vmscan: only defer compaction for failed order and higher
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 /*
57 * reclaim_mode determines how the inactive list is shrunk
58 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59 * RECLAIM_MODE_ASYNC: Do not block
60 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
61 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62 * page from the LRU and reclaim all pages within a
63 * naturally aligned range
64 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65 * order-0 pages and then compact the zone
66 */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
73
74 struct scan_control {
75 /* Incremented by the number of inactive pages that were scanned */
76 unsigned long nr_scanned;
77
78 /* Number of pages freed so far during a call to shrink_zones() */
79 unsigned long nr_reclaimed;
80
81 /* How many pages shrink_list() should reclaim */
82 unsigned long nr_to_reclaim;
83
84 unsigned long hibernation_mode;
85
86 /* This context's GFP mask */
87 gfp_t gfp_mask;
88
89 int may_writepage;
90
91 /* Can mapped pages be reclaimed? */
92 int may_unmap;
93
94 /* Can pages be swapped as part of reclaim? */
95 int may_swap;
96
97 int order;
98
99 /*
100 * Intend to reclaim enough continuous memory rather than reclaim
101 * enough amount of memory. i.e, mode for high order allocation.
102 */
103 reclaim_mode_t reclaim_mode;
104
105 /*
106 * The memory cgroup that hit its limit and as a result is the
107 * primary target of this reclaim invocation.
108 */
109 struct mem_cgroup *target_mem_cgroup;
110
111 /*
112 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 * are scanned.
114 */
115 nodemask_t *nodemask;
116 };
117
118 struct mem_cgroup_zone {
119 struct mem_cgroup *mem_cgroup;
120 struct zone *zone;
121 };
122
123 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
124
125 #ifdef ARCH_HAS_PREFETCH
126 #define prefetch_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetch(&prev->_field); \
133 } \
134 } while (0)
135 #else
136 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 #ifdef ARCH_HAS_PREFETCHW
140 #define prefetchw_prev_lru_page(_page, _base, _field) \
141 do { \
142 if ((_page)->lru.prev != _base) { \
143 struct page *prev; \
144 \
145 prev = lru_to_page(&(_page->lru)); \
146 prefetchw(&prev->_field); \
147 } \
148 } while (0)
149 #else
150 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152
153 /*
154 * From 0 .. 100. Higher means more swappy.
155 */
156 int vm_swappiness = 60;
157 long vm_total_pages; /* The total number of pages which the VM controls */
158
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161
162 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
163 static bool global_reclaim(struct scan_control *sc)
164 {
165 return !sc->target_mem_cgroup;
166 }
167
168 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
169 {
170 return !mz->mem_cgroup;
171 }
172 #else
173 static bool global_reclaim(struct scan_control *sc)
174 {
175 return true;
176 }
177
178 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
179 {
180 return true;
181 }
182 #endif
183
184 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
185 {
186 if (!scanning_global_lru(mz))
187 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
188
189 return &mz->zone->reclaim_stat;
190 }
191
192 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
193 enum lru_list lru)
194 {
195 if (!scanning_global_lru(mz))
196 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
197 zone_to_nid(mz->zone),
198 zone_idx(mz->zone),
199 BIT(lru));
200
201 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
202 }
203
204
205 /*
206 * Add a shrinker callback to be called from the vm
207 */
208 void register_shrinker(struct shrinker *shrinker)
209 {
210 atomic_long_set(&shrinker->nr_in_batch, 0);
211 down_write(&shrinker_rwsem);
212 list_add_tail(&shrinker->list, &shrinker_list);
213 up_write(&shrinker_rwsem);
214 }
215 EXPORT_SYMBOL(register_shrinker);
216
217 /*
218 * Remove one
219 */
220 void unregister_shrinker(struct shrinker *shrinker)
221 {
222 down_write(&shrinker_rwsem);
223 list_del(&shrinker->list);
224 up_write(&shrinker_rwsem);
225 }
226 EXPORT_SYMBOL(unregister_shrinker);
227
228 static inline int do_shrinker_shrink(struct shrinker *shrinker,
229 struct shrink_control *sc,
230 unsigned long nr_to_scan)
231 {
232 sc->nr_to_scan = nr_to_scan;
233 return (*shrinker->shrink)(shrinker, sc);
234 }
235
236 #define SHRINK_BATCH 128
237 /*
238 * Call the shrink functions to age shrinkable caches
239 *
240 * Here we assume it costs one seek to replace a lru page and that it also
241 * takes a seek to recreate a cache object. With this in mind we age equal
242 * percentages of the lru and ageable caches. This should balance the seeks
243 * generated by these structures.
244 *
245 * If the vm encountered mapped pages on the LRU it increase the pressure on
246 * slab to avoid swapping.
247 *
248 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
249 *
250 * `lru_pages' represents the number of on-LRU pages in all the zones which
251 * are eligible for the caller's allocation attempt. It is used for balancing
252 * slab reclaim versus page reclaim.
253 *
254 * Returns the number of slab objects which we shrunk.
255 */
256 unsigned long shrink_slab(struct shrink_control *shrink,
257 unsigned long nr_pages_scanned,
258 unsigned long lru_pages)
259 {
260 struct shrinker *shrinker;
261 unsigned long ret = 0;
262
263 if (nr_pages_scanned == 0)
264 nr_pages_scanned = SWAP_CLUSTER_MAX;
265
266 if (!down_read_trylock(&shrinker_rwsem)) {
267 /* Assume we'll be able to shrink next time */
268 ret = 1;
269 goto out;
270 }
271
272 list_for_each_entry(shrinker, &shrinker_list, list) {
273 unsigned long long delta;
274 long total_scan;
275 long max_pass;
276 int shrink_ret = 0;
277 long nr;
278 long new_nr;
279 long batch_size = shrinker->batch ? shrinker->batch
280 : SHRINK_BATCH;
281
282 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
283 if (max_pass <= 0)
284 continue;
285
286 /*
287 * copy the current shrinker scan count into a local variable
288 * and zero it so that other concurrent shrinker invocations
289 * don't also do this scanning work.
290 */
291 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
292
293 total_scan = nr;
294 delta = (4 * nr_pages_scanned) / shrinker->seeks;
295 delta *= max_pass;
296 do_div(delta, lru_pages + 1);
297 total_scan += delta;
298 if (total_scan < 0) {
299 printk(KERN_ERR "shrink_slab: %pF negative objects to "
300 "delete nr=%ld\n",
301 shrinker->shrink, total_scan);
302 total_scan = max_pass;
303 }
304
305 /*
306 * We need to avoid excessive windup on filesystem shrinkers
307 * due to large numbers of GFP_NOFS allocations causing the
308 * shrinkers to return -1 all the time. This results in a large
309 * nr being built up so when a shrink that can do some work
310 * comes along it empties the entire cache due to nr >>>
311 * max_pass. This is bad for sustaining a working set in
312 * memory.
313 *
314 * Hence only allow the shrinker to scan the entire cache when
315 * a large delta change is calculated directly.
316 */
317 if (delta < max_pass / 4)
318 total_scan = min(total_scan, max_pass / 2);
319
320 /*
321 * Avoid risking looping forever due to too large nr value:
322 * never try to free more than twice the estimate number of
323 * freeable entries.
324 */
325 if (total_scan > max_pass * 2)
326 total_scan = max_pass * 2;
327
328 trace_mm_shrink_slab_start(shrinker, shrink, nr,
329 nr_pages_scanned, lru_pages,
330 max_pass, delta, total_scan);
331
332 while (total_scan >= batch_size) {
333 int nr_before;
334
335 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
336 shrink_ret = do_shrinker_shrink(shrinker, shrink,
337 batch_size);
338 if (shrink_ret == -1)
339 break;
340 if (shrink_ret < nr_before)
341 ret += nr_before - shrink_ret;
342 count_vm_events(SLABS_SCANNED, batch_size);
343 total_scan -= batch_size;
344
345 cond_resched();
346 }
347
348 /*
349 * move the unused scan count back into the shrinker in a
350 * manner that handles concurrent updates. If we exhausted the
351 * scan, there is no need to do an update.
352 */
353 if (total_scan > 0)
354 new_nr = atomic_long_add_return(total_scan,
355 &shrinker->nr_in_batch);
356 else
357 new_nr = atomic_long_read(&shrinker->nr_in_batch);
358
359 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
360 }
361 up_read(&shrinker_rwsem);
362 out:
363 cond_resched();
364 return ret;
365 }
366
367 static void set_reclaim_mode(int priority, struct scan_control *sc,
368 bool sync)
369 {
370 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
371
372 /*
373 * Initially assume we are entering either lumpy reclaim or
374 * reclaim/compaction.Depending on the order, we will either set the
375 * sync mode or just reclaim order-0 pages later.
