c82ee9a33cfc7ca2e2ef56b6091a3c2fff96c62b
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
45
46 #include <linux/swapops.h>
47
48 #include "internal.h"
49
50 struct scan_control {
51 /* Incremented by the number of inactive pages that were scanned */
52 unsigned long nr_scanned;
53
54 /* This context's GFP mask */
55 gfp_t gfp_mask;
56
57 int may_writepage;
58
59 /* Can pages be swapped as part of reclaim? */
60 int may_swap;
61
62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 * In this context, it doesn't matter that we scan the
65 * whole list at once. */
66 int swap_cluster_max;
67
68 int swappiness;
69
70 int all_unreclaimable;
71
72 int order;
73
74 /* Which cgroup do we reclaim from */
75 struct mem_cgroup *mem_cgroup;
76
77 /* Pluggable isolate pages callback */
78 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 unsigned long *scanned, int order, int mode,
80 struct zone *z, struct mem_cgroup *mem_cont,
81 int active, int file);
82 };
83
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
85
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field) \
88 do { \
89 if ((_page)->lru.prev != _base) { \
90 struct page *prev; \
91 \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
94 } \
95 } while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
99
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
108 } \
109 } while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 /*
115 * From 0 .. 100. Higher means more swappy.
116 */
117 int vm_swappiness = 60;
118 long vm_total_pages; /* The total number of pages which the VM controls */
119
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
122
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
125 #else
126 #define scan_global_lru(sc) (1)
127 #endif
128
129 /*
130 * Add a shrinker callback to be called from the vm
131 */
132 void register_shrinker(struct shrinker *shrinker)
133 {
134 shrinker->nr = 0;
135 down_write(&shrinker_rwsem);
136 list_add_tail(&shrinker->list, &shrinker_list);
137 up_write(&shrinker_rwsem);
138 }
139 EXPORT_SYMBOL(register_shrinker);
140
141 /*
142 * Remove one
143 */
144 void unregister_shrinker(struct shrinker *shrinker)
145 {
146 down_write(&shrinker_rwsem);
147 list_del(&shrinker->list);
148 up_write(&shrinker_rwsem);
149 }
150 EXPORT_SYMBOL(unregister_shrinker);
151
152 #define SHRINK_BATCH 128
153 /*
154 * Call the shrink functions to age shrinkable caches
155 *
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object. With this in mind we age equal
158 * percentages of the lru and ageable caches. This should balance the seeks
159 * generated by these structures.
160 *
161 * If the vm encountered mapped pages on the LRU it increase the pressure on
162 * slab to avoid swapping.
163 *
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165 *
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt. It is used for balancing
168 * slab reclaim versus page reclaim.
169 *
170 * Returns the number of slab objects which we shrunk.
171 */
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 unsigned long lru_pages)
174 {
175 struct shrinker *shrinker;
176 unsigned long ret = 0;
177
178 if (scanned == 0)
179 scanned = SWAP_CLUSTER_MAX;
180
181 if (!down_read_trylock(&shrinker_rwsem))
182 return 1; /* Assume we'll be able to shrink next time */
183
184 list_for_each_entry(shrinker, &shrinker_list, list) {
185 unsigned long long delta;
186 unsigned long total_scan;
187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
188
189 delta = (4 * scanned) / shrinker->seeks;
190 delta *= max_pass;
191 do_div(delta, lru_pages + 1);
192 shrinker->nr += delta;
193 if (shrinker->nr < 0) {
194 printk(KERN_ERR "%s: nr=%ld\n",
195 __func__, shrinker->nr);
196 shrinker->nr = max_pass;
197 }
198
199 /*
200 * Avoid risking looping forever due to too large nr value:
201 * never try to free more than twice the estimate number of
202 * freeable entries.
203 */
204 if (shrinker->nr > max_pass * 2)
205 shrinker->nr = max_pass * 2;
206
207 total_scan = shrinker->nr;
208 shrinker->nr = 0;
209
210 while (total_scan >= SHRINK_BATCH) {
211 long this_scan = SHRINK_BATCH;
212 int shrink_ret;
213 int nr_before;
214
215 nr_before = (*shrinker->shrink)(0, gfp_mask);
216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217 if (shrink_ret == -1)
218 break;
219 if (shrink_ret < nr_before)
220 ret += nr_before - shrink_ret;
221 count_vm_events(SLABS_SCANNED, this_scan);
222 total_scan -= this_scan;
223
224 cond_resched();
225 }
226
227 shrinker->nr += total_scan;
228 }
229 up_read(&shrinker_rwsem);
230 return ret;
231 }
232
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
235 {
236 struct address_space *mapping;
237
238 /* Page is in somebody's page tables. */
239 if (page_mapped(page))
240 return 1;
241
242 /* Be more reluctant to reclaim swapcache than pagecache */
243 if (PageSwapCache(page))
244 return 1;
245
246 mapping = page_mapping(page);
247 if (!mapping)
248 return 0;
249
250 /* File is mmap'd by somebody? */
251 return mapping_mapped(mapping);
252 }
253
254 static inline int is_page_cache_freeable(struct page *page)
255 {
256 return page_count(page) - !!PagePrivate(page) == 2;
257 }
258
259 static int may_write_to_queue(struct backing_dev_info *bdi)
260 {
261 if (current->flags & PF_SWAPWRITE)
262 return 1;
263 if (!bdi_write_congested(bdi))
264 return 1;
265 if (bdi == current->backing_dev_info)
266 return 1;
267 return 0;
268 }
269
270 /*
271 * We detected a synchronous write error writing a page out. Probably
272 * -ENOSPC. We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
274 *
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up. But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
278 *
279 * We're allowed to run sleeping lock_page() here because we know the caller has
280 * __GFP_FS.
281 */
282 static void handle_write_error(struct address_space *mapping,
283 struct page *page, int error)
284 {
285 lock_page(page);
286 if (page_mapping(page) == mapping)
287 mapping_set_error(mapping, error);
288 unlock_page(page);
289 }
290
291 /* Request for sync pageout. */
292 enum pageout_io {
293 PAGEOUT_IO_ASYNC,
294 PAGEOUT_IO_SYNC,
295 };
296
297 /* possible outcome of pageout() */
298 typedef enum {
299 /* failed to write page out, page is locked */
300 PAGE_KEEP,
301 /* move page to the active list, page is locked */
302 PAGE_ACTIVATE,
303 /* page has been sent to the disk successfully, page is unlocked */
304 PAGE_SUCCESS,
305 /* page is clean and locked */
306 PAGE_CLEAN,
307 } pageout_t;
308
309 /*
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
312 */
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314 enum pageout_io sync_writeback)
315 {
316 /*
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
322 *
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
325 * will block.
326 *
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
332 */
333 if (!is_page_cache_freeable(page))
334 return PAGE_KEEP;
335 if (!mapping) {
336 /*
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
339 */
340 if (PagePrivate(page)) {
341 if (try_to_free_buffers(page)) {
342 ClearPageDirty(page);
343 printk("%s: orphaned page\n", __func__);
344 return PAGE_CLEAN;
345 }
346 }
347 return PAGE_KEEP;
348 }
349 if (mapping->a_ops->writepage == NULL)
350 return PAGE_ACTIVATE;
351 if (!may_write_to_queue(mapping->backing_dev_info))
352 return PAGE_KEEP;
353
354 if (clear_page_dirty_for_io(page)) {
355 int res;
356 struct writeback_control wbc = {
357 .sync_mode = WB_SYNC_NONE,
358 .nr_to_write = SWAP_CLUSTER_MAX,
359 .range_start = 0,
360 .range_end = LLONG_MAX,
361 .nonblocking = 1,
362 .for_reclaim = 1,
363 };
364
365 SetPageReclaim(page);
366 res = mapping->a_ops->writepage(page, &wbc);
367 if (res < 0)
368 handle_write_error(mapping, page, res);
369 if (res == AOP_WRITEPAGE_ACTIVATE) {
370 ClearPageReclaim(page);
371 return PAGE_ACTIVATE;
372 }
373
374 /*
375 * Wait on writeback if requested to. This happens when
376 * direct reclaiming a large contiguous area and the
377 * first attempt to free a range of pages fails.
