mm: compaction: make isolate_lru_page() filter-aware
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
67 */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
85 unsigned long hibernation_mode;
86
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
89
90 int may_writepage;
91
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
94
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
98 int order;
99
100 /*
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
103 */
104 reclaim_mode_t reclaim_mode;
105
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147 * From 0 .. 100. Higher means more swappy.
148 */
149 int vm_swappiness = 60;
150 long vm_total_pages; /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163 {
164 if (!scanning_global_lru(sc))
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167 return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
172 {
173 if (!scanning_global_lru(sc))
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182 * Add a shrinker callback to be called from the vm
183 */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194 * Remove one
195 */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207 {
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
229 *
230 * Returns the number of slab objects which we shrunk.
231 */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233 unsigned long nr_pages_scanned,
234 unsigned long lru_pages)
235 {
236 struct shrinker *shrinker;
237 unsigned long ret = 0;
238
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
250 unsigned long total_scan;
251 unsigned long max_pass;
252 int shrink_ret = 0;
253 long nr;
254 long new_nr;
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
257
258 /*
259 * copy the current shrinker scan count into a local variable
260 * and zero it so that other concurrent shrinker invocations
261 * don't also do this scanning work.
262 */
263 do {
264 nr = shrinker->nr;
265 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267 total_scan = nr;
268 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269 delta = (4 * nr_pages_scanned) / shrinker->seeks;
270 delta *= max_pass;
271 do_div(delta, lru_pages + 1);
272 total_scan += delta;
273 if (total_scan < 0) {
274 printk(KERN_ERR "shrink_slab: %pF negative objects to "
275 "delete nr=%ld\n",
276 shrinker->shrink, total_scan);
277 total_scan = max_pass;
278 }
279
280 /*
281 * We need to avoid excessive windup on filesystem shrinkers
282 * due to large numbers of GFP_NOFS allocations causing the
283 * shrinkers to return -1 all the time. This results in a large
284 * nr being built up so when a shrink that can do some work
285 * comes along it empties the entire cache due to nr >>>
286 * max_pass. This is bad for sustaining a working set in
287 * memory.
288 *
289 * Hence only allow the shrinker to scan the entire cache when
290 * a large delta change is calculated directly.
291 */
292 if (delta < max_pass / 4)
293 total_scan = min(total_scan, max_pass / 2);
294
295 /*
296 * Avoid risking looping forever due to too large nr value:
297 * never try to free more than twice the estimate number of
298 * freeable entries.
299 */
300 if (total_scan > max_pass * 2)
301 total_scan = max_pass * 2;
302
303 trace_mm_shrink_slab_start(shrinker, shrink, nr,
304 nr_pages_scanned, lru_pages,
305 max_pass, delta, total_scan);
306
307 while (total_scan >= batch_size) {
308 int nr_before;
309
310 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311 shrink_ret = do_shrinker_shrink(shrinker, shrink,
312 batch_size);
313 if (shrink_ret == -1)
314 break;
315 if (shrink_ret < nr_before)
316 ret += nr_before - shrink_ret;
317 count_vm_events(SLABS_SCANNED, batch_size);
318 total_scan -= batch_size;
319
320 cond_resched();
321 }
322
323 /*
324 * move the unused scan count back into the shrinker in a
325 * manner that handles concurrent updates. If we exhausted the
326 * scan, there is no need to do an update.
327 */
328 do {
329 nr = shrinker->nr;
330 new_nr = total_scan + nr;
331 if (total_scan <= 0)
332 break;
333 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336 }
337 up_read(&shrinker_rwsem);
338 out:
339 cond_resched();
340 return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344 bool sync)
345 {
346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348 /*
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
352 */
353 if (COMPACTION_BUILD)
354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355 else
356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358 /*
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
362 */
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364 sc->reclaim_mode |= syncmode;
365 else if (sc->order && priority < DEF_PRIORITY - 2)
366 sc->reclaim_mode |= syncmode;
367 else
368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378 /*
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
382 */
383 return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
388 {
389 if (current->flags & PF_SWAPWRITE)
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
395
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
399 return 0;
400 }
401
402 /*
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414 static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
416 {
417 lock_page(page);
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
420 unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
438 */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440 struct scan_control *sc)
441 {
442 /*
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
448 *
449 * If this process is currently in __generic_file_aio_write() against
450 * this page's queue, we can perform writeback even if that
451 * will block.
452 *
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
457 */
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
461 /*
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
464 */
465 if (page_has_private(page)) {
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
468 printk("%s: orphaned page\n", __func__);
469 return PAGE_CLEAN;
470 }
471 }
472 return PAGE_KEEP;
473 }
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
477 return PAGE_KEEP;
478
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
484 .range_start = 0,
485 .range_end = LLONG_MAX,
486 .for_reclaim = 1,
487 };
488
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
493 if (res == AOP_WRITEPAGE_ACTIVATE) {
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
496 }
497
498 /*
499 * Wait on writeback if requested to. This happens when
500 * direct reclaiming a large contiguous area and the
501 * first attempt to free a range of pages fails.
502 */
503 if (PageWriteback(page) &&
504 (sc->reclaim_mode & RECLAIM_MODE_SYNC))
505 wait_on_page_writeback(page);
506
507 if (!PageWriteback(page)) {
508 /* synchronous write or broken a_ops? */
509 ClearPageReclaim(page);
510 }
511 trace_mm_vmscan_writepage(page,
512 trace_reclaim_flags(page, sc->reclaim_mode));
513 inc_zone_page_state(page, NR_VMSCAN_WRITE);
514 return PAGE_SUCCESS;
515 }
516
517 return PAGE_CLEAN;
518 }
519
520 /*
521 * Same as remove_mapping, but if the page is removed from the mapping, it
522 * gets returned with a refcount of 0.
523 */
524 static int __remove_mapping(struct address_space *mapping, struct page *page)
525 {
526 BUG_ON(!PageLocked(page));
527 BUG_ON(mapping != page_mapping(page));
528
529 spin_lock_irq(&mapping->tree_lock);
530 /*
531 * The non racy check for a busy page.
532 *
533 * Must be careful with the order of the tests. When someone has
534 * a ref to the page, it may be possible that they dirty it then
535 * drop the reference. So if PageDirty is tested before page_count
536 * here, then the following race may occur:
537 *
538 * get_user_pages(&page);
539 * [user mapping goes away]
540 * write_to(page);
541 * !PageDirty(page) [good]
542 * SetPageDirty(page);
543 * put_page(page);
544 * !page_count(page) [good, discard it]
545 *
546 * [oops, our write_to data is lost]
547 *
548 * Reversing the order of the tests ensures such a situation cannot
549 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
550 * load is not satisfied before that of page->_count.
551 *
552 * Note that if SetPageDirty is always performed via set_page_dirty,
553 * and thus under tree_lock, then this ordering is not required.
554 */
555 if (!page_freeze_refs(page, 2))
556 goto cannot_free;
557 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
558 if (unlikely(PageDirty(page))) {
559 page_unfreeze_refs(page, 2);
560 goto cannot_free;
561 }
562
563 if (PageSwapCache(page)) {
564 swp_entry_t swap = { .val = page_private(page) };
565 __delete_from_swap_cache(page);
566 spin_unlock_irq(&mapping->tree_lock);
567 swapcache_free(swap, page);
568 } else {
569 void (*freepage)(struct page *);
570
571 freepage = mapping->a_ops->freepage;
572
573 __delete_from_page_cache(page);
574 spin_unlock_irq(&mapping->tree_lock);
575 mem_cgroup_uncharge_cache_page(page);
576
577 if (freepage != NULL)
578 freepage(page);
579 }
580
581 return 1;
582
583 cannot_free:
584 spin_unlock_irq(&mapping->tree_lock);
585 return 0;
586 }
587
588 /*
589 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
590 * someone else has a ref on the page, abort and return 0. If it was
591 * successfully detached, return 1. Assumes the caller has a single ref on
592 * this page.
593 */
594 int remove_mapping(struct address_space *mapping, struct page *page)
595 {
596 if (__remove_mapping(mapping, page)) {
597 /*
598 * Unfreezing the refcount with 1 rather than 2 effectively
599 * drops the pagecache ref for us without requiring another
600 * atomic operation.
601 */
602 page_unfreeze_refs(page, 1);
603 return 1;
604 }
605 return 0;
606 }
607
608 /**
609 * putback_lru_page - put previously isolated page onto appropriate LRU list
610 * @page: page to be put back to appropriate lru list
611 *
612 * Add previously isolated @page to appropriate LRU list.
613 * Page may still be unevictable for other reasons.
614 *
615 * lru_lock must not be held, interrupts must be enabled.
616 */
617 void putback_lru_page(struct page *page)
618 {
619 int lru;
620 int active = !!TestClearPageActive(page);
621 int was_unevictable = PageUnevictable(page);
622
623 VM_BUG_ON(PageLRU(page));
624
625 redo:
626 ClearPageUnevictable(page);
627
628 if (page_evictable(page, NULL)) {
629 /*
630 * For evictable pages, we can use the cache.
631 * In event of a race, worst case is we end up with an
632 * unevictable page on [in]active list.
633 * We know how to handle that.
634 */
635 lru = active + page_lru_base_type(page);
636 lru_cache_add_lru(page, lru);
637 } else {
638 /*
639 * Put unevictable pages directly on zone's unevictable
640 * list.
641 */
642 lru = LRU_UNEVICTABLE;
643 add_page_to_unevictable_list(page);
644 /*
645 * When racing with an mlock clearing (page is
646 * unlocked), make sure that if the other thread does
647 * not observe our setting of PG_lru and fails
648 * isolation, we see PG_mlocked cleared below and move
649 * the page back to the evictable list.
650 *
651 * The other side is TestClearPageMlocked().
652 */
653 smp_mb();
654 }
655
656 /*
657 * page's status can change while we move it among lru. If an evictable
658 * page is on unevictable list, it never be freed. To avoid that,
659 * check after we added it to the list, again.
660 */
661 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
662 if (!isolate_lru_page(page)) {
663 put_page(page);
664 goto redo;
665 }
666 /* This means someone else dropped this page from LRU
667 * So, it will be freed or putback to LRU again. There is
668 * nothing to do here.
669 */
670 }
671
672 if (was_unevictable && lru != LRU_UNEVICTABLE)
673 count_vm_event(UNEVICTABLE_PGRESCUED);
674 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
675 count_vm_event(UNEVICTABLE_PGCULLED);
676
677 put_page(page); /* drop ref from isolate */
678 }
679
680 enum page_references {
681 PAGEREF_RECLAIM,
682 PAGEREF_RECLAIM_CLEAN,
683 PAGEREF_KEEP,
684 PAGEREF_ACTIVATE,
685 };
686
687 static enum page_references page_check_references(struct page *page,
688 struct scan_control *sc)
689 {
690 int referenced_ptes, referenced_page;
691 unsigned long vm_flags;
692
693 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
694 referenced_page = TestClearPageReferenced(page);
695
696 /* Lumpy reclaim - ignore references */
697 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
698 return PAGEREF_RECLAIM;
699
700 /*
701 * Mlock lost the isolation race with us. Let try_to_unmap()
702 * move the page to the unevictable list.
703 */
704 if (vm_flags & VM_LOCKED)
705 return PAGEREF_RECLAIM;
706
707 if (referenced_ptes) {
708 if (PageAnon(page))
709 return PAGEREF_ACTIVATE;
710 /*
711 * All mapped pages start out with page table
712 * references from the instantiating fault, so we need
713 * to look twice if a mapped file page is used more
714 * than once.
715 *
716 * Mark it and spare it for another trip around the
717 * inactive list. Another page table reference will
718 * lead to its activation.
719 *
720 * Note: the mark is set for activated pages as well
721 * so that recently deactivated but used pages are
722 * quickly recovered.