376 */
377 if (COMPACTION_BUILD)
378 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
379 else
380 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
381
382 /*
383 * Avoid using lumpy reclaim or reclaim/compaction if possible by
384 * restricting when its set to either costly allocations or when
385 * under memory pressure
386 */
387 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
388 sc->reclaim_mode |= syncmode;
389 else if (sc->order && priority < DEF_PRIORITY - 2)
390 sc->reclaim_mode |= syncmode;
391 else
392 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
393 }
394
395 static void reset_reclaim_mode(struct scan_control *sc)
396 {
397 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
398 }
399
400 static inline int is_page_cache_freeable(struct page *page)
401 {
402 /*
403 * A freeable page cache page is referenced only by the caller
404 * that isolated the page, the page cache radix tree and
405 * optional buffer heads at page->private.
406 */
407 return page_count(page) - page_has_private(page) == 2;
408 }
409
410 static int may_write_to_queue(struct backing_dev_info *bdi,
411 struct scan_control *sc)
412 {
413 if (current->flags & PF_SWAPWRITE)
414 return 1;
415 if (!bdi_write_congested(bdi))
416 return 1;
417 if (bdi == current->backing_dev_info)
418 return 1;
419
420 /* lumpy reclaim for hugepage often need a lot of write */
421 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
422 return 1;
423 return 0;
424 }
425
426 /*
427 * We detected a synchronous write error writing a page out. Probably
428 * -ENOSPC. We need to propagate that into the address_space for a subsequent
429 * fsync(), msync() or close().
430 *
431 * The tricky part is that after writepage we cannot touch the mapping: nothing
432 * prevents it from being freed up. But we have a ref on the page and once
433 * that page is locked, the mapping is pinned.
434 *
435 * We're allowed to run sleeping lock_page() here because we know the caller has
436 * __GFP_FS.
437 */
438 static void handle_write_error(struct address_space *mapping,
439 struct page *page, int error)
440 {
441 lock_page(page);
442 if (page_mapping(page) == mapping)
443 mapping_set_error(mapping, error);
444 unlock_page(page);
445 }
446
447 /* possible outcome of pageout() */
448 typedef enum {
449 /* failed to write page out, page is locked */
450 PAGE_KEEP,
451 /* move page to the active list, page is locked */
452 PAGE_ACTIVATE,
453 /* page has been sent to the disk successfully, page is unlocked */
454 PAGE_SUCCESS,
455 /* page is clean and locked */
456 PAGE_CLEAN,
457 } pageout_t;
458
459 /*
460 * pageout is called by shrink_page_list() for each dirty page.
461 * Calls ->writepage().
462 */
463 static pageout_t pageout(struct page *page, struct address_space *mapping,
464 struct scan_control *sc)
465 {
466 /*
467 * If the page is dirty, only perform writeback if that write
468 * will be non-blocking. To prevent this allocation from being
469 * stalled by pagecache activity. But note that there may be
470 * stalls if we need to run get_block(). We could test
471 * PagePrivate for that.
472 *
473 * If this process is currently in __generic_file_aio_write() against
474 * this page's queue, we can perform writeback even if that
475 * will block.
476 *
477 * If the page is swapcache, write it back even if that would
478 * block, for some throttling. This happens by accident, because
479 * swap_backing_dev_info is bust: it doesn't reflect the
480 * congestion state of the swapdevs. Easy to fix, if needed.
481 */
482 if (!is_page_cache_freeable(page))
483 return PAGE_KEEP;
484 if (!mapping) {
485 /*
486 * Some data journaling orphaned pages can have
487 * page->mapping == NULL while being dirty with clean buffers.
488 */
489 if (page_has_private(page)) {
490 if (try_to_free_buffers(page)) {
491 ClearPageDirty(page);
492 printk("%s: orphaned page\n", __func__);
493 return PAGE_CLEAN;
494 }
495 }
496 return PAGE_KEEP;
497 }
498 if (mapping->a_ops->writepage == NULL)
499 return PAGE_ACTIVATE;
500 if (!may_write_to_queue(mapping->backing_dev_info, sc))
501 return PAGE_KEEP;
502
503 if (clear_page_dirty_for_io(page)) {
504 int res;
505 struct writeback_control wbc = {
506 .sync_mode = WB_SYNC_NONE,
507 .nr_to_write = SWAP_CLUSTER_MAX,
508 .range_start = 0,
509 .range_end = LLONG_MAX,
510 .for_reclaim = 1,
511 };
512
513 SetPageReclaim(page);
514 res = mapping->a_ops->writepage(page, &wbc);
515 if (res < 0)
516 handle_write_error(mapping, page, res);
517 if (res == AOP_WRITEPAGE_ACTIVATE) {
518 ClearPageReclaim(page);
519 return PAGE_ACTIVATE;
520 }
521
522 if (!PageWriteback(page)) {
523 /* synchronous write or broken a_ops? */
524 ClearPageReclaim(page);
525 }
526 trace_mm_vmscan_writepage(page,
527 trace_reclaim_flags(page, sc->reclaim_mode));
528 inc_zone_page_state(page, NR_VMSCAN_WRITE);
529 return PAGE_SUCCESS;
530 }
531
532 return PAGE_CLEAN;
533 }
534
535 /*
536 * Same as remove_mapping, but if the page is removed from the mapping, it
537 * gets returned with a refcount of 0.
538 */
539 static int __remove_mapping(struct address_space *mapping, struct page *page)
540 {
541 BUG_ON(!PageLocked(page));
542 BUG_ON(mapping != page_mapping(page));
543
544 spin_lock_irq(&mapping->tree_lock);
545 /*
546 * The non racy check for a busy page.
547 *
548 * Must be careful with the order of the tests. When someone has
549 * a ref to the page, it may be possible that they dirty it then
550 * drop the reference. So if PageDirty is tested before page_count
551 * here, then the following race may occur:
552 *
553 * get_user_pages(&page);
554 * [user mapping goes away]
555 * write_to(page);
556 * !PageDirty(page) [good]
557 * SetPageDirty(page);
558 * put_page(page);
559 * !page_count(page) [good, discard it]
560 *
561 * [oops, our write_to data is lost]
562 *
563 * Reversing the order of the tests ensures such a situation cannot
564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 * load is not satisfied before that of page->_count.
566 *
567 * Note that if SetPageDirty is always performed via set_page_dirty,
568 * and thus under tree_lock, then this ordering is not required.
569 */
570 if (!page_freeze_refs(page, 2))
571 goto cannot_free;
572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 if (unlikely(PageDirty(page))) {
574 page_unfreeze_refs(page, 2);
575 goto cannot_free;
576 }
577
578 if (PageSwapCache(page)) {
579 swp_entry_t swap = { .val = page_private(page) };
580 __delete_from_swap_cache(page);
581 spin_unlock_irq(&mapping->tree_lock);
582 swapcache_free(swap, page);
583 } else {
584 void (*freepage)(struct page *);
585
586 freepage = mapping->a_ops->freepage;
587
588 __delete_from_page_cache(page);
589 spin_unlock_irq(&mapping->tree_lock);
590 mem_cgroup_uncharge_cache_page(page);
591
592 if (freepage != NULL)
593 freepage(page);
594 }
595
596 return 1;
597
598 cannot_free:
599 spin_unlock_irq(&mapping->tree_lock);
600 return 0;
601 }
602
603 /*
604 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
605 * someone else has a ref on the page, abort and return 0. If it was
606 * successfully detached, return 1. Assumes the caller has a single ref on
607 * this page.
608 */
609 int remove_mapping(struct address_space *mapping, struct page *page)
610 {
611 if (__remove_mapping(mapping, page)) {
612 /*
613 * Unfreezing the refcount with 1 rather than 2 effectively
614 * drops the pagecache ref for us without requiring another
615 * atomic operation.
616 */
617 page_unfreeze_refs(page, 1);
618 return 1;
619 }
620 return 0;
621 }
622
623 /**
624 * putback_lru_page - put previously isolated page onto appropriate LRU list
625 * @page: page to be put back to appropriate lru list
626 *
627 * Add previously isolated @page to appropriate LRU list.
628 * Page may still be unevictable for other reasons.
629 *
630 * lru_lock must not be held, interrupts must be enabled.
631 */
632 void putback_lru_page(struct page *page)
633 {
634 int lru;
635 int active = !!TestClearPageActive(page);
636 int was_unevictable = PageUnevictable(page);
637
638 VM_BUG_ON(PageLRU(page));
639
640 redo:
641 ClearPageUnevictable(page);
642
643 if (page_evictable(page, NULL)) {
644 /*
645 * For evictable pages, we can use the cache.
646 * In event of a race, worst case is we end up with an
647 * unevictable page on [in]active list.
648 * We know how to handle that.
649 */
650 lru = active + page_lru_base_type(page);
651 lru_cache_add_lru(page, lru);
652 } else {
653 /*
654 * Put unevictable pages directly on zone's unevictable
655 * list.
