Merge branch 'akpm' (incoming from Andrew)
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57
58 struct scan_control {
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 unsigned long hibernation_mode;
69
70 /* This context's GFP mask */
71 gfp_t gfp_mask;
72
73 int may_writepage;
74
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
77
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
81 int order;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
91
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130 * From 0 .. 100. Higher means more swappy.
131 */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146 return true;
147 }
148 #endif
149
150 static unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152 int nr;
153
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
156
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
160
161 return nr;
162 }
163
164 bool zone_reclaimable(struct zone *zone)
165 {
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171 if (!mem_cgroup_disabled())
172 return mem_cgroup_get_lru_size(lruvec, lru);
173
174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176
177 /*
178 * Add a shrinker callback to be called from the vm.
179 */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182 size_t size = sizeof(*shrinker->nr_deferred);
183
184 /*
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
188 */
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 size *= nr_node_ids;
194
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
197 return -ENOMEM;
198
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
202 return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205
206 /*
207 * Remove one
208 */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
214 kfree(shrinker->nr_deferred);
215 }
216 EXPORT_SYMBOL(unregister_shrinker);
217
218 #define SHRINK_BATCH 128
219
220 static unsigned long
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 unsigned long nr_pages_scanned, unsigned long lru_pages)
223 {
224 unsigned long freed = 0;
225 unsigned long long delta;
226 long total_scan;
227 long freeable;
228 long nr;
229 long new_nr;
230 int nid = shrinkctl->nid;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
234 freeable = shrinker->count_objects(shrinker, shrinkctl);
235 if (freeable == 0)
236 return 0;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= freeable;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR
252 "shrink_slab: %pF negative objects to delete nr=%ld\n",
253 shrinker->scan_objects, total_scan);
254 total_scan = freeable;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * freeable. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < freeable / 4)
270 total_scan = min(total_scan, freeable / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > freeable * 2)
278 total_scan = freeable * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 nr_pages_scanned, lru_pages,
282 freeable, delta, total_scan);
283
284 /*
285 * Normally, we should not scan less than batch_size objects in one
286 * pass to avoid too frequent shrinker calls, but if the slab has less
287 * than batch_size objects in total and we are really tight on memory,
288 * we will try to reclaim all available objects, otherwise we can end
289 * up failing allocations although there are plenty of reclaimable
290 * objects spread over several slabs with usage less than the
291 * batch_size.
292 *
293 * We detect the "tight on memory" situations by looking at the total
294 * number of objects we want to scan (total_scan). If it is greater
295 * than the total number of objects on slab (freeable), we must be
296 * scanning at high prio and therefore should try to reclaim as much as
297 * possible.
298 */
299 while (total_scan >= batch_size ||
300 total_scan >= freeable) {
301 unsigned long ret;
302 unsigned long nr_to_scan = min(batch_size, total_scan);
303
304 shrinkctl->nr_to_scan = nr_to_scan;
305 ret = shrinker->scan_objects(shrinker, shrinkctl);
306 if (ret == SHRINK_STOP)
307 break;
308 freed += ret;
309
310 count_vm_events(SLABS_SCANNED, nr_to_scan);
311 total_scan -= nr_to_scan;
312
313 cond_resched();
314 }
315
316 /*
317 * move the unused scan count back into the shrinker in a
318 * manner that handles concurrent updates. If we exhausted the
319 * scan, there is no need to do an update.
320 */
321 if (total_scan > 0)
322 new_nr = atomic_long_add_return(total_scan,
323 &shrinker->nr_deferred[nid]);
324 else
325 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
326
327 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
328 return freed;
329 }
330
331 /*
332 * Call the shrink functions to age shrinkable caches
333 *
334 * Here we assume it costs one seek to replace a lru page and that it also
335 * takes a seek to recreate a cache object. With this in mind we age equal
336 * percentages of the lru and ageable caches. This should balance the seeks
337 * generated by these structures.
338 *
339 * If the vm encountered mapped pages on the LRU it increase the pressure on
340 * slab to avoid swapping.
341 *
342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
343 *
344 * `lru_pages' represents the number of on-LRU pages in all the zones which
345 * are eligible for the caller's allocation attempt. It is used for balancing
346 * slab reclaim versus page reclaim.
347 *
348 * Returns the number of slab objects which we shrunk.
349 */
350 unsigned long shrink_slab(struct shrink_control *shrinkctl,
351 unsigned long nr_pages_scanned,
352 unsigned long lru_pages)
353 {
354 struct shrinker *shrinker;
355 unsigned long freed = 0;
356
357 if (nr_pages_scanned == 0)
358 nr_pages_scanned = SWAP_CLUSTER_MAX;
359
360 if (!down_read_trylock(&shrinker_rwsem)) {
361 /*
362 * If we would return 0, our callers would understand that we
363 * have nothing else to shrink and give up trying. By returning
364 * 1 we keep it going and assume we'll be able to shrink next
365 * time.
366 */
367 freed = 1;
368 goto out;
369 }
370
371 list_for_each_entry(shrinker, &shrinker_list, list) {
372 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
373 shrinkctl->nid = 0;
374 freed += shrink_slab_node(shrinkctl, shrinker,
375 nr_pages_scanned, lru_pages);
376 continue;
377 }
378
379 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
380 if (node_online(shrinkctl->nid))
381 freed += shrink_slab_node(shrinkctl, shrinker,
382 nr_pages_scanned, lru_pages);
383
384 }
385 }
386 up_read(&shrinker_rwsem);
387 out:
388 cond_resched();
389 return freed;
390 }
391
392 static inline int is_page_cache_freeable(struct page *page)
393 {
394 /*
395 * A freeable page cache page is referenced only by the caller
396 * that isolated the page, the page cache radix tree and
397 * optional buffer heads at page->private.
398 */
399 return page_count(page) - page_has_private(page) == 2;
400 }
401
402 static int may_write_to_queue(struct backing_dev_info *bdi,
403 struct scan_control *sc)
404 {
405 if (current->flags & PF_SWAPWRITE)
406 return 1;
407 if (!bdi_write_congested(bdi))
408 return 1;
409 if (bdi == current->backing_dev_info)
410 return 1;
411 return 0;
412 }
413
414 /*
415 * We detected a synchronous write error writing a page out. Probably
416 * -ENOSPC. We need to propagate that into the address_space for a subsequent
417 * fsync(), msync() or close().
418 *
419 * The tricky part is that after writepage we cannot touch the mapping: nothing
420 * prevents it from being freed up. But we have a ref on the page and once
421 * that page is locked, the mapping is pinned.
422 *
423 * We're allowed to run sleeping lock_page() here because we know the caller has
424 * __GFP_FS.
425 */
426 static void handle_write_error(struct address_space *mapping,
427 struct page *page, int error)
428 {
429 lock_page(page);
430 if (page_mapping(page) == mapping)
431 mapping_set_error(mapping, error);
432 unlock_page(page);
433 }
434
435 /* possible outcome of pageout() */
436 typedef enum {
437 /* failed to write page out, page is locked */
438 PAGE_KEEP,
439 /* move page to the active list, page is locked */
440 PAGE_ACTIVATE,
441 /* page has been sent to the disk successfully, page is unlocked */
442 PAGE_SUCCESS,
443 /* page is clean and locked */
444 PAGE_CLEAN,
445 } pageout_t;
446
447 /*
448 * pageout is called by shrink_page_list() for each dirty page.
449 * Calls ->writepage().
450 */
451 static pageout_t pageout(struct page *page, struct address_space *mapping,
452 struct scan_control *sc)
453 {
454 /*
455 * If the page is dirty, only perform writeback if that write
456 * will be non-blocking. To prevent this allocation from being
457 * stalled by pagecache activity. But note that there may be
458 * stalls if we need to run get_block(). We could test
459 * PagePrivate for that.
460 *
461 * If this process is currently in __generic_file_aio_write() against
462 * this page's queue, we can perform writeback even if that
463 * will block.
464 *
465 * If the page is swapcache, write it back even if that would
466 * block, for some throttling. This happens by accident, because
467 * swap_backing_dev_info is bust: it doesn't reflect the
468 * congestion state of the swapdevs. Easy to fix, if needed.
469 */
470 if (!is_page_cache_freeable(page))
471 return PAGE_KEEP;
472 if (!mapping) {
473 /*
474 * Some data journaling orphaned pages can have
475 * page->mapping == NULL while being dirty with clean buffers.
476 */
477 if (page_has_private(page)) {
478 if (try_to_free_buffers(page)) {
479 ClearPageDirty(page);
480 printk("%s: orphaned page\n", __func__);
481 return PAGE_CLEAN;
482 }
483 }
484 return PAGE_KEEP;
485 }
486 if (mapping->a_ops->writepage == NULL)
487 return PAGE_ACTIVATE;
488 if (!may_write_to_queue(mapping->backing_dev_info, sc))
489 return PAGE_KEEP;
490
491 if (clear_page_dirty_for_io(page)) {
492 int res;
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = SWAP_CLUSTER_MAX,
496 .range_start = 0,
497 .range_end = LLONG_MAX,
498 .for_reclaim = 1,
499 };
500
501 SetPageReclaim(page);
502 res = mapping->a_ops->writepage(page, &wbc);
503 if (res < 0)
504 handle_write_error(mapping, page, res);
505 if (res == AOP_WRITEPAGE_ACTIVATE) {
506 ClearPageReclaim(page);
507 return PAGE_ACTIVATE;
508 }
509
510 if (!PageWriteback(page)) {
511 /* synchronous write or broken a_ops? */
512 ClearPageReclaim(page);
513 }
514 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515 inc_zone_page_state(page, NR_VMSCAN_WRITE);
516 return PAGE_SUCCESS;
517 }
518
519 return PAGE_CLEAN;
520 }
521
522 /*
523 * Same as remove_mapping, but if the page is removed from the mapping, it
524 * gets returned with a refcount of 0.
525 */
526 static int __remove_mapping(struct address_space *mapping, struct page *page,
527 bool reclaimed)
528 {
529 BUG_ON(!PageLocked(page));
530 BUG_ON(mapping != page_mapping(page));
531
532 spin_lock_irq(&mapping->tree_lock);
533 /*
534 * The non racy check for a busy page.
535 *
536 * Must be careful with the order of the tests. When someone has
537 * a ref to the page, it may be possible that they dirty it then
538 * drop the reference. So if PageDirty is tested before page_count
539 * here, then the following race may occur:
540 *
541 * get_user_pages(&page);
542 * [user mapping goes away]
543 * write_to(page);
544 * !PageDirty(page) [good]
545 * SetPageDirty(page);
546 * put_page(page);
547 * !page_count(page) [good, discard it]
548 *
549 * [oops, our write_to data is lost]
550 *
551 * Reversing the order of the tests ensures such a situation cannot
552 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
553 * load is not satisfied before that of page->_count.
554 *
555 * Note that if SetPageDirty is always performed via set_page_dirty,
556 * and thus under tree_lock, then this ordering is not required.
557 */
558 if (!page_freeze_refs(page, 2))
559 goto cannot_free;
560 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
561 if (unlikely(PageDirty(page))) {
562 page_unfreeze_refs(page, 2);
563 goto cannot_free;
564 }
565
566 if (PageSwapCache(page)) {
567 swp_entry_t swap = { .val = page_private(page) };
568 __delete_from_swap_cache(page);
569 spin_unlock_irq(&mapping->tree_lock);
570 swapcache_free(swap, page);
571 } else {
572 void (*freepage)(struct page *);
573 void *shadow = NULL;
574
575 freepage = mapping->a_ops->freepage;
576 /*
577 * Remember a shadow entry for reclaimed file cache in
578 * order to detect refaults, thus thrashing, later on.
579 *
580 * But don't store shadows in an address space that is
581 * already exiting. This is not just an optizimation,
582 * inode reclaim needs to empty out the radix tree or
583 * the nodes are lost. Don't plant shadows behind its
584 * back.
585 */
586 if (reclaimed && page_is_file_cache(page) &&
587 !mapping_exiting(mapping))
588 shadow = workingset_eviction(mapping, page);
589 __delete_from_page_cache(page, shadow);
590 spin_unlock_irq(&mapping->tree_lock);
591 mem_cgroup_uncharge_cache_page(page);
592
593 if (freepage != NULL)
594 freepage(page);
595 }
596
597 return 1;
598
599 cannot_free:
600 spin_unlock_irq(&mapping->tree_lock);
601 return 0;
602 }
603
604 /*
605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
606 * someone else has a ref on the page, abort and return 0. If it was
607 * successfully detached, return 1. Assumes the caller has a single ref on
608 * this page.
609 */
610 int remove_mapping(struct address_space *mapping, struct page *page)
611 {
612 if (__remove_mapping(mapping, page, false)) {
613 /*
614 * Unfreezing the refcount with 1 rather than 2 effectively
615 * drops the pagecache ref for us without requiring another
616 * atomic operation.
617 */
618 page_unfreeze_refs(page, 1);
619 return 1;
620 }
621 return 0;
622 }
623
624 /**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633 void putback_lru_page(struct page *page)
634 {
635 bool is_unevictable;
636 int was_unevictable = PageUnevictable(page);
637
638 VM_BUG_ON_PAGE(PageLRU(page), page);
639
640 redo:
641 ClearPageUnevictable(page);
642
643 if (page_evictable(page)) {
644 /*
645 * For evictable pages, we can use the cache.
646 * In event of a race, worst case is we end up with an
647 * unevictable page on [in]active list.
648 * We know how to handle that.
649 */
650 is_unevictable = false;
651 lru_cache_add(page);
652 } else {
653 /*
654 * Put unevictable pages directly on zone's unevictable
655 * list.
656 */
657 is_unevictable = true;
658 add_page_to_unevictable_list(page);
659 /*
660 * When racing with an mlock or AS_UNEVICTABLE clearing
661 * (page is unlocked) make sure that if the other thread
662 * does not observe our setting of PG_lru and fails
663 * isolation/check_move_unevictable_pages,
664 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665 * the page back to the evictable list.
