mm: mmu_notifier: fix inconsistent memory between secondary MMU and host
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 unsigned long hibernation_mode;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 int may_writepage;
72
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
75
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
79 int order;
80
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 return true;
145 }
146 #endif
147
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 if (!mem_cgroup_disabled())
151 return mem_cgroup_get_lru_size(lruvec, lru);
152
153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155
156 /*
157 * Add a shrinker callback to be called from the vm
158 */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 atomic_long_set(&shrinker->nr_in_batch, 0);
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167
168 /*
169 * Remove one
170 */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182 {
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185 }
186
187 #define SHRINK_BATCH 128
188 /*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
196 * If the vm encountered mapped pages on the LRU it increase the pressure on
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
204 *
205 * Returns the number of slab objects which we shrunk.
206 */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 unsigned long nr_pages_scanned,
209 unsigned long lru_pages)
210 {
211 struct shrinker *shrinker;
212 unsigned long ret = 0;
213
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
216
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 int shrink_ret = 0;
228 long nr;
229 long new_nr;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
232
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
254 }
255
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
278
279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
283 while (total_scan >= batch_size) {
284 int nr_before;
285
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 batch_size);
289 if (shrink_ret == -1)
290 break;
291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
295
296 cond_resched();
297 }
298
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 }
312 up_read(&shrinker_rwsem);
313 out:
314 cond_resched();
315 return ret;
316 }
317
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
325 return page_count(page) - page_has_private(page) == 2;
326 }
327
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
330 {
331 if (current->flags & PF_SWAPWRITE)
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338 }
339
340 /*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352 static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354 {
355 lock_page(page);
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
358 unlock_page(page);
359 }
360
361 /* possible outcome of pageout() */
362 typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371 } pageout_t;
372
373 /*
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
376 */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 struct scan_control *sc)
379 {
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
387 * If this process is currently in __generic_file_aio_write() against
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
403 if (page_has_private(page)) {
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
406 printk("%s: orphaned page\n", __func__);
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
422 .range_start = 0,
423 .range_end = LLONG_MAX,
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
431 if (res == AOP_WRITEPAGE_ACTIVATE) {
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
435
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446 }
447
448 /*
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
451 */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
456
457 spin_lock_irq(&mapping->tree_lock);
458 /*
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
482 */
483 if (!page_freeze_refs(page, 2))
484 goto cannot_free;
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
488 goto cannot_free;
489 }
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
494 spin_unlock_irq(&mapping->tree_lock);
495 swapcache_free(swap, page);
496 } else {
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
501 __delete_from_page_cache(page);
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
504
505 if (freepage != NULL)
506 freepage(page);
507 }
508
509 return 1;
510
511 cannot_free:
512 spin_unlock_irq(&mapping->tree_lock);
513 return 0;
514 }
515
516 /*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534 }
535
536 /**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
545 void putback_lru_page(struct page *page)
546 {
547 int lru;
548 int active = !!TestClearPageActive(page);
549 int was_unevictable = PageUnevictable(page);
550
551 VM_BUG_ON(PageLRU(page));
552
553 redo:
554 ClearPageUnevictable(page);
555
556 if (page_evictable(page, NULL)) {
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
563 lru = active + page_lru_base_type(page);
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
572 /*
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
579 *
580 * The other side is TestClearPageMlocked() or shmem_lock().
581 */
582 smp_mb();
583 }
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
590 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
606 put_page(page); /* drop ref from isolate */
607 }
608
609 enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
614 };
615
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618 {
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
621
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
625
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
654
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
661 return PAGEREF_KEEP;
662 }
663
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
669 }
670
671 /*
672 * shrink_page_list() returns the number of reclaimed pages
673 */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 struct zone *zone,
676 struct scan_control *sc,
677 unsigned long *ret_nr_dirty,
678 unsigned long *ret_nr_writeback)
679 {
680 LIST_HEAD(ret_pages);
681 LIST_HEAD(free_pages);
682 int pgactivate = 0;
683 unsigned long nr_dirty = 0;
684 unsigned long nr_congested = 0;
685 unsigned long nr_reclaimed = 0;
686 unsigned long nr_writeback = 0;
687
688 cond_resched();
689
690 mem_cgroup_uncharge_start();
691 while (!list_empty(page_list)) {
692 enum page_references references;
693 struct address_space *mapping;
694 struct page *page;
695 int may_enter_fs;
696
697 cond_resched();
698
699 page = lru_to_page(page_list);
700 list_del(&page->lru);
701
702 if (!trylock_page(page))
703 goto keep;
704
705 VM_BUG_ON(PageActive(page));
706 VM_BUG_ON(page_zone(page) != zone);
707
708 sc->nr_scanned++;
709
710 if (unlikely(!page_evictable(page, NULL)))
711 goto cull_mlocked;
712
713 if (!sc->may_unmap && page_mapped(page))
714 goto keep_locked;
715
716 /* Double the slab pressure for mapped and swapcache pages */
717 if (page_mapped(page) || PageSwapCache(page))
718 sc->nr_scanned++;
719
720 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
721 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
722
723 if (PageWriteback(page)) {
724 /*
725 * memcg doesn't have any dirty pages throttling so we
726 * could easily OOM just because too many pages are in
727 * writeback and there is nothing else to reclaim.
728 *
729 * Check __GFP_IO, certainly because a loop driver
730 * thread might enter reclaim, and deadlock if it waits
731 * on a page for which it is needed to do the write
732 * (loop masks off __GFP_IO|__GFP_FS for this reason);
733 * but more thought would probably show more reasons.
734 *
735 * Don't require __GFP_FS, since we're not going into
736 * the FS, just waiting on its writeback completion.
737 * Worryingly, ext4 gfs2 and xfs allocate pages with
738 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
739 * testing may_enter_fs here is liable to OOM on them.
740 */
741 if (global_reclaim(sc) ||
742 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
743 /*
744 * This is slightly racy - end_page_writeback()
745 * might have just cleared PageReclaim, then
746 * setting PageReclaim here end up interpreted
747 * as PageReadahead - but that does not matter
748 * enough to care. What we do want is for this
749 * page to have PageReclaim set next time memcg
750 * reclaim reaches the tests above, so it will
751 * then wait_on_page_writeback() to avoid OOM;
752 * and it's also appropriate in global reclaim.
753 */
754 SetPageReclaim(page);
755 nr_writeback++;
756 goto keep_locked;
757 }
758 wait_on_page_writeback(page);
759 }
760
761 references = page_check_references(page, sc);
762 switch (references) {
763 case PAGEREF_ACTIVATE:
764 goto activate_locked;
765 case PAGEREF_KEEP:
766 goto keep_locked;
767 case PAGEREF_RECLAIM:
768 case PAGEREF_RECLAIM_CLEAN:
769 ; /* try to reclaim the page below */
770 }
771
772 /*
773 * Anonymous process memory has backing store?
774 * Try to allocate it some swap space here.
775 */
776 if (PageAnon(page) && !PageSwapCache(page)) {
777 if (!(sc->gfp_mask & __GFP_IO))
778 goto keep_locked;
779 if (!add_to_swap(page))
780 goto activate_locked;
781 may_enter_fs = 1;
782 }
783
784 mapping = page_mapping(page);
785
786 /*
787 * The page is mapped into the page tables of one or more
788 * processes. Try to unmap it here.
789 */
790 if (page_mapped(page) && mapping) {
791 switch (try_to_unmap(page, TTU_UNMAP)) {
792 case SWAP_FAIL:
793 goto activate_locked;
794 case SWAP_AGAIN:
795 goto keep_locked;
796 case SWAP_MLOCK:
797 goto cull_mlocked;
798 case SWAP_SUCCESS:
799 ; /* try to free the page below */
800 }
801 }
802
803 if (PageDirty(page)) {
804 nr_dirty++;
805
806 /*
807 * Only kswapd can writeback filesystem pages to
808 * avoid risk of stack overflow but do not writeback
809 * unless under significant pressure.
810 */
811 if (page_is_file_cache(page) &&
812 (!current_is_kswapd() ||
813 sc->priority >= DEF_PRIORITY - 2)) {
814 /*
815 * Immediately reclaim when written back.
816 * Similar in principal to deactivate_page()
817 * except we already have the page isolated
818 * and know it's dirty
819 */
820 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
821 SetPageReclaim(page);
822
823 goto keep_locked;
824 }
825
826 if (references == PAGEREF_RECLAIM_CLEAN)
827 goto keep_locked;
828 if (!may_enter_fs)
829 goto keep_locked;
830 if (!sc->may_writepage)
831 goto keep_locked;
832
833 /* Page is dirty, try to write it out here */
834 switch (pageout(page, mapping, sc)) {
835 case PAGE_KEEP:
836 nr_congested++;
837 goto keep_locked;
838 case PAGE_ACTIVATE:
839 goto activate_locked;
840 case PAGE_SUCCESS:
841 if (PageWriteback(page))
842 goto keep;
843 if (PageDirty(page))
844 goto keep;
845
846 /*
847 * A synchronous write - probably a ramdisk. Go
848 * ahead and try to reclaim the page.
849 */
850 if (!trylock_page(page))
851 goto keep;
852 if (PageDirty(page) || PageWriteback(page))
853 goto keep_locked;
854 mapping = page_mapping(page);
855 case PAGE_CLEAN:
856 ; /* try to free the page below */
857 }
858 }
859
860 /*
861 * If the page has buffers, try to free the buffer mappings
862 * associated with this page. If we succeed we try to free
863 * the page as well.
864 *
865 * We do this even if the page is PageDirty().
866 * try_to_release_page() does not perform I/O, but it is
867 * possible for a page to have PageDirty set, but it is actually
868 * clean (all its buffers are clean). This happens if the
869 * buffers were written out directly, with submit_bh(). ext3
870 * will do this, as well as the blockdev mapping.
871 * try_to_release_page() will discover that cleanness and will
872 * drop the buffers and mark the page clean - it can be freed.
873 *
874 * Rarely, pages can have buffers and no ->mapping. These are
875 * the pages which were not successfully invalidated in
876 * truncate_complete_page(). We try to drop those buffers here
877 * and if that worked, and the page is no longer mapped into
878 * process address space (page_count == 1) it can be freed.
879 * Otherwise, leave the page on the LRU so it is swappable.
880 */
881 if (page_has_private(page)) {
882 if (!try_to_release_page(page, sc->gfp_mask))
883 goto activate_locked;
884 if (!mapping && page_count(page) == 1) {
885 unlock_page(page);
886 if (put_page_testzero(page))
887 goto free_it;
888 else {
889 /*
890 * rare race with speculative reference.
891 * the speculative reference will free
892 * this page shortly, so we may
893 * increment nr_reclaimed here (and
894 * leave it off the LRU).
895 */
896 nr_reclaimed++;
897 continue;
898 }
899 }
900 }
901
902 if (!mapping || !__remove_mapping(mapping, page))
903 goto keep_locked;
904
905 /*
906 * At this point, we have no other references and there is
907 * no way to pick any more up (removed from LRU, removed
908 * from pagecache). Can use non-atomic bitops now (and
909 * we obviously don't have to worry about waking up a process
910 * waiting on the page lock, because there are no references.
