xen/mmu: Correct PAT MST setting.
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 unsigned long hibernation_mode;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 int may_writepage;
73
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
76
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
80 int order;
81
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129 * From 0 .. 100. Higher means more swappy.
130 */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 return true;
146 }
147 #endif
148
149 unsigned long zone_reclaimable_pages(struct zone *zone)
150 {
151 int nr;
152
153 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
154 zone_page_state(zone, NR_INACTIVE_FILE);
155
156 if (get_nr_swap_pages() > 0)
157 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
158 zone_page_state(zone, NR_INACTIVE_ANON);
159
160 return nr;
161 }
162
163 bool zone_reclaimable(struct zone *zone)
164 {
165 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
166 }
167
168 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
169 {
170 if (!mem_cgroup_disabled())
171 return mem_cgroup_get_lru_size(lruvec, lru);
172
173 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
174 }
175
176 /*
177 * Add a shrinker callback to be called from the vm.
178 */
179 int register_shrinker(struct shrinker *shrinker)
180 {
181 size_t size = sizeof(*shrinker->nr_deferred);
182
183 /*
184 * If we only have one possible node in the system anyway, save
185 * ourselves the trouble and disable NUMA aware behavior. This way we
186 * will save memory and some small loop time later.
187 */
188 if (nr_node_ids == 1)
189 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
190
191 if (shrinker->flags & SHRINKER_NUMA_AWARE)
192 size *= nr_node_ids;
193
194 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
195 if (!shrinker->nr_deferred)
196 return -ENOMEM;
197
198 down_write(&shrinker_rwsem);
199 list_add_tail(&shrinker->list, &shrinker_list);
200 up_write(&shrinker_rwsem);
201 return 0;
202 }
203 EXPORT_SYMBOL(register_shrinker);
204
205 /*
206 * Remove one
207 */
208 void unregister_shrinker(struct shrinker *shrinker)
209 {
210 down_write(&shrinker_rwsem);
211 list_del(&shrinker->list);
212 up_write(&shrinker_rwsem);
213 }
214 EXPORT_SYMBOL(unregister_shrinker);
215
216 #define SHRINK_BATCH 128
217
218 static unsigned long
219 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
220 unsigned long nr_pages_scanned, unsigned long lru_pages)
221 {
222 unsigned long freed = 0;
223 unsigned long long delta;
224 long total_scan;
225 long max_pass;
226 long nr;
227 long new_nr;
228 int nid = shrinkctl->nid;
229 long batch_size = shrinker->batch ? shrinker->batch
230 : SHRINK_BATCH;
231
232 max_pass = shrinker->count_objects(shrinker, shrinkctl);
233 if (max_pass == 0)
234 return 0;
235
236 /*
237 * copy the current shrinker scan count into a local variable
238 * and zero it so that other concurrent shrinker invocations
239 * don't also do this scanning work.
240 */
241 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
242
243 total_scan = nr;
244 delta = (4 * nr_pages_scanned) / shrinker->seeks;
245 delta *= max_pass;
246 do_div(delta, lru_pages + 1);
247 total_scan += delta;
248 if (total_scan < 0) {
249 printk(KERN_ERR
250 "shrink_slab: %pF negative objects to delete nr=%ld\n",
251 shrinker->scan_objects, total_scan);
252 total_scan = max_pass;
253 }
254
255 /*
256 * We need to avoid excessive windup on filesystem shrinkers
257 * due to large numbers of GFP_NOFS allocations causing the
258 * shrinkers to return -1 all the time. This results in a large
259 * nr being built up so when a shrink that can do some work
260 * comes along it empties the entire cache due to nr >>>
261 * max_pass. This is bad for sustaining a working set in
262 * memory.
263 *
264 * Hence only allow the shrinker to scan the entire cache when
265 * a large delta change is calculated directly.
266 */
267 if (delta < max_pass / 4)
268 total_scan = min(total_scan, max_pass / 2);
269
270 /*
271 * Avoid risking looping forever due to too large nr value:
272 * never try to free more than twice the estimate number of
273 * freeable entries.
274 */
275 if (total_scan > max_pass * 2)
276 total_scan = max_pass * 2;
277
278 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
279 nr_pages_scanned, lru_pages,
280 max_pass, delta, total_scan);
281
282 while (total_scan >= batch_size) {
283 unsigned long ret;
284
285 shrinkctl->nr_to_scan = batch_size;
286 ret = shrinker->scan_objects(shrinker, shrinkctl);
287 if (ret == SHRINK_STOP)
288 break;
289 freed += ret;
290
291 count_vm_events(SLABS_SCANNED, batch_size);
292 total_scan -= batch_size;
293
294 cond_resched();
295 }
296
297 /*
298 * move the unused scan count back into the shrinker in a
299 * manner that handles concurrent updates. If we exhausted the
300 * scan, there is no need to do an update.
301 */
302 if (total_scan > 0)
303 new_nr = atomic_long_add_return(total_scan,
304 &shrinker->nr_deferred[nid]);
305 else
306 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
307
308 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
309 return freed;
310 }
311
312 /*
313 * Call the shrink functions to age shrinkable caches
314 *
315 * Here we assume it costs one seek to replace a lru page and that it also
316 * takes a seek to recreate a cache object. With this in mind we age equal
317 * percentages of the lru and ageable caches. This should balance the seeks
318 * generated by these structures.
319 *
320 * If the vm encountered mapped pages on the LRU it increase the pressure on
321 * slab to avoid swapping.
322 *
323 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
324 *
325 * `lru_pages' represents the number of on-LRU pages in all the zones which
326 * are eligible for the caller's allocation attempt. It is used for balancing
327 * slab reclaim versus page reclaim.
328 *
329 * Returns the number of slab objects which we shrunk.
330 */
331 unsigned long shrink_slab(struct shrink_control *shrinkctl,
332 unsigned long nr_pages_scanned,
333 unsigned long lru_pages)
334 {
335 struct shrinker *shrinker;
336 unsigned long freed = 0;
337
338 if (nr_pages_scanned == 0)
339 nr_pages_scanned = SWAP_CLUSTER_MAX;
340
341 if (!down_read_trylock(&shrinker_rwsem)) {
342 /*
343 * If we would return 0, our callers would understand that we
344 * have nothing else to shrink and give up trying. By returning
345 * 1 we keep it going and assume we'll be able to shrink next
346 * time.
347 */
348 freed = 1;
349 goto out;
350 }
351
352 list_for_each_entry(shrinker, &shrinker_list, list) {
353 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
354 if (!node_online(shrinkctl->nid))
355 continue;
356
357 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
358 (shrinkctl->nid != 0))
359 break;
360
361 freed += shrink_slab_node(shrinkctl, shrinker,
362 nr_pages_scanned, lru_pages);
363
364 }
365 }
366 up_read(&shrinker_rwsem);
367 out:
368 cond_resched();
369 return freed;
370 }
371
372 static inline int is_page_cache_freeable(struct page *page)
373 {
374 /*
375 * A freeable page cache page is referenced only by the caller
376 * that isolated the page, the page cache radix tree and
377 * optional buffer heads at page->private.
378 */
379 return page_count(page) - page_has_private(page) == 2;
380 }
381
382 static int may_write_to_queue(struct backing_dev_info *bdi,
383 struct scan_control *sc)
384 {
385 if (current->flags & PF_SWAPWRITE)
386 return 1;
387 if (!bdi_write_congested(bdi))
388 return 1;
389 if (bdi == current->backing_dev_info)
390 return 1;
391 return 0;
392 }
393
394 /*
395 * We detected a synchronous write error writing a page out. Probably
396 * -ENOSPC. We need to propagate that into the address_space for a subsequent
397 * fsync(), msync() or close().
398 *
399 * The tricky part is that after writepage we cannot touch the mapping: nothing
400 * prevents it from being freed up. But we have a ref on the page and once
401 * that page is locked, the mapping is pinned.
402 *
403 * We're allowed to run sleeping lock_page() here because we know the caller has
404 * __GFP_FS.
405 */
406 static void handle_write_error(struct address_space *mapping,
407 struct page *page, int error)
408 {
409 lock_page(page);
410 if (page_mapping(page) == mapping)
411 mapping_set_error(mapping, error);
412 unlock_page(page);
413 }
414
415 /* possible outcome of pageout() */
416 typedef enum {
417 /* failed to write page out, page is locked */
418 PAGE_KEEP,
419 /* move page to the active list, page is locked */
420 PAGE_ACTIVATE,
421 /* page has been sent to the disk successfully, page is unlocked */
422 PAGE_SUCCESS,
423 /* page is clean and locked */
424 PAGE_CLEAN,
425 } pageout_t;
426
427 /*
428 * pageout is called by shrink_page_list() for each dirty page.
429 * Calls ->writepage().
430 */
431 static pageout_t pageout(struct page *page, struct address_space *mapping,
432 struct scan_control *sc)
433 {
434 /*
435 * If the page is dirty, only perform writeback if that write
436 * will be non-blocking. To prevent this allocation from being
437 * stalled by pagecache activity. But note that there may be
438 * stalls if we need to run get_block(). We could test
439 * PagePrivate for that.
440 *
441 * If this process is currently in __generic_file_aio_write() against
442 * this page's queue, we can perform writeback even if that
443 * will block.
444 *
445 * If the page is swapcache, write it back even if that would
446 * block, for some throttling. This happens by accident, because
447 * swap_backing_dev_info is bust: it doesn't reflect the
448 * congestion state of the swapdevs. Easy to fix, if needed.
449 */
450 if (!is_page_cache_freeable(page))
451 return PAGE_KEEP;
452 if (!mapping) {
453 /*
454 * Some data journaling orphaned pages can have
455 * page->mapping == NULL while being dirty with clean buffers.
456 */
457 if (page_has_private(page)) {
458 if (try_to_free_buffers(page)) {
459 ClearPageDirty(page);
460 printk("%s: orphaned page\n", __func__);
461 return PAGE_CLEAN;
462 }
463 }
464 return PAGE_KEEP;
465 }
466 if (mapping->a_ops->writepage == NULL)
467 return PAGE_ACTIVATE;
468 if (!may_write_to_queue(mapping->backing_dev_info, sc))
469 return PAGE_KEEP;
470
471 if (clear_page_dirty_for_io(page)) {
472 int res;
473 struct writeback_control wbc = {
474 .sync_mode = WB_SYNC_NONE,
475 .nr_to_write = SWAP_CLUSTER_MAX,
476 .range_start = 0,
477 .range_end = LLONG_MAX,
478 .for_reclaim = 1,
479 };
480
481 SetPageReclaim(page);
482 res = mapping->a_ops->writepage(page, &wbc);
483 if (res < 0)
484 handle_write_error(mapping, page, res);
485 if (res == AOP_WRITEPAGE_ACTIVATE) {
486 ClearPageReclaim(page);
487 return PAGE_ACTIVATE;
488 }
489
490 if (!PageWriteback(page)) {
491 /* synchronous write or broken a_ops? */
492 ClearPageReclaim(page);
493 }
494 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
495 inc_zone_page_state(page, NR_VMSCAN_WRITE);
496 return PAGE_SUCCESS;
497 }
498
499 return PAGE_CLEAN;
500 }
501
502 /*
503 * Same as remove_mapping, but if the page is removed from the mapping, it
504 * gets returned with a refcount of 0.
505 */
506 static int __remove_mapping(struct address_space *mapping, struct page *page)
507 {
508 BUG_ON(!PageLocked(page));
509 BUG_ON(mapping != page_mapping(page));
510
511 spin_lock_irq(&mapping->tree_lock);
512 /*
513 * The non racy check for a busy page.
514 *
515 * Must be careful with the order of the tests. When someone has
516 * a ref to the page, it may be possible that they dirty it then
517 * drop the reference. So if PageDirty is tested before page_count
518 * here, then the following race may occur:
519 *
520 * get_user_pages(&page);
521 * [user mapping goes away]
522 * write_to(page);
523 * !PageDirty(page) [good]
524 * SetPageDirty(page);
525 * put_page(page);
526 * !page_count(page) [good, discard it]
527 *
528 * [oops, our write_to data is lost]
529 *
530 * Reversing the order of the tests ensures such a situation cannot
531 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
532 * load is not satisfied before that of page->_count.
533 *
534 * Note that if SetPageDirty is always performed via set_page_dirty,
535 * and thus under tree_lock, then this ordering is not required.
536 */
537 if (!page_freeze_refs(page, 2))
538 goto cannot_free;
539 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
540 if (unlikely(PageDirty(page))) {
541 page_unfreeze_refs(page, 2);
542 goto cannot_free;
543 }
544
545 if (PageSwapCache(page)) {
546 swp_entry_t swap = { .val = page_private(page) };
547 __delete_from_swap_cache(page);
548 spin_unlock_irq(&mapping->tree_lock);
549 swapcache_free(swap, page);
550 } else {
551 void (*freepage)(struct page *);
552
553 freepage = mapping->a_ops->freepage;
554
555 __delete_from_page_cache(page);
556 spin_unlock_irq(&mapping->tree_lock);
557 mem_cgroup_uncharge_cache_page(page);
558
559 if (freepage != NULL)
560 freepage(page);
561 }
562
563 return 1;
564
565 cannot_free:
566 spin_unlock_irq(&mapping->tree_lock);
567 return 0;
568 }
569
570 /*
571 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
572 * someone else has a ref on the page, abort and return 0. If it was
573 * successfully detached, return 1. Assumes the caller has a single ref on
574 * this page.
575 */
576 int remove_mapping(struct address_space *mapping, struct page *page)
577 {
578 if (__remove_mapping(mapping, page)) {
579 /*
580 * Unfreezing the refcount with 1 rather than 2 effectively
581 * drops the pagecache ref for us without requiring another
582 * atomic operation.
583 */
584 page_unfreeze_refs(page, 1);
585 return 1;
586 }
587 return 0;
588 }
589
590 /**
591 * putback_lru_page - put previously isolated page onto appropriate LRU list
592 * @page: page to be put back to appropriate lru list
593 *
594 * Add previously isolated @page to appropriate LRU list.
595 * Page may still be unevictable for other reasons.
596 *
597 * lru_lock must not be held, interrupts must be enabled.
