d6c916d808ba2248e112a3dc3767647abf857fc3
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 struct scan_control {
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
67 unsigned long hibernation_mode;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 int may_writepage;
73
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
76
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
80 int order;
81
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
96 };
97
98 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100 #ifdef ARCH_HAS_PREFETCH
101 #define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110 #else
111 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
113
114 #ifdef ARCH_HAS_PREFETCHW
115 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124 #else
125 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126 #endif
127
128 /*
129 * From 0 .. 100. Higher means more swappy.
130 */
131 int vm_swappiness = 60;
132 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
133
134 static LIST_HEAD(shrinker_list);
135 static DECLARE_RWSEM(shrinker_rwsem);
136
137 #ifdef CONFIG_MEMCG
138 static bool global_reclaim(struct scan_control *sc)
139 {
140 return !sc->target_mem_cgroup;
141 }
142 #else
143 static bool global_reclaim(struct scan_control *sc)
144 {
145 return true;
146 }
147 #endif
148
149 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 {
151 if (!mem_cgroup_disabled())
152 return mem_cgroup_get_lru_size(lruvec, lru);
153
154 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 }
156
157 /*
158 * Add a shrinker callback to be called from the vm
159 */
160 void register_shrinker(struct shrinker *shrinker)
161 {
162 atomic_long_set(&shrinker->nr_in_batch, 0);
163 down_write(&shrinker_rwsem);
164 list_add_tail(&shrinker->list, &shrinker_list);
165 up_write(&shrinker_rwsem);
166 }
167 EXPORT_SYMBOL(register_shrinker);
168
169 /*
170 * Remove one
171 */
172 void unregister_shrinker(struct shrinker *shrinker)
173 {
174 down_write(&shrinker_rwsem);
175 list_del(&shrinker->list);
176 up_write(&shrinker_rwsem);
177 }
178 EXPORT_SYMBOL(unregister_shrinker);
179
180 static inline int do_shrinker_shrink(struct shrinker *shrinker,
181 struct shrink_control *sc,
182 unsigned long nr_to_scan)
183 {
184 sc->nr_to_scan = nr_to_scan;
185 return (*shrinker->shrink)(shrinker, sc);
186 }
187
188 #define SHRINK_BATCH 128
189 /*
190 * Call the shrink functions to age shrinkable caches
191 *
192 * Here we assume it costs one seek to replace a lru page and that it also
193 * takes a seek to recreate a cache object. With this in mind we age equal
194 * percentages of the lru and ageable caches. This should balance the seeks
195 * generated by these structures.
196 *
197 * If the vm encountered mapped pages on the LRU it increase the pressure on
198 * slab to avoid swapping.
199 *
200 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 *
202 * `lru_pages' represents the number of on-LRU pages in all the zones which
203 * are eligible for the caller's allocation attempt. It is used for balancing
204 * slab reclaim versus page reclaim.
205 *
206 * Returns the number of slab objects which we shrunk.
207 */
208 unsigned long shrink_slab(struct shrink_control *shrink,
209 unsigned long nr_pages_scanned,
210 unsigned long lru_pages)
211 {
212 struct shrinker *shrinker;
213 unsigned long ret = 0;
214
215 if (nr_pages_scanned == 0)
216 nr_pages_scanned = SWAP_CLUSTER_MAX;
217
218 if (!down_read_trylock(&shrinker_rwsem)) {
219 /* Assume we'll be able to shrink next time */
220 ret = 1;
221 goto out;
222 }
223
224 list_for_each_entry(shrinker, &shrinker_list, list) {
225 unsigned long long delta;
226 long total_scan;
227 long max_pass;
228 int shrink_ret = 0;
229 long nr;
230 long new_nr;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
234 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
235 if (max_pass <= 0)
236 continue;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 "delete nr=%ld\n",
253 shrinker->shrink, total_scan);
254 total_scan = max_pass;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
283
284 while (total_scan >= batch_size) {
285 int nr_before;
286
287 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
288 shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 batch_size);
290 if (shrink_ret == -1)
291 break;
292 if (shrink_ret < nr_before)
293 ret += nr_before - shrink_ret;
294 count_vm_events(SLABS_SCANNED, batch_size);
295 total_scan -= batch_size;
296
297 cond_resched();
298 }
299
300 /*
301 * move the unused scan count back into the shrinker in a
302 * manner that handles concurrent updates. If we exhausted the
303 * scan, there is no need to do an update.
304 */
305 if (total_scan > 0)
306 new_nr = atomic_long_add_return(total_scan,
307 &shrinker->nr_in_batch);
308 else
309 new_nr = atomic_long_read(&shrinker->nr_in_batch);
310
311 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 }
313 up_read(&shrinker_rwsem);
314 out:
315 cond_resched();
316 return ret;
317 }
318
319 static inline int is_page_cache_freeable(struct page *page)
320 {
321 /*
322 * A freeable page cache page is referenced only by the caller
323 * that isolated the page, the page cache radix tree and
324 * optional buffer heads at page->private.
325 */
326 return page_count(page) - page_has_private(page) == 2;
327 }
328
329 static int may_write_to_queue(struct backing_dev_info *bdi,
330 struct scan_control *sc)
331 {
332 if (current->flags & PF_SWAPWRITE)
333 return 1;
334 if (!bdi_write_congested(bdi))
335 return 1;
336 if (bdi == current->backing_dev_info)
337 return 1;
338 return 0;
339 }
340
341 /*
342 * We detected a synchronous write error writing a page out. Probably
343 * -ENOSPC. We need to propagate that into the address_space for a subsequent
344 * fsync(), msync() or close().
345 *
346 * The tricky part is that after writepage we cannot touch the mapping: nothing
347 * prevents it from being freed up. But we have a ref on the page and once
348 * that page is locked, the mapping is pinned.
349 *
350 * We're allowed to run sleeping lock_page() here because we know the caller has
351 * __GFP_FS.
352 */
353 static void handle_write_error(struct address_space *mapping,
354 struct page *page, int error)
355 {
356 lock_page(page);
357 if (page_mapping(page) == mapping)
358 mapping_set_error(mapping, error);
359 unlock_page(page);
360 }
361
362 /* possible outcome of pageout() */
363 typedef enum {
364 /* failed to write page out, page is locked */
365 PAGE_KEEP,
366 /* move page to the active list, page is locked */
367 PAGE_ACTIVATE,
368 /* page has been sent to the disk successfully, page is unlocked */
369 PAGE_SUCCESS,
370 /* page is clean and locked */
371 PAGE_CLEAN,
372 } pageout_t;
373
374 /*
375 * pageout is called by shrink_page_list() for each dirty page.
376 * Calls ->writepage().
377 */
378 static pageout_t pageout(struct page *page, struct address_space *mapping,
379 struct scan_control *sc)
380 {
381 /*
382 * If the page is dirty, only perform writeback if that write
383 * will be non-blocking. To prevent this allocation from being
384 * stalled by pagecache activity. But note that there may be
385 * stalls if we need to run get_block(). We could test
386 * PagePrivate for that.
387 *
388 * If this process is currently in __generic_file_aio_write() against
389 * this page's queue, we can perform writeback even if that
390 * will block.
391 *
392 * If the page is swapcache, write it back even if that would
393 * block, for some throttling. This happens by accident, because
394 * swap_backing_dev_info is bust: it doesn't reflect the
395 * congestion state of the swapdevs. Easy to fix, if needed.
396 */
397 if (!is_page_cache_freeable(page))
398 return PAGE_KEEP;
399 if (!mapping) {
400 /*
401 * Some data journaling orphaned pages can have
402 * page->mapping == NULL while being dirty with clean buffers.
403 */
404 if (page_has_private(page)) {
405 if (try_to_free_buffers(page)) {
406 ClearPageDirty(page);
407 printk("%s: orphaned page\n", __func__);
408 return PAGE_CLEAN;
409 }
410 }
411 return PAGE_KEEP;
412 }
413 if (mapping->a_ops->writepage == NULL)
414 return PAGE_ACTIVATE;
415 if (!may_write_to_queue(mapping->backing_dev_info, sc))
416 return PAGE_KEEP;
417
418 if (clear_page_dirty_for_io(page)) {
419 int res;
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = SWAP_CLUSTER_MAX,
423 .range_start = 0,
424 .range_end = LLONG_MAX,
425 .for_reclaim = 1,
426 };
427
428 SetPageReclaim(page);
429 res = mapping->a_ops->writepage(page, &wbc);
430 if (res < 0)
431 handle_write_error(mapping, page, res);
432 if (res == AOP_WRITEPAGE_ACTIVATE) {
433 ClearPageReclaim(page);
434 return PAGE_ACTIVATE;
435 }
436
437 if (!PageWriteback(page)) {
438 /* synchronous write or broken a_ops? */
439 ClearPageReclaim(page);
440 }
441 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442 inc_zone_page_state(page, NR_VMSCAN_WRITE);
443 return PAGE_SUCCESS;
444 }
445
446 return PAGE_CLEAN;
447 }
448
449 /*
450 * Same as remove_mapping, but if the page is removed from the mapping, it
451 * gets returned with a refcount of 0.
452 */
453 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 {
455 BUG_ON(!PageLocked(page));
456 BUG_ON(mapping != page_mapping(page));
457
458 spin_lock_irq(&mapping->tree_lock);
459 /*
460 * The non racy check for a busy page.
461 *
462 * Must be careful with the order of the tests. When someone has
463 * a ref to the page, it may be possible that they dirty it then
464 * drop the reference. So if PageDirty is tested before page_count
465 * here, then the following race may occur:
466 *
467 * get_user_pages(&page);
468 * [user mapping goes away]
469 * write_to(page);
470 * !PageDirty(page) [good]
471 * SetPageDirty(page);
472 * put_page(page);
473 * !page_count(page) [good, discard it]
474 *
475 * [oops, our write_to data is lost]
476 *
477 * Reversing the order of the tests ensures such a situation cannot
478 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
479 * load is not satisfied before that of page->_count.
480 *
481 * Note that if SetPageDirty is always performed via set_page_dirty,
482 * and thus under tree_lock, then this ordering is not required.
483 */
484 if (!page_freeze_refs(page, 2))
485 goto cannot_free;
486 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
487 if (unlikely(PageDirty(page))) {
488 page_unfreeze_refs(page, 2);
489 goto cannot_free;
490 }
491
492 if (PageSwapCache(page)) {
493 swp_entry_t swap = { .val = page_private(page) };
494 __delete_from_swap_cache(page);
495 spin_unlock_irq(&mapping->tree_lock);
496 swapcache_free(swap, page);
497 } else {
498 void (*freepage)(struct page *);
499
500 freepage = mapping->a_ops->freepage;
501
502 __delete_from_page_cache(page);
503 spin_unlock_irq(&mapping->tree_lock);
504 mem_cgroup_uncharge_cache_page(page);
505
506 if (freepage != NULL)
507 freepage(page);
508 }
509
510 return 1;
511
512 cannot_free:
513 spin_unlock_irq(&mapping->tree_lock);
514 return 0;
515 }
516
517 /*
518 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
519 * someone else has a ref on the page, abort and return 0. If it was
520 * successfully detached, return 1. Assumes the caller has a single ref on
521 * this page.
522 */
523 int remove_mapping(struct address_space *mapping, struct page *page)
524 {
525 if (__remove_mapping(mapping, page)) {
526 /*
527 * Unfreezing the refcount with 1 rather than 2 effectively
528 * drops the pagecache ref for us without requiring another
529 * atomic operation.
530 */
531 page_unfreeze_refs(page, 1);
532 return 1;
533 }
534 return 0;
535 }
536
537 /**
538 * putback_lru_page - put previously isolated page onto appropriate LRU list
539 * @page: page to be put back to appropriate lru list
540 *
541 * Add previously isolated @page to appropriate LRU list.
542 * Page may still be unevictable for other reasons.
543 *
544 * lru_lock must not be held, interrupts must be enabled.
545 */
546 void putback_lru_page(struct page *page)
547 {
548 int lru;
549 int active = !!TestClearPageActive(page);
550 int was_unevictable = PageUnevictable(page);
551
552 VM_BUG_ON(PageLRU(page));
553
554 redo:
555 ClearPageUnevictable(page);
556
557 if (page_evictable(page)) {
558 /*
559 * For evictable pages, we can use the cache.
560 * In event of a race, worst case is we end up with an
561 * unevictable page on [in]active list.
562 * We know how to handle that.
563 */
564 lru = active + page_lru_base_type(page);
565 lru_cache_add_lru(page, lru);
566 } else {
567 /*
568 * Put unevictable pages directly on zone's unevictable
569 * list.
570 */
571 lru = LRU_UNEVICTABLE;
572 add_page_to_unevictable_list(page);
573 /*
574 * When racing with an mlock or AS_UNEVICTABLE clearing
575 * (page is unlocked) make sure that if the other thread
576 * does not observe our setting of PG_lru and fails
577 * isolation/check_move_unevictable_pages,
578 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 * the page back to the evictable list.
580 *
581 * The other side is TestClearPageMlocked() or shmem_lock().
582 */
583 smp_mb();
584 }
585
586 /*
587 * page's status can change while we move it among lru. If an evictable
588 * page is on unevictable list, it never be freed. To avoid that,
589 * check after we added it to the list, again.
590 */
591 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
592 if (!isolate_lru_page(page)) {
593 put_page(page);
594 goto redo;
595 }
596 /* This means someone else dropped this page from LRU
597 * So, it will be freed or putback to LRU again. There is
598 * nothing to do here.