378 */
379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 wait_on_page_writeback(page);
381
382 if (!PageWriteback(page)) {
383 /* synchronous write or broken a_ops? */
384 ClearPageReclaim(page);
385 }
386 inc_zone_page_state(page, NR_VMSCAN_WRITE);
387 return PAGE_SUCCESS;
388 }
389
390 return PAGE_CLEAN;
391 }
392
393 /*
394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * gets returned with a refcount of 0.
396 */
397 static int __remove_mapping(struct address_space *mapping, struct page *page)
398 {
399 BUG_ON(!PageLocked(page));
400 BUG_ON(mapping != page_mapping(page));
401
402 spin_lock_irq(&mapping->tree_lock);
403 /*
404 * The non racy check for a busy page.
405 *
406 * Must be careful with the order of the tests. When someone has
407 * a ref to the page, it may be possible that they dirty it then
408 * drop the reference. So if PageDirty is tested before page_count
409 * here, then the following race may occur:
410 *
411 * get_user_pages(&page);
412 * [user mapping goes away]
413 * write_to(page);
414 * !PageDirty(page) [good]
415 * SetPageDirty(page);
416 * put_page(page);
417 * !page_count(page) [good, discard it]
418 *
419 * [oops, our write_to data is lost]
420 *
421 * Reversing the order of the tests ensures such a situation cannot
422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 * load is not satisfied before that of page->_count.
424 *
425 * Note that if SetPageDirty is always performed via set_page_dirty,
426 * and thus under tree_lock, then this ordering is not required.
427 */
428 if (!page_freeze_refs(page, 2))
429 goto cannot_free;
430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 if (unlikely(PageDirty(page))) {
432 page_unfreeze_refs(page, 2);
433 goto cannot_free;
434 }
435
436 if (PageSwapCache(page)) {
437 swp_entry_t swap = { .val = page_private(page) };
438 __delete_from_swap_cache(page);
439 spin_unlock_irq(&mapping->tree_lock);
440 swap_free(swap);
441 } else {
442 __remove_from_page_cache(page);
443 spin_unlock_irq(&mapping->tree_lock);
444 }
445
446 return 1;
447
448 cannot_free:
449 spin_unlock_irq(&mapping->tree_lock);
450 return 0;
451 }
452
453 /*
454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
455 * someone else has a ref on the page, abort and return 0. If it was
456 * successfully detached, return 1. Assumes the caller has a single ref on
457 * this page.
458 */
459 int remove_mapping(struct address_space *mapping, struct page *page)
460 {
461 if (__remove_mapping(mapping, page)) {
462 /*
463 * Unfreezing the refcount with 1 rather than 2 effectively
464 * drops the pagecache ref for us without requiring another
465 * atomic operation.
466 */
467 page_unfreeze_refs(page, 1);
468 return 1;
469 }
470 return 0;
471 }
472
473 /*
474 * shrink_page_list() returns the number of reclaimed pages
475 */
476 static unsigned long shrink_page_list(struct list_head *page_list,
477 struct scan_control *sc,
478 enum pageout_io sync_writeback)
479 {
480 LIST_HEAD(ret_pages);
481 struct pagevec freed_pvec;
482 int pgactivate = 0;
483 unsigned long nr_reclaimed = 0;
484
485 cond_resched();
486
487 pagevec_init(&freed_pvec, 1);
488 while (!list_empty(page_list)) {
489 struct address_space *mapping;
490 struct page *page;
491 int may_enter_fs;
492 int referenced;
493
494 cond_resched();
495
496 page = lru_to_page(page_list);
497 list_del(&page->lru);
498
499 if (!trylock_page(page))
500 goto keep;
501
502 VM_BUG_ON(PageActive(page));
503
504 sc->nr_scanned++;
505
506 if (!sc->may_swap && page_mapped(page))
507 goto keep_locked;
508
509 /* Double the slab pressure for mapped and swapcache pages */
510 if (page_mapped(page) || PageSwapCache(page))
511 sc->nr_scanned++;
512
513 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
514 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
515
516 if (PageWriteback(page)) {
517 /*
518 * Synchronous reclaim is performed in two passes,
519 * first an asynchronous pass over the list to
520 * start parallel writeback, and a second synchronous
521 * pass to wait for the IO to complete. Wait here
522 * for any page for which writeback has already
523 * started.
524 */
525 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
526 wait_on_page_writeback(page);
527 else
528 goto keep_locked;
529 }
530
531 referenced = page_referenced(page, 1, sc->mem_cgroup);
532 /* In active use or really unfreeable? Activate it. */
533 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
534 referenced && page_mapping_inuse(page))
535 goto activate_locked;
536
537 #ifdef CONFIG_SWAP
538 /*
539 * Anonymous process memory has backing store?
540 * Try to allocate it some swap space here.
541 */
542 if (PageAnon(page) && !PageSwapCache(page))
543 if (!add_to_swap(page, GFP_ATOMIC))
544 goto activate_locked;
545 #endif /* CONFIG_SWAP */
546
547 mapping = page_mapping(page);
548
549 /*
550 * The page is mapped into the page tables of one or more
551 * processes. Try to unmap it here.
552 */
553 if (page_mapped(page) && mapping) {
554 switch (try_to_unmap(page, 0)) {
555 case SWAP_FAIL:
556 goto activate_locked;
557 case SWAP_AGAIN:
558 goto keep_locked;
559 case SWAP_SUCCESS:
560 ; /* try to free the page below */
561 }
562 }
563
564 if (PageDirty(page)) {
565 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
566 goto keep_locked;
567 if (!may_enter_fs)
568 goto keep_locked;
569 if (!sc->may_writepage)
570 goto keep_locked;
571
572 /* Page is dirty, try to write it out here */
573 switch (pageout(page, mapping, sync_writeback)) {
574 case PAGE_KEEP:
575 goto keep_locked;
576 case PAGE_ACTIVATE:
577 goto activate_locked;
578 case PAGE_SUCCESS:
579 if (PageWriteback(page) || PageDirty(page))
580 goto keep;
581 /*
582 * A synchronous write - probably a ramdisk. Go
583 * ahead and try to reclaim the page.
584 */
585 if (!trylock_page(page))
586 goto keep;
587 if (PageDirty(page) || PageWriteback(page))
588 goto keep_locked;
589 mapping = page_mapping(page);
590 case PAGE_CLEAN:
591 ; /* try to free the page below */
592 }
593 }
594
595 /*
596 * If the page has buffers, try to free the buffer mappings
597 * associated with this page. If we succeed we try to free
598 * the page as well.
599 *
600 * We do this even if the page is PageDirty().
601 * try_to_release_page() does not perform I/O, but it is
602 * possible for a page to have PageDirty set, but it is actually
603 * clean (all its buffers are clean). This happens if the
604 * buffers were written out directly, with submit_bh(). ext3
605 * will do this, as well as the blockdev mapping.
606 * try_to_release_page() will discover that cleanness and will
607 * drop the buffers and mark the page clean - it can be freed.
608 *
609 * Rarely, pages can have buffers and no ->mapping. These are
610 * the pages which were not successfully invalidated in
611 * truncate_complete_page(). We try to drop those buffers here
612 * and if that worked, and the page is no longer mapped into
613 * process address space (page_count == 1) it can be freed.
614 * Otherwise, leave the page on the LRU so it is swappable.
615 */
616 if (PagePrivate(page)) {
617 if (!try_to_release_page(page, sc->gfp_mask))
618 goto activate_locked;
619 if (!mapping && page_count(page) == 1) {
620 unlock_page(page);
621 if (put_page_testzero(page))
622 goto free_it;
623 else {
624 /*
625 * rare race with speculative reference.
626 * the speculative reference will free
627 * this page shortly, so we may
628 * increment nr_reclaimed here (and
629 * leave it off the LRU).
630 */
631 nr_reclaimed++;
632 continue;
633 }
634 }
635 }
636
637 if (!mapping || !__remove_mapping(mapping, page))
638 goto keep_locked;
639
640 unlock_page(page);
641 free_it:
642 nr_reclaimed++;
643 if (!pagevec_add(&freed_pvec, page)) {
644 __pagevec_free(&freed_pvec);
645 pagevec_reinit(&freed_pvec);
646 }
647 continue;
648
649 activate_locked:
650 /* Not a candidate for swapping, so reclaim swap space. */
651 if (PageSwapCache(page) && vm_swap_full())
652 remove_exclusive_swap_page_ref(page);
653 SetPageActive(page);
654 pgactivate++;
655 keep_locked:
656 unlock_page(page);
657 keep:
658 list_add(&page->lru, &ret_pages);
659 VM_BUG_ON(PageLRU(page));
660 }
661 list_splice(&ret_pages, page_list);
662 if (pagevec_count(&freed_pvec))
663 __pagevec_free(&freed_pvec);
664 count_vm_events(PGACTIVATE, pgactivate);
665 return nr_reclaimed;
666 }
667
668 /* LRU Isolation modes. */
669 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
670 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
671 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
672
673 /*
674 * Attempt to remove the specified page from its LRU. Only take this page
675 * if it is of the appropriate PageActive status. Pages which are being
676 * freed elsewhere are also ignored.