723 */
724 SetPageReferenced(page);
725
726 if (referenced_page)
727 return PAGEREF_ACTIVATE;
728
729 return PAGEREF_KEEP;
730 }
731
732 /* Reclaim if clean, defer dirty pages to writeback */
733 if (referenced_page && !PageSwapBacked(page))
734 return PAGEREF_RECLAIM_CLEAN;
735
736 return PAGEREF_RECLAIM;
737 }
738
739 static noinline_for_stack void free_page_list(struct list_head *free_pages)
740 {
741 struct pagevec freed_pvec;
742 struct page *page, *tmp;
743
744 pagevec_init(&freed_pvec, 1);
745
746 list_for_each_entry_safe(page, tmp, free_pages, lru) {
747 list_del(&page->lru);
748 if (!pagevec_add(&freed_pvec, page)) {
749 __pagevec_free(&freed_pvec);
750 pagevec_reinit(&freed_pvec);
751 }
752 }
753
754 pagevec_free(&freed_pvec);
755 }
756
757 /*
758 * shrink_page_list() returns the number of reclaimed pages
759 */
760 static unsigned long shrink_page_list(struct list_head *page_list,
761 struct zone *zone,
762 struct scan_control *sc)
763 {
764 LIST_HEAD(ret_pages);
765 LIST_HEAD(free_pages);
766 int pgactivate = 0;
767 unsigned long nr_dirty = 0;
768 unsigned long nr_congested = 0;
769 unsigned long nr_reclaimed = 0;
770
771 cond_resched();
772
773 while (!list_empty(page_list)) {
774 enum page_references references;
775 struct address_space *mapping;
776 struct page *page;
777 int may_enter_fs;
778
779 cond_resched();
780
781 page = lru_to_page(page_list);
782 list_del(&page->lru);
783
784 if (!trylock_page(page))
785 goto keep;
786
787 VM_BUG_ON(PageActive(page));
788 VM_BUG_ON(page_zone(page) != zone);
789
790 sc->nr_scanned++;
791
792 if (unlikely(!page_evictable(page, NULL)))
793 goto cull_mlocked;
794
795 if (!sc->may_unmap && page_mapped(page))
796 goto keep_locked;
797
798 /* Double the slab pressure for mapped and swapcache pages */
799 if (page_mapped(page) || PageSwapCache(page))
800 sc->nr_scanned++;
801
802 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
803 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
804
805 if (PageWriteback(page)) {
806 /*
807 * Synchronous reclaim is performed in two passes,
808 * first an asynchronous pass over the list to
809 * start parallel writeback, and a second synchronous
810 * pass to wait for the IO to complete. Wait here
811 * for any page for which writeback has already
812 * started.
813 */
814 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
815 may_enter_fs)
816 wait_on_page_writeback(page);
817 else {
818 unlock_page(page);
819 goto keep_lumpy;
820 }
821 }
822
823 references = page_check_references(page, sc);
824 switch (references) {
825 case PAGEREF_ACTIVATE:
826 goto activate_locked;
827 case PAGEREF_KEEP:
828 goto keep_locked;
829 case PAGEREF_RECLAIM:
830 case PAGEREF_RECLAIM_CLEAN:
831 ; /* try to reclaim the page below */
832 }
833
834 /*
835 * Anonymous process memory has backing store?
836 * Try to allocate it some swap space here.
837 */
838 if (PageAnon(page) && !PageSwapCache(page)) {
839 if (!(sc->gfp_mask & __GFP_IO))
840 goto keep_locked;
841 if (!add_to_swap(page))
842 goto activate_locked;
843 may_enter_fs = 1;
844 }
845
846 mapping = page_mapping(page);
847
848 /*
849 * The page is mapped into the page tables of one or more
850 * processes. Try to unmap it here.
851 */
852 if (page_mapped(page) && mapping) {
853 switch (try_to_unmap(page, TTU_UNMAP)) {
854 case SWAP_FAIL:
855 goto activate_locked;
856 case SWAP_AGAIN:
857 goto keep_locked;
858 case SWAP_MLOCK:
859 goto cull_mlocked;
860 case SWAP_SUCCESS:
861 ; /* try to free the page below */
862 }
863 }
864
865 if (PageDirty(page)) {
866 nr_dirty++;
867
868 if (references == PAGEREF_RECLAIM_CLEAN)
869 goto keep_locked;
870 if (!may_enter_fs)
871 goto keep_locked;
872 if (!sc->may_writepage)
873 goto keep_locked;
874
875 /* Page is dirty, try to write it out here */
876 switch (pageout(page, mapping, sc)) {
877 case PAGE_KEEP:
878 nr_congested++;
879 goto keep_locked;
880 case PAGE_ACTIVATE:
881 goto activate_locked;
882 case PAGE_SUCCESS:
883 if (PageWriteback(page))
884 goto keep_lumpy;
885 if (PageDirty(page))
886 goto keep;
887
888 /*
889 * A synchronous write - probably a ramdisk. Go
890 * ahead and try to reclaim the page.
891 */
892 if (!trylock_page(page))
893 goto keep;
894 if (PageDirty(page) || PageWriteback(page))
895 goto keep_locked;
896 mapping = page_mapping(page);
897 case PAGE_CLEAN:
898 ; /* try to free the page below */
899 }
900 }
901
902 /*
903 * If the page has buffers, try to free the buffer mappings
904 * associated with this page. If we succeed we try to free
905 * the page as well.
906 *
907 * We do this even if the page is PageDirty().
908 * try_to_release_page() does not perform I/O, but it is
909 * possible for a page to have PageDirty set, but it is actually
910 * clean (all its buffers are clean). This happens if the
911 * buffers were written out directly, with submit_bh(). ext3
912 * will do this, as well as the blockdev mapping.
913 * try_to_release_page() will discover that cleanness and will
914 * drop the buffers and mark the page clean - it can be freed.
915 *
916 * Rarely, pages can have buffers and no ->mapping. These are
917 * the pages which were not successfully invalidated in
918 * truncate_complete_page(). We try to drop those buffers here
919 * and if that worked, and the page is no longer mapped into
920 * process address space (page_count == 1) it can be freed.
921 * Otherwise, leave the page on the LRU so it is swappable.
922 */
923 if (page_has_private(page)) {
924 if (!try_to_release_page(page, sc->gfp_mask))
925 goto activate_locked;
926 if (!mapping && page_count(page) == 1) {
927 unlock_page(page);
928 if (put_page_testzero(page))
929 goto free_it;
930 else {
931 /*
932 * rare race with speculative reference.
933 * the speculative reference will free
934 * this page shortly, so we may
935 * increment nr_reclaimed here (and
936 * leave it off the LRU).
937 */
938 nr_reclaimed++;
939 continue;
940 }
941 }
942 }
943
944 if (!mapping || !__remove_mapping(mapping, page))
945 goto keep_locked;
946
947 /*
948 * At this point, we have no other references and there is
949 * no way to pick any more up (removed from LRU, removed
950 * from pagecache). Can use non-atomic bitops now (and
951 * we obviously don't have to worry about waking up a process
952 * waiting on the page lock, because there are no references.
953 */
954 __clear_page_locked(page);
955 free_it:
956 nr_reclaimed++;
957
958 /*
959 * Is there need to periodically free_page_list? It would
960 * appear not as the counts should be low
961 */
962 list_add(&page->lru, &free_pages);
963 continue;
964
965 cull_mlocked:
966 if (PageSwapCache(page))
967 try_to_free_swap(page);
968 unlock_page(page);
969 putback_lru_page(page);
970 reset_reclaim_mode(sc);
971 continue;
972
973 activate_locked:
974 /* Not a candidate for swapping, so reclaim swap space. */
975 if (PageSwapCache(page) && vm_swap_full())
976 try_to_free_swap(page);
977 VM_BUG_ON(PageActive(page));
978 SetPageActive(page);
979 pgactivate++;
980 keep_locked:
981 unlock_page(page);
982 keep:
983 reset_reclaim_mode(sc);
984 keep_lumpy:
985 list_add(&page->lru, &ret_pages);
986 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
987 }
988
989 /*
990 * Tag a zone as congested if all the dirty pages encountered were
991 * backed by a congested BDI. In this case, reclaimers should just
992 * back off and wait for congestion to clear because further reclaim
993 * will encounter the same problem
994 */
995 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
996 zone_set_flag(zone, ZONE_CONGESTED);
997
998 free_page_list(&free_pages);
999
1000 list_splice(&ret_pages, page_list);
1001 count_vm_events(PGACTIVATE, pgactivate);
1002 return nr_reclaimed;
1003 }
1004
1005 /*
1006 * Attempt to remove the specified page from its LRU. Only take this page
1007 * if it is of the appropriate PageActive status. Pages which are being
1008 * freed elsewhere are also ignored.
1009 *
1010 * page: page to consider
1011 * mode: one of the LRU isolation modes defined above
1012 *
1013 * returns 0 on success, -ve errno on failure.
1014 */
1015 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1016 {
1017 bool all_lru_mode;
1018 int ret = -EINVAL;
1019
1020 /* Only take pages on the LRU. */
1021 if (!PageLRU(page))
1022 return ret;
1023
1024 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1025 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1026
1027 /*
1028 * When checking the active state, we need to be sure we are
1029 * dealing with comparible boolean values. Take the logical not
1030 * of each.
1031 */
1032 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1033 return ret;
1034
1035 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1036 return ret;
1037
1038 /*
1039 * When this function is being called for lumpy reclaim, we
1040 * initially look into all LRU pages, active, inactive and
1041 * unevictable; only give shrink_page_list evictable pages.
1042 */
1043 if (PageUnevictable(page))
1044 return ret;
1045
1046 ret = -EBUSY;
1047
1048 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1049 return ret;
1050
1051 if (likely(get_page_unless_zero(page))) {
1052 /*
1053 * Be careful not to clear PageLRU until after we're
1054 * sure the page is not being freed elsewhere -- the
1055 * page release code relies on it.
1056 */
1057 ClearPageLRU(page);
1058 ret = 0;
1059 }
1060
1061 return ret;
1062 }
1063
1064 /*
1065 * zone->lru_lock is heavily contended. Some of the functions that
1066 * shrink the lists perform better by taking out a batch of pages
1067 * and working on them outside the LRU lock.
1068 *
1069 * For pagecache intensive workloads, this function is the hottest
1070 * spot in the kernel (apart from copy_*_user functions).
1071 *
1072 * Appropriate locks must be held before calling this function.
1073 *
1074 * @nr_to_scan: The number of pages to look through on the list.
1075 * @src: The LRU list to pull pages off.
1076 * @dst: The temp list to put pages on to.
1077 * @scanned: The number of pages that were scanned.
1078 * @order: The caller's attempted allocation order
1079 * @mode: One of the LRU isolation modes
1080 * @file: True [1] if isolating file [!anon] pages
1081 *
1082 * returns how many pages were moved onto *@dst.
1083 */
1084 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1085 struct list_head *src, struct list_head *dst,
1086 unsigned long *scanned, int order, isolate_mode_t mode,
1087 int file)
1088 {
1089 unsigned long nr_taken = 0;
1090 unsigned long nr_lumpy_taken = 0;
1091 unsigned long nr_lumpy_dirty = 0;
1092 unsigned long nr_lumpy_failed = 0;
1093 unsigned long scan;
1094
1095 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1096 struct page *page;
1097 unsigned long pfn;
1098 unsigned long end_pfn;
1099 unsigned long page_pfn;
1100 int zone_id;
1101
1102 page = lru_to_page(src);
1103 prefetchw_prev_lru_page(page, src, flags);
1104
1105 VM_BUG_ON(!PageLRU(page));
1106
1107 switch (__isolate_lru_page(page, mode, file)) {
1108 case 0:
1109 list_move(&page->lru, dst);
1110 mem_cgroup_del_lru(page);
1111 nr_taken += hpage_nr_pages(page);
1112 break;
1113
1114 case -EBUSY:
1115 /* else it is being freed elsewhere */
1116 list_move(&page->lru, src);
1117 mem_cgroup_rotate_lru_list(page, page_lru(page));
1118 continue;
1119
1120 default:
1121 BUG();
1122 }
1123
1124 if (!order)
1125 continue;
1126
1127 /*
1128 * Attempt to take all pages in the order aligned region
1129 * surrounding the tag page. Only take those pages of
1130 * the same active state as that tag page. We may safely
1131 * round the target page pfn down to the requested order
1132 * as the mem_map is guaranteed valid out to MAX_ORDER,
1133 * where that page is in a different zone we will detect
1134 * it from its zone id and abort this block scan.