599 */
600 }
601
602 if (was_unevictable && lru != LRU_UNEVICTABLE)
603 count_vm_event(UNEVICTABLE_PGRESCUED);
604 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
605 count_vm_event(UNEVICTABLE_PGCULLED);
606
607 put_page(page); /* drop ref from isolate */
608 }
609
610 enum page_references {
611 PAGEREF_RECLAIM,
612 PAGEREF_RECLAIM_CLEAN,
613 PAGEREF_KEEP,
614 PAGEREF_ACTIVATE,
615 };
616
617 static enum page_references page_check_references(struct page *page,
618 struct scan_control *sc)
619 {
620 int referenced_ptes, referenced_page;
621 unsigned long vm_flags;
622
623 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624 &vm_flags);
625 referenced_page = TestClearPageReferenced(page);
626
627 /*
628 * Mlock lost the isolation race with us. Let try_to_unmap()
629 * move the page to the unevictable list.
630 */
631 if (vm_flags & VM_LOCKED)
632 return PAGEREF_RECLAIM;
633
634 if (referenced_ptes) {
635 if (PageSwapBacked(page))
636 return PAGEREF_ACTIVATE;
637 /*
638 * All mapped pages start out with page table
639 * references from the instantiating fault, so we need
640 * to look twice if a mapped file page is used more
641 * than once.
642 *
643 * Mark it and spare it for another trip around the
644 * inactive list. Another page table reference will
645 * lead to its activation.
646 *
647 * Note: the mark is set for activated pages as well
648 * so that recently deactivated but used pages are
649 * quickly recovered.
650 */
651 SetPageReferenced(page);
652
653 if (referenced_page || referenced_ptes > 1)
654 return PAGEREF_ACTIVATE;
655
656 /*
657 * Activate file-backed executable pages after first usage.
658 */
659 if (vm_flags & VM_EXEC)
660 return PAGEREF_ACTIVATE;
661
662 return PAGEREF_KEEP;
663 }
664
665 /* Reclaim if clean, defer dirty pages to writeback */
666 if (referenced_page && !PageSwapBacked(page))
667 return PAGEREF_RECLAIM_CLEAN;
668
669 return PAGEREF_RECLAIM;
670 }
671
672 /*
673 * shrink_page_list() returns the number of reclaimed pages
674 */
675 static unsigned long shrink_page_list(struct list_head *page_list,
676 struct zone *zone,
677 struct scan_control *sc,
678 enum ttu_flags ttu_flags,
679 unsigned long *ret_nr_unqueued_dirty,
680 unsigned long *ret_nr_writeback,
681 bool force_reclaim)
682 {
683 LIST_HEAD(ret_pages);
684 LIST_HEAD(free_pages);
685 int pgactivate = 0;
686 unsigned long nr_unqueued_dirty = 0;
687 unsigned long nr_dirty = 0;
688 unsigned long nr_congested = 0;
689 unsigned long nr_reclaimed = 0;
690 unsigned long nr_writeback = 0;
691
692 cond_resched();
693
694 mem_cgroup_uncharge_start();
695 while (!list_empty(page_list)) {
696 struct address_space *mapping;
697 struct page *page;
698 int may_enter_fs;
699 enum page_references references = PAGEREF_RECLAIM_CLEAN;
700
701 cond_resched();
702
703 page = lru_to_page(page_list);
704 list_del(&page->lru);
705
706 if (!trylock_page(page))
707 goto keep;
708
709 VM_BUG_ON(PageActive(page));
710 VM_BUG_ON(page_zone(page) != zone);
711
712 sc->nr_scanned++;
713
714 if (unlikely(!page_evictable(page)))
715 goto cull_mlocked;
716
717 if (!sc->may_unmap && page_mapped(page))
718 goto keep_locked;
719
720 /* Double the slab pressure for mapped and swapcache pages */
721 if (page_mapped(page) || PageSwapCache(page))
722 sc->nr_scanned++;
723
724 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
725 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
726
727 if (PageWriteback(page)) {
728 /*
729 * memcg doesn't have any dirty pages throttling so we
730 * could easily OOM just because too many pages are in
731 * writeback and there is nothing else to reclaim.
732 *
733 * Check __GFP_IO, certainly because a loop driver
734 * thread might enter reclaim, and deadlock if it waits
735 * on a page for which it is needed to do the write
736 * (loop masks off __GFP_IO|__GFP_FS for this reason);
737 * but more thought would probably show more reasons.
738 *
739 * Don't require __GFP_FS, since we're not going into
740 * the FS, just waiting on its writeback completion.
741 * Worryingly, ext4 gfs2 and xfs allocate pages with
742 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
743 * testing may_enter_fs here is liable to OOM on them.
744 */
745 if (global_reclaim(sc) ||
746 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
747 /*
748 * This is slightly racy - end_page_writeback()
749 * might have just cleared PageReclaim, then
750 * setting PageReclaim here end up interpreted
751 * as PageReadahead - but that does not matter
752 * enough to care. What we do want is for this
753 * page to have PageReclaim set next time memcg
754 * reclaim reaches the tests above, so it will
755 * then wait_on_page_writeback() to avoid OOM;
756 * and it's also appropriate in global reclaim.
757 */
758 SetPageReclaim(page);
759 nr_writeback++;
760 goto keep_locked;
761 }
762 wait_on_page_writeback(page);
763 }
764
765 if (!force_reclaim)
766 references = page_check_references(page, sc);
767
768 switch (references) {
769 case PAGEREF_ACTIVATE:
770 goto activate_locked;
771 case PAGEREF_KEEP:
772 goto keep_locked;
773 case PAGEREF_RECLAIM:
774 case PAGEREF_RECLAIM_CLEAN:
775 ; /* try to reclaim the page below */
776 }
777
778 /*
779 * Anonymous process memory has backing store?
780 * Try to allocate it some swap space here.
781 */
782 if (PageAnon(page) && !PageSwapCache(page)) {
783 if (!(sc->gfp_mask & __GFP_IO))
784 goto keep_locked;
785 if (!add_to_swap(page, page_list))
786 goto activate_locked;
787 may_enter_fs = 1;
788 }
789
790 mapping = page_mapping(page);
791
792 /*
793 * The page is mapped into the page tables of one or more
794 * processes. Try to unmap it here.
795 */
796 if (page_mapped(page) && mapping) {
797 switch (try_to_unmap(page, ttu_flags)) {
798 case SWAP_FAIL:
799 goto activate_locked;
800 case SWAP_AGAIN:
801 goto keep_locked;
802 case SWAP_MLOCK:
803 goto cull_mlocked;
804 case SWAP_SUCCESS:
805 ; /* try to free the page below */
806 }
807 }
808
809 if (PageDirty(page)) {
810 nr_dirty++;
811
812 if (!PageWriteback(page))
813 nr_unqueued_dirty++;
814
815 /*
816 * Only kswapd can writeback filesystem pages to
817 * avoid risk of stack overflow but only writeback
818 * if many dirty pages have been encountered.
819 */
820 if (page_is_file_cache(page) &&
821 (!current_is_kswapd() ||
822 !zone_is_reclaim_dirty(zone))) {
823 /*
824 * Immediately reclaim when written back.
825 * Similar in principal to deactivate_page()
826 * except we already have the page isolated
827 * and know it's dirty
828 */
829 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
830 SetPageReclaim(page);
831
832 goto keep_locked;
833 }
834
835 if (references == PAGEREF_RECLAIM_CLEAN)
836 goto keep_locked;
837 if (!may_enter_fs)
838 goto keep_locked;
839 if (!sc->may_writepage)
840 goto keep_locked;
841
842 /* Page is dirty, try to write it out here */
843 switch (pageout(page, mapping, sc)) {
844 case PAGE_KEEP:
845 nr_congested++;
846 goto keep_locked;
847 case PAGE_ACTIVATE:
848 goto activate_locked;
849 case PAGE_SUCCESS:
850 if (PageWriteback(page))
851 goto keep;
852 if (PageDirty(page))
853 goto keep;
854
855 /*
856 * A synchronous write - probably a ramdisk. Go
857 * ahead and try to reclaim the page.
858 */
859 if (!trylock_page(page))
860 goto keep;
861 if (PageDirty(page) || PageWriteback(page))
862 goto keep_locked;
863 mapping = page_mapping(page);
864 case PAGE_CLEAN:
865 ; /* try to free the page below */
866 }
867 }
868
869 /*
870 * If the page has buffers, try to free the buffer mappings
871 * associated with this page. If we succeed we try to free
872 * the page as well.
873 *
874 * We do this even if the page is PageDirty().
875 * try_to_release_page() does not perform I/O, but it is
876 * possible for a page to have PageDirty set, but it is actually
877 * clean (all its buffers are clean). This happens if the
878 * buffers were written out directly, with submit_bh(). ext3
879 * will do this, as well as the blockdev mapping.
880 * try_to_release_page() will discover that cleanness and will
881 * drop the buffers and mark the page clean - it can be freed.
882 *
883 * Rarely, pages can have buffers and no ->mapping. These are
884 * the pages which were not successfully invalidated in
885 * truncate_complete_page(). We try to drop those buffers here
886 * and if that worked, and the page is no longer mapped into
887 * process address space (page_count == 1) it can be freed.
888 * Otherwise, leave the page on the LRU so it is swappable.
889 */
890 if (page_has_private(page)) {
891 if (!try_to_release_page(page, sc->gfp_mask))
892 goto activate_locked;
893 if (!mapping && page_count(page) == 1) {
894 unlock_page(page);
895 if (put_page_testzero(page))
896 goto free_it;
897 else {
898 /*
899 * rare race with speculative reference.
900 * the speculative reference will free
901 * this page shortly, so we may
902 * increment nr_reclaimed here (and
903 * leave it off the LRU).
904 */
905 nr_reclaimed++;
906 continue;
907 }
908 }
909 }
910
911 if (!mapping || !__remove_mapping(mapping, page))
912 goto keep_locked;
913
914 /*
915 * At this point, we have no other references and there is
916 * no way to pick any more up (removed from LRU, removed
917 * from pagecache). Can use non-atomic bitops now (and
918 * we obviously don't have to worry about waking up a process
919 * waiting on the page lock, because there are no references.
920 */
921 __clear_page_locked(page);
922 free_it:
923 nr_reclaimed++;
924
925 /*
926 * Is there need to periodically free_page_list? It would
927 * appear not as the counts should be low
928 */
929 list_add(&page->lru, &free_pages);
930 continue;
931
932 cull_mlocked:
933 if (PageSwapCache(page))
934 try_to_free_swap(page);
935 unlock_page(page);
936 putback_lru_page(page);
937 continue;
938
939 activate_locked:
940 /* Not a candidate for swapping, so reclaim swap space. */
941 if (PageSwapCache(page) && vm_swap_full())
942 try_to_free_swap(page);
943 VM_BUG_ON(PageActive(page));
944 SetPageActive(page);
945 pgactivate++;
946 keep_locked:
947 unlock_page(page);
948 keep:
949 list_add(&page->lru, &ret_pages);
950 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
951 }
952
953 /*
954 * Tag a zone as congested if all the dirty pages encountered were
955 * backed by a congested BDI. In this case, reclaimers should just
956 * back off and wait for congestion to clear because further reclaim
957 * will encounter the same problem
958 */
959 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
960 zone_set_flag(zone, ZONE_CONGESTED);
961
962 free_hot_cold_page_list(&free_pages, 1);
963
964 list_splice(&ret_pages, page_list);
965 count_vm_events(PGACTIVATE, pgactivate);
966 mem_cgroup_uncharge_end();
967 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
968 *ret_nr_writeback += nr_writeback;
969 return nr_reclaimed;
970 }
971
972 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
973 struct list_head *page_list)
974 {
975 struct scan_control sc = {
976 .gfp_mask = GFP_KERNEL,
977 .priority = DEF_PRIORITY,
978 .may_unmap = 1,
979 };
980 unsigned long ret, dummy1, dummy2;
981 struct page *page, *next;
982 LIST_HEAD(clean_pages);
983
984 list_for_each_entry_safe(page, next, page_list, lru) {
985 if (page_is_file_cache(page) && !PageDirty(page)) {
986 ClearPageActive(page);
987 list_move(&page->lru, &clean_pages);
988 }
989 }
990
991 ret = shrink_page_list(&clean_pages, zone, &sc,
992 TTU_UNMAP|TTU_IGNORE_ACCESS,
993 &dummy1, &dummy2, true);
994 list_splice(&clean_pages, page_list);
995 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
996 return ret;
997 }
998
999 /*
1000 * Attempt to remove the specified page from its LRU. Only take this page
1001 * if it is of the appropriate PageActive status. Pages which are being
1002 * freed elsewhere are also ignored.
1003 *
1004 * page: page to consider
1005 * mode: one of the LRU isolation modes defined above
1006 *
1007 * returns 0 on success, -ve errno on failure.
1008 */
1009 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1010 {
1011 int ret = -EINVAL;
1012
1013 /* Only take pages on the LRU. */
1014 if (!PageLRU(page))
1015 return ret;
1016
1017 /* Compaction should not handle unevictable pages but CMA can do so */
1018 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1019 return ret;
1020
1021 ret = -EBUSY;
1022
1023 /*
1024 * To minimise LRU disruption, the caller can indicate that it only
1025 * wants to isolate pages it will be able to operate on without
1026 * blocking - clean pages for the most part.
