone_unmapped_file_pages() provides
3717 * a better estimate
3718 */
3719 if (zone_reclaim_mode & RECLAIM_UNMAP)
3720 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3721 else
3722 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3723
3724 /* If we can't clean pages, remove dirty pages from consideration */
3725 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3726 delta += zone_page_state(zone, NR_FILE_DIRTY);
3727
3728 /* Watch for any possible underflows due to delta */
3729 if (unlikely(delta > nr_pagecache_reclaimable))
3730 delta = nr_pagecache_reclaimable;
3731
3732 return nr_pagecache_reclaimable - delta;
3733 }
3734
3735 /*
3736 * Try to free up some pages from this zone through reclaim.
3737 */
3738 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3739 {
3740 /* Minimum pages needed in order to stay on node */
3741 const unsigned long nr_pages = 1 << order;
3742 struct task_struct *p = current;
3743 struct reclaim_state reclaim_state;
3744 struct scan_control sc = {
3745 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3746 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3747 .order = order,
3748 .priority = ZONE_RECLAIM_PRIORITY,
3749 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3750 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3751 .may_swap = 1,
3752 };
3753
3754 cond_resched();
3755 /*
3756 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3757 * and we also need to be able to write out pages for RECLAIM_WRITE
3758 * and RECLAIM_UNMAP.
3759 */
3760 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3761 lockdep_set_current_reclaim_state(gfp_mask);
3762 reclaim_state.reclaimed_slab = 0;
3763 p->reclaim_state = &reclaim_state;
3764
3765 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3766 /*
3767 * Free memory by calling shrink zone with increasing
3768 * priorities until we have enough memory freed.
3769 */
3770 do {
3771 shrink_zone(zone, &sc, true);
3772 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3773 }
3774
3775 p->reclaim_state = NULL;
3776 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3777 lockdep_clear_current_reclaim_state();
3778 return sc.nr_reclaimed >= nr_pages;
3779 }
3780
3781 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3782 {
3783 int node_id;
3784 int ret;
3785
3786 /*
3787 * Zone reclaim reclaims unmapped file backed pages and
3788 * slab pages if we are over the defined limits.
3789 *
3790 * A small portion of unmapped file backed pages is needed for
3791 * file I/O otherwise pages read by file I/O will be immediately
3792 * thrown out if the zone is overallocated. So we do not reclaim
3793 * if less than a specified percentage of the zone is used by
3794 * unmapped file backed pages.
3795 */
3796 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3797 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3798 return ZONE_RECLAIM_FULL;
3799
3800 if (!zone_reclaimable(zone))
3801 return ZONE_RECLAIM_FULL;
3802
3803 /*
3804 * Do not scan if the allocation should not be delayed.
3805 */
3806 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3807 return ZONE_RECLAIM_NOSCAN;
3808
3809 /*
3810 * Only run zone reclaim on the local zone or on zones that do not
3811 * have associated processors. This will favor the local processor
3812 * over remote processors and spread off node memory allocations
3813 * as wide as possible.
3814 */
3815 node_id = zone_to_nid(zone);
3816 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3817 return ZONE_RECLAIM_NOSCAN;
3818
3819 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3820 return ZONE_RECLAIM_NOSCAN;
3821
3822 ret = __zone_reclaim(zone, gfp_mask, order);
3823 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3824
3825 if (!ret)
3826 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3827
3828 return ret;
3829 }
3830 #endif
3831
3832 /*
3833 * page_evictable - test whether a page is evictable
3834 * @page: the page to test
3835 *
3836 * Test whether page is evictable--i.e., should be placed on active/inactive
3837 * lists vs unevictable list.
3838 *
3839 * Reasons page might not be evictable:
3840 * (1) page's mapping marked unevictable
3841 * (2) page is part of an mlocked VMA
3842 *
3843 */
3844 int page_evictable(struct page *page)
3845 {
3846 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3847 }
3848
3849 #ifdef CONFIG_SHMEM
3850 /**
3851 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3852 * @pages: array of pages to check
3853 * @nr_pages: number of pages to check
3854 *
3855 * Checks pages for evictability and moves them to the appropriate lru list.
3856 *
3857 * This function is only used for SysV IPC SHM_UNLOCK.
3858 */
3859 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3860 {
3861 struct lruvec *lruvec;
3862 struct zone *zone = NULL;
3863 int pgscanned = 0;
3864 int pgrescued = 0;
3865 int i;
3866
3867 for (i = 0; i < nr_pages; i++) {
3868 struct page *page = pages[i];
3869 struct zone *pagezone;
3870
3871 pgscanned++;
3872 pagezone = page_zone(page);
3873 if (pagezone != zone) {
3874 if (zone)
3875 spin_unlock_irq(&zone->lru_lock);
3876 zone = pagezone;
3877 spin_lock_irq(&zone->lru_lock);
3878 }
3879 lruvec = mem_cgroup_page_lruvec(page, zone);
3880
3881 if (!PageLRU(page) || !PageUnevictable(page))
3882 continue;
3883
3884 if (page_evictable(page)) {
3885 enum lru_list lru = page_lru_base_type(page);
3886
3887 VM_BUG_ON_PAGE(PageActive(page), page);
3888 ClearPageUnevictable(page);
3889 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3890 add_page_to_lru_list(page, lruvec, lru);
3891 pgrescued++;
3892 }
3893 }
3894
3895 if (zone) {
3896 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3897 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3898 spin_unlock_irq(&zone->lru_lock);
3899 }
3900 }
3901 #endif /* CONFIG_SHMEM */
This page took 0.17964 seconds and 5 git commands to generate.