666 *
667 * The other side is TestClearPageMlocked() or shmem_lock().
668 */
669 smp_mb();
670 }
671
672 /*
673 * page's status can change while we move it among lru. If an evictable
674 * page is on unevictable list, it never be freed. To avoid that,
675 * check after we added it to the list, again.
676 */
677 if (is_unevictable && page_evictable(page)) {
678 if (!isolate_lru_page(page)) {
679 put_page(page);
680 goto redo;
681 }
682 /* This means someone else dropped this page from LRU
683 * So, it will be freed or putback to LRU again. There is
684 * nothing to do here.
685 */
686 }
687
688 if (was_unevictable && !is_unevictable)
689 count_vm_event(UNEVICTABLE_PGRESCUED);
690 else if (!was_unevictable && is_unevictable)
691 count_vm_event(UNEVICTABLE_PGCULLED);
692
693 put_page(page); /* drop ref from isolate */
694 }
695
696 enum page_references {
697 PAGEREF_RECLAIM,
698 PAGEREF_RECLAIM_CLEAN,
699 PAGEREF_KEEP,
700 PAGEREF_ACTIVATE,
701 };
702
703 static enum page_references page_check_references(struct page *page,
704 struct scan_control *sc)
705 {
706 int referenced_ptes, referenced_page;
707 unsigned long vm_flags;
708
709 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
710 &vm_flags);
711 referenced_page = TestClearPageReferenced(page);
712
713 /*
714 * Mlock lost the isolation race with us. Let try_to_unmap()
715 * move the page to the unevictable list.
716 */
717 if (vm_flags & VM_LOCKED)
718 return PAGEREF_RECLAIM;
719
720 if (referenced_ptes) {
721 if (PageSwapBacked(page))
722 return PAGEREF_ACTIVATE;
723 /*
724 * All mapped pages start out with page table
725 * references from the instantiating fault, so we need
726 * to look twice if a mapped file page is used more
727 * than once.
728 *
729 * Mark it and spare it for another trip around the
730 * inactive list. Another page table reference will
731 * lead to its activation.
732 *
733 * Note: the mark is set for activated pages as well
734 * so that recently deactivated but used pages are
735 * quickly recovered.
736 */
737 SetPageReferenced(page);
738
739 if (referenced_page || referenced_ptes > 1)
740 return PAGEREF_ACTIVATE;
741
742 /*
743 * Activate file-backed executable pages after first usage.
744 */
745 if (vm_flags & VM_EXEC)
746 return PAGEREF_ACTIVATE;
747
748 return PAGEREF_KEEP;
749 }
750
751 /* Reclaim if clean, defer dirty pages to writeback */
752 if (referenced_page && !PageSwapBacked(page))
753 return PAGEREF_RECLAIM_CLEAN;
754
755 return PAGEREF_RECLAIM;
756 }
757
758 /* Check if a page is dirty or under writeback */
759 static void page_check_dirty_writeback(struct page *page,
760 bool *dirty, bool *writeback)
761 {
762 struct address_space *mapping;
763
764 /*
765 * Anonymous pages are not handled by flushers and must be written
766 * from reclaim context. Do not stall reclaim based on them
767 */
768 if (!page_is_file_cache(page)) {
769 *dirty = false;
770 *writeback = false;
771 return;
772 }
773
774 /* By default assume that the page flags are accurate */
775 *dirty = PageDirty(page);
776 *writeback = PageWriteback(page);
777
778 /* Verify dirty/writeback state if the filesystem supports it */
779 if (!page_has_private(page))
780 return;
781
782 mapping = page_mapping(page);
783 if (mapping && mapping->a_ops->is_dirty_writeback)
784 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
785 }
786
787 /*
788 * shrink_page_list() returns the number of reclaimed pages
789 */
790 static unsigned long shrink_page_list(struct list_head *page_list,
791 struct zone *zone,
792 struct scan_control *sc,
793 enum ttu_flags ttu_flags,
794 unsigned long *ret_nr_dirty,
795 unsigned long *ret_nr_unqueued_dirty,
796 unsigned long *ret_nr_congested,
797 unsigned long *ret_nr_writeback,
798 unsigned long *ret_nr_immediate,
799 bool force_reclaim)
800 {
801 LIST_HEAD(ret_pages);
802 LIST_HEAD(free_pages);
803 int pgactivate = 0;
804 unsigned long nr_unqueued_dirty = 0;
805 unsigned long nr_dirty = 0;
806 unsigned long nr_congested = 0;
807 unsigned long nr_reclaimed = 0;
808 unsigned long nr_writeback = 0;
809 unsigned long nr_immediate = 0;
810
811 cond_resched();
812
813 mem_cgroup_uncharge_start();
814 while (!list_empty(page_list)) {
815 struct address_space *mapping;
816 struct page *page;
817 int may_enter_fs;
818 enum page_references references = PAGEREF_RECLAIM_CLEAN;
819 bool dirty, writeback;
820
821 cond_resched();
822
823 page = lru_to_page(page_list);
824 list_del(&page->lru);
825
826 if (!trylock_page(page))
827 goto keep;
828
829 VM_BUG_ON_PAGE(PageActive(page), page);
830 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
831
832 sc->nr_scanned++;
833
834 if (unlikely(!page_evictable(page)))
835 goto cull_mlocked;
836
837 if (!sc->may_unmap && page_mapped(page))
838 goto keep_locked;
839
840 /* Double the slab pressure for mapped and swapcache pages */
841 if (page_mapped(page) || PageSwapCache(page))
842 sc->nr_scanned++;
843
844 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
845 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
846
847 /*
848 * The number of dirty pages determines if a zone is marked
849 * reclaim_congested which affects wait_iff_congested. kswapd
850 * will stall and start writing pages if the tail of the LRU
851 * is all dirty unqueued pages.
852 */
853 page_check_dirty_writeback(page, &dirty, &writeback);
854 if (dirty || writeback)
855 nr_dirty++;
856
857 if (dirty && !writeback)
858 nr_unqueued_dirty++;
859
860 /*
861 * Treat this page as congested if the underlying BDI is or if
862 * pages are cycling through the LRU so quickly that the
863 * pages marked for immediate reclaim are making it to the
864 * end of the LRU a second time.
865 */
866 mapping = page_mapping(page);
867 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
868 (writeback && PageReclaim(page)))
869 nr_congested++;
870
871 /*
872 * If a page at the tail of the LRU is under writeback, there
873 * are three cases to consider.
874 *
875 * 1) If reclaim is encountering an excessive number of pages
876 * under writeback and this page is both under writeback and
877 * PageReclaim then it indicates that pages are being queued
878 * for IO but are being recycled through the LRU before the
879 * IO can complete. Waiting on the page itself risks an
880 * indefinite stall if it is impossible to writeback the
881 * page due to IO error or disconnected storage so instead
882 * note that the LRU is being scanned too quickly and the
883 * caller can stall after page list has been processed.
884 *
885 * 2) Global reclaim encounters a page, memcg encounters a
886 * page that is not marked for immediate reclaim or
887 * the caller does not have __GFP_IO. In this case mark
888 * the page for immediate reclaim and continue scanning.
889 *
890 * __GFP_IO is checked because a loop driver thread might
891 * enter reclaim, and deadlock if it waits on a page for
892 * which it is needed to do the write (loop masks off
893 * __GFP_IO|__GFP_FS for this reason); but more thought
894 * would probably show more reasons.
895 *
896 * Don't require __GFP_FS, since we're not going into the
897 * FS, just waiting on its writeback completion. Worryingly,
898 * ext4 gfs2 and xfs allocate pages with
899 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
900 * may_enter_fs here is liable to OOM on them.
901 *
902 * 3) memcg encounters a page that is not already marked
903 * PageReclaim. memcg does not have any dirty pages
904 * throttling so we could easily OOM just because too many
905 * pages are in writeback and there is nothing else to
906 * reclaim. Wait for the writeback to complete.
907 */
908 if (PageWriteback(page)) {
909 /* Case 1 above */
910 if (current_is_kswapd() &&
911 PageReclaim(page) &&
912 zone_is_reclaim_writeback(zone)) {
913 nr_immediate++;
914 goto keep_locked;
915
916 /* Case 2 above */
917 } else if (global_reclaim(sc) ||
918 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
919 /*
920 * This is slightly racy - end_page_writeback()
921 * might have just cleared PageReclaim, then
922 * setting PageReclaim here end up interpreted
923 * as PageReadahead - but that does not matter
924 * enough to care. What we do want is for this
925 * page to have PageReclaim set next time memcg
926 * reclaim reaches the tests above, so it will
927 * then wait_on_page_writeback() to avoid OOM;
928 * and it's also appropriate in global reclaim.
929 */
930 SetPageReclaim(page);
931 nr_writeback++;
932
933 goto keep_locked;
934
935 /* Case 3 above */
936 } else {
937 wait_on_page_writeback(page);
938 }
939 }
940
941 if (!force_reclaim)
942 references = page_check_references(page, sc);
943
944 switch (references) {
945 case PAGEREF_ACTIVATE:
946 goto activate_locked;
947 case PAGEREF_KEEP:
948 goto keep_locked;
949 case PAGEREF_RECLAIM:
950 case PAGEREF_RECLAIM_CLEAN:
951 ; /* try to reclaim the page below */
952 }
953
954 /*
955 * Anonymous process memory has backing store?
956 * Try to allocate it some swap space here.
957 */
958 if (PageAnon(page) && !PageSwapCache(page)) {
959 if (!(sc->gfp_mask & __GFP_IO))
960 goto keep_locked;
961 if (!add_to_swap(page, page_list))
962 goto activate_locked;
963 may_enter_fs = 1;
964
965 /* Adding to swap updated mapping */
966 mapping = page_mapping(page);
967 }
968
969 /*
970 * The page is mapped into the page tables of one or more
971 * processes. Try to unmap it here.
972 */
973 if (page_mapped(page) && mapping) {
974 switch (try_to_unmap(page, ttu_flags)) {
975 case SWAP_FAIL:
976 goto activate_locked;
977 case SWAP_AGAIN:
978 goto keep_locked;
979 case SWAP_MLOCK:
980 goto cull_mlocked;
981 case SWAP_SUCCESS:
982 ; /* try to free the page below */
983 }
984 }
985
986 if (PageDirty(page)) {
987 /*
988 * Only kswapd can writeback filesystem pages to
989 * avoid risk of stack overflow but only writeback
990 * if many dirty pages have been encountered.
991 */
992 if (page_is_file_cache(page) &&
993 (!current_is_kswapd() ||
994 !zone_is_reclaim_dirty(zone))) {
995 /*
996 * Immediately reclaim when written back.
997 * Similar in principal to deactivate_page()
998 * except we already have the page isolated
999 * and know it's dirty
1000 */
1001 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1002 SetPageReclaim(page);
1003
1004 goto keep_locked;
1005 }
1006
1007 if (references == PAGEREF_RECLAIM_CLEAN)
1008 goto keep_locked;
1009 if (!may_enter_fs)
1010 goto keep_locked;
1011 if (!sc->may_writepage)
1012 goto keep_locked;
1013
1014 /* Page is dirty, try to write it out here */
1015 switch (pageout(page, mapping, sc)) {
1016 case PAGE_KEEP:
1017 goto keep_locked;
1018 case PAGE_ACTIVATE:
1019 goto activate_locked;
1020 case PAGE_SUCCESS:
1021 if (PageWriteback(page))
1022 goto keep;
1023 if (PageDirty(page))
1024 goto keep;
1025
1026 /*
1027 * A synchronous write - probably a ramdisk. Go
1028 * ahead and try to reclaim the page.
1029 */
1030 if (!trylock_page(page))
1031 goto keep;
1032 if (PageDirty(page) || PageWriteback(page))
1033 goto keep_locked;
1034 mapping = page_mapping(page);
1035 case PAGE_CLEAN:
1036 ; /* try to free the page below */
1037 }
1038 }
1039
1040 /*
1041 * If the page has buffers, try to free the buffer mappings
1042 * associated with this page. If we succeed we try to free
1043 * the page as well.
1044 *
1045 * We do this even if the page is PageDirty().
1046 * try_to_release_page() does not perform I/O, but it is
1047 * possible for a page to have PageDirty set, but it is actually
1048 * clean (all its buffers are clean). This happens if the
1049 * buffers were written out directly, with submit_bh(). ext3
1050 * will do this, as well as the blockdev mapping.
1051 * try_to_release_page() will discover that cleanness and will
1052 * drop the buffers and mark the page clean - it can be freed.
1053 *
1054 * Rarely, pages can have buffers and no ->mapping. These are
1055 * the pages which were not successfully invalidated in
1056 * truncate_complete_page(). We try to drop those buffers here
1057 * and if that worked, and the page is no longer mapped into
1058 * process address space (page_count == 1) it can be freed.
1059 * Otherwise, leave the page on the LRU so it is swappable.
1060 */
1061 if (page_has_private(page)) {
1062 if (!try_to_release_page(page, sc->gfp_mask))
1063 goto activate_locked;
1064 if (!mapping && page_count(page) == 1) {
1065 unlock_page(page);
1066 if (put_page_testzero(page))
1067 goto free_it;
1068 else {
1069 /*
1070 * rare race with speculative reference.
1071 * the speculative reference will free
1072 * this page shortly, so we may
1073 * increment nr_reclaimed here (and
1074 * leave it off the LRU).
1075 */
1076 nr_reclaimed++;
1077 continue;
1078 }
1079 }
1080 }
1081
1082 if (!mapping || !__remove_mapping(mapping, page, true))
1083 goto keep_locked;
1084
1085 /*
1086 * At this point, we have no other references and there is
1087 * no way to pick any more up (removed from LRU, removed
1088 * from pagecache). Can use non-atomic bitops now (and
1089 * we obviously don't have to worry about waking up a process
1090 * waiting on the page lock, because there are no references.