1027 *
1028 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1029 * is used by reclaim when it is cannot write to backing storage
1030 *
1031 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1032 * that it is possible to migrate without blocking
1033 */
1034 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1035 /* All the caller can do on PageWriteback is block */
1036 if (PageWriteback(page))
1037 return ret;
1038
1039 if (PageDirty(page)) {
1040 struct address_space *mapping;
1041
1042 /* ISOLATE_CLEAN means only clean pages */
1043 if (mode & ISOLATE_CLEAN)
1044 return ret;
1045
1046 /*
1047 * Only pages without mappings or that have a
1048 * ->migratepage callback are possible to migrate
1049 * without blocking
1050 */
1051 mapping = page_mapping(page);
1052 if (mapping && !mapping->a_ops->migratepage)
1053 return ret;
1054 }
1055 }
1056
1057 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1058 return ret;
1059
1060 if (likely(get_page_unless_zero(page))) {
1061 /*
1062 * Be careful not to clear PageLRU until after we're
1063 * sure the page is not being freed elsewhere -- the
1064 * page release code relies on it.
1065 */
1066 ClearPageLRU(page);
1067 ret = 0;
1068 }
1069
1070 return ret;
1071 }
1072
1073 /*
1074 * zone->lru_lock is heavily contended. Some of the functions that
1075 * shrink the lists perform better by taking out a batch of pages
1076 * and working on them outside the LRU lock.
1077 *
1078 * For pagecache intensive workloads, this function is the hottest
1079 * spot in the kernel (apart from copy_*_user functions).
1080 *
1081 * Appropriate locks must be held before calling this function.
1082 *
1083 * @nr_to_scan: The number of pages to look through on the list.
1084 * @lruvec: The LRU vector to pull pages from.
1085 * @dst: The temp list to put pages on to.
1086 * @nr_scanned: The number of pages that were scanned.
1087 * @sc: The scan_control struct for this reclaim session
1088 * @mode: One of the LRU isolation modes
1089 * @lru: LRU list id for isolating
1090 *
1091 * returns how many pages were moved onto *@dst.
1092 */
1093 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1094 struct lruvec *lruvec, struct list_head *dst,
1095 unsigned long *nr_scanned, struct scan_control *sc,
1096 isolate_mode_t mode, enum lru_list lru)
1097 {
1098 struct list_head *src = &lruvec->lists[lru];
1099 unsigned long nr_taken = 0;
1100 unsigned long scan;
1101
1102 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1103 struct page *page;
1104 int nr_pages;
1105
1106 page = lru_to_page(src);
1107 prefetchw_prev_lru_page(page, src, flags);
1108
1109 VM_BUG_ON(!PageLRU(page));
1110
1111 switch (__isolate_lru_page(page, mode)) {
1112 case 0:
1113 nr_pages = hpage_nr_pages(page);
1114 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1115 list_move(&page->lru, dst);
1116 nr_taken += nr_pages;
1117 break;
1118
1119 case -EBUSY:
1120 /* else it is being freed elsewhere */
1121 list_move(&page->lru, src);
1122 continue;
1123
1124 default:
1125 BUG();
1126 }
1127 }
1128
1129 *nr_scanned = scan;
1130 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1131 nr_taken, mode, is_file_lru(lru));
1132 return nr_taken;
1133 }
1134
1135 /**
1136 * isolate_lru_page - tries to isolate a page from its LRU list
1137 * @page: page to isolate from its LRU list
1138 *
1139 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1140 * vmstat statistic corresponding to whatever LRU list the page was on.
1141 *
1142 * Returns 0 if the page was removed from an LRU list.
1143 * Returns -EBUSY if the page was not on an LRU list.
1144 *
1145 * The returned page will have PageLRU() cleared. If it was found on
1146 * the active list, it will have PageActive set. If it was found on
1147 * the unevictable list, it will have the PageUnevictable bit set. That flag
1148 * may need to be cleared by the caller before letting the page go.
1149 *
1150 * The vmstat statistic corresponding to the list on which the page was
1151 * found will be decremented.
1152 *
1153 * Restrictions:
1154 * (1) Must be called with an elevated refcount on the page. This is a
1155 * fundamentnal difference from isolate_lru_pages (which is called
1156 * without a stable reference).
1157 * (2) the lru_lock must not be held.
1158 * (3) interrupts must be enabled.
1159 */
1160 int isolate_lru_page(struct page *page)
1161 {
1162 int ret = -EBUSY;
1163
1164 VM_BUG_ON(!page_count(page));
1165
1166 if (PageLRU(page)) {
1167 struct zone *zone = page_zone(page);
1168 struct lruvec *lruvec;
1169
1170 spin_lock_irq(&zone->lru_lock);
1171 lruvec = mem_cgroup_page_lruvec(page, zone);
1172 if (PageLRU(page)) {
1173 int lru = page_lru(page);
1174 get_page(page);
1175 ClearPageLRU(page);
1176 del_page_from_lru_list(page, lruvec, lru);
1177 ret = 0;
1178 }
1179 spin_unlock_irq(&zone->lru_lock);
1180 }
1181 return ret;
1182 }
1183
1184 /*
1185 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1186 * then get resheduled. When there are massive number of tasks doing page
1187 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1188 * the LRU list will go small and be scanned faster than necessary, leading to
1189 * unnecessary swapping, thrashing and OOM.
1190 */
1191 static int too_many_isolated(struct zone *zone, int file,
1192 struct scan_control *sc)
1193 {
1194 unsigned long inactive, isolated;
1195
1196 if (current_is_kswapd())
1197 return 0;
1198
1199 if (!global_reclaim(sc))
1200 return 0;
1201
1202 if (file) {
1203 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1204 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1205 } else {
1206 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1207 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1208 }
1209
1210 /*
1211 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1212 * won't get blocked by normal direct-reclaimers, forming a circular
1213 * deadlock.
1214 */
1215 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1216 inactive >>= 3;
1217
1218 return isolated > inactive;
1219 }
1220
1221 static noinline_for_stack void
1222 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1223 {
1224 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1225 struct zone *zone = lruvec_zone(lruvec);
1226 LIST_HEAD(pages_to_free);
1227
1228 /*
1229 * Put back any unfreeable pages.
1230 */
1231 while (!list_empty(page_list)) {
1232 struct page *page = lru_to_page(page_list);
1233 int lru;
1234
1235 VM_BUG_ON(PageLRU(page));
1236 list_del(&page->lru);
1237 if (unlikely(!page_evictable(page))) {
1238 spin_unlock_irq(&zone->lru_lock);
1239 putback_lru_page(page);
1240 spin_lock_irq(&zone->lru_lock);
1241 continue;
1242 }
1243
1244 lruvec = mem_cgroup_page_lruvec(page, zone);
1245
1246 SetPageLRU(page);
1247 lru = page_lru(page);
1248 add_page_to_lru_list(page, lruvec, lru);
1249
1250 if (is_active_lru(lru)) {
1251 int file = is_file_lru(lru);
1252 int numpages = hpage_nr_pages(page);
1253 reclaim_stat->recent_rotated[file] += numpages;
1254 }
1255 if (put_page_testzero(page)) {
1256 __ClearPageLRU(page);
1257 __ClearPageActive(page);
1258 del_page_from_lru_list(page, lruvec, lru);
1259
1260 if (unlikely(PageCompound(page))) {
1261 spin_unlock_irq(&zone->lru_lock);
1262 (*get_compound_page_dtor(page))(page);
1263 spin_lock_irq(&zone->lru_lock);
1264 } else
1265 list_add(&page->lru, &pages_to_free);
1266 }
1267 }
1268
1269 /*
1270 * To save our caller's stack, now use input list for pages to free.
1271 */
1272 list_splice(&pages_to_free, page_list);
1273 }
1274
1275 /*
1276 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1277 * of reclaimed pages
1278 */
1279 static noinline_for_stack unsigned long
1280 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1281 struct scan_control *sc, enum lru_list lru)
1282 {
1283 LIST_HEAD(page_list);
1284 unsigned long nr_scanned;
1285 unsigned long nr_reclaimed = 0;
1286 unsigned long nr_taken;
1287 unsigned long nr_dirty = 0;
1288 unsigned long nr_writeback = 0;
1289 isolate_mode_t isolate_mode = 0;
1290 int file = is_file_lru(lru);
1291 struct zone *zone = lruvec_zone(lruvec);
1292 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1293
1294 while (unlikely(too_many_isolated(zone, file, sc))) {
1295 congestion_wait(BLK_RW_ASYNC, HZ/10);
1296
1297 /* We are about to die and free our memory. Return now. */
1298 if (fatal_signal_pending(current))
1299 return SWAP_CLUSTER_MAX;
1300 }
1301
1302 lru_add_drain();
1303
1304 if (!sc->may_unmap)
1305 isolate_mode |= ISOLATE_UNMAPPED;
1306 if (!sc->may_writepage)
1307 isolate_mode |= ISOLATE_CLEAN;
1308
1309 spin_lock_irq(&zone->lru_lock);
1310
1311 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1312 &nr_scanned, sc, isolate_mode, lru);
1313
1314 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1315 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1316
1317 if (global_reclaim(sc)) {
1318 zone->pages_scanned += nr_scanned;
1319 if (current_is_kswapd())
1320 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1321 else
1322 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1323 }
1324 spin_unlock_irq(&zone->lru_lock);
1325
1326 if (nr_taken == 0)
1327 return 0;
1328
1329 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1330 &nr_dirty, &nr_writeback, false);
1331
1332 spin_lock_irq(&zone->lru_lock);
1333
1334 reclaim_stat->recent_scanned[file] += nr_taken;
1335
1336 if (global_reclaim(sc)) {
1337 if (current_is_kswapd())
1338 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1339 nr_reclaimed);
1340 else
1341 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1342 nr_reclaimed);
1343 }
1344
1345 putback_inactive_pages(lruvec, &page_list);
1346
1347 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1348
1349 spin_unlock_irq(&zone->lru_lock);
1350
1351 free_hot_cold_page_list(&page_list, 1);
1352
1353 /*
1354 * If reclaim is isolating dirty pages under writeback, it implies
1355 * that the long-lived page allocation rate is exceeding the page
1356 * laundering rate. Either the global limits are not being effective
1357 * at throttling processes due to the page distribution throughout
1358 * zones or there is heavy usage of a slow backing device. The
1359 * only option is to throttle from reclaim context which is not ideal
1360 * as there is no guarantee the dirtying process is throttled in the
1361 * same way balance_dirty_pages() manages.
1362 *
1363 * This scales the number of dirty pages that must be under writeback
1364 * before throttling depending on priority. It is a simple backoff
1365 * function that has the most effect in the range DEF_PRIORITY to
1366 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1367 * in trouble and reclaim is considered to be in trouble.
1368 *
1369 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1370 * DEF_PRIORITY-1 50% must be PageWriteback
1371 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1372 * ...
1373 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1374 * isolated page is PageWriteback
1375 */
1376 if (nr_writeback && nr_writeback >=
1377 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1378 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1379
1380 /*
1381 * Similarly, if many dirty pages are encountered that are not
1382 * currently being written then flag that kswapd should start
1383 * writing back pages.
1384 */
1385 if (global_reclaim(sc) && nr_dirty &&
1386 nr_dirty >= (nr_taken >> (DEF_PRIORITY - sc->priority)))
1387 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1388
1389 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1390 zone_idx(zone),
1391 nr_scanned, nr_reclaimed,
1392 sc->priority,
1393 trace_shrink_flags(file));
1394 return nr_reclaimed;
1395 }
1396
1397 /*
1398 * This moves pages from the active list to the inactive list.
1399 *
1400 * We move them the other way if the page is referenced by one or more
1401 * processes, from rmap.
1402 *
1403 * If the pages are mostly unmapped, the processing is fast and it is
1404 * appropriate to hold zone->lru_lock across the whole operation. But if
1405 * the pages are mapped, the processing is slow (page_referenced()) so we
1406 * should drop zone->lru_lock around each page. It's impossible to balance
1407 * this, so instead we remove the pages from the LRU while processing them.
1408 * It is safe to rely on PG_active against the non-LRU pages in here because
1409 * nobody will play with that bit on a non-LRU page.
1410 *
1411 * The downside is that we have to touch page->_count against each page.
1412 * But we had to alter page->flags anyway.