911 */
912 __clear_page_locked(page);
913 free_it:
914 nr_reclaimed++;
915
916 /*
917 * Is there need to periodically free_page_list? It would
918 * appear not as the counts should be low
919 */
920 list_add(&page->lru, &free_pages);
921 continue;
922
923 cull_mlocked:
924 if (PageSwapCache(page))
925 try_to_free_swap(page);
926 unlock_page(page);
927 putback_lru_page(page);
928 continue;
929
930 activate_locked:
931 /* Not a candidate for swapping, so reclaim swap space. */
932 if (PageSwapCache(page) && vm_swap_full())
933 try_to_free_swap(page);
934 VM_BUG_ON(PageActive(page));
935 SetPageActive(page);
936 pgactivate++;
937 keep_locked:
938 unlock_page(page);
939 keep:
940 list_add(&page->lru, &ret_pages);
941 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
942 }
943
944 /*
945 * Tag a zone as congested if all the dirty pages encountered were
946 * backed by a congested BDI. In this case, reclaimers should just
947 * back off and wait for congestion to clear because further reclaim
948 * will encounter the same problem
949 */
950 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
951 zone_set_flag(zone, ZONE_CONGESTED);
952
953 free_hot_cold_page_list(&free_pages, 1);
954
955 list_splice(&ret_pages, page_list);
956 count_vm_events(PGACTIVATE, pgactivate);
957 mem_cgroup_uncharge_end();
958 *ret_nr_dirty += nr_dirty;
959 *ret_nr_writeback += nr_writeback;
960 return nr_reclaimed;
961 }
962
963 /*
964 * Attempt to remove the specified page from its LRU. Only take this page
965 * if it is of the appropriate PageActive status. Pages which are being
966 * freed elsewhere are also ignored.
967 *
968 * page: page to consider
969 * mode: one of the LRU isolation modes defined above
970 *
971 * returns 0 on success, -ve errno on failure.
972 */
973 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
974 {
975 int ret = -EINVAL;
976
977 /* Only take pages on the LRU. */
978 if (!PageLRU(page))
979 return ret;
980
981 /* Do not give back unevictable pages for compaction */
982 if (PageUnevictable(page))
983 return ret;
984
985 ret = -EBUSY;
986
987 /*
988 * To minimise LRU disruption, the caller can indicate that it only
989 * wants to isolate pages it will be able to operate on without
990 * blocking - clean pages for the most part.
991 *
992 * ISOLATE_CLEAN means that only clean pages should be isolated. This
993 * is used by reclaim when it is cannot write to backing storage
994 *
995 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
996 * that it is possible to migrate without blocking
997 */
998 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
999 /* All the caller can do on PageWriteback is block */
1000 if (PageWriteback(page))
1001 return ret;
1002
1003 if (PageDirty(page)) {
1004 struct address_space *mapping;
1005
1006 /* ISOLATE_CLEAN means only clean pages */
1007 if (mode & ISOLATE_CLEAN)
1008 return ret;
1009
1010 /*
1011 * Only pages without mappings or that have a
1012 * ->migratepage callback are possible to migrate
1013 * without blocking
1014 */
1015 mapping = page_mapping(page);
1016 if (mapping && !mapping->a_ops->migratepage)
1017 return ret;
1018 }
1019 }
1020
1021 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1022 return ret;
1023
1024 if (likely(get_page_unless_zero(page))) {
1025 /*
1026 * Be careful not to clear PageLRU until after we're
1027 * sure the page is not being freed elsewhere -- the
1028 * page release code relies on it.
1029 */
1030 ClearPageLRU(page);
1031 ret = 0;
1032 }
1033
1034 return ret;
1035 }
1036
1037 /*
1038 * zone->lru_lock is heavily contended. Some of the functions that
1039 * shrink the lists perform better by taking out a batch of pages
1040 * and working on them outside the LRU lock.
1041 *
1042 * For pagecache intensive workloads, this function is the hottest
1043 * spot in the kernel (apart from copy_*_user functions).
1044 *
1045 * Appropriate locks must be held before calling this function.
1046 *
1047 * @nr_to_scan: The number of pages to look through on the list.
1048 * @lruvec: The LRU vector to pull pages from.
1049 * @dst: The temp list to put pages on to.
1050 * @nr_scanned: The number of pages that were scanned.
1051 * @sc: The scan_control struct for this reclaim session
1052 * @mode: One of the LRU isolation modes
1053 * @lru: LRU list id for isolating
1054 *
1055 * returns how many pages were moved onto *@dst.
1056 */
1057 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1058 struct lruvec *lruvec, struct list_head *dst,
1059 unsigned long *nr_scanned, struct scan_control *sc,
1060 isolate_mode_t mode, enum lru_list lru)
1061 {
1062 struct list_head *src = &lruvec->lists[lru];
1063 unsigned long nr_taken = 0;
1064 unsigned long scan;
1065
1066 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1067 struct page *page;
1068 int nr_pages;
1069
1070 page = lru_to_page(src);
1071 prefetchw_prev_lru_page(page, src, flags);
1072
1073 VM_BUG_ON(!PageLRU(page));
1074
1075 switch (__isolate_lru_page(page, mode)) {
1076 case 0:
1077 nr_pages = hpage_nr_pages(page);
1078 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1079 list_move(&page->lru, dst);
1080 nr_taken += nr_pages;
1081 break;
1082
1083 case -EBUSY:
1084 /* else it is being freed elsewhere */
1085 list_move(&page->lru, src);
1086 continue;
1087
1088 default:
1089 BUG();
1090 }
1091 }
1092
1093 *nr_scanned = scan;
1094 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1095 nr_taken, mode, is_file_lru(lru));
1096 return nr_taken;
1097 }
1098
1099 /**
1100 * isolate_lru_page - tries to isolate a page from its LRU list
1101 * @page: page to isolate from its LRU list
1102 *
1103 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1104 * vmstat statistic corresponding to whatever LRU list the page was on.
1105 *
1106 * Returns 0 if the page was removed from an LRU list.
1107 * Returns -EBUSY if the page was not on an LRU list.
1108 *
1109 * The returned page will have PageLRU() cleared. If it was found on
1110 * the active list, it will have PageActive set. If it was found on
1111 * the unevictable list, it will have the PageUnevictable bit set. That flag
1112 * may need to be cleared by the caller before letting the page go.
1113 *
1114 * The vmstat statistic corresponding to the list on which the page was
1115 * found will be decremented.
1116 *
1117 * Restrictions:
1118 * (1) Must be called with an elevated refcount on the page. This is a
1119 * fundamentnal difference from isolate_lru_pages (which is called
1120 * without a stable reference).
1121 * (2) the lru_lock must not be held.
1122 * (3) interrupts must be enabled.
1123 */
1124 int isolate_lru_page(struct page *page)
1125 {
1126 int ret = -EBUSY;
1127
1128 VM_BUG_ON(!page_count(page));
1129
1130 if (PageLRU(page)) {
1131 struct zone *zone = page_zone(page);
1132 struct lruvec *lruvec;
1133
1134 spin_lock_irq(&zone->lru_lock);
1135 lruvec = mem_cgroup_page_lruvec(page, zone);
1136 if (PageLRU(page)) {
1137 int lru = page_lru(page);
1138 get_page(page);
1139 ClearPageLRU(page);
1140 del_page_from_lru_list(page, lruvec, lru);
1141 ret = 0;
1142 }
1143 spin_unlock_irq(&zone->lru_lock);
1144 }
1145 return ret;
1146 }
1147
1148 /*
1149 * Are there way too many processes in the direct reclaim path already?
1150 */
1151 static int too_many_isolated(struct zone *zone, int file,
1152 struct scan_control *sc)
1153 {
1154 unsigned long inactive, isolated;
1155
1156 if (current_is_kswapd())
1157 return 0;
1158
1159 if (!global_reclaim(sc))
1160 return 0;
1161
1162 if (file) {
1163 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1164 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1165 } else {
1166 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1167 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1168 }
1169
1170 return isolated > inactive;
1171 }
1172
1173 static noinline_for_stack void
1174 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1175 {
1176 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1177 struct zone *zone = lruvec_zone(lruvec);
1178 LIST_HEAD(pages_to_free);
1179
1180 /*
1181 * Put back any unfreeable pages.
1182 */
1183 while (!list_empty(page_list)) {
1184 struct page *page = lru_to_page(page_list);
1185 int lru;
1186
1187 VM_BUG_ON(PageLRU(page));
1188 list_del(&page->lru);
1189 if (unlikely(!page_evictable(page, NULL))) {
1190 spin_unlock_irq(&zone->lru_lock);
1191 putback_lru_page(page);
1192 spin_lock_irq(&zone->lru_lock);
1193 continue;
1194 }
1195
1196 lruvec = mem_cgroup_page_lruvec(page, zone);
1197
1198 SetPageLRU(page);
1199 lru = page_lru(page);
1200 add_page_to_lru_list(page, lruvec, lru);
1201
1202 if (is_active_lru(lru)) {
1203 int file = is_file_lru(lru);
1204 int numpages = hpage_nr_pages(page);
1205 reclaim_stat->recent_rotated[file] += numpages;
1206 }
1207 if (put_page_testzero(page)) {
1208 __ClearPageLRU(page);
1209 __ClearPageActive(page);
1210 del_page_from_lru_list(page, lruvec, lru);
1211
1212 if (unlikely(PageCompound(page))) {
1213 spin_unlock_irq(&zone->lru_lock);
1214 (*get_compound_page_dtor(page))(page);
1215 spin_lock_irq(&zone->lru_lock);
1216 } else
1217 list_add(&page->lru, &pages_to_free);
1218 }
1219 }
1220
1221 /*
1222 * To save our caller's stack, now use input list for pages to free.
1223 */
1224 list_splice(&pages_to_free, page_list);
1225 }
1226
1227 /*
1228 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1229 * of reclaimed pages
1230 */
1231 static noinline_for_stack unsigned long
1232 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1233 struct scan_control *sc, enum lru_list lru)
1234 {
1235 LIST_HEAD(page_list);
1236 unsigned long nr_scanned;
1237 unsigned long nr_reclaimed = 0;
1238 unsigned long nr_taken;
1239 unsigned long nr_dirty = 0;
1240 unsigned long nr_writeback = 0;
1241 isolate_mode_t isolate_mode = 0;
1242 int file = is_file_lru(lru);
1243 struct zone *zone = lruvec_zone(lruvec);
1244 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1245
1246 while (unlikely(too_many_isolated(zone, file, sc))) {
1247 congestion_wait(BLK_RW_ASYNC, HZ/10);
1248
1249 /* We are about to die and free our memory. Return now. */
1250 if (fatal_signal_pending(current))
1251 return SWAP_CLUSTER_MAX;
1252 }
1253
1254 lru_add_drain();
1255
1256 if (!sc->may_unmap)
1257 isolate_mode |= ISOLATE_UNMAPPED;
1258 if (!sc->may_writepage)
1259 isolate_mode |= ISOLATE_CLEAN;
1260
1261 spin_lock_irq(&zone->lru_lock);
1262
1263 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1264 &nr_scanned, sc, isolate_mode, lru);
1265
1266 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1267 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1268
1269 if (global_reclaim(sc)) {
1270 zone->pages_scanned += nr_scanned;
1271 if (current_is_kswapd())
1272 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1273 else
1274 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1275 }
1276 spin_unlock_irq(&zone->lru_lock);
1277
1278 if (nr_taken == 0)
1279 return 0;
1280
1281 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1282 &nr_dirty, &nr_writeback);
1283
1284 spin_lock_irq(&zone->lru_lock);
1285
1286 reclaim_stat->recent_scanned[file] += nr_taken;
1287
1288 if (global_reclaim(sc)) {
1289 if (current_is_kswapd())
1290 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1291 nr_reclaimed);
1292 else
1293 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1294 nr_reclaimed);
1295 }
1296
1297 putback_inactive_pages(lruvec, &page_list);
1298
1299 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1300
1301 spin_unlock_irq(&zone->lru_lock);
1302
1303 free_hot_cold_page_list(&page_list, 1);
1304
1305 /*
1306 * If reclaim is isolating dirty pages under writeback, it implies
1307 * that the long-lived page allocation rate is exceeding the page
1308 * laundering rate. Either the global limits are not being effective
1309 * at throttling processes due to the page distribution throughout
1310 * zones or there is heavy usage of a slow backing device. The
1311 * only option is to throttle from reclaim context which is not ideal
1312 * as there is no guarantee the dirtying process is throttled in the
1313 * same way balance_dirty_pages() manages.
