Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55
56 #include "internal.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
67
68 /* Allocation order */
69 int order;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
107 };
108
109 #ifdef ARCH_HAS_PREFETCH
110 #define prefetch_prev_lru_page(_page, _base, _field) \
111 do { \
112 if ((_page)->lru.prev != _base) { \
113 struct page *prev; \
114 \
115 prev = lru_to_page(&(_page->lru)); \
116 prefetch(&prev->_field); \
117 } \
118 } while (0)
119 #else
120 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
121 #endif
122
123 #ifdef ARCH_HAS_PREFETCHW
124 #define prefetchw_prev_lru_page(_page, _base, _field) \
125 do { \
126 if ((_page)->lru.prev != _base) { \
127 struct page *prev; \
128 \
129 prev = lru_to_page(&(_page->lru)); \
130 prefetchw(&prev->_field); \
131 } \
132 } while (0)
133 #else
134 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
135 #endif
136
137 /*
138 * From 0 .. 100. Higher means more swappy.
139 */
140 int vm_swappiness = 60;
141 /*
142 * The total number of pages which are beyond the high watermark within all
143 * zones.
144 */
145 unsigned long vm_total_pages;
146
147 static LIST_HEAD(shrinker_list);
148 static DECLARE_RWSEM(shrinker_rwsem);
149
150 #ifdef CONFIG_MEMCG
151 static bool global_reclaim(struct scan_control *sc)
152 {
153 return !sc->target_mem_cgroup;
154 }
155
156 /**
157 * sane_reclaim - is the usual dirty throttling mechanism operational?
158 * @sc: scan_control in question
159 *
160 * The normal page dirty throttling mechanism in balance_dirty_pages() is
161 * completely broken with the legacy memcg and direct stalling in
162 * shrink_page_list() is used for throttling instead, which lacks all the
163 * niceties such as fairness, adaptive pausing, bandwidth proportional
164 * allocation and configurability.
165 *
166 * This function tests whether the vmscan currently in progress can assume
167 * that the normal dirty throttling mechanism is operational.
168 */
169 static bool sane_reclaim(struct scan_control *sc)
170 {
171 struct mem_cgroup *memcg = sc->target_mem_cgroup;
172
173 if (!memcg)
174 return true;
175 #ifdef CONFIG_CGROUP_WRITEBACK
176 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
177 return true;
178 #endif
179 return false;
180 }
181 #else
182 static bool global_reclaim(struct scan_control *sc)
183 {
184 return true;
185 }
186
187 static bool sane_reclaim(struct scan_control *sc)
188 {
189 return true;
190 }
191 #endif
192
193 static unsigned long zone_reclaimable_pages(struct zone *zone)
194 {
195 unsigned long nr;
196
197 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
198 zone_page_state(zone, NR_INACTIVE_FILE) +
199 zone_page_state(zone, NR_ISOLATED_FILE);
200
201 if (get_nr_swap_pages() > 0)
202 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
203 zone_page_state(zone, NR_INACTIVE_ANON) +
204 zone_page_state(zone, NR_ISOLATED_ANON);
205
206 return nr;
207 }
208
209 bool zone_reclaimable(struct zone *zone)
210 {
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
213 }
214
215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 if (!mem_cgroup_disabled())
218 return mem_cgroup_get_lru_size(lruvec, lru);
219
220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222
223 /*
224 * Add a shrinker callback to be called from the vm.
225 */
226 int register_shrinker(struct shrinker *shrinker)
227 {
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
248 return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251
252 /*
253 * Remove one
254 */
255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
260 kfree(shrinker->nr_deferred);
261 }
262 EXPORT_SYMBOL(unregister_shrinker);
263
264 #define SHRINK_BATCH 128
265
266 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
270 {
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
274 long freeable;
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
283 return 0;
284
285 /*
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
289 */
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291
292 total_scan = nr;
293 delta = (4 * nr_scanned) / shrinker->seeks;
294 delta *= freeable;
295 do_div(delta, nr_eligible + 1);
296 total_scan += delta;
297 if (total_scan < 0) {
298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
299 shrinker->scan_objects, total_scan);
300 total_scan = freeable;
301 }
302
303 /*
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
309 * freeable. This is bad for sustaining a working set in
310 * memory.
311 *
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
314 */
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
317
318 /*
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
322 */
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
325
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
329
330 /*
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
338 *
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
341 * than the total number of objects on slab (freeable), we must be
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
344 */
345 while (total_scan >= batch_size ||
346 total_scan >= freeable) {
347 unsigned long ret;
348 unsigned long nr_to_scan = min(batch_size, total_scan);
349
350 shrinkctl->nr_to_scan = nr_to_scan;
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
355
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
358
359 cond_resched();
360 }
361
362 /*
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
366 */
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372
373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
374 return freed;
375 }
376
377 /**
378 * shrink_slab - shrink slab caches
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
381 * @memcg: memory cgroup whose slab caches to target
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
384 *
385 * Call the shrink functions to age shrinkable caches.
386 *
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
389 *
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
395 *
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
403 *
404 * Returns the number of reclaimed slab objects.
405 */
406 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
410 {
411 struct shrinker *shrinker;
412 unsigned long freed = 0;
413
414 if (memcg && !memcg_kmem_is_active(memcg))
415 return 0;
416
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
419
420 if (!down_read_trylock(&shrinker_rwsem)) {
421 /*
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
426 */
427 freed = 1;
428 goto out;
429 }
430
431 list_for_each_entry(shrinker, &shrinker_list, list) {
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
435 .memcg = memcg,
436 };
437
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
440
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
443
444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
445 }
446
447 up_read(&shrinker_rwsem);
448 out:
449 cond_resched();
450 return freed;
451 }
452
453 void drop_slab_node(int nid)
454 {
455 unsigned long freed;
456
457 do {
458 struct mem_cgroup *memcg = NULL;
459
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
466 }
467
468 void drop_slab(void)
469 {
470 int nid;
471
472 for_each_online_node(nid)
473 drop_slab_node(nid);
474 }
475
476 static inline int is_page_cache_freeable(struct page *page)
477 {
478 /*
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
482 */
483 return page_count(page) - page_has_private(page) == 2;
484 }
485
486 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
487 {
488 if (current->flags & PF_SWAPWRITE)
489 return 1;
490 if (!inode_write_congested(inode))
491 return 1;
492 if (inode_to_bdi(inode) == current->backing_dev_info)
493 return 1;
494 return 0;
495 }
496
497 /*
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
501 *
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
505 *
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
508 */
509 static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
511 {
512 lock_page(page);
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
515 unlock_page(page);
516 }
517
518 /* possible outcome of pageout() */
519 typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528 } pageout_t;
529
530 /*
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
533 */
534 static pageout_t pageout(struct page *page, struct address_space *mapping,
535 struct scan_control *sc)
536 {
537 /*
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
543 *
544 * If this process is currently in __generic_file_write_iter() against
545 * this page's queue, we can perform writeback even if that
546 * will block.
547 *
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
552 */
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
556 /*
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
559 */
560 if (page_has_private(page)) {
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
563 pr_info("%s: orphaned page\n", __func__);
564 return PAGE_CLEAN;
565 }
566 }
567 return PAGE_KEEP;
568 }
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
571 if (!may_write_to_inode(mapping->host, sc))
572 return PAGE_KEEP;
573
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
579 .range_start = 0,
580 .range_end = LLONG_MAX,
581 .for_reclaim = 1,
582 };
583
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
588 if (res == AOP_WRITEPAGE_ACTIVATE) {
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
591 }
592
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
596 }
597 trace_mm_vmscan_writepage(page);
598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
599 return PAGE_SUCCESS;
600 }
601
602 return PAGE_CLEAN;
603 }
604
605 /*
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
608 */
609 static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
611 {
612 unsigned long flags;
613 struct mem_cgroup *memcg;
614
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
617
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
620 /*
621 * The non racy check for a busy page.
622 *
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
627 *
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
635 *
636 * [oops, our write_to data is lost]
637 *
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
641 *
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
644 */
645 if (!page_freeze_refs(page, 2))
646 goto cannot_free;
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
650 goto cannot_free;
651 }
652
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
655 mem_cgroup_swapout(page, swap);
656 __delete_from_swap_cache(page);
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
659 swapcache_free(swap);
660 } else {
661 void (*freepage)(struct page *);
662 void *shadow = NULL;
663
664 freepage = mapping->a_ops->freepage;
665 /*
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
668 *
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
674 */
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
681
682 if (freepage != NULL)
683 freepage(page);
684 }
685
686 return 1;
687
688 cannot_free:
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
691 return 0;
692 }
693
694 /*
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
699 */
700 int remove_mapping(struct address_space *mapping, struct page *page)
701 {
702 if (__remove_mapping(mapping, page, false)) {
703 /*
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
707 */
708 page_unfreeze_refs(page, 1);
709 return 1;
710 }
711 return 0;
712 }
713
714 /**
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
717 *
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
720 *
721 * lru_lock must not be held, interrupts must be enabled.
722 */
723 void putback_lru_page(struct page *page)
724 {
725 bool is_unevictable;
726 int was_unevictable = PageUnevictable(page);
727
728 VM_BUG_ON_PAGE(PageLRU(page), page);
729
730 redo:
731 ClearPageUnevictable(page);
732
733 if (page_evictable(page)) {
734 /*
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
739 */
740 is_unevictable = false;
741 lru_cache_add(page);
742 } else {
743 /*
744 * Put unevictable pages directly on zone's unevictable
745 * list.
746 */
747 is_unevictable = true;
748 add_page_to_unevictable_list(page);
749 /*
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
753 * isolation/check_move_unevictable_pages,
754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
755 * the page back to the evictable list.
756 *
757 * The other side is TestClearPageMlocked() or shmem_lock().
758 */
759 smp_mb();
760 }
761
762 /*
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
766 */
767 if (is_unevictable && page_evictable(page)) {
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
771 }
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
775 */
776 }
777
778 if (was_unevictable && !is_unevictable)
779 count_vm_event(UNEVICTABLE_PGRESCUED);
780 else if (!was_unevictable && is_unevictable)
781 count_vm_event(UNEVICTABLE_PGCULLED);
782
783 put_page(page); /* drop ref from isolate */
784 }
785
786 enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
789 PAGEREF_KEEP,
790 PAGEREF_ACTIVATE,
791 };
792
793 static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
795 {
796 int referenced_ptes, referenced_page;
797 unsigned long vm_flags;
798
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
801 referenced_page = TestClearPageReferenced(page);
802
803 /*
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
806 */
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
809
810 if (referenced_ptes) {
811 if (PageSwapBacked(page))
812 return PAGEREF_ACTIVATE;
813 /*
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
818 *
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
822 *
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
826 */
827 SetPageReferenced(page);
828
829 if (referenced_page || referenced_ptes > 1)
830 return PAGEREF_ACTIVATE;
831
832 /*
833 * Activate file-backed executable pages after first usage.
834 */
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
837
838 return PAGEREF_KEEP;
839 }
840
841 /* Reclaim if clean, defer dirty pages to writeback */
842 if (referenced_page && !PageSwapBacked(page))
843 return PAGEREF_RECLAIM_CLEAN;
844
845 return PAGEREF_RECLAIM;
846 }
847
848 /* Check if a page is dirty or under writeback */
849 static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
851 {
852 struct address_space *mapping;
853
854 /*
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
857 */
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
862 }
863
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
867
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
871
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
875 }
876
877 /*
878 * shrink_page_list() returns the number of reclaimed pages
879 */
880 static unsigned long shrink_page_list(struct list_head *page_list,
881 struct zone *zone,
882 struct scan_control *sc,
883 enum ttu_flags ttu_flags,
884 unsigned long *ret_nr_dirty,
885 unsigned long *ret_nr_unqueued_dirty,
886 unsigned long *ret_nr_congested,
887 unsigned long *ret_nr_writeback,
888 unsigned long *ret_nr_immediate,
889 bool force_reclaim)
890 {
891 LIST_HEAD(ret_pages);
892 LIST_HEAD(free_pages);
893 int pgactivate = 0;
894 unsigned long nr_unqueued_dirty = 0;
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
897 unsigned long nr_reclaimed = 0;
898 unsigned long nr_writeback = 0;
899 unsigned long nr_immediate = 0;
900
901 cond_resched();
902
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
908 bool dirty, writeback;
909 bool lazyfree = false;
910 int ret = SWAP_SUCCESS;
911
912 cond_resched();
913
914 page = lru_to_page(page_list);
915 list_del(&page->lru);
916
917 if (!trylock_page(page))
918 goto keep;
919
920 VM_BUG_ON_PAGE(PageActive(page), page);
921 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
922
923 sc->nr_scanned++;
924
925 if (unlikely(!page_evictable(page)))
926 goto cull_mlocked;
927
928 if (!sc->may_unmap && page_mapped(page))
929 goto keep_locked;
930
931 /* Double the slab pressure for mapped and swapcache pages */
932 if (page_mapped(page) || PageSwapCache(page))
933 sc->nr_scanned++;
934
935 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
936 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
937
938 /*
939 * The number of dirty pages determines if a zone is marked
940 * reclaim_congested which affects wait_iff_congested. kswapd
941 * will stall and start writing pages if the tail of the LRU
942 * is all dirty unqueued pages.
943 */
944 page_check_dirty_writeback(page, &dirty, &writeback);
945 if (dirty || writeback)
946 nr_dirty++;
947
948 if (dirty && !writeback)
949 nr_unqueued_dirty++;
950
951 /*
952 * Treat this page as congested if the underlying BDI is or if
953 * pages are cycling through the LRU so quickly that the
954 * pages marked for immediate reclaim are making it to the
955 * end of the LRU a second time.