1413 */
1414
1415 static void move_active_pages_to_lru(struct lruvec *lruvec,
1416 struct list_head *list,
1417 struct list_head *pages_to_free,
1418 enum lru_list lru)
1419 {
1420 struct zone *zone = lruvec_zone(lruvec);
1421 unsigned long pgmoved = 0;
1422 struct page *page;
1423 int nr_pages;
1424
1425 while (!list_empty(list)) {
1426 page = lru_to_page(list);
1427 lruvec = mem_cgroup_page_lruvec(page, zone);
1428
1429 VM_BUG_ON(PageLRU(page));
1430 SetPageLRU(page);
1431
1432 nr_pages = hpage_nr_pages(page);
1433 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1434 list_move(&page->lru, &lruvec->lists[lru]);
1435 pgmoved += nr_pages;
1436
1437 if (put_page_testzero(page)) {
1438 __ClearPageLRU(page);
1439 __ClearPageActive(page);
1440 del_page_from_lru_list(page, lruvec, lru);
1441
1442 if (unlikely(PageCompound(page))) {
1443 spin_unlock_irq(&zone->lru_lock);
1444 (*get_compound_page_dtor(page))(page);
1445 spin_lock_irq(&zone->lru_lock);
1446 } else
1447 list_add(&page->lru, pages_to_free);
1448 }
1449 }
1450 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1451 if (!is_active_lru(lru))
1452 __count_vm_events(PGDEACTIVATE, pgmoved);
1453 }
1454
1455 static void shrink_active_list(unsigned long nr_to_scan,
1456 struct lruvec *lruvec,
1457 struct scan_control *sc,
1458 enum lru_list lru)
1459 {
1460 unsigned long nr_taken;
1461 unsigned long nr_scanned;
1462 unsigned long vm_flags;
1463 LIST_HEAD(l_hold); /* The pages which were snipped off */
1464 LIST_HEAD(l_active);
1465 LIST_HEAD(l_inactive);
1466 struct page *page;
1467 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1468 unsigned long nr_rotated = 0;
1469 isolate_mode_t isolate_mode = 0;
1470 int file = is_file_lru(lru);
1471 struct zone *zone = lruvec_zone(lruvec);
1472
1473 lru_add_drain();
1474
1475 if (!sc->may_unmap)
1476 isolate_mode |= ISOLATE_UNMAPPED;
1477 if (!sc->may_writepage)
1478 isolate_mode |= ISOLATE_CLEAN;
1479
1480 spin_lock_irq(&zone->lru_lock);
1481
1482 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1483 &nr_scanned, sc, isolate_mode, lru);
1484 if (global_reclaim(sc))
1485 zone->pages_scanned += nr_scanned;
1486
1487 reclaim_stat->recent_scanned[file] += nr_taken;
1488
1489 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1490 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1491 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1492 spin_unlock_irq(&zone->lru_lock);
1493
1494 while (!list_empty(&l_hold)) {
1495 cond_resched();
1496 page = lru_to_page(&l_hold);
1497 list_del(&page->lru);
1498
1499 if (unlikely(!page_evictable(page))) {
1500 putback_lru_page(page);
1501 continue;
1502 }
1503
1504 if (unlikely(buffer_heads_over_limit)) {
1505 if (page_has_private(page) && trylock_page(page)) {
1506 if (page_has_private(page))
1507 try_to_release_page(page, 0);
1508 unlock_page(page);
1509 }
1510 }
1511
1512 if (page_referenced(page, 0, sc->target_mem_cgroup,
1513 &vm_flags)) {
1514 nr_rotated += hpage_nr_pages(page);
1515 /*
1516 * Identify referenced, file-backed active pages and
1517 * give them one more trip around the active list. So
1518 * that executable code get better chances to stay in
1519 * memory under moderate memory pressure. Anon pages
1520 * are not likely to be evicted by use-once streaming
1521 * IO, plus JVM can create lots of anon VM_EXEC pages,
1522 * so we ignore them here.
1523 */
1524 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1525 list_add(&page->lru, &l_active);
1526 continue;
1527 }
1528 }
1529
1530 ClearPageActive(page); /* we are de-activating */
1531 list_add(&page->lru, &l_inactive);
1532 }
1533
1534 /*
1535 * Move pages back to the lru list.
1536 */
1537 spin_lock_irq(&zone->lru_lock);
1538 /*
1539 * Count referenced pages from currently used mappings as rotated,
1540 * even though only some of them are actually re-activated. This
1541 * helps balance scan pressure between file and anonymous pages in
1542 * get_scan_ratio.
1543 */
1544 reclaim_stat->recent_rotated[file] += nr_rotated;
1545
1546 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1547 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1548 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1549 spin_unlock_irq(&zone->lru_lock);
1550
1551 free_hot_cold_page_list(&l_hold, 1);
1552 }
1553
1554 #ifdef CONFIG_SWAP
1555 static int inactive_anon_is_low_global(struct zone *zone)
1556 {
1557 unsigned long active, inactive;
1558
1559 active = zone_page_state(zone, NR_ACTIVE_ANON);
1560 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1561
1562 if (inactive * zone->inactive_ratio < active)
1563 return 1;
1564
1565 return 0;
1566 }
1567
1568 /**
1569 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1570 * @lruvec: LRU vector to check
1571 *
1572 * Returns true if the zone does not have enough inactive anon pages,
1573 * meaning some active anon pages need to be deactivated.
1574 */
1575 static int inactive_anon_is_low(struct lruvec *lruvec)
1576 {
1577 /*
1578 * If we don't have swap space, anonymous page deactivation
1579 * is pointless.
1580 */
1581 if (!total_swap_pages)
1582 return 0;
1583
1584 if (!mem_cgroup_disabled())
1585 return mem_cgroup_inactive_anon_is_low(lruvec);
1586
1587 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1588 }
1589 #else
1590 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1591 {
1592 return 0;
1593 }
1594 #endif
1595
1596 /**
1597 * inactive_file_is_low - check if file pages need to be deactivated
1598 * @lruvec: LRU vector to check
1599 *
1600 * When the system is doing streaming IO, memory pressure here
1601 * ensures that active file pages get deactivated, until more
1602 * than half of the file pages are on the inactive list.
1603 *
1604 * Once we get to that situation, protect the system's working
1605 * set from being evicted by disabling active file page aging.
1606 *
1607 * This uses a different ratio than the anonymous pages, because
1608 * the page cache uses a use-once replacement algorithm.
1609 */
1610 static int inactive_file_is_low(struct lruvec *lruvec)
1611 {
1612 unsigned long inactive;
1613 unsigned long active;
1614
1615 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1616 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1617
1618 return active > inactive;
1619 }
1620
1621 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1622 {
1623 if (is_file_lru(lru))
1624 return inactive_file_is_low(lruvec);
1625 else
1626 return inactive_anon_is_low(lruvec);
1627 }
1628
1629 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1630 struct lruvec *lruvec, struct scan_control *sc)
1631 {
1632 if (is_active_lru(lru)) {
1633 if (inactive_list_is_low(lruvec, lru))
1634 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1635 return 0;
1636 }
1637
1638 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1639 }
1640
1641 static int vmscan_swappiness(struct scan_control *sc)
1642 {
1643 if (global_reclaim(sc))
1644 return vm_swappiness;
1645 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1646 }
1647
1648 enum scan_balance {
1649 SCAN_EQUAL,
1650 SCAN_FRACT,
1651 SCAN_ANON,
1652 SCAN_FILE,
1653 };
1654
1655 /*
1656 * Determine how aggressively the anon and file LRU lists should be
1657 * scanned. The relative value of each set of LRU lists is determined
1658 * by looking at the fraction of the pages scanned we did rotate back
1659 * onto the active list instead of evict.
1660 *
1661 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1662 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1663 */
1664 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1665 unsigned long *nr)
1666 {
1667 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1668 u64 fraction[2];
1669 u64 denominator = 0; /* gcc */
1670 struct zone *zone = lruvec_zone(lruvec);
1671 unsigned long anon_prio, file_prio;
1672 enum scan_balance scan_balance;
1673 unsigned long anon, file, free;
1674 bool force_scan = false;
1675 unsigned long ap, fp;
1676 enum lru_list lru;
1677
1678 /*
1679 * If the zone or memcg is small, nr[l] can be 0. This
1680 * results in no scanning on this priority and a potential
1681 * priority drop. Global direct reclaim can go to the next
1682 * zone and tends to have no problems. Global kswapd is for
1683 * zone balancing and it needs to scan a minimum amount. When
1684 * reclaiming for a memcg, a priority drop can cause high
1685 * latencies, so it's better to scan a minimum amount there as
1686 * well.
1687 */
1688 if (current_is_kswapd() && zone->all_unreclaimable)
1689 force_scan = true;
1690 if (!global_reclaim(sc))
1691 force_scan = true;
1692
1693 /* If we have no swap space, do not bother scanning anon pages. */
1694 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1695 scan_balance = SCAN_FILE;
1696 goto out;
1697 }
1698
1699 /*
1700 * Global reclaim will swap to prevent OOM even with no
1701 * swappiness, but memcg users want to use this knob to
1702 * disable swapping for individual groups completely when
1703 * using the memory controller's swap limit feature would be
1704 * too expensive.
1705 */
1706 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1707 scan_balance = SCAN_FILE;
1708 goto out;
1709 }
1710
1711 /*
1712 * Do not apply any pressure balancing cleverness when the
1713 * system is close to OOM, scan both anon and file equally
1714 * (unless the swappiness setting disagrees with swapping).
1715 */
1716 if (!sc->priority && vmscan_swappiness(sc)) {
1717 scan_balance = SCAN_EQUAL;
1718 goto out;
1719 }
1720
1721 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1722 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1723 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1724 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1725
1726 /*
1727 * If it's foreseeable that reclaiming the file cache won't be
1728 * enough to get the zone back into a desirable shape, we have
1729 * to swap. Better start now and leave the - probably heavily
1730 * thrashing - remaining file pages alone.
1731 */
1732 if (global_reclaim(sc)) {
1733 free = zone_page_state(zone, NR_FREE_PAGES);
1734 if (unlikely(file + free <= high_wmark_pages(zone))) {
1735 scan_balance = SCAN_ANON;
1736 goto out;
1737 }
1738 }
1739
1740 /*
1741 * There is enough inactive page cache, do not reclaim
1742 * anything from the anonymous working set right now.
1743 */
1744 if (!inactive_file_is_low(lruvec)) {
1745 scan_balance = SCAN_FILE;
1746 goto out;
1747 }
1748
1749 scan_balance = SCAN_FRACT;
1750
1751 /*
1752 * With swappiness at 100, anonymous and file have the same priority.
1753 * This scanning priority is essentially the inverse of IO cost.
1754 */
1755 anon_prio = vmscan_swappiness(sc);
1756 file_prio = 200 - anon_prio;
1757
1758 /*
1759 * OK, so we have swap space and a fair amount of page cache
1760 * pages. We use the recently rotated / recently scanned
1761 * ratios to determine how valuable each cache is.
1762 *
1763 * Because workloads change over time (and to avoid overflow)
1764 * we keep these statistics as a floating average, which ends
1765 * up weighing recent references more than old ones.
1766 *
1767 * anon in [0], file in [1]
1768 */
1769 spin_lock_irq(&zone->lru_lock);
1770 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1771 reclaim_stat->recent_scanned[0] /= 2;
1772 reclaim_stat->recent_rotated[0] /= 2;
1773 }
1774
1775 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1776 reclaim_stat->recent_scanned[1] /= 2;
1777 reclaim_stat->recent_rotated[1] /= 2;
1778 }
1779
1780 /*
1781 * The amount of pressure on anon vs file pages is inversely
1782 * proportional to the fraction of recently scanned pages on
1783 * each list that were recently referenced and in active use.
1784 */
1785 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1786 ap /= reclaim_stat->recent_rotated[0] + 1;
1787
1788 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1789 fp /= reclaim_stat->recent_rotated[1] + 1;
1790 spin_unlock_irq(&zone->lru_lock);
1791
1792 fraction[0] = ap;
1793 fraction[1] = fp;
1794 denominator = ap + fp + 1;
1795 out:
1796 for_each_evictable_lru(lru) {
1797 int file = is_file_lru(lru);
1798 unsigned long size;
1799 unsigned long scan;
1800
1801 size = get_lru_size(lruvec, lru);
1802 scan = size >> sc->priority;
1803
1804 if (!scan && force_scan)
1805 scan = min(size, SWAP_CLUSTER_MAX);
1806
1807 switch (scan_balance) {
1808 case SCAN_EQUAL:
1809 /* Scan lists relative to size */
1810 break;
1811 case SCAN_FRACT:
1812 /*
1813 * Scan types proportional to swappiness and
1814 * their relative recent reclaim efficiency.
1815 */
1816 scan = div64_u64(scan * fraction[file], denominator);
1817 break;
1818 case SCAN_FILE:
1819 case SCAN_ANON:
1820 /* Scan one type exclusively */
1821 if ((scan_balance == SCAN_FILE) != file)
1822 scan = 0;
1823 break;
1824 default:
1825 /* Look ma, no brain */
1826 BUG();
1827 }
1828 nr[lru] = scan;
1829 }
1830 }
1831
1832 /*
1833 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1834 */
1835 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1836 {
1837 unsigned long nr[NR_LRU_LISTS];
1838 unsigned long targets[NR_LRU_LISTS];
1839 unsigned long nr_to_scan;
1840 enum lru_list lru;
1841 unsigned long nr_reclaimed = 0;
1842 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1843 struct blk_plug plug;
1844 bool scan_adjusted = false;
1845
1846 get_scan_count(lruvec, sc, nr);
1847
1848 /* Record the original scan target for proportional adjustments later */
1849 memcpy(targets, nr, sizeof(nr));
1850
1851 blk_start_plug(&plug);
1852 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1853 nr[LRU_INACTIVE_FILE]) {
1854 unsigned long nr_anon, nr_file, percentage;
1855 unsigned long nr_scanned;
1856
1857 for_each_evictable_lru(lru) {
1858 if (nr[lru]) {
1859 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
1860 nr[lru] -= nr_to_scan;
1861
1862 nr_reclaimed += shrink_list(lru, nr_to_scan,
1863 lruvec, sc);
1864 }
1865 }
1866
1867 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
1868 continue;
1869
1870 /*
1871 * For global direct reclaim, reclaim only the number of pages
1872 * requested. Less care is taken to scan proportionally as it
1873 * is more important to minimise direct reclaim stall latency
1874 * than it is to properly age the LRU lists.
1875 */
1876 if (global_reclaim(sc) && !current_is_kswapd())
1877 break;
1878
1879 /*
1880 * For kswapd and memcg, reclaim at least the number of pages
1881 * requested. Ensure that the anon and file LRUs shrink
1882 * proportionally what was requested by get_scan_count(). We
1883 * stop reclaiming one LRU and reduce the amount scanning
1884 * proportional to the original scan target.