1314 *
1315 * This scales the number of dirty pages that must be under writeback
1316 * before throttling depending on priority. It is a simple backoff
1317 * function that has the most effect in the range DEF_PRIORITY to
1318 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1319 * in trouble and reclaim is considered to be in trouble.
1320 *
1321 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1322 * DEF_PRIORITY-1 50% must be PageWriteback
1323 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1324 * ...
1325 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1326 * isolated page is PageWriteback
1327 */
1328 if (nr_writeback && nr_writeback >=
1329 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1330 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1331
1332 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1333 zone_idx(zone),
1334 nr_scanned, nr_reclaimed,
1335 sc->priority,
1336 trace_shrink_flags(file));
1337 return nr_reclaimed;
1338 }
1339
1340 /*
1341 * This moves pages from the active list to the inactive list.
1342 *
1343 * We move them the other way if the page is referenced by one or more
1344 * processes, from rmap.
1345 *
1346 * If the pages are mostly unmapped, the processing is fast and it is
1347 * appropriate to hold zone->lru_lock across the whole operation. But if
1348 * the pages are mapped, the processing is slow (page_referenced()) so we
1349 * should drop zone->lru_lock around each page. It's impossible to balance
1350 * this, so instead we remove the pages from the LRU while processing them.
1351 * It is safe to rely on PG_active against the non-LRU pages in here because
1352 * nobody will play with that bit on a non-LRU page.
1353 *
1354 * The downside is that we have to touch page->_count against each page.
1355 * But we had to alter page->flags anyway.
1356 */
1357
1358 static void move_active_pages_to_lru(struct lruvec *lruvec,
1359 struct list_head *list,
1360 struct list_head *pages_to_free,
1361 enum lru_list lru)
1362 {
1363 struct zone *zone = lruvec_zone(lruvec);
1364 unsigned long pgmoved = 0;
1365 struct page *page;
1366 int nr_pages;
1367
1368 while (!list_empty(list)) {
1369 page = lru_to_page(list);
1370 lruvec = mem_cgroup_page_lruvec(page, zone);
1371
1372 VM_BUG_ON(PageLRU(page));
1373 SetPageLRU(page);
1374
1375 nr_pages = hpage_nr_pages(page);
1376 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1377 list_move(&page->lru, &lruvec->lists[lru]);
1378 pgmoved += nr_pages;
1379
1380 if (put_page_testzero(page)) {
1381 __ClearPageLRU(page);
1382 __ClearPageActive(page);
1383 del_page_from_lru_list(page, lruvec, lru);
1384
1385 if (unlikely(PageCompound(page))) {
1386 spin_unlock_irq(&zone->lru_lock);
1387 (*get_compound_page_dtor(page))(page);
1388 spin_lock_irq(&zone->lru_lock);
1389 } else
1390 list_add(&page->lru, pages_to_free);
1391 }
1392 }
1393 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1394 if (!is_active_lru(lru))
1395 __count_vm_events(PGDEACTIVATE, pgmoved);
1396 }
1397
1398 static void shrink_active_list(unsigned long nr_to_scan,
1399 struct lruvec *lruvec,
1400 struct scan_control *sc,
1401 enum lru_list lru)
1402 {
1403 unsigned long nr_taken;
1404 unsigned long nr_scanned;
1405 unsigned long vm_flags;
1406 LIST_HEAD(l_hold); /* The pages which were snipped off */
1407 LIST_HEAD(l_active);
1408 LIST_HEAD(l_inactive);
1409 struct page *page;
1410 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1411 unsigned long nr_rotated = 0;
1412 isolate_mode_t isolate_mode = 0;
1413 int file = is_file_lru(lru);
1414 struct zone *zone = lruvec_zone(lruvec);
1415
1416 lru_add_drain();
1417
1418 if (!sc->may_unmap)
1419 isolate_mode |= ISOLATE_UNMAPPED;
1420 if (!sc->may_writepage)
1421 isolate_mode |= ISOLATE_CLEAN;
1422
1423 spin_lock_irq(&zone->lru_lock);
1424
1425 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1426 &nr_scanned, sc, isolate_mode, lru);
1427 if (global_reclaim(sc))
1428 zone->pages_scanned += nr_scanned;
1429
1430 reclaim_stat->recent_scanned[file] += nr_taken;
1431
1432 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1433 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1434 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1435 spin_unlock_irq(&zone->lru_lock);
1436
1437 while (!list_empty(&l_hold)) {
1438 cond_resched();
1439 page = lru_to_page(&l_hold);
1440 list_del(&page->lru);
1441
1442 if (unlikely(!page_evictable(page, NULL))) {
1443 putback_lru_page(page);
1444 continue;
1445 }
1446
1447 if (unlikely(buffer_heads_over_limit)) {
1448 if (page_has_private(page) && trylock_page(page)) {
1449 if (page_has_private(page))
1450 try_to_release_page(page, 0);
1451 unlock_page(page);
1452 }
1453 }
1454
1455 if (page_referenced(page, 0, sc->target_mem_cgroup,
1456 &vm_flags)) {
1457 nr_rotated += hpage_nr_pages(page);
1458 /*
1459 * Identify referenced, file-backed active pages and
1460 * give them one more trip around the active list. So
1461 * that executable code get better chances to stay in
1462 * memory under moderate memory pressure. Anon pages
1463 * are not likely to be evicted by use-once streaming
1464 * IO, plus JVM can create lots of anon VM_EXEC pages,
1465 * so we ignore them here.
1466 */
1467 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1468 list_add(&page->lru, &l_active);
1469 continue;
1470 }
1471 }
1472
1473 ClearPageActive(page); /* we are de-activating */
1474 list_add(&page->lru, &l_inactive);
1475 }
1476
1477 /*
1478 * Move pages back to the lru list.
1479 */
1480 spin_lock_irq(&zone->lru_lock);
1481 /*
1482 * Count referenced pages from currently used mappings as rotated,
1483 * even though only some of them are actually re-activated. This
1484 * helps balance scan pressure between file and anonymous pages in
1485 * get_scan_ratio.
1486 */
1487 reclaim_stat->recent_rotated[file] += nr_rotated;
1488
1489 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1490 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1491 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1492 spin_unlock_irq(&zone->lru_lock);
1493
1494 free_hot_cold_page_list(&l_hold, 1);
1495 }
1496
1497 #ifdef CONFIG_SWAP
1498 static int inactive_anon_is_low_global(struct zone *zone)
1499 {
1500 unsigned long active, inactive;
1501
1502 active = zone_page_state(zone, NR_ACTIVE_ANON);
1503 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1504
1505 if (inactive * zone->inactive_ratio < active)
1506 return 1;
1507
1508 return 0;
1509 }
1510
1511 /**
1512 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1513 * @lruvec: LRU vector to check
1514 *
1515 * Returns true if the zone does not have enough inactive anon pages,
1516 * meaning some active anon pages need to be deactivated.
1517 */
1518 static int inactive_anon_is_low(struct lruvec *lruvec)
1519 {
1520 /*
1521 * If we don't have swap space, anonymous page deactivation
1522 * is pointless.
1523 */
1524 if (!total_swap_pages)
1525 return 0;
1526
1527 if (!mem_cgroup_disabled())
1528 return mem_cgroup_inactive_anon_is_low(lruvec);
1529
1530 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1531 }
1532 #else
1533 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1534 {
1535 return 0;
1536 }
1537 #endif
1538
1539 static int inactive_file_is_low_global(struct zone *zone)
1540 {
1541 unsigned long active, inactive;
1542
1543 active = zone_page_state(zone, NR_ACTIVE_FILE);
1544 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1545
1546 return (active > inactive);
1547 }
1548
1549 /**
1550 * inactive_file_is_low - check if file pages need to be deactivated
1551 * @lruvec: LRU vector to check
1552 *
1553 * When the system is doing streaming IO, memory pressure here
1554 * ensures that active file pages get deactivated, until more
1555 * than half of the file pages are on the inactive list.
1556 *
1557 * Once we get to that situation, protect the system's working
1558 * set from being evicted by disabling active file page aging.
1559 *
1560 * This uses a different ratio than the anonymous pages, because
1561 * the page cache uses a use-once replacement algorithm.
1562 */
1563 static int inactive_file_is_low(struct lruvec *lruvec)
1564 {
1565 if (!mem_cgroup_disabled())
1566 return mem_cgroup_inactive_file_is_low(lruvec);
1567
1568 return inactive_file_is_low_global(lruvec_zone(lruvec));
1569 }
1570
1571 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1572 {
1573 if (is_file_lru(lru))
1574 return inactive_file_is_low(lruvec);
1575 else
1576 return inactive_anon_is_low(lruvec);
1577 }
1578
1579 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1580 struct lruvec *lruvec, struct scan_control *sc)
1581 {
1582 if (is_active_lru(lru)) {
1583 if (inactive_list_is_low(lruvec, lru))
1584 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1585 return 0;
1586 }
1587
1588 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1589 }
1590
1591 static int vmscan_swappiness(struct scan_control *sc)
1592 {
1593 if (global_reclaim(sc))
1594 return vm_swappiness;
1595 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1596 }
1597
1598 /*
1599 * Determine how aggressively the anon and file LRU lists should be
1600 * scanned. The relative value of each set of LRU lists is determined
1601 * by looking at the fraction of the pages scanned we did rotate back
1602 * onto the active list instead of evict.
1603 *
1604 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1605 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1606 */
1607 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1608 unsigned long *nr)
1609 {
1610 unsigned long anon, file, free;
1611 unsigned long anon_prio, file_prio;
1612 unsigned long ap, fp;
1613 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1614 u64 fraction[2], denominator;
1615 enum lru_list lru;
1616 int noswap = 0;
1617 bool force_scan = false;
1618 struct zone *zone = lruvec_zone(lruvec);
1619
1620 /*
1621 * If the zone or memcg is small, nr[l] can be 0. This
1622 * results in no scanning on this priority and a potential
1623 * priority drop. Global direct reclaim can go to the next
1624 * zone and tends to have no problems. Global kswapd is for
1625 * zone balancing and it needs to scan a minimum amount. When
1626 * reclaiming for a memcg, a priority drop can cause high
1627 * latencies, so it's better to scan a minimum amount there as
1628 * well.
1629 */
1630 if (current_is_kswapd() && zone->all_unreclaimable)
1631 force_scan = true;
1632 if (!global_reclaim(sc))
1633 force_scan = true;
1634
1635 /* If we have no swap space, do not bother scanning anon pages. */
1636 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1637 noswap = 1;
1638 fraction[0] = 0;
1639 fraction[1] = 1;
1640 denominator = 1;
1641 goto out;
1642 }
1643
1644 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1645 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1646 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1647 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1648
1649 if (global_reclaim(sc)) {
1650 free = zone_page_state(zone, NR_FREE_PAGES);
1651 /* If we have very few page cache pages,
1652 force-scan anon pages. */
1653 if (unlikely(file + free <= high_wmark_pages(zone))) {
1654 fraction[0] = 1;
1655 fraction[1] = 0;
1656 denominator = 1;
1657 goto out;
1658 }
1659 }
1660
1661 /*
1662 * With swappiness at 100, anonymous and file have the same priority.