1091 */
1092 __clear_page_locked(page);
1093 free_it:
1094 nr_reclaimed++;
1095
1096 /*
1097 * Is there need to periodically free_page_list? It would
1098 * appear not as the counts should be low
1099 */
1100 list_add(&page->lru, &free_pages);
1101 continue;
1102
1103 cull_mlocked:
1104 if (PageSwapCache(page))
1105 try_to_free_swap(page);
1106 unlock_page(page);
1107 putback_lru_page(page);
1108 continue;
1109
1110 activate_locked:
1111 /* Not a candidate for swapping, so reclaim swap space. */
1112 if (PageSwapCache(page) && vm_swap_full())
1113 try_to_free_swap(page);
1114 VM_BUG_ON_PAGE(PageActive(page), page);
1115 SetPageActive(page);
1116 pgactivate++;
1117 keep_locked:
1118 unlock_page(page);
1119 keep:
1120 list_add(&page->lru, &ret_pages);
1121 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1122 }
1123
1124 free_hot_cold_page_list(&free_pages, 1);
1125
1126 list_splice(&ret_pages, page_list);
1127 count_vm_events(PGACTIVATE, pgactivate);
1128 mem_cgroup_uncharge_end();
1129 *ret_nr_dirty += nr_dirty;
1130 *ret_nr_congested += nr_congested;
1131 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1132 *ret_nr_writeback += nr_writeback;
1133 *ret_nr_immediate += nr_immediate;
1134 return nr_reclaimed;
1135 }
1136
1137 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1138 struct list_head *page_list)
1139 {
1140 struct scan_control sc = {
1141 .gfp_mask = GFP_KERNEL,
1142 .priority = DEF_PRIORITY,
1143 .may_unmap = 1,
1144 };
1145 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1146 struct page *page, *next;
1147 LIST_HEAD(clean_pages);
1148
1149 list_for_each_entry_safe(page, next, page_list, lru) {
1150 if (page_is_file_cache(page) && !PageDirty(page) &&
1151 !isolated_balloon_page(page)) {
1152 ClearPageActive(page);
1153 list_move(&page->lru, &clean_pages);
1154 }
1155 }
1156
1157 ret = shrink_page_list(&clean_pages, zone, &sc,
1158 TTU_UNMAP|TTU_IGNORE_ACCESS,
1159 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1160 list_splice(&clean_pages, page_list);
1161 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1162 return ret;
1163 }
1164
1165 /*
1166 * Attempt to remove the specified page from its LRU. Only take this page
1167 * if it is of the appropriate PageActive status. Pages which are being
1168 * freed elsewhere are also ignored.
1169 *
1170 * page: page to consider
1171 * mode: one of the LRU isolation modes defined above
1172 *
1173 * returns 0 on success, -ve errno on failure.
1174 */
1175 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1176 {
1177 int ret = -EINVAL;
1178
1179 /* Only take pages on the LRU. */
1180 if (!PageLRU(page))
1181 return ret;
1182
1183 /* Compaction should not handle unevictable pages but CMA can do so */
1184 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1185 return ret;
1186
1187 ret = -EBUSY;
1188
1189 /*
1190 * To minimise LRU disruption, the caller can indicate that it only
1191 * wants to isolate pages it will be able to operate on without
1192 * blocking - clean pages for the most part.
1193 *
1194 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1195 * is used by reclaim when it is cannot write to backing storage
1196 *
1197 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1198 * that it is possible to migrate without blocking
1199 */
1200 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1201 /* All the caller can do on PageWriteback is block */
1202 if (PageWriteback(page))
1203 return ret;
1204
1205 if (PageDirty(page)) {
1206 struct address_space *mapping;
1207
1208 /* ISOLATE_CLEAN means only clean pages */
1209 if (mode & ISOLATE_CLEAN)
1210 return ret;
1211
1212 /*
1213 * Only pages without mappings or that have a
1214 * ->migratepage callback are possible to migrate
1215 * without blocking
1216 */
1217 mapping = page_mapping(page);
1218 if (mapping && !mapping->a_ops->migratepage)
1219 return ret;
1220 }
1221 }
1222
1223 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1224 return ret;
1225
1226 if (likely(get_page_unless_zero(page))) {
1227 /*
1228 * Be careful not to clear PageLRU until after we're
1229 * sure the page is not being freed elsewhere -- the
1230 * page release code relies on it.
1231 */
1232 ClearPageLRU(page);
1233 ret = 0;
1234 }
1235
1236 return ret;
1237 }
1238
1239 /*
1240 * zone->lru_lock is heavily contended. Some of the functions that
1241 * shrink the lists perform better by taking out a batch of pages
1242 * and working on them outside the LRU lock.
1243 *
1244 * For pagecache intensive workloads, this function is the hottest
1245 * spot in the kernel (apart from copy_*_user functions).
1246 *
1247 * Appropriate locks must be held before calling this function.
1248 *
1249 * @nr_to_scan: The number of pages to look through on the list.
1250 * @lruvec: The LRU vector to pull pages from.
1251 * @dst: The temp list to put pages on to.
1252 * @nr_scanned: The number of pages that were scanned.
1253 * @sc: The scan_control struct for this reclaim session
1254 * @mode: One of the LRU isolation modes
1255 * @lru: LRU list id for isolating
1256 *
1257 * returns how many pages were moved onto *@dst.
1258 */
1259 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1260 struct lruvec *lruvec, struct list_head *dst,
1261 unsigned long *nr_scanned, struct scan_control *sc,
1262 isolate_mode_t mode, enum lru_list lru)
1263 {
1264 struct list_head *src = &lruvec->lists[lru];
1265 unsigned long nr_taken = 0;
1266 unsigned long scan;
1267
1268 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1269 struct page *page;
1270 int nr_pages;
1271
1272 page = lru_to_page(src);
1273 prefetchw_prev_lru_page(page, src, flags);
1274
1275 VM_BUG_ON_PAGE(!PageLRU(page), page);
1276
1277 switch (__isolate_lru_page(page, mode)) {
1278 case 0:
1279 nr_pages = hpage_nr_pages(page);
1280 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1281 list_move(&page->lru, dst);
1282 nr_taken += nr_pages;
1283 break;
1284
1285 case -EBUSY:
1286 /* else it is being freed elsewhere */
1287 list_move(&page->lru, src);
1288 continue;
1289
1290 default:
1291 BUG();
1292 }
1293 }
1294
1295 *nr_scanned = scan;
1296 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1297 nr_taken, mode, is_file_lru(lru));
1298 return nr_taken;
1299 }
1300
1301 /**
1302 * isolate_lru_page - tries to isolate a page from its LRU list
1303 * @page: page to isolate from its LRU list
1304 *
1305 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1306 * vmstat statistic corresponding to whatever LRU list the page was on.
1307 *
1308 * Returns 0 if the page was removed from an LRU list.
1309 * Returns -EBUSY if the page was not on an LRU list.
1310 *
1311 * The returned page will have PageLRU() cleared. If it was found on
1312 * the active list, it will have PageActive set. If it was found on
1313 * the unevictable list, it will have the PageUnevictable bit set. That flag
1314 * may need to be cleared by the caller before letting the page go.
1315 *
1316 * The vmstat statistic corresponding to the list on which the page was
1317 * found will be decremented.
1318 *
1319 * Restrictions:
1320 * (1) Must be called with an elevated refcount on the page. This is a
1321 * fundamentnal difference from isolate_lru_pages (which is called
1322 * without a stable reference).
1323 * (2) the lru_lock must not be held.
1324 * (3) interrupts must be enabled.
1325 */
1326 int isolate_lru_page(struct page *page)
1327 {
1328 int ret = -EBUSY;
1329
1330 VM_BUG_ON_PAGE(!page_count(page), page);
1331
1332 if (PageLRU(page)) {
1333 struct zone *zone = page_zone(page);
1334 struct lruvec *lruvec;
1335
1336 spin_lock_irq(&zone->lru_lock);
1337 lruvec = mem_cgroup_page_lruvec(page, zone);
1338 if (PageLRU(page)) {
1339 int lru = page_lru(page);
1340 get_page(page);
1341 ClearPageLRU(page);
1342 del_page_from_lru_list(page, lruvec, lru);
1343 ret = 0;
1344 }
1345 spin_unlock_irq(&zone->lru_lock);
1346 }
1347 return ret;
1348 }
1349
1350 /*
1351 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1352 * then get resheduled. When there are massive number of tasks doing page
1353 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1354 * the LRU list will go small and be scanned faster than necessary, leading to
1355 * unnecessary swapping, thrashing and OOM.
1356 */
1357 static int too_many_isolated(struct zone *zone, int file,
1358 struct scan_control *sc)
1359 {
1360 unsigned long inactive, isolated;
1361
1362 if (current_is_kswapd())
1363 return 0;
1364
1365 if (!global_reclaim(sc))
1366 return 0;
1367
1368 if (file) {
1369 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371 } else {
1372 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1374 }
1375
1376 /*
1377 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1378 * won't get blocked by normal direct-reclaimers, forming a circular
1379 * deadlock.
1380 */
1381 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1382 inactive >>= 3;
1383
1384 return isolated > inactive;
1385 }
1386
1387 static noinline_for_stack void
1388 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1389 {
1390 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1391 struct zone *zone = lruvec_zone(lruvec);
1392 LIST_HEAD(pages_to_free);
1393
1394 /*
1395 * Put back any unfreeable pages.
1396 */
1397 while (!list_empty(page_list)) {
1398 struct page *page = lru_to_page(page_list);
1399 int lru;
1400
1401 VM_BUG_ON_PAGE(PageLRU(page), page);
1402 list_del(&page->lru);
1403 if (unlikely(!page_evictable(page))) {
1404 spin_unlock_irq(&zone->lru_lock);
1405 putback_lru_page(page);
1406 spin_lock_irq(&zone->lru_lock);
1407 continue;
1408 }
1409
1410 lruvec = mem_cgroup_page_lruvec(page, zone);
1411
1412 SetPageLRU(page);
1413 lru = page_lru(page);
1414 add_page_to_lru_list(page, lruvec, lru);
1415
1416 if (is_active_lru(lru)) {
1417 int file = is_file_lru(lru);
1418 int numpages = hpage_nr_pages(page);
1419 reclaim_stat->recent_rotated[file] += numpages;
1420 }
1421 if (put_page_testzero(page)) {
1422 __ClearPageLRU(page);
1423 __ClearPageActive(page);
1424 del_page_from_lru_list(page, lruvec, lru);
1425
1426 if (unlikely(PageCompound(page))) {
1427 spin_unlock_irq(&zone->lru_lock);
1428 (*get_compound_page_dtor(page))(page);
1429 spin_lock_irq(&zone->lru_lock);
1430 } else
1431 list_add(&page->lru, &pages_to_free);
1432 }
1433 }
1434
1435 /*
1436 * To save our caller's stack, now use input list for pages to free.
1437 */
1438 list_splice(&pages_to_free, page_list);
1439 }
1440
1441 /*
1442 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1443 * of reclaimed pages
1444 */
1445 static noinline_for_stack unsigned long
1446 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1447 struct scan_control *sc, enum lru_list lru)
1448 {
1449 LIST_HEAD(page_list);
1450 unsigned long nr_scanned;
1451 unsigned long nr_reclaimed = 0;
1452 unsigned long nr_taken;
1453 unsigned long nr_dirty = 0;
1454 unsigned long nr_congested = 0;
1455 unsigned long nr_unqueued_dirty = 0;
1456 unsigned long nr_writeback = 0;
1457 unsigned long nr_immediate = 0;
1458 isolate_mode_t isolate_mode = 0;
1459 int file = is_file_lru(lru);
1460 struct zone *zone = lruvec_zone(lruvec);
1461 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1462
1463 while (unlikely(too_many_isolated(zone, file, sc))) {
1464 congestion_wait(BLK_RW_ASYNC, HZ/10);
1465
1466 /* We are about to die and free our memory. Return now. */
1467 if (fatal_signal_pending(current))
1468 return SWAP_CLUSTER_MAX;
1469 }
1470
1471 lru_add_drain();
1472
1473 if (!sc->may_unmap)
1474 isolate_mode |= ISOLATE_UNMAPPED;
1475 if (!sc->may_writepage)
1476 isolate_mode |= ISOLATE_CLEAN;
1477
1478 spin_lock_irq(&zone->lru_lock);
1479
1480 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1481 &nr_scanned, sc, isolate_mode, lru);
1482
1483 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1484 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1485
1486 if (global_reclaim(sc)) {
1487 zone->pages_scanned += nr_scanned;
1488 if (current_is_kswapd())
1489 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1490 else
1491 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1492 }
1493 spin_unlock_irq(&zone->lru_lock);
1494
1495 if (nr_taken == 0)
1496 return 0;
1497
1498 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1499 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1500 &nr_writeback, &nr_immediate,
1501 false);
1502
1503 spin_lock_irq(&zone->lru_lock);
1504
1505 reclaim_stat->recent_scanned[file] += nr_taken;
1506
1507 if (global_reclaim(sc)) {
1508 if (current_is_kswapd())
1509 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1510 nr_reclaimed);
1511 else
1512 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1513 nr_reclaimed);
1514 }
1515
1516 putback_inactive_pages(lruvec, &page_list);
1517
1518 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1519
1520 spin_unlock_irq(&zone->lru_lock);
1521
1522 free_hot_cold_page_list(&page_list, 1);
1523
1524 /*
1525 * If reclaim is isolating dirty pages under writeback, it implies
1526 * that the long-lived page allocation rate is exceeding the page
1527 * laundering rate. Either the global limits are not being effective
1528 * at throttling processes due to the page distribution throughout
1529 * zones or there is heavy usage of a slow backing device. The
1530 * only option is to throttle from reclaim context which is not ideal
1531 * as there is no guarantee the dirtying process is throttled in the
1532 * same way balance_dirty_pages() manages.
1533 *
1534 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1535 * of pages under pages flagged for immediate reclaim and stall if any
1536 * are encountered in the nr_immediate check below.