1885 */
1886 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
1887 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
1888
1889 if (nr_file > nr_anon) {
1890 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
1891 targets[LRU_ACTIVE_ANON] + 1;
1892 lru = LRU_BASE;
1893 percentage = nr_anon * 100 / scan_target;
1894 } else {
1895 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
1896 targets[LRU_ACTIVE_FILE] + 1;
1897 lru = LRU_FILE;
1898 percentage = nr_file * 100 / scan_target;
1899 }
1900
1901 /* Stop scanning the smaller of the LRU */
1902 nr[lru] = 0;
1903 nr[lru + LRU_ACTIVE] = 0;
1904
1905 /*
1906 * Recalculate the other LRU scan count based on its original
1907 * scan target and the percentage scanning already complete
1908 */
1909 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
1910 nr_scanned = targets[lru] - nr[lru];
1911 nr[lru] = targets[lru] * (100 - percentage) / 100;
1912 nr[lru] -= min(nr[lru], nr_scanned);
1913
1914 lru += LRU_ACTIVE;
1915 nr_scanned = targets[lru] - nr[lru];
1916 nr[lru] = targets[lru] * (100 - percentage) / 100;
1917 nr[lru] -= min(nr[lru], nr_scanned);
1918
1919 scan_adjusted = true;
1920 }
1921 blk_finish_plug(&plug);
1922 sc->nr_reclaimed += nr_reclaimed;
1923
1924 /*
1925 * Even if we did not try to evict anon pages at all, we want to
1926 * rebalance the anon lru active/inactive ratio.
1927 */
1928 if (inactive_anon_is_low(lruvec))
1929 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1930 sc, LRU_ACTIVE_ANON);
1931
1932 throttle_vm_writeout(sc->gfp_mask);
1933 }
1934
1935 /* Use reclaim/compaction for costly allocs or under memory pressure */
1936 static bool in_reclaim_compaction(struct scan_control *sc)
1937 {
1938 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
1939 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1940 sc->priority < DEF_PRIORITY - 2))
1941 return true;
1942
1943 return false;
1944 }
1945
1946 /*
1947 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1948 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1949 * true if more pages should be reclaimed such that when the page allocator
1950 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1951 * It will give up earlier than that if there is difficulty reclaiming pages.
1952 */
1953 static inline bool should_continue_reclaim(struct zone *zone,
1954 unsigned long nr_reclaimed,
1955 unsigned long nr_scanned,
1956 struct scan_control *sc)
1957 {
1958 unsigned long pages_for_compaction;
1959 unsigned long inactive_lru_pages;
1960
1961 /* If not in reclaim/compaction mode, stop */
1962 if (!in_reclaim_compaction(sc))
1963 return false;
1964
1965 /* Consider stopping depending on scan and reclaim activity */
1966 if (sc->gfp_mask & __GFP_REPEAT) {
1967 /*
1968 * For __GFP_REPEAT allocations, stop reclaiming if the
1969 * full LRU list has been scanned and we are still failing
1970 * to reclaim pages. This full LRU scan is potentially
1971 * expensive but a __GFP_REPEAT caller really wants to succeed
1972 */
1973 if (!nr_reclaimed && !nr_scanned)
1974 return false;
1975 } else {
1976 /*
1977 * For non-__GFP_REPEAT allocations which can presumably
1978 * fail without consequence, stop if we failed to reclaim
1979 * any pages from the last SWAP_CLUSTER_MAX number of
1980 * pages that were scanned. This will return to the
1981 * caller faster at the risk reclaim/compaction and
1982 * the resulting allocation attempt fails
1983 */
1984 if (!nr_reclaimed)
1985 return false;
1986 }
1987
1988 /*
1989 * If we have not reclaimed enough pages for compaction and the
1990 * inactive lists are large enough, continue reclaiming
1991 */
1992 pages_for_compaction = (2UL << sc->order);
1993 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
1994 if (get_nr_swap_pages() > 0)
1995 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
1996 if (sc->nr_reclaimed < pages_for_compaction &&
1997 inactive_lru_pages > pages_for_compaction)
1998 return true;
1999
2000 /* If compaction would go ahead or the allocation would succeed, stop */
2001 switch (compaction_suitable(zone, sc->order)) {
2002 case COMPACT_PARTIAL:
2003 case COMPACT_CONTINUE:
2004 return false;
2005 default:
2006 return true;
2007 }
2008 }
2009
2010 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2011 {
2012 unsigned long nr_reclaimed, nr_scanned;
2013
2014 do {
2015 struct mem_cgroup *root = sc->target_mem_cgroup;
2016 struct mem_cgroup_reclaim_cookie reclaim = {
2017 .zone = zone,
2018 .priority = sc->priority,
2019 };
2020 struct mem_cgroup *memcg;
2021
2022 nr_reclaimed = sc->nr_reclaimed;
2023 nr_scanned = sc->nr_scanned;
2024
2025 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2026 do {
2027 struct lruvec *lruvec;
2028
2029 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2030
2031 shrink_lruvec(lruvec, sc);
2032
2033 /*
2034 * Direct reclaim and kswapd have to scan all memory
2035 * cgroups to fulfill the overall scan target for the
2036 * zone.
2037 *
2038 * Limit reclaim, on the other hand, only cares about
2039 * nr_to_reclaim pages to be reclaimed and it will
2040 * retry with decreasing priority if one round over the
2041 * whole hierarchy is not sufficient.
2042 */
2043 if (!global_reclaim(sc) &&
2044 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2045 mem_cgroup_iter_break(root, memcg);
2046 break;
2047 }
2048 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2049 } while (memcg);
2050
2051 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2052 sc->nr_scanned - nr_scanned,
2053 sc->nr_reclaimed - nr_reclaimed);
2054
2055 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2056 sc->nr_scanned - nr_scanned, sc));
2057 }
2058
2059 /* Returns true if compaction should go ahead for a high-order request */
2060 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2061 {
2062 unsigned long balance_gap, watermark;
2063 bool watermark_ok;
2064
2065 /* Do not consider compaction for orders reclaim is meant to satisfy */
2066 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2067 return false;
2068
2069 /*
2070 * Compaction takes time to run and there are potentially other
2071 * callers using the pages just freed. Continue reclaiming until
2072 * there is a buffer of free pages available to give compaction
2073 * a reasonable chance of completing and allocating the page
2074 */
2075 balance_gap = min(low_wmark_pages(zone),
2076 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2077 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2078 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2079 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2080
2081 /*
2082 * If compaction is deferred, reclaim up to a point where
2083 * compaction will have a chance of success when re-enabled
2084 */
2085 if (compaction_deferred(zone, sc->order))
2086 return watermark_ok;
2087
2088 /* If compaction is not ready to start, keep reclaiming */
2089 if (!compaction_suitable(zone, sc->order))
2090 return false;
2091
2092 return watermark_ok;
2093 }
2094
2095 /*
2096 * This is the direct reclaim path, for page-allocating processes. We only
2097 * try to reclaim pages from zones which will satisfy the caller's allocation
2098 * request.
2099 *
2100 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2101 * Because:
2102 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2103 * allocation or
2104 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2105 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2106 * zone defense algorithm.
2107 *
2108 * If a zone is deemed to be full of pinned pages then just give it a light
2109 * scan then give up on it.
2110 *
2111 * This function returns true if a zone is being reclaimed for a costly
2112 * high-order allocation and compaction is ready to begin. This indicates to
2113 * the caller that it should consider retrying the allocation instead of
2114 * further reclaim.
2115 */
2116 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2117 {
2118 struct zoneref *z;
2119 struct zone *zone;
2120 unsigned long nr_soft_reclaimed;
2121 unsigned long nr_soft_scanned;
2122 bool aborted_reclaim = false;
2123
2124 /*
2125 * If the number of buffer_heads in the machine exceeds the maximum
2126 * allowed level, force direct reclaim to scan the highmem zone as
2127 * highmem pages could be pinning lowmem pages storing buffer_heads
2128 */
2129 if (buffer_heads_over_limit)
2130 sc->gfp_mask |= __GFP_HIGHMEM;
2131
2132 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2133 gfp_zone(sc->gfp_mask), sc->nodemask) {
2134 if (!populated_zone(zone))
2135 continue;
2136 /*
2137 * Take care memory controller reclaiming has small influence
2138 * to global LRU.
2139 */
2140 if (global_reclaim(sc)) {
2141 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2142 continue;
2143 if (zone->all_unreclaimable &&
2144 sc->priority != DEF_PRIORITY)
2145 continue; /* Let kswapd poll it */
2146 if (IS_ENABLED(CONFIG_COMPACTION)) {
2147 /*
2148 * If we already have plenty of memory free for
2149 * compaction in this zone, don't free any more.
2150 * Even though compaction is invoked for any
2151 * non-zero order, only frequent costly order
2152 * reclamation is disruptive enough to become a
2153 * noticeable problem, like transparent huge
2154 * page allocations.
2155 */
2156 if (compaction_ready(zone, sc)) {
2157 aborted_reclaim = true;
2158 continue;
2159 }
2160 }
2161 /*
2162 * This steals pages from memory cgroups over softlimit
2163 * and returns the number of reclaimed pages and
2164 * scanned pages. This works for global memory pressure
2165 * and balancing, not for a memcg's limit.
2166 */
2167 nr_soft_scanned = 0;
2168 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2169 sc->order, sc->gfp_mask,
2170 &nr_soft_scanned);
2171 sc->nr_reclaimed += nr_soft_reclaimed;
2172 sc->nr_scanned += nr_soft_scanned;
2173 /* need some check for avoid more shrink_zone() */
2174 }
2175
2176 shrink_zone(zone, sc);
2177 }
2178
2179 return aborted_reclaim;
2180 }
2181
2182 static bool zone_reclaimable(struct zone *zone)
2183 {
2184 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2185 }
2186
2187 /* All zones in zonelist are unreclaimable? */
2188 static bool all_unreclaimable(struct zonelist *zonelist,
2189 struct scan_control *sc)
2190 {
2191 struct zoneref *z;
2192 struct zone *zone;
2193
2194 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2195 gfp_zone(sc->gfp_mask), sc->nodemask) {
2196 if (!populated_zone(zone))
2197 continue;
2198 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2199 continue;
2200 if (!zone->all_unreclaimable)
2201 return false;
2202 }
2203
2204 return true;
2205 }
2206
2207 /*
2208 * This is the main entry point to direct page reclaim.
2209 *
2210 * If a full scan of the inactive list fails to free enough memory then we
2211 * are "out of memory" and something needs to be killed.
2212 *
2213 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2214 * high - the zone may be full of dirty or under-writeback pages, which this
2215 * caller can't do much about. We kick the writeback threads and take explicit
2216 * naps in the hope that some of these pages can be written. But if the
2217 * allocating task holds filesystem locks which prevent writeout this might not
2218 * work, and the allocation attempt will fail.
2219 *
2220 * returns: 0, if no pages reclaimed
2221 * else, the number of pages reclaimed
2222 */
2223 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2224 struct scan_control *sc,
2225 struct shrink_control *shrink)
2226 {
2227 unsigned long total_scanned = 0;
2228 struct reclaim_state *reclaim_state = current->reclaim_state;
2229 struct zoneref *z;
2230 struct zone *zone;
2231 unsigned long writeback_threshold;
2232 bool aborted_reclaim;
2233
2234 delayacct_freepages_start();
2235
2236 if (global_reclaim(sc))
2237 count_vm_event(ALLOCSTALL);
2238
2239 do {
2240 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2241 sc->priority);
2242 sc->nr_scanned = 0;
2243 aborted_reclaim = shrink_zones(zonelist, sc);
2244
2245 /*
2246 * Don't shrink slabs when reclaiming memory from
2247 * over limit cgroups
2248 */
2249 if (global_reclaim(sc)) {
2250 unsigned long lru_pages = 0;
2251 for_each_zone_zonelist(zone, z, zonelist,
2252 gfp_zone(sc->gfp_mask)) {
2253 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2254 continue;
2255
2256 lru_pages += zone_reclaimable_pages(zone);
2257 }
2258
2259 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2260 if (reclaim_state) {
2261 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2262 reclaim_state->reclaimed_slab = 0;
2263 }
2264 }
2265 total_scanned += sc->nr_scanned;
2266 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2267 goto out;
2268
2269 /*
2270 * If we're getting trouble reclaiming, start doing
2271 * writepage even in laptop mode.
2272 */
2273 if (sc->priority < DEF_PRIORITY - 2)
2274 sc->may_writepage = 1;
2275
2276 /*
2277 * Try to write back as many pages as we just scanned. This
2278 * tends to cause slow streaming writers to write data to the
2279 * disk smoothly, at the dirtying rate, which is nice. But
2280 * that's undesirable in laptop mode, where we *want* lumpy
2281 * writeout. So in laptop mode, write out the whole world.
2282 */
2283 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2284 if (total_scanned > writeback_threshold) {
2285 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2286 WB_REASON_TRY_TO_FREE_PAGES);
2287 sc->may_writepage = 1;
2288 }
2289
2290 /* Take a nap, wait for some writeback to complete */
2291 if (!sc->hibernation_mode && sc->nr_scanned &&
2292 sc->priority < DEF_PRIORITY - 2) {
2293 struct zone *preferred_zone;
2294
2295 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2296 &cpuset_current_mems_allowed,
2297 &preferred_zone);
2298 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2299 }
2300 } while (--sc->priority >= 0);
2301
2302 out:
2303 delayacct_freepages_end();
2304
2305 if (sc->nr_reclaimed)
2306 return sc->nr_reclaimed;
2307
2308 /*
2309 * As hibernation is going on, kswapd is freezed so that it can't mark
2310 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2311 * check.