956 */
957 mapping = page_mapping(page);
958 if (((dirty || writeback) && mapping &&
959 inode_write_congested(mapping->host)) ||
960 (writeback && PageReclaim(page)))
961 nr_congested++;
962
963 /*
964 * If a page at the tail of the LRU is under writeback, there
965 * are three cases to consider.
966 *
967 * 1) If reclaim is encountering an excessive number of pages
968 * under writeback and this page is both under writeback and
969 * PageReclaim then it indicates that pages are being queued
970 * for IO but are being recycled through the LRU before the
971 * IO can complete. Waiting on the page itself risks an
972 * indefinite stall if it is impossible to writeback the
973 * page due to IO error or disconnected storage so instead
974 * note that the LRU is being scanned too quickly and the
975 * caller can stall after page list has been processed.
976 *
977 * 2) Global or new memcg reclaim encounters a page that is
978 * not marked for immediate reclaim, or the caller does not
979 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
980 * not to fs). In this case mark the page for immediate
981 * reclaim and continue scanning.
982 *
983 * Require may_enter_fs because we would wait on fs, which
984 * may not have submitted IO yet. And the loop driver might
985 * enter reclaim, and deadlock if it waits on a page for
986 * which it is needed to do the write (loop masks off
987 * __GFP_IO|__GFP_FS for this reason); but more thought
988 * would probably show more reasons.
989 *
990 * 3) Legacy memcg encounters a page that is already marked
991 * PageReclaim. memcg does not have any dirty pages
992 * throttling so we could easily OOM just because too many
993 * pages are in writeback and there is nothing else to
994 * reclaim. Wait for the writeback to complete.
995 */
996 if (PageWriteback(page)) {
997 /* Case 1 above */
998 if (current_is_kswapd() &&
999 PageReclaim(page) &&
1000 test_bit(ZONE_WRITEBACK, &zone->flags)) {
1001 nr_immediate++;
1002 goto keep_locked;
1003
1004 /* Case 2 above */
1005 } else if (sane_reclaim(sc) ||
1006 !PageReclaim(page) || !may_enter_fs) {
1007 /*
1008 * This is slightly racy - end_page_writeback()
1009 * might have just cleared PageReclaim, then
1010 * setting PageReclaim here end up interpreted
1011 * as PageReadahead - but that does not matter
1012 * enough to care. What we do want is for this
1013 * page to have PageReclaim set next time memcg
1014 * reclaim reaches the tests above, so it will
1015 * then wait_on_page_writeback() to avoid OOM;
1016 * and it's also appropriate in global reclaim.
1017 */
1018 SetPageReclaim(page);
1019 nr_writeback++;
1020 goto keep_locked;
1021
1022 /* Case 3 above */
1023 } else {
1024 unlock_page(page);
1025 wait_on_page_writeback(page);
1026 /* then go back and try same page again */
1027 list_add_tail(&page->lru, page_list);
1028 continue;
1029 }
1030 }
1031
1032 if (!force_reclaim)
1033 references = page_check_references(page, sc);
1034
1035 switch (references) {
1036 case PAGEREF_ACTIVATE:
1037 goto activate_locked;
1038 case PAGEREF_KEEP:
1039 goto keep_locked;
1040 case PAGEREF_RECLAIM:
1041 case PAGEREF_RECLAIM_CLEAN:
1042 ; /* try to reclaim the page below */
1043 }
1044
1045 /*
1046 * Anonymous process memory has backing store?
1047 * Try to allocate it some swap space here.
1048 */
1049 if (PageAnon(page) && !PageSwapCache(page)) {
1050 if (!(sc->gfp_mask & __GFP_IO))
1051 goto keep_locked;
1052 if (!add_to_swap(page, page_list))
1053 goto activate_locked;
1054 lazyfree = true;
1055 may_enter_fs = 1;
1056
1057 /* Adding to swap updated mapping */
1058 mapping = page_mapping(page);
1059 }
1060
1061 /*
1062 * The page is mapped into the page tables of one or more
1063 * processes. Try to unmap it here.
1064 */
1065 if (page_mapped(page) && mapping) {
1066 switch (ret = try_to_unmap(page, lazyfree ?
1067 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1068 (ttu_flags | TTU_BATCH_FLUSH))) {
1069 case SWAP_FAIL:
1070 goto activate_locked;
1071 case SWAP_AGAIN:
1072 goto keep_locked;
1073 case SWAP_MLOCK:
1074 goto cull_mlocked;
1075 case SWAP_LZFREE:
1076 goto lazyfree;
1077 case SWAP_SUCCESS:
1078 ; /* try to free the page below */
1079 }
1080 }
1081
1082 if (PageDirty(page)) {
1083 /*
1084 * Only kswapd can writeback filesystem pages to
1085 * avoid risk of stack overflow but only writeback
1086 * if many dirty pages have been encountered.
1087 */
1088 if (page_is_file_cache(page) &&
1089 (!current_is_kswapd() ||
1090 !test_bit(ZONE_DIRTY, &zone->flags))) {
1091 /*
1092 * Immediately reclaim when written back.
1093 * Similar in principal to deactivate_page()
1094 * except we already have the page isolated
1095 * and know it's dirty
1096 */
1097 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1098 SetPageReclaim(page);
1099
1100 goto keep_locked;
1101 }
1102
1103 if (references == PAGEREF_RECLAIM_CLEAN)
1104 goto keep_locked;
1105 if (!may_enter_fs)
1106 goto keep_locked;
1107 if (!sc->may_writepage)
1108 goto keep_locked;
1109
1110 /*
1111 * Page is dirty. Flush the TLB if a writable entry
1112 * potentially exists to avoid CPU writes after IO
1113 * starts and then write it out here.
1114 */
1115 try_to_unmap_flush_dirty();
1116 switch (pageout(page, mapping, sc)) {
1117 case PAGE_KEEP:
1118 goto keep_locked;
1119 case PAGE_ACTIVATE:
1120 goto activate_locked;
1121 case PAGE_SUCCESS:
1122 if (PageWriteback(page))
1123 goto keep;
1124 if (PageDirty(page))
1125 goto keep;
1126
1127 /*
1128 * A synchronous write - probably a ramdisk. Go
1129 * ahead and try to reclaim the page.
1130 */
1131 if (!trylock_page(page))
1132 goto keep;
1133 if (PageDirty(page) || PageWriteback(page))
1134 goto keep_locked;
1135 mapping = page_mapping(page);
1136 case PAGE_CLEAN:
1137 ; /* try to free the page below */
1138 }
1139 }
1140
1141 /*
1142 * If the page has buffers, try to free the buffer mappings
1143 * associated with this page. If we succeed we try to free
1144 * the page as well.
1145 *
1146 * We do this even if the page is PageDirty().
1147 * try_to_release_page() does not perform I/O, but it is
1148 * possible for a page to have PageDirty set, but it is actually
1149 * clean (all its buffers are clean). This happens if the
1150 * buffers were written out directly, with submit_bh(). ext3
1151 * will do this, as well as the blockdev mapping.
1152 * try_to_release_page() will discover that cleanness and will
1153 * drop the buffers and mark the page clean - it can be freed.
1154 *
1155 * Rarely, pages can have buffers and no ->mapping. These are
1156 * the pages which were not successfully invalidated in
1157 * truncate_complete_page(). We try to drop those buffers here
1158 * and if that worked, and the page is no longer mapped into
1159 * process address space (page_count == 1) it can be freed.
1160 * Otherwise, leave the page on the LRU so it is swappable.
1161 */
1162 if (page_has_private(page)) {
1163 if (!try_to_release_page(page, sc->gfp_mask))
1164 goto activate_locked;
1165 if (!mapping && page_count(page) == 1) {
1166 unlock_page(page);
1167 if (put_page_testzero(page))
1168 goto free_it;
1169 else {
1170 /*
1171 * rare race with speculative reference.
1172 * the speculative reference will free
1173 * this page shortly, so we may
1174 * increment nr_reclaimed here (and
1175 * leave it off the LRU).
1176 */
1177 nr_reclaimed++;
1178 continue;
1179 }
1180 }
1181 }
1182
1183 lazyfree:
1184 if (!mapping || !__remove_mapping(mapping, page, true))
1185 goto keep_locked;
1186
1187 /*
1188 * At this point, we have no other references and there is
1189 * no way to pick any more up (removed from LRU, removed
1190 * from pagecache). Can use non-atomic bitops now (and
1191 * we obviously don't have to worry about waking up a process
1192 * waiting on the page lock, because there are no references.
1193 */
1194 __ClearPageLocked(page);
1195 free_it:
1196 if (ret == SWAP_LZFREE)
1197 count_vm_event(PGLAZYFREED);
1198
1199 nr_reclaimed++;
1200
1201 /*
1202 * Is there need to periodically free_page_list? It would
1203 * appear not as the counts should be low
1204 */
1205 list_add(&page->lru, &free_pages);
1206 continue;
1207
1208 cull_mlocked:
1209 if (PageSwapCache(page))
1210 try_to_free_swap(page);
1211 unlock_page(page);
1212 list_add(&page->lru, &ret_pages);
1213 continue;
1214
1215 activate_locked:
1216 /* Not a candidate for swapping, so reclaim swap space. */
1217 if (PageSwapCache(page) && vm_swap_full())
1218 try_to_free_swap(page);
1219 VM_BUG_ON_PAGE(PageActive(page), page);
1220 SetPageActive(page);
1221 pgactivate++;
1222 keep_locked:
1223 unlock_page(page);
1224 keep:
1225 list_add(&page->lru, &ret_pages);
1226 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1227 }
1228
1229 mem_cgroup_uncharge_list(&free_pages);
1230 try_to_unmap_flush();
1231 free_hot_cold_page_list(&free_pages, true);
1232
1233 list_splice(&ret_pages, page_list);
1234 count_vm_events(PGACTIVATE, pgactivate);
1235
1236 *ret_nr_dirty += nr_dirty;
1237 *ret_nr_congested += nr_congested;
1238 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1239 *ret_nr_writeback += nr_writeback;
1240 *ret_nr_immediate += nr_immediate;
1241 return nr_reclaimed;
1242 }
1243
1244 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1245 struct list_head *page_list)
1246 {
1247 struct scan_control sc = {
1248 .gfp_mask = GFP_KERNEL,
1249 .priority = DEF_PRIORITY,
1250 .may_unmap = 1,
1251 };
1252 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1253 struct page *page, *next;
1254 LIST_HEAD(clean_pages);
1255
1256 list_for_each_entry_safe(page, next, page_list, lru) {
1257 if (page_is_file_cache(page) && !PageDirty(page) &&
1258 !isolated_balloon_page(page)) {
1259 ClearPageActive(page);
1260 list_move(&page->lru, &clean_pages);
1261 }
1262 }
1263
1264 ret = shrink_page_list(&clean_pages, zone, &sc,
1265 TTU_UNMAP|TTU_IGNORE_ACCESS,
1266 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1267 list_splice(&clean_pages, page_list);
1268 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1269 return ret;
1270 }
1271
1272 /*
1273 * Attempt to remove the specified page from its LRU. Only take this page
1274 * if it is of the appropriate PageActive status. Pages which are being
1275 * freed elsewhere are also ignored.
1276 *
1277 * page: page to consider
1278 * mode: one of the LRU isolation modes defined above
1279 *
1280 * returns 0 on success, -ve errno on failure.
1281 */
1282 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1283 {
1284 int ret = -EINVAL;
1285
1286 /* Only take pages on the LRU. */
1287 if (!PageLRU(page))
1288 return ret;
1289
1290 /* Compaction should not handle unevictable pages but CMA can do so */
1291 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1292 return ret;
1293
1294 ret = -EBUSY;
1295
1296 /*
1297 * To minimise LRU disruption, the caller can indicate that it only
1298 * wants to isolate pages it will be able to operate on without
1299 * blocking - clean pages for the most part.
1300 *
1301 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1302 * is used by reclaim when it is cannot write to backing storage
1303 *
1304 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1305 * that it is possible to migrate without blocking
1306 */
1307 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1308 /* All the caller can do on PageWriteback is block */
1309 if (PageWriteback(page))
1310 return ret;
1311
1312 if (PageDirty(page)) {
1313 struct address_space *mapping;
1314
1315 /* ISOLATE_CLEAN means only clean pages */
1316 if (mode & ISOLATE_CLEAN)
1317 return ret;
1318
1319 /*
1320 * Only pages without mappings or that have a
1321 * ->migratepage callback are possible to migrate
1322 * without blocking
1323 */
1324 mapping = page_mapping(page);
1325 if (mapping && !mapping->a_ops->migratepage)
1326 return ret;
1327 }
1328 }
1329
1330 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1331 return ret;
1332
1333 if (likely(get_page_unless_zero(page))) {
1334 /*
1335 * Be careful not to clear PageLRU until after we're
1336 * sure the page is not being freed elsewhere -- the
1337 * page release code relies on it.
1338 */
1339 ClearPageLRU(page);
1340 ret = 0;
1341 }
1342
1343 return ret;
1344 }
1345
1346 /*
1347 * zone->lru_lock is heavily contended. Some of the functions that
1348 * shrink the lists perform better by taking out a batch of pages
1349 * and working on them outside the LRU lock.
1350 *
1351 * For pagecache intensive workloads, this function is the hottest
1352 * spot in the kernel (apart from copy_*_user functions).