1537 */
1538 if (nr_writeback && nr_writeback == nr_taken)
1539 zone_set_flag(zone, ZONE_WRITEBACK);
1540
1541 /*
1542 * memcg will stall in page writeback so only consider forcibly
1543 * stalling for global reclaim
1544 */
1545 if (global_reclaim(sc)) {
1546 /*
1547 * Tag a zone as congested if all the dirty pages scanned were
1548 * backed by a congested BDI and wait_iff_congested will stall.
1549 */
1550 if (nr_dirty && nr_dirty == nr_congested)
1551 zone_set_flag(zone, ZONE_CONGESTED);
1552
1553 /*
1554 * If dirty pages are scanned that are not queued for IO, it
1555 * implies that flushers are not keeping up. In this case, flag
1556 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1557 * pages from reclaim context. It will forcibly stall in the
1558 * next check.
1559 */
1560 if (nr_unqueued_dirty == nr_taken)
1561 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1562
1563 /*
1564 * In addition, if kswapd scans pages marked marked for
1565 * immediate reclaim and under writeback (nr_immediate), it
1566 * implies that pages are cycling through the LRU faster than
1567 * they are written so also forcibly stall.
1568 */
1569 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1570 congestion_wait(BLK_RW_ASYNC, HZ/10);
1571 }
1572
1573 /*
1574 * Stall direct reclaim for IO completions if underlying BDIs or zone
1575 * is congested. Allow kswapd to continue until it starts encountering
1576 * unqueued dirty pages or cycling through the LRU too quickly.
1577 */
1578 if (!sc->hibernation_mode && !current_is_kswapd())
1579 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1580
1581 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1582 zone_idx(zone),
1583 nr_scanned, nr_reclaimed,
1584 sc->priority,
1585 trace_shrink_flags(file));
1586 return nr_reclaimed;
1587 }
1588
1589 /*
1590 * This moves pages from the active list to the inactive list.
1591 *
1592 * We move them the other way if the page is referenced by one or more
1593 * processes, from rmap.
1594 *
1595 * If the pages are mostly unmapped, the processing is fast and it is
1596 * appropriate to hold zone->lru_lock across the whole operation. But if
1597 * the pages are mapped, the processing is slow (page_referenced()) so we
1598 * should drop zone->lru_lock around each page. It's impossible to balance
1599 * this, so instead we remove the pages from the LRU while processing them.
1600 * It is safe to rely on PG_active against the non-LRU pages in here because
1601 * nobody will play with that bit on a non-LRU page.
1602 *
1603 * The downside is that we have to touch page->_count against each page.
1604 * But we had to alter page->flags anyway.
1605 */
1606
1607 static void move_active_pages_to_lru(struct lruvec *lruvec,
1608 struct list_head *list,
1609 struct list_head *pages_to_free,
1610 enum lru_list lru)
1611 {
1612 struct zone *zone = lruvec_zone(lruvec);
1613 unsigned long pgmoved = 0;
1614 struct page *page;
1615 int nr_pages;
1616
1617 while (!list_empty(list)) {
1618 page = lru_to_page(list);
1619 lruvec = mem_cgroup_page_lruvec(page, zone);
1620
1621 VM_BUG_ON_PAGE(PageLRU(page), page);
1622 SetPageLRU(page);
1623
1624 nr_pages = hpage_nr_pages(page);
1625 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1626 list_move(&page->lru, &lruvec->lists[lru]);
1627 pgmoved += nr_pages;
1628
1629 if (put_page_testzero(page)) {
1630 __ClearPageLRU(page);
1631 __ClearPageActive(page);
1632 del_page_from_lru_list(page, lruvec, lru);
1633
1634 if (unlikely(PageCompound(page))) {
1635 spin_unlock_irq(&zone->lru_lock);
1636 (*get_compound_page_dtor(page))(page);
1637 spin_lock_irq(&zone->lru_lock);
1638 } else
1639 list_add(&page->lru, pages_to_free);
1640 }
1641 }
1642 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1643 if (!is_active_lru(lru))
1644 __count_vm_events(PGDEACTIVATE, pgmoved);
1645 }
1646
1647 static void shrink_active_list(unsigned long nr_to_scan,
1648 struct lruvec *lruvec,
1649 struct scan_control *sc,
1650 enum lru_list lru)
1651 {
1652 unsigned long nr_taken;
1653 unsigned long nr_scanned;
1654 unsigned long vm_flags;
1655 LIST_HEAD(l_hold); /* The pages which were snipped off */
1656 LIST_HEAD(l_active);
1657 LIST_HEAD(l_inactive);
1658 struct page *page;
1659 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1660 unsigned long nr_rotated = 0;
1661 isolate_mode_t isolate_mode = 0;
1662 int file = is_file_lru(lru);
1663 struct zone *zone = lruvec_zone(lruvec);
1664
1665 lru_add_drain();
1666
1667 if (!sc->may_unmap)
1668 isolate_mode |= ISOLATE_UNMAPPED;
1669 if (!sc->may_writepage)
1670 isolate_mode |= ISOLATE_CLEAN;
1671
1672 spin_lock_irq(&zone->lru_lock);
1673
1674 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1675 &nr_scanned, sc, isolate_mode, lru);
1676 if (global_reclaim(sc))
1677 zone->pages_scanned += nr_scanned;
1678
1679 reclaim_stat->recent_scanned[file] += nr_taken;
1680
1681 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1682 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1683 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1684 spin_unlock_irq(&zone->lru_lock);
1685
1686 while (!list_empty(&l_hold)) {
1687 cond_resched();
1688 page = lru_to_page(&l_hold);
1689 list_del(&page->lru);
1690
1691 if (unlikely(!page_evictable(page))) {
1692 putback_lru_page(page);
1693 continue;
1694 }
1695
1696 if (unlikely(buffer_heads_over_limit)) {
1697 if (page_has_private(page) && trylock_page(page)) {
1698 if (page_has_private(page))
1699 try_to_release_page(page, 0);
1700 unlock_page(page);
1701 }
1702 }
1703
1704 if (page_referenced(page, 0, sc->target_mem_cgroup,
1705 &vm_flags)) {
1706 nr_rotated += hpage_nr_pages(page);
1707 /*
1708 * Identify referenced, file-backed active pages and
1709 * give them one more trip around the active list. So
1710 * that executable code get better chances to stay in
1711 * memory under moderate memory pressure. Anon pages
1712 * are not likely to be evicted by use-once streaming
1713 * IO, plus JVM can create lots of anon VM_EXEC pages,
1714 * so we ignore them here.
1715 */
1716 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1717 list_add(&page->lru, &l_active);
1718 continue;
1719 }
1720 }
1721
1722 ClearPageActive(page); /* we are de-activating */
1723 list_add(&page->lru, &l_inactive);
1724 }
1725
1726 /*
1727 * Move pages back to the lru list.
1728 */
1729 spin_lock_irq(&zone->lru_lock);
1730 /*
1731 * Count referenced pages from currently used mappings as rotated,
1732 * even though only some of them are actually re-activated. This
1733 * helps balance scan pressure between file and anonymous pages in
1734 * get_scan_ratio.
1735 */
1736 reclaim_stat->recent_rotated[file] += nr_rotated;
1737
1738 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1739 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1740 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1741 spin_unlock_irq(&zone->lru_lock);
1742
1743 free_hot_cold_page_list(&l_hold, 1);
1744 }
1745
1746 #ifdef CONFIG_SWAP
1747 static int inactive_anon_is_low_global(struct zone *zone)
1748 {
1749 unsigned long active, inactive;
1750
1751 active = zone_page_state(zone, NR_ACTIVE_ANON);
1752 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1753
1754 if (inactive * zone->inactive_ratio < active)
1755 return 1;
1756
1757 return 0;
1758 }
1759
1760 /**
1761 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1762 * @lruvec: LRU vector to check
1763 *
1764 * Returns true if the zone does not have enough inactive anon pages,
1765 * meaning some active anon pages need to be deactivated.
1766 */
1767 static int inactive_anon_is_low(struct lruvec *lruvec)
1768 {
1769 /*
1770 * If we don't have swap space, anonymous page deactivation
1771 * is pointless.
1772 */
1773 if (!total_swap_pages)
1774 return 0;
1775
1776 if (!mem_cgroup_disabled())
1777 return mem_cgroup_inactive_anon_is_low(lruvec);
1778
1779 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1780 }
1781 #else
1782 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1783 {
1784 return 0;
1785 }
1786 #endif
1787
1788 /**
1789 * inactive_file_is_low - check if file pages need to be deactivated
1790 * @lruvec: LRU vector to check
1791 *
1792 * When the system is doing streaming IO, memory pressure here
1793 * ensures that active file pages get deactivated, until more
1794 * than half of the file pages are on the inactive list.
1795 *
1796 * Once we get to that situation, protect the system's working
1797 * set from being evicted by disabling active file page aging.
1798 *
1799 * This uses a different ratio than the anonymous pages, because
1800 * the page cache uses a use-once replacement algorithm.
1801 */
1802 static int inactive_file_is_low(struct lruvec *lruvec)
1803 {
1804 unsigned long inactive;
1805 unsigned long active;
1806
1807 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1808 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1809
1810 return active > inactive;
1811 }
1812
1813 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1814 {
1815 if (is_file_lru(lru))
1816 return inactive_file_is_low(lruvec);
1817 else
1818 return inactive_anon_is_low(lruvec);
1819 }
1820
1821 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1822 struct lruvec *lruvec, struct scan_control *sc)
1823 {
1824 if (is_active_lru(lru)) {
1825 if (inactive_list_is_low(lruvec, lru))
1826 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1827 return 0;
1828 }
1829
1830 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1831 }
1832
1833 static int vmscan_swappiness(struct scan_control *sc)
1834 {
1835 if (global_reclaim(sc))
1836 return vm_swappiness;
1837 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1838 }
1839
1840 enum scan_balance {
1841 SCAN_EQUAL,
1842 SCAN_FRACT,
1843 SCAN_ANON,
1844 SCAN_FILE,
1845 };
1846
1847 /*
1848 * Determine how aggressively the anon and file LRU lists should be
1849 * scanned. The relative value of each set of LRU lists is determined
1850 * by looking at the fraction of the pages scanned we did rotate back
1851 * onto the active list instead of evict.
1852 *
1853 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1854 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1855 */
1856 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1857 unsigned long *nr)
1858 {
1859 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1860 u64 fraction[2];
1861 u64 denominator = 0; /* gcc */
1862 struct zone *zone = lruvec_zone(lruvec);
1863 unsigned long anon_prio, file_prio;
1864 enum scan_balance scan_balance;
1865 unsigned long anon, file, free;
1866 bool force_scan = false;
1867 unsigned long ap, fp;
1868 enum lru_list lru;
1869
1870 /*
1871 * If the zone or memcg is small, nr[l] can be 0. This
1872 * results in no scanning on this priority and a potential
1873 * priority drop. Global direct reclaim can go to the next
1874 * zone and tends to have no problems. Global kswapd is for
1875 * zone balancing and it needs to scan a minimum amount. When
1876 * reclaiming for a memcg, a priority drop can cause high
1877 * latencies, so it's better to scan a minimum amount there as
1878 * well.
1879 */
1880 if (current_is_kswapd() && !zone_reclaimable(zone))
1881 force_scan = true;
1882 if (!global_reclaim(sc))
1883 force_scan = true;
1884
1885 /* If we have no swap space, do not bother scanning anon pages. */
1886 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1887 scan_balance = SCAN_FILE;
1888 goto out;
1889 }
1890
1891 /*
1892 * Global reclaim will swap to prevent OOM even with no
1893 * swappiness, but memcg users want to use this knob to
1894 * disable swapping for individual groups completely when
1895 * using the memory controller's swap limit feature would be
1896 * too expensive.
1897 */
1898 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1899 scan_balance = SCAN_FILE;
1900 goto out;
1901 }
1902
1903 /*
1904 * Do not apply any pressure balancing cleverness when the
1905 * system is close to OOM, scan both anon and file equally
1906 * (unless the swappiness setting disagrees with swapping).
1907 */
1908 if (!sc->priority && vmscan_swappiness(sc)) {
1909 scan_balance = SCAN_EQUAL;
1910 goto out;
1911 }
1912
1913 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1914 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1915 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1916 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1917
1918 /*
1919 * If it's foreseeable that reclaiming the file cache won't be
1920 * enough to get the zone back into a desirable shape, we have
1921 * to swap. Better start now and leave the - probably heavily
1922 * thrashing - remaining file pages alone.
1923 */
1924 if (global_reclaim(sc)) {
1925 free = zone_page_state(zone, NR_FREE_PAGES);
1926 if (unlikely(file + free <= high_wmark_pages(zone))) {
1927 scan_balance = SCAN_ANON;
1928 goto out;
1929 }
1930 }
1931
1932 /*
1933 * There is enough inactive page cache, do not reclaim
1934 * anything from the anonymous working set right now.
1935 */
1936 if (!inactive_file_is_low(lruvec)) {
1937 scan_balance = SCAN_FILE;
1938 goto out;
1939 }
1940
1941 scan_balance = SCAN_FRACT;
1942
1943 /*
1944 * With swappiness at 100, anonymous and file have the same priority.
1945 * This scanning priority is essentially the inverse of IO cost.
1946 */
1947 anon_prio = vmscan_swappiness(sc);
1948 file_prio = 200 - anon_prio;
1949
1950 /*
1951 * OK, so we have swap space and a fair amount of page cache
1952 * pages. We use the recently rotated / recently scanned
1953 * ratios to determine how valuable each cache is.
1954 *
1955 * Because workloads change over time (and to avoid overflow)
1956 * we keep these statistics as a floating average, which ends
1957 * up weighing recent references more than old ones.
1958 *
1959 * anon in [0], file in [1]
1960 */
1961 spin_lock_irq(&zone->lru_lock);
1962 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1963 reclaim_stat->recent_scanned[0] /= 2;
1964 reclaim_stat->recent_rotated[0] /= 2;
1965 }
1966
1967 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1968 reclaim_stat->recent_scanned[1] /= 2;
1969 reclaim_stat->recent_rotated[1] /= 2;
1970 }
1971
1972 /*
1973 * The amount of pressure on anon vs file pages is inversely
1974 * proportional to the fraction of recently scanned pages on
1975 * each list that were recently referenced and in active use.