598 */
599 void putback_lru_page(struct page *page)
600 {
601 bool is_unevictable;
602 int was_unevictable = PageUnevictable(page);
603
604 VM_BUG_ON(PageLRU(page));
605
606 redo:
607 ClearPageUnevictable(page);
608
609 if (page_evictable(page)) {
610 /*
611 * For evictable pages, we can use the cache.
612 * In event of a race, worst case is we end up with an
613 * unevictable page on [in]active list.
614 * We know how to handle that.
615 */
616 is_unevictable = false;
617 lru_cache_add(page);
618 } else {
619 /*
620 * Put unevictable pages directly on zone's unevictable
621 * list.
622 */
623 is_unevictable = true;
624 add_page_to_unevictable_list(page);
625 /*
626 * When racing with an mlock or AS_UNEVICTABLE clearing
627 * (page is unlocked) make sure that if the other thread
628 * does not observe our setting of PG_lru and fails
629 * isolation/check_move_unevictable_pages,
630 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
631 * the page back to the evictable list.
632 *
633 * The other side is TestClearPageMlocked() or shmem_lock().
634 */
635 smp_mb();
636 }
637
638 /*
639 * page's status can change while we move it among lru. If an evictable
640 * page is on unevictable list, it never be freed. To avoid that,
641 * check after we added it to the list, again.
642 */
643 if (is_unevictable && page_evictable(page)) {
644 if (!isolate_lru_page(page)) {
645 put_page(page);
646 goto redo;
647 }
648 /* This means someone else dropped this page from LRU
649 * So, it will be freed or putback to LRU again. There is
650 * nothing to do here.
651 */
652 }
653
654 if (was_unevictable && !is_unevictable)
655 count_vm_event(UNEVICTABLE_PGRESCUED);
656 else if (!was_unevictable && is_unevictable)
657 count_vm_event(UNEVICTABLE_PGCULLED);
658
659 put_page(page); /* drop ref from isolate */
660 }
661
662 enum page_references {
663 PAGEREF_RECLAIM,
664 PAGEREF_RECLAIM_CLEAN,
665 PAGEREF_KEEP,
666 PAGEREF_ACTIVATE,
667 };
668
669 static enum page_references page_check_references(struct page *page,
670 struct scan_control *sc)
671 {
672 int referenced_ptes, referenced_page;
673 unsigned long vm_flags;
674
675 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
676 &vm_flags);
677 referenced_page = TestClearPageReferenced(page);
678
679 /*
680 * Mlock lost the isolation race with us. Let try_to_unmap()
681 * move the page to the unevictable list.
682 */
683 if (vm_flags & VM_LOCKED)
684 return PAGEREF_RECLAIM;
685
686 if (referenced_ptes) {
687 if (PageSwapBacked(page))
688 return PAGEREF_ACTIVATE;
689 /*
690 * All mapped pages start out with page table
691 * references from the instantiating fault, so we need
692 * to look twice if a mapped file page is used more
693 * than once.
694 *
695 * Mark it and spare it for another trip around the
696 * inactive list. Another page table reference will
697 * lead to its activation.
698 *
699 * Note: the mark is set for activated pages as well
700 * so that recently deactivated but used pages are
701 * quickly recovered.
702 */
703 SetPageReferenced(page);
704
705 if (referenced_page || referenced_ptes > 1)
706 return PAGEREF_ACTIVATE;
707
708 /*
709 * Activate file-backed executable pages after first usage.
710 */
711 if (vm_flags & VM_EXEC)
712 return PAGEREF_ACTIVATE;
713
714 return PAGEREF_KEEP;
715 }
716
717 /* Reclaim if clean, defer dirty pages to writeback */
718 if (referenced_page && !PageSwapBacked(page))
719 return PAGEREF_RECLAIM_CLEAN;
720
721 return PAGEREF_RECLAIM;
722 }
723
724 /* Check if a page is dirty or under writeback */
725 static void page_check_dirty_writeback(struct page *page,
726 bool *dirty, bool *writeback)
727 {
728 struct address_space *mapping;
729
730 /*
731 * Anonymous pages are not handled by flushers and must be written
732 * from reclaim context. Do not stall reclaim based on them
733 */
734 if (!page_is_file_cache(page)) {
735 *dirty = false;
736 *writeback = false;
737 return;
738 }
739
740 /* By default assume that the page flags are accurate */
741 *dirty = PageDirty(page);
742 *writeback = PageWriteback(page);
743
744 /* Verify dirty/writeback state if the filesystem supports it */
745 if (!page_has_private(page))
746 return;
747
748 mapping = page_mapping(page);
749 if (mapping && mapping->a_ops->is_dirty_writeback)
750 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
751 }
752
753 /*
754 * shrink_page_list() returns the number of reclaimed pages
755 */
756 static unsigned long shrink_page_list(struct list_head *page_list,
757 struct zone *zone,
758 struct scan_control *sc,
759 enum ttu_flags ttu_flags,
760 unsigned long *ret_nr_dirty,
761 unsigned long *ret_nr_unqueued_dirty,
762 unsigned long *ret_nr_congested,
763 unsigned long *ret_nr_writeback,
764 unsigned long *ret_nr_immediate,
765 bool force_reclaim)
766 {
767 LIST_HEAD(ret_pages);
768 LIST_HEAD(free_pages);
769 int pgactivate = 0;
770 unsigned long nr_unqueued_dirty = 0;
771 unsigned long nr_dirty = 0;
772 unsigned long nr_congested = 0;
773 unsigned long nr_reclaimed = 0;
774 unsigned long nr_writeback = 0;
775 unsigned long nr_immediate = 0;
776
777 cond_resched();
778
779 mem_cgroup_uncharge_start();
780 while (!list_empty(page_list)) {
781 struct address_space *mapping;
782 struct page *page;
783 int may_enter_fs;
784 enum page_references references = PAGEREF_RECLAIM_CLEAN;
785 bool dirty, writeback;
786
787 cond_resched();
788
789 page = lru_to_page(page_list);
790 list_del(&page->lru);
791
792 if (!trylock_page(page))
793 goto keep;
794
795 VM_BUG_ON(PageActive(page));
796 VM_BUG_ON(page_zone(page) != zone);
797
798 sc->nr_scanned++;
799
800 if (unlikely(!page_evictable(page)))
801 goto cull_mlocked;
802
803 if (!sc->may_unmap && page_mapped(page))
804 goto keep_locked;
805
806 /* Double the slab pressure for mapped and swapcache pages */
807 if (page_mapped(page) || PageSwapCache(page))
808 sc->nr_scanned++;
809
810 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
811 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
812
813 /*
814 * The number of dirty pages determines if a zone is marked
815 * reclaim_congested which affects wait_iff_congested. kswapd
816 * will stall and start writing pages if the tail of the LRU
817 * is all dirty unqueued pages.
818 */
819 page_check_dirty_writeback(page, &dirty, &writeback);
820 if (dirty || writeback)
821 nr_dirty++;
822
823 if (dirty && !writeback)
824 nr_unqueued_dirty++;
825
826 /*
827 * Treat this page as congested if the underlying BDI is or if
828 * pages are cycling through the LRU so quickly that the
829 * pages marked for immediate reclaim are making it to the
830 * end of the LRU a second time.
831 */
832 mapping = page_mapping(page);
833 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
834 (writeback && PageReclaim(page)))
835 nr_congested++;
836
837 /*
838 * If a page at the tail of the LRU is under writeback, there
839 * are three cases to consider.
840 *
841 * 1) If reclaim is encountering an excessive number of pages
842 * under writeback and this page is both under writeback and
843 * PageReclaim then it indicates that pages are being queued
844 * for IO but are being recycled through the LRU before the
845 * IO can complete. Waiting on the page itself risks an
846 * indefinite stall if it is impossible to writeback the
847 * page due to IO error or disconnected storage so instead
848 * note that the LRU is being scanned too quickly and the
849 * caller can stall after page list has been processed.
850 *
851 * 2) Global reclaim encounters a page, memcg encounters a
852 * page that is not marked for immediate reclaim or
853 * the caller does not have __GFP_IO. In this case mark
854 * the page for immediate reclaim and continue scanning.
855 *
856 * __GFP_IO is checked because a loop driver thread might
857 * enter reclaim, and deadlock if it waits on a page for
858 * which it is needed to do the write (loop masks off
859 * __GFP_IO|__GFP_FS for this reason); but more thought
860 * would probably show more reasons.
861 *
862 * Don't require __GFP_FS, since we're not going into the
863 * FS, just waiting on its writeback completion. Worryingly,
864 * ext4 gfs2 and xfs allocate pages with
865 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
866 * may_enter_fs here is liable to OOM on them.
867 *
868 * 3) memcg encounters a page that is not already marked
869 * PageReclaim. memcg does not have any dirty pages
870 * throttling so we could easily OOM just because too many
871 * pages are in writeback and there is nothing else to
872 * reclaim. Wait for the writeback to complete.
873 */
874 if (PageWriteback(page)) {
875 /* Case 1 above */
876 if (current_is_kswapd() &&
877 PageReclaim(page) &&
878 zone_is_reclaim_writeback(zone)) {
879 nr_immediate++;
880 goto keep_locked;
881
882 /* Case 2 above */
883 } else if (global_reclaim(sc) ||
884 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
885 /*
886 * This is slightly racy - end_page_writeback()
887 * might have just cleared PageReclaim, then
888 * setting PageReclaim here end up interpreted
889 * as PageReadahead - but that does not matter
890 * enough to care. What we do want is for this
891 * page to have PageReclaim set next time memcg
892 * reclaim reaches the tests above, so it will
893 * then wait_on_page_writeback() to avoid OOM;
894 * and it's also appropriate in global reclaim.
895 */
896 SetPageReclaim(page);
897 nr_writeback++;
898
899 goto keep_locked;
900
901 /* Case 3 above */
902 } else {
903 wait_on_page_writeback(page);
904 }
905 }
906
907 if (!force_reclaim)
908 references = page_check_references(page, sc);
909
910 switch (references) {
911 case PAGEREF_ACTIVATE:
912 goto activate_locked;
913 case PAGEREF_KEEP:
914 goto keep_locked;
915 case PAGEREF_RECLAIM:
916 case PAGEREF_RECLAIM_CLEAN:
917 ; /* try to reclaim the page below */
918 }
919
920 /*
921 * Anonymous process memory has backing store?
922 * Try to allocate it some swap space here.
923 */
924 if (PageAnon(page) && !PageSwapCache(page)) {
925 if (!(sc->gfp_mask & __GFP_IO))
926 goto keep_locked;
927 if (!add_to_swap(page, page_list))
928 goto activate_locked;
929 may_enter_fs = 1;
930
931 /* Adding to swap updated mapping */
932 mapping = page_mapping(page);
933 }
934
935 /*
936 * The page is mapped into the page tables of one or more
937 * processes. Try to unmap it here.
938 */
939 if (page_mapped(page) && mapping) {
940 switch (try_to_unmap(page, ttu_flags)) {
941 case SWAP_FAIL:
942 goto activate_locked;
943 case SWAP_AGAIN:
944 goto keep_locked;
945 case SWAP_MLOCK:
946 goto cull_mlocked;
947 case SWAP_SUCCESS:
948 ; /* try to free the page below */
949 }
950 }
951
952 if (PageDirty(page)) {
953 /*
954 * Only kswapd can writeback filesystem pages to
955 * avoid risk of stack overflow but only writeback
956 * if many dirty pages have been encountered.
957 */
958 if (page_is_file_cache(page) &&
959 (!current_is_kswapd() ||
960 !zone_is_reclaim_dirty(zone))) {
961 /*
962 * Immediately reclaim when written back.
963 * Similar in principal to deactivate_page()
964 * except we already have the page isolated
965 * and know it's dirty
966 */
967 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
968 SetPageReclaim(page);
969
970 goto keep_locked;
971 }
972
973 if (references == PAGEREF_RECLAIM_CLEAN)
974 goto keep_locked;
975 if (!may_enter_fs)
976 goto keep_locked;
977 if (!sc->may_writepage)
978 goto keep_locked;
979
980 /* Page is dirty, try to write it out here */
981 switch (pageout(page, mapping, sc)) {
982 case PAGE_KEEP:
983 goto keep_locked;
984 case PAGE_ACTIVATE:
985 goto activate_locked;
986 case PAGE_SUCCESS:
987 if (PageWriteback(page))
988 goto keep;
989 if (PageDirty(page))
990 goto keep;
991
992 /*
993 * A synchronous write - probably a ramdisk. Go
994 * ahead and try to reclaim the page.
995 */
996 if (!trylock_page(page))
997 goto keep;
998 if (PageDirty(page) || PageWriteback(page))
999 goto keep_locked;
1000 mapping = page_mapping(page);
1001 case PAGE_CLEAN:
1002 ; /* try to free the page below */
1003 }
1004 }
1005
1006 /*
1007 * If the page has buffers, try to free the buffer mappings
1008 * associated with this page. If we succeed we try to free
1009 * the page as well.
1010 *
1011 * We do this even if the page is PageDirty().
1012 * try_to_release_page() does not perform I/O, but it is
1013 * possible for a page to have PageDirty set, but it is actually
1014 * clean (all its buffers are clean). This happens if the
1015 * buffers were written out directly, with submit_bh(). ext3
1016 * will do this, as well as the blockdev mapping.
1017 * try_to_release_page() will discover that cleanness and will
1018 * drop the buffers and mark the page clean - it can be freed.
1019 *
1020 * Rarely, pages can have buffers and no ->mapping. These are
1021 * the pages which were not successfully invalidated in
1022 * truncate_complete_page(). We try to drop those buffers here
1023 * and if that worked, and the page is no longer mapped into
1024 * process address space (page_count == 1) it can be freed.
1025 * Otherwise, leave the page on the LRU so it is swappable.
1026 */
1027 if (page_has_private(page)) {
1028 if (!try_to_release_page(page, sc->gfp_mask))
1029 goto activate_locked;
1030 if (!mapping && page_count(page) == 1) {
1031 unlock_page(page);
1032 if (put_page_testzero(page))
1033 goto free_it;
1034 else {
1035 /*
1036 * rare race with speculative reference.
1037 * the speculative reference will free
1038 * this page shortly, so we may
1039 * increment nr_reclaimed here (and
1040 * leave it off the LRU).