1353 *
1354 * Appropriate locks must be held before calling this function.
1355 *
1356 * @nr_to_scan: The number of pages to look through on the list.
1357 * @lruvec: The LRU vector to pull pages from.
1358 * @dst: The temp list to put pages on to.
1359 * @nr_scanned: The number of pages that were scanned.
1360 * @sc: The scan_control struct for this reclaim session
1361 * @mode: One of the LRU isolation modes
1362 * @lru: LRU list id for isolating
1363 *
1364 * returns how many pages were moved onto *@dst.
1365 */
1366 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1367 struct lruvec *lruvec, struct list_head *dst,
1368 unsigned long *nr_scanned, struct scan_control *sc,
1369 isolate_mode_t mode, enum lru_list lru)
1370 {
1371 struct list_head *src = &lruvec->lists[lru];
1372 unsigned long nr_taken = 0;
1373 unsigned long scan;
1374
1375 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1376 !list_empty(src); scan++) {
1377 struct page *page;
1378 int nr_pages;
1379
1380 page = lru_to_page(src);
1381 prefetchw_prev_lru_page(page, src, flags);
1382
1383 VM_BUG_ON_PAGE(!PageLRU(page), page);
1384
1385 switch (__isolate_lru_page(page, mode)) {
1386 case 0:
1387 nr_pages = hpage_nr_pages(page);
1388 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1389 list_move(&page->lru, dst);
1390 nr_taken += nr_pages;
1391 break;
1392
1393 case -EBUSY:
1394 /* else it is being freed elsewhere */
1395 list_move(&page->lru, src);
1396 continue;
1397
1398 default:
1399 BUG();
1400 }
1401 }
1402
1403 *nr_scanned = scan;
1404 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1405 nr_taken, mode, is_file_lru(lru));
1406 return nr_taken;
1407 }
1408
1409 /**
1410 * isolate_lru_page - tries to isolate a page from its LRU list
1411 * @page: page to isolate from its LRU list
1412 *
1413 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1414 * vmstat statistic corresponding to whatever LRU list the page was on.
1415 *
1416 * Returns 0 if the page was removed from an LRU list.
1417 * Returns -EBUSY if the page was not on an LRU list.
1418 *
1419 * The returned page will have PageLRU() cleared. If it was found on
1420 * the active list, it will have PageActive set. If it was found on
1421 * the unevictable list, it will have the PageUnevictable bit set. That flag
1422 * may need to be cleared by the caller before letting the page go.
1423 *
1424 * The vmstat statistic corresponding to the list on which the page was
1425 * found will be decremented.
1426 *
1427 * Restrictions:
1428 * (1) Must be called with an elevated refcount on the page. This is a
1429 * fundamentnal difference from isolate_lru_pages (which is called
1430 * without a stable reference).
1431 * (2) the lru_lock must not be held.
1432 * (3) interrupts must be enabled.
1433 */
1434 int isolate_lru_page(struct page *page)
1435 {
1436 int ret = -EBUSY;
1437
1438 VM_BUG_ON_PAGE(!page_count(page), page);
1439 VM_BUG_ON_PAGE(PageTail(page), page);
1440
1441 if (PageLRU(page)) {
1442 struct zone *zone = page_zone(page);
1443 struct lruvec *lruvec;
1444
1445 spin_lock_irq(&zone->lru_lock);
1446 lruvec = mem_cgroup_page_lruvec(page, zone);
1447 if (PageLRU(page)) {
1448 int lru = page_lru(page);
1449 get_page(page);
1450 ClearPageLRU(page);
1451 del_page_from_lru_list(page, lruvec, lru);
1452 ret = 0;
1453 }
1454 spin_unlock_irq(&zone->lru_lock);
1455 }
1456 return ret;
1457 }
1458
1459 /*
1460 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1461 * then get resheduled. When there are massive number of tasks doing page
1462 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1463 * the LRU list will go small and be scanned faster than necessary, leading to
1464 * unnecessary swapping, thrashing and OOM.
1465 */
1466 static int too_many_isolated(struct zone *zone, int file,
1467 struct scan_control *sc)
1468 {
1469 unsigned long inactive, isolated;
1470
1471 if (current_is_kswapd())
1472 return 0;
1473
1474 if (!sane_reclaim(sc))
1475 return 0;
1476
1477 if (file) {
1478 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1479 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1480 } else {
1481 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1482 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1483 }
1484
1485 /*
1486 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1487 * won't get blocked by normal direct-reclaimers, forming a circular
1488 * deadlock.
1489 */
1490 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1491 inactive >>= 3;
1492
1493 return isolated > inactive;
1494 }
1495
1496 static noinline_for_stack void
1497 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1498 {
1499 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1500 struct zone *zone = lruvec_zone(lruvec);
1501 LIST_HEAD(pages_to_free);
1502
1503 /*
1504 * Put back any unfreeable pages.
1505 */
1506 while (!list_empty(page_list)) {
1507 struct page *page = lru_to_page(page_list);
1508 int lru;
1509
1510 VM_BUG_ON_PAGE(PageLRU(page), page);
1511 list_del(&page->lru);
1512 if (unlikely(!page_evictable(page))) {
1513 spin_unlock_irq(&zone->lru_lock);
1514 putback_lru_page(page);
1515 spin_lock_irq(&zone->lru_lock);
1516 continue;
1517 }
1518
1519 lruvec = mem_cgroup_page_lruvec(page, zone);
1520
1521 SetPageLRU(page);
1522 lru = page_lru(page);
1523 add_page_to_lru_list(page, lruvec, lru);
1524
1525 if (is_active_lru(lru)) {
1526 int file = is_file_lru(lru);
1527 int numpages = hpage_nr_pages(page);
1528 reclaim_stat->recent_rotated[file] += numpages;
1529 }
1530 if (put_page_testzero(page)) {
1531 __ClearPageLRU(page);
1532 __ClearPageActive(page);
1533 del_page_from_lru_list(page, lruvec, lru);
1534
1535 if (unlikely(PageCompound(page))) {
1536 spin_unlock_irq(&zone->lru_lock);
1537 mem_cgroup_uncharge(page);
1538 (*get_compound_page_dtor(page))(page);
1539 spin_lock_irq(&zone->lru_lock);
1540 } else
1541 list_add(&page->lru, &pages_to_free);
1542 }
1543 }
1544
1545 /*
1546 * To save our caller's stack, now use input list for pages to free.
1547 */
1548 list_splice(&pages_to_free, page_list);
1549 }
1550
1551 /*
1552 * If a kernel thread (such as nfsd for loop-back mounts) services
1553 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1554 * In that case we should only throttle if the backing device it is
1555 * writing to is congested. In other cases it is safe to throttle.
1556 */
1557 static int current_may_throttle(void)
1558 {
1559 return !(current->flags & PF_LESS_THROTTLE) ||
1560 current->backing_dev_info == NULL ||
1561 bdi_write_congested(current->backing_dev_info);
1562 }
1563
1564 /*
1565 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1566 * of reclaimed pages
1567 */
1568 static noinline_for_stack unsigned long
1569 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1570 struct scan_control *sc, enum lru_list lru)
1571 {
1572 LIST_HEAD(page_list);
1573 unsigned long nr_scanned;
1574 unsigned long nr_reclaimed = 0;
1575 unsigned long nr_taken;
1576 unsigned long nr_dirty = 0;
1577 unsigned long nr_congested = 0;
1578 unsigned long nr_unqueued_dirty = 0;
1579 unsigned long nr_writeback = 0;
1580 unsigned long nr_immediate = 0;
1581 isolate_mode_t isolate_mode = 0;
1582 int file = is_file_lru(lru);
1583 struct zone *zone = lruvec_zone(lruvec);
1584 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1585
1586 while (unlikely(too_many_isolated(zone, file, sc))) {
1587 congestion_wait(BLK_RW_ASYNC, HZ/10);
1588
1589 /* We are about to die and free our memory. Return now. */
1590 if (fatal_signal_pending(current))
1591 return SWAP_CLUSTER_MAX;
1592 }
1593
1594 lru_add_drain();
1595
1596 if (!sc->may_unmap)
1597 isolate_mode |= ISOLATE_UNMAPPED;
1598 if (!sc->may_writepage)
1599 isolate_mode |= ISOLATE_CLEAN;
1600
1601 spin_lock_irq(&zone->lru_lock);
1602
1603 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1604 &nr_scanned, sc, isolate_mode, lru);
1605
1606 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1607 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1608
1609 if (global_reclaim(sc)) {
1610 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1611 if (current_is_kswapd())
1612 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1613 else
1614 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1615 }
1616 spin_unlock_irq(&zone->lru_lock);
1617
1618 if (nr_taken == 0)
1619 return 0;
1620
1621 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1622 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1623 &nr_writeback, &nr_immediate,
1624 false);
1625
1626 spin_lock_irq(&zone->lru_lock);
1627
1628 reclaim_stat->recent_scanned[file] += nr_taken;
1629
1630 if (global_reclaim(sc)) {
1631 if (current_is_kswapd())
1632 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1633 nr_reclaimed);
1634 else
1635 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1636 nr_reclaimed);
1637 }
1638
1639 putback_inactive_pages(lruvec, &page_list);
1640
1641 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1642
1643 spin_unlock_irq(&zone->lru_lock);
1644
1645 mem_cgroup_uncharge_list(&page_list);
1646 free_hot_cold_page_list(&page_list, true);
1647
1648 /*
1649 * If reclaim is isolating dirty pages under writeback, it implies
1650 * that the long-lived page allocation rate is exceeding the page
1651 * laundering rate. Either the global limits are not being effective
1652 * at throttling processes due to the page distribution throughout
1653 * zones or there is heavy usage of a slow backing device. The
1654 * only option is to throttle from reclaim context which is not ideal
1655 * as there is no guarantee the dirtying process is throttled in the
1656 * same way balance_dirty_pages() manages.
1657 *
1658 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1659 * of pages under pages flagged for immediate reclaim and stall if any
1660 * are encountered in the nr_immediate check below.
1661 */
1662 if (nr_writeback && nr_writeback == nr_taken)
1663 set_bit(ZONE_WRITEBACK, &zone->flags);
1664
1665 /*
1666 * Legacy memcg will stall in page writeback so avoid forcibly
1667 * stalling here.
1668 */
1669 if (sane_reclaim(sc)) {
1670 /*
1671 * Tag a zone as congested if all the dirty pages scanned were
1672 * backed by a congested BDI and wait_iff_congested will stall.
1673 */
1674 if (nr_dirty && nr_dirty == nr_congested)
1675 set_bit(ZONE_CONGESTED, &zone->flags);
1676
1677 /*
1678 * If dirty pages are scanned that are not queued for IO, it
1679 * implies that flushers are not keeping up. In this case, flag
1680 * the zone ZONE_DIRTY and kswapd will start writing pages from
1681 * reclaim context.
1682 */
1683 if (nr_unqueued_dirty == nr_taken)
1684 set_bit(ZONE_DIRTY, &zone->flags);
1685
1686 /*
1687 * If kswapd scans pages marked marked for immediate
1688 * reclaim and under writeback (nr_immediate), it implies
1689 * that pages are cycling through the LRU faster than
1690 * they are written so also forcibly stall.
1691 */
1692 if (nr_immediate && current_may_throttle())
1693 congestion_wait(BLK_RW_ASYNC, HZ/10);
1694 }
1695
1696 /*
1697 * Stall direct reclaim for IO completions if underlying BDIs or zone
1698 * is congested. Allow kswapd to continue until it starts encountering
1699 * unqueued dirty pages or cycling through the LRU too quickly.
1700 */
1701 if (!sc->hibernation_mode && !current_is_kswapd() &&
1702 current_may_throttle())
1703 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1704
1705 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1706 sc->priority, file);
1707 return nr_reclaimed;
1708 }
1709
1710 /*
1711 * This moves pages from the active list to the inactive list.
1712 *
1713 * We move them the other way if the page is referenced by one or more
1714 * processes, from rmap.
1715 *
1716 * If the pages are mostly unmapped, the processing is fast and it is
1717 * appropriate to hold zone->lru_lock across the whole operation. But if
1718 * the pages are mapped, the processing is slow (page_referenced()) so we
1719 * should drop zone->lru_lock around each page. It's impossible to balance
1720 * this, so instead we remove the pages from the LRU while processing them.
1721 * It is safe to rely on PG_active against the non-LRU pages in here because
1722 * nobody will play with that bit on a non-LRU page.
1723 *
1724 * The downside is that we have to touch page->_count against each page.
1725 * But we had to alter page->flags anyway.