2312 */
2313 if (oom_killer_disabled)
2314 return 0;
2315
2316 /* Aborted reclaim to try compaction? don't OOM, then */
2317 if (aborted_reclaim)
2318 return 1;
2319
2320 /* top priority shrink_zones still had more to do? don't OOM, then */
2321 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2322 return 1;
2323
2324 return 0;
2325 }
2326
2327 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2328 {
2329 struct zone *zone;
2330 unsigned long pfmemalloc_reserve = 0;
2331 unsigned long free_pages = 0;
2332 int i;
2333 bool wmark_ok;
2334
2335 for (i = 0; i <= ZONE_NORMAL; i++) {
2336 zone = &pgdat->node_zones[i];
2337 pfmemalloc_reserve += min_wmark_pages(zone);
2338 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2339 }
2340
2341 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2342
2343 /* kswapd must be awake if processes are being throttled */
2344 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2345 pgdat->classzone_idx = min(pgdat->classzone_idx,
2346 (enum zone_type)ZONE_NORMAL);
2347 wake_up_interruptible(&pgdat->kswapd_wait);
2348 }
2349
2350 return wmark_ok;
2351 }
2352
2353 /*
2354 * Throttle direct reclaimers if backing storage is backed by the network
2355 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2356 * depleted. kswapd will continue to make progress and wake the processes
2357 * when the low watermark is reached.
2358 *
2359 * Returns true if a fatal signal was delivered during throttling. If this
2360 * happens, the page allocator should not consider triggering the OOM killer.
2361 */
2362 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2363 nodemask_t *nodemask)
2364 {
2365 struct zone *zone;
2366 int high_zoneidx = gfp_zone(gfp_mask);
2367 pg_data_t *pgdat;
2368
2369 /*
2370 * Kernel threads should not be throttled as they may be indirectly
2371 * responsible for cleaning pages necessary for reclaim to make forward
2372 * progress. kjournald for example may enter direct reclaim while
2373 * committing a transaction where throttling it could forcing other
2374 * processes to block on log_wait_commit().
2375 */
2376 if (current->flags & PF_KTHREAD)
2377 goto out;
2378
2379 /*
2380 * If a fatal signal is pending, this process should not throttle.
2381 * It should return quickly so it can exit and free its memory
2382 */
2383 if (fatal_signal_pending(current))
2384 goto out;
2385
2386 /* Check if the pfmemalloc reserves are ok */
2387 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2388 pgdat = zone->zone_pgdat;
2389 if (pfmemalloc_watermark_ok(pgdat))
2390 goto out;
2391
2392 /* Account for the throttling */
2393 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2394
2395 /*
2396 * If the caller cannot enter the filesystem, it's possible that it
2397 * is due to the caller holding an FS lock or performing a journal
2398 * transaction in the case of a filesystem like ext[3|4]. In this case,
2399 * it is not safe to block on pfmemalloc_wait as kswapd could be
2400 * blocked waiting on the same lock. Instead, throttle for up to a
2401 * second before continuing.
2402 */
2403 if (!(gfp_mask & __GFP_FS)) {
2404 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2405 pfmemalloc_watermark_ok(pgdat), HZ);
2406
2407 goto check_pending;
2408 }
2409
2410 /* Throttle until kswapd wakes the process */
2411 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2412 pfmemalloc_watermark_ok(pgdat));
2413
2414 check_pending:
2415 if (fatal_signal_pending(current))
2416 return true;
2417
2418 out:
2419 return false;
2420 }
2421
2422 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2423 gfp_t gfp_mask, nodemask_t *nodemask)
2424 {
2425 unsigned long nr_reclaimed;
2426 struct scan_control sc = {
2427 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2428 .may_writepage = !laptop_mode,
2429 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2430 .may_unmap = 1,
2431 .may_swap = 1,
2432 .order = order,
2433 .priority = DEF_PRIORITY,
2434 .target_mem_cgroup = NULL,
2435 .nodemask = nodemask,
2436 };
2437 struct shrink_control shrink = {
2438 .gfp_mask = sc.gfp_mask,
2439 };
2440
2441 /*
2442 * Do not enter reclaim if fatal signal was delivered while throttled.
2443 * 1 is returned so that the page allocator does not OOM kill at this
2444 * point.
2445 */
2446 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2447 return 1;
2448
2449 trace_mm_vmscan_direct_reclaim_begin(order,
2450 sc.may_writepage,
2451 gfp_mask);
2452
2453 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2454
2455 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2456
2457 return nr_reclaimed;
2458 }
2459
2460 #ifdef CONFIG_MEMCG
2461
2462 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2463 gfp_t gfp_mask, bool noswap,
2464 struct zone *zone,
2465 unsigned long *nr_scanned)
2466 {
2467 struct scan_control sc = {
2468 .nr_scanned = 0,
2469 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2470 .may_writepage = !laptop_mode,
2471 .may_unmap = 1,
2472 .may_swap = !noswap,
2473 .order = 0,
2474 .priority = 0,
2475 .target_mem_cgroup = memcg,
2476 };
2477 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2478
2479 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2480 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2481
2482 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2483 sc.may_writepage,
2484 sc.gfp_mask);
2485
2486 /*
2487 * NOTE: Although we can get the priority field, using it
2488 * here is not a good idea, since it limits the pages we can scan.
2489 * if we don't reclaim here, the shrink_zone from balance_pgdat
2490 * will pick up pages from other mem cgroup's as well. We hack
2491 * the priority and make it zero.
2492 */
2493 shrink_lruvec(lruvec, &sc);
2494
2495 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2496
2497 *nr_scanned = sc.nr_scanned;
2498 return sc.nr_reclaimed;
2499 }
2500
2501 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2502 gfp_t gfp_mask,
2503 bool noswap)
2504 {
2505 struct zonelist *zonelist;
2506 unsigned long nr_reclaimed;
2507 int nid;
2508 struct scan_control sc = {
2509 .may_writepage = !laptop_mode,
2510 .may_unmap = 1,
2511 .may_swap = !noswap,
2512 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2513 .order = 0,
2514 .priority = DEF_PRIORITY,
2515 .target_mem_cgroup = memcg,
2516 .nodemask = NULL, /* we don't care the placement */
2517 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2518 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2519 };
2520 struct shrink_control shrink = {
2521 .gfp_mask = sc.gfp_mask,
2522 };
2523
2524 /*
2525 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2526 * take care of from where we get pages. So the node where we start the
2527 * scan does not need to be the current node.
2528 */
2529 nid = mem_cgroup_select_victim_node(memcg);
2530
2531 zonelist = NODE_DATA(nid)->node_zonelists;
2532
2533 trace_mm_vmscan_memcg_reclaim_begin(0,
2534 sc.may_writepage,
2535 sc.gfp_mask);
2536
2537 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2538
2539 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2540
2541 return nr_reclaimed;
2542 }
2543 #endif
2544
2545 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2546 {
2547 struct mem_cgroup *memcg;
2548
2549 if (!total_swap_pages)
2550 return;
2551
2552 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2553 do {
2554 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2555
2556 if (inactive_anon_is_low(lruvec))
2557 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2558 sc, LRU_ACTIVE_ANON);
2559
2560 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2561 } while (memcg);
2562 }
2563
2564 static bool zone_balanced(struct zone *zone, int order,
2565 unsigned long balance_gap, int classzone_idx)
2566 {
2567 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2568 balance_gap, classzone_idx, 0))
2569 return false;
2570
2571 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2572 !compaction_suitable(zone, order))
2573 return false;
2574
2575 return true;
2576 }
2577
2578 /*
2579 * pgdat_balanced() is used when checking if a node is balanced.
2580 *
2581 * For order-0, all zones must be balanced!
2582 *
2583 * For high-order allocations only zones that meet watermarks and are in a
2584 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2585 * total of balanced pages must be at least 25% of the zones allowed by
2586 * classzone_idx for the node to be considered balanced. Forcing all zones to
2587 * be balanced for high orders can cause excessive reclaim when there are
2588 * imbalanced zones.
2589 * The choice of 25% is due to
2590 * o a 16M DMA zone that is balanced will not balance a zone on any
2591 * reasonable sized machine
2592 * o On all other machines, the top zone must be at least a reasonable
2593 * percentage of the middle zones. For example, on 32-bit x86, highmem
2594 * would need to be at least 256M for it to be balance a whole node.
2595 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2596 * to balance a node on its own. These seemed like reasonable ratios.
2597 */
2598 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2599 {
2600 unsigned long managed_pages = 0;
2601 unsigned long balanced_pages = 0;
2602 int i;
2603
2604 /* Check the watermark levels */
2605 for (i = 0; i <= classzone_idx; i++) {
2606 struct zone *zone = pgdat->node_zones + i;
2607
2608 if (!populated_zone(zone))
2609 continue;
2610
2611 managed_pages += zone->managed_pages;
2612
2613 /*
2614 * A special case here:
2615 *
2616 * balance_pgdat() skips over all_unreclaimable after
2617 * DEF_PRIORITY. Effectively, it considers them balanced so
2618 * they must be considered balanced here as well!
2619 */
2620 if (zone->all_unreclaimable) {
2621 balanced_pages += zone->managed_pages;
2622 continue;
2623 }
2624
2625 if (zone_balanced(zone, order, 0, i))
2626 balanced_pages += zone->managed_pages;
2627 else if (!order)
2628 return false;
2629 }
2630
2631 if (order)
2632 return balanced_pages >= (managed_pages >> 2);
2633 else
2634 return true;
2635 }
2636
2637 /*
2638 * Prepare kswapd for sleeping. This verifies that there are no processes
2639 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2640 *
2641 * Returns true if kswapd is ready to sleep
2642 */
2643 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2644 int classzone_idx)
2645 {
2646 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2647 if (remaining)
2648 return false;
2649
2650 /*
2651 * There is a potential race between when kswapd checks its watermarks
2652 * and a process gets throttled. There is also a potential race if
2653 * processes get throttled, kswapd wakes, a large process exits therby
2654 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2655 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2656 * so wake them now if necessary. If necessary, processes will wake
2657 * kswapd and get throttled again
2658 */
2659 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2660 wake_up(&pgdat->pfmemalloc_wait);
2661 return false;
2662 }
2663
2664 return pgdat_balanced(pgdat, order, classzone_idx);
2665 }
2666
2667 /*
2668 * kswapd shrinks the zone by the number of pages required to reach
2669 * the high watermark.
2670 *
2671 * Returns true if kswapd scanned at least the requested number of pages to
2672 * reclaim. This is used to determine if the scanning priority needs to be
2673 * raised.
2674 */
2675 static bool kswapd_shrink_zone(struct zone *zone,
2676 struct scan_control *sc,
2677 unsigned long lru_pages,
2678 unsigned long *nr_attempted)
2679 {
2680 unsigned long nr_slab;
2681 struct reclaim_state *reclaim_state = current->reclaim_state;
2682 struct shrink_control shrink = {
2683 .gfp_mask = sc->gfp_mask,
2684 };
2685
2686 /* Reclaim above the high watermark. */
2687 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2688 shrink_zone(zone, sc);
2689
2690 reclaim_state->reclaimed_slab = 0;
2691 nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2692 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2693
2694 /* Account for the number of pages attempted to reclaim */
2695 *nr_attempted += sc->nr_to_reclaim;
2696
2697 if (nr_slab == 0 && !zone_reclaimable(zone))
2698 zone->all_unreclaimable = 1;
2699
2700 return sc->nr_scanned >= sc->nr_to_reclaim;
2701 }
2702
2703 /*
2704 * For kswapd, balance_pgdat() will work across all this node's zones until
2705 * they are all at high_wmark_pages(zone).
2706 *
2707 * Returns the final order kswapd was reclaiming at
2708 *
2709 * There is special handling here for zones which are full of pinned pages.
2710 * This can happen if the pages are all mlocked, or if they are all used by
2711 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2712 * What we do is to detect the case where all pages in the zone have been
2713 * scanned twice and there has been zero successful reclaim. Mark the zone as
2714 * dead and from now on, only perform a short scan. Basically we're polling
2715 * the zone for when the problem goes away.
2716 *
2717 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2718 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2719 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2720 * lower zones regardless of the number of free pages in the lower zones. This
2721 * interoperates with the page allocator fallback scheme to ensure that aging
2722 * of pages is balanced across the zones.
2723 */
2724 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2725 int *classzone_idx)
2726 {
2727 int i;
2728 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2729 unsigned long nr_soft_reclaimed;
2730 unsigned long nr_soft_scanned;
2731 struct scan_control sc = {
2732 .gfp_mask = GFP_KERNEL,
2733 .priority = DEF_PRIORITY,
2734 .may_unmap = 1,
2735 .may_swap = 1,
2736 .may_writepage = !laptop_mode,
2737 .order = order,
2738 .target_mem_cgroup = NULL,
2739 };
2740 count_vm_event(PAGEOUTRUN);
2741
2742 do {
2743 unsigned long lru_pages = 0;
2744 unsigned long nr_attempted = 0;
2745 bool raise_priority = true;
2746 bool pgdat_needs_compaction = (order > 0);
2747
2748 sc.nr_reclaimed = 0;
2749
2750 /*
2751 * Scan in the highmem->dma direction for the highest
2752 * zone which needs scanning
2753 */
2754 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2755 struct zone *zone = pgdat->node_zones + i;
2756
2757 if (!populated_zone(zone))
2758 continue;
2759
2760 if (zone->all_unreclaimable &&
2761 sc.priority != DEF_PRIORITY)
2762 continue;
2763
2764 /*
2765 * Do some background aging of the anon list, to give
2766 * pages a chance to be referenced before reclaiming.