1041 */
1042 nr_reclaimed++;
1043 continue;
1044 }
1045 }
1046 }
1047
1048 if (!mapping || !__remove_mapping(mapping, page))
1049 goto keep_locked;
1050
1051 /*
1052 * At this point, we have no other references and there is
1053 * no way to pick any more up (removed from LRU, removed
1054 * from pagecache). Can use non-atomic bitops now (and
1055 * we obviously don't have to worry about waking up a process
1056 * waiting on the page lock, because there are no references.
1057 */
1058 __clear_page_locked(page);
1059 free_it:
1060 nr_reclaimed++;
1061
1062 /*
1063 * Is there need to periodically free_page_list? It would
1064 * appear not as the counts should be low
1065 */
1066 list_add(&page->lru, &free_pages);
1067 continue;
1068
1069 cull_mlocked:
1070 if (PageSwapCache(page))
1071 try_to_free_swap(page);
1072 unlock_page(page);
1073 putback_lru_page(page);
1074 continue;
1075
1076 activate_locked:
1077 /* Not a candidate for swapping, so reclaim swap space. */
1078 if (PageSwapCache(page) && vm_swap_full())
1079 try_to_free_swap(page);
1080 VM_BUG_ON(PageActive(page));
1081 SetPageActive(page);
1082 pgactivate++;
1083 keep_locked:
1084 unlock_page(page);
1085 keep:
1086 list_add(&page->lru, &ret_pages);
1087 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1088 }
1089
1090 free_hot_cold_page_list(&free_pages, 1);
1091
1092 list_splice(&ret_pages, page_list);
1093 count_vm_events(PGACTIVATE, pgactivate);
1094 mem_cgroup_uncharge_end();
1095 *ret_nr_dirty += nr_dirty;
1096 *ret_nr_congested += nr_congested;
1097 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1098 *ret_nr_writeback += nr_writeback;
1099 *ret_nr_immediate += nr_immediate;
1100 return nr_reclaimed;
1101 }
1102
1103 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1104 struct list_head *page_list)
1105 {
1106 struct scan_control sc = {
1107 .gfp_mask = GFP_KERNEL,
1108 .priority = DEF_PRIORITY,
1109 .may_unmap = 1,
1110 };
1111 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1112 struct page *page, *next;
1113 LIST_HEAD(clean_pages);
1114
1115 list_for_each_entry_safe(page, next, page_list, lru) {
1116 if (page_is_file_cache(page) && !PageDirty(page)) {
1117 ClearPageActive(page);
1118 list_move(&page->lru, &clean_pages);
1119 }
1120 }
1121
1122 ret = shrink_page_list(&clean_pages, zone, &sc,
1123 TTU_UNMAP|TTU_IGNORE_ACCESS,
1124 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1125 list_splice(&clean_pages, page_list);
1126 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1127 return ret;
1128 }
1129
1130 /*
1131 * Attempt to remove the specified page from its LRU. Only take this page
1132 * if it is of the appropriate PageActive status. Pages which are being
1133 * freed elsewhere are also ignored.
1134 *
1135 * page: page to consider
1136 * mode: one of the LRU isolation modes defined above
1137 *
1138 * returns 0 on success, -ve errno on failure.
1139 */
1140 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1141 {
1142 int ret = -EINVAL;
1143
1144 /* Only take pages on the LRU. */
1145 if (!PageLRU(page))
1146 return ret;
1147
1148 /* Compaction should not handle unevictable pages but CMA can do so */
1149 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1150 return ret;
1151
1152 ret = -EBUSY;
1153
1154 /*
1155 * To minimise LRU disruption, the caller can indicate that it only
1156 * wants to isolate pages it will be able to operate on without
1157 * blocking - clean pages for the most part.
1158 *
1159 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1160 * is used by reclaim when it is cannot write to backing storage
1161 *
1162 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1163 * that it is possible to migrate without blocking
1164 */
1165 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1166 /* All the caller can do on PageWriteback is block */
1167 if (PageWriteback(page))
1168 return ret;
1169
1170 if (PageDirty(page)) {
1171 struct address_space *mapping;
1172
1173 /* ISOLATE_CLEAN means only clean pages */
1174 if (mode & ISOLATE_CLEAN)
1175 return ret;
1176
1177 /*
1178 * Only pages without mappings or that have a
1179 * ->migratepage callback are possible to migrate
1180 * without blocking
1181 */
1182 mapping = page_mapping(page);
1183 if (mapping && !mapping->a_ops->migratepage)
1184 return ret;
1185 }
1186 }
1187
1188 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1189 return ret;
1190
1191 if (likely(get_page_unless_zero(page))) {
1192 /*
1193 * Be careful not to clear PageLRU until after we're
1194 * sure the page is not being freed elsewhere -- the
1195 * page release code relies on it.
1196 */
1197 ClearPageLRU(page);
1198 ret = 0;
1199 }
1200
1201 return ret;
1202 }
1203
1204 /*
1205 * zone->lru_lock is heavily contended. Some of the functions that
1206 * shrink the lists perform better by taking out a batch of pages
1207 * and working on them outside the LRU lock.
1208 *
1209 * For pagecache intensive workloads, this function is the hottest
1210 * spot in the kernel (apart from copy_*_user functions).
1211 *
1212 * Appropriate locks must be held before calling this function.
1213 *
1214 * @nr_to_scan: The number of pages to look through on the list.
1215 * @lruvec: The LRU vector to pull pages from.
1216 * @dst: The temp list to put pages on to.
1217 * @nr_scanned: The number of pages that were scanned.
1218 * @sc: The scan_control struct for this reclaim session
1219 * @mode: One of the LRU isolation modes
1220 * @lru: LRU list id for isolating
1221 *
1222 * returns how many pages were moved onto *@dst.
1223 */
1224 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1225 struct lruvec *lruvec, struct list_head *dst,
1226 unsigned long *nr_scanned, struct scan_control *sc,
1227 isolate_mode_t mode, enum lru_list lru)
1228 {
1229 struct list_head *src = &lruvec->lists[lru];
1230 unsigned long nr_taken = 0;
1231 unsigned long scan;
1232
1233 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1234 struct page *page;
1235 int nr_pages;
1236
1237 page = lru_to_page(src);
1238 prefetchw_prev_lru_page(page, src, flags);
1239
1240 VM_BUG_ON(!PageLRU(page));
1241
1242 switch (__isolate_lru_page(page, mode)) {
1243 case 0:
1244 nr_pages = hpage_nr_pages(page);
1245 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1246 list_move(&page->lru, dst);
1247 nr_taken += nr_pages;
1248 break;
1249
1250 case -EBUSY:
1251 /* else it is being freed elsewhere */
1252 list_move(&page->lru, src);
1253 continue;
1254
1255 default:
1256 BUG();
1257 }
1258 }
1259
1260 *nr_scanned = scan;
1261 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1262 nr_taken, mode, is_file_lru(lru));
1263 return nr_taken;
1264 }
1265
1266 /**
1267 * isolate_lru_page - tries to isolate a page from its LRU list
1268 * @page: page to isolate from its LRU list
1269 *
1270 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1271 * vmstat statistic corresponding to whatever LRU list the page was on.
1272 *
1273 * Returns 0 if the page was removed from an LRU list.
1274 * Returns -EBUSY if the page was not on an LRU list.
1275 *
1276 * The returned page will have PageLRU() cleared. If it was found on
1277 * the active list, it will have PageActive set. If it was found on
1278 * the unevictable list, it will have the PageUnevictable bit set. That flag
1279 * may need to be cleared by the caller before letting the page go.
1280 *
1281 * The vmstat statistic corresponding to the list on which the page was
1282 * found will be decremented.
1283 *
1284 * Restrictions:
1285 * (1) Must be called with an elevated refcount on the page. This is a
1286 * fundamentnal difference from isolate_lru_pages (which is called
1287 * without a stable reference).
1288 * (2) the lru_lock must not be held.
1289 * (3) interrupts must be enabled.
1290 */
1291 int isolate_lru_page(struct page *page)
1292 {
1293 int ret = -EBUSY;
1294
1295 VM_BUG_ON(!page_count(page));
1296
1297 if (PageLRU(page)) {
1298 struct zone *zone = page_zone(page);
1299 struct lruvec *lruvec;
1300
1301 spin_lock_irq(&zone->lru_lock);
1302 lruvec = mem_cgroup_page_lruvec(page, zone);
1303 if (PageLRU(page)) {
1304 int lru = page_lru(page);
1305 get_page(page);
1306 ClearPageLRU(page);
1307 del_page_from_lru_list(page, lruvec, lru);
1308 ret = 0;
1309 }
1310 spin_unlock_irq(&zone->lru_lock);
1311 }
1312 return ret;
1313 }
1314
1315 /*
1316 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1317 * then get resheduled. When there are massive number of tasks doing page
1318 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1319 * the LRU list will go small and be scanned faster than necessary, leading to
1320 * unnecessary swapping, thrashing and OOM.
1321 */
1322 static int too_many_isolated(struct zone *zone, int file,
1323 struct scan_control *sc)
1324 {
1325 unsigned long inactive, isolated;
1326
1327 if (current_is_kswapd())
1328 return 0;
1329
1330 if (!global_reclaim(sc))
1331 return 0;
1332
1333 if (file) {
1334 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1335 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1336 } else {
1337 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1338 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1339 }
1340
1341 /*
1342 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1343 * won't get blocked by normal direct-reclaimers, forming a circular
1344 * deadlock.
1345 */
1346 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1347 inactive >>= 3;
1348
1349 return isolated > inactive;
1350 }
1351
1352 static noinline_for_stack void
1353 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1354 {
1355 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1356 struct zone *zone = lruvec_zone(lruvec);
1357 LIST_HEAD(pages_to_free);
1358
1359 /*
1360 * Put back any unfreeable pages.
1361 */
1362 while (!list_empty(page_list)) {
1363 struct page *page = lru_to_page(page_list);
1364 int lru;
1365
1366 VM_BUG_ON(PageLRU(page));
1367 list_del(&page->lru);
1368 if (unlikely(!page_evictable(page))) {
1369 spin_unlock_irq(&zone->lru_lock);
1370 putback_lru_page(page);
1371 spin_lock_irq(&zone->lru_lock);
1372 continue;
1373 }
1374
1375 lruvec = mem_cgroup_page_lruvec(page, zone);
1376
1377 SetPageLRU(page);
1378 lru = page_lru(page);
1379 add_page_to_lru_list(page, lruvec, lru);
1380
1381 if (is_active_lru(lru)) {
1382 int file = is_file_lru(lru);
1383 int numpages = hpage_nr_pages(page);
1384 reclaim_stat->recent_rotated[file] += numpages;
1385 }
1386 if (put_page_testzero(page)) {
1387 __ClearPageLRU(page);
1388 __ClearPageActive(page);
1389 del_page_from_lru_list(page, lruvec, lru);
1390
1391 if (unlikely(PageCompound(page))) {
1392 spin_unlock_irq(&zone->lru_lock);
1393 (*get_compound_page_dtor(page))(page);
1394 spin_lock_irq(&zone->lru_lock);
1395 } else
1396 list_add(&page->lru, &pages_to_free);
1397 }
1398 }
1399
1400 /*
1401 * To save our caller's stack, now use input list for pages to free.
1402 */
1403 list_splice(&pages_to_free, page_list);
1404 }
1405
1406 /*
1407 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1408 * of reclaimed pages
1409 */
1410 static noinline_for_stack unsigned long
1411 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1412 struct scan_control *sc, enum lru_list lru)
1413 {
1414 LIST_HEAD(page_list);
1415 unsigned long nr_scanned;
1416 unsigned long nr_reclaimed = 0;
1417 unsigned long nr_taken;
1418 unsigned long nr_dirty = 0;
1419 unsigned long nr_congested = 0;
1420 unsigned long nr_unqueued_dirty = 0;
1421 unsigned long nr_writeback = 0;
1422 unsigned long nr_immediate = 0;
1423 isolate_mode_t isolate_mode = 0;
1424 int file = is_file_lru(lru);
1425 struct zone *zone = lruvec_zone(lruvec);
1426 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1427
1428 while (unlikely(too_many_isolated(zone, file, sc))) {
1429 congestion_wait(BLK_RW_ASYNC, HZ/10);
1430
1431 /* We are about to die and free our memory. Return now. */
1432 if (fatal_signal_pending(current))
1433 return SWAP_CLUSTER_MAX;
1434 }
1435
1436 lru_add_drain();
1437
1438 if (!sc->may_unmap)
1439 isolate_mode |= ISOLATE_UNMAPPED;
1440 if (!sc->may_writepage)
1441 isolate_mode |= ISOLATE_CLEAN;
1442
1443 spin_lock_irq(&zone->lru_lock);
1444
1445 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1446 &nr_scanned, sc, isolate_mode, lru);
1447
1448 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1449 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1450
1451 if (global_reclaim(sc)) {
1452 zone->pages_scanned += nr_scanned;
1453 if (current_is_kswapd())
1454 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1455 else
1456 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1457 }
1458 spin_unlock_irq(&zone->lru_lock);
1459
1460 if (nr_taken == 0)
1461 return 0;
1462
1463 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1464 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1465 &nr_writeback, &nr_immediate,
1466 false);
1467
1468 spin_lock_irq(&zone->lru_lock);
1469
1470 reclaim_stat->recent_scanned[file] += nr_taken;
1471
1472 if (global_reclaim(sc)) {
1473 if (current_is_kswapd())
1474 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1475 nr_reclaimed);
1476 else
1477 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1478 nr_reclaimed);
1479 }
1480
1481 putback_inactive_pages(lruvec, &page_list);
1482
1483 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1484
1485 spin_unlock_irq(&zone->lru_lock);
1486
1487 free_hot_cold_page_list(&page_list, 1);
1488
1489 /*
1490 * If reclaim is isolating dirty pages under writeback, it implies
1491 * that the long-lived page allocation rate is exceeding the page
1492 * laundering rate. Either the global limits are not being effective
1493 * at throttling processes due to the page distribution throughout
1494 * zones or there is heavy usage of a slow backing device. The
1495 * only option is to throttle from reclaim context which is not ideal
1496 * as there is no guarantee the dirtying process is throttled in the
1497 * same way balance_dirty_pages() manages.