656 */
657 lru = LRU_UNEVICTABLE;
658 add_page_to_unevictable_list(page);
659 /*
660 * When racing with an mlock or AS_UNEVICTABLE clearing
661 * (page is unlocked) make sure that if the other thread
662 * does not observe our setting of PG_lru and fails
663 * isolation/check_move_unevictable_pages,
664 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665 * the page back to the evictable list.
666 *
667 * The other side is TestClearPageMlocked() or shmem_lock().
668 */
669 smp_mb();
670 }
671
672 /*
673 * page's status can change while we move it among lru. If an evictable
674 * page is on unevictable list, it never be freed. To avoid that,
675 * check after we added it to the list, again.
676 */
677 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
678 if (!isolate_lru_page(page)) {
679 put_page(page);
680 goto redo;
681 }
682 /* This means someone else dropped this page from LRU
683 * So, it will be freed or putback to LRU again. There is
684 * nothing to do here.
685 */
686 }
687
688 if (was_unevictable && lru != LRU_UNEVICTABLE)
689 count_vm_event(UNEVICTABLE_PGRESCUED);
690 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
691 count_vm_event(UNEVICTABLE_PGCULLED);
692
693 put_page(page); /* drop ref from isolate */
694 }
695
696 enum page_references {
697 PAGEREF_RECLAIM,
698 PAGEREF_RECLAIM_CLEAN,
699 PAGEREF_KEEP,
700 PAGEREF_ACTIVATE,
701 };
702
703 static enum page_references page_check_references(struct page *page,
704 struct mem_cgroup_zone *mz,
705 struct scan_control *sc)
706 {
707 int referenced_ptes, referenced_page;
708 unsigned long vm_flags;
709
710 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
711 referenced_page = TestClearPageReferenced(page);
712
713 /* Lumpy reclaim - ignore references */
714 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
715 return PAGEREF_RECLAIM;
716
717 /*
718 * Mlock lost the isolation race with us. Let try_to_unmap()
719 * move the page to the unevictable list.
720 */
721 if (vm_flags & VM_LOCKED)
722 return PAGEREF_RECLAIM;
723
724 if (referenced_ptes) {
725 if (PageAnon(page))
726 return PAGEREF_ACTIVATE;
727 /*
728 * All mapped pages start out with page table
729 * references from the instantiating fault, so we need
730 * to look twice if a mapped file page is used more
731 * than once.
732 *
733 * Mark it and spare it for another trip around the
734 * inactive list. Another page table reference will
735 * lead to its activation.
736 *
737 * Note: the mark is set for activated pages as well
738 * so that recently deactivated but used pages are
739 * quickly recovered.
740 */
741 SetPageReferenced(page);
742
743 if (referenced_page || referenced_ptes > 1)
744 return PAGEREF_ACTIVATE;
745
746 /*
747 * Activate file-backed executable pages after first usage.
748 */
749 if (vm_flags & VM_EXEC)
750 return PAGEREF_ACTIVATE;
751
752 return PAGEREF_KEEP;
753 }
754
755 /* Reclaim if clean, defer dirty pages to writeback */
756 if (referenced_page && !PageSwapBacked(page))
757 return PAGEREF_RECLAIM_CLEAN;
758
759 return PAGEREF_RECLAIM;
760 }
761
762 /*
763 * shrink_page_list() returns the number of reclaimed pages
764 */
765 static unsigned long shrink_page_list(struct list_head *page_list,
766 struct mem_cgroup_zone *mz,
767 struct scan_control *sc,
768 int priority,
769 unsigned long *ret_nr_dirty,
770 unsigned long *ret_nr_writeback)
771 {
772 LIST_HEAD(ret_pages);
773 LIST_HEAD(free_pages);
774 int pgactivate = 0;
775 unsigned long nr_dirty = 0;
776 unsigned long nr_congested = 0;
777 unsigned long nr_reclaimed = 0;
778 unsigned long nr_writeback = 0;
779
780 cond_resched();
781
782 while (!list_empty(page_list)) {
783 enum page_references references;
784 struct address_space *mapping;
785 struct page *page;
786 int may_enter_fs;
787
788 cond_resched();
789
790 page = lru_to_page(page_list);
791 list_del(&page->lru);
792
793 if (!trylock_page(page))
794 goto keep;
795
796 VM_BUG_ON(PageActive(page));
797 VM_BUG_ON(page_zone(page) != mz->zone);
798
799 sc->nr_scanned++;
800
801 if (unlikely(!page_evictable(page, NULL)))
802 goto cull_mlocked;
803
804 if (!sc->may_unmap && page_mapped(page))
805 goto keep_locked;
806
807 /* Double the slab pressure for mapped and swapcache pages */
808 if (page_mapped(page) || PageSwapCache(page))
809 sc->nr_scanned++;
810
811 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
812 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
813
814 if (PageWriteback(page)) {
815 nr_writeback++;
816 /*
817 * Synchronous reclaim cannot queue pages for
818 * writeback due to the possibility of stack overflow
819 * but if it encounters a page under writeback, wait
820 * for the IO to complete.
821 */
822 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
823 may_enter_fs)
824 wait_on_page_writeback(page);
825 else {
826 unlock_page(page);
827 goto keep_lumpy;
828 }
829 }
830
831 references = page_check_references(page, mz, sc);
832 switch (references) {
833 case PAGEREF_ACTIVATE:
834 goto activate_locked;
835 case PAGEREF_KEEP:
836 goto keep_locked;
837 case PAGEREF_RECLAIM:
838 case PAGEREF_RECLAIM_CLEAN:
839 ; /* try to reclaim the page below */
840 }
841
842 /*
843 * Anonymous process memory has backing store?
844 * Try to allocate it some swap space here.
845 */
846 if (PageAnon(page) && !PageSwapCache(page)) {
847 if (!(sc->gfp_mask & __GFP_IO))
848 goto keep_locked;
849 if (!add_to_swap(page))
850 goto activate_locked;
851 may_enter_fs = 1;
852 }
853
854 mapping = page_mapping(page);
855
856 /*
857 * The page is mapped into the page tables of one or more
858 * processes. Try to unmap it here.
859 */
860 if (page_mapped(page) && mapping) {
861 switch (try_to_unmap(page, TTU_UNMAP)) {
862 case SWAP_FAIL:
863 goto activate_locked;
864 case SWAP_AGAIN:
865 goto keep_locked;
866 case SWAP_MLOCK:
867 goto cull_mlocked;
868 case SWAP_SUCCESS:
869 ; /* try to free the page below */
870 }
871 }
872
873 if (PageDirty(page)) {
874 nr_dirty++;
875
876 /*
877 * Only kswapd can writeback filesystem pages to
878 * avoid risk of stack overflow but do not writeback
879 * unless under significant pressure.
880 */
881 if (page_is_file_cache(page) &&
882 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
883 /*
884 * Immediately reclaim when written back.
885 * Similar in principal to deactivate_page()
886 * except we already have the page isolated
887 * and know it's dirty
888 */
889 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
890 SetPageReclaim(page);
891
892 goto keep_locked;
893 }
894
895 if (references == PAGEREF_RECLAIM_CLEAN)
896 goto keep_locked;
897 if (!may_enter_fs)
898 goto keep_locked;
899 if (!sc->may_writepage)
900 goto keep_locked;
901
902 /* Page is dirty, try to write it out here */
903 switch (pageout(page, mapping, sc)) {
904 case PAGE_KEEP:
905 nr_congested++;
906 goto keep_locked;
907 case PAGE_ACTIVATE:
908 goto activate_locked;
909 case PAGE_SUCCESS:
910 if (PageWriteback(page))
911 goto keep_lumpy;
912 if (PageDirty(page))
913 goto keep;
914
915 /*
916 * A synchronous write - probably a ramdisk. Go
917 * ahead and try to reclaim the page.
918 */
919 if (!trylock_page(page))
920 goto keep;
921 if (PageDirty(page) || PageWriteback(page))
922 goto keep_locked;
923 mapping = page_mapping(page);
924 case PAGE_CLEAN:
925 ; /* try to free the page below */
926 }
927 }
928
929 /*
930 * If the page has buffers, try to free the buffer mappings
931 * associated with this page. If we succeed we try to free
932 * the page as well.
933 *
934 * We do this even if the page is PageDirty().
935 * try_to_release_page() does not perform I/O, but it is
936 * possible for a page to have PageDirty set, but it is actually
937 * clean (all its buffers are clean). This happens if the
938 * buffers were written out directly, with submit_bh(). ext3
939 * will do this, as well as the blockdev mapping.
940 * try_to_release_page() will discover that cleanness and will
941 * drop the buffers and mark the page clean - it can be freed.
942 *
943 * Rarely, pages can have buffers and no ->mapping. These are
944 * the pages which were not successfully invalidated in
945 * truncate_complete_page(). We try to drop those buffers here
946 * and if that worked, and the page is no longer mapped into
947 * process address space (page_count == 1) it can be freed.
948 * Otherwise, leave the page on the LRU so it is swappable.