1976 */
1977 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1978 ap /= reclaim_stat->recent_rotated[0] + 1;
1979
1980 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1981 fp /= reclaim_stat->recent_rotated[1] + 1;
1982 spin_unlock_irq(&zone->lru_lock);
1983
1984 fraction[0] = ap;
1985 fraction[1] = fp;
1986 denominator = ap + fp + 1;
1987 out:
1988 for_each_evictable_lru(lru) {
1989 int file = is_file_lru(lru);
1990 unsigned long size;
1991 unsigned long scan;
1992
1993 size = get_lru_size(lruvec, lru);
1994 scan = size >> sc->priority;
1995
1996 if (!scan && force_scan)
1997 scan = min(size, SWAP_CLUSTER_MAX);
1998
1999 switch (scan_balance) {
2000 case SCAN_EQUAL:
2001 /* Scan lists relative to size */
2002 break;
2003 case SCAN_FRACT:
2004 /*
2005 * Scan types proportional to swappiness and
2006 * their relative recent reclaim efficiency.
2007 */
2008 scan = div64_u64(scan * fraction[file], denominator);
2009 break;
2010 case SCAN_FILE:
2011 case SCAN_ANON:
2012 /* Scan one type exclusively */
2013 if ((scan_balance == SCAN_FILE) != file)
2014 scan = 0;
2015 break;
2016 default:
2017 /* Look ma, no brain */
2018 BUG();
2019 }
2020 nr[lru] = scan;
2021 }
2022 }
2023
2024 /*
2025 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2026 */
2027 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2028 {
2029 unsigned long nr[NR_LRU_LISTS];
2030 unsigned long targets[NR_LRU_LISTS];
2031 unsigned long nr_to_scan;
2032 enum lru_list lru;
2033 unsigned long nr_reclaimed = 0;
2034 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2035 struct blk_plug plug;
2036 bool scan_adjusted = false;
2037
2038 get_scan_count(lruvec, sc, nr);
2039
2040 /* Record the original scan target for proportional adjustments later */
2041 memcpy(targets, nr, sizeof(nr));
2042
2043 blk_start_plug(&plug);
2044 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2045 nr[LRU_INACTIVE_FILE]) {
2046 unsigned long nr_anon, nr_file, percentage;
2047 unsigned long nr_scanned;
2048
2049 for_each_evictable_lru(lru) {
2050 if (nr[lru]) {
2051 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2052 nr[lru] -= nr_to_scan;
2053
2054 nr_reclaimed += shrink_list(lru, nr_to_scan,
2055 lruvec, sc);
2056 }
2057 }
2058
2059 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2060 continue;
2061
2062 /*
2063 * For global direct reclaim, reclaim only the number of pages
2064 * requested. Less care is taken to scan proportionally as it
2065 * is more important to minimise direct reclaim stall latency
2066 * than it is to properly age the LRU lists.
2067 */
2068 if (global_reclaim(sc) && !current_is_kswapd())
2069 break;
2070
2071 /*
2072 * For kswapd and memcg, reclaim at least the number of pages
2073 * requested. Ensure that the anon and file LRUs shrink
2074 * proportionally what was requested by get_scan_count(). We
2075 * stop reclaiming one LRU and reduce the amount scanning
2076 * proportional to the original scan target.
2077 */
2078 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2079 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2080
2081 if (nr_file > nr_anon) {
2082 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2083 targets[LRU_ACTIVE_ANON] + 1;
2084 lru = LRU_BASE;
2085 percentage = nr_anon * 100 / scan_target;
2086 } else {
2087 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2088 targets[LRU_ACTIVE_FILE] + 1;
2089 lru = LRU_FILE;
2090 percentage = nr_file * 100 / scan_target;
2091 }
2092
2093 /* Stop scanning the smaller of the LRU */
2094 nr[lru] = 0;
2095 nr[lru + LRU_ACTIVE] = 0;
2096
2097 /*
2098 * Recalculate the other LRU scan count based on its original
2099 * scan target and the percentage scanning already complete
2100 */
2101 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2102 nr_scanned = targets[lru] - nr[lru];
2103 nr[lru] = targets[lru] * (100 - percentage) / 100;
2104 nr[lru] -= min(nr[lru], nr_scanned);
2105
2106 lru += LRU_ACTIVE;
2107 nr_scanned = targets[lru] - nr[lru];
2108 nr[lru] = targets[lru] * (100 - percentage) / 100;
2109 nr[lru] -= min(nr[lru], nr_scanned);
2110
2111 scan_adjusted = true;
2112 }
2113 blk_finish_plug(&plug);
2114 sc->nr_reclaimed += nr_reclaimed;
2115
2116 /*
2117 * Even if we did not try to evict anon pages at all, we want to
2118 * rebalance the anon lru active/inactive ratio.
2119 */
2120 if (inactive_anon_is_low(lruvec))
2121 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2122 sc, LRU_ACTIVE_ANON);
2123
2124 throttle_vm_writeout(sc->gfp_mask);
2125 }
2126
2127 /* Use reclaim/compaction for costly allocs or under memory pressure */
2128 static bool in_reclaim_compaction(struct scan_control *sc)
2129 {
2130 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2131 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2132 sc->priority < DEF_PRIORITY - 2))
2133 return true;
2134
2135 return false;
2136 }
2137
2138 /*
2139 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2140 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2141 * true if more pages should be reclaimed such that when the page allocator
2142 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2143 * It will give up earlier than that if there is difficulty reclaiming pages.
2144 */
2145 static inline bool should_continue_reclaim(struct zone *zone,
2146 unsigned long nr_reclaimed,
2147 unsigned long nr_scanned,
2148 struct scan_control *sc)
2149 {
2150 unsigned long pages_for_compaction;
2151 unsigned long inactive_lru_pages;
2152
2153 /* If not in reclaim/compaction mode, stop */
2154 if (!in_reclaim_compaction(sc))
2155 return false;
2156
2157 /* Consider stopping depending on scan and reclaim activity */
2158 if (sc->gfp_mask & __GFP_REPEAT) {
2159 /*
2160 * For __GFP_REPEAT allocations, stop reclaiming if the
2161 * full LRU list has been scanned and we are still failing
2162 * to reclaim pages. This full LRU scan is potentially
2163 * expensive but a __GFP_REPEAT caller really wants to succeed
2164 */
2165 if (!nr_reclaimed && !nr_scanned)
2166 return false;
2167 } else {
2168 /*
2169 * For non-__GFP_REPEAT allocations which can presumably
2170 * fail without consequence, stop if we failed to reclaim
2171 * any pages from the last SWAP_CLUSTER_MAX number of
2172 * pages that were scanned. This will return to the
2173 * caller faster at the risk reclaim/compaction and
2174 * the resulting allocation attempt fails
2175 */
2176 if (!nr_reclaimed)
2177 return false;
2178 }
2179
2180 /*
2181 * If we have not reclaimed enough pages for compaction and the
2182 * inactive lists are large enough, continue reclaiming
2183 */
2184 pages_for_compaction = (2UL << sc->order);
2185 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2186 if (get_nr_swap_pages() > 0)
2187 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2188 if (sc->nr_reclaimed < pages_for_compaction &&
2189 inactive_lru_pages > pages_for_compaction)
2190 return true;
2191
2192 /* If compaction would go ahead or the allocation would succeed, stop */
2193 switch (compaction_suitable(zone, sc->order)) {
2194 case COMPACT_PARTIAL:
2195 case COMPACT_CONTINUE:
2196 return false;
2197 default:
2198 return true;
2199 }
2200 }
2201
2202 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2203 {
2204 unsigned long nr_reclaimed, nr_scanned;
2205
2206 do {
2207 struct mem_cgroup *root = sc->target_mem_cgroup;
2208 struct mem_cgroup_reclaim_cookie reclaim = {
2209 .zone = zone,
2210 .priority = sc->priority,
2211 };
2212 struct mem_cgroup *memcg;
2213
2214 nr_reclaimed = sc->nr_reclaimed;
2215 nr_scanned = sc->nr_scanned;
2216
2217 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2218 do {
2219 struct lruvec *lruvec;
2220
2221 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2222
2223 shrink_lruvec(lruvec, sc);
2224
2225 /*
2226 * Direct reclaim and kswapd have to scan all memory
2227 * cgroups to fulfill the overall scan target for the
2228 * zone.
2229 *
2230 * Limit reclaim, on the other hand, only cares about
2231 * nr_to_reclaim pages to be reclaimed and it will
2232 * retry with decreasing priority if one round over the
2233 * whole hierarchy is not sufficient.
2234 */
2235 if (!global_reclaim(sc) &&
2236 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2237 mem_cgroup_iter_break(root, memcg);
2238 break;
2239 }
2240 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2241 } while (memcg);
2242
2243 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2244 sc->nr_scanned - nr_scanned,
2245 sc->nr_reclaimed - nr_reclaimed);
2246
2247 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2248 sc->nr_scanned - nr_scanned, sc));
2249 }
2250
2251 /* Returns true if compaction should go ahead for a high-order request */
2252 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2253 {
2254 unsigned long balance_gap, watermark;
2255 bool watermark_ok;
2256
2257 /* Do not consider compaction for orders reclaim is meant to satisfy */
2258 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2259 return false;
2260
2261 /*
2262 * Compaction takes time to run and there are potentially other
2263 * callers using the pages just freed. Continue reclaiming until
2264 * there is a buffer of free pages available to give compaction
2265 * a reasonable chance of completing and allocating the page
2266 */
2267 balance_gap = min(low_wmark_pages(zone),
2268 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2269 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2270 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2271 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2272
2273 /*
2274 * If compaction is deferred, reclaim up to a point where
2275 * compaction will have a chance of success when re-enabled
2276 */
2277 if (compaction_deferred(zone, sc->order))
2278 return watermark_ok;
2279
2280 /* If compaction is not ready to start, keep reclaiming */
2281 if (!compaction_suitable(zone, sc->order))
2282 return false;
2283
2284 return watermark_ok;
2285 }
2286
2287 /*
2288 * This is the direct reclaim path, for page-allocating processes. We only
2289 * try to reclaim pages from zones which will satisfy the caller's allocation
2290 * request.
2291 *
2292 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2293 * Because:
2294 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2295 * allocation or
2296 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2297 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2298 * zone defense algorithm.
2299 *
2300 * If a zone is deemed to be full of pinned pages then just give it a light
2301 * scan then give up on it.
2302 *
2303 * This function returns true if a zone is being reclaimed for a costly
2304 * high-order allocation and compaction is ready to begin. This indicates to
2305 * the caller that it should consider retrying the allocation instead of
2306 * further reclaim.
2307 */
2308 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2309 {
2310 struct zoneref *z;
2311 struct zone *zone;
2312 unsigned long nr_soft_reclaimed;
2313 unsigned long nr_soft_scanned;
2314 unsigned long lru_pages = 0;
2315 bool aborted_reclaim = false;
2316 struct reclaim_state *reclaim_state = current->reclaim_state;
2317 gfp_t orig_mask;
2318 struct shrink_control shrink = {
2319 .gfp_mask = sc->gfp_mask,
2320 };
2321 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2322
2323 /*
2324 * If the number of buffer_heads in the machine exceeds the maximum
2325 * allowed level, force direct reclaim to scan the highmem zone as
2326 * highmem pages could be pinning lowmem pages storing buffer_heads
2327 */
2328 orig_mask = sc->gfp_mask;
2329 if (buffer_heads_over_limit)
2330 sc->gfp_mask |= __GFP_HIGHMEM;
2331
2332 nodes_clear(shrink.nodes_to_scan);
2333
2334 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2335 gfp_zone(sc->gfp_mask), sc->nodemask) {
2336 if (!populated_zone(zone))
2337 continue;
2338 /*
2339 * Take care memory controller reclaiming has small influence
2340 * to global LRU.
2341 */
2342 if (global_reclaim(sc)) {
2343 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2344 continue;
2345
2346 lru_pages += zone_reclaimable_pages(zone);
2347 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2348
2349 if (sc->priority != DEF_PRIORITY &&
2350 !zone_reclaimable(zone))
2351 continue; /* Let kswapd poll it */
2352 if (IS_ENABLED(CONFIG_COMPACTION)) {
2353 /*
2354 * If we already have plenty of memory free for
2355 * compaction in this zone, don't free any more.
2356 * Even though compaction is invoked for any
2357 * non-zero order, only frequent costly order
2358 * reclamation is disruptive enough to become a
2359 * noticeable problem, like transparent huge
2360 * page allocations.
2361 */
2362 if ((zonelist_zone_idx(z) <= requested_highidx)
2363 && compaction_ready(zone, sc)) {
2364 aborted_reclaim = true;
2365 continue;
2366 }
2367 }
2368 /*
2369 * This steals pages from memory cgroups over softlimit
2370 * and returns the number of reclaimed pages and
2371 * scanned pages. This works for global memory pressure
2372 * and balancing, not for a memcg's limit.
2373 */
2374 nr_soft_scanned = 0;
2375 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2376 sc->order, sc->gfp_mask,
2377 &nr_soft_scanned);
2378 sc->nr_reclaimed += nr_soft_reclaimed;
2379 sc->nr_scanned += nr_soft_scanned;
2380 /* need some check for avoid more shrink_zone() */
2381 }
2382
2383 shrink_zone(zone, sc);
2384 }
2385
2386 /*
2387 * Don't shrink slabs when reclaiming memory from over limit cgroups
2388 * but do shrink slab at least once when aborting reclaim for
2389 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2390 * pages.
2391 */
2392 if (global_reclaim(sc)) {
2393 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2394 if (reclaim_state) {
2395 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2396 reclaim_state->reclaimed_slab = 0;
2397 }
2398 }
2399
2400 /*
2401 * Restore to original mask to avoid the impact on the caller if we
2402 * promoted it to __GFP_HIGHMEM.