1498 *
1499 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1500 * of pages under pages flagged for immediate reclaim and stall if any
1501 * are encountered in the nr_immediate check below.
1502 */
1503 if (nr_writeback && nr_writeback == nr_taken)
1504 zone_set_flag(zone, ZONE_WRITEBACK);
1505
1506 /*
1507 * memcg will stall in page writeback so only consider forcibly
1508 * stalling for global reclaim
1509 */
1510 if (global_reclaim(sc)) {
1511 /*
1512 * Tag a zone as congested if all the dirty pages scanned were
1513 * backed by a congested BDI and wait_iff_congested will stall.
1514 */
1515 if (nr_dirty && nr_dirty == nr_congested)
1516 zone_set_flag(zone, ZONE_CONGESTED);
1517
1518 /*
1519 * If dirty pages are scanned that are not queued for IO, it
1520 * implies that flushers are not keeping up. In this case, flag
1521 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1522 * pages from reclaim context. It will forcibly stall in the
1523 * next check.
1524 */
1525 if (nr_unqueued_dirty == nr_taken)
1526 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1527
1528 /*
1529 * In addition, if kswapd scans pages marked marked for
1530 * immediate reclaim and under writeback (nr_immediate), it
1531 * implies that pages are cycling through the LRU faster than
1532 * they are written so also forcibly stall.
1533 */
1534 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1535 congestion_wait(BLK_RW_ASYNC, HZ/10);
1536 }
1537
1538 /*
1539 * Stall direct reclaim for IO completions if underlying BDIs or zone
1540 * is congested. Allow kswapd to continue until it starts encountering
1541 * unqueued dirty pages or cycling through the LRU too quickly.
1542 */
1543 if (!sc->hibernation_mode && !current_is_kswapd())
1544 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1545
1546 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1547 zone_idx(zone),
1548 nr_scanned, nr_reclaimed,
1549 sc->priority,
1550 trace_shrink_flags(file));
1551 return nr_reclaimed;
1552 }
1553
1554 /*
1555 * This moves pages from the active list to the inactive list.
1556 *
1557 * We move them the other way if the page is referenced by one or more
1558 * processes, from rmap.
1559 *
1560 * If the pages are mostly unmapped, the processing is fast and it is
1561 * appropriate to hold zone->lru_lock across the whole operation. But if
1562 * the pages are mapped, the processing is slow (page_referenced()) so we
1563 * should drop zone->lru_lock around each page. It's impossible to balance
1564 * this, so instead we remove the pages from the LRU while processing them.
1565 * It is safe to rely on PG_active against the non-LRU pages in here because
1566 * nobody will play with that bit on a non-LRU page.
1567 *
1568 * The downside is that we have to touch page->_count against each page.
1569 * But we had to alter page->flags anyway.
1570 */
1571
1572 static void move_active_pages_to_lru(struct lruvec *lruvec,
1573 struct list_head *list,
1574 struct list_head *pages_to_free,
1575 enum lru_list lru)
1576 {
1577 struct zone *zone = lruvec_zone(lruvec);
1578 unsigned long pgmoved = 0;
1579 struct page *page;
1580 int nr_pages;
1581
1582 while (!list_empty(list)) {
1583 page = lru_to_page(list);
1584 lruvec = mem_cgroup_page_lruvec(page, zone);
1585
1586 VM_BUG_ON(PageLRU(page));
1587 SetPageLRU(page);
1588
1589 nr_pages = hpage_nr_pages(page);
1590 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1591 list_move(&page->lru, &lruvec->lists[lru]);
1592 pgmoved += nr_pages;
1593
1594 if (put_page_testzero(page)) {
1595 __ClearPageLRU(page);
1596 __ClearPageActive(page);
1597 del_page_from_lru_list(page, lruvec, lru);
1598
1599 if (unlikely(PageCompound(page))) {
1600 spin_unlock_irq(&zone->lru_lock);
1601 (*get_compound_page_dtor(page))(page);
1602 spin_lock_irq(&zone->lru_lock);
1603 } else
1604 list_add(&page->lru, pages_to_free);
1605 }
1606 }
1607 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1608 if (!is_active_lru(lru))
1609 __count_vm_events(PGDEACTIVATE, pgmoved);
1610 }
1611
1612 static void shrink_active_list(unsigned long nr_to_scan,
1613 struct lruvec *lruvec,
1614 struct scan_control *sc,
1615 enum lru_list lru)
1616 {
1617 unsigned long nr_taken;
1618 unsigned long nr_scanned;
1619 unsigned long vm_flags;
1620 LIST_HEAD(l_hold); /* The pages which were snipped off */
1621 LIST_HEAD(l_active);
1622 LIST_HEAD(l_inactive);
1623 struct page *page;
1624 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1625 unsigned long nr_rotated = 0;
1626 isolate_mode_t isolate_mode = 0;
1627 int file = is_file_lru(lru);
1628 struct zone *zone = lruvec_zone(lruvec);
1629
1630 lru_add_drain();
1631
1632 if (!sc->may_unmap)
1633 isolate_mode |= ISOLATE_UNMAPPED;
1634 if (!sc->may_writepage)
1635 isolate_mode |= ISOLATE_CLEAN;
1636
1637 spin_lock_irq(&zone->lru_lock);
1638
1639 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1640 &nr_scanned, sc, isolate_mode, lru);
1641 if (global_reclaim(sc))
1642 zone->pages_scanned += nr_scanned;
1643
1644 reclaim_stat->recent_scanned[file] += nr_taken;
1645
1646 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1647 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1648 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1649 spin_unlock_irq(&zone->lru_lock);
1650
1651 while (!list_empty(&l_hold)) {
1652 cond_resched();
1653 page = lru_to_page(&l_hold);
1654 list_del(&page->lru);
1655
1656 if (unlikely(!page_evictable(page))) {
1657 putback_lru_page(page);
1658 continue;
1659 }
1660
1661 if (unlikely(buffer_heads_over_limit)) {
1662 if (page_has_private(page) && trylock_page(page)) {
1663 if (page_has_private(page))
1664 try_to_release_page(page, 0);
1665 unlock_page(page);
1666 }
1667 }
1668
1669 if (page_referenced(page, 0, sc->target_mem_cgroup,
1670 &vm_flags)) {
1671 nr_rotated += hpage_nr_pages(page);
1672 /*
1673 * Identify referenced, file-backed active pages and
1674 * give them one more trip around the active list. So
1675 * that executable code get better chances to stay in
1676 * memory under moderate memory pressure. Anon pages
1677 * are not likely to be evicted by use-once streaming
1678 * IO, plus JVM can create lots of anon VM_EXEC pages,
1679 * so we ignore them here.
1680 */
1681 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1682 list_add(&page->lru, &l_active);
1683 continue;
1684 }
1685 }
1686
1687 ClearPageActive(page); /* we are de-activating */
1688 list_add(&page->lru, &l_inactive);
1689 }
1690
1691 /*
1692 * Move pages back to the lru list.
1693 */
1694 spin_lock_irq(&zone->lru_lock);
1695 /*
1696 * Count referenced pages from currently used mappings as rotated,
1697 * even though only some of them are actually re-activated. This
1698 * helps balance scan pressure between file and anonymous pages in
1699 * get_scan_ratio.
1700 */
1701 reclaim_stat->recent_rotated[file] += nr_rotated;
1702
1703 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1704 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1705 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1706 spin_unlock_irq(&zone->lru_lock);
1707
1708 free_hot_cold_page_list(&l_hold, 1);
1709 }
1710
1711 #ifdef CONFIG_SWAP
1712 static int inactive_anon_is_low_global(struct zone *zone)
1713 {
1714 unsigned long active, inactive;
1715
1716 active = zone_page_state(zone, NR_ACTIVE_ANON);
1717 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1718
1719 if (inactive * zone->inactive_ratio < active)
1720 return 1;
1721
1722 return 0;
1723 }
1724
1725 /**
1726 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1727 * @lruvec: LRU vector to check
1728 *
1729 * Returns true if the zone does not have enough inactive anon pages,
1730 * meaning some active anon pages need to be deactivated.
1731 */
1732 static int inactive_anon_is_low(struct lruvec *lruvec)
1733 {
1734 /*
1735 * If we don't have swap space, anonymous page deactivation
1736 * is pointless.
1737 */
1738 if (!total_swap_pages)
1739 return 0;
1740
1741 if (!mem_cgroup_disabled())
1742 return mem_cgroup_inactive_anon_is_low(lruvec);
1743
1744 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1745 }
1746 #else
1747 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1748 {
1749 return 0;
1750 }
1751 #endif
1752
1753 /**
1754 * inactive_file_is_low - check if file pages need to be deactivated
1755 * @lruvec: LRU vector to check
1756 *
1757 * When the system is doing streaming IO, memory pressure here
1758 * ensures that active file pages get deactivated, until more
1759 * than half of the file pages are on the inactive list.
1760 *
1761 * Once we get to that situation, protect the system's working
1762 * set from being evicted by disabling active file page aging.
1763 *
1764 * This uses a different ratio than the anonymous pages, because
1765 * the page cache uses a use-once replacement algorithm.
1766 */
1767 static int inactive_file_is_low(struct lruvec *lruvec)
1768 {
1769 unsigned long inactive;
1770 unsigned long active;
1771
1772 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1773 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1774
1775 return active > inactive;
1776 }
1777
1778 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1779 {
1780 if (is_file_lru(lru))
1781 return inactive_file_is_low(lruvec);
1782 else
1783 return inactive_anon_is_low(lruvec);
1784 }
1785
1786 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1787 struct lruvec *lruvec, struct scan_control *sc)
1788 {
1789 if (is_active_lru(lru)) {
1790 if (inactive_list_is_low(lruvec, lru))
1791 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1792 return 0;
1793 }
1794
1795 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1796 }
1797
1798 static int vmscan_swappiness(struct scan_control *sc)
1799 {
1800 if (global_reclaim(sc))
1801 return vm_swappiness;
1802 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1803 }
1804
1805 enum scan_balance {
1806 SCAN_EQUAL,
1807 SCAN_FRACT,
1808 SCAN_ANON,
1809 SCAN_FILE,
1810 };
1811
1812 /*
1813 * Determine how aggressively the anon and file LRU lists should be
1814 * scanned. The relative value of each set of LRU lists is determined
1815 * by looking at the fraction of the pages scanned we did rotate back
1816 * onto the active list instead of evict.
1817 *
1818 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1819 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1820 */
1821 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1822 unsigned long *nr)
1823 {
1824 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1825 u64 fraction[2];
1826 u64 denominator = 0; /* gcc */
1827 struct zone *zone = lruvec_zone(lruvec);
1828 unsigned long anon_prio, file_prio;
1829 enum scan_balance scan_balance;
1830 unsigned long anon, file, free;
1831 bool force_scan = false;
1832 unsigned long ap, fp;
1833 enum lru_list lru;
1834
1835 /*
1836 * If the zone or memcg is small, nr[l] can be 0. This
1837 * results in no scanning on this priority and a potential
1838 * priority drop. Global direct reclaim can go to the next
1839 * zone and tends to have no problems. Global kswapd is for
1840 * zone balancing and it needs to scan a minimum amount. When
1841 * reclaiming for a memcg, a priority drop can cause high
1842 * latencies, so it's better to scan a minimum amount there as
1843 * well.
1844 */
1845 if (current_is_kswapd() && !zone_reclaimable(zone))
1846 force_scan = true;
1847 if (!global_reclaim(sc))
1848 force_scan = true;
1849
1850 /* If we have no swap space, do not bother scanning anon pages. */
1851 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1852 scan_balance = SCAN_FILE;
1853 goto out;
1854 }
1855
1856 /*
1857 * Global reclaim will swap to prevent OOM even with no
1858 * swappiness, but memcg users want to use this knob to
1859 * disable swapping for individual groups completely when
1860 * using the memory controller's swap limit feature would be
1861 * too expensive.
1862 */
1863 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1864 scan_balance = SCAN_FILE;
1865 goto out;
1866 }
1867
1868 /*
1869 * Do not apply any pressure balancing cleverness when the
1870 * system is close to OOM, scan both anon and file equally
1871 * (unless the swappiness setting disagrees with swapping).
1872 */
1873 if (!sc->priority && vmscan_swappiness(sc)) {
1874 scan_balance = SCAN_EQUAL;
1875 goto out;
1876 }
1877
1878 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1879 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1880 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1881 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1882
1883 /*
1884 * If it's foreseeable that reclaiming the file cache won't be
1885 * enough to get the zone back into a desirable shape, we have
1886 * to swap. Better start now and leave the - probably heavily
1887 * thrashing - remaining file pages alone.
1888 */
1889 if (global_reclaim(sc)) {
1890 free = zone_page_state(zone, NR_FREE_PAGES);
1891 if (unlikely(file + free <= high_wmark_pages(zone))) {
1892 scan_balance = SCAN_ANON;
1893 goto out;
1894 }
1895 }
1896
1897 /*
1898 * There is enough inactive page cache, do not reclaim
1899 * anything from the anonymous working set right now.
1900 */
1901 if (!inactive_file_is_low(lruvec)) {
1902 scan_balance = SCAN_FILE;
1903 goto out;
1904 }
1905
1906 scan_balance = SCAN_FRACT;
1907
1908 /*
1909 * With swappiness at 100, anonymous and file have the same priority.
1910 * This scanning priority is essentially the inverse of IO cost.
1911 */
1912 anon_prio = vmscan_swappiness(sc);
1913 file_prio = 200 - anon_prio;
1914
1915 /*
1916 * OK, so we have swap space and a fair amount of page cache
1917 * pages. We use the recently rotated / recently scanned
1918 * ratios to determine how valuable each cache is.
1919 *
1920 * Because workloads change over time (and to avoid overflow)
1921 * we keep these statistics as a floating average, which ends
1922 * up weighing recent references more than old ones.
1923 *
1924 * anon in [0], file in [1]
1925 */
1926 spin_lock_irq(&zone->lru_lock);
1927 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1928 reclaim_stat->recent_scanned[0] /= 2;
1929 reclaim_stat->recent_rotated[0] /= 2;
1930 }
1931
1932 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1933 reclaim_stat->recent_scanned[1] /= 2;
1934 reclaim_stat->recent_rotated[1] /= 2;
1935 }
1936
1937 /*
1938 * The amount of pressure on anon vs file pages is inversely
1939 * proportional to the fraction of recently scanned pages on
1940 * each list that were recently referenced and in active use.