949 */
950 if (page_has_private(page)) {
951 if (!try_to_release_page(page, sc->gfp_mask))
952 goto activate_locked;
953 if (!mapping && page_count(page) == 1) {
954 unlock_page(page);
955 if (put_page_testzero(page))
956 goto free_it;
957 else {
958 /*
959 * rare race with speculative reference.
960 * the speculative reference will free
961 * this page shortly, so we may
962 * increment nr_reclaimed here (and
963 * leave it off the LRU).
964 */
965 nr_reclaimed++;
966 continue;
967 }
968 }
969 }
970
971 if (!mapping || !__remove_mapping(mapping, page))
972 goto keep_locked;
973
974 /*
975 * At this point, we have no other references and there is
976 * no way to pick any more up (removed from LRU, removed
977 * from pagecache). Can use non-atomic bitops now (and
978 * we obviously don't have to worry about waking up a process
979 * waiting on the page lock, because there are no references.
980 */
981 __clear_page_locked(page);
982 free_it:
983 nr_reclaimed++;
984
985 /*
986 * Is there need to periodically free_page_list? It would
987 * appear not as the counts should be low
988 */
989 list_add(&page->lru, &free_pages);
990 continue;
991
992 cull_mlocked:
993 if (PageSwapCache(page))
994 try_to_free_swap(page);
995 unlock_page(page);
996 putback_lru_page(page);
997 reset_reclaim_mode(sc);
998 continue;
999
1000 activate_locked:
1001 /* Not a candidate for swapping, so reclaim swap space. */
1002 if (PageSwapCache(page) && vm_swap_full())
1003 try_to_free_swap(page);
1004 VM_BUG_ON(PageActive(page));
1005 SetPageActive(page);
1006 pgactivate++;
1007 keep_locked:
1008 unlock_page(page);
1009 keep:
1010 reset_reclaim_mode(sc);
1011 keep_lumpy:
1012 list_add(&page->lru, &ret_pages);
1013 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1014 }
1015
1016 /*
1017 * Tag a zone as congested if all the dirty pages encountered were
1018 * backed by a congested BDI. In this case, reclaimers should just
1019 * back off and wait for congestion to clear because further reclaim
1020 * will encounter the same problem
1021 */
1022 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1023 zone_set_flag(mz->zone, ZONE_CONGESTED);
1024
1025 free_hot_cold_page_list(&free_pages, 1);
1026
1027 list_splice(&ret_pages, page_list);
1028 count_vm_events(PGACTIVATE, pgactivate);
1029 *ret_nr_dirty += nr_dirty;
1030 *ret_nr_writeback += nr_writeback;
1031 return nr_reclaimed;
1032 }
1033
1034 /*
1035 * Attempt to remove the specified page from its LRU. Only take this page
1036 * if it is of the appropriate PageActive status. Pages which are being
1037 * freed elsewhere are also ignored.
1038 *
1039 * page: page to consider
1040 * mode: one of the LRU isolation modes defined above
1041 *
1042 * returns 0 on success, -ve errno on failure.
1043 */
1044 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1045 {
1046 bool all_lru_mode;
1047 int ret = -EINVAL;
1048
1049 /* Only take pages on the LRU. */
1050 if (!PageLRU(page))
1051 return ret;
1052
1053 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1054 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1055
1056 /*
1057 * When checking the active state, we need to be sure we are
1058 * dealing with comparible boolean values. Take the logical not
1059 * of each.
1060 */
1061 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1062 return ret;
1063
1064 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1065 return ret;
1066
1067 /*
1068 * When this function is being called for lumpy reclaim, we
1069 * initially look into all LRU pages, active, inactive and
1070 * unevictable; only give shrink_page_list evictable pages.
1071 */
1072 if (PageUnevictable(page))
1073 return ret;
1074
1075 ret = -EBUSY;
1076
1077 /*
1078 * To minimise LRU disruption, the caller can indicate that it only
1079 * wants to isolate pages it will be able to operate on without
1080 * blocking - clean pages for the most part.
1081 *
1082 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1083 * is used by reclaim when it is cannot write to backing storage
1084 *
1085 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1086 * that it is possible to migrate without blocking
1087 */
1088 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1089 /* All the caller can do on PageWriteback is block */
1090 if (PageWriteback(page))
1091 return ret;
1092
1093 if (PageDirty(page)) {
1094 struct address_space *mapping;
1095
1096 /* ISOLATE_CLEAN means only clean pages */
1097 if (mode & ISOLATE_CLEAN)
1098 return ret;
1099
1100 /*
1101 * Only pages without mappings or that have a
1102 * ->migratepage callback are possible to migrate
1103 * without blocking
1104 */
1105 mapping = page_mapping(page);
1106 if (mapping && !mapping->a_ops->migratepage)
1107 return ret;
1108 }
1109 }
1110
1111 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1112 return ret;
1113
1114 if (likely(get_page_unless_zero(page))) {
1115 /*
1116 * Be careful not to clear PageLRU until after we're
1117 * sure the page is not being freed elsewhere -- the
1118 * page release code relies on it.
1119 */
1120 ClearPageLRU(page);
1121 ret = 0;
1122 }
1123
1124 return ret;
1125 }
1126
1127 /*
1128 * zone->lru_lock is heavily contended. Some of the functions that
1129 * shrink the lists perform better by taking out a batch of pages
1130 * and working on them outside the LRU lock.
1131 *
1132 * For pagecache intensive workloads, this function is the hottest
1133 * spot in the kernel (apart from copy_*_user functions).
1134 *
1135 * Appropriate locks must be held before calling this function.
1136 *
1137 * @nr_to_scan: The number of pages to look through on the list.
1138 * @mz: The mem_cgroup_zone to pull pages from.
1139 * @dst: The temp list to put pages on to.
1140 * @nr_scanned: The number of pages that were scanned.
1141 * @sc: The scan_control struct for this reclaim session
1142 * @mode: One of the LRU isolation modes
1143 * @active: True [1] if isolating active pages
1144 * @file: True [1] if isolating file [!anon] pages
1145 *
1146 * returns how many pages were moved onto *@dst.
1147 */
1148 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149 struct mem_cgroup_zone *mz, struct list_head *dst,
1150 unsigned long *nr_scanned, struct scan_control *sc,
1151 isolate_mode_t mode, int active, int file)
1152 {
1153 struct lruvec *lruvec;
1154 struct list_head *src;
1155 unsigned long nr_taken = 0;
1156 unsigned long nr_lumpy_taken = 0;
1157 unsigned long nr_lumpy_dirty = 0;
1158 unsigned long nr_lumpy_failed = 0;
1159 unsigned long scan;
1160 int lru = LRU_BASE;
1161
1162 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1163 if (active)
1164 lru += LRU_ACTIVE;
1165 if (file)
1166 lru += LRU_FILE;
1167 src = &lruvec->lists[lru];
1168
1169 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1170 struct page *page;
1171 unsigned long pfn;
1172 unsigned long end_pfn;
1173 unsigned long page_pfn;
1174 int zone_id;
1175
1176 page = lru_to_page(src);
1177 prefetchw_prev_lru_page(page, src, flags);
1178
1179 VM_BUG_ON(!PageLRU(page));
1180
1181 switch (__isolate_lru_page(page, mode, file)) {
1182 case 0:
1183 mem_cgroup_lru_del(page);
1184 list_move(&page->lru, dst);
1185 nr_taken += hpage_nr_pages(page);
1186 break;
1187
1188 case -EBUSY:
1189 /* else it is being freed elsewhere */
1190 list_move(&page->lru, src);
1191 continue;
1192
1193 default:
1194 BUG();
1195 }
1196
1197 if (!sc->order || !(sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM))
1198 continue;
1199
1200 /*
1201 * Attempt to take all pages in the order aligned region
1202 * surrounding the tag page. Only take those pages of
1203 * the same active state as that tag page. We may safely
1204 * round the target page pfn down to the requested order
1205 * as the mem_map is guaranteed valid out to MAX_ORDER,
1206 * where that page is in a different zone we will detect
1207 * it from its zone id and abort this block scan.
1208 */
1209 zone_id = page_zone_id(page);
1210 page_pfn = page_to_pfn(page);
1211 pfn = page_pfn & ~((1 << sc->order) - 1);
1212 end_pfn = pfn + (1 << sc->order);
1213 for (; pfn < end_pfn; pfn++) {
1214 struct page *cursor_page;
1215
1216 /* The target page is in the block, ignore it. */
1217 if (unlikely(pfn == page_pfn))
1218 continue;
1219
1220 /* Avoid holes within the zone. */
1221 if (unlikely(!pfn_valid_within(pfn)))
1222 break;
1223
1224 cursor_page = pfn_to_page(pfn);
1225
1226 /* Check that we have not crossed a zone boundary. */
1227 if (unlikely(page_zone_id(cursor_page) != zone_id))
1228 break;
1229
1230 /*
1231 * If we don't have enough swap space, reclaiming of
1232 * anon page which don't already have a swap slot is
1233 * pointless.