1135 */
1136 zone_id = page_zone_id(page);
1137 page_pfn = page_to_pfn(page);
1138 pfn = page_pfn & ~((1 << order) - 1);
1139 end_pfn = pfn + (1 << order);
1140 for (; pfn < end_pfn; pfn++) {
1141 struct page *cursor_page;
1142
1143 /* The target page is in the block, ignore it. */
1144 if (unlikely(pfn == page_pfn))
1145 continue;
1146
1147 /* Avoid holes within the zone. */
1148 if (unlikely(!pfn_valid_within(pfn)))
1149 break;
1150
1151 cursor_page = pfn_to_page(pfn);
1152
1153 /* Check that we have not crossed a zone boundary. */
1154 if (unlikely(page_zone_id(cursor_page) != zone_id))
1155 break;
1156
1157 /*
1158 * If we don't have enough swap space, reclaiming of
1159 * anon page which don't already have a swap slot is
1160 * pointless.
1161 */
1162 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1163 !PageSwapCache(cursor_page))
1164 break;
1165
1166 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1167 list_move(&cursor_page->lru, dst);
1168 mem_cgroup_del_lru(cursor_page);
1169 nr_taken += hpage_nr_pages(page);
1170 nr_lumpy_taken++;
1171 if (PageDirty(cursor_page))
1172 nr_lumpy_dirty++;
1173 scan++;
1174 } else {
1175 /*
1176 * Check if the page is freed already.
1177 *
1178 * We can't use page_count() as that
1179 * requires compound_head and we don't
1180 * have a pin on the page here. If a
1181 * page is tail, we may or may not
1182 * have isolated the head, so assume
1183 * it's not free, it'd be tricky to
1184 * track the head status without a
1185 * page pin.
1186 */
1187 if (!PageTail(cursor_page) &&
1188 !atomic_read(&cursor_page->_count))
1189 continue;
1190 break;
1191 }
1192 }
1193
1194 /* If we break out of the loop above, lumpy reclaim failed */
1195 if (pfn < end_pfn)
1196 nr_lumpy_failed++;
1197 }
1198
1199 *scanned = scan;
1200
1201 trace_mm_vmscan_lru_isolate(order,
1202 nr_to_scan, scan,
1203 nr_taken,
1204 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1205 mode);
1206 return nr_taken;
1207 }
1208
1209 static unsigned long isolate_pages_global(unsigned long nr,
1210 struct list_head *dst,
1211 unsigned long *scanned, int order,
1212 isolate_mode_t mode,
1213 struct zone *z, int active, int file)
1214 {
1215 int lru = LRU_BASE;
1216 if (active)
1217 lru += LRU_ACTIVE;
1218 if (file)
1219 lru += LRU_FILE;
1220 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1221 mode, file);
1222 }
1223
1224 /*
1225 * clear_active_flags() is a helper for shrink_active_list(), clearing
1226 * any active bits from the pages in the list.
1227 */
1228 static unsigned long clear_active_flags(struct list_head *page_list,
1229 unsigned int *count)
1230 {
1231 int nr_active = 0;
1232 int lru;
1233 struct page *page;
1234
1235 list_for_each_entry(page, page_list, lru) {
1236 int numpages = hpage_nr_pages(page);
1237 lru = page_lru_base_type(page);
1238 if (PageActive(page)) {
1239 lru += LRU_ACTIVE;
1240 ClearPageActive(page);
1241 nr_active += numpages;
1242 }
1243 if (count)
1244 count[lru] += numpages;
1245 }
1246
1247 return nr_active;
1248 }
1249
1250 /**
1251 * isolate_lru_page - tries to isolate a page from its LRU list
1252 * @page: page to isolate from its LRU list
1253 *
1254 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1255 * vmstat statistic corresponding to whatever LRU list the page was on.
1256 *
1257 * Returns 0 if the page was removed from an LRU list.
1258 * Returns -EBUSY if the page was not on an LRU list.
1259 *
1260 * The returned page will have PageLRU() cleared. If it was found on
1261 * the active list, it will have PageActive set. If it was found on
1262 * the unevictable list, it will have the PageUnevictable bit set. That flag
1263 * may need to be cleared by the caller before letting the page go.
1264 *
1265 * The vmstat statistic corresponding to the list on which the page was
1266 * found will be decremented.
1267 *
1268 * Restrictions:
1269 * (1) Must be called with an elevated refcount on the page. This is a
1270 * fundamentnal difference from isolate_lru_pages (which is called
1271 * without a stable reference).
1272 * (2) the lru_lock must not be held.
1273 * (3) interrupts must be enabled.
1274 */
1275 int isolate_lru_page(struct page *page)
1276 {
1277 int ret = -EBUSY;
1278
1279 VM_BUG_ON(!page_count(page));
1280
1281 if (PageLRU(page)) {
1282 struct zone *zone = page_zone(page);
1283
1284 spin_lock_irq(&zone->lru_lock);
1285 if (PageLRU(page)) {
1286 int lru = page_lru(page);
1287 ret = 0;
1288 get_page(page);
1289 ClearPageLRU(page);
1290
1291 del_page_from_lru_list(zone, page, lru);
1292 }
1293 spin_unlock_irq(&zone->lru_lock);
1294 }
1295 return ret;
1296 }
1297
1298 /*
1299 * Are there way too many processes in the direct reclaim path already?
1300 */
1301 static int too_many_isolated(struct zone *zone, int file,
1302 struct scan_control *sc)
1303 {
1304 unsigned long inactive, isolated;
1305
1306 if (current_is_kswapd())
1307 return 0;
1308
1309 if (!scanning_global_lru(sc))
1310 return 0;
1311
1312 if (file) {
1313 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1314 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1315 } else {
1316 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1317 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1318 }
1319
1320 return isolated > inactive;
1321 }
1322
1323 /*
1324 * TODO: Try merging with migrations version of putback_lru_pages
1325 */
1326 static noinline_for_stack void
1327 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1328 unsigned long nr_anon, unsigned long nr_file,
1329 struct list_head *page_list)
1330 {
1331 struct page *page;
1332 struct pagevec pvec;
1333 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1334
1335 pagevec_init(&pvec, 1);
1336
1337 /*
1338 * Put back any unfreeable pages.
1339 */
1340 spin_lock(&zone->lru_lock);
1341 while (!list_empty(page_list)) {
1342 int lru;
1343 page = lru_to_page(page_list);
1344 VM_BUG_ON(PageLRU(page));
1345 list_del(&page->lru);
1346 if (unlikely(!page_evictable(page, NULL))) {
1347 spin_unlock_irq(&zone->lru_lock);
1348 putback_lru_page(page);
1349 spin_lock_irq(&zone->lru_lock);
1350 continue;
1351 }
1352 SetPageLRU(page);
1353 lru = page_lru(page);
1354 add_page_to_lru_list(zone, page, lru);
1355 if (is_active_lru(lru)) {
1356 int file = is_file_lru(lru);
1357 int numpages = hpage_nr_pages(page);
1358 reclaim_stat->recent_rotated[file] += numpages;
1359 }
1360 if (!pagevec_add(&pvec, page)) {
1361 spin_unlock_irq(&zone->lru_lock);
1362 __pagevec_release(&pvec);
1363 spin_lock_irq(&zone->lru_lock);
1364 }
1365 }
1366 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1367 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1368
1369 spin_unlock_irq(&zone->lru_lock);
1370 pagevec_release(&pvec);
1371 }
1372
1373 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1374 struct scan_control *sc,
1375 unsigned long *nr_anon,
1376 unsigned long *nr_file,
1377 struct list_head *isolated_list)
1378 {
1379 unsigned long nr_active;
1380 unsigned int count[NR_LRU_LISTS] = { 0, };
1381 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1382
1383 nr_active = clear_active_flags(isolated_list, count);
1384 __count_vm_events(PGDEACTIVATE, nr_active);
1385
1386 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1387 -count[LRU_ACTIVE_FILE]);
1388 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1389 -count[LRU_INACTIVE_FILE]);
1390 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1391 -count[LRU_ACTIVE_ANON]);
1392 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1393 -count[LRU_INACTIVE_ANON]);
1394
1395 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1396 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1397 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1398 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1399
1400 reclaim_stat->recent_scanned[0] += *nr_anon;
1401 reclaim_stat->recent_scanned[1] += *nr_file;
1402 }
1403
1404 /*
1405 * Returns true if the caller should wait to clean dirty/writeback pages.
1406 *
1407 * If we are direct reclaiming for contiguous pages and we do not reclaim
1408 * everything in the list, try again and wait for writeback IO to complete.
1409 * This will stall high-order allocations noticeably. Only do that when really
1410 * need to free the pages under high memory pressure.
1411 */
1412 static inline bool should_reclaim_stall(unsigned long nr_taken,
1413 unsigned long nr_freed,
1414 int priority,
1415 struct scan_control *sc)
1416 {
1417 int lumpy_stall_priority;
1418
1419 /* kswapd should not stall on sync IO */
1420 if (current_is_kswapd())
1421 return false;
1422
1423 /* Only stall on lumpy reclaim */
1424 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1425 return false;
1426
1427 /* If we have reclaimed everything on the isolated list, no stall */
1428 if (nr_freed == nr_taken)
1429 return false;
1430
1431 /*
1432 * For high-order allocations, there are two stall thresholds.
1433 * High-cost allocations stall immediately where as lower
1434 * order allocations such as stacks require the scanning
1435 * priority to be much higher before stalling.
1436 */
1437 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1438 lumpy_stall_priority = DEF_PRIORITY;
1439 else
1440 lumpy_stall_priority = DEF_PRIORITY / 3;
1441
1442 return priority <= lumpy_stall_priority;
1443 }
1444
1445 /*
1446 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1447 * of reclaimed pages
1448 */
1449 static noinline_for_stack unsigned long
1450 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1451 struct scan_control *sc, int priority, int file)
1452 {
1453 LIST_HEAD(page_list);
1454 unsigned long nr_scanned;
1455 unsigned long nr_reclaimed = 0;
1456 unsigned long nr_taken;
1457 unsigned long nr_anon;
1458 unsigned long nr_file;
1459 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1460
1461 while (unlikely(too_many_isolated(zone, file, sc))) {
1462 congestion_wait(BLK_RW_ASYNC, HZ/10);
1463
1464 /* We are about to die and free our memory. Return now. */
1465 if (fatal_signal_pending(current))
1466 return SWAP_CLUSTER_MAX;
1467 }
1468
1469 set_reclaim_mode(priority, sc, false);
1470 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1471 reclaim_mode |= ISOLATE_ACTIVE;
1472
1473 lru_add_drain();
1474 spin_lock_irq(&zone->lru_lock);
1475
1476 if (scanning_global_lru(sc)) {
1477 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1478 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1479 zone->pages_scanned += nr_scanned;
1480 if (current_is_kswapd())
1481 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1482 nr_scanned);
1483 else
1484 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1485 nr_scanned);
1486 } else {
1487 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1488 &nr_scanned, sc->order, reclaim_mode, zone,
1489 sc->mem_cgroup, 0, file);
1490 /*
1491 * mem_cgroup_isolate_pages() keeps track of
1492 * scanned pages on its own.
1493 */
1494 }
1495
1496 if (nr_taken == 0) {
1497 spin_unlock_irq(&zone->lru_lock);
1498 return 0;
1499 }
1500
1501 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1502
1503 spin_unlock_irq(&zone->lru_lock);
1504
1505 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1506
1507 /* Check if we should syncronously wait for writeback */
1508 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1509 set_reclaim_mode(priority, sc, true);
1510 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1511 }
1512
1513 local_irq_disable();
1514 if (current_is_kswapd())
1515 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1516 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1517
1518 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1519
1520 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1521 zone_idx(zone),
1522 nr_scanned, nr_reclaimed,
1523 priority,
1524 trace_shrink_flags(file, sc->reclaim_mode));
1525 return nr_reclaimed;
1526 }
1527
1528 /*
1529 * This moves pages from the active list to the inactive list.