1941 */
1942 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1943 ap /= reclaim_stat->recent_rotated[0] + 1;
1944
1945 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1946 fp /= reclaim_stat->recent_rotated[1] + 1;
1947 spin_unlock_irq(&zone->lru_lock);
1948
1949 fraction[0] = ap;
1950 fraction[1] = fp;
1951 denominator = ap + fp + 1;
1952 out:
1953 for_each_evictable_lru(lru) {
1954 int file = is_file_lru(lru);
1955 unsigned long size;
1956 unsigned long scan;
1957
1958 size = get_lru_size(lruvec, lru);
1959 scan = size >> sc->priority;
1960
1961 if (!scan && force_scan)
1962 scan = min(size, SWAP_CLUSTER_MAX);
1963
1964 switch (scan_balance) {
1965 case SCAN_EQUAL:
1966 /* Scan lists relative to size */
1967 break;
1968 case SCAN_FRACT:
1969 /*
1970 * Scan types proportional to swappiness and
1971 * their relative recent reclaim efficiency.
1972 */
1973 scan = div64_u64(scan * fraction[file], denominator);
1974 break;
1975 case SCAN_FILE:
1976 case SCAN_ANON:
1977 /* Scan one type exclusively */
1978 if ((scan_balance == SCAN_FILE) != file)
1979 scan = 0;
1980 break;
1981 default:
1982 /* Look ma, no brain */
1983 BUG();
1984 }
1985 nr[lru] = scan;
1986 }
1987 }
1988
1989 /*
1990 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1991 */
1992 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1993 {
1994 unsigned long nr[NR_LRU_LISTS];
1995 unsigned long targets[NR_LRU_LISTS];
1996 unsigned long nr_to_scan;
1997 enum lru_list lru;
1998 unsigned long nr_reclaimed = 0;
1999 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2000 struct blk_plug plug;
2001 bool scan_adjusted = false;
2002
2003 get_scan_count(lruvec, sc, nr);
2004
2005 /* Record the original scan target for proportional adjustments later */
2006 memcpy(targets, nr, sizeof(nr));
2007
2008 blk_start_plug(&plug);
2009 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2010 nr[LRU_INACTIVE_FILE]) {
2011 unsigned long nr_anon, nr_file, percentage;
2012 unsigned long nr_scanned;
2013
2014 for_each_evictable_lru(lru) {
2015 if (nr[lru]) {
2016 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2017 nr[lru] -= nr_to_scan;
2018
2019 nr_reclaimed += shrink_list(lru, nr_to_scan,
2020 lruvec, sc);
2021 }
2022 }
2023
2024 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2025 continue;
2026
2027 /*
2028 * For global direct reclaim, reclaim only the number of pages
2029 * requested. Less care is taken to scan proportionally as it
2030 * is more important to minimise direct reclaim stall latency
2031 * than it is to properly age the LRU lists.
2032 */
2033 if (global_reclaim(sc) && !current_is_kswapd())
2034 break;
2035
2036 /*
2037 * For kswapd and memcg, reclaim at least the number of pages
2038 * requested. Ensure that the anon and file LRUs shrink
2039 * proportionally what was requested by get_scan_count(). We
2040 * stop reclaiming one LRU and reduce the amount scanning
2041 * proportional to the original scan target.
2042 */
2043 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2044 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2045
2046 if (nr_file > nr_anon) {
2047 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2048 targets[LRU_ACTIVE_ANON] + 1;
2049 lru = LRU_BASE;
2050 percentage = nr_anon * 100 / scan_target;
2051 } else {
2052 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2053 targets[LRU_ACTIVE_FILE] + 1;
2054 lru = LRU_FILE;
2055 percentage = nr_file * 100 / scan_target;
2056 }
2057
2058 /* Stop scanning the smaller of the LRU */
2059 nr[lru] = 0;
2060 nr[lru + LRU_ACTIVE] = 0;
2061
2062 /*
2063 * Recalculate the other LRU scan count based on its original
2064 * scan target and the percentage scanning already complete
2065 */
2066 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2067 nr_scanned = targets[lru] - nr[lru];
2068 nr[lru] = targets[lru] * (100 - percentage) / 100;
2069 nr[lru] -= min(nr[lru], nr_scanned);
2070
2071 lru += LRU_ACTIVE;
2072 nr_scanned = targets[lru] - nr[lru];
2073 nr[lru] = targets[lru] * (100 - percentage) / 100;
2074 nr[lru] -= min(nr[lru], nr_scanned);
2075
2076 scan_adjusted = true;
2077 }
2078 blk_finish_plug(&plug);
2079 sc->nr_reclaimed += nr_reclaimed;
2080
2081 /*
2082 * Even if we did not try to evict anon pages at all, we want to
2083 * rebalance the anon lru active/inactive ratio.
2084 */
2085 if (inactive_anon_is_low(lruvec))
2086 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2087 sc, LRU_ACTIVE_ANON);
2088
2089 throttle_vm_writeout(sc->gfp_mask);
2090 }
2091
2092 /* Use reclaim/compaction for costly allocs or under memory pressure */
2093 static bool in_reclaim_compaction(struct scan_control *sc)
2094 {
2095 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2096 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2097 sc->priority < DEF_PRIORITY - 2))
2098 return true;
2099
2100 return false;
2101 }
2102
2103 /*
2104 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2105 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2106 * true if more pages should be reclaimed such that when the page allocator
2107 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2108 * It will give up earlier than that if there is difficulty reclaiming pages.
2109 */
2110 static inline bool should_continue_reclaim(struct zone *zone,
2111 unsigned long nr_reclaimed,
2112 unsigned long nr_scanned,
2113 struct scan_control *sc)
2114 {
2115 unsigned long pages_for_compaction;
2116 unsigned long inactive_lru_pages;
2117
2118 /* If not in reclaim/compaction mode, stop */
2119 if (!in_reclaim_compaction(sc))
2120 return false;
2121
2122 /* Consider stopping depending on scan and reclaim activity */
2123 if (sc->gfp_mask & __GFP_REPEAT) {
2124 /*
2125 * For __GFP_REPEAT allocations, stop reclaiming if the
2126 * full LRU list has been scanned and we are still failing
2127 * to reclaim pages. This full LRU scan is potentially
2128 * expensive but a __GFP_REPEAT caller really wants to succeed
2129 */
2130 if (!nr_reclaimed && !nr_scanned)
2131 return false;
2132 } else {
2133 /*
2134 * For non-__GFP_REPEAT allocations which can presumably
2135 * fail without consequence, stop if we failed to reclaim
2136 * any pages from the last SWAP_CLUSTER_MAX number of
2137 * pages that were scanned. This will return to the
2138 * caller faster at the risk reclaim/compaction and
2139 * the resulting allocation attempt fails
2140 */
2141 if (!nr_reclaimed)
2142 return false;
2143 }
2144
2145 /*
2146 * If we have not reclaimed enough pages for compaction and the
2147 * inactive lists are large enough, continue reclaiming
2148 */
2149 pages_for_compaction = (2UL << sc->order);
2150 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2151 if (get_nr_swap_pages() > 0)
2152 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2153 if (sc->nr_reclaimed < pages_for_compaction &&
2154 inactive_lru_pages > pages_for_compaction)
2155 return true;
2156
2157 /* If compaction would go ahead or the allocation would succeed, stop */
2158 switch (compaction_suitable(zone, sc->order)) {
2159 case COMPACT_PARTIAL:
2160 case COMPACT_CONTINUE:
2161 return false;
2162 default:
2163 return true;
2164 }
2165 }
2166
2167 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2168 {
2169 unsigned long nr_reclaimed, nr_scanned;
2170
2171 do {
2172 struct mem_cgroup *root = sc->target_mem_cgroup;
2173 struct mem_cgroup_reclaim_cookie reclaim = {
2174 .zone = zone,
2175 .priority = sc->priority,
2176 };
2177 struct mem_cgroup *memcg;
2178
2179 nr_reclaimed = sc->nr_reclaimed;
2180 nr_scanned = sc->nr_scanned;
2181
2182 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2183 do {
2184 struct lruvec *lruvec;
2185
2186 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2187
2188 shrink_lruvec(lruvec, sc);
2189
2190 /*
2191 * Direct reclaim and kswapd have to scan all memory
2192 * cgroups to fulfill the overall scan target for the
2193 * zone.
2194 *
2195 * Limit reclaim, on the other hand, only cares about
2196 * nr_to_reclaim pages to be reclaimed and it will
2197 * retry with decreasing priority if one round over the
2198 * whole hierarchy is not sufficient.
2199 */
2200 if (!global_reclaim(sc) &&
2201 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2202 mem_cgroup_iter_break(root, memcg);
2203 break;
2204 }
2205 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2206 } while (memcg);
2207
2208 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2209 sc->nr_scanned - nr_scanned,
2210 sc->nr_reclaimed - nr_reclaimed);
2211
2212 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2213 sc->nr_scanned - nr_scanned, sc));
2214 }
2215
2216 /* Returns true if compaction should go ahead for a high-order request */
2217 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2218 {
2219 unsigned long balance_gap, watermark;
2220 bool watermark_ok;
2221
2222 /* Do not consider compaction for orders reclaim is meant to satisfy */
2223 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2224 return false;
2225
2226 /*
2227 * Compaction takes time to run and there are potentially other
2228 * callers using the pages just freed. Continue reclaiming until
2229 * there is a buffer of free pages available to give compaction
2230 * a reasonable chance of completing and allocating the page
2231 */
2232 balance_gap = min(low_wmark_pages(zone),
2233 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2234 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2235 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2236 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2237
2238 /*
2239 * If compaction is deferred, reclaim up to a point where
2240 * compaction will have a chance of success when re-enabled
2241 */
2242 if (compaction_deferred(zone, sc->order))
2243 return watermark_ok;
2244
2245 /* If compaction is not ready to start, keep reclaiming */
2246 if (!compaction_suitable(zone, sc->order))
2247 return false;
2248
2249 return watermark_ok;
2250 }
2251
2252 /*
2253 * This is the direct reclaim path, for page-allocating processes. We only
2254 * try to reclaim pages from zones which will satisfy the caller's allocation
2255 * request.
2256 *
2257 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2258 * Because:
2259 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2260 * allocation or
2261 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2262 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2263 * zone defense algorithm.
2264 *
2265 * If a zone is deemed to be full of pinned pages then just give it a light
2266 * scan then give up on it.
2267 *
2268 * This function returns true if a zone is being reclaimed for a costly
2269 * high-order allocation and compaction is ready to begin. This indicates to
2270 * the caller that it should consider retrying the allocation instead of
2271 * further reclaim.
2272 */
2273 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2274 {
2275 struct zoneref *z;
2276 struct zone *zone;
2277 unsigned long nr_soft_reclaimed;
2278 unsigned long nr_soft_scanned;
2279 bool aborted_reclaim = false;
2280
2281 /*
2282 * If the number of buffer_heads in the machine exceeds the maximum
2283 * allowed level, force direct reclaim to scan the highmem zone as
2284 * highmem pages could be pinning lowmem pages storing buffer_heads
2285 */
2286 if (buffer_heads_over_limit)
2287 sc->gfp_mask |= __GFP_HIGHMEM;
2288
2289 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2290 gfp_zone(sc->gfp_mask), sc->nodemask) {
2291 if (!populated_zone(zone))
2292 continue;
2293 /*
2294 * Take care memory controller reclaiming has small influence
2295 * to global LRU.
2296 */
2297 if (global_reclaim(sc)) {
2298 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2299 continue;
2300 if (sc->priority != DEF_PRIORITY &&
2301 !zone_reclaimable(zone))
2302 continue; /* Let kswapd poll it */
2303 if (IS_ENABLED(CONFIG_COMPACTION)) {
2304 /*
2305 * If we already have plenty of memory free for
2306 * compaction in this zone, don't free any more.
2307 * Even though compaction is invoked for any
2308 * non-zero order, only frequent costly order
2309 * reclamation is disruptive enough to become a
2310 * noticeable problem, like transparent huge
2311 * page allocations.
2312 */
2313 if (compaction_ready(zone, sc)) {
2314 aborted_reclaim = true;
2315 continue;
2316 }
2317 }
2318 /*
2319 * This steals pages from memory cgroups over softlimit
2320 * and returns the number of reclaimed pages and
2321 * scanned pages. This works for global memory pressure
2322 * and balancing, not for a memcg's limit.
2323 */
2324 nr_soft_scanned = 0;
2325 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2326 sc->order, sc->gfp_mask,
2327 &nr_soft_scanned);
2328 sc->nr_reclaimed += nr_soft_reclaimed;
2329 sc->nr_scanned += nr_soft_scanned;
2330 /* need some check for avoid more shrink_zone() */
2331 }
2332
2333 shrink_zone(zone, sc);
2334 }
2335
2336 return aborted_reclaim;
2337 }
2338
2339 /* All zones in zonelist are unreclaimable? */
2340 static bool all_unreclaimable(struct zonelist *zonelist,
2341 struct scan_control *sc)
2342 {
2343 struct zoneref *z;
2344 struct zone *zone;
2345
2346 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2347 gfp_zone(sc->gfp_mask), sc->nodemask) {
2348 if (!populated_zone(zone))
2349 continue;
2350 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2351 continue;
2352 if (zone_reclaimable(zone))
2353 return false;
2354 }
2355
2356 return true;
2357 }
2358
2359 /*
2360 * This is the main entry point to direct page reclaim.
2361 *
2362 * If a full scan of the inactive list fails to free enough memory then we
2363 * are "out of memory" and something needs to be killed.
2364 *
2365 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2366 * high - the zone may be full of dirty or under-writeback pages, which this
2367 * caller can't do much about. We kick the writeback threads and take explicit
2368 * naps in the hope that some of these pages can be written. But if the
2369 * allocating task holds filesystem locks which prevent writeout this might not
2370 * work, and the allocation attempt will fail.