2403 */
2404 sc->gfp_mask = orig_mask;
2405
2406 return aborted_reclaim;
2407 }
2408
2409 /* All zones in zonelist are unreclaimable? */
2410 static bool all_unreclaimable(struct zonelist *zonelist,
2411 struct scan_control *sc)
2412 {
2413 struct zoneref *z;
2414 struct zone *zone;
2415
2416 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2417 gfp_zone(sc->gfp_mask), sc->nodemask) {
2418 if (!populated_zone(zone))
2419 continue;
2420 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2421 continue;
2422 if (zone_reclaimable(zone))
2423 return false;
2424 }
2425
2426 return true;
2427 }
2428
2429 /*
2430 * This is the main entry point to direct page reclaim.
2431 *
2432 * If a full scan of the inactive list fails to free enough memory then we
2433 * are "out of memory" and something needs to be killed.
2434 *
2435 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2436 * high - the zone may be full of dirty or under-writeback pages, which this
2437 * caller can't do much about. We kick the writeback threads and take explicit
2438 * naps in the hope that some of these pages can be written. But if the
2439 * allocating task holds filesystem locks which prevent writeout this might not
2440 * work, and the allocation attempt will fail.
2441 *
2442 * returns: 0, if no pages reclaimed
2443 * else, the number of pages reclaimed
2444 */
2445 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2446 struct scan_control *sc)
2447 {
2448 unsigned long total_scanned = 0;
2449 unsigned long writeback_threshold;
2450 bool aborted_reclaim;
2451
2452 delayacct_freepages_start();
2453
2454 if (global_reclaim(sc))
2455 count_vm_event(ALLOCSTALL);
2456
2457 do {
2458 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2459 sc->priority);
2460 sc->nr_scanned = 0;
2461 aborted_reclaim = shrink_zones(zonelist, sc);
2462
2463 total_scanned += sc->nr_scanned;
2464 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2465 goto out;
2466
2467 /*
2468 * If we're getting trouble reclaiming, start doing
2469 * writepage even in laptop mode.
2470 */
2471 if (sc->priority < DEF_PRIORITY - 2)
2472 sc->may_writepage = 1;
2473
2474 /*
2475 * Try to write back as many pages as we just scanned. This
2476 * tends to cause slow streaming writers to write data to the
2477 * disk smoothly, at the dirtying rate, which is nice. But
2478 * that's undesirable in laptop mode, where we *want* lumpy
2479 * writeout. So in laptop mode, write out the whole world.
2480 */
2481 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2482 if (total_scanned > writeback_threshold) {
2483 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2484 WB_REASON_TRY_TO_FREE_PAGES);
2485 sc->may_writepage = 1;
2486 }
2487 } while (--sc->priority >= 0 && !aborted_reclaim);
2488
2489 out:
2490 delayacct_freepages_end();
2491
2492 if (sc->nr_reclaimed)
2493 return sc->nr_reclaimed;
2494
2495 /*
2496 * As hibernation is going on, kswapd is freezed so that it can't mark
2497 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2498 * check.
2499 */
2500 if (oom_killer_disabled)
2501 return 0;
2502
2503 /* Aborted reclaim to try compaction? don't OOM, then */
2504 if (aborted_reclaim)
2505 return 1;
2506
2507 /* top priority shrink_zones still had more to do? don't OOM, then */
2508 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2509 return 1;
2510
2511 return 0;
2512 }
2513
2514 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2515 {
2516 struct zone *zone;
2517 unsigned long pfmemalloc_reserve = 0;
2518 unsigned long free_pages = 0;
2519 int i;
2520 bool wmark_ok;
2521
2522 for (i = 0; i <= ZONE_NORMAL; i++) {
2523 zone = &pgdat->node_zones[i];
2524 pfmemalloc_reserve += min_wmark_pages(zone);
2525 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2526 }
2527
2528 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2529
2530 /* kswapd must be awake if processes are being throttled */
2531 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2532 pgdat->classzone_idx = min(pgdat->classzone_idx,
2533 (enum zone_type)ZONE_NORMAL);
2534 wake_up_interruptible(&pgdat->kswapd_wait);
2535 }
2536
2537 return wmark_ok;
2538 }
2539
2540 /*
2541 * Throttle direct reclaimers if backing storage is backed by the network
2542 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2543 * depleted. kswapd will continue to make progress and wake the processes
2544 * when the low watermark is reached.
2545 *
2546 * Returns true if a fatal signal was delivered during throttling. If this
2547 * happens, the page allocator should not consider triggering the OOM killer.
2548 */
2549 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2550 nodemask_t *nodemask)
2551 {
2552 struct zone *zone;
2553 int high_zoneidx = gfp_zone(gfp_mask);
2554 pg_data_t *pgdat;
2555
2556 /*
2557 * Kernel threads should not be throttled as they may be indirectly
2558 * responsible for cleaning pages necessary for reclaim to make forward
2559 * progress. kjournald for example may enter direct reclaim while
2560 * committing a transaction where throttling it could forcing other
2561 * processes to block on log_wait_commit().
2562 */
2563 if (current->flags & PF_KTHREAD)
2564 goto out;
2565
2566 /*
2567 * If a fatal signal is pending, this process should not throttle.
2568 * It should return quickly so it can exit and free its memory
2569 */
2570 if (fatal_signal_pending(current))
2571 goto out;
2572
2573 /* Check if the pfmemalloc reserves are ok */
2574 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2575 pgdat = zone->zone_pgdat;
2576 if (pfmemalloc_watermark_ok(pgdat))
2577 goto out;
2578
2579 /* Account for the throttling */
2580 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2581
2582 /*
2583 * If the caller cannot enter the filesystem, it's possible that it
2584 * is due to the caller holding an FS lock or performing a journal
2585 * transaction in the case of a filesystem like ext[3|4]. In this case,
2586 * it is not safe to block on pfmemalloc_wait as kswapd could be
2587 * blocked waiting on the same lock. Instead, throttle for up to a
2588 * second before continuing.
2589 */
2590 if (!(gfp_mask & __GFP_FS)) {
2591 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2592 pfmemalloc_watermark_ok(pgdat), HZ);
2593
2594 goto check_pending;
2595 }
2596
2597 /* Throttle until kswapd wakes the process */
2598 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2599 pfmemalloc_watermark_ok(pgdat));
2600
2601 check_pending:
2602 if (fatal_signal_pending(current))
2603 return true;
2604
2605 out:
2606 return false;
2607 }
2608
2609 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2610 gfp_t gfp_mask, nodemask_t *nodemask)
2611 {
2612 unsigned long nr_reclaimed;
2613 struct scan_control sc = {
2614 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2615 .may_writepage = !laptop_mode,
2616 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2617 .may_unmap = 1,
2618 .may_swap = 1,
2619 .order = order,
2620 .priority = DEF_PRIORITY,
2621 .target_mem_cgroup = NULL,
2622 .nodemask = nodemask,
2623 };
2624
2625 /*
2626 * Do not enter reclaim if fatal signal was delivered while throttled.
2627 * 1 is returned so that the page allocator does not OOM kill at this
2628 * point.
2629 */
2630 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2631 return 1;
2632
2633 trace_mm_vmscan_direct_reclaim_begin(order,
2634 sc.may_writepage,
2635 gfp_mask);
2636
2637 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2638
2639 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2640
2641 return nr_reclaimed;
2642 }
2643
2644 #ifdef CONFIG_MEMCG
2645
2646 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2647 gfp_t gfp_mask, bool noswap,
2648 struct zone *zone,
2649 unsigned long *nr_scanned)
2650 {
2651 struct scan_control sc = {
2652 .nr_scanned = 0,
2653 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2654 .may_writepage = !laptop_mode,
2655 .may_unmap = 1,
2656 .may_swap = !noswap,
2657 .order = 0,
2658 .priority = 0,
2659 .target_mem_cgroup = memcg,
2660 };
2661 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2662
2663 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2664 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2665
2666 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2667 sc.may_writepage,
2668 sc.gfp_mask);
2669
2670 /*
2671 * NOTE: Although we can get the priority field, using it
2672 * here is not a good idea, since it limits the pages we can scan.
2673 * if we don't reclaim here, the shrink_zone from balance_pgdat
2674 * will pick up pages from other mem cgroup's as well. We hack
2675 * the priority and make it zero.
2676 */
2677 shrink_lruvec(lruvec, &sc);
2678
2679 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2680
2681 *nr_scanned = sc.nr_scanned;
2682 return sc.nr_reclaimed;
2683 }
2684
2685 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2686 gfp_t gfp_mask,
2687 bool noswap)
2688 {
2689 struct zonelist *zonelist;
2690 unsigned long nr_reclaimed;
2691 int nid;
2692 struct scan_control sc = {
2693 .may_writepage = !laptop_mode,
2694 .may_unmap = 1,
2695 .may_swap = !noswap,
2696 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2697 .order = 0,
2698 .priority = DEF_PRIORITY,
2699 .target_mem_cgroup = memcg,
2700 .nodemask = NULL, /* we don't care the placement */
2701 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2702 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2703 };
2704
2705 /*
2706 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2707 * take care of from where we get pages. So the node where we start the
2708 * scan does not need to be the current node.
2709 */
2710 nid = mem_cgroup_select_victim_node(memcg);
2711
2712 zonelist = NODE_DATA(nid)->node_zonelists;
2713
2714 trace_mm_vmscan_memcg_reclaim_begin(0,
2715 sc.may_writepage,
2716 sc.gfp_mask);
2717
2718 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2719
2720 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2721
2722 return nr_reclaimed;
2723 }
2724 #endif
2725
2726 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2727 {
2728 struct mem_cgroup *memcg;
2729
2730 if (!total_swap_pages)
2731 return;
2732
2733 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2734 do {
2735 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2736
2737 if (inactive_anon_is_low(lruvec))
2738 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2739 sc, LRU_ACTIVE_ANON);
2740
2741 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2742 } while (memcg);
2743 }
2744
2745 static bool zone_balanced(struct zone *zone, int order,
2746 unsigned long balance_gap, int classzone_idx)
2747 {
2748 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2749 balance_gap, classzone_idx, 0))
2750 return false;
2751
2752 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2753 !compaction_suitable(zone, order))
2754 return false;
2755
2756 return true;
2757 }
2758
2759 /*
2760 * pgdat_balanced() is used when checking if a node is balanced.
2761 *
2762 * For order-0, all zones must be balanced!
2763 *
2764 * For high-order allocations only zones that meet watermarks and are in a
2765 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2766 * total of balanced pages must be at least 25% of the zones allowed by
2767 * classzone_idx for the node to be considered balanced. Forcing all zones to
2768 * be balanced for high orders can cause excessive reclaim when there are
2769 * imbalanced zones.
2770 * The choice of 25% is due to
2771 * o a 16M DMA zone that is balanced will not balance a zone on any
2772 * reasonable sized machine
2773 * o On all other machines, the top zone must be at least a reasonable
2774 * percentage of the middle zones. For example, on 32-bit x86, highmem
2775 * would need to be at least 256M for it to be balance a whole node.
2776 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2777 * to balance a node on its own. These seemed like reasonable ratios.
2778 */
2779 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2780 {
2781 unsigned long managed_pages = 0;
2782 unsigned long balanced_pages = 0;
2783 int i;
2784
2785 /* Check the watermark levels */
2786 for (i = 0; i <= classzone_idx; i++) {
2787 struct zone *zone = pgdat->node_zones + i;
2788
2789 if (!populated_zone(zone))
2790 continue;
2791
2792 managed_pages += zone->managed_pages;
2793
2794 /*
2795 * A special case here:
2796 *
2797 * balance_pgdat() skips over all_unreclaimable after
2798 * DEF_PRIORITY. Effectively, it considers them balanced so
2799 * they must be considered balanced here as well!
2800 */
2801 if (!zone_reclaimable(zone)) {
2802 balanced_pages += zone->managed_pages;
2803 continue;
2804 }
2805
2806 if (zone_balanced(zone, order, 0, i))
2807 balanced_pages += zone->managed_pages;
2808 else if (!order)
2809 return false;
2810 }
2811
2812 if (order)
2813 return balanced_pages >= (managed_pages >> 2);
2814 else
2815 return true;
2816 }
2817
2818 /*
2819 * Prepare kswapd for sleeping. This verifies that there are no processes
2820 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2821 *
2822 * Returns true if kswapd is ready to sleep
2823 */
2824 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2825 int classzone_idx)
2826 {
2827 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2828 if (remaining)
2829 return false;
2830
2831 /*
2832 * There is a potential race between when kswapd checks its watermarks
2833 * and a process gets throttled. There is also a potential race if
2834 * processes get throttled, kswapd wakes, a large process exits therby
2835 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2836 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2837 * so wake them now if necessary. If necessary, processes will wake
2838 * kswapd and get throttled again
2839 */
2840 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2841 wake_up(&pgdat->pfmemalloc_wait);
2842 return false;
2843 }
2844
2845 return pgdat_balanced(pgdat, order, classzone_idx);
2846 }
2847
2848 /*
2849 * kswapd shrinks the zone by the number of pages required to reach
2850 * the high watermark.
2851 *
2852 * Returns true if kswapd scanned at least the requested number of pages to
2853 * reclaim or if the lack of progress was due to pages under writeback.
2854 * This is used to determine if the scanning priority needs to be raised.
2855 */
2856 static bool kswapd_shrink_zone(struct zone *zone,
2857 int classzone_idx,
2858 struct scan_control *sc,
2859 unsigned long lru_pages,
2860 unsigned long *nr_attempted)
2861 {
2862 int testorder = sc->order;
2863 unsigned long balance_gap;
2864 struct reclaim_state *reclaim_state = current->reclaim_state;
2865 struct shrink_control shrink = {
2866 .gfp_mask = sc->gfp_mask,
2867 };
2868 bool lowmem_pressure;
2869
2870 /* Reclaim above the high watermark. */
2871 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2872
2873 /*
2874 * Kswapd reclaims only single pages with compaction enabled. Trying
2875 * too hard to reclaim until contiguous free pages have become
2876 * available can hurt performance by evicting too much useful data
2877 * from memory. Do not reclaim more than needed for compaction.