1530 *
1531 * We move them the other way if the page is referenced by one or more
1532 * processes, from rmap.
1533 *
1534 * If the pages are mostly unmapped, the processing is fast and it is
1535 * appropriate to hold zone->lru_lock across the whole operation. But if
1536 * the pages are mapped, the processing is slow (page_referenced()) so we
1537 * should drop zone->lru_lock around each page. It's impossible to balance
1538 * this, so instead we remove the pages from the LRU while processing them.
1539 * It is safe to rely on PG_active against the non-LRU pages in here because
1540 * nobody will play with that bit on a non-LRU page.
1541 *
1542 * The downside is that we have to touch page->_count against each page.
1543 * But we had to alter page->flags anyway.
1544 */
1545
1546 static void move_active_pages_to_lru(struct zone *zone,
1547 struct list_head *list,
1548 enum lru_list lru)
1549 {
1550 unsigned long pgmoved = 0;
1551 struct pagevec pvec;
1552 struct page *page;
1553
1554 pagevec_init(&pvec, 1);
1555
1556 while (!list_empty(list)) {
1557 page = lru_to_page(list);
1558
1559 VM_BUG_ON(PageLRU(page));
1560 SetPageLRU(page);
1561
1562 list_move(&page->lru, &zone->lru[lru].list);
1563 mem_cgroup_add_lru_list(page, lru);
1564 pgmoved += hpage_nr_pages(page);
1565
1566 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1567 spin_unlock_irq(&zone->lru_lock);
1568 if (buffer_heads_over_limit)
1569 pagevec_strip(&pvec);
1570 __pagevec_release(&pvec);
1571 spin_lock_irq(&zone->lru_lock);
1572 }
1573 }
1574 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1575 if (!is_active_lru(lru))
1576 __count_vm_events(PGDEACTIVATE, pgmoved);
1577 }
1578
1579 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1580 struct scan_control *sc, int priority, int file)
1581 {
1582 unsigned long nr_taken;
1583 unsigned long pgscanned;
1584 unsigned long vm_flags;
1585 LIST_HEAD(l_hold); /* The pages which were snipped off */
1586 LIST_HEAD(l_active);
1587 LIST_HEAD(l_inactive);
1588 struct page *page;
1589 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1590 unsigned long nr_rotated = 0;
1591
1592 lru_add_drain();
1593 spin_lock_irq(&zone->lru_lock);
1594 if (scanning_global_lru(sc)) {
1595 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1596 &pgscanned, sc->order,
1597 ISOLATE_ACTIVE, zone,
1598 1, file);
1599 zone->pages_scanned += pgscanned;
1600 } else {
1601 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1602 &pgscanned, sc->order,
1603 ISOLATE_ACTIVE, zone,
1604 sc->mem_cgroup, 1, file);
1605 /*
1606 * mem_cgroup_isolate_pages() keeps track of
1607 * scanned pages on its own.
1608 */
1609 }
1610
1611 reclaim_stat->recent_scanned[file] += nr_taken;
1612
1613 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1614 if (file)
1615 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1616 else
1617 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1618 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1619 spin_unlock_irq(&zone->lru_lock);
1620
1621 while (!list_empty(&l_hold)) {
1622 cond_resched();
1623 page = lru_to_page(&l_hold);
1624 list_del(&page->lru);
1625
1626 if (unlikely(!page_evictable(page, NULL))) {
1627 putback_lru_page(page);
1628 continue;
1629 }
1630
1631 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1632 nr_rotated += hpage_nr_pages(page);
1633 /*
1634 * Identify referenced, file-backed active pages and
1635 * give them one more trip around the active list. So
1636 * that executable code get better chances to stay in
1637 * memory under moderate memory pressure. Anon pages
1638 * are not likely to be evicted by use-once streaming
1639 * IO, plus JVM can create lots of anon VM_EXEC pages,
1640 * so we ignore them here.
1641 */
1642 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1643 list_add(&page->lru, &l_active);
1644 continue;
1645 }
1646 }
1647
1648 ClearPageActive(page); /* we are de-activating */
1649 list_add(&page->lru, &l_inactive);
1650 }
1651
1652 /*
1653 * Move pages back to the lru list.
1654 */
1655 spin_lock_irq(&zone->lru_lock);
1656 /*
1657 * Count referenced pages from currently used mappings as rotated,
1658 * even though only some of them are actually re-activated. This
1659 * helps balance scan pressure between file and anonymous pages in
1660 * get_scan_ratio.
1661 */
1662 reclaim_stat->recent_rotated[file] += nr_rotated;
1663
1664 move_active_pages_to_lru(zone, &l_active,
1665 LRU_ACTIVE + file * LRU_FILE);
1666 move_active_pages_to_lru(zone, &l_inactive,
1667 LRU_BASE + file * LRU_FILE);
1668 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1669 spin_unlock_irq(&zone->lru_lock);
1670 }
1671
1672 #ifdef CONFIG_SWAP
1673 static int inactive_anon_is_low_global(struct zone *zone)
1674 {
1675 unsigned long active, inactive;
1676
1677 active = zone_page_state(zone, NR_ACTIVE_ANON);
1678 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1679
1680 if (inactive * zone->inactive_ratio < active)
1681 return 1;
1682
1683 return 0;
1684 }
1685
1686 /**
1687 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1688 * @zone: zone to check
1689 * @sc: scan control of this context
1690 *
1691 * Returns true if the zone does not have enough inactive anon pages,
1692 * meaning some active anon pages need to be deactivated.
1693 */
1694 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1695 {
1696 int low;
1697
1698 /*
1699 * If we don't have swap space, anonymous page deactivation
1700 * is pointless.
1701 */
1702 if (!total_swap_pages)
1703 return 0;
1704
1705 if (scanning_global_lru(sc))
1706 low = inactive_anon_is_low_global(zone);
1707 else
1708 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1709 return low;
1710 }
1711 #else
1712 static inline int inactive_anon_is_low(struct zone *zone,
1713 struct scan_control *sc)
1714 {
1715 return 0;
1716 }
1717 #endif
1718
1719 static int inactive_file_is_low_global(struct zone *zone)
1720 {
1721 unsigned long active, inactive;
1722
1723 active = zone_page_state(zone, NR_ACTIVE_FILE);
1724 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1725
1726 return (active > inactive);
1727 }
1728
1729 /**
1730 * inactive_file_is_low - check if file pages need to be deactivated
1731 * @zone: zone to check
1732 * @sc: scan control of this context
1733 *
1734 * When the system is doing streaming IO, memory pressure here
1735 * ensures that active file pages get deactivated, until more
1736 * than half of the file pages are on the inactive list.
1737 *
1738 * Once we get to that situation, protect the system's working
1739 * set from being evicted by disabling active file page aging.
1740 *
1741 * This uses a different ratio than the anonymous pages, because
1742 * the page cache uses a use-once replacement algorithm.
1743 */
1744 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1745 {
1746 int low;
1747
1748 if (scanning_global_lru(sc))
1749 low = inactive_file_is_low_global(zone);
1750 else
1751 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1752 return low;
1753 }
1754
1755 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1756 int file)
1757 {
1758 if (file)
1759 return inactive_file_is_low(zone, sc);
1760 else
1761 return inactive_anon_is_low(zone, sc);
1762 }
1763
1764 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1765 struct zone *zone, struct scan_control *sc, int priority)
1766 {
1767 int file = is_file_lru(lru);
1768
1769 if (is_active_lru(lru)) {
1770 if (inactive_list_is_low(zone, sc, file))
1771 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1772 return 0;
1773 }
1774
1775 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1776 }
1777
1778 static int vmscan_swappiness(struct scan_control *sc)
1779 {
1780 if (scanning_global_lru(sc))
1781 return vm_swappiness;
1782 return mem_cgroup_swappiness(sc->mem_cgroup);
1783 }
1784
1785 /*
1786 * Determine how aggressively the anon and file LRU lists should be
1787 * scanned. The relative value of each set of LRU lists is determined
1788 * by looking at the fraction of the pages scanned we did rotate back
1789 * onto the active list instead of evict.
1790 *
1791 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1792 */
1793 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1794 unsigned long *nr, int priority)
1795 {
1796 unsigned long anon, file, free;
1797 unsigned long anon_prio, file_prio;
1798 unsigned long ap, fp;
1799 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1800 u64 fraction[2], denominator;
1801 enum lru_list l;
1802 int noswap = 0;
1803 bool force_scan = false;
1804 unsigned long nr_force_scan[2];
1805
1806 /* kswapd does zone balancing and needs to scan this zone */
1807 if (scanning_global_lru(sc) && current_is_kswapd())
1808 force_scan = true;
1809 /* memcg may have small limit and need to avoid priority drop */
1810 if (!scanning_global_lru(sc))
1811 force_scan = true;
1812
1813 /* If we have no swap space, do not bother scanning anon pages. */
1814 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1815 noswap = 1;
1816 fraction[0] = 0;
1817 fraction[1] = 1;
1818 denominator = 1;
1819 nr_force_scan[0] = 0;
1820 nr_force_scan[1] = SWAP_CLUSTER_MAX;
1821 goto out;
1822 }
1823
1824 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1825 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1826 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1827 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1828
1829 if (scanning_global_lru(sc)) {
1830 free = zone_page_state(zone, NR_FREE_PAGES);
1831 /* If we have very few page cache pages,
1832 force-scan anon pages. */
1833 if (unlikely(file + free <= high_wmark_pages(zone))) {
1834 fraction[0] = 1;
1835 fraction[1] = 0;
1836 denominator = 1;
1837 nr_force_scan[0] = SWAP_CLUSTER_MAX;
1838 nr_force_scan[1] = 0;
1839 goto out;
1840 }
1841 }
1842
1843 /*
1844 * With swappiness at 100, anonymous and file have the same priority.
1845 * This scanning priority is essentially the inverse of IO cost.
1846 */
1847 anon_prio = vmscan_swappiness(sc);
1848 file_prio = 200 - vmscan_swappiness(sc);
1849
1850 /*
1851 * OK, so we have swap space and a fair amount of page cache
1852 * pages. We use the recently rotated / recently scanned
1853 * ratios to determine how valuable each cache is.
1854 *
1855 * Because workloads change over time (and to avoid overflow)
1856 * we keep these statistics as a floating average, which ends
1857 * up weighing recent references more than old ones.
1858 *
1859 * anon in [0], file in [1]
1860 */
1861 spin_lock_irq(&zone->lru_lock);
1862 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1863 reclaim_stat->recent_scanned[0] /= 2;
1864 reclaim_stat->recent_rotated[0] /= 2;
1865 }
1866
1867 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1868 reclaim_stat->recent_scanned[1] /= 2;
1869 reclaim_stat->recent_rotated[1] /= 2;
1870 }
1871
1872 /*
1873 * The amount of pressure on anon vs file pages is inversely
1874 * proportional to the fraction of recently scanned pages on
1875 * each list that were recently referenced and in active use.
1876 */
1877 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1878 ap /= reclaim_stat->recent_rotated[0] + 1;
1879
1880 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1881 fp /= reclaim_stat->recent_rotated[1] + 1;
1882 spin_unlock_irq(&zone->lru_lock);
1883
1884 fraction[0] = ap;
1885 fraction[1] = fp;
1886 denominator = ap + fp + 1;
1887 if (force_scan) {
1888 unsigned long scan = SWAP_CLUSTER_MAX;
1889 nr_force_scan[0] = div64_u64(scan * ap, denominator);
1890 nr_force_scan[1] = div64_u64(scan * fp, denominator);
1891 }
1892 out:
1893 for_each_evictable_lru(l) {
1894 int file = is_file_lru(l);
1895 unsigned long scan;
1896
1897 scan = zone_nr_lru_pages(zone, sc, l);
1898 if (priority || noswap) {
1899 scan >>= priority;
1900 scan = div64_u64(scan * fraction[file], denominator);
1901 }
1902
1903 /*
1904 * If zone is small or memcg is small, nr[l] can be 0.