2371 *
2372 * returns: 0, if no pages reclaimed
2373 * else, the number of pages reclaimed
2374 */
2375 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2376 struct scan_control *sc,
2377 struct shrink_control *shrink)
2378 {
2379 unsigned long total_scanned = 0;
2380 struct reclaim_state *reclaim_state = current->reclaim_state;
2381 struct zoneref *z;
2382 struct zone *zone;
2383 unsigned long writeback_threshold;
2384 bool aborted_reclaim;
2385
2386 delayacct_freepages_start();
2387
2388 if (global_reclaim(sc))
2389 count_vm_event(ALLOCSTALL);
2390
2391 do {
2392 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2393 sc->priority);
2394 sc->nr_scanned = 0;
2395 aborted_reclaim = shrink_zones(zonelist, sc);
2396
2397 /*
2398 * Don't shrink slabs when reclaiming memory from over limit
2399 * cgroups but do shrink slab at least once when aborting
2400 * reclaim for compaction to avoid unevenly scanning file/anon
2401 * LRU pages over slab pages.
2402 */
2403 if (global_reclaim(sc)) {
2404 unsigned long lru_pages = 0;
2405
2406 nodes_clear(shrink->nodes_to_scan);
2407 for_each_zone_zonelist(zone, z, zonelist,
2408 gfp_zone(sc->gfp_mask)) {
2409 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2410 continue;
2411
2412 lru_pages += zone_reclaimable_pages(zone);
2413 node_set(zone_to_nid(zone),
2414 shrink->nodes_to_scan);
2415 }
2416
2417 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2418 if (reclaim_state) {
2419 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2420 reclaim_state->reclaimed_slab = 0;
2421 }
2422 }
2423 total_scanned += sc->nr_scanned;
2424 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2425 goto out;
2426
2427 /*
2428 * If we're getting trouble reclaiming, start doing
2429 * writepage even in laptop mode.
2430 */
2431 if (sc->priority < DEF_PRIORITY - 2)
2432 sc->may_writepage = 1;
2433
2434 /*
2435 * Try to write back as many pages as we just scanned. This
2436 * tends to cause slow streaming writers to write data to the
2437 * disk smoothly, at the dirtying rate, which is nice. But
2438 * that's undesirable in laptop mode, where we *want* lumpy
2439 * writeout. So in laptop mode, write out the whole world.
2440 */
2441 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2442 if (total_scanned > writeback_threshold) {
2443 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2444 WB_REASON_TRY_TO_FREE_PAGES);
2445 sc->may_writepage = 1;
2446 }
2447 } while (--sc->priority >= 0 && !aborted_reclaim);
2448
2449 out:
2450 delayacct_freepages_end();
2451
2452 if (sc->nr_reclaimed)
2453 return sc->nr_reclaimed;
2454
2455 /*
2456 * As hibernation is going on, kswapd is freezed so that it can't mark
2457 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2458 * check.
2459 */
2460 if (oom_killer_disabled)
2461 return 0;
2462
2463 /* Aborted reclaim to try compaction? don't OOM, then */
2464 if (aborted_reclaim)
2465 return 1;
2466
2467 /* top priority shrink_zones still had more to do? don't OOM, then */
2468 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2469 return 1;
2470
2471 return 0;
2472 }
2473
2474 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2475 {
2476 struct zone *zone;
2477 unsigned long pfmemalloc_reserve = 0;
2478 unsigned long free_pages = 0;
2479 int i;
2480 bool wmark_ok;
2481
2482 for (i = 0; i <= ZONE_NORMAL; i++) {
2483 zone = &pgdat->node_zones[i];
2484 pfmemalloc_reserve += min_wmark_pages(zone);
2485 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2486 }
2487
2488 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2489
2490 /* kswapd must be awake if processes are being throttled */
2491 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2492 pgdat->classzone_idx = min(pgdat->classzone_idx,
2493 (enum zone_type)ZONE_NORMAL);
2494 wake_up_interruptible(&pgdat->kswapd_wait);
2495 }
2496
2497 return wmark_ok;
2498 }
2499
2500 /*
2501 * Throttle direct reclaimers if backing storage is backed by the network
2502 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2503 * depleted. kswapd will continue to make progress and wake the processes
2504 * when the low watermark is reached.
2505 *
2506 * Returns true if a fatal signal was delivered during throttling. If this
2507 * happens, the page allocator should not consider triggering the OOM killer.
2508 */
2509 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2510 nodemask_t *nodemask)
2511 {
2512 struct zone *zone;
2513 int high_zoneidx = gfp_zone(gfp_mask);
2514 pg_data_t *pgdat;
2515
2516 /*
2517 * Kernel threads should not be throttled as they may be indirectly
2518 * responsible for cleaning pages necessary for reclaim to make forward
2519 * progress. kjournald for example may enter direct reclaim while
2520 * committing a transaction where throttling it could forcing other
2521 * processes to block on log_wait_commit().
2522 */
2523 if (current->flags & PF_KTHREAD)
2524 goto out;
2525
2526 /*
2527 * If a fatal signal is pending, this process should not throttle.
2528 * It should return quickly so it can exit and free its memory
2529 */
2530 if (fatal_signal_pending(current))
2531 goto out;
2532
2533 /* Check if the pfmemalloc reserves are ok */
2534 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2535 pgdat = zone->zone_pgdat;
2536 if (pfmemalloc_watermark_ok(pgdat))
2537 goto out;
2538
2539 /* Account for the throttling */
2540 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2541
2542 /*
2543 * If the caller cannot enter the filesystem, it's possible that it
2544 * is due to the caller holding an FS lock or performing a journal
2545 * transaction in the case of a filesystem like ext[3|4]. In this case,
2546 * it is not safe to block on pfmemalloc_wait as kswapd could be
2547 * blocked waiting on the same lock. Instead, throttle for up to a
2548 * second before continuing.
2549 */
2550 if (!(gfp_mask & __GFP_FS)) {
2551 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2552 pfmemalloc_watermark_ok(pgdat), HZ);
2553
2554 goto check_pending;
2555 }
2556
2557 /* Throttle until kswapd wakes the process */
2558 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2559 pfmemalloc_watermark_ok(pgdat));
2560
2561 check_pending:
2562 if (fatal_signal_pending(current))
2563 return true;
2564
2565 out:
2566 return false;
2567 }
2568
2569 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2570 gfp_t gfp_mask, nodemask_t *nodemask)
2571 {
2572 unsigned long nr_reclaimed;
2573 struct scan_control sc = {
2574 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2575 .may_writepage = !laptop_mode,
2576 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2577 .may_unmap = 1,
2578 .may_swap = 1,
2579 .order = order,
2580 .priority = DEF_PRIORITY,
2581 .target_mem_cgroup = NULL,
2582 .nodemask = nodemask,
2583 };
2584 struct shrink_control shrink = {
2585 .gfp_mask = sc.gfp_mask,
2586 };
2587
2588 /*
2589 * Do not enter reclaim if fatal signal was delivered while throttled.
2590 * 1 is returned so that the page allocator does not OOM kill at this
2591 * point.
2592 */
2593 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2594 return 1;
2595
2596 trace_mm_vmscan_direct_reclaim_begin(order,
2597 sc.may_writepage,
2598 gfp_mask);
2599
2600 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2601
2602 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2603
2604 return nr_reclaimed;
2605 }
2606
2607 #ifdef CONFIG_MEMCG
2608
2609 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2610 gfp_t gfp_mask, bool noswap,
2611 struct zone *zone,
2612 unsigned long *nr_scanned)
2613 {
2614 struct scan_control sc = {
2615 .nr_scanned = 0,
2616 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2617 .may_writepage = !laptop_mode,
2618 .may_unmap = 1,
2619 .may_swap = !noswap,
2620 .order = 0,
2621 .priority = 0,
2622 .target_mem_cgroup = memcg,
2623 };
2624 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2625
2626 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2627 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2628
2629 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2630 sc.may_writepage,
2631 sc.gfp_mask);
2632
2633 /*
2634 * NOTE: Although we can get the priority field, using it
2635 * here is not a good idea, since it limits the pages we can scan.
2636 * if we don't reclaim here, the shrink_zone from balance_pgdat
2637 * will pick up pages from other mem cgroup's as well. We hack
2638 * the priority and make it zero.
2639 */
2640 shrink_lruvec(lruvec, &sc);
2641
2642 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2643
2644 *nr_scanned = sc.nr_scanned;
2645 return sc.nr_reclaimed;
2646 }
2647
2648 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2649 gfp_t gfp_mask,
2650 bool noswap)
2651 {
2652 struct zonelist *zonelist;
2653 unsigned long nr_reclaimed;
2654 int nid;
2655 struct scan_control sc = {
2656 .may_writepage = !laptop_mode,
2657 .may_unmap = 1,
2658 .may_swap = !noswap,
2659 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2660 .order = 0,
2661 .priority = DEF_PRIORITY,
2662 .target_mem_cgroup = memcg,
2663 .nodemask = NULL, /* we don't care the placement */
2664 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2665 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2666 };
2667 struct shrink_control shrink = {
2668 .gfp_mask = sc.gfp_mask,
2669 };
2670
2671 /*
2672 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2673 * take care of from where we get pages. So the node where we start the
2674 * scan does not need to be the current node.
2675 */
2676 nid = mem_cgroup_select_victim_node(memcg);
2677
2678 zonelist = NODE_DATA(nid)->node_zonelists;
2679
2680 trace_mm_vmscan_memcg_reclaim_begin(0,
2681 sc.may_writepage,
2682 sc.gfp_mask);
2683
2684 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2685
2686 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2687
2688 return nr_reclaimed;
2689 }
2690 #endif
2691
2692 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2693 {
2694 struct mem_cgroup *memcg;
2695
2696 if (!total_swap_pages)
2697 return;
2698
2699 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2700 do {
2701 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2702
2703 if (inactive_anon_is_low(lruvec))
2704 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2705 sc, LRU_ACTIVE_ANON);
2706
2707 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2708 } while (memcg);
2709 }
2710
2711 static bool zone_balanced(struct zone *zone, int order,
2712 unsigned long balance_gap, int classzone_idx)
2713 {
2714 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2715 balance_gap, classzone_idx, 0))
2716 return false;
2717
2718 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2719 !compaction_suitable(zone, order))
2720 return false;
2721
2722 return true;
2723 }
2724
2725 /*
2726 * pgdat_balanced() is used when checking if a node is balanced.
2727 *
2728 * For order-0, all zones must be balanced!
2729 *
2730 * For high-order allocations only zones that meet watermarks and are in a
2731 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2732 * total of balanced pages must be at least 25% of the zones allowed by
2733 * classzone_idx for the node to be considered balanced. Forcing all zones to
2734 * be balanced for high orders can cause excessive reclaim when there are
2735 * imbalanced zones.
2736 * The choice of 25% is due to
2737 * o a 16M DMA zone that is balanced will not balance a zone on any
2738 * reasonable sized machine
2739 * o On all other machines, the top zone must be at least a reasonable
2740 * percentage of the middle zones. For example, on 32-bit x86, highmem
2741 * would need to be at least 256M for it to be balance a whole node.
2742 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2743 * to balance a node on its own. These seemed like reasonable ratios.
2744 */
2745 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2746 {
2747 unsigned long managed_pages = 0;
2748 unsigned long balanced_pages = 0;
2749 int i;
2750
2751 /* Check the watermark levels */
2752 for (i = 0; i <= classzone_idx; i++) {
2753 struct zone *zone = pgdat->node_zones + i;
2754
2755 if (!populated_zone(zone))
2756 continue;
2757
2758 managed_pages += zone->managed_pages;
2759
2760 /*
2761 * A special case here:
2762 *
2763 * balance_pgdat() skips over all_unreclaimable after
2764 * DEF_PRIORITY. Effectively, it considers them balanced so
2765 * they must be considered balanced here as well!
2766 */
2767 if (!zone_reclaimable(zone)) {
2768 balanced_pages += zone->managed_pages;
2769 continue;
2770 }
2771
2772 if (zone_balanced(zone, order, 0, i))
2773 balanced_pages += zone->managed_pages;
2774 else if (!order)
2775 return false;
2776 }
2777
2778 if (order)
2779 return balanced_pages >= (managed_pages >> 2);
2780 else
2781 return true;
2782 }
2783
2784 /*
2785 * Prepare kswapd for sleeping. This verifies that there are no processes
2786 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2787 *
2788 * Returns true if kswapd is ready to sleep
2789 */
2790 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2791 int classzone_idx)
2792 {
2793 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2794 if (remaining)
2795 return false;
2796
2797 /*
2798 * There is a potential race between when kswapd checks its watermarks
2799 * and a process gets throttled. There is also a potential race if
2800 * processes get throttled, kswapd wakes, a large process exits therby
2801 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2802 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2803 * so wake them now if necessary. If necessary, processes will wake
2804 * kswapd and get throttled again
2805 */
2806 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2807 wake_up(&pgdat->pfmemalloc_wait);
2808 return false;
2809 }
2810
2811 return pgdat_balanced(pgdat, order, classzone_idx);
2812 }
2813
2814 /*
2815 * kswapd shrinks the zone by the number of pages required to reach
2816 * the high watermark.
2817 *
2818 * Returns true if kswapd scanned at least the requested number of pages to
2819 * reclaim or if the lack of progress was due to pages under writeback.
2820 * This is used to determine if the scanning priority needs to be raised.
2821 */
2822 static bool kswapd_shrink_zone(struct zone *zone,
2823 int classzone_idx,
2824 struct scan_control *sc,
2825 unsigned long lru_pages,
2826 unsigned long *nr_attempted)
2827 {
2828 int testorder = sc->order;
2829 unsigned long balance_gap;
2830 struct reclaim_state *reclaim_state = current->reclaim_state;
2831 struct shrink_control shrink = {
2832 .gfp_mask = sc->gfp_mask,
2833 };
2834 bool lowmem_pressure;
2835
2836 /* Reclaim above the high watermark. */
2837 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2838
2839 /*
2840 * Kswapd reclaims only single pages with compaction enabled. Trying
2841 * too hard to reclaim until contiguous free pages have become
2842 * available can hurt performance by evicting too much useful data
2843 * from memory. Do not reclaim more than needed for compaction.
2844 */
2845 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2846 compaction_suitable(zone, sc->order) !=
2847 COMPACT_SKIPPED)
2848 testorder = 0;
2849
2850 /*
2851 * We put equal pressure on every zone, unless one zone has way too
2852 * many pages free already. The "too many pages" is defined as the
2853 * high wmark plus a "gap" where the gap is either the low
2854 * watermark or 1% of the zone, whichever is smaller.