1663 * This scanning priority is essentially the inverse of IO cost.
1664 */
1665 anon_prio = vmscan_swappiness(sc);
1666 file_prio = 200 - anon_prio;
1667
1668 /*
1669 * OK, so we have swap space and a fair amount of page cache
1670 * pages. We use the recently rotated / recently scanned
1671 * ratios to determine how valuable each cache is.
1672 *
1673 * Because workloads change over time (and to avoid overflow)
1674 * we keep these statistics as a floating average, which ends
1675 * up weighing recent references more than old ones.
1676 *
1677 * anon in [0], file in [1]
1678 */
1679 spin_lock_irq(&zone->lru_lock);
1680 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1681 reclaim_stat->recent_scanned[0] /= 2;
1682 reclaim_stat->recent_rotated[0] /= 2;
1683 }
1684
1685 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1686 reclaim_stat->recent_scanned[1] /= 2;
1687 reclaim_stat->recent_rotated[1] /= 2;
1688 }
1689
1690 /*
1691 * The amount of pressure on anon vs file pages is inversely
1692 * proportional to the fraction of recently scanned pages on
1693 * each list that were recently referenced and in active use.
1694 */
1695 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1696 ap /= reclaim_stat->recent_rotated[0] + 1;
1697
1698 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1699 fp /= reclaim_stat->recent_rotated[1] + 1;
1700 spin_unlock_irq(&zone->lru_lock);
1701
1702 fraction[0] = ap;
1703 fraction[1] = fp;
1704 denominator = ap + fp + 1;
1705 out:
1706 for_each_evictable_lru(lru) {
1707 int file = is_file_lru(lru);
1708 unsigned long scan;
1709
1710 scan = get_lru_size(lruvec, lru);
1711 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1712 scan >>= sc->priority;
1713 if (!scan && force_scan)
1714 scan = SWAP_CLUSTER_MAX;
1715 scan = div64_u64(scan * fraction[file], denominator);
1716 }
1717 nr[lru] = scan;
1718 }
1719 }
1720
1721 /* Use reclaim/compaction for costly allocs or under memory pressure */
1722 static bool in_reclaim_compaction(struct scan_control *sc)
1723 {
1724 if (COMPACTION_BUILD && sc->order &&
1725 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1726 sc->priority < DEF_PRIORITY - 2))
1727 return true;
1728
1729 return false;
1730 }
1731
1732 #ifdef CONFIG_COMPACTION
1733 /*
1734 * If compaction is deferred for sc->order then scale the number of pages
1735 * reclaimed based on the number of consecutive allocation failures
1736 */
1737 static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
1738 struct lruvec *lruvec, struct scan_control *sc)
1739 {
1740 struct zone *zone = lruvec_zone(lruvec);
1741
1742 if (zone->compact_order_failed <= sc->order)
1743 pages_for_compaction <<= zone->compact_defer_shift;
1744 return pages_for_compaction;
1745 }
1746 #else
1747 static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
1748 struct lruvec *lruvec, struct scan_control *sc)
1749 {
1750 return pages_for_compaction;
1751 }
1752 #endif
1753
1754 /*
1755 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1756 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1757 * true if more pages should be reclaimed such that when the page allocator
1758 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1759 * It will give up earlier than that if there is difficulty reclaiming pages.
1760 */
1761 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1762 unsigned long nr_reclaimed,
1763 unsigned long nr_scanned,
1764 struct scan_control *sc)
1765 {
1766 unsigned long pages_for_compaction;
1767 unsigned long inactive_lru_pages;
1768
1769 /* If not in reclaim/compaction mode, stop */
1770 if (!in_reclaim_compaction(sc))
1771 return false;
1772
1773 /* Consider stopping depending on scan and reclaim activity */
1774 if (sc->gfp_mask & __GFP_REPEAT) {
1775 /*
1776 * For __GFP_REPEAT allocations, stop reclaiming if the
1777 * full LRU list has been scanned and we are still failing
1778 * to reclaim pages. This full LRU scan is potentially
1779 * expensive but a __GFP_REPEAT caller really wants to succeed
1780 */
1781 if (!nr_reclaimed && !nr_scanned)
1782 return false;
1783 } else {
1784 /*
1785 * For non-__GFP_REPEAT allocations which can presumably
1786 * fail without consequence, stop if we failed to reclaim
1787 * any pages from the last SWAP_CLUSTER_MAX number of
1788 * pages that were scanned. This will return to the
1789 * caller faster at the risk reclaim/compaction and
1790 * the resulting allocation attempt fails
1791 */
1792 if (!nr_reclaimed)
1793 return false;
1794 }
1795
1796 /*
1797 * If we have not reclaimed enough pages for compaction and the
1798 * inactive lists are large enough, continue reclaiming
1799 */
1800 pages_for_compaction = (2UL << sc->order);
1801
1802 pages_for_compaction = scale_for_compaction(pages_for_compaction,
1803 lruvec, sc);
1804 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1805 if (nr_swap_pages > 0)
1806 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1807 if (sc->nr_reclaimed < pages_for_compaction &&
1808 inactive_lru_pages > pages_for_compaction)
1809 return true;
1810
1811 /* If compaction would go ahead or the allocation would succeed, stop */
1812 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1813 case COMPACT_PARTIAL:
1814 case COMPACT_CONTINUE:
1815 return false;
1816 default:
1817 return true;
1818 }
1819 }
1820
1821 /*
1822 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1823 */
1824 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1825 {
1826 unsigned long nr[NR_LRU_LISTS];
1827 unsigned long nr_to_scan;
1828 enum lru_list lru;
1829 unsigned long nr_reclaimed, nr_scanned;
1830 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1831 struct blk_plug plug;
1832
1833 restart:
1834 nr_reclaimed = 0;
1835 nr_scanned = sc->nr_scanned;
1836 get_scan_count(lruvec, sc, nr);
1837
1838 blk_start_plug(&plug);
1839 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1840 nr[LRU_INACTIVE_FILE]) {
1841 for_each_evictable_lru(lru) {
1842 if (nr[lru]) {
1843 nr_to_scan = min_t(unsigned long,
1844 nr[lru], SWAP_CLUSTER_MAX);
1845 nr[lru] -= nr_to_scan;
1846
1847 nr_reclaimed += shrink_list(lru, nr_to_scan,
1848 lruvec, sc);
1849 }
1850 }
1851 /*
1852 * On large memory systems, scan >> priority can become
1853 * really large. This is fine for the starting priority;
1854 * we want to put equal scanning pressure on each zone.
1855 * However, if the VM has a harder time of freeing pages,
1856 * with multiple processes reclaiming pages, the total
1857 * freeing target can get unreasonably large.
1858 */
1859 if (nr_reclaimed >= nr_to_reclaim &&
1860 sc->priority < DEF_PRIORITY)
1861 break;
1862 }
1863 blk_finish_plug(&plug);
1864 sc->nr_reclaimed += nr_reclaimed;
1865
1866 /*
1867 * Even if we did not try to evict anon pages at all, we want to
1868 * rebalance the anon lru active/inactive ratio.
1869 */
1870 if (inactive_anon_is_low(lruvec))
1871 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1872 sc, LRU_ACTIVE_ANON);
1873
1874 /* reclaim/compaction might need reclaim to continue */
1875 if (should_continue_reclaim(lruvec, nr_reclaimed,
1876 sc->nr_scanned - nr_scanned, sc))
1877 goto restart;
1878
1879 throttle_vm_writeout(sc->gfp_mask);
1880 }
1881
1882 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1883 {
1884 struct mem_cgroup *root = sc->target_mem_cgroup;
1885 struct mem_cgroup_reclaim_cookie reclaim = {
1886 .zone = zone,
1887 .priority = sc->priority,
1888 };
1889 struct mem_cgroup *memcg;
1890
1891 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1892 do {
1893 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1894
1895 shrink_lruvec(lruvec, sc);
1896
1897 /*
1898 * Limit reclaim has historically picked one memcg and
1899 * scanned it with decreasing priority levels until
1900 * nr_to_reclaim had been reclaimed. This priority
1901 * cycle is thus over after a single memcg.
1902 *
1903 * Direct reclaim and kswapd, on the other hand, have
1904 * to scan all memory cgroups to fulfill the overall
1905 * scan target for the zone.
1906 */
1907 if (!global_reclaim(sc)) {
1908 mem_cgroup_iter_break(root, memcg);
1909 break;
1910 }
1911 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1912 } while (memcg);
1913 }
1914
1915 /* Returns true if compaction should go ahead for a high-order request */
1916 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1917 {
1918 unsigned long balance_gap, watermark;
1919 bool watermark_ok;
1920
1921 /* Do not consider compaction for orders reclaim is meant to satisfy */
1922 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1923 return false;
1924
1925 /*
1926 * Compaction takes time to run and there are potentially other
1927 * callers using the pages just freed. Continue reclaiming until
1928 * there is a buffer of free pages available to give compaction
1929 * a reasonable chance of completing and allocating the page
1930 */
1931 balance_gap = min(low_wmark_pages(zone),
1932 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1933 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1934 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1935 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1936
1937 /*
1938 * If compaction is deferred, reclaim up to a point where
1939 * compaction will have a chance of success when re-enabled
1940 */
1941 if (compaction_deferred(zone, sc->order))
1942 return watermark_ok;
1943
1944 /* If compaction is not ready to start, keep reclaiming */
1945 if (!compaction_suitable(zone, sc->order))
1946 return false;
1947
1948 return watermark_ok;
1949 }
1950
1951 /*
1952 * This is the direct reclaim path, for page-allocating processes. We only
1953 * try to reclaim pages from zones which will satisfy the caller's allocation
1954 * request.
1955 *
1956 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1957 * Because:
1958 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1959 * allocation or
1960 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1961 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1962 * zone defense algorithm.
1963 *
1964 * If a zone is deemed to be full of pinned pages then just give it a light
1965 * scan then give up on it.
1966 *
1967 * This function returns true if a zone is being reclaimed for a costly
1968 * high-order allocation and compaction is ready to begin. This indicates to
1969 * the caller that it should consider retrying the allocation instead of
1970 * further reclaim.
1971 */
1972 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1973 {
1974 struct zoneref *z;
1975 struct zone *zone;
1976 unsigned long nr_soft_reclaimed;
1977 unsigned long nr_soft_scanned;
1978 bool aborted_reclaim = false;
1979
1980 /*
1981 * If the number of buffer_heads in the machine exceeds the maximum
1982 * allowed level, force direct reclaim to scan the highmem zone as
1983 * highmem pages could be pinning lowmem pages storing buffer_heads
1984 */
1985 if (buffer_heads_over_limit)
1986 sc->gfp_mask |= __GFP_HIGHMEM;
1987
1988 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1989 gfp_zone(sc->gfp_mask), sc->nodemask) {
1990 if (!populated_zone(zone))
1991 continue;
1992 /*
1993 * Take care memory controller reclaiming has small influence
1994 * to global LRU.
1995 */
1996 if (global_reclaim(sc)) {
1997 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1998 continue;
1999 if (zone->all_unreclaimable &&
2000 sc->priority != DEF_PRIORITY)
2001 continue; /* Let kswapd poll it */
2002 if (COMPACTION_BUILD) {
2003 /*
2004 * If we already have plenty of memory free for
2005 * compaction in this zone, don't free any more.
2006 * Even though compaction is invoked for any
2007 * non-zero order, only frequent costly order
2008 * reclamation is disruptive enough to become a
2009 * noticeable problem, like transparent huge
2010 * page allocations.