1234 */
1235 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1236 !PageSwapCache(cursor_page))
1237 break;
1238
1239 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1240 unsigned int isolated_pages;
1241
1242 mem_cgroup_lru_del(cursor_page);
1243 list_move(&cursor_page->lru, dst);
1244 isolated_pages = hpage_nr_pages(cursor_page);
1245 nr_taken += isolated_pages;
1246 nr_lumpy_taken += isolated_pages;
1247 if (PageDirty(cursor_page))
1248 nr_lumpy_dirty += isolated_pages;
1249 scan++;
1250 pfn += isolated_pages - 1;
1251 } else {
1252 /*
1253 * Check if the page is freed already.
1254 *
1255 * We can't use page_count() as that
1256 * requires compound_head and we don't
1257 * have a pin on the page here. If a
1258 * page is tail, we may or may not
1259 * have isolated the head, so assume
1260 * it's not free, it'd be tricky to
1261 * track the head status without a
1262 * page pin.
1263 */
1264 if (!PageTail(cursor_page) &&
1265 !atomic_read(&cursor_page->_count))
1266 continue;
1267 break;
1268 }
1269 }
1270
1271 /* If we break out of the loop above, lumpy reclaim failed */
1272 if (pfn < end_pfn)
1273 nr_lumpy_failed++;
1274 }
1275
1276 *nr_scanned = scan;
1277
1278 trace_mm_vmscan_lru_isolate(sc->order,
1279 nr_to_scan, scan,
1280 nr_taken,
1281 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1282 mode, file);
1283 return nr_taken;
1284 }
1285
1286 /**
1287 * isolate_lru_page - tries to isolate a page from its LRU list
1288 * @page: page to isolate from its LRU list
1289 *
1290 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1291 * vmstat statistic corresponding to whatever LRU list the page was on.
1292 *
1293 * Returns 0 if the page was removed from an LRU list.
1294 * Returns -EBUSY if the page was not on an LRU list.
1295 *
1296 * The returned page will have PageLRU() cleared. If it was found on
1297 * the active list, it will have PageActive set. If it was found on
1298 * the unevictable list, it will have the PageUnevictable bit set. That flag
1299 * may need to be cleared by the caller before letting the page go.
1300 *
1301 * The vmstat statistic corresponding to the list on which the page was
1302 * found will be decremented.
1303 *
1304 * Restrictions:
1305 * (1) Must be called with an elevated refcount on the page. This is a
1306 * fundamentnal difference from isolate_lru_pages (which is called
1307 * without a stable reference).
1308 * (2) the lru_lock must not be held.
1309 * (3) interrupts must be enabled.
1310 */
1311 int isolate_lru_page(struct page *page)
1312 {
1313 int ret = -EBUSY;
1314
1315 VM_BUG_ON(!page_count(page));
1316
1317 if (PageLRU(page)) {
1318 struct zone *zone = page_zone(page);
1319
1320 spin_lock_irq(&zone->lru_lock);
1321 if (PageLRU(page)) {
1322 int lru = page_lru(page);
1323 ret = 0;
1324 get_page(page);
1325 ClearPageLRU(page);
1326
1327 del_page_from_lru_list(zone, page, lru);
1328 }
1329 spin_unlock_irq(&zone->lru_lock);
1330 }
1331 return ret;
1332 }
1333
1334 /*
1335 * Are there way too many processes in the direct reclaim path already?
1336 */
1337 static int too_many_isolated(struct zone *zone, int file,
1338 struct scan_control *sc)
1339 {
1340 unsigned long inactive, isolated;
1341
1342 if (current_is_kswapd())
1343 return 0;
1344
1345 if (!global_reclaim(sc))
1346 return 0;
1347
1348 if (file) {
1349 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1350 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1351 } else {
1352 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1353 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1354 }
1355
1356 return isolated > inactive;
1357 }
1358
1359 static noinline_for_stack void
1360 putback_inactive_pages(struct mem_cgroup_zone *mz,
1361 struct list_head *page_list)
1362 {
1363 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1364 struct zone *zone = mz->zone;
1365 LIST_HEAD(pages_to_free);
1366
1367 /*
1368 * Put back any unfreeable pages.
1369 */
1370 while (!list_empty(page_list)) {
1371 struct page *page = lru_to_page(page_list);
1372 int lru;
1373
1374 VM_BUG_ON(PageLRU(page));
1375 list_del(&page->lru);
1376 if (unlikely(!page_evictable(page, NULL))) {
1377 spin_unlock_irq(&zone->lru_lock);
1378 putback_lru_page(page);
1379 spin_lock_irq(&zone->lru_lock);
1380 continue;
1381 }
1382 SetPageLRU(page);
1383 lru = page_lru(page);
1384 add_page_to_lru_list(zone, page, lru);
1385 if (is_active_lru(lru)) {
1386 int file = is_file_lru(lru);
1387 int numpages = hpage_nr_pages(page);
1388 reclaim_stat->recent_rotated[file] += numpages;
1389 }
1390 if (put_page_testzero(page)) {
1391 __ClearPageLRU(page);
1392 __ClearPageActive(page);
1393 del_page_from_lru_list(zone, page, lru);
1394
1395 if (unlikely(PageCompound(page))) {
1396 spin_unlock_irq(&zone->lru_lock);
1397 (*get_compound_page_dtor(page))(page);
1398 spin_lock_irq(&zone->lru_lock);
1399 } else
1400 list_add(&page->lru, &pages_to_free);
1401 }
1402 }
1403
1404 /*
1405 * To save our caller's stack, now use input list for pages to free.
1406 */
1407 list_splice(&pages_to_free, page_list);
1408 }
1409
1410 static noinline_for_stack void
1411 update_isolated_counts(struct mem_cgroup_zone *mz,
1412 struct list_head *page_list,
1413 unsigned long *nr_anon,
1414 unsigned long *nr_file)
1415 {
1416 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1417 struct zone *zone = mz->zone;
1418 unsigned int count[NR_LRU_LISTS] = { 0, };
1419 unsigned long nr_active = 0;
1420 struct page *page;
1421 int lru;
1422
1423 /*
1424 * Count pages and clear active flags
1425 */
1426 list_for_each_entry(page, page_list, lru) {
1427 int numpages = hpage_nr_pages(page);
1428 lru = page_lru_base_type(page);
1429 if (PageActive(page)) {
1430 lru += LRU_ACTIVE;
1431 ClearPageActive(page);
1432 nr_active += numpages;
1433 }
1434 count[lru] += numpages;
1435 }
1436
1437 __count_vm_events(PGDEACTIVATE, nr_active);
1438
1439 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1440 -count[LRU_ACTIVE_FILE]);
1441 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1442 -count[LRU_INACTIVE_FILE]);
1443 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1444 -count[LRU_ACTIVE_ANON]);
1445 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1446 -count[LRU_INACTIVE_ANON]);
1447
1448 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1449 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1450
1451 reclaim_stat->recent_scanned[0] += *nr_anon;
1452 reclaim_stat->recent_scanned[1] += *nr_file;
1453 }
1454
1455 /*
1456 * Returns true if a direct reclaim should wait on pages under writeback.
1457 *
1458 * If we are direct reclaiming for contiguous pages and we do not reclaim
1459 * everything in the list, try again and wait for writeback IO to complete.
1460 * This will stall high-order allocations noticeably. Only do that when really
1461 * need to free the pages under high memory pressure.
1462 */
1463 static inline bool should_reclaim_stall(unsigned long nr_taken,
1464 unsigned long nr_freed,
1465 int priority,
1466 struct scan_control *sc)
1467 {
1468 int lumpy_stall_priority;
1469
1470 /* kswapd should not stall on sync IO */
1471 if (current_is_kswapd())
1472 return false;
1473
1474 /* Only stall on lumpy reclaim */
1475 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1476 return false;
1477
1478 /* If we have reclaimed everything on the isolated list, no stall */
1479 if (nr_freed == nr_taken)
1480 return false;
1481
1482 /*
1483 * For high-order allocations, there are two stall thresholds.
1484 * High-cost allocations stall immediately where as lower
1485 * order allocations such as stacks require the scanning
1486 * priority to be much higher before stalling.