1905 * This results no-scan on this priority and priority drop down.
1906 * For global direct reclaim, it can visit next zone and tend
1907 * not to have problems. For global kswapd, it's for zone
1908 * balancing and it need to scan a small amounts. When using
1909 * memcg, priority drop can cause big latency. So, it's better
1910 * to scan small amount. See may_noscan above.
1911 */
1912 if (!scan && force_scan)
1913 scan = nr_force_scan[file];
1914 nr[l] = scan;
1915 }
1916 }
1917
1918 /*
1919 * Reclaim/compaction depends on a number of pages being freed. To avoid
1920 * disruption to the system, a small number of order-0 pages continue to be
1921 * rotated and reclaimed in the normal fashion. However, by the time we get
1922 * back to the allocator and call try_to_compact_zone(), we ensure that
1923 * there are enough free pages for it to be likely successful
1924 */
1925 static inline bool should_continue_reclaim(struct zone *zone,
1926 unsigned long nr_reclaimed,
1927 unsigned long nr_scanned,
1928 struct scan_control *sc)
1929 {
1930 unsigned long pages_for_compaction;
1931 unsigned long inactive_lru_pages;
1932
1933 /* If not in reclaim/compaction mode, stop */
1934 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1935 return false;
1936
1937 /* Consider stopping depending on scan and reclaim activity */
1938 if (sc->gfp_mask & __GFP_REPEAT) {
1939 /*
1940 * For __GFP_REPEAT allocations, stop reclaiming if the
1941 * full LRU list has been scanned and we are still failing
1942 * to reclaim pages. This full LRU scan is potentially
1943 * expensive but a __GFP_REPEAT caller really wants to succeed
1944 */
1945 if (!nr_reclaimed && !nr_scanned)
1946 return false;
1947 } else {
1948 /*
1949 * For non-__GFP_REPEAT allocations which can presumably
1950 * fail without consequence, stop if we failed to reclaim
1951 * any pages from the last SWAP_CLUSTER_MAX number of
1952 * pages that were scanned. This will return to the
1953 * caller faster at the risk reclaim/compaction and
1954 * the resulting allocation attempt fails
1955 */
1956 if (!nr_reclaimed)
1957 return false;
1958 }
1959
1960 /*
1961 * If we have not reclaimed enough pages for compaction and the
1962 * inactive lists are large enough, continue reclaiming
1963 */
1964 pages_for_compaction = (2UL << sc->order);
1965 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1966 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1967 if (sc->nr_reclaimed < pages_for_compaction &&
1968 inactive_lru_pages > pages_for_compaction)
1969 return true;
1970
1971 /* If compaction would go ahead or the allocation would succeed, stop */
1972 switch (compaction_suitable(zone, sc->order)) {
1973 case COMPACT_PARTIAL:
1974 case COMPACT_CONTINUE:
1975 return false;
1976 default:
1977 return true;
1978 }
1979 }
1980
1981 /*
1982 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1983 */
1984 static void shrink_zone(int priority, struct zone *zone,
1985 struct scan_control *sc)
1986 {
1987 unsigned long nr[NR_LRU_LISTS];
1988 unsigned long nr_to_scan;
1989 enum lru_list l;
1990 unsigned long nr_reclaimed, nr_scanned;
1991 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1992
1993 restart:
1994 nr_reclaimed = 0;
1995 nr_scanned = sc->nr_scanned;
1996 get_scan_count(zone, sc, nr, priority);
1997
1998 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1999 nr[LRU_INACTIVE_FILE]) {
2000 for_each_evictable_lru(l) {
2001 if (nr[l]) {
2002 nr_to_scan = min_t(unsigned long,
2003 nr[l], SWAP_CLUSTER_MAX);
2004 nr[l] -= nr_to_scan;
2005
2006 nr_reclaimed += shrink_list(l, nr_to_scan,
2007 zone, sc, priority);
2008 }
2009 }
2010 /*
2011 * On large memory systems, scan >> priority can become
2012 * really large. This is fine for the starting priority;
2013 * we want to put equal scanning pressure on each zone.
2014 * However, if the VM has a harder time of freeing pages,
2015 * with multiple processes reclaiming pages, the total
2016 * freeing target can get unreasonably large.
2017 */
2018 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2019 break;
2020 }
2021 sc->nr_reclaimed += nr_reclaimed;
2022
2023 /*
2024 * Even if we did not try to evict anon pages at all, we want to
2025 * rebalance the anon lru active/inactive ratio.
2026 */
2027 if (inactive_anon_is_low(zone, sc))
2028 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2029
2030 /* reclaim/compaction might need reclaim to continue */
2031 if (should_continue_reclaim(zone, nr_reclaimed,
2032 sc->nr_scanned - nr_scanned, sc))
2033 goto restart;
2034
2035 throttle_vm_writeout(sc->gfp_mask);
2036 }
2037
2038 /*
2039 * This is the direct reclaim path, for page-allocating processes. We only
2040 * try to reclaim pages from zones which will satisfy the caller's allocation
2041 * request.
2042 *
2043 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2044 * Because:
2045 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2046 * allocation or
2047 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2048 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2049 * zone defense algorithm.
2050 *
2051 * If a zone is deemed to be full of pinned pages then just give it a light
2052 * scan then give up on it.
2053 */
2054 static void shrink_zones(int priority, struct zonelist *zonelist,
2055 struct scan_control *sc)
2056 {
2057 struct zoneref *z;
2058 struct zone *zone;
2059 unsigned long nr_soft_reclaimed;
2060 unsigned long nr_soft_scanned;
2061
2062 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2063 gfp_zone(sc->gfp_mask), sc->nodemask) {
2064 if (!populated_zone(zone))
2065 continue;
2066 /*
2067 * Take care memory controller reclaiming has small influence
2068 * to global LRU.
2069 */
2070 if (scanning_global_lru(sc)) {
2071 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2072 continue;
2073 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2074 continue; /* Let kswapd poll it */
2075 /*
2076 * This steals pages from memory cgroups over softlimit
2077 * and returns the number of reclaimed pages and
2078 * scanned pages. This works for global memory pressure
2079 * and balancing, not for a memcg's limit.
2080 */
2081 nr_soft_scanned = 0;
2082 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2083 sc->order, sc->gfp_mask,
2084 &nr_soft_scanned);
2085 sc->nr_reclaimed += nr_soft_reclaimed;
2086 sc->nr_scanned += nr_soft_scanned;
2087 /* need some check for avoid more shrink_zone() */
2088 }
2089
2090 shrink_zone(priority, zone, sc);
2091 }
2092 }
2093
2094 static bool zone_reclaimable(struct zone *zone)
2095 {
2096 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2097 }
2098
2099 /* All zones in zonelist are unreclaimable? */
2100 static bool all_unreclaimable(struct zonelist *zonelist,
2101 struct scan_control *sc)
2102 {
2103 struct zoneref *z;
2104 struct zone *zone;
2105
2106 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2107 gfp_zone(sc->gfp_mask), sc->nodemask) {
2108 if (!populated_zone(zone))
2109 continue;
2110 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2111 continue;
2112 if (!zone->all_unreclaimable)
2113 return false;
2114 }
2115
2116 return true;
2117 }
2118
2119 /*
2120 * This is the main entry point to direct page reclaim.
2121 *
2122 * If a full scan of the inactive list fails to free enough memory then we
2123 * are "out of memory" and something needs to be killed.
2124 *
2125 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2126 * high - the zone may be full of dirty or under-writeback pages, which this
2127 * caller can't do much about. We kick the writeback threads and take explicit
2128 * naps in the hope that some of these pages can be written. But if the
2129 * allocating task holds filesystem locks which prevent writeout this might not
2130 * work, and the allocation attempt will fail.
2131 *
2132 * returns: 0, if no pages reclaimed
2133 * else, the number of pages reclaimed
2134 */
2135 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2136 struct scan_control *sc,
2137 struct shrink_control *shrink)
2138 {
2139 int priority;
2140 unsigned long total_scanned = 0;
2141 struct reclaim_state *reclaim_state = current->reclaim_state;
2142 struct zoneref *z;
2143 struct zone *zone;
2144 unsigned long writeback_threshold;
2145
2146 get_mems_allowed();
2147 delayacct_freepages_start();
2148
2149 if (scanning_global_lru(sc))
2150 count_vm_event(ALLOCSTALL);
2151
2152 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2153 sc->nr_scanned = 0;
2154 if (!priority)
2155 disable_swap_token(sc->mem_cgroup);
2156 shrink_zones(priority, zonelist, sc);
2157 /*
2158 * Don't shrink slabs when reclaiming memory from
2159 * over limit cgroups
2160 */
2161 if (scanning_global_lru(sc)) {
2162 unsigned long lru_pages = 0;
2163 for_each_zone_zonelist(zone, z, zonelist,
2164 gfp_zone(sc->gfp_mask)) {
2165 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2166 continue;
2167
2168 lru_pages += zone_reclaimable_pages(zone);
2169 }
2170
2171 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2172 if (reclaim_state) {
2173 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2174 reclaim_state->reclaimed_slab = 0;
2175 }
2176 }
2177 total_scanned += sc->nr_scanned;
2178 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2179 goto out;
2180
2181 /*
2182 * Try to write back as many pages as we just scanned. This
2183 * tends to cause slow streaming writers to write data to the
2184 * disk smoothly, at the dirtying rate, which is nice. But
2185 * that's undesirable in laptop mode, where we *want* lumpy
2186 * writeout. So in laptop mode, write out the whole world.
2187 */
2188 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2189 if (total_scanned > writeback_threshold) {
2190 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2191 sc->may_writepage = 1;
2192 }
2193
2194 /* Take a nap, wait for some writeback to complete */
2195 if (!sc->hibernation_mode && sc->nr_scanned &&
2196 priority < DEF_PRIORITY - 2) {
2197 struct zone *preferred_zone;
2198
2199 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2200 &cpuset_current_mems_allowed,
2201 &preferred_zone);
2202 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2203 }
2204 }
2205
2206 out:
2207 delayacct_freepages_end();
2208 put_mems_allowed();
2209
2210 if (sc->nr_reclaimed)
2211 return sc->nr_reclaimed;
2212
2213 /*
2214 * As hibernation is going on, kswapd is freezed so that it can't mark
2215 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2216 * check.
2217 */
2218 if (oom_killer_disabled)
2219 return 0;
2220
2221 /* top priority shrink_zones still had more to do? don't OOM, then */
2222 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2223 return 1;
2224
2225 return 0;
2226 }
2227
2228 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2229 gfp_t gfp_mask, nodemask_t *nodemask)
2230 {
2231 unsigned long nr_reclaimed;
2232 struct scan_control sc = {
2233 .gfp_mask = gfp_mask,
2234 .may_writepage = !laptop_mode,
2235 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2236 .may_unmap = 1,
2237 .may_swap = 1,
2238 .order = order,
2239 .mem_cgroup = NULL,
2240 .nodemask = nodemask,
2241 };
2242 struct shrink_control shrink = {
2243 .gfp_mask = sc.gfp_mask,
2244 };
2245
2246 trace_mm_vmscan_direct_reclaim_begin(order,
2247 sc.may_writepage,
2248 gfp_mask);
2249
2250 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2251
2252 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2253
2254 return nr_reclaimed;
2255 }
2256
2257 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2258
2259 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2260 gfp_t gfp_mask, bool noswap,
2261 struct zone *zone,
2262 unsigned long *nr_scanned)
2263 {
2264 struct scan_control sc = {
2265 .nr_scanned = 0,
2266 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2267 .may_writepage = !laptop_mode,
2268 .may_unmap = 1,
2269 .may_swap = !noswap,
2270 .order = 0,
2271 .mem_cgroup = mem,
2272 };
2273
2274 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2275 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2276
2277 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2278 sc.may_writepage,
2279 sc.gfp_mask);
2280
2281 /*
2282 * NOTE: Although we can get the priority field, using it
2283 * here is not a good idea, since it limits the pages we can scan.
2284 * if we don't reclaim here, the shrink_zone from balance_pgdat
2285 * will pick up pages from other mem cgroup's as well. We hack
2286 * the priority and make it zero.