677 *
678 * page: page to consider
679 * mode: one of the LRU isolation modes defined above
680 *
681 * returns 0 on success, -ve errno on failure.
682 */
683 int __isolate_lru_page(struct page *page, int mode, int file)
684 {
685 int ret = -EINVAL;
686
687 /* Only take pages on the LRU. */
688 if (!PageLRU(page))
689 return ret;
690
691 /*
692 * When checking the active state, we need to be sure we are
693 * dealing with comparible boolean values. Take the logical not
694 * of each.
695 */
696 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
697 return ret;
698
699 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
700 return ret;
701
702 ret = -EBUSY;
703 if (likely(get_page_unless_zero(page))) {
704 /*
705 * Be careful not to clear PageLRU until after we're
706 * sure the page is not being freed elsewhere -- the
707 * page release code relies on it.
708 */
709 ClearPageLRU(page);
710 ret = 0;
711 }
712
713 return ret;
714 }
715
716 /*
717 * zone->lru_lock is heavily contended. Some of the functions that
718 * shrink the lists perform better by taking out a batch of pages
719 * and working on them outside the LRU lock.
720 *
721 * For pagecache intensive workloads, this function is the hottest
722 * spot in the kernel (apart from copy_*_user functions).
723 *
724 * Appropriate locks must be held before calling this function.
725 *
726 * @nr_to_scan: The number of pages to look through on the list.
727 * @src: The LRU list to pull pages off.
728 * @dst: The temp list to put pages on to.
729 * @scanned: The number of pages that were scanned.
730 * @order: The caller's attempted allocation order
731 * @mode: One of the LRU isolation modes
732 * @file: True [1] if isolating file [!anon] pages
733 *
734 * returns how many pages were moved onto *@dst.
735 */
736 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
737 struct list_head *src, struct list_head *dst,
738 unsigned long *scanned, int order, int mode, int file)
739 {
740 unsigned long nr_taken = 0;
741 unsigned long scan;
742
743 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
744 struct page *page;
745 unsigned long pfn;
746 unsigned long end_pfn;
747 unsigned long page_pfn;
748 int zone_id;
749
750 page = lru_to_page(src);
751 prefetchw_prev_lru_page(page, src, flags);
752
753 VM_BUG_ON(!PageLRU(page));
754
755 switch (__isolate_lru_page(page, mode, file)) {
756 case 0:
757 list_move(&page->lru, dst);
758 nr_taken++;
759 break;
760
761 case -EBUSY:
762 /* else it is being freed elsewhere */
763 list_move(&page->lru, src);
764 continue;
765
766 default:
767 BUG();
768 }
769
770 if (!order)
771 continue;
772
773 /*
774 * Attempt to take all pages in the order aligned region
775 * surrounding the tag page. Only take those pages of
776 * the same active state as that tag page. We may safely
777 * round the target page pfn down to the requested order
778 * as the mem_map is guarenteed valid out to MAX_ORDER,
779 * where that page is in a different zone we will detect
780 * it from its zone id and abort this block scan.
781 */
782 zone_id = page_zone_id(page);
783 page_pfn = page_to_pfn(page);
784 pfn = page_pfn & ~((1 << order) - 1);
785 end_pfn = pfn + (1 << order);
786 for (; pfn < end_pfn; pfn++) {
787 struct page *cursor_page;
788
789 /* The target page is in the block, ignore it. */
790 if (unlikely(pfn == page_pfn))
791 continue;
792
793 /* Avoid holes within the zone. */
794 if (unlikely(!pfn_valid_within(pfn)))
795 break;
796
797 cursor_page = pfn_to_page(pfn);
798
799 /* Check that we have not crossed a zone boundary. */
800 if (unlikely(page_zone_id(cursor_page) != zone_id))
801 continue;
802 switch (__isolate_lru_page(cursor_page, mode, file)) {
803 case 0:
804 list_move(&cursor_page->lru, dst);
805 nr_taken++;
806 scan++;
807 break;
808
809 case -EBUSY:
810 /* else it is being freed elsewhere */
811 list_move(&cursor_page->lru, src);
812 default:
813 break;
814 }
815 }
816 }
817
818 *scanned = scan;
819 return nr_taken;
820 }
821
822 static unsigned long isolate_pages_global(unsigned long nr,
823 struct list_head *dst,
824 unsigned long *scanned, int order,
825 int mode, struct zone *z,
826 struct mem_cgroup *mem_cont,
827 int active, int file)
828 {
829 int lru = LRU_BASE;
830 if (active)
831 lru += LRU_ACTIVE;
832 if (file)
833 lru += LRU_FILE;
834 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
835 mode, !!file);
836 }
837
838 /*
839 * clear_active_flags() is a helper for shrink_active_list(), clearing
840 * any active bits from the pages in the list.
841 */
842 static unsigned long clear_active_flags(struct list_head *page_list,
843 unsigned int *count)
844 {
845 int nr_active = 0;
846 int lru;
847 struct page *page;
848
849 list_for_each_entry(page, page_list, lru) {
850 lru = page_is_file_cache(page);
851 if (PageActive(page)) {
852 lru += LRU_ACTIVE;
853 ClearPageActive(page);
854 nr_active++;
855 }
856 count[lru]++;
857 }
858
859 return nr_active;
860 }
861
862 /**
863 * isolate_lru_page - tries to isolate a page from its LRU list
864 * @page: page to isolate from its LRU list
865 *
866 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
867 * vmstat statistic corresponding to whatever LRU list the page was on.
868 *
869 * Returns 0 if the page was removed from an LRU list.
870 * Returns -EBUSY if the page was not on an LRU list.
871 *
872 * The returned page will have PageLRU() cleared. If it was found on
873 * the active list, it will have PageActive set. That flag may need
874 * to be cleared by the caller before letting the page go.
875 *
876 * The vmstat statistic corresponding to the list on which the page was
877 * found will be decremented.
878 *
879 * Restrictions:
880 * (1) Must be called with an elevated refcount on the page. This is a
881 * fundamentnal difference from isolate_lru_pages (which is called
882 * without a stable reference).
883 * (2) the lru_lock must not be held.
884 * (3) interrupts must be enabled.
885 */
886 int isolate_lru_page(struct page *page)
887 {
888 int ret = -EBUSY;
889
890 if (PageLRU(page)) {
891 struct zone *zone = page_zone(page);
892
893 spin_lock_irq(&zone->lru_lock);
894 if (PageLRU(page) && get_page_unless_zero(page)) {
895 int lru = LRU_BASE;
896 ret = 0;
897 ClearPageLRU(page);
898
899 lru += page_is_file_cache(page) + !!PageActive(page);
900 del_page_from_lru_list(zone, page, lru);
901 }
902 spin_unlock_irq(&zone->lru_lock);
903 }
904 return ret;
905 }
906
907 /*
908 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
909 * of reclaimed pages
910 */
911 static unsigned long shrink_inactive_list(unsigned long max_scan,
912 struct zone *zone, struct scan_control *sc, int file)
913 {
914 LIST_HEAD(page_list);
915 struct pagevec pvec;
916 unsigned long nr_scanned = 0;
917 unsigned long nr_reclaimed = 0;
918
919 pagevec_init(&pvec, 1);
920
921 lru_add_drain();
922 spin_lock_irq(&zone->lru_lock);
923 do {
924 struct page *page;
925 unsigned long nr_taken;
926 unsigned long nr_scan;
927 unsigned long nr_freed;
928 unsigned long nr_active;
929 unsigned int count[NR_LRU_LISTS] = { 0, };
930 int mode = (sc->order > PAGE_ALLOC_COSTLY_ORDER) ?