1726 */
1727
1728 static void move_active_pages_to_lru(struct lruvec *lruvec,
1729 struct list_head *list,
1730 struct list_head *pages_to_free,
1731 enum lru_list lru)
1732 {
1733 struct zone *zone = lruvec_zone(lruvec);
1734 unsigned long pgmoved = 0;
1735 struct page *page;
1736 int nr_pages;
1737
1738 while (!list_empty(list)) {
1739 page = lru_to_page(list);
1740 lruvec = mem_cgroup_page_lruvec(page, zone);
1741
1742 VM_BUG_ON_PAGE(PageLRU(page), page);
1743 SetPageLRU(page);
1744
1745 nr_pages = hpage_nr_pages(page);
1746 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1747 list_move(&page->lru, &lruvec->lists[lru]);
1748 pgmoved += nr_pages;
1749
1750 if (put_page_testzero(page)) {
1751 __ClearPageLRU(page);
1752 __ClearPageActive(page);
1753 del_page_from_lru_list(page, lruvec, lru);
1754
1755 if (unlikely(PageCompound(page))) {
1756 spin_unlock_irq(&zone->lru_lock);
1757 mem_cgroup_uncharge(page);
1758 (*get_compound_page_dtor(page))(page);
1759 spin_lock_irq(&zone->lru_lock);
1760 } else
1761 list_add(&page->lru, pages_to_free);
1762 }
1763 }
1764 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1765 if (!is_active_lru(lru))
1766 __count_vm_events(PGDEACTIVATE, pgmoved);
1767 }
1768
1769 static void shrink_active_list(unsigned long nr_to_scan,
1770 struct lruvec *lruvec,
1771 struct scan_control *sc,
1772 enum lru_list lru)
1773 {
1774 unsigned long nr_taken;
1775 unsigned long nr_scanned;
1776 unsigned long vm_flags;
1777 LIST_HEAD(l_hold); /* The pages which were snipped off */
1778 LIST_HEAD(l_active);
1779 LIST_HEAD(l_inactive);
1780 struct page *page;
1781 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1782 unsigned long nr_rotated = 0;
1783 isolate_mode_t isolate_mode = 0;
1784 int file = is_file_lru(lru);
1785 struct zone *zone = lruvec_zone(lruvec);
1786
1787 lru_add_drain();
1788
1789 if (!sc->may_unmap)
1790 isolate_mode |= ISOLATE_UNMAPPED;
1791 if (!sc->may_writepage)
1792 isolate_mode |= ISOLATE_CLEAN;
1793
1794 spin_lock_irq(&zone->lru_lock);
1795
1796 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1797 &nr_scanned, sc, isolate_mode, lru);
1798 if (global_reclaim(sc))
1799 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1800
1801 reclaim_stat->recent_scanned[file] += nr_taken;
1802
1803 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1804 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1805 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1806 spin_unlock_irq(&zone->lru_lock);
1807
1808 while (!list_empty(&l_hold)) {
1809 cond_resched();
1810 page = lru_to_page(&l_hold);
1811 list_del(&page->lru);
1812
1813 if (unlikely(!page_evictable(page))) {
1814 putback_lru_page(page);
1815 continue;
1816 }
1817
1818 if (unlikely(buffer_heads_over_limit)) {
1819 if (page_has_private(page) && trylock_page(page)) {
1820 if (page_has_private(page))
1821 try_to_release_page(page, 0);
1822 unlock_page(page);
1823 }
1824 }
1825
1826 if (page_referenced(page, 0, sc->target_mem_cgroup,
1827 &vm_flags)) {
1828 nr_rotated += hpage_nr_pages(page);
1829 /*
1830 * Identify referenced, file-backed active pages and
1831 * give them one more trip around the active list. So
1832 * that executable code get better chances to stay in
1833 * memory under moderate memory pressure. Anon pages
1834 * are not likely to be evicted by use-once streaming
1835 * IO, plus JVM can create lots of anon VM_EXEC pages,
1836 * so we ignore them here.
1837 */
1838 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1839 list_add(&page->lru, &l_active);
1840 continue;
1841 }
1842 }
1843
1844 ClearPageActive(page); /* we are de-activating */
1845 list_add(&page->lru, &l_inactive);
1846 }
1847
1848 /*
1849 * Move pages back to the lru list.
1850 */
1851 spin_lock_irq(&zone->lru_lock);
1852 /*
1853 * Count referenced pages from currently used mappings as rotated,
1854 * even though only some of them are actually re-activated. This
1855 * helps balance scan pressure between file and anonymous pages in
1856 * get_scan_count.
1857 */
1858 reclaim_stat->recent_rotated[file] += nr_rotated;
1859
1860 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1861 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1862 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1863 spin_unlock_irq(&zone->lru_lock);
1864
1865 mem_cgroup_uncharge_list(&l_hold);
1866 free_hot_cold_page_list(&l_hold, true);
1867 }
1868
1869 #ifdef CONFIG_SWAP
1870 static bool inactive_anon_is_low_global(struct zone *zone)
1871 {
1872 unsigned long active, inactive;
1873
1874 active = zone_page_state(zone, NR_ACTIVE_ANON);
1875 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1876
1877 return inactive * zone->inactive_ratio < active;
1878 }
1879
1880 /**
1881 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1882 * @lruvec: LRU vector to check
1883 *
1884 * Returns true if the zone does not have enough inactive anon pages,
1885 * meaning some active anon pages need to be deactivated.
1886 */
1887 static bool inactive_anon_is_low(struct lruvec *lruvec)
1888 {
1889 /*
1890 * If we don't have swap space, anonymous page deactivation
1891 * is pointless.
1892 */
1893 if (!total_swap_pages)
1894 return false;
1895
1896 if (!mem_cgroup_disabled())
1897 return mem_cgroup_inactive_anon_is_low(lruvec);
1898
1899 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1900 }
1901 #else
1902 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1903 {
1904 return false;
1905 }
1906 #endif
1907
1908 /**
1909 * inactive_file_is_low - check if file pages need to be deactivated
1910 * @lruvec: LRU vector to check
1911 *
1912 * When the system is doing streaming IO, memory pressure here
1913 * ensures that active file pages get deactivated, until more
1914 * than half of the file pages are on the inactive list.
1915 *
1916 * Once we get to that situation, protect the system's working
1917 * set from being evicted by disabling active file page aging.
1918 *
1919 * This uses a different ratio than the anonymous pages, because
1920 * the page cache uses a use-once replacement algorithm.
1921 */
1922 static bool inactive_file_is_low(struct lruvec *lruvec)
1923 {
1924 unsigned long inactive;
1925 unsigned long active;
1926
1927 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1928 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1929
1930 return active > inactive;
1931 }
1932
1933 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1934 {
1935 if (is_file_lru(lru))
1936 return inactive_file_is_low(lruvec);
1937 else
1938 return inactive_anon_is_low(lruvec);
1939 }
1940
1941 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1942 struct lruvec *lruvec, struct scan_control *sc)
1943 {
1944 if (is_active_lru(lru)) {
1945 if (inactive_list_is_low(lruvec, lru))
1946 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1947 return 0;
1948 }
1949
1950 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1951 }
1952
1953 enum scan_balance {
1954 SCAN_EQUAL,
1955 SCAN_FRACT,
1956 SCAN_ANON,
1957 SCAN_FILE,
1958 };
1959
1960 /*
1961 * Determine how aggressively the anon and file LRU lists should be
1962 * scanned. The relative value of each set of LRU lists is determined
1963 * by looking at the fraction of the pages scanned we did rotate back
1964 * onto the active list instead of evict.
1965 *
1966 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1967 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1968 */
1969 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1970 struct scan_control *sc, unsigned long *nr,
1971 unsigned long *lru_pages)
1972 {
1973 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1974 u64 fraction[2];
1975 u64 denominator = 0; /* gcc */
1976 struct zone *zone = lruvec_zone(lruvec);
1977 unsigned long anon_prio, file_prio;
1978 enum scan_balance scan_balance;
1979 unsigned long anon, file;
1980 bool force_scan = false;
1981 unsigned long ap, fp;
1982 enum lru_list lru;
1983 bool some_scanned;
1984 int pass;
1985
1986 /*
1987 * If the zone or memcg is small, nr[l] can be 0. This
1988 * results in no scanning on this priority and a potential
1989 * priority drop. Global direct reclaim can go to the next
1990 * zone and tends to have no problems. Global kswapd is for
1991 * zone balancing and it needs to scan a minimum amount. When
1992 * reclaiming for a memcg, a priority drop can cause high
1993 * latencies, so it's better to scan a minimum amount there as
1994 * well.
1995 */
1996 if (current_is_kswapd()) {
1997 if (!zone_reclaimable(zone))
1998 force_scan = true;
1999 if (!mem_cgroup_lruvec_online(lruvec))
2000 force_scan = true;
2001 }
2002 if (!global_reclaim(sc))
2003 force_scan = true;
2004
2005 /* If we have no swap space, do not bother scanning anon pages. */
2006 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
2007 scan_balance = SCAN_FILE;
2008 goto out;
2009 }
2010
2011 /*
2012 * Global reclaim will swap to prevent OOM even with no
2013 * swappiness, but memcg users want to use this knob to
2014 * disable swapping for individual groups completely when
2015 * using the memory controller's swap limit feature would be
2016 * too expensive.
2017 */
2018 if (!global_reclaim(sc) && !swappiness) {
2019 scan_balance = SCAN_FILE;
2020 goto out;
2021 }
2022
2023 /*
2024 * Do not apply any pressure balancing cleverness when the
2025 * system is close to OOM, scan both anon and file equally
2026 * (unless the swappiness setting disagrees with swapping).
2027 */
2028 if (!sc->priority && swappiness) {
2029 scan_balance = SCAN_EQUAL;
2030 goto out;
2031 }
2032
2033 /*
2034 * Prevent the reclaimer from falling into the cache trap: as
2035 * cache pages start out inactive, every cache fault will tip
2036 * the scan balance towards the file LRU. And as the file LRU
2037 * shrinks, so does the window for rotation from references.
2038 * This means we have a runaway feedback loop where a tiny
2039 * thrashing file LRU becomes infinitely more attractive than
2040 * anon pages. Try to detect this based on file LRU size.
2041 */
2042 if (global_reclaim(sc)) {
2043 unsigned long zonefile;
2044 unsigned long zonefree;
2045
2046 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2047 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2048 zone_page_state(zone, NR_INACTIVE_FILE);
2049
2050 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2051 scan_balance = SCAN_ANON;
2052 goto out;
2053 }
2054 }
2055
2056 /*
2057 * If there is enough inactive page cache, i.e. if the size of the
2058 * inactive list is greater than that of the active list *and* the
2059 * inactive list actually has some pages to scan on this priority, we
2060 * do not reclaim anything from the anonymous working set right now.
2061 * Without the second condition we could end up never scanning an
2062 * lruvec even if it has plenty of old anonymous pages unless the
2063 * system is under heavy pressure.
2064 */
2065 if (!inactive_file_is_low(lruvec) &&
2066 get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2067 scan_balance = SCAN_FILE;
2068 goto out;
2069 }
2070
2071 scan_balance = SCAN_FRACT;
2072
2073 /*
2074 * With swappiness at 100, anonymous and file have the same priority.
2075 * This scanning priority is essentially the inverse of IO cost.
2076 */
2077 anon_prio = swappiness;
2078 file_prio = 200 - anon_prio;
2079
2080 /*
2081 * OK, so we have swap space and a fair amount of page cache
2082 * pages. We use the recently rotated / recently scanned
2083 * ratios to determine how valuable each cache is.
2084 *
2085 * Because workloads change over time (and to avoid overflow)
2086 * we keep these statistics as a floating average, which ends
2087 * up weighing recent references more than old ones.
2088 *
2089 * anon in [0], file in [1]
2090 */
2091
2092 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2093 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2094 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2095 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2096
2097 spin_lock_irq(&zone->lru_lock);
2098 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2099 reclaim_stat->recent_scanned[0] /= 2;
2100 reclaim_stat->recent_rotated[0] /= 2;
2101 }
2102
2103 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2104 reclaim_stat->recent_scanned[1] /= 2;
2105 reclaim_stat->recent_rotated[1] /= 2;
2106 }
2107
2108 /*
2109 * The amount of pressure on anon vs file pages is inversely
2110 * proportional to the fraction of recently scanned pages on
2111 * each list that were recently referenced and in active use.
2112 */
2113 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2114 ap /= reclaim_stat->recent_rotated[0] + 1;
2115
2116 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2117 fp /= reclaim_stat->recent_rotated[1] + 1;
2118 spin_unlock_irq(&zone->lru_lock);
2119
2120 fraction[0] = ap;
2121 fraction[1] = fp;
2122 denominator = ap + fp + 1;
2123 out:
2124 some_scanned = false;
2125 /* Only use force_scan on second pass. */
2126 for (pass = 0; !some_scanned && pass < 2; pass++) {
2127 *lru_pages = 0;
2128 for_each_evictable_lru(lru) {
2129 int file = is_file_lru(lru);
2130 unsigned long size;
2131 unsigned long scan;
2132
2133 size = get_lru_size(lruvec, lru);
2134 scan = size >> sc->priority;
2135
2136 if (!scan && pass && force_scan)
2137 scan = min(size, SWAP_CLUSTER_MAX);
2138
2139 switch (scan_balance) {
2140 case SCAN_EQUAL:
2141 /* Scan lists relative to size */
2142 break;
2143 case SCAN_FRACT:
2144 /*
2145 * Scan types proportional to swappiness and
2146 * their relative recent reclaim efficiency.
2147 */
2148 scan = div64_u64(scan * fraction[file],
2149 denominator);
2150 break;
2151 case SCAN_FILE:
2152 case SCAN_ANON:
2153 /* Scan one type exclusively */
2154 if ((scan_balance == SCAN_FILE) != file) {
2155 size = 0;
2156 scan = 0;
2157 }
2158 break;
2159 default:
2160 /* Look ma, no brain */
2161 BUG();
2162 }
2163
2164 *lru_pages += size;
2165 nr[lru] = scan;
2166
2167 /*
2168 * Skip the second pass and don't force_scan,
2169 * if we found something to scan.
2170 */
2171 some_scanned |= !!scan;
2172 }
2173 }
2174 }
2175
2176 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2177 static void init_tlb_ubc(void)
2178 {
2179 /*
2180 * This deliberately does not clear the cpumask as it's expensive
2181 * and unnecessary. If there happens to be data in there then the
2182 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2183 * then will be cleared.