2855 */
2856 balance_gap = min(low_wmark_pages(zone),
2857 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2858 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2859
2860 /*
2861 * If there is no low memory pressure or the zone is balanced then no
2862 * reclaim is necessary
2863 */
2864 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2865 if (!lowmem_pressure && zone_balanced(zone, testorder,
2866 balance_gap, classzone_idx))
2867 return true;
2868
2869 shrink_zone(zone, sc);
2870 nodes_clear(shrink.nodes_to_scan);
2871 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2872
2873 reclaim_state->reclaimed_slab = 0;
2874 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2875 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2876
2877 /* Account for the number of pages attempted to reclaim */
2878 *nr_attempted += sc->nr_to_reclaim;
2879
2880 zone_clear_flag(zone, ZONE_WRITEBACK);
2881
2882 /*
2883 * If a zone reaches its high watermark, consider it to be no longer
2884 * congested. It's possible there are dirty pages backed by congested
2885 * BDIs but as pressure is relieved, speculatively avoid congestion
2886 * waits.
2887 */
2888 if (zone_reclaimable(zone) &&
2889 zone_balanced(zone, testorder, 0, classzone_idx)) {
2890 zone_clear_flag(zone, ZONE_CONGESTED);
2891 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2892 }
2893
2894 return sc->nr_scanned >= sc->nr_to_reclaim;
2895 }
2896
2897 /*
2898 * For kswapd, balance_pgdat() will work across all this node's zones until
2899 * they are all at high_wmark_pages(zone).
2900 *
2901 * Returns the final order kswapd was reclaiming at
2902 *
2903 * There is special handling here for zones which are full of pinned pages.
2904 * This can happen if the pages are all mlocked, or if they are all used by
2905 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2906 * What we do is to detect the case where all pages in the zone have been
2907 * scanned twice and there has been zero successful reclaim. Mark the zone as
2908 * dead and from now on, only perform a short scan. Basically we're polling
2909 * the zone for when the problem goes away.
2910 *
2911 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2912 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2913 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2914 * lower zones regardless of the number of free pages in the lower zones. This
2915 * interoperates with the page allocator fallback scheme to ensure that aging
2916 * of pages is balanced across the zones.
2917 */
2918 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2919 int *classzone_idx)
2920 {
2921 int i;
2922 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2923 unsigned long nr_soft_reclaimed;
2924 unsigned long nr_soft_scanned;
2925 struct scan_control sc = {
2926 .gfp_mask = GFP_KERNEL,
2927 .priority = DEF_PRIORITY,
2928 .may_unmap = 1,
2929 .may_swap = 1,
2930 .may_writepage = !laptop_mode,
2931 .order = order,
2932 .target_mem_cgroup = NULL,
2933 };
2934 count_vm_event(PAGEOUTRUN);
2935
2936 do {
2937 unsigned long lru_pages = 0;
2938 unsigned long nr_attempted = 0;
2939 bool raise_priority = true;
2940 bool pgdat_needs_compaction = (order > 0);
2941
2942 sc.nr_reclaimed = 0;
2943
2944 /*
2945 * Scan in the highmem->dma direction for the highest
2946 * zone which needs scanning
2947 */
2948 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2949 struct zone *zone = pgdat->node_zones + i;
2950
2951 if (!populated_zone(zone))
2952 continue;
2953
2954 if (sc.priority != DEF_PRIORITY &&
2955 !zone_reclaimable(zone))
2956 continue;
2957
2958 /*
2959 * Do some background aging of the anon list, to give
2960 * pages a chance to be referenced before reclaiming.
2961 */
2962 age_active_anon(zone, &sc);
2963
2964 /*
2965 * If the number of buffer_heads in the machine
2966 * exceeds the maximum allowed level and this node
2967 * has a highmem zone, force kswapd to reclaim from
2968 * it to relieve lowmem pressure.
2969 */
2970 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2971 end_zone = i;
2972 break;
2973 }
2974
2975 if (!zone_balanced(zone, order, 0, 0)) {
2976 end_zone = i;
2977 break;
2978 } else {
2979 /*
2980 * If balanced, clear the dirty and congested
2981 * flags
2982 */
2983 zone_clear_flag(zone, ZONE_CONGESTED);
2984 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2985 }
2986 }
2987
2988 if (i < 0)
2989 goto out;
2990
2991 for (i = 0; i <= end_zone; i++) {
2992 struct zone *zone = pgdat->node_zones + i;
2993
2994 if (!populated_zone(zone))
2995 continue;
2996
2997 lru_pages += zone_reclaimable_pages(zone);
2998
2999 /*
3000 * If any zone is currently balanced then kswapd will
3001 * not call compaction as it is expected that the
3002 * necessary pages are already available.
3003 */
3004 if (pgdat_needs_compaction &&
3005 zone_watermark_ok(zone, order,
3006 low_wmark_pages(zone),
3007 *classzone_idx, 0))
3008 pgdat_needs_compaction = false;
3009 }
3010
3011 /*
3012 * If we're getting trouble reclaiming, start doing writepage
3013 * even in laptop mode.
3014 */
3015 if (sc.priority < DEF_PRIORITY - 2)
3016 sc.may_writepage = 1;
3017
3018 /*
3019 * Now scan the zone in the dma->highmem direction, stopping
3020 * at the last zone which needs scanning.
3021 *
3022 * We do this because the page allocator works in the opposite
3023 * direction. This prevents the page allocator from allocating
3024 * pages behind kswapd's direction of progress, which would
3025 * cause too much scanning of the lower zones.
3026 */
3027 for (i = 0; i <= end_zone; i++) {
3028 struct zone *zone = pgdat->node_zones + i;
3029
3030 if (!populated_zone(zone))
3031 continue;
3032
3033 if (sc.priority != DEF_PRIORITY &&
3034 !zone_reclaimable(zone))
3035 continue;
3036
3037 sc.nr_scanned = 0;
3038
3039 nr_soft_scanned = 0;
3040 /*
3041 * Call soft limit reclaim before calling shrink_zone.
3042 */
3043 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3044 order, sc.gfp_mask,
3045 &nr_soft_scanned);
3046 sc.nr_reclaimed += nr_soft_reclaimed;
3047
3048 /*
3049 * There should be no need to raise the scanning
3050 * priority if enough pages are already being scanned
3051 * that that high watermark would be met at 100%
3052 * efficiency.
3053 */
3054 if (kswapd_shrink_zone(zone, end_zone, &sc,
3055 lru_pages, &nr_attempted))
3056 raise_priority = false;
3057 }
3058
3059 /*
3060 * If the low watermark is met there is no need for processes
3061 * to be throttled on pfmemalloc_wait as they should not be
3062 * able to safely make forward progress. Wake them
3063 */
3064 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3065 pfmemalloc_watermark_ok(pgdat))
3066 wake_up(&pgdat->pfmemalloc_wait);
3067
3068 /*
3069 * Fragmentation may mean that the system cannot be rebalanced
3070 * for high-order allocations in all zones. If twice the
3071 * allocation size has been reclaimed and the zones are still
3072 * not balanced then recheck the watermarks at order-0 to
3073 * prevent kswapd reclaiming excessively. Assume that a
3074 * process requested a high-order can direct reclaim/compact.
3075 */
3076 if (order && sc.nr_reclaimed >= 2UL << order)
3077 order = sc.order = 0;
3078
3079 /* Check if kswapd should be suspending */
3080 if (try_to_freeze() || kthread_should_stop())
3081 break;
3082
3083 /*
3084 * Compact if necessary and kswapd is reclaiming at least the
3085 * high watermark number of pages as requsted
3086 */
3087 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3088 compact_pgdat(pgdat, order);
3089
3090 /*
3091 * Raise priority if scanning rate is too low or there was no
3092 * progress in reclaiming pages
3093 */
3094 if (raise_priority || !sc.nr_reclaimed)
3095 sc.priority--;
3096 } while (sc.priority >= 1 &&
3097 !pgdat_balanced(pgdat, order, *classzone_idx));
3098
3099 out:
3100 /*
3101 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3102 * makes a decision on the order we were last reclaiming at. However,
3103 * if another caller entered the allocator slow path while kswapd
3104 * was awake, order will remain at the higher level
3105 */
3106 *classzone_idx = end_zone;
3107 return order;
3108 }
3109
3110 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3111 {
3112 long remaining = 0;
3113 DEFINE_WAIT(wait);
3114
3115 if (freezing(current) || kthread_should_stop())
3116 return;
3117
3118 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3119
3120 /* Try to sleep for a short interval */
3121 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3122 remaining = schedule_timeout(HZ/10);
3123 finish_wait(&pgdat->kswapd_wait, &wait);
3124 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3125 }
3126
3127 /*
3128 * After a short sleep, check if it was a premature sleep. If not, then
3129 * go fully to sleep until explicitly woken up.
3130 */
3131 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3132 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3133
3134 /*
3135 * vmstat counters are not perfectly accurate and the estimated
3136 * value for counters such as NR_FREE_PAGES can deviate from the
3137 * true value by nr_online_cpus * threshold. To avoid the zone
3138 * watermarks being breached while under pressure, we reduce the
3139 * per-cpu vmstat threshold while kswapd is awake and restore
3140 * them before going back to sleep.
3141 */
3142 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3143
3144 /*
3145 * Compaction records what page blocks it recently failed to
3146 * isolate pages from and skips them in the future scanning.
3147 * When kswapd is going to sleep, it is reasonable to assume
3148 * that pages and compaction may succeed so reset the cache.
3149 */
3150 reset_isolation_suitable(pgdat);
3151
3152 if (!kthread_should_stop())
3153 schedule();
3154
3155 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3156 } else {
3157 if (remaining)
3158 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3159 else
3160 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3161 }
3162 finish_wait(&pgdat->kswapd_wait, &wait);
3163 }
3164
3165 /*
3166 * The background pageout daemon, started as a kernel thread
3167 * from the init process.
3168 *
3169 * This basically trickles out pages so that we have _some_
3170 * free memory available even if there is no other activity
3171 * that frees anything up. This is needed for things like routing
3172 * etc, where we otherwise might have all activity going on in
3173 * asynchronous contexts that cannot page things out.
3174 *
3175 * If there are applications that are active memory-allocators
3176 * (most normal use), this basically shouldn't matter.
3177 */
3178 static int kswapd(void *p)
3179 {
3180 unsigned long order, new_order;
3181 unsigned balanced_order;
3182 int classzone_idx, new_classzone_idx;
3183 int balanced_classzone_idx;
3184 pg_data_t *pgdat = (pg_data_t*)p;
3185 struct task_struct *tsk = current;
3186
3187 struct reclaim_state reclaim_state = {
3188 .reclaimed_slab = 0,
3189 };
3190 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3191
3192 lockdep_set_current_reclaim_state(GFP_KERNEL);
3193
3194 if (!cpumask_empty(cpumask))
3195 set_cpus_allowed_ptr(tsk, cpumask);
3196 current->reclaim_state = &reclaim_state;
3197
3198 /*
3199 * Tell the memory management that we're a "memory allocator",
3200 * and that if we need more memory we should get access to it
3201 * regardless (see "__alloc_pages()"). "kswapd" should
3202 * never get caught in the normal page freeing logic.
3203 *
3204 * (Kswapd normally doesn't need memory anyway, but sometimes
3205 * you need a small amount of memory in order to be able to
3206 * page out something else, and this flag essentially protects
3207 * us from recursively trying to free more memory as we're
3208 * trying to free the first piece of memory in the first place).
3209 */
3210 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3211 set_freezable();
3212
3213 order = new_order = 0;
3214 balanced_order = 0;
3215 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3216 balanced_classzone_idx = classzone_idx;
3217 for ( ; ; ) {
3218 bool ret;
3219
3220 /*
3221 * If the last balance_pgdat was unsuccessful it's unlikely a
3222 * new request of a similar or harder type will succeed soon
3223 * so consider going to sleep on the basis we reclaimed at
3224 */
3225 if (balanced_classzone_idx >= new_classzone_idx &&
3226 balanced_order == new_order) {
3227 new_order = pgdat->kswapd_max_order;
3228 new_classzone_idx = pgdat->classzone_idx;
3229 pgdat->kswapd_max_order = 0;
3230 pgdat->classzone_idx = pgdat->nr_zones - 1;
3231 }
3232
3233 if (order < new_order || classzone_idx > new_classzone_idx) {
3234 /*
3235 * Don't sleep if someone wants a larger 'order'
3236 * allocation or has tigher zone constraints
3237 */
3238 order = new_order;
3239 classzone_idx = new_classzone_idx;
3240 } else {
3241 kswapd_try_to_sleep(pgdat, balanced_order,
3242 balanced_classzone_idx);
3243 order = pgdat->kswapd_max_order;
3244 classzone_idx = pgdat->classzone_idx;
3245 new_order = order;
3246 new_classzone_idx = classzone_idx;
3247 pgdat->kswapd_max_order = 0;
3248 pgdat->classzone_idx = pgdat->nr_zones - 1;
3249 }
3250
3251 ret = try_to_freeze();
3252 if (kthread_should_stop())
3253 break;
3254
3255 /*
3256 * We can speed up thawing tasks if we don't call balance_pgdat
3257 * after returning from the refrigerator
3258 */
3259 if (!ret) {
3260 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3261 balanced_classzone_idx = classzone_idx;
3262 balanced_order = balance_pgdat(pgdat, order,
3263 &balanced_classzone_idx);
3264 }
3265 }
3266
3267 current->reclaim_state = NULL;
3268 return 0;
3269 }
3270
3271 /*
3272 * A zone is low on free memory, so wake its kswapd task to service it.
3273 */
3274 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3275 {
3276 pg_data_t *pgdat;
3277
3278 if (!populated_zone(zone))
3279 return;
3280
3281 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3282 return;
3283 pgdat = zone->zone_pgdat;
3284 if (pgdat->kswapd_max_order < order) {
3285 pgdat->kswapd_max_order = order;
3286 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3287 }
3288 if (!waitqueue_active(&pgdat->kswapd_wait))
3289 return;
3290 if (zone_balanced(zone, order, 0, 0))
3291 return;
3292
3293 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3294 wake_up_interruptible(&pgdat->kswapd_wait);
3295 }
3296
3297 /*
3298 * The reclaimable count would be mostly accurate.