1487 */
1488 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1489 lumpy_stall_priority = DEF_PRIORITY;
1490 else
1491 lumpy_stall_priority = DEF_PRIORITY / 3;
1492
1493 return priority <= lumpy_stall_priority;
1494 }
1495
1496 /*
1497 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1498 * of reclaimed pages
1499 */
1500 static noinline_for_stack unsigned long
1501 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1502 struct scan_control *sc, int priority, int file)
1503 {
1504 LIST_HEAD(page_list);
1505 unsigned long nr_scanned;
1506 unsigned long nr_reclaimed = 0;
1507 unsigned long nr_taken;
1508 unsigned long nr_anon;
1509 unsigned long nr_file;
1510 unsigned long nr_dirty = 0;
1511 unsigned long nr_writeback = 0;
1512 isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1513 struct zone *zone = mz->zone;
1514
1515 while (unlikely(too_many_isolated(zone, file, sc))) {
1516 congestion_wait(BLK_RW_ASYNC, HZ/10);
1517
1518 /* We are about to die and free our memory. Return now. */
1519 if (fatal_signal_pending(current))
1520 return SWAP_CLUSTER_MAX;
1521 }
1522
1523 set_reclaim_mode(priority, sc, false);
1524 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1525 isolate_mode |= ISOLATE_ACTIVE;
1526
1527 lru_add_drain();
1528
1529 if (!sc->may_unmap)
1530 isolate_mode |= ISOLATE_UNMAPPED;
1531 if (!sc->may_writepage)
1532 isolate_mode |= ISOLATE_CLEAN;
1533
1534 spin_lock_irq(&zone->lru_lock);
1535
1536 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1537 sc, isolate_mode, 0, file);
1538 if (global_reclaim(sc)) {
1539 zone->pages_scanned += nr_scanned;
1540 if (current_is_kswapd())
1541 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1542 nr_scanned);
1543 else
1544 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1545 nr_scanned);
1546 }
1547
1548 if (nr_taken == 0) {
1549 spin_unlock_irq(&zone->lru_lock);
1550 return 0;
1551 }
1552
1553 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1554
1555 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1556 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1557
1558 spin_unlock_irq(&zone->lru_lock);
1559
1560 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1561 &nr_dirty, &nr_writeback);
1562
1563 /* Check if we should syncronously wait for writeback */
1564 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1565 set_reclaim_mode(priority, sc, true);
1566 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1567 priority, &nr_dirty, &nr_writeback);
1568 }
1569
1570 spin_lock_irq(&zone->lru_lock);
1571
1572 if (current_is_kswapd())
1573 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1574 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1575
1576 putback_inactive_pages(mz, &page_list);
1577
1578 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1579 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1580
1581 spin_unlock_irq(&zone->lru_lock);
1582
1583 free_hot_cold_page_list(&page_list, 1);
1584
1585 /*
1586 * If reclaim is isolating dirty pages under writeback, it implies
1587 * that the long-lived page allocation rate is exceeding the page
1588 * laundering rate. Either the global limits are not being effective
1589 * at throttling processes due to the page distribution throughout
1590 * zones or there is heavy usage of a slow backing device. The
1591 * only option is to throttle from reclaim context which is not ideal
1592 * as there is no guarantee the dirtying process is throttled in the
1593 * same way balance_dirty_pages() manages.
1594 *
1595 * This scales the number of dirty pages that must be under writeback
1596 * before throttling depending on priority. It is a simple backoff
1597 * function that has the most effect in the range DEF_PRIORITY to
1598 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1599 * in trouble and reclaim is considered to be in trouble.
1600 *
1601 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1602 * DEF_PRIORITY-1 50% must be PageWriteback
1603 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1604 * ...
1605 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1606 * isolated page is PageWriteback
1607 */
1608 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1609 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1610
1611 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1612 zone_idx(zone),
1613 nr_scanned, nr_reclaimed,
1614 priority,
1615 trace_shrink_flags(file, sc->reclaim_mode));
1616 return nr_reclaimed;
1617 }
1618
1619 /*
1620 * This moves pages from the active list to the inactive list.
1621 *
1622 * We move them the other way if the page is referenced by one or more
1623 * processes, from rmap.
1624 *
1625 * If the pages are mostly unmapped, the processing is fast and it is
1626 * appropriate to hold zone->lru_lock across the whole operation. But if
1627 * the pages are mapped, the processing is slow (page_referenced()) so we
1628 * should drop zone->lru_lock around each page. It's impossible to balance
1629 * this, so instead we remove the pages from the LRU while processing them.
1630 * It is safe to rely on PG_active against the non-LRU pages in here because
1631 * nobody will play with that bit on a non-LRU page.
1632 *
1633 * The downside is that we have to touch page->_count against each page.
1634 * But we had to alter page->flags anyway.
1635 */
1636
1637 static void move_active_pages_to_lru(struct zone *zone,
1638 struct list_head *list,
1639 struct list_head *pages_to_free,
1640 enum lru_list lru)
1641 {
1642 unsigned long pgmoved = 0;
1643 struct page *page;
1644
1645 if (buffer_heads_over_limit) {
1646 spin_unlock_irq(&zone->lru_lock);
1647 list_for_each_entry(page, list, lru) {
1648 if (page_has_private(page) && trylock_page(page)) {
1649 if (page_has_private(page))
1650 try_to_release_page(page, 0);
1651 unlock_page(page);
1652 }
1653 }
1654 spin_lock_irq(&zone->lru_lock);
1655 }
1656
1657 while (!list_empty(list)) {
1658 struct lruvec *lruvec;
1659
1660 page = lru_to_page(list);
1661
1662 VM_BUG_ON(PageLRU(page));
1663 SetPageLRU(page);
1664
1665 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1666 list_move(&page->lru, &lruvec->lists[lru]);
1667 pgmoved += hpage_nr_pages(page);
1668
1669 if (put_page_testzero(page)) {
1670 __ClearPageLRU(page);
1671 __ClearPageActive(page);
1672 del_page_from_lru_list(zone, page, lru);
1673
1674 if (unlikely(PageCompound(page))) {
1675 spin_unlock_irq(&zone->lru_lock);
1676 (*get_compound_page_dtor(page))(page);
1677 spin_lock_irq(&zone->lru_lock);
1678 } else
1679 list_add(&page->lru, pages_to_free);
1680 }
1681 }
1682 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1683 if (!is_active_lru(lru))
1684 __count_vm_events(PGDEACTIVATE, pgmoved);
1685 }
1686
1687 static void shrink_active_list(unsigned long nr_to_scan,
1688 struct mem_cgroup_zone *mz,
1689 struct scan_control *sc,
1690 int priority, int file)
1691 {
1692 unsigned long nr_taken;
1693 unsigned long nr_scanned;
1694 unsigned long vm_flags;
1695 LIST_HEAD(l_hold); /* The pages which were snipped off */
1696 LIST_HEAD(l_active);
1697 LIST_HEAD(l_inactive);
1698 struct page *page;
1699 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1700 unsigned long nr_rotated = 0;
1701 isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1702 struct zone *zone = mz->zone;
1703
1704 lru_add_drain();
1705
1706 if (!sc->may_unmap)
1707 isolate_mode |= ISOLATE_UNMAPPED;
1708 if (!sc->may_writepage)
1709 isolate_mode |= ISOLATE_CLEAN;
1710
1711 spin_lock_irq(&zone->lru_lock);
1712
1713 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1714 isolate_mode, 1, file);
1715 if (global_reclaim(sc))
1716 zone->pages_scanned += nr_scanned;
1717
1718 reclaim_stat->recent_scanned[file] += nr_taken;
1719
1720 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1721 if (file)
1722 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1723 else
1724 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1725 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1726 spin_unlock_irq(&zone->lru_lock);
1727
1728 while (!list_empty(&l_hold)) {
1729 cond_resched();
1730 page = lru_to_page(&l_hold);
1731 list_del(&page->lru);
1732
1733 if (unlikely(!page_evictable(page, NULL))) {
1734 putback_lru_page(page);
1735 continue;
1736 }
1737
1738 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1739 nr_rotated += hpage_nr_pages(page);
1740 /*
1741 * Identify referenced, file-backed active pages and
1742 * give them one more trip around the active list. So
1743 * that executable code get better chances to stay in
1744 * memory under moderate memory pressure. Anon pages
1745 * are not likely to be evicted by use-once streaming
1746 * IO, plus JVM can create lots of anon VM_EXEC pages,
1747 * so we ignore them here.
1748 */
1749 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1750 list_add(&page->lru, &l_active);
1751 continue;
1752 }
1753 }
1754
1755 ClearPageActive(page); /* we are de-activating */
1756 list_add(&page->lru, &l_inactive);
1757 }
1758
1759 /*
1760 * Move pages back to the lru list.
1761 */
1762 spin_lock_irq(&zone->lru_lock);
1763 /*
1764 * Count referenced pages from currently used mappings as rotated,
1765 * even though only some of them are actually re-activated. This
1766 * helps balance scan pressure between file and anonymous pages in
1767 * get_scan_ratio.