2184 */
2185 current->tlb_ubc.flush_required = false;
2186 }
2187 #else
2188 static inline void init_tlb_ubc(void)
2189 {
2190 }
2191 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2192
2193 /*
2194 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2195 */
2196 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2197 struct scan_control *sc, unsigned long *lru_pages)
2198 {
2199 unsigned long nr[NR_LRU_LISTS];
2200 unsigned long targets[NR_LRU_LISTS];
2201 unsigned long nr_to_scan;
2202 enum lru_list lru;
2203 unsigned long nr_reclaimed = 0;
2204 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2205 struct blk_plug plug;
2206 bool scan_adjusted;
2207
2208 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2209
2210 /* Record the original scan target for proportional adjustments later */
2211 memcpy(targets, nr, sizeof(nr));
2212
2213 /*
2214 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2215 * event that can occur when there is little memory pressure e.g.
2216 * multiple streaming readers/writers. Hence, we do not abort scanning
2217 * when the requested number of pages are reclaimed when scanning at
2218 * DEF_PRIORITY on the assumption that the fact we are direct
2219 * reclaiming implies that kswapd is not keeping up and it is best to
2220 * do a batch of work at once. For memcg reclaim one check is made to
2221 * abort proportional reclaim if either the file or anon lru has already
2222 * dropped to zero at the first pass.
2223 */
2224 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2225 sc->priority == DEF_PRIORITY);
2226
2227 init_tlb_ubc();
2228
2229 blk_start_plug(&plug);
2230 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2231 nr[LRU_INACTIVE_FILE]) {
2232 unsigned long nr_anon, nr_file, percentage;
2233 unsigned long nr_scanned;
2234
2235 for_each_evictable_lru(lru) {
2236 if (nr[lru]) {
2237 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2238 nr[lru] -= nr_to_scan;
2239
2240 nr_reclaimed += shrink_list(lru, nr_to_scan,
2241 lruvec, sc);
2242 }
2243 }
2244
2245 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2246 continue;
2247
2248 /*
2249 * For kswapd and memcg, reclaim at least the number of pages
2250 * requested. Ensure that the anon and file LRUs are scanned
2251 * proportionally what was requested by get_scan_count(). We
2252 * stop reclaiming one LRU and reduce the amount scanning
2253 * proportional to the original scan target.
2254 */
2255 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2256 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2257
2258 /*
2259 * It's just vindictive to attack the larger once the smaller
2260 * has gone to zero. And given the way we stop scanning the
2261 * smaller below, this makes sure that we only make one nudge
2262 * towards proportionality once we've got nr_to_reclaim.
2263 */
2264 if (!nr_file || !nr_anon)
2265 break;
2266
2267 if (nr_file > nr_anon) {
2268 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2269 targets[LRU_ACTIVE_ANON] + 1;
2270 lru = LRU_BASE;
2271 percentage = nr_anon * 100 / scan_target;
2272 } else {
2273 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2274 targets[LRU_ACTIVE_FILE] + 1;
2275 lru = LRU_FILE;
2276 percentage = nr_file * 100 / scan_target;
2277 }
2278
2279 /* Stop scanning the smaller of the LRU */
2280 nr[lru] = 0;
2281 nr[lru + LRU_ACTIVE] = 0;
2282
2283 /*
2284 * Recalculate the other LRU scan count based on its original
2285 * scan target and the percentage scanning already complete
2286 */
2287 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2288 nr_scanned = targets[lru] - nr[lru];
2289 nr[lru] = targets[lru] * (100 - percentage) / 100;
2290 nr[lru] -= min(nr[lru], nr_scanned);
2291
2292 lru += LRU_ACTIVE;
2293 nr_scanned = targets[lru] - nr[lru];
2294 nr[lru] = targets[lru] * (100 - percentage) / 100;
2295 nr[lru] -= min(nr[lru], nr_scanned);
2296
2297 scan_adjusted = true;
2298 }
2299 blk_finish_plug(&plug);
2300 sc->nr_reclaimed += nr_reclaimed;
2301
2302 /*
2303 * Even if we did not try to evict anon pages at all, we want to
2304 * rebalance the anon lru active/inactive ratio.
2305 */
2306 if (inactive_anon_is_low(lruvec))
2307 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2308 sc, LRU_ACTIVE_ANON);
2309
2310 throttle_vm_writeout(sc->gfp_mask);
2311 }
2312
2313 /* Use reclaim/compaction for costly allocs or under memory pressure */
2314 static bool in_reclaim_compaction(struct scan_control *sc)
2315 {
2316 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2317 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2318 sc->priority < DEF_PRIORITY - 2))
2319 return true;
2320
2321 return false;
2322 }
2323
2324 /*
2325 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2326 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2327 * true if more pages should be reclaimed such that when the page allocator
2328 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2329 * It will give up earlier than that if there is difficulty reclaiming pages.
2330 */
2331 static inline bool should_continue_reclaim(struct zone *zone,
2332 unsigned long nr_reclaimed,
2333 unsigned long nr_scanned,
2334 struct scan_control *sc)
2335 {
2336 unsigned long pages_for_compaction;
2337 unsigned long inactive_lru_pages;
2338
2339 /* If not in reclaim/compaction mode, stop */
2340 if (!in_reclaim_compaction(sc))
2341 return false;
2342
2343 /* Consider stopping depending on scan and reclaim activity */
2344 if (sc->gfp_mask & __GFP_REPEAT) {
2345 /*
2346 * For __GFP_REPEAT allocations, stop reclaiming if the
2347 * full LRU list has been scanned and we are still failing
2348 * to reclaim pages. This full LRU scan is potentially
2349 * expensive but a __GFP_REPEAT caller really wants to succeed
2350 */
2351 if (!nr_reclaimed && !nr_scanned)
2352 return false;
2353 } else {
2354 /*
2355 * For non-__GFP_REPEAT allocations which can presumably
2356 * fail without consequence, stop if we failed to reclaim
2357 * any pages from the last SWAP_CLUSTER_MAX number of
2358 * pages that were scanned. This will return to the
2359 * caller faster at the risk reclaim/compaction and
2360 * the resulting allocation attempt fails
2361 */
2362 if (!nr_reclaimed)
2363 return false;
2364 }
2365
2366 /*
2367 * If we have not reclaimed enough pages for compaction and the
2368 * inactive lists are large enough, continue reclaiming
2369 */
2370 pages_for_compaction = (2UL << sc->order);
2371 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2372 if (get_nr_swap_pages() > 0)
2373 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2374 if (sc->nr_reclaimed < pages_for_compaction &&
2375 inactive_lru_pages > pages_for_compaction)
2376 return true;
2377
2378 /* If compaction would go ahead or the allocation would succeed, stop */
2379 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2380 case COMPACT_PARTIAL:
2381 case COMPACT_CONTINUE:
2382 return false;
2383 default:
2384 return true;
2385 }
2386 }
2387
2388 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2389 bool is_classzone)
2390 {
2391 struct reclaim_state *reclaim_state = current->reclaim_state;
2392 unsigned long nr_reclaimed, nr_scanned;
2393 bool reclaimable = false;
2394
2395 do {
2396 struct mem_cgroup *root = sc->target_mem_cgroup;
2397 struct mem_cgroup_reclaim_cookie reclaim = {
2398 .zone = zone,
2399 .priority = sc->priority,
2400 };
2401 unsigned long zone_lru_pages = 0;
2402 struct mem_cgroup *memcg;
2403
2404 nr_reclaimed = sc->nr_reclaimed;
2405 nr_scanned = sc->nr_scanned;
2406
2407 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2408 do {
2409 unsigned long lru_pages;
2410 unsigned long reclaimed;
2411 unsigned long scanned;
2412 struct lruvec *lruvec;
2413 int swappiness;
2414
2415 if (mem_cgroup_low(root, memcg)) {
2416 if (!sc->may_thrash)
2417 continue;
2418 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2419 }
2420
2421 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2422 swappiness = mem_cgroup_swappiness(memcg);
2423 reclaimed = sc->nr_reclaimed;
2424 scanned = sc->nr_scanned;
2425
2426 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2427 zone_lru_pages += lru_pages;
2428
2429 if (memcg && is_classzone)
2430 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2431 memcg, sc->nr_scanned - scanned,
2432 lru_pages);
2433
2434 /* Record the group's reclaim efficiency */
2435 vmpressure(sc->gfp_mask, memcg, false,
2436 sc->nr_scanned - scanned,
2437 sc->nr_reclaimed - reclaimed);
2438
2439 /*
2440 * Direct reclaim and kswapd have to scan all memory
2441 * cgroups to fulfill the overall scan target for the
2442 * zone.
2443 *
2444 * Limit reclaim, on the other hand, only cares about
2445 * nr_to_reclaim pages to be reclaimed and it will
2446 * retry with decreasing priority if one round over the
2447 * whole hierarchy is not sufficient.
2448 */
2449 if (!global_reclaim(sc) &&
2450 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2451 mem_cgroup_iter_break(root, memcg);
2452 break;
2453 }
2454 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2455
2456 /*
2457 * Shrink the slab caches in the same proportion that
2458 * the eligible LRU pages were scanned.
2459 */
2460 if (global_reclaim(sc) && is_classzone)
2461 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2462 sc->nr_scanned - nr_scanned,
2463 zone_lru_pages);
2464
2465 if (reclaim_state) {
2466 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2467 reclaim_state->reclaimed_slab = 0;
2468 }
2469
2470 /* Record the subtree's reclaim efficiency */
2471 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2472 sc->nr_scanned - nr_scanned,
2473 sc->nr_reclaimed - nr_reclaimed);
2474
2475 if (sc->nr_reclaimed - nr_reclaimed)
2476 reclaimable = true;
2477
2478 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2479 sc->nr_scanned - nr_scanned, sc));
2480
2481 return reclaimable;
2482 }
2483
2484 /*
2485 * Returns true if compaction should go ahead for a high-order request, or
2486 * the high-order allocation would succeed without compaction.
2487 */
2488 static inline bool compaction_ready(struct zone *zone, int order)
2489 {
2490 unsigned long balance_gap, watermark;
2491 bool watermark_ok;
2492
2493 /*
2494 * Compaction takes time to run and there are potentially other
2495 * callers using the pages just freed. Continue reclaiming until
2496 * there is a buffer of free pages available to give compaction
2497 * a reasonable chance of completing and allocating the page
2498 */
2499 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2500 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2501 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2502 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2503
2504 /*
2505 * If compaction is deferred, reclaim up to a point where
2506 * compaction will have a chance of success when re-enabled
2507 */
2508 if (compaction_deferred(zone, order))
2509 return watermark_ok;
2510
2511 /*
2512 * If compaction is not ready to start and allocation is not likely
2513 * to succeed without it, then keep reclaiming.
2514 */
2515 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2516 return false;
2517
2518 return watermark_ok;
2519 }
2520
2521 /*
2522 * This is the direct reclaim path, for page-allocating processes. We only
2523 * try to reclaim pages from zones which will satisfy the caller's allocation
2524 * request.
2525 *
2526 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2527 * Because:
2528 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2529 * allocation or
2530 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2531 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2532 * zone defense algorithm.
2533 *
2534 * If a zone is deemed to be full of pinned pages then just give it a light
2535 * scan then give up on it.
2536 *
2537 * Returns true if a zone was reclaimable.
2538 */
2539 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2540 {
2541 struct zoneref *z;
2542 struct zone *zone;
2543 unsigned long nr_soft_reclaimed;
2544 unsigned long nr_soft_scanned;
2545 gfp_t orig_mask;
2546 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2547 bool reclaimable = false;
2548
2549 /*
2550 * If the number of buffer_heads in the machine exceeds the maximum
2551 * allowed level, force direct reclaim to scan the highmem zone as
2552 * highmem pages could be pinning lowmem pages storing buffer_heads
2553 */
2554 orig_mask = sc->gfp_mask;
2555 if (buffer_heads_over_limit)
2556 sc->gfp_mask |= __GFP_HIGHMEM;
2557
2558 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2559 requested_highidx, sc->nodemask) {
2560 enum zone_type classzone_idx;
2561
2562 if (!populated_zone(zone))
2563 continue;
2564
2565 classzone_idx = requested_highidx;
2566 while (!populated_zone(zone->zone_pgdat->node_zones +
2567 classzone_idx))
2568 classzone_idx--;
2569
2570 /*
2571 * Take care memory controller reclaiming has small influence
2572 * to global LRU.
2573 */
2574 if (global_reclaim(sc)) {
2575 if (!cpuset_zone_allowed(zone,
2576 GFP_KERNEL | __GFP_HARDWALL))
2577 continue;
2578
2579 if (sc->priority != DEF_PRIORITY &&
2580 !zone_reclaimable(zone))
2581 continue; /* Let kswapd poll it */
2582
2583 /*
2584 * If we already have plenty of memory free for
2585 * compaction in this zone, don't free any more.
2586 * Even though compaction is invoked for any
2587 * non-zero order, only frequent costly order
2588 * reclamation is disruptive enough to become a
2589 * noticeable problem, like transparent huge
2590 * page allocations.
2591 */
2592 if (IS_ENABLED(CONFIG_COMPACTION) &&
2593 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2594 zonelist_zone_idx(z) <= requested_highidx &&
2595 compaction_ready(zone, sc->order)) {
2596 sc->compaction_ready = true;
2597 continue;
2598 }
2599
2600 /*
2601 * This steals pages from memory cgroups over softlimit
2602 * and returns the number of reclaimed pages and
2603 * scanned pages. This works for global memory pressure
2604 * and balancing, not for a memcg's limit.