931 ISOLATE_BOTH : ISOLATE_INACTIVE;
932
933 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
934 &page_list, &nr_scan, sc->order, mode,
935 zone, sc->mem_cgroup, 0, file);
936 nr_active = clear_active_flags(&page_list, count);
937 __count_vm_events(PGDEACTIVATE, nr_active);
938
939 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
940 -count[LRU_ACTIVE_FILE]);
941 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
942 -count[LRU_INACTIVE_FILE]);
943 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
944 -count[LRU_ACTIVE_ANON]);
945 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
946 -count[LRU_INACTIVE_ANON]);
947
948 if (scan_global_lru(sc)) {
949 zone->pages_scanned += nr_scan;
950 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
951 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
952 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
953 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
954 }
955 spin_unlock_irq(&zone->lru_lock);
956
957 nr_scanned += nr_scan;
958 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
959
960 /*
961 * If we are direct reclaiming for contiguous pages and we do
962 * not reclaim everything in the list, try again and wait
963 * for IO to complete. This will stall high-order allocations
964 * but that should be acceptable to the caller
965 */
966 if (nr_freed < nr_taken && !current_is_kswapd() &&
967 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
968 congestion_wait(WRITE, HZ/10);
969
970 /*
971 * The attempt at page out may have made some
972 * of the pages active, mark them inactive again.
973 */
974 nr_active = clear_active_flags(&page_list, count);
975 count_vm_events(PGDEACTIVATE, nr_active);
976
977 nr_freed += shrink_page_list(&page_list, sc,
978 PAGEOUT_IO_SYNC);
979 }
980
981 nr_reclaimed += nr_freed;
982 local_irq_disable();
983 if (current_is_kswapd()) {
984 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
985 __count_vm_events(KSWAPD_STEAL, nr_freed);
986 } else if (scan_global_lru(sc))
987 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
988
989 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
990
991 if (nr_taken == 0)
992 goto done;
993
994 spin_lock(&zone->lru_lock);
995 /*
996 * Put back any unfreeable pages.
997 */
998 while (!list_empty(&page_list)) {
999 page = lru_to_page(&page_list);
1000 VM_BUG_ON(PageLRU(page));
1001 SetPageLRU(page);
1002 list_del(&page->lru);
1003 add_page_to_lru_list(zone, page, page_lru(page));
1004 if (PageActive(page) && scan_global_lru(sc)) {
1005 int file = !!page_is_file_cache(page);
1006 zone->recent_rotated[file]++;
1007 }
1008 if (!pagevec_add(&pvec, page)) {
1009 spin_unlock_irq(&zone->lru_lock);
1010 __pagevec_release(&pvec);
1011 spin_lock_irq(&zone->lru_lock);
1012 }
1013 }
1014 } while (nr_scanned < max_scan);
1015 spin_unlock(&zone->lru_lock);
1016 done:
1017 local_irq_enable();
1018 pagevec_release(&pvec);
1019 return nr_reclaimed;
1020 }
1021
1022 /*
1023 * We are about to scan this zone at a certain priority level. If that priority
1024 * level is smaller (ie: more urgent) than the previous priority, then note
1025 * that priority level within the zone. This is done so that when the next
1026 * process comes in to scan this zone, it will immediately start out at this
1027 * priority level rather than having to build up its own scanning priority.
1028 * Here, this priority affects only the reclaim-mapped threshold.
1029 */
1030 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1031 {
1032 if (priority < zone->prev_priority)
1033 zone->prev_priority = priority;
1034 }
1035
1036 static inline int zone_is_near_oom(struct zone *zone)
1037 {
1038 return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1039 }
1040
1041 /*
1042 * This moves pages from the active list to the inactive list.
1043 *
1044 * We move them the other way if the page is referenced by one or more
1045 * processes, from rmap.
1046 *
1047 * If the pages are mostly unmapped, the processing is fast and it is
1048 * appropriate to hold zone->lru_lock across the whole operation. But if
1049 * the pages are mapped, the processing is slow (page_referenced()) so we
1050 * should drop zone->lru_lock around each page. It's impossible to balance
1051 * this, so instead we remove the pages from the LRU while processing them.
1052 * It is safe to rely on PG_active against the non-LRU pages in here because
1053 * nobody will play with that bit on a non-LRU page.
1054 *
1055 * The downside is that we have to touch page->_count against each page.
1056 * But we had to alter page->flags anyway.
1057 */
1058
1059
1060 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1061 struct scan_control *sc, int priority, int file)
1062 {
1063 unsigned long pgmoved;
1064 int pgdeactivate = 0;
1065 unsigned long pgscanned;
1066 LIST_HEAD(l_hold); /* The pages which were snipped off */
1067 LIST_HEAD(l_active);
1068 LIST_HEAD(l_inactive);
1069 struct page *page;
1070 struct pagevec pvec;
1071 enum lru_list lru;
1072
1073 lru_add_drain();
1074 spin_lock_irq(&zone->lru_lock);
1075 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1076 ISOLATE_ACTIVE, zone,
1077 sc->mem_cgroup, 1, file);
1078 /*
1079 * zone->pages_scanned is used for detect zone's oom
1080 * mem_cgroup remembers nr_scan by itself.
1081 */
1082 if (scan_global_lru(sc)) {
1083 zone->pages_scanned += pgscanned;
1084 zone->recent_scanned[!!file] += pgmoved;
1085 }
1086
1087 if (file)
1088 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1089 else
1090 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1091 spin_unlock_irq(&zone->lru_lock);
1092
1093 pgmoved = 0;
1094 while (!list_empty(&l_hold)) {
1095 cond_resched();
1096 page = lru_to_page(&l_hold);
1097 list_del(&page->lru);
1098 list_add(&page->lru, &l_inactive);
1099 }
1100
1101 /*
1102 * Count the referenced pages as rotated, even when they are moved
1103 * to the inactive list. This helps balance scan pressure between
1104 * file and anonymous pages in get_scan_ratio.
1105 */
1106 zone->recent_rotated[!!file] += pgmoved;
1107
1108 /*
1109 * Now put the pages back on the appropriate [file or anon] inactive
1110 * and active lists.
1111 */
1112 pagevec_init(&pvec, 1);
1113 pgmoved = 0;
1114 lru = LRU_BASE + file * LRU_FILE;
1115 spin_lock_irq(&zone->lru_lock);
1116 while (!list_empty(&l_inactive)) {
1117 page = lru_to_page(&l_inactive);
1118 prefetchw_prev_lru_page(page, &l_inactive, flags);
1119 VM_BUG_ON(PageLRU(page));
1120 SetPageLRU(page);
1121 VM_BUG_ON(!PageActive(page));
1122 ClearPageActive(page);
1123
1124 list_move(&page->lru, &zone->lru[lru].list);
1125 mem_cgroup_move_lists(page, false);
1126 pgmoved++;
1127 if (!pagevec_add(&pvec, page)) {
1128 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1129 spin_unlock_irq(&zone->lru_lock);
1130 pgdeactivate += pgmoved;
1131 pgmoved = 0;
1132 if (buffer_heads_over_limit)
1133 pagevec_strip(&pvec);
1134 __pagevec_release(&pvec);
1135 spin_lock_irq(&zone->lru_lock);
1136 }
1137 }
1138 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1139 pgdeactivate += pgmoved;
1140 if (buffer_heads_over_limit) {
1141 spin_unlock_irq(&zone->lru_lock);
1142 pagevec_strip(&pvec);
1143 spin_lock_irq(&zone->lru_lock);
1144 }
1145
1146 pgmoved = 0;
1147 lru = LRU_ACTIVE + file * LRU_FILE;
1148 while (!list_empty(&l_active)) {
1149 page = lru_to_page(&l_active);
1150 prefetchw_prev_lru_page(page, &l_active, flags);
1151 VM_BUG_ON(PageLRU(page));
1152 SetPageLRU(page);
1153 VM_BUG_ON(!PageActive(page));
1154
1155 list_move(&page->lru, &zone->lru[lru].list);
1156 mem_cgroup_move_lists(page, true);
1157 pgmoved++;
1158 if (!pagevec_add(&pvec, page)) {
1159 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1160 pgmoved = 0;
1161 spin_unlock_irq(&zone->lru_lock);
1162 if (vm_swap_full())
1163 pagevec_swap_free(&pvec);
1164 __pagevec_release(&pvec);
1165 spin_lock_irq(&zone->lru_lock);
1166 }
1167 }
1168 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1169
1170 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1171 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1172 spin_unlock_irq(&zone->lru_lock);
1173 if (vm_swap_full())
1174 pagevec_swap_free(&pvec);
1175
1176 pagevec_release(&pvec);
1177 }
1178
1179 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1180 struct zone *zone, struct scan_control *sc, int priority)
1181 {
1182 int file = is_file_lru(lru);
1183
1184 if (lru == LRU_ACTIVE_FILE) {
1185 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1186 return 0;
1187 }
1188
1189 if (lru == LRU_ACTIVE_ANON &&
1190 (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
1191 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1192 return 0;
1193 }
1194 return shrink_inactive_list(nr_to_scan, zone, sc, file);
1195 }
1196
1197 /*
1198 * Determine how aggressively the anon and file LRU lists should be
1199 * scanned. The relative value of each set of LRU lists is determined
1200 * by looking at the fraction of the pages scanned we did rotate back
1201 * onto the active list instead of evict.