1768 */
1769 reclaim_stat->recent_rotated[file] += nr_rotated;
1770
1771 move_active_pages_to_lru(zone, &l_active, &l_hold,
1772 LRU_ACTIVE + file * LRU_FILE);
1773 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1774 LRU_BASE + file * LRU_FILE);
1775 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1776 spin_unlock_irq(&zone->lru_lock);
1777
1778 free_hot_cold_page_list(&l_hold, 1);
1779 }
1780
1781 #ifdef CONFIG_SWAP
1782 static int inactive_anon_is_low_global(struct zone *zone)
1783 {
1784 unsigned long active, inactive;
1785
1786 active = zone_page_state(zone, NR_ACTIVE_ANON);
1787 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1788
1789 if (inactive * zone->inactive_ratio < active)
1790 return 1;
1791
1792 return 0;
1793 }
1794
1795 /**
1796 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1797 * @zone: zone to check
1798 * @sc: scan control of this context
1799 *
1800 * Returns true if the zone does not have enough inactive anon pages,
1801 * meaning some active anon pages need to be deactivated.
1802 */
1803 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1804 {
1805 /*
1806 * If we don't have swap space, anonymous page deactivation
1807 * is pointless.
1808 */
1809 if (!total_swap_pages)
1810 return 0;
1811
1812 if (!scanning_global_lru(mz))
1813 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1814 mz->zone);
1815
1816 return inactive_anon_is_low_global(mz->zone);
1817 }
1818 #else
1819 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1820 {
1821 return 0;
1822 }
1823 #endif
1824
1825 static int inactive_file_is_low_global(struct zone *zone)
1826 {
1827 unsigned long active, inactive;
1828
1829 active = zone_page_state(zone, NR_ACTIVE_FILE);
1830 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1831
1832 return (active > inactive);
1833 }
1834
1835 /**
1836 * inactive_file_is_low - check if file pages need to be deactivated
1837 * @mz: memory cgroup and zone to check
1838 *
1839 * When the system is doing streaming IO, memory pressure here
1840 * ensures that active file pages get deactivated, until more
1841 * than half of the file pages are on the inactive list.
1842 *
1843 * Once we get to that situation, protect the system's working
1844 * set from being evicted by disabling active file page aging.
1845 *
1846 * This uses a different ratio than the anonymous pages, because
1847 * the page cache uses a use-once replacement algorithm.
1848 */
1849 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1850 {
1851 if (!scanning_global_lru(mz))
1852 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1853 mz->zone);
1854
1855 return inactive_file_is_low_global(mz->zone);
1856 }
1857
1858 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1859 {
1860 if (file)
1861 return inactive_file_is_low(mz);
1862 else
1863 return inactive_anon_is_low(mz);
1864 }
1865
1866 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1867 struct mem_cgroup_zone *mz,
1868 struct scan_control *sc, int priority)
1869 {
1870 int file = is_file_lru(lru);
1871
1872 if (is_active_lru(lru)) {
1873 if (inactive_list_is_low(mz, file))
1874 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1875 return 0;
1876 }
1877
1878 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1879 }
1880
1881 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1882 struct scan_control *sc)
1883 {
1884 if (global_reclaim(sc))
1885 return vm_swappiness;
1886 return mem_cgroup_swappiness(mz->mem_cgroup);
1887 }
1888
1889 /*
1890 * Determine how aggressively the anon and file LRU lists should be
1891 * scanned. The relative value of each set of LRU lists is determined
1892 * by looking at the fraction of the pages scanned we did rotate back
1893 * onto the active list instead of evict.
1894 *
1895 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1896 */
1897 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1898 unsigned long *nr, int priority)
1899 {
1900 unsigned long anon, file, free;
1901 unsigned long anon_prio, file_prio;
1902 unsigned long ap, fp;
1903 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1904 u64 fraction[2], denominator;
1905 enum lru_list lru;
1906 int noswap = 0;
1907 bool force_scan = false;
1908
1909 /*
1910 * If the zone or memcg is small, nr[l] can be 0. This
1911 * results in no scanning on this priority and a potential
1912 * priority drop. Global direct reclaim can go to the next
1913 * zone and tends to have no problems. Global kswapd is for
1914 * zone balancing and it needs to scan a minimum amount. When
1915 * reclaiming for a memcg, a priority drop can cause high
1916 * latencies, so it's better to scan a minimum amount there as
1917 * well.
1918 */
1919 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1920 force_scan = true;
1921 if (!global_reclaim(sc))
1922 force_scan = true;
1923
1924 /* If we have no swap space, do not bother scanning anon pages. */
1925 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1926 noswap = 1;
1927 fraction[0] = 0;
1928 fraction[1] = 1;
1929 denominator = 1;
1930 goto out;
1931 }
1932
1933 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1934 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1935 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1936 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1937
1938 if (global_reclaim(sc)) {
1939 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1940 /* If we have very few page cache pages,
1941 force-scan anon pages. */
1942 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1943 fraction[0] = 1;
1944 fraction[1] = 0;
1945 denominator = 1;
1946 goto out;
1947 }
1948 }
1949
1950 /*
1951 * With swappiness at 100, anonymous and file have the same priority.
1952 * This scanning priority is essentially the inverse of IO cost.
1953 */
1954 anon_prio = vmscan_swappiness(mz, sc);
1955 file_prio = 200 - vmscan_swappiness(mz, sc);
1956
1957 /*
1958 * OK, so we have swap space and a fair amount of page cache
1959 * pages. We use the recently rotated / recently scanned
1960 * ratios to determine how valuable each cache is.
1961 *
1962 * Because workloads change over time (and to avoid overflow)
1963 * we keep these statistics as a floating average, which ends
1964 * up weighing recent references more than old ones.
1965 *
1966 * anon in [0], file in [1]
1967 */
1968 spin_lock_irq(&mz->zone->lru_lock);
1969 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1970 reclaim_stat->recent_scanned[0] /= 2;
1971 reclaim_stat->recent_rotated[0] /= 2;
1972 }
1973
1974 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1975 reclaim_stat->recent_scanned[1] /= 2;
1976 reclaim_stat->recent_rotated[1] /= 2;
1977 }
1978
1979 /*
1980 * The amount of pressure on anon vs file pages is inversely
1981 * proportional to the fraction of recently scanned pages on
1982 * each list that were recently referenced and in active use.
1983 */
1984 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1985 ap /= reclaim_stat->recent_rotated[0] + 1;
1986
1987 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1988 fp /= reclaim_stat->recent_rotated[1] + 1;
1989 spin_unlock_irq(&mz->zone->lru_lock);
1990
1991 fraction[0] = ap;
1992 fraction[1] = fp;
1993 denominator = ap + fp + 1;
1994 out:
1995 for_each_evictable_lru(lru) {
1996 int file = is_file_lru(lru);
1997 unsigned long scan;
1998
1999 scan = zone_nr_lru_pages(mz, lru);
2000 if (priority || noswap) {
2001 scan >>= priority;
2002 if (!scan && force_scan)
2003 scan = SWAP_CLUSTER_MAX;
2004 scan = div64_u64(scan * fraction[file], denominator);
2005 }
2006 nr[lru] = scan;
2007 }
2008 }
2009
2010 /*
2011 * Reclaim/compaction depends on a number of pages being freed. To avoid
2012 * disruption to the system, a small number of order-0 pages continue to be
2013 * rotated and reclaimed in the normal fashion. However, by the time we get
2014 * back to the allocator and call try_to_compact_zone(), we ensure that
2015 * there are enough free pages for it to be likely successful
2016 */
2017 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2018 unsigned long nr_reclaimed,
2019 unsigned long nr_scanned,
2020 struct scan_control *sc)
2021 {
2022 unsigned long pages_for_compaction;
2023 unsigned long inactive_lru_pages;
2024
2025 /* If not in reclaim/compaction mode, stop */
2026 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2027 return false;
2028
2029 /* Consider stopping depending on scan and reclaim activity */
2030 if (sc->gfp_mask & __GFP_REPEAT) {
2031 /*
2032 * For __GFP_REPEAT allocations, stop reclaiming if the
2033 * full LRU list has been scanned and we are still failing
2034 * to reclaim pages. This full LRU scan is potentially
2035 * expensive but a __GFP_REPEAT caller really wants to succeed
2036 */
2037 if (!nr_reclaimed && !nr_scanned)
2038 return false;
2039 } else {
2040 /*
2041 * For non-__GFP_REPEAT allocations which can presumably
2042 * fail without consequence, stop if we failed to reclaim
2043 * any pages from the last SWAP_CLUSTER_MAX number of
2044 * pages that were scanned. This will return to the
2045 * caller faster at the risk reclaim/compaction and
2046 * the resulting allocation attempt fails
2047 */
2048 if (!nr_reclaimed)
2049 return false;
2050 }
2051
2052 /*
2053 * If we have not reclaimed enough pages for compaction and the
2054 * inactive lists are large enough, continue reclaiming
2055 */
2056 pages_for_compaction = (2UL << sc->order);
2057 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2058 if (nr_swap_pages > 0)
2059 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2060 if (sc->nr_reclaimed < pages_for_compaction &&
2061 inactive_lru_pages > pages_for_compaction)
2062 return true;
2063
2064 /* If compaction would go ahead or the allocation would succeed, stop */
2065 switch (compaction_suitable(mz->zone, sc->order)) {
2066 case COMPACT_PARTIAL:
2067 case COMPACT_CONTINUE:
2068 return false;
2069 default:
2070 return true;
2071 }
2072 }
2073
2074 /*
2075 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2076 */
2077 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2078 struct scan_control *sc)
2079 {
2080 unsigned long nr[NR_LRU_LISTS];
2081 unsigned long nr_to_scan;
2082 enum lru_list lru;
2083 unsigned long nr_reclaimed, nr_scanned;
2084 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2085 struct blk_plug plug;
2086
2087 restart:
2088 nr_reclaimed = 0;
2089 nr_scanned = sc->nr_scanned;
2090 get_scan_count(mz, sc, nr, priority);
2091
2092 blk_start_plug(&plug);
2093 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2094 nr[LRU_INACTIVE_FILE]) {
2095 for_each_evictable_lru(lru) {
2096 if (nr[lru]) {
2097 nr_to_scan = min_t(unsigned long,
2098 nr[lru], SWAP_CLUSTER_MAX);
2099 nr[lru] -= nr_to_scan;
2100
2101 nr_reclaimed += shrink_list(lru, nr_to_scan,
2102 mz, sc, priority);
2103 }
2104 }
2105 /*
2106 * On large memory systems, scan >> priority can become
2107 * really large. This is fine for the starting priority;
2108 * we want to put equal scanning pressure on each zone.