2605 */
2606 nr_soft_scanned = 0;
2607 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2608 sc->order, sc->gfp_mask,
2609 &nr_soft_scanned);
2610 sc->nr_reclaimed += nr_soft_reclaimed;
2611 sc->nr_scanned += nr_soft_scanned;
2612 if (nr_soft_reclaimed)
2613 reclaimable = true;
2614 /* need some check for avoid more shrink_zone() */
2615 }
2616
2617 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2618 reclaimable = true;
2619
2620 if (global_reclaim(sc) &&
2621 !reclaimable && zone_reclaimable(zone))
2622 reclaimable = true;
2623 }
2624
2625 /*
2626 * Restore to original mask to avoid the impact on the caller if we
2627 * promoted it to __GFP_HIGHMEM.
2628 */
2629 sc->gfp_mask = orig_mask;
2630
2631 return reclaimable;
2632 }
2633
2634 /*
2635 * This is the main entry point to direct page reclaim.
2636 *
2637 * If a full scan of the inactive list fails to free enough memory then we
2638 * are "out of memory" and something needs to be killed.
2639 *
2640 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2641 * high - the zone may be full of dirty or under-writeback pages, which this
2642 * caller can't do much about. We kick the writeback threads and take explicit
2643 * naps in the hope that some of these pages can be written. But if the
2644 * allocating task holds filesystem locks which prevent writeout this might not
2645 * work, and the allocation attempt will fail.
2646 *
2647 * returns: 0, if no pages reclaimed
2648 * else, the number of pages reclaimed
2649 */
2650 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2651 struct scan_control *sc)
2652 {
2653 int initial_priority = sc->priority;
2654 unsigned long total_scanned = 0;
2655 unsigned long writeback_threshold;
2656 bool zones_reclaimable;
2657 retry:
2658 delayacct_freepages_start();
2659
2660 if (global_reclaim(sc))
2661 count_vm_event(ALLOCSTALL);
2662
2663 do {
2664 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2665 sc->priority);
2666 sc->nr_scanned = 0;
2667 zones_reclaimable = shrink_zones(zonelist, sc);
2668
2669 total_scanned += sc->nr_scanned;
2670 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2671 break;
2672
2673 if (sc->compaction_ready)
2674 break;
2675
2676 /*
2677 * If we're getting trouble reclaiming, start doing
2678 * writepage even in laptop mode.
2679 */
2680 if (sc->priority < DEF_PRIORITY - 2)
2681 sc->may_writepage = 1;
2682
2683 /*
2684 * Try to write back as many pages as we just scanned. This
2685 * tends to cause slow streaming writers to write data to the
2686 * disk smoothly, at the dirtying rate, which is nice. But
2687 * that's undesirable in laptop mode, where we *want* lumpy
2688 * writeout. So in laptop mode, write out the whole world.
2689 */
2690 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2691 if (total_scanned > writeback_threshold) {
2692 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2693 WB_REASON_TRY_TO_FREE_PAGES);
2694 sc->may_writepage = 1;
2695 }
2696 } while (--sc->priority >= 0);
2697
2698 delayacct_freepages_end();
2699
2700 if (sc->nr_reclaimed)
2701 return sc->nr_reclaimed;
2702
2703 /* Aborted reclaim to try compaction? don't OOM, then */
2704 if (sc->compaction_ready)
2705 return 1;
2706
2707 /* Untapped cgroup reserves? Don't OOM, retry. */
2708 if (!sc->may_thrash) {
2709 sc->priority = initial_priority;
2710 sc->may_thrash = 1;
2711 goto retry;
2712 }
2713
2714 /* Any of the zones still reclaimable? Don't OOM. */
2715 if (zones_reclaimable)
2716 return 1;
2717
2718 return 0;
2719 }
2720
2721 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2722 {
2723 struct zone *zone;
2724 unsigned long pfmemalloc_reserve = 0;
2725 unsigned long free_pages = 0;
2726 int i;
2727 bool wmark_ok;
2728
2729 for (i = 0; i <= ZONE_NORMAL; i++) {
2730 zone = &pgdat->node_zones[i];
2731 if (!populated_zone(zone) ||
2732 zone_reclaimable_pages(zone) == 0)
2733 continue;
2734
2735 pfmemalloc_reserve += min_wmark_pages(zone);
2736 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2737 }
2738
2739 /* If there are no reserves (unexpected config) then do not throttle */
2740 if (!pfmemalloc_reserve)
2741 return true;
2742
2743 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2744
2745 /* kswapd must be awake if processes are being throttled */
2746 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2747 pgdat->classzone_idx = min(pgdat->classzone_idx,
2748 (enum zone_type)ZONE_NORMAL);
2749 wake_up_interruptible(&pgdat->kswapd_wait);
2750 }
2751
2752 return wmark_ok;
2753 }
2754
2755 /*
2756 * Throttle direct reclaimers if backing storage is backed by the network
2757 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2758 * depleted. kswapd will continue to make progress and wake the processes
2759 * when the low watermark is reached.
2760 *
2761 * Returns true if a fatal signal was delivered during throttling. If this
2762 * happens, the page allocator should not consider triggering the OOM killer.
2763 */
2764 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2765 nodemask_t *nodemask)
2766 {
2767 struct zoneref *z;
2768 struct zone *zone;
2769 pg_data_t *pgdat = NULL;
2770
2771 /*
2772 * Kernel threads should not be throttled as they may be indirectly
2773 * responsible for cleaning pages necessary for reclaim to make forward
2774 * progress. kjournald for example may enter direct reclaim while
2775 * committing a transaction where throttling it could forcing other
2776 * processes to block on log_wait_commit().
2777 */
2778 if (current->flags & PF_KTHREAD)
2779 goto out;
2780
2781 /*
2782 * If a fatal signal is pending, this process should not throttle.
2783 * It should return quickly so it can exit and free its memory
2784 */
2785 if (fatal_signal_pending(current))
2786 goto out;
2787
2788 /*
2789 * Check if the pfmemalloc reserves are ok by finding the first node
2790 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2791 * GFP_KERNEL will be required for allocating network buffers when
2792 * swapping over the network so ZONE_HIGHMEM is unusable.
2793 *
2794 * Throttling is based on the first usable node and throttled processes
2795 * wait on a queue until kswapd makes progress and wakes them. There
2796 * is an affinity then between processes waking up and where reclaim
2797 * progress has been made assuming the process wakes on the same node.
2798 * More importantly, processes running on remote nodes will not compete
2799 * for remote pfmemalloc reserves and processes on different nodes
2800 * should make reasonable progress.
2801 */
2802 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2803 gfp_zone(gfp_mask), nodemask) {
2804 if (zone_idx(zone) > ZONE_NORMAL)
2805 continue;
2806
2807 /* Throttle based on the first usable node */
2808 pgdat = zone->zone_pgdat;
2809 if (pfmemalloc_watermark_ok(pgdat))
2810 goto out;
2811 break;
2812 }
2813
2814 /* If no zone was usable by the allocation flags then do not throttle */
2815 if (!pgdat)
2816 goto out;
2817
2818 /* Account for the throttling */
2819 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2820
2821 /*
2822 * If the caller cannot enter the filesystem, it's possible that it
2823 * is due to the caller holding an FS lock or performing a journal
2824 * transaction in the case of a filesystem like ext[3|4]. In this case,
2825 * it is not safe to block on pfmemalloc_wait as kswapd could be
2826 * blocked waiting on the same lock. Instead, throttle for up to a
2827 * second before continuing.
2828 */
2829 if (!(gfp_mask & __GFP_FS)) {
2830 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2831 pfmemalloc_watermark_ok(pgdat), HZ);
2832
2833 goto check_pending;
2834 }
2835
2836 /* Throttle until kswapd wakes the process */
2837 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2838 pfmemalloc_watermark_ok(pgdat));
2839
2840 check_pending:
2841 if (fatal_signal_pending(current))
2842 return true;
2843
2844 out:
2845 return false;
2846 }
2847
2848 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2849 gfp_t gfp_mask, nodemask_t *nodemask)
2850 {
2851 unsigned long nr_reclaimed;
2852 struct scan_control sc = {
2853 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2854 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2855 .order = order,
2856 .nodemask = nodemask,
2857 .priority = DEF_PRIORITY,
2858 .may_writepage = !laptop_mode,
2859 .may_unmap = 1,
2860 .may_swap = 1,
2861 };
2862
2863 /*
2864 * Do not enter reclaim if fatal signal was delivered while throttled.
2865 * 1 is returned so that the page allocator does not OOM kill at this
2866 * point.
2867 */
2868 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2869 return 1;
2870
2871 trace_mm_vmscan_direct_reclaim_begin(order,
2872 sc.may_writepage,
2873 gfp_mask);
2874
2875 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2876
2877 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2878
2879 return nr_reclaimed;
2880 }
2881
2882 #ifdef CONFIG_MEMCG
2883
2884 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2885 gfp_t gfp_mask, bool noswap,
2886 struct zone *zone,
2887 unsigned long *nr_scanned)
2888 {
2889 struct scan_control sc = {
2890 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2891 .target_mem_cgroup = memcg,
2892 .may_writepage = !laptop_mode,
2893 .may_unmap = 1,
2894 .may_swap = !noswap,
2895 };
2896 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2897 int swappiness = mem_cgroup_swappiness(memcg);
2898 unsigned long lru_pages;
2899
2900 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2901 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2902
2903 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2904 sc.may_writepage,
2905 sc.gfp_mask);
2906
2907 /*
2908 * NOTE: Although we can get the priority field, using it
2909 * here is not a good idea, since it limits the pages we can scan.
2910 * if we don't reclaim here, the shrink_zone from balance_pgdat
2911 * will pick up pages from other mem cgroup's as well. We hack
2912 * the priority and make it zero.
2913 */
2914 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2915
2916 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2917
2918 *nr_scanned = sc.nr_scanned;
2919 return sc.nr_reclaimed;
2920 }
2921
2922 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2923 unsigned long nr_pages,
2924 gfp_t gfp_mask,
2925 bool may_swap)
2926 {
2927 struct zonelist *zonelist;
2928 unsigned long nr_reclaimed;
2929 int nid;
2930 struct scan_control sc = {
2931 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2932 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2933 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2934 .target_mem_cgroup = memcg,
2935 .priority = DEF_PRIORITY,
2936 .may_writepage = !laptop_mode,
2937 .may_unmap = 1,
2938 .may_swap = may_swap,
2939 };
2940
2941 /*
2942 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2943 * take care of from where we get pages. So the node where we start the
2944 * scan does not need to be the current node.
2945 */
2946 nid = mem_cgroup_select_victim_node(memcg);
2947
2948 zonelist = NODE_DATA(nid)->node_zonelists;
2949
2950 trace_mm_vmscan_memcg_reclaim_begin(0,
2951 sc.may_writepage,
2952 sc.gfp_mask);
2953
2954 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2955
2956 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2957
2958 return nr_reclaimed;
2959 }
2960 #endif
2961
2962 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2963 {
2964 struct mem_cgroup *memcg;
2965
2966 if (!total_swap_pages)
2967 return;
2968
2969 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2970 do {
2971 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2972
2973 if (inactive_anon_is_low(lruvec))
2974 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2975 sc, LRU_ACTIVE_ANON);
2976
2977 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2978 } while (memcg);
2979 }
2980
2981 static bool zone_balanced(struct zone *zone, int order,
2982 unsigned long balance_gap, int classzone_idx)
2983 {
2984 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2985 balance_gap, classzone_idx))
2986 return false;
2987
2988 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2989 order, 0, classzone_idx) == COMPACT_SKIPPED)
2990 return false;
2991
2992 return true;
2993 }
2994
2995 /*
2996 * pgdat_balanced() is used when checking if a node is balanced.
2997 *
2998 * For order-0, all zones must be balanced!
2999 *
3000 * For high-order allocations only zones that meet watermarks and are in a
3001 * zone allowed by the callers classzone_idx are added to balanced_pages. The
3002 * total of balanced pages must be at least 25% of the zones allowed by
3003 * classzone_idx for the node to be considered balanced. Forcing all zones to
3004 * be balanced for high orders can cause excessive reclaim when there are
3005 * imbalanced zones.
3006 * The choice of 25% is due to
3007 * o a 16M DMA zone that is balanced will not balance a zone on any
3008 * reasonable sized machine
3009 * o On all other machines, the top zone must be at least a reasonable
3010 * percentage of the middle zones. For example, on 32-bit x86, highmem
3011 * would need to be at least 256M for it to be balance a whole node.
3012 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3013 * to balance a node on its own. These seemed like reasonable ratios.
3014 */
3015 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3016 {
3017 unsigned long managed_pages = 0;
3018 unsigned long balanced_pages = 0;
3019 int i;
3020
3021 /* Check the watermark levels */
3022 for (i = 0; i <= classzone_idx; i++) {
3023 struct zone *zone = pgdat->node_zones + i;
3024
3025 if (!populated_zone(zone))
3026 continue;
3027
3028 managed_pages += zone->managed_pages;
3029
3030 /*
3031 * A special case here:
3032 *
3033 * balance_pgdat() skips over all_unreclaimable after
3034 * DEF_PRIORITY. Effectively, it considers them balanced so
3035 * they must be considered balanced here as well!