2011 */
2012 if (compaction_ready(zone, sc)) {
2013 aborted_reclaim = true;
2014 continue;
2015 }
2016 }
2017 /*
2018 * This steals pages from memory cgroups over softlimit
2019 * and returns the number of reclaimed pages and
2020 * scanned pages. This works for global memory pressure
2021 * and balancing, not for a memcg's limit.
2022 */
2023 nr_soft_scanned = 0;
2024 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2025 sc->order, sc->gfp_mask,
2026 &nr_soft_scanned);
2027 sc->nr_reclaimed += nr_soft_reclaimed;
2028 sc->nr_scanned += nr_soft_scanned;
2029 /* need some check for avoid more shrink_zone() */
2030 }
2031
2032 shrink_zone(zone, sc);
2033 }
2034
2035 return aborted_reclaim;
2036 }
2037
2038 static bool zone_reclaimable(struct zone *zone)
2039 {
2040 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2041 }
2042
2043 /* All zones in zonelist are unreclaimable? */
2044 static bool all_unreclaimable(struct zonelist *zonelist,
2045 struct scan_control *sc)
2046 {
2047 struct zoneref *z;
2048 struct zone *zone;
2049
2050 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2051 gfp_zone(sc->gfp_mask), sc->nodemask) {
2052 if (!populated_zone(zone))
2053 continue;
2054 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2055 continue;
2056 if (!zone->all_unreclaimable)
2057 return false;
2058 }
2059
2060 return true;
2061 }
2062
2063 /*
2064 * This is the main entry point to direct page reclaim.
2065 *
2066 * If a full scan of the inactive list fails to free enough memory then we
2067 * are "out of memory" and something needs to be killed.
2068 *
2069 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2070 * high - the zone may be full of dirty or under-writeback pages, which this
2071 * caller can't do much about. We kick the writeback threads and take explicit
2072 * naps in the hope that some of these pages can be written. But if the
2073 * allocating task holds filesystem locks which prevent writeout this might not
2074 * work, and the allocation attempt will fail.
2075 *
2076 * returns: 0, if no pages reclaimed
2077 * else, the number of pages reclaimed
2078 */
2079 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2080 struct scan_control *sc,
2081 struct shrink_control *shrink)
2082 {
2083 unsigned long total_scanned = 0;
2084 struct reclaim_state *reclaim_state = current->reclaim_state;
2085 struct zoneref *z;
2086 struct zone *zone;
2087 unsigned long writeback_threshold;
2088 bool aborted_reclaim;
2089
2090 delayacct_freepages_start();
2091
2092 if (global_reclaim(sc))
2093 count_vm_event(ALLOCSTALL);
2094
2095 do {
2096 sc->nr_scanned = 0;
2097 aborted_reclaim = shrink_zones(zonelist, sc);
2098
2099 /*
2100 * Don't shrink slabs when reclaiming memory from
2101 * over limit cgroups
2102 */
2103 if (global_reclaim(sc)) {
2104 unsigned long lru_pages = 0;
2105 for_each_zone_zonelist(zone, z, zonelist,
2106 gfp_zone(sc->gfp_mask)) {
2107 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2108 continue;
2109
2110 lru_pages += zone_reclaimable_pages(zone);
2111 }
2112
2113 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2114 if (reclaim_state) {
2115 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2116 reclaim_state->reclaimed_slab = 0;
2117 }
2118 }
2119 total_scanned += sc->nr_scanned;
2120 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2121 goto out;
2122
2123 /*
2124 * Try to write back as many pages as we just scanned. This
2125 * tends to cause slow streaming writers to write data to the
2126 * disk smoothly, at the dirtying rate, which is nice. But
2127 * that's undesirable in laptop mode, where we *want* lumpy
2128 * writeout. So in laptop mode, write out the whole world.
2129 */
2130 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2131 if (total_scanned > writeback_threshold) {
2132 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2133 WB_REASON_TRY_TO_FREE_PAGES);
2134 sc->may_writepage = 1;
2135 }
2136
2137 /* Take a nap, wait for some writeback to complete */
2138 if (!sc->hibernation_mode && sc->nr_scanned &&
2139 sc->priority < DEF_PRIORITY - 2) {
2140 struct zone *preferred_zone;
2141
2142 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2143 &cpuset_current_mems_allowed,
2144 &preferred_zone);
2145 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2146 }
2147 } while (--sc->priority >= 0);
2148
2149 out:
2150 delayacct_freepages_end();
2151
2152 if (sc->nr_reclaimed)
2153 return sc->nr_reclaimed;
2154
2155 /*
2156 * As hibernation is going on, kswapd is freezed so that it can't mark
2157 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2158 * check.
2159 */
2160 if (oom_killer_disabled)
2161 return 0;
2162
2163 /* Aborted reclaim to try compaction? don't OOM, then */
2164 if (aborted_reclaim)
2165 return 1;
2166
2167 /* top priority shrink_zones still had more to do? don't OOM, then */
2168 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2169 return 1;
2170
2171 return 0;
2172 }
2173
2174 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2175 {
2176 struct zone *zone;
2177 unsigned long pfmemalloc_reserve = 0;
2178 unsigned long free_pages = 0;
2179 int i;
2180 bool wmark_ok;
2181
2182 for (i = 0; i <= ZONE_NORMAL; i++) {
2183 zone = &pgdat->node_zones[i];
2184 pfmemalloc_reserve += min_wmark_pages(zone);
2185 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2186 }
2187
2188 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2189
2190 /* kswapd must be awake if processes are being throttled */
2191 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2192 pgdat->classzone_idx = min(pgdat->classzone_idx,
2193 (enum zone_type)ZONE_NORMAL);
2194 wake_up_interruptible(&pgdat->kswapd_wait);
2195 }
2196
2197 return wmark_ok;
2198 }
2199
2200 /*
2201 * Throttle direct reclaimers if backing storage is backed by the network
2202 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2203 * depleted. kswapd will continue to make progress and wake the processes
2204 * when the low watermark is reached
2205 */
2206 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2207 nodemask_t *nodemask)
2208 {
2209 struct zone *zone;
2210 int high_zoneidx = gfp_zone(gfp_mask);
2211 pg_data_t *pgdat;
2212
2213 /*
2214 * Kernel threads should not be throttled as they may be indirectly
2215 * responsible for cleaning pages necessary for reclaim to make forward
2216 * progress. kjournald for example may enter direct reclaim while
2217 * committing a transaction where throttling it could forcing other
2218 * processes to block on log_wait_commit().
2219 */
2220 if (current->flags & PF_KTHREAD)
2221 return;
2222
2223 /* Check if the pfmemalloc reserves are ok */
2224 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2225 pgdat = zone->zone_pgdat;
2226 if (pfmemalloc_watermark_ok(pgdat))
2227 return;
2228
2229 /* Account for the throttling */
2230 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2231
2232 /*
2233 * If the caller cannot enter the filesystem, it's possible that it
2234 * is due to the caller holding an FS lock or performing a journal
2235 * transaction in the case of a filesystem like ext[3|4]. In this case,
2236 * it is not safe to block on pfmemalloc_wait as kswapd could be
2237 * blocked waiting on the same lock. Instead, throttle for up to a
2238 * second before continuing.
2239 */
2240 if (!(gfp_mask & __GFP_FS)) {
2241 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2242 pfmemalloc_watermark_ok(pgdat), HZ);
2243 return;
2244 }
2245
2246 /* Throttle until kswapd wakes the process */
2247 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2248 pfmemalloc_watermark_ok(pgdat));
2249 }
2250
2251 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2252 gfp_t gfp_mask, nodemask_t *nodemask)
2253 {
2254 unsigned long nr_reclaimed;
2255 struct scan_control sc = {
2256 .gfp_mask = gfp_mask,
2257 .may_writepage = !laptop_mode,
2258 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2259 .may_unmap = 1,
2260 .may_swap = 1,
2261 .order = order,
2262 .priority = DEF_PRIORITY,
2263 .target_mem_cgroup = NULL,
2264 .nodemask = nodemask,
2265 };
2266 struct shrink_control shrink = {
2267 .gfp_mask = sc.gfp_mask,
2268 };
2269
2270 throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2271
2272 /*
2273 * Do not enter reclaim if fatal signal is pending. 1 is returned so
2274 * that the page allocator does not consider triggering OOM
2275 */
2276 if (fatal_signal_pending(current))
2277 return 1;
2278
2279 trace_mm_vmscan_direct_reclaim_begin(order,
2280 sc.may_writepage,
2281 gfp_mask);
2282
2283 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2284
2285 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2286
2287 return nr_reclaimed;
2288 }
2289
2290 #ifdef CONFIG_MEMCG
2291
2292 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2293 gfp_t gfp_mask, bool noswap,
2294 struct zone *zone,
2295 unsigned long *nr_scanned)
2296 {
2297 struct scan_control sc = {
2298 .nr_scanned = 0,
2299 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2300 .may_writepage = !laptop_mode,
2301 .may_unmap = 1,
2302 .may_swap = !noswap,
2303 .order = 0,
2304 .priority = 0,
2305 .target_mem_cgroup = memcg,
2306 };
2307 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2308
2309 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2310 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2311
2312 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2313 sc.may_writepage,
2314 sc.gfp_mask);
2315
2316 /*
2317 * NOTE: Although we can get the priority field, using it
2318 * here is not a good idea, since it limits the pages we can scan.
2319 * if we don't reclaim here, the shrink_zone from balance_pgdat
2320 * will pick up pages from other mem cgroup's as well. We hack
2321 * the priority and make it zero.
2322 */
2323 shrink_lruvec(lruvec, &sc);
2324
2325 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2326
2327 *nr_scanned = sc.nr_scanned;
2328 return sc.nr_reclaimed;
2329 }
2330
2331 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2332 gfp_t gfp_mask,
2333 bool noswap)
2334 {
2335 struct zonelist *zonelist;
2336 unsigned long nr_reclaimed;
2337 int nid;
2338 struct scan_control sc = {
2339 .may_writepage = !laptop_mode,
2340 .may_unmap = 1,
2341 .may_swap = !noswap,
2342 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2343 .order = 0,
2344 .priority = DEF_PRIORITY,
2345 .target_mem_cgroup = memcg,
2346 .nodemask = NULL, /* we don't care the placement */
2347 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2348 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2349 };
2350 struct shrink_control shrink = {
2351 .gfp_mask = sc.gfp_mask,
2352 };
2353
2354 /*
2355 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2356 * take care of from where we get pages. So the node where we start the
2357 * scan does not need to be the current node.
2358 */
2359 nid = mem_cgroup_select_victim_node(memcg);
2360
2361 zonelist = NODE_DATA(nid)->node_zonelists;
2362
2363 trace_mm_vmscan_memcg_reclaim_begin(0,
2364 sc.may_writepage,
2365 sc.gfp_mask);
2366
2367 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2368
2369 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2370
2371 return nr_reclaimed;
2372 }
2373 #endif
2374
2375 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2376 {
2377 struct mem_cgroup *memcg;
2378
2379 if (!total_swap_pages)
2380 return;
2381
2382 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2383 do {
2384 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2385
2386 if (inactive_anon_is_low(lruvec))
2387 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2388 sc, LRU_ACTIVE_ANON);
2389
2390 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2391 } while (memcg);
2392 }
2393
2394 /*
2395 * pgdat_balanced is used when checking if a node is balanced for high-order
2396 * allocations. Only zones that meet watermarks and are in a zone allowed
2397 * by the callers classzone_idx are added to balanced_pages. The total of
2398 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2399 * for the node to be considered balanced. Forcing all zones to be balanced
2400 * for high orders can cause excessive reclaim when there are imbalanced zones.