2878 */
2879 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2880 compaction_suitable(zone, sc->order) !=
2881 COMPACT_SKIPPED)
2882 testorder = 0;
2883
2884 /*
2885 * We put equal pressure on every zone, unless one zone has way too
2886 * many pages free already. The "too many pages" is defined as the
2887 * high wmark plus a "gap" where the gap is either the low
2888 * watermark or 1% of the zone, whichever is smaller.
2889 */
2890 balance_gap = min(low_wmark_pages(zone),
2891 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2892 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2893
2894 /*
2895 * If there is no low memory pressure or the zone is balanced then no
2896 * reclaim is necessary
2897 */
2898 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2899 if (!lowmem_pressure && zone_balanced(zone, testorder,
2900 balance_gap, classzone_idx))
2901 return true;
2902
2903 shrink_zone(zone, sc);
2904 nodes_clear(shrink.nodes_to_scan);
2905 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2906
2907 reclaim_state->reclaimed_slab = 0;
2908 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2909 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2910
2911 /* Account for the number of pages attempted to reclaim */
2912 *nr_attempted += sc->nr_to_reclaim;
2913
2914 zone_clear_flag(zone, ZONE_WRITEBACK);
2915
2916 /*
2917 * If a zone reaches its high watermark, consider it to be no longer
2918 * congested. It's possible there are dirty pages backed by congested
2919 * BDIs but as pressure is relieved, speculatively avoid congestion
2920 * waits.
2921 */
2922 if (zone_reclaimable(zone) &&
2923 zone_balanced(zone, testorder, 0, classzone_idx)) {
2924 zone_clear_flag(zone, ZONE_CONGESTED);
2925 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2926 }
2927
2928 return sc->nr_scanned >= sc->nr_to_reclaim;
2929 }
2930
2931 /*
2932 * For kswapd, balance_pgdat() will work across all this node's zones until
2933 * they are all at high_wmark_pages(zone).
2934 *
2935 * Returns the final order kswapd was reclaiming at
2936 *
2937 * There is special handling here for zones which are full of pinned pages.
2938 * This can happen if the pages are all mlocked, or if they are all used by
2939 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2940 * What we do is to detect the case where all pages in the zone have been
2941 * scanned twice and there has been zero successful reclaim. Mark the zone as
2942 * dead and from now on, only perform a short scan. Basically we're polling
2943 * the zone for when the problem goes away.
2944 *
2945 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2946 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2947 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2948 * lower zones regardless of the number of free pages in the lower zones. This
2949 * interoperates with the page allocator fallback scheme to ensure that aging
2950 * of pages is balanced across the zones.
2951 */
2952 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2953 int *classzone_idx)
2954 {
2955 int i;
2956 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2957 unsigned long nr_soft_reclaimed;
2958 unsigned long nr_soft_scanned;
2959 struct scan_control sc = {
2960 .gfp_mask = GFP_KERNEL,
2961 .priority = DEF_PRIORITY,
2962 .may_unmap = 1,
2963 .may_swap = 1,
2964 .may_writepage = !laptop_mode,
2965 .order = order,
2966 .target_mem_cgroup = NULL,
2967 };
2968 count_vm_event(PAGEOUTRUN);
2969
2970 do {
2971 unsigned long lru_pages = 0;
2972 unsigned long nr_attempted = 0;
2973 bool raise_priority = true;
2974 bool pgdat_needs_compaction = (order > 0);
2975
2976 sc.nr_reclaimed = 0;
2977
2978 /*
2979 * Scan in the highmem->dma direction for the highest
2980 * zone which needs scanning
2981 */
2982 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2983 struct zone *zone = pgdat->node_zones + i;
2984
2985 if (!populated_zone(zone))
2986 continue;
2987
2988 if (sc.priority != DEF_PRIORITY &&
2989 !zone_reclaimable(zone))
2990 continue;
2991
2992 /*
2993 * Do some background aging of the anon list, to give
2994 * pages a chance to be referenced before reclaiming.
2995 */
2996 age_active_anon(zone, &sc);
2997
2998 /*
2999 * If the number of buffer_heads in the machine
3000 * exceeds the maximum allowed level and this node
3001 * has a highmem zone, force kswapd to reclaim from
3002 * it to relieve lowmem pressure.
3003 */
3004 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3005 end_zone = i;
3006 break;
3007 }
3008
3009 if (!zone_balanced(zone, order, 0, 0)) {
3010 end_zone = i;
3011 break;
3012 } else {
3013 /*
3014 * If balanced, clear the dirty and congested
3015 * flags
3016 */
3017 zone_clear_flag(zone, ZONE_CONGESTED);
3018 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3019 }
3020 }
3021
3022 if (i < 0)
3023 goto out;
3024
3025 for (i = 0; i <= end_zone; i++) {
3026 struct zone *zone = pgdat->node_zones + i;
3027
3028 if (!populated_zone(zone))
3029 continue;
3030
3031 lru_pages += zone_reclaimable_pages(zone);
3032
3033 /*
3034 * If any zone is currently balanced then kswapd will
3035 * not call compaction as it is expected that the
3036 * necessary pages are already available.
3037 */
3038 if (pgdat_needs_compaction &&
3039 zone_watermark_ok(zone, order,
3040 low_wmark_pages(zone),
3041 *classzone_idx, 0))
3042 pgdat_needs_compaction = false;
3043 }
3044
3045 /*
3046 * If we're getting trouble reclaiming, start doing writepage
3047 * even in laptop mode.
3048 */
3049 if (sc.priority < DEF_PRIORITY - 2)
3050 sc.may_writepage = 1;
3051
3052 /*
3053 * Now scan the zone in the dma->highmem direction, stopping
3054 * at the last zone which needs scanning.
3055 *
3056 * We do this because the page allocator works in the opposite
3057 * direction. This prevents the page allocator from allocating
3058 * pages behind kswapd's direction of progress, which would
3059 * cause too much scanning of the lower zones.
3060 */
3061 for (i = 0; i <= end_zone; i++) {
3062 struct zone *zone = pgdat->node_zones + i;
3063
3064 if (!populated_zone(zone))
3065 continue;
3066
3067 if (sc.priority != DEF_PRIORITY &&
3068 !zone_reclaimable(zone))
3069 continue;
3070
3071 sc.nr_scanned = 0;
3072
3073 nr_soft_scanned = 0;
3074 /*
3075 * Call soft limit reclaim before calling shrink_zone.
3076 */
3077 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3078 order, sc.gfp_mask,
3079 &nr_soft_scanned);
3080 sc.nr_reclaimed += nr_soft_reclaimed;
3081
3082 /*
3083 * There should be no need to raise the scanning
3084 * priority if enough pages are already being scanned
3085 * that that high watermark would be met at 100%
3086 * efficiency.
3087 */
3088 if (kswapd_shrink_zone(zone, end_zone, &sc,
3089 lru_pages, &nr_attempted))
3090 raise_priority = false;
3091 }
3092
3093 /*
3094 * If the low watermark is met there is no need for processes
3095 * to be throttled on pfmemalloc_wait as they should not be
3096 * able to safely make forward progress. Wake them
3097 */
3098 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3099 pfmemalloc_watermark_ok(pgdat))
3100 wake_up(&pgdat->pfmemalloc_wait);
3101
3102 /*
3103 * Fragmentation may mean that the system cannot be rebalanced
3104 * for high-order allocations in all zones. If twice the
3105 * allocation size has been reclaimed and the zones are still
3106 * not balanced then recheck the watermarks at order-0 to
3107 * prevent kswapd reclaiming excessively. Assume that a
3108 * process requested a high-order can direct reclaim/compact.
3109 */
3110 if (order && sc.nr_reclaimed >= 2UL << order)
3111 order = sc.order = 0;
3112
3113 /* Check if kswapd should be suspending */
3114 if (try_to_freeze() || kthread_should_stop())
3115 break;
3116
3117 /*
3118 * Compact if necessary and kswapd is reclaiming at least the
3119 * high watermark number of pages as requsted
3120 */
3121 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3122 compact_pgdat(pgdat, order);
3123
3124 /*
3125 * Raise priority if scanning rate is too low or there was no
3126 * progress in reclaiming pages
3127 */
3128 if (raise_priority || !sc.nr_reclaimed)
3129 sc.priority--;
3130 } while (sc.priority >= 1 &&
3131 !pgdat_balanced(pgdat, order, *classzone_idx));
3132
3133 out:
3134 /*
3135 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3136 * makes a decision on the order we were last reclaiming at. However,
3137 * if another caller entered the allocator slow path while kswapd
3138 * was awake, order will remain at the higher level
3139 */
3140 *classzone_idx = end_zone;
3141 return order;
3142 }
3143
3144 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3145 {
3146 long remaining = 0;
3147 DEFINE_WAIT(wait);
3148
3149 if (freezing(current) || kthread_should_stop())
3150 return;
3151
3152 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3153
3154 /* Try to sleep for a short interval */
3155 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3156 remaining = schedule_timeout(HZ/10);
3157 finish_wait(&pgdat->kswapd_wait, &wait);
3158 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3159 }
3160
3161 /*
3162 * After a short sleep, check if it was a premature sleep. If not, then
3163 * go fully to sleep until explicitly woken up.
3164 */
3165 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3166 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3167
3168 /*
3169 * vmstat counters are not perfectly accurate and the estimated
3170 * value for counters such as NR_FREE_PAGES can deviate from the
3171 * true value by nr_online_cpus * threshold. To avoid the zone
3172 * watermarks being breached while under pressure, we reduce the
3173 * per-cpu vmstat threshold while kswapd is awake and restore
3174 * them before going back to sleep.
3175 */
3176 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3177
3178 /*
3179 * Compaction records what page blocks it recently failed to
3180 * isolate pages from and skips them in the future scanning.
3181 * When kswapd is going to sleep, it is reasonable to assume
3182 * that pages and compaction may succeed so reset the cache.
3183 */
3184 reset_isolation_suitable(pgdat);
3185
3186 if (!kthread_should_stop())
3187 schedule();
3188
3189 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3190 } else {
3191 if (remaining)
3192 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3193 else
3194 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3195 }
3196 finish_wait(&pgdat->kswapd_wait, &wait);
3197 }
3198
3199 /*
3200 * The background pageout daemon, started as a kernel thread
3201 * from the init process.
3202 *
3203 * This basically trickles out pages so that we have _some_
3204 * free memory available even if there is no other activity
3205 * that frees anything up. This is needed for things like routing
3206 * etc, where we otherwise might have all activity going on in
3207 * asynchronous contexts that cannot page things out.
3208 *
3209 * If there are applications that are active memory-allocators
3210 * (most normal use), this basically shouldn't matter.
3211 */
3212 static int kswapd(void *p)
3213 {
3214 unsigned long order, new_order;
3215 unsigned balanced_order;
3216 int classzone_idx, new_classzone_idx;
3217 int balanced_classzone_idx;
3218 pg_data_t *pgdat = (pg_data_t*)p;
3219 struct task_struct *tsk = current;
3220
3221 struct reclaim_state reclaim_state = {
3222 .reclaimed_slab = 0,
3223 };
3224 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3225
3226 lockdep_set_current_reclaim_state(GFP_KERNEL);
3227
3228 if (!cpumask_empty(cpumask))
3229 set_cpus_allowed_ptr(tsk, cpumask);
3230 current->reclaim_state = &reclaim_state;
3231
3232 /*
3233 * Tell the memory management that we're a "memory allocator",
3234 * and that if we need more memory we should get access to it
3235 * regardless (see "__alloc_pages()"). "kswapd" should
3236 * never get caught in the normal page freeing logic.
3237 *
3238 * (Kswapd normally doesn't need memory anyway, but sometimes
3239 * you need a small amount of memory in order to be able to
3240 * page out something else, and this flag essentially protects
3241 * us from recursively trying to free more memory as we're
3242 * trying to free the first piece of memory in the first place).
3243 */
3244 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3245 set_freezable();
3246
3247 order = new_order = 0;
3248 balanced_order = 0;
3249 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3250 balanced_classzone_idx = classzone_idx;
3251 for ( ; ; ) {
3252 bool ret;
3253
3254 /*
3255 * If the last balance_pgdat was unsuccessful it's unlikely a
3256 * new request of a similar or harder type will succeed soon
3257 * so consider going to sleep on the basis we reclaimed at
3258 */
3259 if (balanced_classzone_idx >= new_classzone_idx &&
3260 balanced_order == new_order) {
3261 new_order = pgdat->kswapd_max_order;
3262 new_classzone_idx = pgdat->classzone_idx;
3263 pgdat->kswapd_max_order = 0;
3264 pgdat->classzone_idx = pgdat->nr_zones - 1;
3265 }
3266
3267 if (order < new_order || classzone_idx > new_classzone_idx) {
3268 /*
3269 * Don't sleep if someone wants a larger 'order'
3270 * allocation or has tigher zone constraints
3271 */
3272 order = new_order;
3273 classzone_idx = new_classzone_idx;
3274 } else {
3275 kswapd_try_to_sleep(pgdat, balanced_order,
3276 balanced_classzone_idx);
3277 order = pgdat->kswapd_max_order;
3278 classzone_idx = pgdat->classzone_idx;
3279 new_order = order;
3280 new_classzone_idx = classzone_idx;
3281 pgdat->kswapd_max_order = 0;
3282 pgdat->classzone_idx = pgdat->nr_zones - 1;
3283 }
3284
3285 ret = try_to_freeze();
3286 if (kthread_should_stop())
3287 break;
3288
3289 /*
3290 * We can speed up thawing tasks if we don't call balance_pgdat
3291 * after returning from the refrigerator
3292 */
3293 if (!ret) {
3294 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3295 balanced_classzone_idx = classzone_idx;
3296 balanced_order = balance_pgdat(pgdat, order,
3297 &balanced_classzone_idx);
3298 }
3299 }
3300
3301 current->reclaim_state = NULL;
3302 return 0;
3303 }
3304
3305 /*
3306 * A zone is low on free memory, so wake its kswapd task to service it.