2287 */
2288 shrink_zone(0, zone, &sc);
2289
2290 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2291
2292 *nr_scanned = sc.nr_scanned;
2293 return sc.nr_reclaimed;
2294 }
2295
2296 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2297 gfp_t gfp_mask,
2298 bool noswap)
2299 {
2300 struct zonelist *zonelist;
2301 unsigned long nr_reclaimed;
2302 int nid;
2303 struct scan_control sc = {
2304 .may_writepage = !laptop_mode,
2305 .may_unmap = 1,
2306 .may_swap = !noswap,
2307 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2308 .order = 0,
2309 .mem_cgroup = mem_cont,
2310 .nodemask = NULL, /* we don't care the placement */
2311 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2312 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2313 };
2314 struct shrink_control shrink = {
2315 .gfp_mask = sc.gfp_mask,
2316 };
2317
2318 /*
2319 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2320 * take care of from where we get pages. So the node where we start the
2321 * scan does not need to be the current node.
2322 */
2323 nid = mem_cgroup_select_victim_node(mem_cont);
2324
2325 zonelist = NODE_DATA(nid)->node_zonelists;
2326
2327 trace_mm_vmscan_memcg_reclaim_begin(0,
2328 sc.may_writepage,
2329 sc.gfp_mask);
2330
2331 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2332
2333 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2334
2335 return nr_reclaimed;
2336 }
2337 #endif
2338
2339 /*
2340 * pgdat_balanced is used when checking if a node is balanced for high-order
2341 * allocations. Only zones that meet watermarks and are in a zone allowed
2342 * by the callers classzone_idx are added to balanced_pages. The total of
2343 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2344 * for the node to be considered balanced. Forcing all zones to be balanced
2345 * for high orders can cause excessive reclaim when there are imbalanced zones.
2346 * The choice of 25% is due to
2347 * o a 16M DMA zone that is balanced will not balance a zone on any
2348 * reasonable sized machine
2349 * o On all other machines, the top zone must be at least a reasonable
2350 * percentage of the middle zones. For example, on 32-bit x86, highmem
2351 * would need to be at least 256M for it to be balance a whole node.
2352 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2353 * to balance a node on its own. These seemed like reasonable ratios.
2354 */
2355 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2356 int classzone_idx)
2357 {
2358 unsigned long present_pages = 0;
2359 int i;
2360
2361 for (i = 0; i <= classzone_idx; i++)
2362 present_pages += pgdat->node_zones[i].present_pages;
2363
2364 /* A special case here: if zone has no page, we think it's balanced */
2365 return balanced_pages >= (present_pages >> 2);
2366 }
2367
2368 /* is kswapd sleeping prematurely? */
2369 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2370 int classzone_idx)
2371 {
2372 int i;
2373 unsigned long balanced = 0;
2374 bool all_zones_ok = true;
2375
2376 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2377 if (remaining)
2378 return true;
2379
2380 /* Check the watermark levels */
2381 for (i = 0; i <= classzone_idx; i++) {
2382 struct zone *zone = pgdat->node_zones + i;
2383
2384 if (!populated_zone(zone))
2385 continue;
2386
2387 /*
2388 * balance_pgdat() skips over all_unreclaimable after
2389 * DEF_PRIORITY. Effectively, it considers them balanced so
2390 * they must be considered balanced here as well if kswapd
2391 * is to sleep
2392 */
2393 if (zone->all_unreclaimable) {
2394 balanced += zone->present_pages;
2395 continue;
2396 }
2397
2398 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2399 i, 0))
2400 all_zones_ok = false;
2401 else
2402 balanced += zone->present_pages;
2403 }
2404
2405 /*
2406 * For high-order requests, the balanced zones must contain at least
2407 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2408 * must be balanced
2409 */
2410 if (order)
2411 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2412 else
2413 return !all_zones_ok;
2414 }
2415
2416 /*
2417 * For kswapd, balance_pgdat() will work across all this node's zones until
2418 * they are all at high_wmark_pages(zone).
2419 *
2420 * Returns the final order kswapd was reclaiming at
2421 *
2422 * There is special handling here for zones which are full of pinned pages.
2423 * This can happen if the pages are all mlocked, or if they are all used by
2424 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2425 * What we do is to detect the case where all pages in the zone have been
2426 * scanned twice and there has been zero successful reclaim. Mark the zone as
2427 * dead and from now on, only perform a short scan. Basically we're polling
2428 * the zone for when the problem goes away.
2429 *
2430 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2431 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2432 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2433 * lower zones regardless of the number of free pages in the lower zones. This
2434 * interoperates with the page allocator fallback scheme to ensure that aging
2435 * of pages is balanced across the zones.
2436 */
2437 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2438 int *classzone_idx)
2439 {
2440 int all_zones_ok;
2441 unsigned long balanced;
2442 int priority;
2443 int i;
2444 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2445 unsigned long total_scanned;
2446 struct reclaim_state *reclaim_state = current->reclaim_state;
2447 unsigned long nr_soft_reclaimed;
2448 unsigned long nr_soft_scanned;
2449 struct scan_control sc = {
2450 .gfp_mask = GFP_KERNEL,
2451 .may_unmap = 1,
2452 .may_swap = 1,
2453 /*
2454 * kswapd doesn't want to be bailed out while reclaim. because
2455 * we want to put equal scanning pressure on each zone.
2456 */
2457 .nr_to_reclaim = ULONG_MAX,
2458 .order = order,
2459 .mem_cgroup = NULL,
2460 };
2461 struct shrink_control shrink = {
2462 .gfp_mask = sc.gfp_mask,
2463 };
2464 loop_again:
2465 total_scanned = 0;
2466 sc.nr_reclaimed = 0;
2467 sc.may_writepage = !laptop_mode;
2468 count_vm_event(PAGEOUTRUN);
2469
2470 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2471 unsigned long lru_pages = 0;
2472 int has_under_min_watermark_zone = 0;
2473
2474 /* The swap token gets in the way of swapout... */
2475 if (!priority)
2476 disable_swap_token(NULL);
2477
2478 all_zones_ok = 1;
2479 balanced = 0;
2480
2481 /*
2482 * Scan in the highmem->dma direction for the highest
2483 * zone which needs scanning
2484 */
2485 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2486 struct zone *zone = pgdat->node_zones + i;
2487
2488 if (!populated_zone(zone))
2489 continue;
2490
2491 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2492 continue;
2493
2494 /*
2495 * Do some background aging of the anon list, to give
2496 * pages a chance to be referenced before reclaiming.
2497 */
2498 if (inactive_anon_is_low(zone, &sc))
2499 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2500 &sc, priority, 0);
2501
2502 if (!zone_watermark_ok_safe(zone, order,
2503 high_wmark_pages(zone), 0, 0)) {
2504 end_zone = i;
2505 break;
2506 } else {
2507 /* If balanced, clear the congested flag */
2508 zone_clear_flag(zone, ZONE_CONGESTED);
2509 }
2510 }
2511 if (i < 0)
2512 goto out;
2513
2514 for (i = 0; i <= end_zone; i++) {
2515 struct zone *zone = pgdat->node_zones + i;
2516
2517 lru_pages += zone_reclaimable_pages(zone);
2518 }
2519
2520 /*
2521 * Now scan the zone in the dma->highmem direction, stopping
2522 * at the last zone which needs scanning.
2523 *
2524 * We do this because the page allocator works in the opposite
2525 * direction. This prevents the page allocator from allocating
2526 * pages behind kswapd's direction of progress, which would
2527 * cause too much scanning of the lower zones.
2528 */
2529 for (i = 0; i <= end_zone; i++) {
2530 struct zone *zone = pgdat->node_zones + i;
2531 int nr_slab;
2532 unsigned long balance_gap;
2533
2534 if (!populated_zone(zone))
2535 continue;
2536
2537 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2538 continue;
2539
2540 sc.nr_scanned = 0;
2541
2542 nr_soft_scanned = 0;
2543 /*
2544 * Call soft limit reclaim before calling shrink_zone.
2545 */
2546 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2547 order, sc.gfp_mask,
2548 &nr_soft_scanned);
2549 sc.nr_reclaimed += nr_soft_reclaimed;
2550 total_scanned += nr_soft_scanned;
2551
2552 /*
2553 * We put equal pressure on every zone, unless
2554 * one zone has way too many pages free
2555 * already. The "too many pages" is defined
2556 * as the high wmark plus a "gap" where the
2557 * gap is either the low watermark or 1%
2558 * of the zone, whichever is smaller.
2559 */
2560 balance_gap = min(low_wmark_pages(zone),
2561 (zone->present_pages +
2562 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2563 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2564 if (!zone_watermark_ok_safe(zone, order,
2565 high_wmark_pages(zone) + balance_gap,
2566 end_zone, 0)) {
2567 shrink_zone(priority, zone, &sc);
2568
2569 reclaim_state->reclaimed_slab = 0;
2570 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2571 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2572 total_scanned += sc.nr_scanned;
2573
2574 if (nr_slab == 0 && !zone_reclaimable(zone))
2575 zone->all_unreclaimable = 1;
2576 }
2577
2578 /*
2579 * If we've done a decent amount of scanning and
2580 * the reclaim ratio is low, start doing writepage
2581 * even in laptop mode
2582 */
2583 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2584 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2585 sc.may_writepage = 1;
2586
2587 if (zone->all_unreclaimable) {
2588 if (end_zone && end_zone == i)
2589 end_zone--;
2590 continue;
2591 }
2592
2593 if (!zone_watermark_ok_safe(zone, order,
2594 high_wmark_pages(zone), end_zone, 0)) {
2595 all_zones_ok = 0;
2596 /*
2597 * We are still under min water mark. This
2598 * means that we have a GFP_ATOMIC allocation
2599 * failure risk. Hurry up!
2600 */
2601 if (!zone_watermark_ok_safe(zone, order,
2602 min_wmark_pages(zone), end_zone, 0))
2603 has_under_min_watermark_zone = 1;
2604 } else {
2605 /*
2606 * If a zone reaches its high watermark,
2607 * consider it to be no longer congested. It's
2608 * possible there are dirty pages backed by
2609 * congested BDIs but as pressure is relieved,
2610 * spectulatively avoid congestion waits
2611 */
2612 zone_clear_flag(zone, ZONE_CONGESTED);
2613 if (i <= *classzone_idx)
2614 balanced += zone->present_pages;
2615 }
2616
2617 }
2618 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2619 break; /* kswapd: all done */
2620 /*
2621 * OK, kswapd is getting into trouble. Take a nap, then take
2622 * another pass across the zones.
2623 */
2624 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2625 if (has_under_min_watermark_zone)
2626 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2627 else
2628 congestion_wait(BLK_RW_ASYNC, HZ/10);
2629 }
2630
2631 /*
2632 * We do this so kswapd doesn't build up large priorities for
2633 * example when it is freeing in parallel with allocators. It
2634 * matches the direct reclaim path behaviour in terms of impact
2635 * on zone->*_priority.
2636 */
2637 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2638 break;
2639 }
2640 out:
2641
2642 /*
2643 * order-0: All zones must meet high watermark for a balanced node
2644 * high-order: Balanced zones must make up at least 25% of the node
2645 * for the node to be balanced
2646 */
2647 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2648 cond_resched();
2649
2650 try_to_freeze();
2651
2652 /*
2653 * Fragmentation may mean that the system cannot be
2654 * rebalanced for high-order allocations in all zones.
2655 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2656 * it means the zones have been fully scanned and are still
2657 * not balanced. For high-order allocations, there is
2658 * little point trying all over again as kswapd may
2659 * infinite loop.
2660 *
2661 * Instead, recheck all watermarks at order-0 as they
2662 * are the most important. If watermarks are ok, kswapd will go
2663 * back to sleep. High-order users can still perform direct
2664 * reclaim if they wish.