1202 *
1203 * percent[0] specifies how much pressure to put on ram/swap backed
1204 * memory, while percent[1] determines pressure on the file LRUs.
1205 */
1206 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1207 unsigned long *percent)
1208 {
1209 unsigned long anon, file, free;
1210 unsigned long anon_prio, file_prio;
1211 unsigned long ap, fp;
1212
1213 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1214 zone_page_state(zone, NR_INACTIVE_ANON);
1215 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1216 zone_page_state(zone, NR_INACTIVE_FILE);
1217 free = zone_page_state(zone, NR_FREE_PAGES);
1218
1219 /* If we have no swap space, do not bother scanning anon pages. */
1220 if (nr_swap_pages <= 0) {
1221 percent[0] = 0;
1222 percent[1] = 100;
1223 return;
1224 }
1225
1226 /* If we have very few page cache pages, force-scan anon pages. */
1227 if (unlikely(file + free <= zone->pages_high)) {
1228 percent[0] = 100;
1229 percent[1] = 0;
1230 return;
1231 }
1232
1233 /*
1234 * OK, so we have swap space and a fair amount of page cache
1235 * pages. We use the recently rotated / recently scanned
1236 * ratios to determine how valuable each cache is.
1237 *
1238 * Because workloads change over time (and to avoid overflow)
1239 * we keep these statistics as a floating average, which ends
1240 * up weighing recent references more than old ones.
1241 *
1242 * anon in [0], file in [1]
1243 */
1244 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1245 spin_lock_irq(&zone->lru_lock);
1246 zone->recent_scanned[0] /= 2;
1247 zone->recent_rotated[0] /= 2;
1248 spin_unlock_irq(&zone->lru_lock);
1249 }
1250
1251 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1252 spin_lock_irq(&zone->lru_lock);
1253 zone->recent_scanned[1] /= 2;
1254 zone->recent_rotated[1] /= 2;
1255 spin_unlock_irq(&zone->lru_lock);
1256 }
1257
1258 /*
1259 * With swappiness at 100, anonymous and file have the same priority.
1260 * This scanning priority is essentially the inverse of IO cost.
1261 */
1262 anon_prio = sc->swappiness;
1263 file_prio = 200 - sc->swappiness;
1264
1265 /*
1266 * anon recent_rotated[0]
1267 * %anon = 100 * ----------- / ----------------- * IO cost
1268 * anon + file rotate_sum
1269 */
1270 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1271 ap /= zone->recent_rotated[0] + 1;
1272
1273 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1274 fp /= zone->recent_rotated[1] + 1;
1275
1276 /* Normalize to percentages */
1277 percent[0] = 100 * ap / (ap + fp + 1);
1278 percent[1] = 100 - percent[0];
1279 }
1280
1281
1282 /*
1283 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1284 */
1285 static unsigned long shrink_zone(int priority, struct zone *zone,
1286 struct scan_control *sc)
1287 {
1288 unsigned long nr[NR_LRU_LISTS];
1289 unsigned long nr_to_scan;
1290 unsigned long nr_reclaimed = 0;
1291 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1292 enum lru_list l;
1293
1294 get_scan_ratio(zone, sc, percent);
1295
1296 for_each_lru(l) {
1297 if (scan_global_lru(sc)) {
1298 int file = is_file_lru(l);
1299 int scan;
1300 /*
1301 * Add one to nr_to_scan just to make sure that the
1302 * kernel will slowly sift through each list.
1303 */
1304 scan = zone_page_state(zone, NR_LRU_BASE + l);
1305 if (priority) {
1306 scan >>= priority;
1307 scan = (scan * percent[file]) / 100;
1308 }
1309 zone->lru[l].nr_scan += scan + 1;
1310 nr[l] = zone->lru[l].nr_scan;
1311 if (nr[l] >= sc->swap_cluster_max)
1312 zone->lru[l].nr_scan = 0;
1313 else
1314 nr[l] = 0;
1315 } else {
1316 /*
1317 * This reclaim occurs not because zone memory shortage
1318 * but because memory controller hits its limit.
1319 * Don't modify zone reclaim related data.
1320 */
1321 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1322 priority, l);
1323 }
1324 }
1325
1326 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1327 nr[LRU_INACTIVE_FILE]) {
1328 for_each_lru(l) {
1329 if (nr[l]) {
1330 nr_to_scan = min(nr[l],
1331 (unsigned long)sc->swap_cluster_max);
1332 nr[l] -= nr_to_scan;
1333
1334 nr_reclaimed += shrink_list(l, nr_to_scan,
1335 zone, sc, priority);
1336 }
1337 }
1338 }
1339
1340 /*
1341 * Even if we did not try to evict anon pages at all, we want to
1342 * rebalance the anon lru active/inactive ratio.
1343 */
1344 if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
1345 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1346 else if (!scan_global_lru(sc))
1347 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1348
1349 throttle_vm_writeout(sc->gfp_mask);
1350 return nr_reclaimed;
1351 }
1352
1353 /*
1354 * This is the direct reclaim path, for page-allocating processes. We only
1355 * try to reclaim pages from zones which will satisfy the caller's allocation
1356 * request.
1357 *
1358 * We reclaim from a zone even if that zone is over pages_high. Because:
1359 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1360 * allocation or
1361 * b) The zones may be over pages_high but they must go *over* pages_high to
1362 * satisfy the `incremental min' zone defense algorithm.
1363 *
1364 * Returns the number of reclaimed pages.
1365 *
1366 * If a zone is deemed to be full of pinned pages then just give it a light
1367 * scan then give up on it.
1368 */
1369 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1370 struct scan_control *sc)
1371 {
1372 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1373 unsigned long nr_reclaimed = 0;
1374 struct zoneref *z;
1375 struct zone *zone;
1376
1377 sc->all_unreclaimable = 1;
1378 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1379 if (!populated_zone(zone))
1380 continue;
1381 /*
1382 * Take care memory controller reclaiming has small influence
1383 * to global LRU.
1384 */
1385 if (scan_global_lru(sc)) {
1386 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1387 continue;
1388 note_zone_scanning_priority(zone, priority);
1389
1390 if (zone_is_all_unreclaimable(zone) &&
1391 priority != DEF_PRIORITY)
1392 continue; /* Let kswapd poll it */
1393 sc->all_unreclaimable = 0;
1394 } else {
1395 /*
1396 * Ignore cpuset limitation here. We just want to reduce
1397 * # of used pages by us regardless of memory shortage.
1398 */
1399 sc->all_unreclaimable = 0;
1400 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1401 priority);
1402 }
1403
1404 nr_reclaimed += shrink_zone(priority, zone, sc);
1405 }
1406
1407 return nr_reclaimed;
1408 }
1409
1410 /*
1411 * This is the main entry point to direct page reclaim.
1412 *
1413 * If a full scan of the inactive list fails to free enough memory then we
1414 * are "out of memory" and something needs to be killed.
1415 *
1416 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1417 * high - the zone may be full of dirty or under-writeback pages, which this
1418 * caller can't do much about. We kick pdflush and take explicit naps in the
1419 * hope that some of these pages can be written. But if the allocating task
1420 * holds filesystem locks which prevent writeout this might not work, and the
1421 * allocation attempt will fail.