2401 * The choice of 25% is due to
2402 * o a 16M DMA zone that is balanced will not balance a zone on any
2403 * reasonable sized machine
2404 * o On all other machines, the top zone must be at least a reasonable
2405 * percentage of the middle zones. For example, on 32-bit x86, highmem
2406 * would need to be at least 256M for it to be balance a whole node.
2407 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2408 * to balance a node on its own. These seemed like reasonable ratios.
2409 */
2410 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2411 int classzone_idx)
2412 {
2413 unsigned long present_pages = 0;
2414 int i;
2415
2416 for (i = 0; i <= classzone_idx; i++)
2417 present_pages += pgdat->node_zones[i].present_pages;
2418
2419 /* A special case here: if zone has no page, we think it's balanced */
2420 return balanced_pages >= (present_pages >> 2);
2421 }
2422
2423 /*
2424 * Prepare kswapd for sleeping. This verifies that there are no processes
2425 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2426 *
2427 * Returns true if kswapd is ready to sleep
2428 */
2429 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2430 int classzone_idx)
2431 {
2432 int i;
2433 unsigned long balanced = 0;
2434 bool all_zones_ok = true;
2435
2436 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2437 if (remaining)
2438 return false;
2439
2440 /*
2441 * There is a potential race between when kswapd checks its watermarks
2442 * and a process gets throttled. There is also a potential race if
2443 * processes get throttled, kswapd wakes, a large process exits therby
2444 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2445 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2446 * so wake them now if necessary. If necessary, processes will wake
2447 * kswapd and get throttled again
2448 */
2449 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2450 wake_up(&pgdat->pfmemalloc_wait);
2451 return false;
2452 }
2453
2454 /* Check the watermark levels */
2455 for (i = 0; i <= classzone_idx; i++) {
2456 struct zone *zone = pgdat->node_zones + i;
2457
2458 if (!populated_zone(zone))
2459 continue;
2460
2461 /*
2462 * balance_pgdat() skips over all_unreclaimable after
2463 * DEF_PRIORITY. Effectively, it considers them balanced so
2464 * they must be considered balanced here as well if kswapd
2465 * is to sleep
2466 */
2467 if (zone->all_unreclaimable) {
2468 balanced += zone->present_pages;
2469 continue;
2470 }
2471
2472 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2473 i, 0))
2474 all_zones_ok = false;
2475 else
2476 balanced += zone->present_pages;
2477 }
2478
2479 /*
2480 * For high-order requests, the balanced zones must contain at least
2481 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2482 * must be balanced
2483 */
2484 if (order)
2485 return pgdat_balanced(pgdat, balanced, classzone_idx);
2486 else
2487 return all_zones_ok;
2488 }
2489
2490 /*
2491 * For kswapd, balance_pgdat() will work across all this node's zones until
2492 * they are all at high_wmark_pages(zone).
2493 *
2494 * Returns the final order kswapd was reclaiming at
2495 *
2496 * There is special handling here for zones which are full of pinned pages.
2497 * This can happen if the pages are all mlocked, or if they are all used by
2498 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2499 * What we do is to detect the case where all pages in the zone have been
2500 * scanned twice and there has been zero successful reclaim. Mark the zone as
2501 * dead and from now on, only perform a short scan. Basically we're polling
2502 * the zone for when the problem goes away.
2503 *
2504 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2505 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2506 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2507 * lower zones regardless of the number of free pages in the lower zones. This
2508 * interoperates with the page allocator fallback scheme to ensure that aging
2509 * of pages is balanced across the zones.
2510 */
2511 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2512 int *classzone_idx)
2513 {
2514 int all_zones_ok;
2515 unsigned long balanced;
2516 int i;
2517 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2518 unsigned long total_scanned;
2519 struct reclaim_state *reclaim_state = current->reclaim_state;
2520 unsigned long nr_soft_reclaimed;
2521 unsigned long nr_soft_scanned;
2522 struct scan_control sc = {
2523 .gfp_mask = GFP_KERNEL,
2524 .may_unmap = 1,
2525 .may_swap = 1,
2526 /*
2527 * kswapd doesn't want to be bailed out while reclaim. because
2528 * we want to put equal scanning pressure on each zone.
2529 */
2530 .nr_to_reclaim = ULONG_MAX,
2531 .order = order,
2532 .target_mem_cgroup = NULL,
2533 };
2534 struct shrink_control shrink = {
2535 .gfp_mask = sc.gfp_mask,
2536 };
2537 loop_again:
2538 total_scanned = 0;
2539 sc.priority = DEF_PRIORITY;
2540 sc.nr_reclaimed = 0;
2541 sc.may_writepage = !laptop_mode;
2542 count_vm_event(PAGEOUTRUN);
2543
2544 do {
2545 unsigned long lru_pages = 0;
2546 int has_under_min_watermark_zone = 0;
2547
2548 all_zones_ok = 1;
2549 balanced = 0;
2550
2551 /*
2552 * Scan in the highmem->dma direction for the highest
2553 * zone which needs scanning
2554 */
2555 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2556 struct zone *zone = pgdat->node_zones + i;
2557
2558 if (!populated_zone(zone))
2559 continue;
2560
2561 if (zone->all_unreclaimable &&
2562 sc.priority != DEF_PRIORITY)
2563 continue;
2564
2565 /*
2566 * Do some background aging of the anon list, to give
2567 * pages a chance to be referenced before reclaiming.
2568 */
2569 age_active_anon(zone, &sc);
2570
2571 /*
2572 * If the number of buffer_heads in the machine
2573 * exceeds the maximum allowed level and this node
2574 * has a highmem zone, force kswapd to reclaim from
2575 * it to relieve lowmem pressure.
2576 */
2577 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2578 end_zone = i;
2579 break;
2580 }
2581
2582 if (!zone_watermark_ok_safe(zone, order,
2583 high_wmark_pages(zone), 0, 0)) {
2584 end_zone = i;
2585 break;
2586 } else {
2587 /* If balanced, clear the congested flag */
2588 zone_clear_flag(zone, ZONE_CONGESTED);
2589 }
2590 }
2591 if (i < 0)
2592 goto out;
2593
2594 for (i = 0; i <= end_zone; i++) {
2595 struct zone *zone = pgdat->node_zones + i;
2596
2597 lru_pages += zone_reclaimable_pages(zone);
2598 }
2599
2600 /*
2601 * Now scan the zone in the dma->highmem direction, stopping
2602 * at the last zone which needs scanning.
2603 *
2604 * We do this because the page allocator works in the opposite
2605 * direction. This prevents the page allocator from allocating
2606 * pages behind kswapd's direction of progress, which would
2607 * cause too much scanning of the lower zones.
2608 */
2609 for (i = 0; i <= end_zone; i++) {
2610 struct zone *zone = pgdat->node_zones + i;
2611 int nr_slab, testorder;
2612 unsigned long balance_gap;
2613
2614 if (!populated_zone(zone))
2615 continue;
2616
2617 if (zone->all_unreclaimable &&
2618 sc.priority != DEF_PRIORITY)
2619 continue;
2620
2621 sc.nr_scanned = 0;
2622
2623 nr_soft_scanned = 0;
2624 /*
2625 * Call soft limit reclaim before calling shrink_zone.
2626 */
2627 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2628 order, sc.gfp_mask,
2629 &nr_soft_scanned);
2630 sc.nr_reclaimed += nr_soft_reclaimed;
2631 total_scanned += nr_soft_scanned;
2632
2633 /*
2634 * We put equal pressure on every zone, unless
2635 * one zone has way too many pages free
2636 * already. The "too many pages" is defined
2637 * as the high wmark plus a "gap" where the
2638 * gap is either the low watermark or 1%
2639 * of the zone, whichever is smaller.
2640 */
2641 balance_gap = min(low_wmark_pages(zone),
2642 (zone->present_pages +
2643 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2644 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2645 /*
2646 * Kswapd reclaims only single pages with compaction
2647 * enabled. Trying too hard to reclaim until contiguous
2648 * free pages have become available can hurt performance
2649 * by evicting too much useful data from memory.
2650 * Do not reclaim more than needed for compaction.
2651 */
2652 testorder = order;
2653 if (COMPACTION_BUILD && order &&
2654 compaction_suitable(zone, order) !=
2655 COMPACT_SKIPPED)
2656 testorder = 0;
2657
2658 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2659 !zone_watermark_ok_safe(zone, testorder,
2660 high_wmark_pages(zone) + balance_gap,
2661 end_zone, 0)) {
2662 shrink_zone(zone, &sc);
2663
2664 reclaim_state->reclaimed_slab = 0;
2665 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2666 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2667 total_scanned += sc.nr_scanned;
2668
2669 if (nr_slab == 0 && !zone_reclaimable(zone))
2670 zone->all_unreclaimable = 1;
2671 }
2672
2673 /*
2674 * If we've done a decent amount of scanning and
2675 * the reclaim ratio is low, start doing writepage
2676 * even in laptop mode
2677 */
2678 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2679 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2680 sc.may_writepage = 1;
2681
2682 if (zone->all_unreclaimable) {
2683 if (end_zone && end_zone == i)
2684 end_zone--;
2685 continue;
2686 }
2687
2688 if (!zone_watermark_ok_safe(zone, testorder,
2689 high_wmark_pages(zone), end_zone, 0)) {
2690 all_zones_ok = 0;
2691 /*
2692 * We are still under min water mark. This
2693 * means that we have a GFP_ATOMIC allocation
2694 * failure risk. Hurry up!
2695 */
2696 if (!zone_watermark_ok_safe(zone, order,
2697 min_wmark_pages(zone), end_zone, 0))
2698 has_under_min_watermark_zone = 1;
2699 } else {
2700 /*
2701 * If a zone reaches its high watermark,
2702 * consider it to be no longer congested. It's
2703 * possible there are dirty pages backed by
2704 * congested BDIs but as pressure is relieved,
2705 * speculatively avoid congestion waits
2706 */
2707 zone_clear_flag(zone, ZONE_CONGESTED);
2708 if (i <= *classzone_idx)
2709 balanced += zone->present_pages;
2710 }
2711
2712 }
2713
2714 /*
2715 * If the low watermark is met there is no need for processes
2716 * to be throttled on pfmemalloc_wait as they should not be
2717 * able to safely make forward progress. Wake them
2718 */
2719 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2720 pfmemalloc_watermark_ok(pgdat))
2721 wake_up(&pgdat->pfmemalloc_wait);
2722
2723 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2724 break; /* kswapd: all done */
2725 /*
2726 * OK, kswapd is getting into trouble. Take a nap, then take
2727 * another pass across the zones.
2728 */
2729 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2730 if (has_under_min_watermark_zone)
2731 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2732 else
2733 congestion_wait(BLK_RW_ASYNC, HZ/10);
2734 }
2735
2736 /*
2737 * We do this so kswapd doesn't build up large priorities for
2738 * example when it is freeing in parallel with allocators. It
2739 * matches the direct reclaim path behaviour in terms of impact
2740 * on zone->*_priority.
2741 */
2742 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2743 break;
2744 } while (--sc.priority >= 0);
2745 out:
2746
2747 /*
2748 * order-0: All zones must meet high watermark for a balanced node
2749 * high-order: Balanced zones must make up at least 25% of the node
2750 * for the node to be balanced
2751 */
2752 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2753 cond_resched();
2754
2755 try_to_freeze();
2756
2757 /*
2758 * Fragmentation may mean that the system cannot be
2759 * rebalanced for high-order allocations in all zones.