2665 */
2666 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2667 order = sc.order = 0;
2668
2669 goto loop_again;
2670 }
2671
2672 /*
2673 * If kswapd was reclaiming at a higher order, it has the option of
2674 * sleeping without all zones being balanced. Before it does, it must
2675 * ensure that the watermarks for order-0 on *all* zones are met and
2676 * that the congestion flags are cleared. The congestion flag must
2677 * be cleared as kswapd is the only mechanism that clears the flag
2678 * and it is potentially going to sleep here.
2679 */
2680 if (order) {
2681 for (i = 0; i <= end_zone; i++) {
2682 struct zone *zone = pgdat->node_zones + i;
2683
2684 if (!populated_zone(zone))
2685 continue;
2686
2687 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2688 continue;
2689
2690 /* Confirm the zone is balanced for order-0 */
2691 if (!zone_watermark_ok(zone, 0,
2692 high_wmark_pages(zone), 0, 0)) {
2693 order = sc.order = 0;
2694 goto loop_again;
2695 }
2696
2697 /* If balanced, clear the congested flag */
2698 zone_clear_flag(zone, ZONE_CONGESTED);
2699 }
2700 }
2701
2702 /*
2703 * Return the order we were reclaiming at so sleeping_prematurely()
2704 * makes a decision on the order we were last reclaiming at. However,
2705 * if another caller entered the allocator slow path while kswapd
2706 * was awake, order will remain at the higher level
2707 */
2708 *classzone_idx = end_zone;
2709 return order;
2710 }
2711
2712 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2713 {
2714 long remaining = 0;
2715 DEFINE_WAIT(wait);
2716
2717 if (freezing(current) || kthread_should_stop())
2718 return;
2719
2720 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2721
2722 /* Try to sleep for a short interval */
2723 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2724 remaining = schedule_timeout(HZ/10);
2725 finish_wait(&pgdat->kswapd_wait, &wait);
2726 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2727 }
2728
2729 /*
2730 * After a short sleep, check if it was a premature sleep. If not, then
2731 * go fully to sleep until explicitly woken up.
2732 */
2733 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2734 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2735
2736 /*
2737 * vmstat counters are not perfectly accurate and the estimated
2738 * value for counters such as NR_FREE_PAGES can deviate from the
2739 * true value by nr_online_cpus * threshold. To avoid the zone
2740 * watermarks being breached while under pressure, we reduce the
2741 * per-cpu vmstat threshold while kswapd is awake and restore
2742 * them before going back to sleep.
2743 */
2744 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2745 schedule();
2746 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2747 } else {
2748 if (remaining)
2749 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2750 else
2751 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2752 }
2753 finish_wait(&pgdat->kswapd_wait, &wait);
2754 }
2755
2756 /*
2757 * The background pageout daemon, started as a kernel thread
2758 * from the init process.
2759 *
2760 * This basically trickles out pages so that we have _some_
2761 * free memory available even if there is no other activity
2762 * that frees anything up. This is needed for things like routing
2763 * etc, where we otherwise might have all activity going on in
2764 * asynchronous contexts that cannot page things out.
2765 *
2766 * If there are applications that are active memory-allocators
2767 * (most normal use), this basically shouldn't matter.
2768 */
2769 static int kswapd(void *p)
2770 {
2771 unsigned long order, new_order;
2772 int classzone_idx, new_classzone_idx;
2773 pg_data_t *pgdat = (pg_data_t*)p;
2774 struct task_struct *tsk = current;
2775
2776 struct reclaim_state reclaim_state = {
2777 .reclaimed_slab = 0,
2778 };
2779 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2780
2781 lockdep_set_current_reclaim_state(GFP_KERNEL);
2782
2783 if (!cpumask_empty(cpumask))
2784 set_cpus_allowed_ptr(tsk, cpumask);
2785 current->reclaim_state = &reclaim_state;
2786
2787 /*
2788 * Tell the memory management that we're a "memory allocator",
2789 * and that if we need more memory we should get access to it
2790 * regardless (see "__alloc_pages()"). "kswapd" should
2791 * never get caught in the normal page freeing logic.
2792 *
2793 * (Kswapd normally doesn't need memory anyway, but sometimes
2794 * you need a small amount of memory in order to be able to
2795 * page out something else, and this flag essentially protects
2796 * us from recursively trying to free more memory as we're
2797 * trying to free the first piece of memory in the first place).
2798 */
2799 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2800 set_freezable();
2801
2802 order = new_order = 0;
2803 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2804 for ( ; ; ) {
2805 int ret;
2806
2807 /*
2808 * If the last balance_pgdat was unsuccessful it's unlikely a
2809 * new request of a similar or harder type will succeed soon
2810 * so consider going to sleep on the basis we reclaimed at
2811 */
2812 if (classzone_idx >= new_classzone_idx && order == new_order) {
2813 new_order = pgdat->kswapd_max_order;
2814 new_classzone_idx = pgdat->classzone_idx;
2815 pgdat->kswapd_max_order = 0;
2816 pgdat->classzone_idx = pgdat->nr_zones - 1;
2817 }
2818
2819 if (order < new_order || classzone_idx > new_classzone_idx) {
2820 /*
2821 * Don't sleep if someone wants a larger 'order'
2822 * allocation or has tigher zone constraints
2823 */
2824 order = new_order;
2825 classzone_idx = new_classzone_idx;
2826 } else {
2827 kswapd_try_to_sleep(pgdat, order, classzone_idx);
2828 order = pgdat->kswapd_max_order;
2829 classzone_idx = pgdat->classzone_idx;
2830 pgdat->kswapd_max_order = 0;
2831 pgdat->classzone_idx = pgdat->nr_zones - 1;
2832 }
2833
2834 ret = try_to_freeze();
2835 if (kthread_should_stop())
2836 break;
2837
2838 /*
2839 * We can speed up thawing tasks if we don't call balance_pgdat
2840 * after returning from the refrigerator
2841 */
2842 if (!ret) {
2843 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2844 order = balance_pgdat(pgdat, order, &classzone_idx);
2845 }
2846 }
2847 return 0;
2848 }
2849
2850 /*
2851 * A zone is low on free memory, so wake its kswapd task to service it.
2852 */
2853 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2854 {
2855 pg_data_t *pgdat;
2856
2857 if (!populated_zone(zone))
2858 return;
2859
2860 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2861 return;
2862 pgdat = zone->zone_pgdat;
2863 if (pgdat->kswapd_max_order < order) {
2864 pgdat->kswapd_max_order = order;
2865 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2866 }
2867 if (!waitqueue_active(&pgdat->kswapd_wait))
2868 return;
2869 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2870 return;
2871
2872 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2873 wake_up_interruptible(&pgdat->kswapd_wait);
2874 }
2875
2876 /*
2877 * The reclaimable count would be mostly accurate.
2878 * The less reclaimable pages may be
2879 * - mlocked pages, which will be moved to unevictable list when encountered
2880 * - mapped pages, which may require several travels to be reclaimed
2881 * - dirty pages, which is not "instantly" reclaimable
2882 */
2883 unsigned long global_reclaimable_pages(void)
2884 {
2885 int nr;
2886
2887 nr = global_page_state(NR_ACTIVE_FILE) +
2888 global_page_state(NR_INACTIVE_FILE);
2889
2890 if (nr_swap_pages > 0)
2891 nr += global_page_state(NR_ACTIVE_ANON) +
2892 global_page_state(NR_INACTIVE_ANON);
2893
2894 return nr;
2895 }
2896
2897 unsigned long zone_reclaimable_pages(struct zone *zone)
2898 {
2899 int nr;
2900
2901 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2902 zone_page_state(zone, NR_INACTIVE_FILE);
2903
2904 if (nr_swap_pages > 0)
2905 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2906 zone_page_state(zone, NR_INACTIVE_ANON);
2907
2908 return nr;
2909 }
2910
2911 #ifdef CONFIG_HIBERNATION
2912 /*
2913 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2914 * freed pages.
2915 *
2916 * Rather than trying to age LRUs the aim is to preserve the overall
2917 * LRU order by reclaiming preferentially
2918 * inactive > active > active referenced > active mapped
2919 */
2920 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2921 {
2922 struct reclaim_state reclaim_state;
2923 struct scan_control sc = {
2924 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2925 .may_swap = 1,
2926 .may_unmap = 1,
2927 .may_writepage = 1,
2928 .nr_to_reclaim = nr_to_reclaim,
2929 .hibernation_mode = 1,
2930 .order = 0,
2931 };
2932 struct shrink_control shrink = {
2933 .gfp_mask = sc.gfp_mask,
2934 };
2935 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2936 struct task_struct *p = current;
2937 unsigned long nr_reclaimed;
2938
2939 p->flags |= PF_MEMALLOC;
2940 lockdep_set_current_reclaim_state(sc.gfp_mask);
2941 reclaim_state.reclaimed_slab = 0;
2942 p->reclaim_state = &reclaim_state;
2943
2944 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2945
2946 p->reclaim_state = NULL;
2947 lockdep_clear_current_reclaim_state();
2948 p->flags &= ~PF_MEMALLOC;
2949
2950 return nr_reclaimed;
2951 }
2952 #endif /* CONFIG_HIBERNATION */
2953
2954 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2955 not required for correctness. So if the last cpu in a node goes
2956 away, we get changed to run anywhere: as the first one comes back,
2957 restore their cpu bindings. */
2958 static int __devinit cpu_callback(struct notifier_block *nfb,
2959 unsigned long action, void *hcpu)
2960 {
2961 int nid;
2962
2963 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2964 for_each_node_state(nid, N_HIGH_MEMORY) {
2965 pg_data_t *pgdat = NODE_DATA(nid);
2966 const struct cpumask *mask;
2967
2968 mask = cpumask_of_node(pgdat->node_id);
2969
2970 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2971 /* One of our CPUs online: restore mask */
2972 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2973 }
2974 }
2975 return NOTIFY_OK;
2976 }
2977
2978 /*
2979 * This kswapd start function will be called by init and node-hot-add.
2980 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2981 */
2982 int kswapd_run(int nid)
2983 {
2984 pg_data_t *pgdat = NODE_DATA(nid);
2985 int ret = 0;
2986
2987 if (pgdat->kswapd)
2988 return 0;
2989
2990 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2991 if (IS_ERR(pgdat->kswapd)) {
2992 /* failure at boot is fatal */
2993 BUG_ON(system_state == SYSTEM_BOOTING);
2994 printk("Failed to start kswapd on node %d\n",nid);
2995 ret = -1;
2996 }
2997 return ret;
2998 }
2999
3000 /*
3001 * Called by memory hotplug when all memory in a node is offlined.
3002 */
3003 void kswapd_stop(int nid)
3004 {
3005 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3006
3007 if (kswapd)
3008 kthread_stop(kswapd);
3009 }
3010
3011 static int __init kswapd_init(void)
3012 {
3013 int nid;
3014
3015 swap_setup();
3016 for_each_node_state(nid, N_HIGH_MEMORY)
3017 kswapd_run(nid);
3018 hotcpu_notifier(cpu_callback, 0);
3019 return 0;
3020 }
3021
3022 module_init(kswapd_init)
3023
3024 #ifdef CONFIG_NUMA
3025 /*
3026 * Zone reclaim mode
3027 *
3028 * If non-zero call zone_reclaim when the number of free pages falls below
3029 * the watermarks.
3030 */
3031 int zone_reclaim_mode __read_mostly;
3032
3033 #define RECLAIM_OFF 0
3034 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3035 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3036 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3037
3038 /*
3039 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3040 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3041 * a zone.
3042 */
3043 #define ZONE_RECLAIM_PRIORITY 4
3044
3045 /*
3046 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3047 * occur.
3048 */
3049 int sysctl_min_unmapped_ratio = 1;
3050
3051 /*
3052 * If the number of slab pages in a zone grows beyond this percentage then
3053 * slab reclaim needs to occur.