1422 *
1423 * returns: 0, if no pages reclaimed
1424 * else, the number of pages reclaimed
1425 */
1426 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1427 struct scan_control *sc)
1428 {
1429 int priority;
1430 unsigned long ret = 0;
1431 unsigned long total_scanned = 0;
1432 unsigned long nr_reclaimed = 0;
1433 struct reclaim_state *reclaim_state = current->reclaim_state;
1434 unsigned long lru_pages = 0;
1435 struct zoneref *z;
1436 struct zone *zone;
1437 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1438
1439 delayacct_freepages_start();
1440
1441 if (scan_global_lru(sc))
1442 count_vm_event(ALLOCSTALL);
1443 /*
1444 * mem_cgroup will not do shrink_slab.
1445 */
1446 if (scan_global_lru(sc)) {
1447 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1448
1449 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1450 continue;
1451
1452 lru_pages += zone_lru_pages(zone);
1453 }
1454 }
1455
1456 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1457 sc->nr_scanned = 0;
1458 if (!priority)
1459 disable_swap_token();
1460 nr_reclaimed += shrink_zones(priority, zonelist, sc);
1461 /*
1462 * Don't shrink slabs when reclaiming memory from
1463 * over limit cgroups
1464 */
1465 if (scan_global_lru(sc)) {
1466 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1467 if (reclaim_state) {
1468 nr_reclaimed += reclaim_state->reclaimed_slab;
1469 reclaim_state->reclaimed_slab = 0;
1470 }
1471 }
1472 total_scanned += sc->nr_scanned;
1473 if (nr_reclaimed >= sc->swap_cluster_max) {
1474 ret = nr_reclaimed;
1475 goto out;
1476 }
1477
1478 /*
1479 * Try to write back as many pages as we just scanned. This
1480 * tends to cause slow streaming writers to write data to the
1481 * disk smoothly, at the dirtying rate, which is nice. But
1482 * that's undesirable in laptop mode, where we *want* lumpy
1483 * writeout. So in laptop mode, write out the whole world.
1484 */
1485 if (total_scanned > sc->swap_cluster_max +
1486 sc->swap_cluster_max / 2) {
1487 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1488 sc->may_writepage = 1;
1489 }
1490
1491 /* Take a nap, wait for some writeback to complete */
1492 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1493 congestion_wait(WRITE, HZ/10);
1494 }
1495 /* top priority shrink_zones still had more to do? don't OOM, then */
1496 if (!sc->all_unreclaimable && scan_global_lru(sc))
1497 ret = nr_reclaimed;
1498 out:
1499 /*
1500 * Now that we've scanned all the zones at this priority level, note
1501 * that level within the zone so that the next thread which performs
1502 * scanning of this zone will immediately start out at this priority
1503 * level. This affects only the decision whether or not to bring
1504 * mapped pages onto the inactive list.
1505 */
1506 if (priority < 0)
1507 priority = 0;
1508
1509 if (scan_global_lru(sc)) {
1510 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1511
1512 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1513 continue;
1514
1515 zone->prev_priority = priority;
1516 }
1517 } else
1518 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1519
1520 delayacct_freepages_end();
1521
1522 return ret;
1523 }
1524
1525 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1526 gfp_t gfp_mask)
1527 {
1528 struct scan_control sc = {
1529 .gfp_mask = gfp_mask,
1530 .may_writepage = !laptop_mode,
1531 .swap_cluster_max = SWAP_CLUSTER_MAX,
1532 .may_swap = 1,
1533 .swappiness = vm_swappiness,
1534 .order = order,
1535 .mem_cgroup = NULL,
1536 .isolate_pages = isolate_pages_global,
1537 };
1538
1539 return do_try_to_free_pages(zonelist, &sc);
1540 }
1541
1542 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1543
1544 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1545 gfp_t gfp_mask)
1546 {
1547 struct scan_control sc = {
1548 .may_writepage = !laptop_mode,
1549 .may_swap = 1,
1550 .swap_cluster_max = SWAP_CLUSTER_MAX,
1551 .swappiness = vm_swappiness,
1552 .order = 0,
1553 .mem_cgroup = mem_cont,
1554 .isolate_pages = mem_cgroup_isolate_pages,
1555 };
1556 struct zonelist *zonelist;
1557
1558 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1559 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1560 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1561 return do_try_to_free_pages(zonelist, &sc);
1562 }
1563 #endif
1564
1565 /*
1566 * For kswapd, balance_pgdat() will work across all this node's zones until
1567 * they are all at pages_high.
1568 *
1569 * Returns the number of pages which were actually freed.
1570 *
1571 * There is special handling here for zones which are full of pinned pages.
1572 * This can happen if the pages are all mlocked, or if they are all used by
1573 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1574 * What we do is to detect the case where all pages in the zone have been
1575 * scanned twice and there has been zero successful reclaim. Mark the zone as
1576 * dead and from now on, only perform a short scan. Basically we're polling
1577 * the zone for when the problem goes away.
1578 *
1579 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1580 * zones which have free_pages > pages_high, but once a zone is found to have
1581 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1582 * of the number of free pages in the lower zones. This interoperates with
1583 * the page allocator fallback scheme to ensure that aging of pages is balanced
1584 * across the zones.
1585 */
1586 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1587 {
1588 int all_zones_ok;
1589 int priority;
1590 int i;
1591 unsigned long total_scanned;
1592 unsigned long nr_reclaimed;
1593 struct reclaim_state *reclaim_state = current->reclaim_state;
1594 struct scan_control sc = {
1595 .gfp_mask = GFP_KERNEL,
1596 .may_swap = 1,
1597 .swap_cluster_max = SWAP_CLUSTER_MAX,
1598 .swappiness = vm_swappiness,
1599 .order = order,
1600 .mem_cgroup = NULL,
1601 .isolate_pages = isolate_pages_global,
1602 };
1603 /*
1604 * temp_priority is used to remember the scanning priority at which
1605 * this zone was successfully refilled to free_pages == pages_high.
1606 */
1607 int temp_priority[MAX_NR_ZONES];
1608
1609 loop_again:
1610 total_scanned = 0;
1611 nr_reclaimed = 0;
1612 sc.may_writepage = !laptop_mode;
1613 count_vm_event(PAGEOUTRUN);
1614
1615 for (i = 0; i < pgdat->nr_zones; i++)
1616 temp_priority[i] = DEF_PRIORITY;
1617
1618 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1619 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1620 unsigned long lru_pages = 0;
1621
1622 /* The swap token gets in the way of swapout... */
1623 if (!priority)
1624 disable_swap_token();
1625
1626 all_zones_ok = 1;
1627
1628 /*
1629 * Scan in the highmem->dma direction for the highest
1630 * zone which needs scanning
1631 */
1632 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1633 struct zone *zone = pgdat->node_zones + i;
1634
1635 if (!populated_zone(zone))
1636 continue;
1637
1638 if (zone_is_all_unreclaimable(zone) &&
1639 priority != DEF_PRIORITY)
1640 continue;
1641
1642 /*
1643 * Do some background aging of the anon list, to give
1644 * pages a chance to be referenced before reclaiming.
1645 */
1646 if (inactive_anon_is_low(zone))
1647 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1648 &sc, priority, 0);
1649
1650 if (!zone_watermark_ok(zone, order, zone->pages_high,
1651 0, 0)) {
1652 end_zone = i;
1653 break;
1654 }
1655 }
1656 if (i < 0)
1657 goto out;
1658
1659 for (i = 0; i <= end_zone; i++) {
1660 struct zone *zone = pgdat->node_zones + i;
1661
1662 lru_pages += zone_lru_pages(zone);
1663 }
1664
1665 /*
1666 * Now scan the zone in the dma->highmem direction, stopping
1667 * at the last zone which needs scanning.
1668 *
1669 * We do this because the page allocator works in the opposite
1670 * direction. This prevents the page allocator from allocating
1671 * pages behind kswapd's direction of progress, which would
1672 * cause too much scanning of the lower zones.
1673 */
1674 for (i = 0; i <= end_zone; i++) {
1675 struct zone *zone = pgdat->node_zones + i;
1676 int nr_slab;
1677
1678 if (!populated_zone(zone))
1679 continue;
1680
1681 if (zone_is_all_unreclaimable(zone) &&
1682 priority != DEF_PRIORITY)
1683 continue;
1684
1685 if (!zone_watermark_ok(zone, order, zone->pages_high,
1686 end_zone, 0))
1687 all_zones_ok = 0;
1688 temp_priority[i] = priority;
1689 sc.nr_scanned = 0;
1690 note_zone_scanning_priority(zone, priority);
1691 /*
1692 * We put equal pressure on every zone, unless one
1693 * zone has way too many pages free already.