3036 */
3037 if (!zone_reclaimable(zone)) {
3038 balanced_pages += zone->managed_pages;
3039 continue;
3040 }
3041
3042 if (zone_balanced(zone, order, 0, i))
3043 balanced_pages += zone->managed_pages;
3044 else if (!order)
3045 return false;
3046 }
3047
3048 if (order)
3049 return balanced_pages >= (managed_pages >> 2);
3050 else
3051 return true;
3052 }
3053
3054 /*
3055 * Prepare kswapd for sleeping. This verifies that there are no processes
3056 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3057 *
3058 * Returns true if kswapd is ready to sleep
3059 */
3060 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3061 int classzone_idx)
3062 {
3063 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3064 if (remaining)
3065 return false;
3066
3067 /*
3068 * The throttled processes are normally woken up in balance_pgdat() as
3069 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3070 * race between when kswapd checks the watermarks and a process gets
3071 * throttled. There is also a potential race if processes get
3072 * throttled, kswapd wakes, a large process exits thereby balancing the
3073 * zones, which causes kswapd to exit balance_pgdat() before reaching
3074 * the wake up checks. If kswapd is going to sleep, no process should
3075 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3076 * the wake up is premature, processes will wake kswapd and get
3077 * throttled again. The difference from wake ups in balance_pgdat() is
3078 * that here we are under prepare_to_wait().
3079 */
3080 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3081 wake_up_all(&pgdat->pfmemalloc_wait);
3082
3083 return pgdat_balanced(pgdat, order, classzone_idx);
3084 }
3085
3086 /*
3087 * kswapd shrinks the zone by the number of pages required to reach
3088 * the high watermark.
3089 *
3090 * Returns true if kswapd scanned at least the requested number of pages to
3091 * reclaim or if the lack of progress was due to pages under writeback.
3092 * This is used to determine if the scanning priority needs to be raised.
3093 */
3094 static bool kswapd_shrink_zone(struct zone *zone,
3095 int classzone_idx,
3096 struct scan_control *sc,
3097 unsigned long *nr_attempted)
3098 {
3099 int testorder = sc->order;
3100 unsigned long balance_gap;
3101 bool lowmem_pressure;
3102
3103 /* Reclaim above the high watermark. */
3104 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3105
3106 /*
3107 * Kswapd reclaims only single pages with compaction enabled. Trying
3108 * too hard to reclaim until contiguous free pages have become
3109 * available can hurt performance by evicting too much useful data
3110 * from memory. Do not reclaim more than needed for compaction.
3111 */
3112 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3113 compaction_suitable(zone, sc->order, 0, classzone_idx)
3114 != COMPACT_SKIPPED)
3115 testorder = 0;
3116
3117 /*
3118 * We put equal pressure on every zone, unless one zone has way too
3119 * many pages free already. The "too many pages" is defined as the
3120 * high wmark plus a "gap" where the gap is either the low
3121 * watermark or 1% of the zone, whichever is smaller.
3122 */
3123 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3124 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3125
3126 /*
3127 * If there is no low memory pressure or the zone is balanced then no
3128 * reclaim is necessary
3129 */
3130 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3131 if (!lowmem_pressure && zone_balanced(zone, testorder,
3132 balance_gap, classzone_idx))
3133 return true;
3134
3135 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3136
3137 /* Account for the number of pages attempted to reclaim */
3138 *nr_attempted += sc->nr_to_reclaim;
3139
3140 clear_bit(ZONE_WRITEBACK, &zone->flags);
3141
3142 /*
3143 * If a zone reaches its high watermark, consider it to be no longer
3144 * congested. It's possible there are dirty pages backed by congested
3145 * BDIs but as pressure is relieved, speculatively avoid congestion
3146 * waits.
3147 */
3148 if (zone_reclaimable(zone) &&
3149 zone_balanced(zone, testorder, 0, classzone_idx)) {
3150 clear_bit(ZONE_CONGESTED, &zone->flags);
3151 clear_bit(ZONE_DIRTY, &zone->flags);
3152 }
3153
3154 return sc->nr_scanned >= sc->nr_to_reclaim;
3155 }
3156
3157 /*
3158 * For kswapd, balance_pgdat() will work across all this node's zones until
3159 * they are all at high_wmark_pages(zone).
3160 *
3161 * Returns the final order kswapd was reclaiming at
3162 *
3163 * There is special handling here for zones which are full of pinned pages.
3164 * This can happen if the pages are all mlocked, or if they are all used by
3165 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3166 * What we do is to detect the case where all pages in the zone have been
3167 * scanned twice and there has been zero successful reclaim. Mark the zone as
3168 * dead and from now on, only perform a short scan. Basically we're polling
3169 * the zone for when the problem goes away.
3170 *
3171 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3172 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3173 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3174 * lower zones regardless of the number of free pages in the lower zones. This
3175 * interoperates with the page allocator fallback scheme to ensure that aging
3176 * of pages is balanced across the zones.
3177 */
3178 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3179 int *classzone_idx)
3180 {
3181 int i;
3182 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3183 unsigned long nr_soft_reclaimed;
3184 unsigned long nr_soft_scanned;
3185 struct scan_control sc = {
3186 .gfp_mask = GFP_KERNEL,
3187 .order = order,
3188 .priority = DEF_PRIORITY,
3189 .may_writepage = !laptop_mode,
3190 .may_unmap = 1,
3191 .may_swap = 1,
3192 };
3193 count_vm_event(PAGEOUTRUN);
3194
3195 do {
3196 unsigned long nr_attempted = 0;
3197 bool raise_priority = true;
3198 bool pgdat_needs_compaction = (order > 0);
3199
3200 sc.nr_reclaimed = 0;
3201
3202 /*
3203 * Scan in the highmem->dma direction for the highest
3204 * zone which needs scanning
3205 */
3206 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3207 struct zone *zone = pgdat->node_zones + i;
3208
3209 if (!populated_zone(zone))
3210 continue;
3211
3212 if (sc.priority != DEF_PRIORITY &&
3213 !zone_reclaimable(zone))
3214 continue;
3215
3216 /*
3217 * Do some background aging of the anon list, to give
3218 * pages a chance to be referenced before reclaiming.
3219 */
3220 age_active_anon(zone, &sc);
3221
3222 /*
3223 * If the number of buffer_heads in the machine
3224 * exceeds the maximum allowed level and this node
3225 * has a highmem zone, force kswapd to reclaim from
3226 * it to relieve lowmem pressure.
3227 */
3228 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3229 end_zone = i;
3230 break;
3231 }
3232
3233 if (!zone_balanced(zone, order, 0, 0)) {
3234 end_zone = i;
3235 break;
3236 } else {
3237 /*
3238 * If balanced, clear the dirty and congested
3239 * flags
3240 */
3241 clear_bit(ZONE_CONGESTED, &zone->flags);
3242 clear_bit(ZONE_DIRTY, &zone->flags);
3243 }
3244 }
3245
3246 if (i < 0)
3247 goto out;
3248
3249 for (i = 0; i <= end_zone; i++) {
3250 struct zone *zone = pgdat->node_zones + i;
3251
3252 if (!populated_zone(zone))
3253 continue;
3254
3255 /*
3256 * If any zone is currently balanced then kswapd will
3257 * not call compaction as it is expected that the
3258 * necessary pages are already available.
3259 */
3260 if (pgdat_needs_compaction &&
3261 zone_watermark_ok(zone, order,
3262 low_wmark_pages(zone),
3263 *classzone_idx, 0))
3264 pgdat_needs_compaction = false;
3265 }
3266
3267 /*
3268 * If we're getting trouble reclaiming, start doing writepage
3269 * even in laptop mode.
3270 */
3271 if (sc.priority < DEF_PRIORITY - 2)
3272 sc.may_writepage = 1;
3273
3274 /*
3275 * Now scan the zone in the dma->highmem direction, stopping
3276 * at the last zone which needs scanning.
3277 *
3278 * We do this because the page allocator works in the opposite
3279 * direction. This prevents the page allocator from allocating
3280 * pages behind kswapd's direction of progress, which would
3281 * cause too much scanning of the lower zones.
3282 */
3283 for (i = 0; i <= end_zone; i++) {
3284 struct zone *zone = pgdat->node_zones + i;
3285
3286 if (!populated_zone(zone))
3287 continue;
3288
3289 if (sc.priority != DEF_PRIORITY &&
3290 !zone_reclaimable(zone))
3291 continue;
3292
3293 sc.nr_scanned = 0;
3294
3295 nr_soft_scanned = 0;
3296 /*
3297 * Call soft limit reclaim before calling shrink_zone.
3298 */
3299 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3300 order, sc.gfp_mask,
3301 &nr_soft_scanned);
3302 sc.nr_reclaimed += nr_soft_reclaimed;
3303
3304 /*
3305 * There should be no need to raise the scanning
3306 * priority if enough pages are already being scanned
3307 * that that high watermark would be met at 100%
3308 * efficiency.
3309 */
3310 if (kswapd_shrink_zone(zone, end_zone,
3311 &sc, &nr_attempted))
3312 raise_priority = false;
3313 }
3314
3315 /*
3316 * If the low watermark is met there is no need for processes
3317 * to be throttled on pfmemalloc_wait as they should not be
3318 * able to safely make forward progress. Wake them
3319 */
3320 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3321 pfmemalloc_watermark_ok(pgdat))
3322 wake_up_all(&pgdat->pfmemalloc_wait);
3323
3324 /*
3325 * Fragmentation may mean that the system cannot be rebalanced
3326 * for high-order allocations in all zones. If twice the
3327 * allocation size has been reclaimed and the zones are still
3328 * not balanced then recheck the watermarks at order-0 to
3329 * prevent kswapd reclaiming excessively. Assume that a
3330 * process requested a high-order can direct reclaim/compact.
3331 */
3332 if (order && sc.nr_reclaimed >= 2UL << order)
3333 order = sc.order = 0;
3334
3335 /* Check if kswapd should be suspending */
3336 if (try_to_freeze() || kthread_should_stop())
3337 break;
3338
3339 /*
3340 * Compact if necessary and kswapd is reclaiming at least the
3341 * high watermark number of pages as requsted
3342 */
3343 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3344 compact_pgdat(pgdat, order);
3345
3346 /*
3347 * Raise priority if scanning rate is too low or there was no
3348 * progress in reclaiming pages
3349 */
3350 if (raise_priority || !sc.nr_reclaimed)
3351 sc.priority--;
3352 } while (sc.priority >= 1 &&
3353 !pgdat_balanced(pgdat, order, *classzone_idx));
3354
3355 out:
3356 /*
3357 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3358 * makes a decision on the order we were last reclaiming at. However,
3359 * if another caller entered the allocator slow path while kswapd
3360 * was awake, order will remain at the higher level
3361 */
3362 *classzone_idx = end_zone;
3363 return order;
3364 }
3365
3366 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3367 {
3368 long remaining = 0;
3369 DEFINE_WAIT(wait);
3370
3371 if (freezing(current) || kthread_should_stop())
3372 return;
3373
3374 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3375
3376 /* Try to sleep for a short interval */
3377 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3378 remaining = schedule_timeout(HZ/10);
3379 finish_wait(&pgdat->kswapd_wait, &wait);
3380 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3381 }
3382
3383 /*
3384 * After a short sleep, check if it was a premature sleep. If not, then
3385 * go fully to sleep until explicitly woken up.
3386 */
3387 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3388 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3389
3390 /*
3391 * vmstat counters are not perfectly accurate and the estimated
3392 * value for counters such as NR_FREE_PAGES can deviate from the
3393 * true value by nr_online_cpus * threshold. To avoid the zone
3394 * watermarks being breached while under pressure, we reduce the
3395 * per-cpu vmstat threshold while kswapd is awake and restore
3396 * them before going back to sleep.
3397 */
3398 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3399
3400 /*
3401 * Compaction records what page blocks it recently failed to
3402 * isolate pages from and skips them in the future scanning.
3403 * When kswapd is going to sleep, it is reasonable to assume
3404 * that pages and compaction may succeed so reset the cache.
3405 */
3406 reset_isolation_suitable(pgdat);
3407
3408 if (!kthread_should_stop())
3409 schedule();
3410
3411 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3412 } else {
3413 if (remaining)
3414 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3415 else
3416 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3417 }
3418 finish_wait(&pgdat->kswapd_wait, &wait);
3419 }
3420
3421 /*
3422 * The background pageout daemon, started as a kernel thread
3423 * from the init process.
3424 *
3425 * This basically trickles out pages so that we have _some_
3426 * free memory available even if there is no other activity
3427 * that frees anything up. This is needed for things like routing
3428 * etc, where we otherwise might have all activity going on in
3429 * asynchronous contexts that cannot page things out.
3430 *
3431 * If there are applications that are active memory-allocators
3432 * (most normal use), this basically shouldn't matter.
3433 */
3434 static int kswapd(void *p)
3435 {
3436 unsigned long order, new_order;
3437 unsigned balanced_order;
3438 int classzone_idx, new_classzone_idx;
3439 int balanced_classzone_idx;
3440 pg_data_t *pgdat = (pg_data_t*)p;
3441 struct task_struct *tsk = current;
3442
3443 struct reclaim_state reclaim_state = {
3444 .reclaimed_slab = 0,
3445 };
3446 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3447
3448 lockdep_set_current_reclaim_state(GFP_KERNEL);
3449
3450 if (!cpumask_empty(cpumask))
3451 set_cpus_allowed_ptr(tsk, cpumask);
3452 current->reclaim_state = &reclaim_state;
3453
3454 /*
3455 * Tell the memory management that we're a "memory allocator",
3456 * and that if we need more memory we should get access to it
3457 * regardless (see "__alloc_pages()"). "kswapd" should
3458 * never get caught in the normal page freeing logic.