3054 */
3055 int sysctl_min_slab_ratio = 5;
3056
3057 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3058 {
3059 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3060 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3061 zone_page_state(zone, NR_ACTIVE_FILE);
3062
3063 /*
3064 * It's possible for there to be more file mapped pages than
3065 * accounted for by the pages on the file LRU lists because
3066 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3067 */
3068 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3069 }
3070
3071 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3072 static long zone_pagecache_reclaimable(struct zone *zone)
3073 {
3074 long nr_pagecache_reclaimable;
3075 long delta = 0;
3076
3077 /*
3078 * If RECLAIM_SWAP is set, then all file pages are considered
3079 * potentially reclaimable. Otherwise, we have to worry about
3080 * pages like swapcache and zone_unmapped_file_pages() provides
3081 * a better estimate
3082 */
3083 if (zone_reclaim_mode & RECLAIM_SWAP)
3084 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3085 else
3086 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3087
3088 /* If we can't clean pages, remove dirty pages from consideration */
3089 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3090 delta += zone_page_state(zone, NR_FILE_DIRTY);
3091
3092 /* Watch for any possible underflows due to delta */
3093 if (unlikely(delta > nr_pagecache_reclaimable))
3094 delta = nr_pagecache_reclaimable;
3095
3096 return nr_pagecache_reclaimable - delta;
3097 }
3098
3099 /*
3100 * Try to free up some pages from this zone through reclaim.
3101 */
3102 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3103 {
3104 /* Minimum pages needed in order to stay on node */
3105 const unsigned long nr_pages = 1 << order;
3106 struct task_struct *p = current;
3107 struct reclaim_state reclaim_state;
3108 int priority;
3109 struct scan_control sc = {
3110 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3111 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3112 .may_swap = 1,
3113 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3114 SWAP_CLUSTER_MAX),
3115 .gfp_mask = gfp_mask,
3116 .order = order,
3117 };
3118 struct shrink_control shrink = {
3119 .gfp_mask = sc.gfp_mask,
3120 };
3121 unsigned long nr_slab_pages0, nr_slab_pages1;
3122
3123 cond_resched();
3124 /*
3125 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3126 * and we also need to be able to write out pages for RECLAIM_WRITE
3127 * and RECLAIM_SWAP.
3128 */
3129 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3130 lockdep_set_current_reclaim_state(gfp_mask);
3131 reclaim_state.reclaimed_slab = 0;
3132 p->reclaim_state = &reclaim_state;
3133
3134 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3135 /*
3136 * Free memory by calling shrink zone with increasing
3137 * priorities until we have enough memory freed.
3138 */
3139 priority = ZONE_RECLAIM_PRIORITY;
3140 do {
3141 shrink_zone(priority, zone, &sc);
3142 priority--;
3143 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3144 }
3145
3146 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3147 if (nr_slab_pages0 > zone->min_slab_pages) {
3148 /*
3149 * shrink_slab() does not currently allow us to determine how
3150 * many pages were freed in this zone. So we take the current
3151 * number of slab pages and shake the slab until it is reduced
3152 * by the same nr_pages that we used for reclaiming unmapped
3153 * pages.
3154 *
3155 * Note that shrink_slab will free memory on all zones and may
3156 * take a long time.
3157 */
3158 for (;;) {
3159 unsigned long lru_pages = zone_reclaimable_pages(zone);
3160
3161 /* No reclaimable slab or very low memory pressure */
3162 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3163 break;
3164
3165 /* Freed enough memory */
3166 nr_slab_pages1 = zone_page_state(zone,
3167 NR_SLAB_RECLAIMABLE);
3168 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3169 break;
3170 }
3171
3172 /*
3173 * Update nr_reclaimed by the number of slab pages we
3174 * reclaimed from this zone.
3175 */
3176 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3177 if (nr_slab_pages1 < nr_slab_pages0)
3178 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3179 }
3180
3181 p->reclaim_state = NULL;
3182 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3183 lockdep_clear_current_reclaim_state();
3184 return sc.nr_reclaimed >= nr_pages;
3185 }
3186
3187 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3188 {
3189 int node_id;
3190 int ret;
3191
3192 /*
3193 * Zone reclaim reclaims unmapped file backed pages and
3194 * slab pages if we are over the defined limits.
3195 *
3196 * A small portion of unmapped file backed pages is needed for
3197 * file I/O otherwise pages read by file I/O will be immediately
3198 * thrown out if the zone is overallocated. So we do not reclaim
3199 * if less than a specified percentage of the zone is used by
3200 * unmapped file backed pages.
3201 */
3202 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3203 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3204 return ZONE_RECLAIM_FULL;
3205
3206 if (zone->all_unreclaimable)
3207 return ZONE_RECLAIM_FULL;
3208
3209 /*
3210 * Do not scan if the allocation should not be delayed.
3211 */
3212 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3213 return ZONE_RECLAIM_NOSCAN;
3214
3215 /*
3216 * Only run zone reclaim on the local zone or on zones that do not
3217 * have associated processors. This will favor the local processor
3218 * over remote processors and spread off node memory allocations
3219 * as wide as possible.
3220 */
3221 node_id = zone_to_nid(zone);
3222 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3223 return ZONE_RECLAIM_NOSCAN;
3224
3225 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3226 return ZONE_RECLAIM_NOSCAN;
3227
3228 ret = __zone_reclaim(zone, gfp_mask, order);
3229 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3230
3231 if (!ret)
3232 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3233
3234 return ret;
3235 }
3236 #endif
3237
3238 /*
3239 * page_evictable - test whether a page is evictable
3240 * @page: the page to test
3241 * @vma: the VMA in which the page is or will be mapped, may be NULL
3242 *
3243 * Test whether page is evictable--i.e., should be placed on active/inactive
3244 * lists vs unevictable list. The vma argument is !NULL when called from the
3245 * fault path to determine how to instantate a new page.
3246 *
3247 * Reasons page might not be evictable:
3248 * (1) page's mapping marked unevictable
3249 * (2) page is part of an mlocked VMA
3250 *
3251 */
3252 int page_evictable(struct page *page, struct vm_area_struct *vma)
3253 {
3254
3255 if (mapping_unevictable(page_mapping(page)))
3256 return 0;
3257
3258 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3259 return 0;
3260
3261 return 1;
3262 }
3263
3264 /**
3265 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3266 * @page: page to check evictability and move to appropriate lru list
3267 * @zone: zone page is in
3268 *
3269 * Checks a page for evictability and moves the page to the appropriate
3270 * zone lru list.
3271 *
3272 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3273 * have PageUnevictable set.
3274 */
3275 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3276 {
3277 VM_BUG_ON(PageActive(page));
3278
3279 retry:
3280 ClearPageUnevictable(page);
3281 if (page_evictable(page, NULL)) {
3282 enum lru_list l = page_lru_base_type(page);
3283
3284 __dec_zone_state(zone, NR_UNEVICTABLE);
3285 list_move(&page->lru, &zone->lru[l].list);
3286 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3287 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3288 __count_vm_event(UNEVICTABLE_PGRESCUED);
3289 } else {
3290 /*
3291 * rotate unevictable list
3292 */
3293 SetPageUnevictable(page);
3294 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3295 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3296 if (page_evictable(page, NULL))
3297 goto retry;
3298 }
3299 }
3300
3301 /**
3302 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3303 * @mapping: struct address_space to scan for evictable pages
3304 *
3305 * Scan all pages in mapping. Check unevictable pages for
3306 * evictability and move them to the appropriate zone lru list.
3307 */
3308 void scan_mapping_unevictable_pages(struct address_space *mapping)
3309 {
3310 pgoff_t next = 0;
3311 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3312 PAGE_CACHE_SHIFT;
3313 struct zone *zone;
3314 struct pagevec pvec;
3315
3316 if (mapping->nrpages == 0)
3317 return;
3318
3319 pagevec_init(&pvec, 0);
3320 while (next < end &&
3321 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3322 int i;
3323 int pg_scanned = 0;
3324
3325 zone = NULL;
3326
3327 for (i = 0; i < pagevec_count(&pvec); i++) {
3328 struct page *page = pvec.pages[i];
3329 pgoff_t page_index = page->index;
3330 struct zone *pagezone = page_zone(page);
3331
3332 pg_scanned++;
3333 if (page_index > next)
3334 next = page_index;
3335 next++;
3336
3337 if (pagezone != zone) {
3338 if (zone)
3339 spin_unlock_irq(&zone->lru_lock);
3340 zone = pagezone;
3341 spin_lock_irq(&zone->lru_lock);
3342 }
3343
3344 if (PageLRU(page) && PageUnevictable(page))
3345 check_move_unevictable_page(page, zone);
3346 }
3347 if (zone)
3348 spin_unlock_irq(&zone->lru_lock);
3349 pagevec_release(&pvec);
3350
3351 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3352 }
3353
3354 }
3355
3356 /**
3357 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3358 * @zone - zone of which to scan the unevictable list
3359 *
3360 * Scan @zone's unevictable LRU lists to check for pages that have become
3361 * evictable. Move those that have to @zone's inactive list where they
3362 * become candidates for reclaim, unless shrink_inactive_zone() decides
3363 * to reactivate them. Pages that are still unevictable are rotated
3364 * back onto @zone's unevictable list.
3365 */
3366 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3367 static void scan_zone_unevictable_pages(struct zone *zone)
3368 {
3369 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3370 unsigned long scan;
3371 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3372
3373 while (nr_to_scan > 0) {
3374 unsigned long batch_size = min(nr_to_scan,
3375 SCAN_UNEVICTABLE_BATCH_SIZE);
3376
3377 spin_lock_irq(&zone->lru_lock);
3378 for (scan = 0; scan < batch_size; scan++) {
3379 struct page *page = lru_to_page(l_unevictable);
3380
3381 if (!trylock_page(page))
3382 continue;
3383
3384 prefetchw_prev_lru_page(page, l_unevictable, flags);
3385
3386 if (likely(PageLRU(page) && PageUnevictable(page)))
3387 check_move_unevictable_page(page, zone);
3388
3389 unlock_page(page);
3390 }
3391 spin_unlock_irq(&zone->lru_lock);
3392
3393 nr_to_scan -= batch_size;
3394 }
3395 }
3396
3397
3398 /**
3399 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3400 *
3401 * A really big hammer: scan all zones' unevictable LRU lists to check for
3402 * pages that have become evictable. Move those back to the zones'
3403 * inactive list where they become candidates for reclaim.
3404 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3405 * and we add swap to the system. As such, it runs in the context of a task
3406 * that has possibly/probably made some previously unevictable pages
3407 * evictable.
3408 */
3409 static void scan_all_zones_unevictable_pages(void)
3410 {
3411 struct zone *zone;
3412
3413 for_each_zone(zone) {
3414 scan_zone_unevictable_pages(zone);
3415 }
3416 }
3417
3418 /*
3419 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3420 * all nodes' unevictable lists for evictable pages
3421 */
3422 unsigned long scan_unevictable_pages;
3423
3424 int scan_unevictable_handler(struct ctl_table *table, int write,
3425 void __user *buffer,
3426 size_t *length, loff_t *ppos)
3427 {
3428 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3429
3430 if (write && *(unsigned long *)table->data)
3431 scan_all_zones_unevictable_pages();
3432
3433 scan_unevictable_pages = 0;
3434 return 0;
3435 }
3436
3437 #ifdef CONFIG_NUMA
3438 /*
3439 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3440 * a specified node's per zone unevictable lists for evictable pages.
3441 */
3442
3443 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3444 struct sysdev_attribute *attr,
3445 char *buf)
3446 {
3447 return sprintf(buf, "0\n"); /* always zero; should fit... */
3448 }
3449
3450 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3451 struct sysdev_attribute *attr,
3452 const char *buf, size_t count)
3453 {
3454 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3455 struct zone *zone;
3456 unsigned long res;
3457 unsigned long req = strict_strtoul(buf, 10, &res);
3458
3459 if (!req)
3460 return 1; /* zero is no-op */
3461
3462 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3463 if (!populated_zone(zone))
3464 continue;
3465 scan_zone_unevictable_pages(zone);
3466 }
3467 return 1;
3468 }
3469
3470
3471 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3472 read_scan_unevictable_node,
3473 write_scan_unevictable_node);
3474
3475 int scan_unevictable_register_node(struct node *node)
3476 {
3477 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3478 }
3479
3480 void scan_unevictable_unregister_node(struct node *node)
3481 {
3482 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3483 }
3484 #endif
This page took 0.187435 seconds and 6 git commands to generate.