2760 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2761 * it means the zones have been fully scanned and are still
2762 * not balanced. For high-order allocations, there is
2763 * little point trying all over again as kswapd may
2764 * infinite loop.
2765 *
2766 * Instead, recheck all watermarks at order-0 as they
2767 * are the most important. If watermarks are ok, kswapd will go
2768 * back to sleep. High-order users can still perform direct
2769 * reclaim if they wish.
2770 */
2771 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2772 order = sc.order = 0;
2773
2774 goto loop_again;
2775 }
2776
2777 /*
2778 * If kswapd was reclaiming at a higher order, it has the option of
2779 * sleeping without all zones being balanced. Before it does, it must
2780 * ensure that the watermarks for order-0 on *all* zones are met and
2781 * that the congestion flags are cleared. The congestion flag must
2782 * be cleared as kswapd is the only mechanism that clears the flag
2783 * and it is potentially going to sleep here.
2784 */
2785 if (order) {
2786 int zones_need_compaction = 1;
2787
2788 for (i = 0; i <= end_zone; i++) {
2789 struct zone *zone = pgdat->node_zones + i;
2790
2791 if (!populated_zone(zone))
2792 continue;
2793
2794 if (zone->all_unreclaimable &&
2795 sc.priority != DEF_PRIORITY)
2796 continue;
2797
2798 /* Would compaction fail due to lack of free memory? */
2799 if (COMPACTION_BUILD &&
2800 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2801 goto loop_again;
2802
2803 /* Confirm the zone is balanced for order-0 */
2804 if (!zone_watermark_ok(zone, 0,
2805 high_wmark_pages(zone), 0, 0)) {
2806 order = sc.order = 0;
2807 goto loop_again;
2808 }
2809
2810 /* Check if the memory needs to be defragmented. */
2811 if (zone_watermark_ok(zone, order,
2812 low_wmark_pages(zone), *classzone_idx, 0))
2813 zones_need_compaction = 0;
2814
2815 /* If balanced, clear the congested flag */
2816 zone_clear_flag(zone, ZONE_CONGESTED);
2817 }
2818
2819 if (zones_need_compaction)
2820 compact_pgdat(pgdat, order);
2821 }
2822
2823 /*
2824 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2825 * makes a decision on the order we were last reclaiming at. However,
2826 * if another caller entered the allocator slow path while kswapd
2827 * was awake, order will remain at the higher level
2828 */
2829 *classzone_idx = end_zone;
2830 return order;
2831 }
2832
2833 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2834 {
2835 long remaining = 0;
2836 DEFINE_WAIT(wait);
2837
2838 if (freezing(current) || kthread_should_stop())
2839 return;
2840
2841 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2842
2843 /* Try to sleep for a short interval */
2844 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2845 remaining = schedule_timeout(HZ/10);
2846 finish_wait(&pgdat->kswapd_wait, &wait);
2847 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2848 }
2849
2850 /*
2851 * After a short sleep, check if it was a premature sleep. If not, then
2852 * go fully to sleep until explicitly woken up.
2853 */
2854 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2855 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2856
2857 /*
2858 * vmstat counters are not perfectly accurate and the estimated
2859 * value for counters such as NR_FREE_PAGES can deviate from the
2860 * true value by nr_online_cpus * threshold. To avoid the zone
2861 * watermarks being breached while under pressure, we reduce the
2862 * per-cpu vmstat threshold while kswapd is awake and restore
2863 * them before going back to sleep.
2864 */
2865 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2866
2867 if (!kthread_should_stop())
2868 schedule();
2869
2870 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2871 } else {
2872 if (remaining)
2873 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2874 else
2875 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2876 }
2877 finish_wait(&pgdat->kswapd_wait, &wait);
2878 }
2879
2880 /*
2881 * The background pageout daemon, started as a kernel thread
2882 * from the init process.
2883 *
2884 * This basically trickles out pages so that we have _some_
2885 * free memory available even if there is no other activity
2886 * that frees anything up. This is needed for things like routing
2887 * etc, where we otherwise might have all activity going on in
2888 * asynchronous contexts that cannot page things out.
2889 *
2890 * If there are applications that are active memory-allocators
2891 * (most normal use), this basically shouldn't matter.
2892 */
2893 static int kswapd(void *p)
2894 {
2895 unsigned long order, new_order;
2896 unsigned balanced_order;
2897 int classzone_idx, new_classzone_idx;
2898 int balanced_classzone_idx;
2899 pg_data_t *pgdat = (pg_data_t*)p;
2900 struct task_struct *tsk = current;
2901
2902 struct reclaim_state reclaim_state = {
2903 .reclaimed_slab = 0,
2904 };
2905 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2906
2907 lockdep_set_current_reclaim_state(GFP_KERNEL);
2908
2909 if (!cpumask_empty(cpumask))
2910 set_cpus_allowed_ptr(tsk, cpumask);
2911 current->reclaim_state = &reclaim_state;
2912
2913 /*
2914 * Tell the memory management that we're a "memory allocator",
2915 * and that if we need more memory we should get access to it
2916 * regardless (see "__alloc_pages()"). "kswapd" should
2917 * never get caught in the normal page freeing logic.
2918 *
2919 * (Kswapd normally doesn't need memory anyway, but sometimes
2920 * you need a small amount of memory in order to be able to
2921 * page out something else, and this flag essentially protects
2922 * us from recursively trying to free more memory as we're
2923 * trying to free the first piece of memory in the first place).
2924 */
2925 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2926 set_freezable();
2927
2928 order = new_order = 0;
2929 balanced_order = 0;
2930 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2931 balanced_classzone_idx = classzone_idx;
2932 for ( ; ; ) {
2933 int ret;
2934
2935 /*
2936 * If the last balance_pgdat was unsuccessful it's unlikely a
2937 * new request of a similar or harder type will succeed soon
2938 * so consider going to sleep on the basis we reclaimed at
2939 */
2940 if (balanced_classzone_idx >= new_classzone_idx &&
2941 balanced_order == new_order) {
2942 new_order = pgdat->kswapd_max_order;
2943 new_classzone_idx = pgdat->classzone_idx;
2944 pgdat->kswapd_max_order = 0;
2945 pgdat->classzone_idx = pgdat->nr_zones - 1;
2946 }
2947
2948 if (order < new_order || classzone_idx > new_classzone_idx) {
2949 /*
2950 * Don't sleep if someone wants a larger 'order'
2951 * allocation or has tigher zone constraints
2952 */
2953 order = new_order;
2954 classzone_idx = new_classzone_idx;
2955 } else {
2956 kswapd_try_to_sleep(pgdat, balanced_order,
2957 balanced_classzone_idx);
2958 order = pgdat->kswapd_max_order;
2959 classzone_idx = pgdat->classzone_idx;
2960 new_order = order;
2961 new_classzone_idx = classzone_idx;
2962 pgdat->kswapd_max_order = 0;
2963 pgdat->classzone_idx = pgdat->nr_zones - 1;
2964 }
2965
2966 ret = try_to_freeze();
2967 if (kthread_should_stop())
2968 break;
2969
2970 /*
2971 * We can speed up thawing tasks if we don't call balance_pgdat
2972 * after returning from the refrigerator
2973 */
2974 if (!ret) {
2975 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2976 balanced_classzone_idx = classzone_idx;
2977 balanced_order = balance_pgdat(pgdat, order,
2978 &balanced_classzone_idx);
2979 }
2980 }
2981 return 0;
2982 }
2983
2984 /*
2985 * A zone is low on free memory, so wake its kswapd task to service it.
2986 */
2987 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2988 {
2989 pg_data_t *pgdat;
2990
2991 if (!populated_zone(zone))
2992 return;
2993
2994 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2995 return;
2996 pgdat = zone->zone_pgdat;
2997 if (pgdat->kswapd_max_order < order) {
2998 pgdat->kswapd_max_order = order;
2999 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3000 }
3001 if (!waitqueue_active(&pgdat->kswapd_wait))
3002 return;
3003 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3004 return;
3005
3006 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3007 wake_up_interruptible(&pgdat->kswapd_wait);
3008 }
3009
3010 /*
3011 * The reclaimable count would be mostly accurate.
3012 * The less reclaimable pages may be
3013 * - mlocked pages, which will be moved to unevictable list when encountered
3014 * - mapped pages, which may require several travels to be reclaimed
3015 * - dirty pages, which is not "instantly" reclaimable
3016 */
3017 unsigned long global_reclaimable_pages(void)
3018 {
3019 int nr;
3020
3021 nr = global_page_state(NR_ACTIVE_FILE) +
3022 global_page_state(NR_INACTIVE_FILE);
3023
3024 if (nr_swap_pages > 0)
3025 nr += global_page_state(NR_ACTIVE_ANON) +
3026 global_page_state(NR_INACTIVE_ANON);
3027
3028 return nr;
3029 }
3030
3031 unsigned long zone_reclaimable_pages(struct zone *zone)
3032 {
3033 int nr;
3034
3035 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3036 zone_page_state(zone, NR_INACTIVE_FILE);
3037
3038 if (nr_swap_pages > 0)
3039 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3040 zone_page_state(zone, NR_INACTIVE_ANON);
3041
3042 return nr;
3043 }
3044
3045 #ifdef CONFIG_HIBERNATION
3046 /*
3047 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3048 * freed pages.
3049 *
3050 * Rather than trying to age LRUs the aim is to preserve the overall
3051 * LRU order by reclaiming preferentially
3052 * inactive > active > active referenced > active mapped
3053 */
3054 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3055 {
3056 struct reclaim_state reclaim_state;
3057 struct scan_control sc = {
3058 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3059 .may_swap = 1,
3060 .may_unmap = 1,
3061 .may_writepage = 1,
3062 .nr_to_reclaim = nr_to_reclaim,
3063 .hibernation_mode = 1,
3064 .order = 0,
3065 .priority = DEF_PRIORITY,
3066 };
3067 struct shrink_control shrink = {
3068 .gfp_mask = sc.gfp_mask,
3069 };
3070 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3071 struct task_struct *p = current;
3072 unsigned long nr_reclaimed;
3073
3074 p->flags |= PF_MEMALLOC;
3075 lockdep_set_current_reclaim_state(sc.gfp_mask);
3076 reclaim_state.reclaimed_slab = 0;
3077 p->reclaim_state = &reclaim_state;
3078
3079 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3080
3081 p->reclaim_state = NULL;
3082 lockdep_clear_current_reclaim_state();
3083 p->flags &= ~PF_MEMALLOC;
3084
3085 return nr_reclaimed;
3086 }
3087 #endif /* CONFIG_HIBERNATION */
3088
3089 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3090 not required for correctness. So if the last cpu in a node goes
3091 away, we get changed to run anywhere: as the first one comes back,
3092 restore their cpu bindings. */
3093 static int __devinit cpu_callback(struct notifier_block *nfb,
3094 unsigned long action, void *hcpu)
3095 {
3096 int nid;
3097
3098 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3099 for_each_node_state(nid, N_HIGH_MEMORY) {
3100 pg_data_t *pgdat = NODE_DATA(nid);
3101 const struct cpumask *mask;
3102
3103 mask = cpumask_of_node(pgdat->node_id);
3104
3105 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3106 /* One of our CPUs online: restore mask */
3107 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3108 }
3109 }
3110 return NOTIFY_OK;
3111 }
3112
3113 /*
3114 * This kswapd start function will be called by init and node-hot-add.