1694 */
1695 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1696 end_zone, 0))
1697 nr_reclaimed += shrink_zone(priority, zone, &sc);
1698 reclaim_state->reclaimed_slab = 0;
1699 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1700 lru_pages);
1701 nr_reclaimed += reclaim_state->reclaimed_slab;
1702 total_scanned += sc.nr_scanned;
1703 if (zone_is_all_unreclaimable(zone))
1704 continue;
1705 if (nr_slab == 0 && zone->pages_scanned >=
1706 (zone_lru_pages(zone) * 6))
1707 zone_set_flag(zone,
1708 ZONE_ALL_UNRECLAIMABLE);
1709 /*
1710 * If we've done a decent amount of scanning and
1711 * the reclaim ratio is low, start doing writepage
1712 * even in laptop mode
1713 */
1714 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1715 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1716 sc.may_writepage = 1;
1717 }
1718 if (all_zones_ok)
1719 break; /* kswapd: all done */
1720 /*
1721 * OK, kswapd is getting into trouble. Take a nap, then take
1722 * another pass across the zones.
1723 */
1724 if (total_scanned && priority < DEF_PRIORITY - 2)
1725 congestion_wait(WRITE, HZ/10);
1726
1727 /*
1728 * We do this so kswapd doesn't build up large priorities for
1729 * example when it is freeing in parallel with allocators. It
1730 * matches the direct reclaim path behaviour in terms of impact
1731 * on zone->*_priority.
1732 */
1733 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1734 break;
1735 }
1736 out:
1737 /*
1738 * Note within each zone the priority level at which this zone was
1739 * brought into a happy state. So that the next thread which scans this
1740 * zone will start out at that priority level.
1741 */
1742 for (i = 0; i < pgdat->nr_zones; i++) {
1743 struct zone *zone = pgdat->node_zones + i;
1744
1745 zone->prev_priority = temp_priority[i];
1746 }
1747 if (!all_zones_ok) {
1748 cond_resched();
1749
1750 try_to_freeze();
1751
1752 goto loop_again;
1753 }
1754
1755 return nr_reclaimed;
1756 }
1757
1758 /*
1759 * The background pageout daemon, started as a kernel thread
1760 * from the init process.
1761 *
1762 * This basically trickles out pages so that we have _some_
1763 * free memory available even if there is no other activity
1764 * that frees anything up. This is needed for things like routing
1765 * etc, where we otherwise might have all activity going on in
1766 * asynchronous contexts that cannot page things out.
1767 *
1768 * If there are applications that are active memory-allocators
1769 * (most normal use), this basically shouldn't matter.
1770 */
1771 static int kswapd(void *p)
1772 {
1773 unsigned long order;
1774 pg_data_t *pgdat = (pg_data_t*)p;
1775 struct task_struct *tsk = current;
1776 DEFINE_WAIT(wait);
1777 struct reclaim_state reclaim_state = {
1778 .reclaimed_slab = 0,
1779 };
1780 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1781
1782 if (!cpus_empty(*cpumask))
1783 set_cpus_allowed_ptr(tsk, cpumask);
1784 current->reclaim_state = &reclaim_state;
1785
1786 /*
1787 * Tell the memory management that we're a "memory allocator",
1788 * and that if we need more memory we should get access to it
1789 * regardless (see "__alloc_pages()"). "kswapd" should
1790 * never get caught in the normal page freeing logic.
1791 *
1792 * (Kswapd normally doesn't need memory anyway, but sometimes
1793 * you need a small amount of memory in order to be able to
1794 * page out something else, and this flag essentially protects
1795 * us from recursively trying to free more memory as we're
1796 * trying to free the first piece of memory in the first place).
1797 */
1798 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1799 set_freezable();
1800
1801 order = 0;
1802 for ( ; ; ) {
1803 unsigned long new_order;
1804
1805 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1806 new_order = pgdat->kswapd_max_order;
1807 pgdat->kswapd_max_order = 0;
1808 if (order < new_order) {
1809 /*
1810 * Don't sleep if someone wants a larger 'order'
1811 * allocation
1812 */
1813 order = new_order;
1814 } else {
1815 if (!freezing(current))
1816 schedule();
1817
1818 order = pgdat->kswapd_max_order;
1819 }
1820 finish_wait(&pgdat->kswapd_wait, &wait);
1821
1822 if (!try_to_freeze()) {
1823 /* We can speed up thawing tasks if we don't call
1824 * balance_pgdat after returning from the refrigerator
1825 */
1826 balance_pgdat(pgdat, order);
1827 }
1828 }
1829 return 0;
1830 }
1831
1832 /*
1833 * A zone is low on free memory, so wake its kswapd task to service it.
1834 */
1835 void wakeup_kswapd(struct zone *zone, int order)
1836 {
1837 pg_data_t *pgdat;
1838
1839 if (!populated_zone(zone))
1840 return;
1841
1842 pgdat = zone->zone_pgdat;
1843 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1844 return;
1845 if (pgdat->kswapd_max_order < order)
1846 pgdat->kswapd_max_order = order;
1847 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1848 return;
1849 if (!waitqueue_active(&pgdat->kswapd_wait))
1850 return;
1851 wake_up_interruptible(&pgdat->kswapd_wait);
1852 }
1853
1854 unsigned long global_lru_pages(void)
1855 {
1856 return global_page_state(NR_ACTIVE_ANON)
1857 + global_page_state(NR_ACTIVE_FILE)
1858 + global_page_state(NR_INACTIVE_ANON)
1859 + global_page_state(NR_INACTIVE_FILE);
1860 }
1861
1862 #ifdef CONFIG_PM
1863 /*
1864 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1865 * from LRU lists system-wide, for given pass and priority, and returns the
1866 * number of reclaimed pages
1867 *
1868 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1869 */
1870 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1871 int pass, struct scan_control *sc)
1872 {
1873 struct zone *zone;
1874 unsigned long nr_to_scan, ret = 0;
1875 enum lru_list l;
1876
1877 for_each_zone(zone) {
1878
1879 if (!populated_zone(zone))
1880 continue;
1881
1882 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1883 continue;
1884
1885 for_each_lru(l) {
1886 /* For pass = 0 we don't shrink the active list */
1887 if (pass == 0 &&
1888 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
1889 continue;
1890
1891 zone->lru[l].nr_scan +=
1892 (zone_page_state(zone, NR_LRU_BASE + l)
1893 >> prio) + 1;
1894 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
1895 zone->lru[l].nr_scan = 0;
1896 nr_to_scan = min(nr_pages,
1897 zone_page_state(zone,
1898 NR_LRU_BASE + l));
1899 ret += shrink_list(l, nr_to_scan, zone,
1900 sc, prio);
1901 if (ret >= nr_pages)
1902 return ret;
1903 }
1904 }
1905 }
1906
1907 return ret;
1908 }
1909
1910 /*
1911 * Try to free `nr_pages' of memory, system-wide, and return the number of
1912 * freed pages.