3307 */
3308 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3309 {
3310 pg_data_t *pgdat;
3311
3312 if (!populated_zone(zone))
3313 return;
3314
3315 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3316 return;
3317 pgdat = zone->zone_pgdat;
3318 if (pgdat->kswapd_max_order < order) {
3319 pgdat->kswapd_max_order = order;
3320 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3321 }
3322 if (!waitqueue_active(&pgdat->kswapd_wait))
3323 return;
3324 if (zone_balanced(zone, order, 0, 0))
3325 return;
3326
3327 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3328 wake_up_interruptible(&pgdat->kswapd_wait);
3329 }
3330
3331 #ifdef CONFIG_HIBERNATION
3332 /*
3333 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3334 * freed pages.
3335 *
3336 * Rather than trying to age LRUs the aim is to preserve the overall
3337 * LRU order by reclaiming preferentially
3338 * inactive > active > active referenced > active mapped
3339 */
3340 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3341 {
3342 struct reclaim_state reclaim_state;
3343 struct scan_control sc = {
3344 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3345 .may_swap = 1,
3346 .may_unmap = 1,
3347 .may_writepage = 1,
3348 .nr_to_reclaim = nr_to_reclaim,
3349 .hibernation_mode = 1,
3350 .order = 0,
3351 .priority = DEF_PRIORITY,
3352 };
3353 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3354 struct task_struct *p = current;
3355 unsigned long nr_reclaimed;
3356
3357 p->flags |= PF_MEMALLOC;
3358 lockdep_set_current_reclaim_state(sc.gfp_mask);
3359 reclaim_state.reclaimed_slab = 0;
3360 p->reclaim_state = &reclaim_state;
3361
3362 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3363
3364 p->reclaim_state = NULL;
3365 lockdep_clear_current_reclaim_state();
3366 p->flags &= ~PF_MEMALLOC;
3367
3368 return nr_reclaimed;
3369 }
3370 #endif /* CONFIG_HIBERNATION */
3371
3372 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3373 not required for correctness. So if the last cpu in a node goes
3374 away, we get changed to run anywhere: as the first one comes back,
3375 restore their cpu bindings. */
3376 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3377 void *hcpu)
3378 {
3379 int nid;
3380
3381 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3382 for_each_node_state(nid, N_MEMORY) {
3383 pg_data_t *pgdat = NODE_DATA(nid);
3384 const struct cpumask *mask;
3385
3386 mask = cpumask_of_node(pgdat->node_id);
3387
3388 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3389 /* One of our CPUs online: restore mask */
3390 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3391 }
3392 }
3393 return NOTIFY_OK;
3394 }
3395
3396 /*
3397 * This kswapd start function will be called by init and node-hot-add.
3398 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3399 */
3400 int kswapd_run(int nid)
3401 {
3402 pg_data_t *pgdat = NODE_DATA(nid);
3403 int ret = 0;
3404
3405 if (pgdat->kswapd)
3406 return 0;
3407
3408 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3409 if (IS_ERR(pgdat->kswapd)) {
3410 /* failure at boot is fatal */
3411 BUG_ON(system_state == SYSTEM_BOOTING);
3412 pr_err("Failed to start kswapd on node %d\n", nid);
3413 ret = PTR_ERR(pgdat->kswapd);
3414 pgdat->kswapd = NULL;
3415 }
3416 return ret;
3417 }
3418
3419 /*
3420 * Called by memory hotplug when all memory in a node is offlined. Caller must
3421 * hold lock_memory_hotplug().
3422 */
3423 void kswapd_stop(int nid)
3424 {
3425 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3426
3427 if (kswapd) {
3428 kthread_stop(kswapd);
3429 NODE_DATA(nid)->kswapd = NULL;
3430 }
3431 }
3432
3433 static int __init kswapd_init(void)
3434 {
3435 int nid;
3436
3437 swap_setup();
3438 for_each_node_state(nid, N_MEMORY)
3439 kswapd_run(nid);
3440 hotcpu_notifier(cpu_callback, 0);
3441 return 0;
3442 }
3443
3444 module_init(kswapd_init)
3445
3446 #ifdef CONFIG_NUMA
3447 /*
3448 * Zone reclaim mode
3449 *
3450 * If non-zero call zone_reclaim when the number of free pages falls below
3451 * the watermarks.
3452 */
3453 int zone_reclaim_mode __read_mostly;
3454
3455 #define RECLAIM_OFF 0
3456 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3457 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3458 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3459
3460 /*
3461 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3462 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3463 * a zone.
3464 */
3465 #define ZONE_RECLAIM_PRIORITY 4
3466
3467 /*
3468 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3469 * occur.
3470 */
3471 int sysctl_min_unmapped_ratio = 1;
3472
3473 /*
3474 * If the number of slab pages in a zone grows beyond this percentage then
3475 * slab reclaim needs to occur.
3476 */
3477 int sysctl_min_slab_ratio = 5;
3478
3479 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3480 {
3481 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3482 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3483 zone_page_state(zone, NR_ACTIVE_FILE);
3484
3485 /*
3486 * It's possible for there to be more file mapped pages than
3487 * accounted for by the pages on the file LRU lists because
3488 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3489 */
3490 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3491 }
3492
3493 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3494 static long zone_pagecache_reclaimable(struct zone *zone)
3495 {
3496 long nr_pagecache_reclaimable;
3497 long delta = 0;
3498
3499 /*
3500 * If RECLAIM_SWAP is set, then all file pages are considered
3501 * potentially reclaimable. Otherwise, we have to worry about
3502 * pages like swapcache and zone_unmapped_file_pages() provides
3503 * a better estimate
3504 */
3505 if (zone_reclaim_mode & RECLAIM_SWAP)
3506 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3507 else
3508 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3509
3510 /* If we can't clean pages, remove dirty pages from consideration */
3511 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3512 delta += zone_page_state(zone, NR_FILE_DIRTY);
3513
3514 /* Watch for any possible underflows due to delta */
3515 if (unlikely(delta > nr_pagecache_reclaimable))
3516 delta = nr_pagecache_reclaimable;
3517
3518 return nr_pagecache_reclaimable - delta;
3519 }
3520
3521 /*
3522 * Try to free up some pages from this zone through reclaim.
3523 */
3524 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3525 {
3526 /* Minimum pages needed in order to stay on node */
3527 const unsigned long nr_pages = 1 << order;
3528 struct task_struct *p = current;
3529 struct reclaim_state reclaim_state;
3530 struct scan_control sc = {
3531 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3532 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3533 .may_swap = 1,
3534 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3535 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3536 .order = order,
3537 .priority = ZONE_RECLAIM_PRIORITY,
3538 };
3539 struct shrink_control shrink = {
3540 .gfp_mask = sc.gfp_mask,
3541 };
3542 unsigned long nr_slab_pages0, nr_slab_pages1;
3543
3544 cond_resched();
3545 /*
3546 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3547 * and we also need to be able to write out pages for RECLAIM_WRITE
3548 * and RECLAIM_SWAP.
3549 */
3550 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3551 lockdep_set_current_reclaim_state(gfp_mask);
3552 reclaim_state.reclaimed_slab = 0;
3553 p->reclaim_state = &reclaim_state;
3554
3555 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3556 /*
3557 * Free memory by calling shrink zone with increasing
3558 * priorities until we have enough memory freed.
3559 */
3560 do {
3561 shrink_zone(zone, &sc);
3562 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3563 }
3564
3565 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3566 if (nr_slab_pages0 > zone->min_slab_pages) {
3567 /*
3568 * shrink_slab() does not currently allow us to determine how
3569 * many pages were freed in this zone. So we take the current
3570 * number of slab pages and shake the slab until it is reduced
3571 * by the same nr_pages that we used for reclaiming unmapped
3572 * pages.
3573 */
3574 nodes_clear(shrink.nodes_to_scan);
3575 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3576 for (;;) {
3577 unsigned long lru_pages = zone_reclaimable_pages(zone);
3578
3579 /* No reclaimable slab or very low memory pressure */
3580 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3581 break;
3582
3583 /* Freed enough memory */
3584 nr_slab_pages1 = zone_page_state(zone,
3585 NR_SLAB_RECLAIMABLE);
3586 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3587 break;
3588 }
3589
3590 /*
3591 * Update nr_reclaimed by the number of slab pages we
3592 * reclaimed from this zone.
3593 */
3594 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3595 if (nr_slab_pages1 < nr_slab_pages0)
3596 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3597 }
3598
3599 p->reclaim_state = NULL;
3600 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3601 lockdep_clear_current_reclaim_state();
3602 return sc.nr_reclaimed >= nr_pages;
3603 }
3604
3605 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3606 {
3607 int node_id;
3608 int ret;
3609
3610 /*
3611 * Zone reclaim reclaims unmapped file backed pages and
3612 * slab pages if we are over the defined limits.
3613 *
3614 * A small portion of unmapped file backed pages is needed for
3615 * file I/O otherwise pages read by file I/O will be immediately
3616 * thrown out if the zone is overallocated. So we do not reclaim
3617 * if less than a specified percentage of the zone is used by
3618 * unmapped file backed pages.
3619 */
3620 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3621 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3622 return ZONE_RECLAIM_FULL;
3623
3624 if (!zone_reclaimable(zone))
3625 return ZONE_RECLAIM_FULL;
3626
3627 /*
3628 * Do not scan if the allocation should not be delayed.
3629 */
3630 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3631 return ZONE_RECLAIM_NOSCAN;
3632
3633 /*
3634 * Only run zone reclaim on the local zone or on zones that do not
3635 * have associated processors. This will favor the local processor
3636 * over remote processors and spread off node memory allocations
3637 * as wide as possible.
3638 */
3639 node_id = zone_to_nid(zone);
3640 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3641 return ZONE_RECLAIM_NOSCAN;
3642
3643 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3644 return ZONE_RECLAIM_NOSCAN;
3645
3646 ret = __zone_reclaim(zone, gfp_mask, order);
3647 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3648
3649 if (!ret)
3650 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3651
3652 return ret;
3653 }
3654 #endif
3655
3656 /*
3657 * page_evictable - test whether a page is evictable
3658 * @page: the page to test
3659 *
3660 * Test whether page is evictable--i.e., should be placed on active/inactive
3661 * lists vs unevictable list.
3662 *
3663 * Reasons page might not be evictable:
3664 * (1) page's mapping marked unevictable
3665 * (2) page is part of an mlocked VMA
3666 *
3667 */
3668 int page_evictable(struct page *page)
3669 {
3670 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3671 }
3672
3673 #ifdef CONFIG_SHMEM
3674 /**
3675 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3676 * @pages: array of pages to check
3677 * @nr_pages: number of pages to check
3678 *
3679 * Checks pages for evictability and moves them to the appropriate lru list.
3680 *
3681 * This function is only used for SysV IPC SHM_UNLOCK.
3682 */
3683 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3684 {
3685 struct lruvec *lruvec;
3686 struct zone *zone = NULL;
3687 int pgscanned = 0;
3688 int pgrescued = 0;
3689 int i;
3690
3691 for (i = 0; i < nr_pages; i++) {
3692 struct page *page = pages[i];
3693 struct zone *pagezone;
3694
3695 pgscanned++;
3696 pagezone = page_zone(page);
3697 if (pagezone != zone) {
3698 if (zone)
3699 spin_unlock_irq(&zone->lru_lock);
3700 zone = pagezone;
3701 spin_lock_irq(&zone->lru_lock);
3702 }
3703 lruvec = mem_cgroup_page_lruvec(page, zone);
3704
3705 if (!PageLRU(page) || !PageUnevictable(page))
3706 continue;
3707
3708 if (page_evictable(page)) {
3709 enum lru_list lru = page_lru_base_type(page);
3710
3711 VM_BUG_ON_PAGE(PageActive(page), page);
3712 ClearPageUnevictable(page);
3713 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3714 add_page_to_lru_list(page, lruvec, lru);
3715 pgrescued++;
3716 }
3717 }
3718
3719 if (zone) {
3720 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3721 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3722 spin_unlock_irq(&zone->lru_lock);
3723 }
3724 }
3725 #endif /* CONFIG_SHMEM */
3726
3727 static void warn_scan_unevictable_pages(void)
3728 {
3729 printk_once(KERN_WARNING
3730 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3731 "disabled for lack of a legitimate use case. If you have "
3732 "one, please send an email to linux-mm@kvack.org.\n",
3733 current->comm);
3734 }
3735
3736 /*
3737 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3738 * all nodes' unevictable lists for evictable pages
3739 */
3740 unsigned long scan_unevictable_pages;
3741
3742 int scan_unevictable_handler(struct ctl_table *table, int write,
3743 void __user *buffer,
3744 size_t *length, loff_t *ppos)
3745 {
3746 warn_scan_unevictable_pages();
3747 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3748 scan_unevictable_pages = 0;
3749 return 0;
3750 }
3751
3752 #ifdef CONFIG_NUMA
3753 /*
3754 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3755 * a specified node's per zone unevictable lists for evictable pages.
3756 */
3757
3758 static ssize_t read_scan_unevictable_node(struct device *dev,
3759 struct device_attribute *attr,
3760 char *buf)
3761 {
3762 warn_scan_unevictable_pages();
3763 return sprintf(buf, "0\n"); /* always zero; should fit... */
3764 }
3765
3766 static ssize_t write_scan_unevictable_node(struct device *dev,
3767 struct device_attribute *attr,
3768 const char *buf, size_t count)
3769 {
3770 warn_scan_unevictable_pages();
3771 return 1;
3772 }
3773
3774
3775 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3776 read_scan_unevictable_node,
3777 write_scan_unevictable_node);
3778
3779 int scan_unevictable_register_node(struct node *node)
3780 {
3781 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3782 }
3783
3784 void scan_unevictable_unregister_node(struct node *node)
3785 {
3786 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3787 }
3788 #endif
This page took 0.136384 seconds and 6 git commands to generate.