3115 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3116 */
3117 int kswapd_run(int nid)
3118 {
3119 pg_data_t *pgdat = NODE_DATA(nid);
3120 int ret = 0;
3121
3122 if (pgdat->kswapd)
3123 return 0;
3124
3125 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3126 if (IS_ERR(pgdat->kswapd)) {
3127 /* failure at boot is fatal */
3128 BUG_ON(system_state == SYSTEM_BOOTING);
3129 printk("Failed to start kswapd on node %d\n",nid);
3130 pgdat->kswapd = NULL;
3131 ret = -1;
3132 }
3133 return ret;
3134 }
3135
3136 /*
3137 * Called by memory hotplug when all memory in a node is offlined. Caller must
3138 * hold lock_memory_hotplug().
3139 */
3140 void kswapd_stop(int nid)
3141 {
3142 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3143
3144 if (kswapd) {
3145 kthread_stop(kswapd);
3146 NODE_DATA(nid)->kswapd = NULL;
3147 }
3148 }
3149
3150 static int __init kswapd_init(void)
3151 {
3152 int nid;
3153
3154 swap_setup();
3155 for_each_node_state(nid, N_HIGH_MEMORY)
3156 kswapd_run(nid);
3157 hotcpu_notifier(cpu_callback, 0);
3158 return 0;
3159 }
3160
3161 module_init(kswapd_init)
3162
3163 #ifdef CONFIG_NUMA
3164 /*
3165 * Zone reclaim mode
3166 *
3167 * If non-zero call zone_reclaim when the number of free pages falls below
3168 * the watermarks.
3169 */
3170 int zone_reclaim_mode __read_mostly;
3171
3172 #define RECLAIM_OFF 0
3173 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3174 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3175 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3176
3177 /*
3178 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3179 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3180 * a zone.
3181 */
3182 #define ZONE_RECLAIM_PRIORITY 4
3183
3184 /*
3185 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3186 * occur.
3187 */
3188 int sysctl_min_unmapped_ratio = 1;
3189
3190 /*
3191 * If the number of slab pages in a zone grows beyond this percentage then
3192 * slab reclaim needs to occur.
3193 */
3194 int sysctl_min_slab_ratio = 5;
3195
3196 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3197 {
3198 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3199 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3200 zone_page_state(zone, NR_ACTIVE_FILE);
3201
3202 /*
3203 * It's possible for there to be more file mapped pages than
3204 * accounted for by the pages on the file LRU lists because
3205 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3206 */
3207 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3208 }
3209
3210 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3211 static long zone_pagecache_reclaimable(struct zone *zone)
3212 {
3213 long nr_pagecache_reclaimable;
3214 long delta = 0;
3215
3216 /*
3217 * If RECLAIM_SWAP is set, then all file pages are considered
3218 * potentially reclaimable. Otherwise, we have to worry about
3219 * pages like swapcache and zone_unmapped_file_pages() provides
3220 * a better estimate
3221 */
3222 if (zone_reclaim_mode & RECLAIM_SWAP)
3223 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3224 else
3225 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3226
3227 /* If we can't clean pages, remove dirty pages from consideration */
3228 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3229 delta += zone_page_state(zone, NR_FILE_DIRTY);
3230
3231 /* Watch for any possible underflows due to delta */
3232 if (unlikely(delta > nr_pagecache_reclaimable))
3233 delta = nr_pagecache_reclaimable;
3234
3235 return nr_pagecache_reclaimable - delta;
3236 }
3237
3238 /*
3239 * Try to free up some pages from this zone through reclaim.
3240 */
3241 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3242 {
3243 /* Minimum pages needed in order to stay on node */
3244 const unsigned long nr_pages = 1 << order;
3245 struct task_struct *p = current;
3246 struct reclaim_state reclaim_state;
3247 struct scan_control sc = {
3248 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3249 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3250 .may_swap = 1,
3251 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3252 SWAP_CLUSTER_MAX),
3253 .gfp_mask = gfp_mask,
3254 .order = order,
3255 .priority = ZONE_RECLAIM_PRIORITY,
3256 };
3257 struct shrink_control shrink = {
3258 .gfp_mask = sc.gfp_mask,
3259 };
3260 unsigned long nr_slab_pages0, nr_slab_pages1;
3261
3262 cond_resched();
3263 /*
3264 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3265 * and we also need to be able to write out pages for RECLAIM_WRITE
3266 * and RECLAIM_SWAP.
3267 */
3268 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3269 lockdep_set_current_reclaim_state(gfp_mask);
3270 reclaim_state.reclaimed_slab = 0;
3271 p->reclaim_state = &reclaim_state;
3272
3273 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3274 /*
3275 * Free memory by calling shrink zone with increasing
3276 * priorities until we have enough memory freed.
3277 */
3278 do {
3279 shrink_zone(zone, &sc);
3280 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3281 }
3282
3283 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3284 if (nr_slab_pages0 > zone->min_slab_pages) {
3285 /*
3286 * shrink_slab() does not currently allow us to determine how
3287 * many pages were freed in this zone. So we take the current
3288 * number of slab pages and shake the slab until it is reduced
3289 * by the same nr_pages that we used for reclaiming unmapped
3290 * pages.
3291 *
3292 * Note that shrink_slab will free memory on all zones and may
3293 * take a long time.
3294 */
3295 for (;;) {
3296 unsigned long lru_pages = zone_reclaimable_pages(zone);
3297
3298 /* No reclaimable slab or very low memory pressure */
3299 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3300 break;
3301
3302 /* Freed enough memory */
3303 nr_slab_pages1 = zone_page_state(zone,
3304 NR_SLAB_RECLAIMABLE);
3305 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3306 break;
3307 }
3308
3309 /*
3310 * Update nr_reclaimed by the number of slab pages we
3311 * reclaimed from this zone.
3312 */
3313 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3314 if (nr_slab_pages1 < nr_slab_pages0)
3315 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3316 }
3317
3318 p->reclaim_state = NULL;
3319 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3320 lockdep_clear_current_reclaim_state();
3321 return sc.nr_reclaimed >= nr_pages;
3322 }
3323
3324 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3325 {
3326 int node_id;
3327 int ret;
3328
3329 /*
3330 * Zone reclaim reclaims unmapped file backed pages and
3331 * slab pages if we are over the defined limits.
3332 *
3333 * A small portion of unmapped file backed pages is needed for
3334 * file I/O otherwise pages read by file I/O will be immediately
3335 * thrown out if the zone is overallocated. So we do not reclaim
3336 * if less than a specified percentage of the zone is used by
3337 * unmapped file backed pages.
3338 */
3339 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3340 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3341 return ZONE_RECLAIM_FULL;
3342
3343 if (zone->all_unreclaimable)
3344 return ZONE_RECLAIM_FULL;
3345
3346 /*
3347 * Do not scan if the allocation should not be delayed.
3348 */
3349 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3350 return ZONE_RECLAIM_NOSCAN;
3351
3352 /*
3353 * Only run zone reclaim on the local zone or on zones that do not
3354 * have associated processors. This will favor the local processor
3355 * over remote processors and spread off node memory allocations
3356 * as wide as possible.
3357 */
3358 node_id = zone_to_nid(zone);
3359 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3360 return ZONE_RECLAIM_NOSCAN;
3361
3362 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3363 return ZONE_RECLAIM_NOSCAN;
3364
3365 ret = __zone_reclaim(zone, gfp_mask, order);
3366 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3367
3368 if (!ret)
3369 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3370
3371 return ret;
3372 }
3373 #endif
3374
3375 /*
3376 * page_evictable - test whether a page is evictable
3377 * @page: the page to test
3378 * @vma: the VMA in which the page is or will be mapped, may be NULL
3379 *
3380 * Test whether page is evictable--i.e., should be placed on active/inactive
3381 * lists vs unevictable list. The vma argument is !NULL when called from the
3382 * fault path to determine how to instantate a new page.
3383 *
3384 * Reasons page might not be evictable:
3385 * (1) page's mapping marked unevictable
3386 * (2) page is part of an mlocked VMA
3387 *
3388 */
3389 int page_evictable(struct page *page, struct vm_area_struct *vma)
3390 {
3391
3392 if (mapping_unevictable(page_mapping(page)))
3393 return 0;
3394
3395 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3396 return 0;
3397
3398 return 1;
3399 }
3400
3401 #ifdef CONFIG_SHMEM
3402 /**
3403 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3404 * @pages: array of pages to check
3405 * @nr_pages: number of pages to check
3406 *
3407 * Checks pages for evictability and moves them to the appropriate lru list.
3408 *
3409 * This function is only used for SysV IPC SHM_UNLOCK.
3410 */
3411 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3412 {
3413 struct lruvec *lruvec;
3414 struct zone *zone = NULL;
3415 int pgscanned = 0;
3416 int pgrescued = 0;
3417 int i;
3418
3419 for (i = 0; i < nr_pages; i++) {
3420 struct page *page = pages[i];
3421 struct zone *pagezone;
3422
3423 pgscanned++;
3424 pagezone = page_zone(page);
3425 if (pagezone != zone) {
3426 if (zone)
3427 spin_unlock_irq(&zone->lru_lock);
3428 zone = pagezone;
3429 spin_lock_irq(&zone->lru_lock);
3430 }
3431 lruvec = mem_cgroup_page_lruvec(page, zone);
3432
3433 if (!PageLRU(page) || !PageUnevictable(page))
3434 continue;
3435
3436 if (page_evictable(page, NULL)) {
3437 enum lru_list lru = page_lru_base_type(page);
3438
3439 VM_BUG_ON(PageActive(page));
3440 ClearPageUnevictable(page);
3441 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3442 add_page_to_lru_list(page, lruvec, lru);
3443 pgrescued++;
3444 }
3445 }
3446
3447 if (zone) {
3448 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3449 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3450 spin_unlock_irq(&zone->lru_lock);
3451 }
3452 }
3453 #endif /* CONFIG_SHMEM */
3454
3455 static void warn_scan_unevictable_pages(void)
3456 {
3457 printk_once(KERN_WARNING
3458 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3459 "disabled for lack of a legitimate use case. If you have "
3460 "one, please send an email to linux-mm@kvack.org.\n",
3461 current->comm);
3462 }
3463
3464 /*
3465 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3466 * all nodes' unevictable lists for evictable pages
3467 */
3468 unsigned long scan_unevictable_pages;
3469
3470 int scan_unevictable_handler(struct ctl_table *table, int write,
3471 void __user *buffer,
3472 size_t *length, loff_t *ppos)
3473 {
3474 warn_scan_unevictable_pages();
3475 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3476 scan_unevictable_pages = 0;
3477 return 0;
3478 }
3479
3480 #ifdef CONFIG_NUMA
3481 /*
3482 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3483 * a specified node's per zone unevictable lists for evictable pages.
3484 */
3485
3486 static ssize_t read_scan_unevictable_node(struct device *dev,
3487 struct device_attribute *attr,
3488 char *buf)
3489 {
3490 warn_scan_unevictable_pages();
3491 return sprintf(buf, "0\n"); /* always zero; should fit... */
3492 }
3493
3494 static ssize_t write_scan_unevictable_node(struct device *dev,
3495 struct device_attribute *attr,
3496 const char *buf, size_t count)
3497 {
3498 warn_scan_unevictable_pages();
3499 return 1;
3500 }
3501
3502
3503 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3504 read_scan_unevictable_node,
3505 write_scan_unevictable_node);
3506
3507 int scan_unevictable_register_node(struct node *node)
3508 {
3509 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3510 }
3511
3512 void scan_unevictable_unregister_node(struct node *node)
3513 {
3514 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3515 }
3516 #endif
This page took 0.104693 seconds and 5 git commands to generate.