3299 * The less reclaimable pages may be
3300 * - mlocked pages, which will be moved to unevictable list when encountered
3301 * - mapped pages, which may require several travels to be reclaimed
3302 * - dirty pages, which is not "instantly" reclaimable
3303 */
3304 unsigned long global_reclaimable_pages(void)
3305 {
3306 int nr;
3307
3308 nr = global_page_state(NR_ACTIVE_FILE) +
3309 global_page_state(NR_INACTIVE_FILE);
3310
3311 if (get_nr_swap_pages() > 0)
3312 nr += global_page_state(NR_ACTIVE_ANON) +
3313 global_page_state(NR_INACTIVE_ANON);
3314
3315 return nr;
3316 }
3317
3318 #ifdef CONFIG_HIBERNATION
3319 /*
3320 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3321 * freed pages.
3322 *
3323 * Rather than trying to age LRUs the aim is to preserve the overall
3324 * LRU order by reclaiming preferentially
3325 * inactive > active > active referenced > active mapped
3326 */
3327 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3328 {
3329 struct reclaim_state reclaim_state;
3330 struct scan_control sc = {
3331 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3332 .may_swap = 1,
3333 .may_unmap = 1,
3334 .may_writepage = 1,
3335 .nr_to_reclaim = nr_to_reclaim,
3336 .hibernation_mode = 1,
3337 .order = 0,
3338 .priority = DEF_PRIORITY,
3339 };
3340 struct shrink_control shrink = {
3341 .gfp_mask = sc.gfp_mask,
3342 };
3343 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3344 struct task_struct *p = current;
3345 unsigned long nr_reclaimed;
3346
3347 p->flags |= PF_MEMALLOC;
3348 lockdep_set_current_reclaim_state(sc.gfp_mask);
3349 reclaim_state.reclaimed_slab = 0;
3350 p->reclaim_state = &reclaim_state;
3351
3352 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3353
3354 p->reclaim_state = NULL;
3355 lockdep_clear_current_reclaim_state();
3356 p->flags &= ~PF_MEMALLOC;
3357
3358 return nr_reclaimed;
3359 }
3360 #endif /* CONFIG_HIBERNATION */
3361
3362 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3363 not required for correctness. So if the last cpu in a node goes
3364 away, we get changed to run anywhere: as the first one comes back,
3365 restore their cpu bindings. */
3366 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3367 void *hcpu)
3368 {
3369 int nid;
3370
3371 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3372 for_each_node_state(nid, N_MEMORY) {
3373 pg_data_t *pgdat = NODE_DATA(nid);
3374 const struct cpumask *mask;
3375
3376 mask = cpumask_of_node(pgdat->node_id);
3377
3378 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3379 /* One of our CPUs online: restore mask */
3380 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3381 }
3382 }
3383 return NOTIFY_OK;
3384 }
3385
3386 /*
3387 * This kswapd start function will be called by init and node-hot-add.
3388 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3389 */
3390 int kswapd_run(int nid)
3391 {
3392 pg_data_t *pgdat = NODE_DATA(nid);
3393 int ret = 0;
3394
3395 if (pgdat->kswapd)
3396 return 0;
3397
3398 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3399 if (IS_ERR(pgdat->kswapd)) {
3400 /* failure at boot is fatal */
3401 BUG_ON(system_state == SYSTEM_BOOTING);
3402 pr_err("Failed to start kswapd on node %d\n", nid);
3403 ret = PTR_ERR(pgdat->kswapd);
3404 pgdat->kswapd = NULL;
3405 }
3406 return ret;
3407 }
3408
3409 /*
3410 * Called by memory hotplug when all memory in a node is offlined. Caller must
3411 * hold lock_memory_hotplug().
3412 */
3413 void kswapd_stop(int nid)
3414 {
3415 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3416
3417 if (kswapd) {
3418 kthread_stop(kswapd);
3419 NODE_DATA(nid)->kswapd = NULL;
3420 }
3421 }
3422
3423 static int __init kswapd_init(void)
3424 {
3425 int nid;
3426
3427 swap_setup();
3428 for_each_node_state(nid, N_MEMORY)
3429 kswapd_run(nid);
3430 hotcpu_notifier(cpu_callback, 0);
3431 return 0;
3432 }
3433
3434 module_init(kswapd_init)
3435
3436 #ifdef CONFIG_NUMA
3437 /*
3438 * Zone reclaim mode
3439 *
3440 * If non-zero call zone_reclaim when the number of free pages falls below
3441 * the watermarks.
3442 */
3443 int zone_reclaim_mode __read_mostly;
3444
3445 #define RECLAIM_OFF 0
3446 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3447 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3448 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3449
3450 /*
3451 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3452 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3453 * a zone.
3454 */
3455 #define ZONE_RECLAIM_PRIORITY 4
3456
3457 /*
3458 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3459 * occur.
3460 */
3461 int sysctl_min_unmapped_ratio = 1;
3462
3463 /*
3464 * If the number of slab pages in a zone grows beyond this percentage then
3465 * slab reclaim needs to occur.
3466 */
3467 int sysctl_min_slab_ratio = 5;
3468
3469 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3470 {
3471 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3472 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3473 zone_page_state(zone, NR_ACTIVE_FILE);
3474
3475 /*
3476 * It's possible for there to be more file mapped pages than
3477 * accounted for by the pages on the file LRU lists because
3478 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3479 */
3480 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3481 }
3482
3483 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3484 static long zone_pagecache_reclaimable(struct zone *zone)
3485 {
3486 long nr_pagecache_reclaimable;
3487 long delta = 0;
3488
3489 /*
3490 * If RECLAIM_SWAP is set, then all file pages are considered
3491 * potentially reclaimable. Otherwise, we have to worry about
3492 * pages like swapcache and zone_unmapped_file_pages() provides
3493 * a better estimate
3494 */
3495 if (zone_reclaim_mode & RECLAIM_SWAP)
3496 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3497 else
3498 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3499
3500 /* If we can't clean pages, remove dirty pages from consideration */
3501 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3502 delta += zone_page_state(zone, NR_FILE_DIRTY);
3503
3504 /* Watch for any possible underflows due to delta */
3505 if (unlikely(delta > nr_pagecache_reclaimable))
3506 delta = nr_pagecache_reclaimable;
3507
3508 return nr_pagecache_reclaimable - delta;
3509 }
3510
3511 /*
3512 * Try to free up some pages from this zone through reclaim.
3513 */
3514 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3515 {
3516 /* Minimum pages needed in order to stay on node */
3517 const unsigned long nr_pages = 1 << order;
3518 struct task_struct *p = current;
3519 struct reclaim_state reclaim_state;
3520 struct scan_control sc = {
3521 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3522 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3523 .may_swap = 1,
3524 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3525 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3526 .order = order,
3527 .priority = ZONE_RECLAIM_PRIORITY,
3528 };
3529 struct shrink_control shrink = {
3530 .gfp_mask = sc.gfp_mask,
3531 };
3532 unsigned long nr_slab_pages0, nr_slab_pages1;
3533
3534 cond_resched();
3535 /*
3536 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3537 * and we also need to be able to write out pages for RECLAIM_WRITE
3538 * and RECLAIM_SWAP.
3539 */
3540 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3541 lockdep_set_current_reclaim_state(gfp_mask);
3542 reclaim_state.reclaimed_slab = 0;
3543 p->reclaim_state = &reclaim_state;
3544
3545 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3546 /*
3547 * Free memory by calling shrink zone with increasing
3548 * priorities until we have enough memory freed.
3549 */
3550 do {
3551 shrink_zone(zone, &sc);
3552 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3553 }
3554
3555 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3556 if (nr_slab_pages0 > zone->min_slab_pages) {
3557 /*
3558 * shrink_slab() does not currently allow us to determine how
3559 * many pages were freed in this zone. So we take the current
3560 * number of slab pages and shake the slab until it is reduced
3561 * by the same nr_pages that we used for reclaiming unmapped
3562 * pages.
3563 */
3564 nodes_clear(shrink.nodes_to_scan);
3565 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3566 for (;;) {
3567 unsigned long lru_pages = zone_reclaimable_pages(zone);
3568
3569 /* No reclaimable slab or very low memory pressure */
3570 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3571 break;
3572
3573 /* Freed enough memory */
3574 nr_slab_pages1 = zone_page_state(zone,
3575 NR_SLAB_RECLAIMABLE);
3576 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3577 break;
3578 }
3579
3580 /*
3581 * Update nr_reclaimed by the number of slab pages we
3582 * reclaimed from this zone.
3583 */
3584 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3585 if (nr_slab_pages1 < nr_slab_pages0)
3586 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3587 }
3588
3589 p->reclaim_state = NULL;
3590 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3591 lockdep_clear_current_reclaim_state();
3592 return sc.nr_reclaimed >= nr_pages;
3593 }
3594
3595 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3596 {
3597 int node_id;
3598 int ret;
3599
3600 /*
3601 * Zone reclaim reclaims unmapped file backed pages and
3602 * slab pages if we are over the defined limits.
3603 *
3604 * A small portion of unmapped file backed pages is needed for
3605 * file I/O otherwise pages read by file I/O will be immediately
3606 * thrown out if the zone is overallocated. So we do not reclaim
3607 * if less than a specified percentage of the zone is used by
3608 * unmapped file backed pages.
3609 */
3610 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3611 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3612 return ZONE_RECLAIM_FULL;
3613
3614 if (!zone_reclaimable(zone))
3615 return ZONE_RECLAIM_FULL;
3616
3617 /*
3618 * Do not scan if the allocation should not be delayed.
3619 */
3620 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3621 return ZONE_RECLAIM_NOSCAN;
3622
3623 /*
3624 * Only run zone reclaim on the local zone or on zones that do not
3625 * have associated processors. This will favor the local processor
3626 * over remote processors and spread off node memory allocations
3627 * as wide as possible.
3628 */
3629 node_id = zone_to_nid(zone);
3630 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3631 return ZONE_RECLAIM_NOSCAN;
3632
3633 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3634 return ZONE_RECLAIM_NOSCAN;
3635
3636 ret = __zone_reclaim(zone, gfp_mask, order);
3637 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3638
3639 if (!ret)
3640 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3641
3642 return ret;
3643 }
3644 #endif
3645
3646 /*
3647 * page_evictable - test whether a page is evictable
3648 * @page: the page to test
3649 *
3650 * Test whether page is evictable--i.e., should be placed on active/inactive
3651 * lists vs unevictable list.
3652 *
3653 * Reasons page might not be evictable:
3654 * (1) page's mapping marked unevictable
3655 * (2) page is part of an mlocked VMA
3656 *
3657 */
3658 int page_evictable(struct page *page)
3659 {
3660 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3661 }
3662
3663 #ifdef CONFIG_SHMEM
3664 /**
3665 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3666 * @pages: array of pages to check
3667 * @nr_pages: number of pages to check
3668 *
3669 * Checks pages for evictability and moves them to the appropriate lru list.
3670 *
3671 * This function is only used for SysV IPC SHM_UNLOCK.
3672 */
3673 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3674 {
3675 struct lruvec *lruvec;
3676 struct zone *zone = NULL;
3677 int pgscanned = 0;
3678 int pgrescued = 0;
3679 int i;
3680
3681 for (i = 0; i < nr_pages; i++) {
3682 struct page *page = pages[i];
3683 struct zone *pagezone;
3684
3685 pgscanned++;
3686 pagezone = page_zone(page);
3687 if (pagezone != zone) {
3688 if (zone)
3689 spin_unlock_irq(&zone->lru_lock);
3690 zone = pagezone;
3691 spin_lock_irq(&zone->lru_lock);
3692 }
3693 lruvec = mem_cgroup_page_lruvec(page, zone);
3694
3695 if (!PageLRU(page) || !PageUnevictable(page))
3696 continue;
3697
3698 if (page_evictable(page)) {
3699 enum lru_list lru = page_lru_base_type(page);
3700
3701 VM_BUG_ON(PageActive(page));
3702 ClearPageUnevictable(page);
3703 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3704 add_page_to_lru_list(page, lruvec, lru);
3705 pgrescued++;
3706 }
3707 }
3708
3709 if (zone) {
3710 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3711 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3712 spin_unlock_irq(&zone->lru_lock);
3713 }
3714 }
3715 #endif /* CONFIG_SHMEM */
3716
3717 static void warn_scan_unevictable_pages(void)
3718 {
3719 printk_once(KERN_WARNING
3720 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3721 "disabled for lack of a legitimate use case. If you have "
3722 "one, please send an email to linux-mm@kvack.org.\n",
3723 current->comm);
3724 }
3725
3726 /*
3727 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3728 * all nodes' unevictable lists for evictable pages
3729 */
3730 unsigned long scan_unevictable_pages;
3731
3732 int scan_unevictable_handler(struct ctl_table *table, int write,
3733 void __user *buffer,
3734 size_t *length, loff_t *ppos)
3735 {
3736 warn_scan_unevictable_pages();
3737 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3738 scan_unevictable_pages = 0;
3739 return 0;
3740 }
3741
3742 #ifdef CONFIG_NUMA
3743 /*
3744 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3745 * a specified node's per zone unevictable lists for evictable pages.
3746 */
3747
3748 static ssize_t read_scan_unevictable_node(struct device *dev,
3749 struct device_attribute *attr,
3750 char *buf)
3751 {
3752 warn_scan_unevictable_pages();
3753 return sprintf(buf, "0\n"); /* always zero; should fit... */
3754 }
3755
3756 static ssize_t write_scan_unevictable_node(struct device *dev,
3757 struct device_attribute *attr,
3758 const char *buf, size_t count)
3759 {
3760 warn_scan_unevictable_pages();
3761 return 1;
3762 }
3763
3764
3765 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3766 read_scan_unevictable_node,
3767 write_scan_unevictable_node);
3768
3769 int scan_unevictable_register_node(struct node *node)
3770 {
3771 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3772 }
3773
3774 void scan_unevictable_unregister_node(struct node *node)
3775 {
3776 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3777 }
3778 #endif
This page took 0.111447 seconds and 5 git commands to generate.