1913 *
1914 * Rather than trying to age LRUs the aim is to preserve the overall
1915 * LRU order by reclaiming preferentially
1916 * inactive > active > active referenced > active mapped
1917 */
1918 unsigned long shrink_all_memory(unsigned long nr_pages)
1919 {
1920 unsigned long lru_pages, nr_slab;
1921 unsigned long ret = 0;
1922 int pass;
1923 struct reclaim_state reclaim_state;
1924 struct scan_control sc = {
1925 .gfp_mask = GFP_KERNEL,
1926 .may_swap = 0,
1927 .swap_cluster_max = nr_pages,
1928 .may_writepage = 1,
1929 .swappiness = vm_swappiness,
1930 .isolate_pages = isolate_pages_global,
1931 };
1932
1933 current->reclaim_state = &reclaim_state;
1934
1935 lru_pages = global_lru_pages();
1936 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1937 /* If slab caches are huge, it's better to hit them first */
1938 while (nr_slab >= lru_pages) {
1939 reclaim_state.reclaimed_slab = 0;
1940 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1941 if (!reclaim_state.reclaimed_slab)
1942 break;
1943
1944 ret += reclaim_state.reclaimed_slab;
1945 if (ret >= nr_pages)
1946 goto out;
1947
1948 nr_slab -= reclaim_state.reclaimed_slab;
1949 }
1950
1951 /*
1952 * We try to shrink LRUs in 5 passes:
1953 * 0 = Reclaim from inactive_list only
1954 * 1 = Reclaim from active list but don't reclaim mapped
1955 * 2 = 2nd pass of type 1
1956 * 3 = Reclaim mapped (normal reclaim)
1957 * 4 = 2nd pass of type 3
1958 */
1959 for (pass = 0; pass < 5; pass++) {
1960 int prio;
1961
1962 /* Force reclaiming mapped pages in the passes #3 and #4 */
1963 if (pass > 2) {
1964 sc.may_swap = 1;
1965 sc.swappiness = 100;
1966 }
1967
1968 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1969 unsigned long nr_to_scan = nr_pages - ret;
1970
1971 sc.nr_scanned = 0;
1972 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1973 if (ret >= nr_pages)
1974 goto out;
1975
1976 reclaim_state.reclaimed_slab = 0;
1977 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1978 global_lru_pages());
1979 ret += reclaim_state.reclaimed_slab;
1980 if (ret >= nr_pages)
1981 goto out;
1982
1983 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1984 congestion_wait(WRITE, HZ / 10);
1985 }
1986 }
1987
1988 /*
1989 * If ret = 0, we could not shrink LRUs, but there may be something
1990 * in slab caches
1991 */
1992 if (!ret) {
1993 do {
1994 reclaim_state.reclaimed_slab = 0;
1995 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
1996 ret += reclaim_state.reclaimed_slab;
1997 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1998 }
1999
2000 out:
2001 current->reclaim_state = NULL;
2002
2003 return ret;
2004 }
2005 #endif
2006
2007 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2008 not required for correctness. So if the last cpu in a node goes
2009 away, we get changed to run anywhere: as the first one comes back,
2010 restore their cpu bindings. */
2011 static int __devinit cpu_callback(struct notifier_block *nfb,
2012 unsigned long action, void *hcpu)
2013 {
2014 int nid;
2015
2016 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2017 for_each_node_state(nid, N_HIGH_MEMORY) {
2018 pg_data_t *pgdat = NODE_DATA(nid);
2019 node_to_cpumask_ptr(mask, pgdat->node_id);
2020
2021 if (any_online_cpu(*mask) < nr_cpu_ids)
2022 /* One of our CPUs online: restore mask */
2023 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2024 }
2025 }
2026 return NOTIFY_OK;
2027 }
2028
2029 /*
2030 * This kswapd start function will be called by init and node-hot-add.
2031 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2032 */
2033 int kswapd_run(int nid)
2034 {
2035 pg_data_t *pgdat = NODE_DATA(nid);
2036 int ret = 0;
2037
2038 if (pgdat->kswapd)
2039 return 0;
2040
2041 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2042 if (IS_ERR(pgdat->kswapd)) {
2043 /* failure at boot is fatal */
2044 BUG_ON(system_state == SYSTEM_BOOTING);
2045 printk("Failed to start kswapd on node %d\n",nid);
2046 ret = -1;
2047 }
2048 return ret;
2049 }
2050
2051 static int __init kswapd_init(void)
2052 {
2053 int nid;
2054
2055 swap_setup();
2056 for_each_node_state(nid, N_HIGH_MEMORY)
2057 kswapd_run(nid);
2058 hotcpu_notifier(cpu_callback, 0);
2059 return 0;
2060 }
2061
2062 module_init(kswapd_init)
2063
2064 #ifdef CONFIG_NUMA
2065 /*
2066 * Zone reclaim mode
2067 *
2068 * If non-zero call zone_reclaim when the number of free pages falls below
2069 * the watermarks.
2070 */
2071 int zone_reclaim_mode __read_mostly;
2072
2073 #define RECLAIM_OFF 0
2074 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2075 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2076 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2077
2078 /*
2079 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2080 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2081 * a zone.
2082 */
2083 #define ZONE_RECLAIM_PRIORITY 4
2084
2085 /*
2086 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2087 * occur.
2088 */
2089 int sysctl_min_unmapped_ratio = 1;
2090
2091 /*
2092 * If the number of slab pages in a zone grows beyond this percentage then
2093 * slab reclaim needs to occur.
2094 */
2095 int sysctl_min_slab_ratio = 5;
2096
2097 /*
2098 * Try to free up some pages from this zone through reclaim.
2099 */
2100 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2101 {
2102 /* Minimum pages needed in order to stay on node */
2103 const unsigned long nr_pages = 1 << order;
2104 struct task_struct *p = current;
2105 struct reclaim_state reclaim_state;
2106 int priority;
2107 unsigned long nr_reclaimed = 0;
2108 struct scan_control sc = {
2109 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2110 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2111 .swap_cluster_max = max_t(unsigned long, nr_pages,
2112 SWAP_CLUSTER_MAX),
2113 .gfp_mask = gfp_mask,
2114 .swappiness = vm_swappiness,
2115 .isolate_pages = isolate_pages_global,
2116 };
2117 unsigned long slab_reclaimable;
2118
2119 disable_swap_token();
2120 cond_resched();
2121 /*
2122 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2123 * and we also need to be able to write out pages for RECLAIM_WRITE
2124 * and RECLAIM_SWAP.
2125 */
2126 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2127 reclaim_state.reclaimed_slab = 0;
2128 p->reclaim_state = &reclaim_state;
2129
2130 if (zone_page_state(zone, NR_FILE_PAGES) -
2131 zone_page_state(zone, NR_FILE_MAPPED) >
2132 zone->min_unmapped_pages) {
2133 /*
2134 * Free memory by calling shrink zone with increasing
2135 * priorities until we have enough memory freed.
2136 */
2137 priority = ZONE_RECLAIM_PRIORITY;
2138 do {
2139 note_zone_scanning_priority(zone, priority);
2140 nr_reclaimed += shrink_zone(priority, zone, &sc);
2141 priority--;
2142 } while (priority >= 0 && nr_reclaimed < nr_pages);
2143 }
2144
2145 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2146 if (slab_reclaimable > zone->min_slab_pages) {
2147 /*
2148 * shrink_slab() does not currently allow us to determine how
2149 * many pages were freed in this zone. So we take the current
2150 * number of slab pages and shake the slab until it is reduced
2151 * by the same nr_pages that we used for reclaiming unmapped
2152 * pages.
2153 *
2154 * Note that shrink_slab will free memory on all zones and may
2155 * take a long time.
2156 */
2157 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2158 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2159 slab_reclaimable - nr_pages)
2160 ;
2161
2162 /*
2163 * Update nr_reclaimed by the number of slab pages we
2164 * reclaimed from this zone.
2165 */
2166 nr_reclaimed += slab_reclaimable -
2167 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2168 }
2169
2170 p->reclaim_state = NULL;
2171 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2172 return nr_reclaimed >= nr_pages;
2173 }
2174
2175 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2176 {
2177 int node_id;
2178 int ret;
2179
2180 /*
2181 * Zone reclaim reclaims unmapped file backed pages and
2182 * slab pages if we are over the defined limits.
2183 *
2184 * A small portion of unmapped file backed pages is needed for
2185 * file I/O otherwise pages read by file I/O will be immediately
2186 * thrown out if the zone is overallocated. So we do not reclaim
2187 * if less than a specified percentage of the zone is used by
2188 * unmapped file backed pages.
2189 */
2190 if (zone_page_state(zone, NR_FILE_PAGES) -
2191 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2192 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2193 <= zone->min_slab_pages)
2194 return 0;
2195
2196 if (zone_is_all_unreclaimable(zone))
2197 return 0;
2198
2199 /*
2200 * Do not scan if the allocation should not be delayed.
2201 */
2202 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2203 return 0;
2204
2205 /*
2206 * Only run zone reclaim on the local zone or on zones that do not
2207 * have associated processors. This will favor the local processor
2208 * over remote processors and spread off node memory allocations
2209 * as wide as possible.
2210 */
2211 node_id = zone_to_nid(zone);
2212 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2213 return 0;
2214
2215 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2216 return 0;
2217 ret = __zone_reclaim(zone, gfp_mask, order);
2218 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2219
2220 return ret;
2221 }
2222 #endif
This page took 0.078346 seconds and 5 git commands to generate.