2767 */
2768 age_active_anon(zone, &sc);
2769
2770 /*
2771 * If the number of buffer_heads in the machine
2772 * exceeds the maximum allowed level and this node
2773 * has a highmem zone, force kswapd to reclaim from
2774 * it to relieve lowmem pressure.
2775 */
2776 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2777 end_zone = i;
2778 break;
2779 }
2780
2781 if (!zone_balanced(zone, order, 0, 0)) {
2782 end_zone = i;
2783 break;
2784 } else {
2785 /*
2786 * If balanced, clear the dirty and congested
2787 * flags
2788 */
2789 zone_clear_flag(zone, ZONE_CONGESTED);
2790 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2791 }
2792 }
2793
2794 if (i < 0)
2795 goto out;
2796
2797 for (i = 0; i <= end_zone; i++) {
2798 struct zone *zone = pgdat->node_zones + i;
2799
2800 if (!populated_zone(zone))
2801 continue;
2802
2803 lru_pages += zone_reclaimable_pages(zone);
2804
2805 /*
2806 * If any zone is currently balanced then kswapd will
2807 * not call compaction as it is expected that the
2808 * necessary pages are already available.
2809 */
2810 if (pgdat_needs_compaction &&
2811 zone_watermark_ok(zone, order,
2812 low_wmark_pages(zone),
2813 *classzone_idx, 0))
2814 pgdat_needs_compaction = false;
2815 }
2816
2817 /*
2818 * Now scan the zone in the dma->highmem direction, stopping
2819 * at the last zone which needs scanning.
2820 *
2821 * We do this because the page allocator works in the opposite
2822 * direction. This prevents the page allocator from allocating
2823 * pages behind kswapd's direction of progress, which would
2824 * cause too much scanning of the lower zones.
2825 */
2826 for (i = 0; i <= end_zone; i++) {
2827 struct zone *zone = pgdat->node_zones + i;
2828 int testorder;
2829 unsigned long balance_gap;
2830
2831 if (!populated_zone(zone))
2832 continue;
2833
2834 if (zone->all_unreclaimable &&
2835 sc.priority != DEF_PRIORITY)
2836 continue;
2837
2838 sc.nr_scanned = 0;
2839
2840 nr_soft_scanned = 0;
2841 /*
2842 * Call soft limit reclaim before calling shrink_zone.
2843 */
2844 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2845 order, sc.gfp_mask,
2846 &nr_soft_scanned);
2847 sc.nr_reclaimed += nr_soft_reclaimed;
2848
2849 /*
2850 * We put equal pressure on every zone, unless
2851 * one zone has way too many pages free
2852 * already. The "too many pages" is defined
2853 * as the high wmark plus a "gap" where the
2854 * gap is either the low watermark or 1%
2855 * of the zone, whichever is smaller.
2856 */
2857 balance_gap = min(low_wmark_pages(zone),
2858 (zone->managed_pages +
2859 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2860 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2861 /*
2862 * Kswapd reclaims only single pages with compaction
2863 * enabled. Trying too hard to reclaim until contiguous
2864 * free pages have become available can hurt performance
2865 * by evicting too much useful data from memory.
2866 * Do not reclaim more than needed for compaction.
2867 */
2868 testorder = order;
2869 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2870 compaction_suitable(zone, order) !=
2871 COMPACT_SKIPPED)
2872 testorder = 0;
2873
2874 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2875 !zone_balanced(zone, testorder,
2876 balance_gap, end_zone)) {
2877 /*
2878 * There should be no need to raise the
2879 * scanning priority if enough pages are
2880 * already being scanned that high
2881 * watermark would be met at 100% efficiency.
2882 */
2883 if (kswapd_shrink_zone(zone, &sc, lru_pages,
2884 &nr_attempted))
2885 raise_priority = false;
2886 }
2887
2888 /*
2889 * If we're getting trouble reclaiming, start doing
2890 * writepage even in laptop mode.
2891 */
2892 if (sc.priority < DEF_PRIORITY - 2)
2893 sc.may_writepage = 1;
2894
2895 if (zone->all_unreclaimable) {
2896 if (end_zone && end_zone == i)
2897 end_zone--;
2898 continue;
2899 }
2900
2901 if (zone_balanced(zone, testorder, 0, end_zone))
2902 /*
2903 * If a zone reaches its high watermark,
2904 * consider it to be no longer congested. It's
2905 * possible there are dirty pages backed by
2906 * congested BDIs but as pressure is relieved,
2907 * speculatively avoid congestion waits
2908 * or writing pages from kswapd context.
2909 */
2910 zone_clear_flag(zone, ZONE_CONGESTED);
2911 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2912 }
2913
2914 /*
2915 * If the low watermark is met there is no need for processes
2916 * to be throttled on pfmemalloc_wait as they should not be
2917 * able to safely make forward progress. Wake them
2918 */
2919 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2920 pfmemalloc_watermark_ok(pgdat))
2921 wake_up(&pgdat->pfmemalloc_wait);
2922
2923 /*
2924 * Fragmentation may mean that the system cannot be rebalanced
2925 * for high-order allocations in all zones. If twice the
2926 * allocation size has been reclaimed and the zones are still
2927 * not balanced then recheck the watermarks at order-0 to
2928 * prevent kswapd reclaiming excessively. Assume that a
2929 * process requested a high-order can direct reclaim/compact.
2930 */
2931 if (order && sc.nr_reclaimed >= 2UL << order)
2932 order = sc.order = 0;
2933
2934 /* Check if kswapd should be suspending */
2935 if (try_to_freeze() || kthread_should_stop())
2936 break;
2937
2938 /*
2939 * Compact if necessary and kswapd is reclaiming at least the
2940 * high watermark number of pages as requsted
2941 */
2942 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
2943 compact_pgdat(pgdat, order);
2944
2945 /*
2946 * Raise priority if scanning rate is too low or there was no
2947 * progress in reclaiming pages
2948 */
2949 if (raise_priority || !sc.nr_reclaimed)
2950 sc.priority--;
2951 } while (sc.priority >= 1 &&
2952 !pgdat_balanced(pgdat, order, *classzone_idx));
2953
2954 out:
2955 /*
2956 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2957 * makes a decision on the order we were last reclaiming at. However,
2958 * if another caller entered the allocator slow path while kswapd
2959 * was awake, order will remain at the higher level
2960 */
2961 *classzone_idx = end_zone;
2962 return order;
2963 }
2964
2965 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2966 {
2967 long remaining = 0;
2968 DEFINE_WAIT(wait);
2969
2970 if (freezing(current) || kthread_should_stop())
2971 return;
2972
2973 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2974
2975 /* Try to sleep for a short interval */
2976 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2977 remaining = schedule_timeout(HZ/10);
2978 finish_wait(&pgdat->kswapd_wait, &wait);
2979 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2980 }
2981
2982 /*
2983 * After a short sleep, check if it was a premature sleep. If not, then
2984 * go fully to sleep until explicitly woken up.
2985 */
2986 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2987 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2988
2989 /*
2990 * vmstat counters are not perfectly accurate and the estimated
2991 * value for counters such as NR_FREE_PAGES can deviate from the
2992 * true value by nr_online_cpus * threshold. To avoid the zone
2993 * watermarks being breached while under pressure, we reduce the
2994 * per-cpu vmstat threshold while kswapd is awake and restore
2995 * them before going back to sleep.
2996 */
2997 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2998
2999 /*
3000 * Compaction records what page blocks it recently failed to
3001 * isolate pages from and skips them in the future scanning.
3002 * When kswapd is going to sleep, it is reasonable to assume
3003 * that pages and compaction may succeed so reset the cache.
3004 */
3005 reset_isolation_suitable(pgdat);
3006
3007 if (!kthread_should_stop())
3008 schedule();
3009
3010 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3011 } else {
3012 if (remaining)
3013 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3014 else
3015 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3016 }
3017 finish_wait(&pgdat->kswapd_wait, &wait);
3018 }
3019
3020 /*
3021 * The background pageout daemon, started as a kernel thread
3022 * from the init process.
3023 *
3024 * This basically trickles out pages so that we have _some_
3025 * free memory available even if there is no other activity
3026 * that frees anything up. This is needed for things like routing
3027 * etc, where we otherwise might have all activity going on in
3028 * asynchronous contexts that cannot page things out.
3029 *
3030 * If there are applications that are active memory-allocators
3031 * (most normal use), this basically shouldn't matter.
3032 */
3033 static int kswapd(void *p)
3034 {
3035 unsigned long order, new_order;
3036 unsigned balanced_order;
3037 int classzone_idx, new_classzone_idx;
3038 int balanced_classzone_idx;
3039 pg_data_t *pgdat = (pg_data_t*)p;
3040 struct task_struct *tsk = current;
3041
3042 struct reclaim_state reclaim_state = {
3043 .reclaimed_slab = 0,
3044 };
3045 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3046
3047 lockdep_set_current_reclaim_state(GFP_KERNEL);
3048
3049 if (!cpumask_empty(cpumask))
3050 set_cpus_allowed_ptr(tsk, cpumask);
3051 current->reclaim_state = &reclaim_state;
3052
3053 /*
3054 * Tell the memory management that we're a "memory allocator",
3055 * and that if we need more memory we should get access to it
3056 * regardless (see "__alloc_pages()"). "kswapd" should
3057 * never get caught in the normal page freeing logic.
3058 *
3059 * (Kswapd normally doesn't need memory anyway, but sometimes
3060 * you need a small amount of memory in order to be able to
3061 * page out something else, and this flag essentially protects
3062 * us from recursively trying to free more memory as we're
3063 * trying to free the first piece of memory in the first place).
3064 */
3065 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3066 set_freezable();
3067
3068 order = new_order = 0;
3069 balanced_order = 0;
3070 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3071 balanced_classzone_idx = classzone_idx;
3072 for ( ; ; ) {
3073 bool ret;
3074
3075 /*
3076 * If the last balance_pgdat was unsuccessful it's unlikely a
3077 * new request of a similar or harder type will succeed soon
3078 * so consider going to sleep on the basis we reclaimed at
3079 */
3080 if (balanced_classzone_idx >= new_classzone_idx &&
3081 balanced_order == new_order) {
3082 new_order = pgdat->kswapd_max_order;
3083 new_classzone_idx = pgdat->classzone_idx;
3084 pgdat->kswapd_max_order = 0;
3085 pgdat->classzone_idx = pgdat->nr_zones - 1;
3086 }
3087
3088 if (order < new_order || classzone_idx > new_classzone_idx) {
3089 /*
3090 * Don't sleep if someone wants a larger 'order'
3091 * allocation or has tigher zone constraints
3092 */
3093 order = new_order;
3094 classzone_idx = new_classzone_idx;
3095 } else {
3096 kswapd_try_to_sleep(pgdat, balanced_order,
3097 balanced_classzone_idx);
3098 order = pgdat->kswapd_max_order;
3099 classzone_idx = pgdat->classzone_idx;
3100 new_order = order;
3101 new_classzone_idx = classzone_idx;
3102 pgdat->kswapd_max_order = 0;
3103 pgdat->classzone_idx = pgdat->nr_zones - 1;
3104 }
3105
3106 ret = try_to_freeze();
3107 if (kthread_should_stop())
3108 break;
3109
3110 /*
3111 * We can speed up thawing tasks if we don't call balance_pgdat
3112 * after returning from the refrigerator
3113 */
3114 if (!ret) {
3115 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3116 balanced_classzone_idx = classzone_idx;
3117 balanced_order = balance_pgdat(pgdat, order,
3118 &balanced_classzone_idx);
3119 }
3120 }
3121
3122 current->reclaim_state = NULL;
3123 return 0;
3124 }
3125
3126 /*
3127 * A zone is low on free memory, so wake its kswapd task to service it.
3128 */
3129 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3130 {
3131 pg_data_t *pgdat;
3132
3133 if (!populated_zone(zone))
3134 return;
3135
3136 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3137 return;
3138 pgdat = zone->zone_pgdat;
3139 if (pgdat->kswapd_max_order < order) {
3140 pgdat->kswapd_max_order = order;
3141 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3142 }
3143 if (!waitqueue_active(&pgdat->kswapd_wait))
3144 return;
3145 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3146 return;
3147
3148 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3149 wake_up_interruptible(&pgdat->kswapd_wait);
3150 }
3151
3152 /*
3153 * The reclaimable count would be mostly accurate.
3154 * The less reclaimable pages may be
3155 * - mlocked pages, which will be moved to unevictable list when encountered
3156 * - mapped pages, which may require several travels to be reclaimed
3157 * - dirty pages, which is not "instantly" reclaimable
3158 */
3159 unsigned long global_reclaimable_pages(void)
3160 {
3161 int nr;
3162
3163 nr = global_page_state(NR_ACTIVE_FILE) +
3164 global_page_state(NR_INACTIVE_FILE);
3165
3166 if (get_nr_swap_pages() > 0)
3167 nr += global_page_state(NR_ACTIVE_ANON) +
3168 global_page_state(NR_INACTIVE_ANON);
3169
3170 return nr;
3171 }
3172
3173 unsigned long zone_reclaimable_pages(struct zone *zone)
3174 {
3175 int nr;
3176
3177 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3178 zone_page_state(zone, NR_INACTIVE_FILE);
3179
3180 if (get_nr_swap_pages() > 0)
3181 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3182 zone_page_state(zone, NR_INACTIVE_ANON);
3183
3184 return nr;
3185 }
3186
3187 #ifdef CONFIG_HIBERNATION
3188 /*
3189 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3190 * freed pages.