3459 *
3460 * (Kswapd normally doesn't need memory anyway, but sometimes
3461 * you need a small amount of memory in order to be able to
3462 * page out something else, and this flag essentially protects
3463 * us from recursively trying to free more memory as we're
3464 * trying to free the first piece of memory in the first place).
3465 */
3466 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3467 set_freezable();
3468
3469 order = new_order = 0;
3470 balanced_order = 0;
3471 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3472 balanced_classzone_idx = classzone_idx;
3473 for ( ; ; ) {
3474 bool ret;
3475
3476 /*
3477 * If the last balance_pgdat was unsuccessful it's unlikely a
3478 * new request of a similar or harder type will succeed soon
3479 * so consider going to sleep on the basis we reclaimed at
3480 */
3481 if (balanced_classzone_idx >= new_classzone_idx &&
3482 balanced_order == new_order) {
3483 new_order = pgdat->kswapd_max_order;
3484 new_classzone_idx = pgdat->classzone_idx;
3485 pgdat->kswapd_max_order = 0;
3486 pgdat->classzone_idx = pgdat->nr_zones - 1;
3487 }
3488
3489 if (order < new_order || classzone_idx > new_classzone_idx) {
3490 /*
3491 * Don't sleep if someone wants a larger 'order'
3492 * allocation or has tigher zone constraints
3493 */
3494 order = new_order;
3495 classzone_idx = new_classzone_idx;
3496 } else {
3497 kswapd_try_to_sleep(pgdat, balanced_order,
3498 balanced_classzone_idx);
3499 order = pgdat->kswapd_max_order;
3500 classzone_idx = pgdat->classzone_idx;
3501 new_order = order;
3502 new_classzone_idx = classzone_idx;
3503 pgdat->kswapd_max_order = 0;
3504 pgdat->classzone_idx = pgdat->nr_zones - 1;
3505 }
3506
3507 ret = try_to_freeze();
3508 if (kthread_should_stop())
3509 break;
3510
3511 /*
3512 * We can speed up thawing tasks if we don't call balance_pgdat
3513 * after returning from the refrigerator
3514 */
3515 if (!ret) {
3516 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3517 balanced_classzone_idx = classzone_idx;
3518 balanced_order = balance_pgdat(pgdat, order,
3519 &balanced_classzone_idx);
3520 }
3521 }
3522
3523 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3524 current->reclaim_state = NULL;
3525 lockdep_clear_current_reclaim_state();
3526
3527 return 0;
3528 }
3529
3530 /*
3531 * A zone is low on free memory, so wake its kswapd task to service it.
3532 */
3533 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3534 {
3535 pg_data_t *pgdat;
3536
3537 if (!populated_zone(zone))
3538 return;
3539
3540 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3541 return;
3542 pgdat = zone->zone_pgdat;
3543 if (pgdat->kswapd_max_order < order) {
3544 pgdat->kswapd_max_order = order;
3545 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3546 }
3547 if (!waitqueue_active(&pgdat->kswapd_wait))
3548 return;
3549 if (zone_balanced(zone, order, 0, 0))
3550 return;
3551
3552 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3553 wake_up_interruptible(&pgdat->kswapd_wait);
3554 }
3555
3556 #ifdef CONFIG_HIBERNATION
3557 /*
3558 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3559 * freed pages.
3560 *
3561 * Rather than trying to age LRUs the aim is to preserve the overall
3562 * LRU order by reclaiming preferentially
3563 * inactive > active > active referenced > active mapped
3564 */
3565 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3566 {
3567 struct reclaim_state reclaim_state;
3568 struct scan_control sc = {
3569 .nr_to_reclaim = nr_to_reclaim,
3570 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3571 .priority = DEF_PRIORITY,
3572 .may_writepage = 1,
3573 .may_unmap = 1,
3574 .may_swap = 1,
3575 .hibernation_mode = 1,
3576 };
3577 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3578 struct task_struct *p = current;
3579 unsigned long nr_reclaimed;
3580
3581 p->flags |= PF_MEMALLOC;
3582 lockdep_set_current_reclaim_state(sc.gfp_mask);
3583 reclaim_state.reclaimed_slab = 0;
3584 p->reclaim_state = &reclaim_state;
3585
3586 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3587
3588 p->reclaim_state = NULL;
3589 lockdep_clear_current_reclaim_state();
3590 p->flags &= ~PF_MEMALLOC;
3591
3592 return nr_reclaimed;
3593 }
3594 #endif /* CONFIG_HIBERNATION */
3595
3596 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3597 not required for correctness. So if the last cpu in a node goes
3598 away, we get changed to run anywhere: as the first one comes back,
3599 restore their cpu bindings. */
3600 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3601 void *hcpu)
3602 {
3603 int nid;
3604
3605 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3606 for_each_node_state(nid, N_MEMORY) {
3607 pg_data_t *pgdat = NODE_DATA(nid);
3608 const struct cpumask *mask;
3609
3610 mask = cpumask_of_node(pgdat->node_id);
3611
3612 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3613 /* One of our CPUs online: restore mask */
3614 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3615 }
3616 }
3617 return NOTIFY_OK;
3618 }
3619
3620 /*
3621 * This kswapd start function will be called by init and node-hot-add.
3622 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3623 */
3624 int kswapd_run(int nid)
3625 {
3626 pg_data_t *pgdat = NODE_DATA(nid);
3627 int ret = 0;
3628
3629 if (pgdat->kswapd)
3630 return 0;
3631
3632 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3633 if (IS_ERR(pgdat->kswapd)) {
3634 /* failure at boot is fatal */
3635 BUG_ON(system_state == SYSTEM_BOOTING);
3636 pr_err("Failed to start kswapd on node %d\n", nid);
3637 ret = PTR_ERR(pgdat->kswapd);
3638 pgdat->kswapd = NULL;
3639 }
3640 return ret;
3641 }
3642
3643 /*
3644 * Called by memory hotplug when all memory in a node is offlined. Caller must
3645 * hold mem_hotplug_begin/end().
3646 */
3647 void kswapd_stop(int nid)
3648 {
3649 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3650
3651 if (kswapd) {
3652 kthread_stop(kswapd);
3653 NODE_DATA(nid)->kswapd = NULL;
3654 }
3655 }
3656
3657 static int __init kswapd_init(void)
3658 {
3659 int nid;
3660
3661 swap_setup();
3662 for_each_node_state(nid, N_MEMORY)
3663 kswapd_run(nid);
3664 hotcpu_notifier(cpu_callback, 0);
3665 return 0;
3666 }
3667
3668 module_init(kswapd_init)
3669
3670 #ifdef CONFIG_NUMA
3671 /*
3672 * Zone reclaim mode
3673 *
3674 * If non-zero call zone_reclaim when the number of free pages falls below
3675 * the watermarks.
3676 */
3677 int zone_reclaim_mode __read_mostly;
3678
3679 #define RECLAIM_OFF 0
3680 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3681 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3682 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3683
3684 /*
3685 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3686 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3687 * a zone.
3688 */
3689 #define ZONE_RECLAIM_PRIORITY 4
3690
3691 /*
3692 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3693 * occur.
3694 */
3695 int sysctl_min_unmapped_ratio = 1;
3696
3697 /*
3698 * If the number of slab pages in a zone grows beyond this percentage then
3699 * slab reclaim needs to occur.
3700 */
3701 int sysctl_min_slab_ratio = 5;
3702
3703 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3704 {
3705 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3706 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3707 zone_page_state(zone, NR_ACTIVE_FILE);
3708
3709 /*
3710 * It's possible for there to be more file mapped pages than
3711 * accounted for by the pages on the file LRU lists because
3712 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3713 */
3714 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3715 }
3716
3717 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3718 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3719 {
3720 unsigned long nr_pagecache_reclaimable;
3721 unsigned long delta = 0;
3722
3723 /*
3724 * If RECLAIM_UNMAP is set, then all file pages are considered
3725 * potentially reclaimable. Otherwise, we have to worry about
3726 * pages like swapcache and zone_unmapped_file_pages() provides
3727 * a better estimate
3728 */
3729 if (zone_reclaim_mode & RECLAIM_UNMAP)
3730 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3731 else
3732 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3733
3734 /* If we can't clean pages, remove dirty pages from consideration */
3735 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3736 delta += zone_page_state(zone, NR_FILE_DIRTY);
3737
3738 /* Watch for any possible underflows due to delta */
3739 if (unlikely(delta > nr_pagecache_reclaimable))
3740 delta = nr_pagecache_reclaimable;
3741
3742 return nr_pagecache_reclaimable - delta;
3743 }
3744
3745 /*
3746 * Try to free up some pages from this zone through reclaim.
3747 */
3748 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3749 {
3750 /* Minimum pages needed in order to stay on node */
3751 const unsigned long nr_pages = 1 << order;
3752 struct task_struct *p = current;
3753 struct reclaim_state reclaim_state;
3754 struct scan_control sc = {
3755 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3756 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3757 .order = order,
3758 .priority = ZONE_RECLAIM_PRIORITY,
3759 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3760 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3761 .may_swap = 1,
3762 };
3763
3764 cond_resched();
3765 /*
3766 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3767 * and we also need to be able to write out pages for RECLAIM_WRITE
3768 * and RECLAIM_UNMAP.
3769 */
3770 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3771 lockdep_set_current_reclaim_state(gfp_mask);
3772 reclaim_state.reclaimed_slab = 0;
3773 p->reclaim_state = &reclaim_state;
3774
3775 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3776 /*
3777 * Free memory by calling shrink zone with increasing
3778 * priorities until we have enough memory freed.
3779 */
3780 do {
3781 shrink_zone(zone, &sc, true);
3782 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3783 }
3784
3785 p->reclaim_state = NULL;
3786 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3787 lockdep_clear_current_reclaim_state();
3788 return sc.nr_reclaimed >= nr_pages;
3789 }
3790
3791 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3792 {
3793 int node_id;
3794 int ret;
3795
3796 /*
3797 * Zone reclaim reclaims unmapped file backed pages and
3798 * slab pages if we are over the defined limits.
3799 *
3800 * A small portion of unmapped file backed pages is needed for
3801 * file I/O otherwise pages read by file I/O will be immediately
3802 * thrown out if the zone is overallocated. So we do not reclaim
3803 * if less than a specified percentage of the zone is used by
3804 * unmapped file backed pages.
3805 */
3806 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3807 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3808 return ZONE_RECLAIM_FULL;
3809
3810 if (!zone_reclaimable(zone))
3811 return ZONE_RECLAIM_FULL;
3812
3813 /*
3814 * Do not scan if the allocation should not be delayed.
3815 */
3816 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3817 return ZONE_RECLAIM_NOSCAN;
3818
3819 /*
3820 * Only run zone reclaim on the local zone or on zones that do not
3821 * have associated processors. This will favor the local processor
3822 * over remote processors and spread off node memory allocations
3823 * as wide as possible.
3824 */
3825 node_id = zone_to_nid(zone);
3826 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3827 return ZONE_RECLAIM_NOSCAN;
3828
3829 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3830 return ZONE_RECLAIM_NOSCAN;
3831
3832 ret = __zone_reclaim(zone, gfp_mask, order);
3833 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3834
3835 if (!ret)
3836 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3837
3838 return ret;
3839 }
3840 #endif
3841
3842 /*
3843 * page_evictable - test whether a page is evictable
3844 * @page: the page to test
3845 *
3846 * Test whether page is evictable--i.e., should be placed on active/inactive
3847 * lists vs unevictable list.
3848 *
3849 * Reasons page might not be evictable:
3850 * (1) page's mapping marked unevictable
3851 * (2) page is part of an mlocked VMA
3852 *
3853 */
3854 int page_evictable(struct page *page)
3855 {
3856 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3857 }
3858
3859 #ifdef CONFIG_SHMEM
3860 /**
3861 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3862 * @pages: array of pages to check
3863 * @nr_pages: number of pages to check
3864 *
3865 * Checks pages for evictability and moves them to the appropriate lru list.
3866 *
3867 * This function is only used for SysV IPC SHM_UNLOCK.
3868 */
3869 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3870 {
3871 struct lruvec *lruvec;
3872 struct zone *zone = NULL;
3873 int pgscanned = 0;
3874 int pgrescued = 0;
3875 int i;
3876
3877 for (i = 0; i < nr_pages; i++) {
3878 struct page *page = pages[i];
3879 struct zone *pagezone;
3880
3881 pgscanned++;
3882 pagezone = page_zone(page);
3883 if (pagezone != zone) {
3884 if (zone)
3885 spin_unlock_irq(&zone->lru_lock);
3886 zone = pagezone;
3887 spin_lock_irq(&zone->lru_lock);
3888 }
3889 lruvec = mem_cgroup_page_lruvec(page, zone);
3890
3891 if (!PageLRU(page) || !PageUnevictable(page))
3892 continue;
3893
3894 if (page_evictable(page)) {
3895 enum lru_list lru = page_lru_base_type(page);
3896
3897 VM_BUG_ON_PAGE(PageActive(page), page);
3898 ClearPageUnevictable(page);
3899 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3900 add_page_to_lru_list(page, lruvec, lru);
3901 pgrescued++;
3902 }
3903 }
3904
3905 if (zone) {
3906 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3907 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3908 spin_unlock_irq(&zone->lru_lock);
3909 }
3910 }
3911 #endif /* CONFIG_SHMEM */
This page took 0.107662 seconds and 6 git commands to generate.