3191 *
3192 * Rather than trying to age LRUs the aim is to preserve the overall
3193 * LRU order by reclaiming preferentially
3194 * inactive > active > active referenced > active mapped
3195 */
3196 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3197 {
3198 struct reclaim_state reclaim_state;
3199 struct scan_control sc = {
3200 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3201 .may_swap = 1,
3202 .may_unmap = 1,
3203 .may_writepage = 1,
3204 .nr_to_reclaim = nr_to_reclaim,
3205 .hibernation_mode = 1,
3206 .order = 0,
3207 .priority = DEF_PRIORITY,
3208 };
3209 struct shrink_control shrink = {
3210 .gfp_mask = sc.gfp_mask,
3211 };
3212 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3213 struct task_struct *p = current;
3214 unsigned long nr_reclaimed;
3215
3216 p->flags |= PF_MEMALLOC;
3217 lockdep_set_current_reclaim_state(sc.gfp_mask);
3218 reclaim_state.reclaimed_slab = 0;
3219 p->reclaim_state = &reclaim_state;
3220
3221 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3222
3223 p->reclaim_state = NULL;
3224 lockdep_clear_current_reclaim_state();
3225 p->flags &= ~PF_MEMALLOC;
3226
3227 return nr_reclaimed;
3228 }
3229 #endif /* CONFIG_HIBERNATION */
3230
3231 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3232 not required for correctness. So if the last cpu in a node goes
3233 away, we get changed to run anywhere: as the first one comes back,
3234 restore their cpu bindings. */
3235 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3236 void *hcpu)
3237 {
3238 int nid;
3239
3240 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3241 for_each_node_state(nid, N_MEMORY) {
3242 pg_data_t *pgdat = NODE_DATA(nid);
3243 const struct cpumask *mask;
3244
3245 mask = cpumask_of_node(pgdat->node_id);
3246
3247 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3248 /* One of our CPUs online: restore mask */
3249 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3250 }
3251 }
3252 return NOTIFY_OK;
3253 }
3254
3255 /*
3256 * This kswapd start function will be called by init and node-hot-add.
3257 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3258 */
3259 int kswapd_run(int nid)
3260 {
3261 pg_data_t *pgdat = NODE_DATA(nid);
3262 int ret = 0;
3263
3264 if (pgdat->kswapd)
3265 return 0;
3266
3267 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3268 if (IS_ERR(pgdat->kswapd)) {
3269 /* failure at boot is fatal */
3270 BUG_ON(system_state == SYSTEM_BOOTING);
3271 pr_err("Failed to start kswapd on node %d\n", nid);
3272 ret = PTR_ERR(pgdat->kswapd);
3273 pgdat->kswapd = NULL;
3274 }
3275 return ret;
3276 }
3277
3278 /*
3279 * Called by memory hotplug when all memory in a node is offlined. Caller must
3280 * hold lock_memory_hotplug().
3281 */
3282 void kswapd_stop(int nid)
3283 {
3284 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3285
3286 if (kswapd) {
3287 kthread_stop(kswapd);
3288 NODE_DATA(nid)->kswapd = NULL;
3289 }
3290 }
3291
3292 static int __init kswapd_init(void)
3293 {
3294 int nid;
3295
3296 swap_setup();
3297 for_each_node_state(nid, N_MEMORY)
3298 kswapd_run(nid);
3299 hotcpu_notifier(cpu_callback, 0);
3300 return 0;
3301 }
3302
3303 module_init(kswapd_init)
3304
3305 #ifdef CONFIG_NUMA
3306 /*
3307 * Zone reclaim mode
3308 *
3309 * If non-zero call zone_reclaim when the number of free pages falls below
3310 * the watermarks.
3311 */
3312 int zone_reclaim_mode __read_mostly;
3313
3314 #define RECLAIM_OFF 0
3315 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3316 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3317 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3318
3319 /*
3320 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3321 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3322 * a zone.
3323 */
3324 #define ZONE_RECLAIM_PRIORITY 4
3325
3326 /*
3327 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3328 * occur.
3329 */
3330 int sysctl_min_unmapped_ratio = 1;
3331
3332 /*
3333 * If the number of slab pages in a zone grows beyond this percentage then
3334 * slab reclaim needs to occur.
3335 */
3336 int sysctl_min_slab_ratio = 5;
3337
3338 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3339 {
3340 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3341 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3342 zone_page_state(zone, NR_ACTIVE_FILE);
3343
3344 /*
3345 * It's possible for there to be more file mapped pages than
3346 * accounted for by the pages on the file LRU lists because
3347 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3348 */
3349 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3350 }
3351
3352 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3353 static long zone_pagecache_reclaimable(struct zone *zone)
3354 {
3355 long nr_pagecache_reclaimable;
3356 long delta = 0;
3357
3358 /*
3359 * If RECLAIM_SWAP is set, then all file pages are considered
3360 * potentially reclaimable. Otherwise, we have to worry about
3361 * pages like swapcache and zone_unmapped_file_pages() provides
3362 * a better estimate
3363 */
3364 if (zone_reclaim_mode & RECLAIM_SWAP)
3365 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3366 else
3367 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3368
3369 /* If we can't clean pages, remove dirty pages from consideration */
3370 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3371 delta += zone_page_state(zone, NR_FILE_DIRTY);
3372
3373 /* Watch for any possible underflows due to delta */
3374 if (unlikely(delta > nr_pagecache_reclaimable))
3375 delta = nr_pagecache_reclaimable;
3376
3377 return nr_pagecache_reclaimable - delta;
3378 }
3379
3380 /*
3381 * Try to free up some pages from this zone through reclaim.
3382 */
3383 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3384 {
3385 /* Minimum pages needed in order to stay on node */
3386 const unsigned long nr_pages = 1 << order;
3387 struct task_struct *p = current;
3388 struct reclaim_state reclaim_state;
3389 struct scan_control sc = {
3390 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3391 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3392 .may_swap = 1,
3393 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3394 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3395 .order = order,
3396 .priority = ZONE_RECLAIM_PRIORITY,
3397 };
3398 struct shrink_control shrink = {
3399 .gfp_mask = sc.gfp_mask,
3400 };
3401 unsigned long nr_slab_pages0, nr_slab_pages1;
3402
3403 cond_resched();
3404 /*
3405 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3406 * and we also need to be able to write out pages for RECLAIM_WRITE
3407 * and RECLAIM_SWAP.
3408 */
3409 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3410 lockdep_set_current_reclaim_state(gfp_mask);
3411 reclaim_state.reclaimed_slab = 0;
3412 p->reclaim_state = &reclaim_state;
3413
3414 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3415 /*
3416 * Free memory by calling shrink zone with increasing
3417 * priorities until we have enough memory freed.
3418 */
3419 do {
3420 shrink_zone(zone, &sc);
3421 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3422 }
3423
3424 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3425 if (nr_slab_pages0 > zone->min_slab_pages) {
3426 /*
3427 * shrink_slab() does not currently allow us to determine how
3428 * many pages were freed in this zone. So we take the current
3429 * number of slab pages and shake the slab until it is reduced
3430 * by the same nr_pages that we used for reclaiming unmapped
3431 * pages.
3432 *
3433 * Note that shrink_slab will free memory on all zones and may
3434 * take a long time.
3435 */
3436 for (;;) {
3437 unsigned long lru_pages = zone_reclaimable_pages(zone);
3438
3439 /* No reclaimable slab or very low memory pressure */
3440 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3441 break;
3442
3443 /* Freed enough memory */
3444 nr_slab_pages1 = zone_page_state(zone,
3445 NR_SLAB_RECLAIMABLE);
3446 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3447 break;
3448 }
3449
3450 /*
3451 * Update nr_reclaimed by the number of slab pages we
3452 * reclaimed from this zone.
3453 */
3454 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3455 if (nr_slab_pages1 < nr_slab_pages0)
3456 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3457 }
3458
3459 p->reclaim_state = NULL;
3460 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3461 lockdep_clear_current_reclaim_state();
3462 return sc.nr_reclaimed >= nr_pages;
3463 }
3464
3465 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3466 {
3467 int node_id;
3468 int ret;
3469
3470 /*
3471 * Zone reclaim reclaims unmapped file backed pages and
3472 * slab pages if we are over the defined limits.
3473 *
3474 * A small portion of unmapped file backed pages is needed for
3475 * file I/O otherwise pages read by file I/O will be immediately
3476 * thrown out if the zone is overallocated. So we do not reclaim
3477 * if less than a specified percentage of the zone is used by
3478 * unmapped file backed pages.
3479 */
3480 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3481 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3482 return ZONE_RECLAIM_FULL;
3483
3484 if (zone->all_unreclaimable)
3485 return ZONE_RECLAIM_FULL;
3486
3487 /*
3488 * Do not scan if the allocation should not be delayed.
3489 */
3490 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3491 return ZONE_RECLAIM_NOSCAN;
3492
3493 /*
3494 * Only run zone reclaim on the local zone or on zones that do not
3495 * have associated processors. This will favor the local processor
3496 * over remote processors and spread off node memory allocations
3497 * as wide as possible.
3498 */
3499 node_id = zone_to_nid(zone);
3500 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3501 return ZONE_RECLAIM_NOSCAN;
3502
3503 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3504 return ZONE_RECLAIM_NOSCAN;
3505
3506 ret = __zone_reclaim(zone, gfp_mask, order);
3507 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3508
3509 if (!ret)
3510 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3511
3512 return ret;
3513 }
3514 #endif
3515
3516 /*
3517 * page_evictable - test whether a page is evictable
3518 * @page: the page to test
3519 *
3520 * Test whether page is evictable--i.e., should be placed on active/inactive
3521 * lists vs unevictable list.
3522 *
3523 * Reasons page might not be evictable:
3524 * (1) page's mapping marked unevictable
3525 * (2) page is part of an mlocked VMA
3526 *
3527 */
3528 int page_evictable(struct page *page)
3529 {
3530 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3531 }
3532
3533 #ifdef CONFIG_SHMEM
3534 /**
3535 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3536 * @pages: array of pages to check
3537 * @nr_pages: number of pages to check
3538 *
3539 * Checks pages for evictability and moves them to the appropriate lru list.
3540 *
3541 * This function is only used for SysV IPC SHM_UNLOCK.
3542 */
3543 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3544 {
3545 struct lruvec *lruvec;
3546 struct zone *zone = NULL;
3547 int pgscanned = 0;
3548 int pgrescued = 0;
3549 int i;
3550
3551 for (i = 0; i < nr_pages; i++) {
3552 struct page *page = pages[i];
3553 struct zone *pagezone;
3554
3555 pgscanned++;
3556 pagezone = page_zone(page);
3557 if (pagezone != zone) {
3558 if (zone)
3559 spin_unlock_irq(&zone->lru_lock);
3560 zone = pagezone;
3561 spin_lock_irq(&zone->lru_lock);
3562 }
3563 lruvec = mem_cgroup_page_lruvec(page, zone);
3564
3565 if (!PageLRU(page) || !PageUnevictable(page))
3566 continue;
3567
3568 if (page_evictable(page)) {
3569 enum lru_list lru = page_lru_base_type(page);
3570
3571 VM_BUG_ON(PageActive(page));
3572 ClearPageUnevictable(page);
3573 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3574 add_page_to_lru_list(page, lruvec, lru);
3575 pgrescued++;
3576 }
3577 }
3578
3579 if (zone) {
3580 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3581 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3582 spin_unlock_irq(&zone->lru_lock);
3583 }
3584 }
3585 #endif /* CONFIG_SHMEM */
3586
3587 static void warn_scan_unevictable_pages(void)
3588 {
3589 printk_once(KERN_WARNING
3590 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3591 "disabled for lack of a legitimate use case. If you have "
3592 "one, please send an email to linux-mm@kvack.org.\n",
3593 current->comm);
3594 }
3595
3596 /*
3597 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3598 * all nodes' unevictable lists for evictable pages
3599 */
3600 unsigned long scan_unevictable_pages;
3601
3602 int scan_unevictable_handler(struct ctl_table *table, int write,
3603 void __user *buffer,
3604 size_t *length, loff_t *ppos)
3605 {
3606 warn_scan_unevictable_pages();
3607 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3608 scan_unevictable_pages = 0;
3609 return 0;
3610 }
3611
3612 #ifdef CONFIG_NUMA
3613 /*
3614 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3615 * a specified node's per zone unevictable lists for evictable pages.
3616 */
3617
3618 static ssize_t read_scan_unevictable_node(struct device *dev,
3619 struct device_attribute *attr,
3620 char *buf)
3621 {
3622 warn_scan_unevictable_pages();
3623 return sprintf(buf, "0\n"); /* always zero; should fit... */
3624 }
3625
3626 static ssize_t write_scan_unevictable_node(struct device *dev,
3627 struct device_attribute *attr,
3628 const char *buf, size_t count)
3629 {
3630 warn_scan_unevictable_pages();
3631 return 1;
3632 }
3633
3634
3635 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3636 read_scan_unevictable_node,
3637 write_scan_unevictable_node);
3638
3639 int scan_unevictable_register_node(struct node *node)
3640 {
3641 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3642 }
3643
3644 void scan_unevictable_unregister_node(struct node *node)
3645 {
3646 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3647 }
3648 #endif
This page took 0.192088 seconds and 4 git commands to generate.