2109 * However, if the VM has a harder time of freeing pages,
2110 * with multiple processes reclaiming pages, the total
2111 * freeing target can get unreasonably large.
2112 */
2113 if (nr_reclaimed >= nr_to_reclaim)
2114 nr_to_reclaim = 0;
2115 else
2116 nr_to_reclaim -= nr_reclaimed;
2117
2118 if (!nr_to_reclaim && priority < DEF_PRIORITY)
2119 break;
2120 }
2121 blk_finish_plug(&plug);
2122 sc->nr_reclaimed += nr_reclaimed;
2123
2124 /*
2125 * Even if we did not try to evict anon pages at all, we want to
2126 * rebalance the anon lru active/inactive ratio.
2127 */
2128 if (inactive_anon_is_low(mz))
2129 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2130
2131 /* reclaim/compaction might need reclaim to continue */
2132 if (should_continue_reclaim(mz, nr_reclaimed,
2133 sc->nr_scanned - nr_scanned, sc))
2134 goto restart;
2135
2136 throttle_vm_writeout(sc->gfp_mask);
2137 }
2138
2139 static void shrink_zone(int priority, struct zone *zone,
2140 struct scan_control *sc)
2141 {
2142 struct mem_cgroup *root = sc->target_mem_cgroup;
2143 struct mem_cgroup_reclaim_cookie reclaim = {
2144 .zone = zone,
2145 .priority = priority,
2146 };
2147 struct mem_cgroup *memcg;
2148
2149 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2150 do {
2151 struct mem_cgroup_zone mz = {
2152 .mem_cgroup = memcg,
2153 .zone = zone,
2154 };
2155
2156 shrink_mem_cgroup_zone(priority, &mz, sc);
2157 /*
2158 * Limit reclaim has historically picked one memcg and
2159 * scanned it with decreasing priority levels until
2160 * nr_to_reclaim had been reclaimed. This priority
2161 * cycle is thus over after a single memcg.
2162 *
2163 * Direct reclaim and kswapd, on the other hand, have
2164 * to scan all memory cgroups to fulfill the overall
2165 * scan target for the zone.
2166 */
2167 if (!global_reclaim(sc)) {
2168 mem_cgroup_iter_break(root, memcg);
2169 break;
2170 }
2171 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2172 } while (memcg);
2173 }
2174
2175 /* Returns true if compaction should go ahead for a high-order request */
2176 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2177 {
2178 unsigned long balance_gap, watermark;
2179 bool watermark_ok;
2180
2181 /* Do not consider compaction for orders reclaim is meant to satisfy */
2182 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2183 return false;
2184
2185 /*
2186 * Compaction takes time to run and there are potentially other
2187 * callers using the pages just freed. Continue reclaiming until
2188 * there is a buffer of free pages available to give compaction
2189 * a reasonable chance of completing and allocating the page
2190 */
2191 balance_gap = min(low_wmark_pages(zone),
2192 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2193 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2194 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2195 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2196
2197 /*
2198 * If compaction is deferred, reclaim up to a point where
2199 * compaction will have a chance of success when re-enabled
2200 */
2201 if (compaction_deferred(zone, sc->order))
2202 return watermark_ok;
2203
2204 /* If compaction is not ready to start, keep reclaiming */
2205 if (!compaction_suitable(zone, sc->order))
2206 return false;
2207
2208 return watermark_ok;
2209 }
2210
2211 /*
2212 * This is the direct reclaim path, for page-allocating processes. We only
2213 * try to reclaim pages from zones which will satisfy the caller's allocation
2214 * request.
2215 *
2216 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2217 * Because:
2218 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2219 * allocation or
2220 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2221 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2222 * zone defense algorithm.
2223 *
2224 * If a zone is deemed to be full of pinned pages then just give it a light
2225 * scan then give up on it.
2226 *
2227 * This function returns true if a zone is being reclaimed for a costly
2228 * high-order allocation and compaction is ready to begin. This indicates to
2229 * the caller that it should consider retrying the allocation instead of
2230 * further reclaim.
2231 */
2232 static bool shrink_zones(int priority, struct zonelist *zonelist,
2233 struct scan_control *sc)
2234 {
2235 struct zoneref *z;
2236 struct zone *zone;
2237 unsigned long nr_soft_reclaimed;
2238 unsigned long nr_soft_scanned;
2239 bool aborted_reclaim = false;
2240
2241 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2242 gfp_zone(sc->gfp_mask), sc->nodemask) {
2243 if (!populated_zone(zone))
2244 continue;
2245 /*
2246 * Take care memory controller reclaiming has small influence
2247 * to global LRU.
2248 */
2249 if (global_reclaim(sc)) {
2250 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2251 continue;
2252 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2253 continue; /* Let kswapd poll it */
2254 if (COMPACTION_BUILD) {
2255 /*
2256 * If we already have plenty of memory free for
2257 * compaction in this zone, don't free any more.
2258 * Even though compaction is invoked for any
2259 * non-zero order, only frequent costly order
2260 * reclamation is disruptive enough to become a
2261 * noticable problem, like transparent huge page
2262 * allocations.
2263 */
2264 if (compaction_ready(zone, sc)) {
2265 aborted_reclaim = true;
2266 continue;
2267 }
2268 }
2269 /*
2270 * This steals pages from memory cgroups over softlimit
2271 * and returns the number of reclaimed pages and
2272 * scanned pages. This works for global memory pressure
2273 * and balancing, not for a memcg's limit.
2274 */
2275 nr_soft_scanned = 0;
2276 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2277 sc->order, sc->gfp_mask,
2278 &nr_soft_scanned);
2279 sc->nr_reclaimed += nr_soft_reclaimed;
2280 sc->nr_scanned += nr_soft_scanned;
2281 /* need some check for avoid more shrink_zone() */
2282 }
2283
2284 shrink_zone(priority, zone, sc);
2285 }
2286
2287 return aborted_reclaim;
2288 }
2289
2290 static bool zone_reclaimable(struct zone *zone)
2291 {
2292 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2293 }
2294
2295 /* All zones in zonelist are unreclaimable? */
2296 static bool all_unreclaimable(struct zonelist *zonelist,
2297 struct scan_control *sc)
2298 {
2299 struct zoneref *z;
2300 struct zone *zone;
2301
2302 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2303 gfp_zone(sc->gfp_mask), sc->nodemask) {
2304 if (!populated_zone(zone))
2305 continue;
2306 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2307 continue;
2308 if (!zone->all_unreclaimable)
2309 return false;
2310 }
2311
2312 return true;
2313 }
2314
2315 /*
2316 * This is the main entry point to direct page reclaim.
2317 *
2318 * If a full scan of the inactive list fails to free enough memory then we
2319 * are "out of memory" and something needs to be killed.
2320 *
2321 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2322 * high - the zone may be full of dirty or under-writeback pages, which this
2323 * caller can't do much about. We kick the writeback threads and take explicit
2324 * naps in the hope that some of these pages can be written. But if the
2325 * allocating task holds filesystem locks which prevent writeout this might not
2326 * work, and the allocation attempt will fail.
2327 *
2328 * returns: 0, if no pages reclaimed
2329 * else, the number of pages reclaimed
2330 */
2331 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2332 struct scan_control *sc,
2333 struct shrink_control *shrink)
2334 {
2335 int priority;
2336 unsigned long total_scanned = 0;
2337 struct reclaim_state *reclaim_state = current->reclaim_state;
2338 struct zoneref *z;
2339 struct zone *zone;
2340 unsigned long writeback_threshold;
2341 bool aborted_reclaim;
2342
2343 get_mems_allowed();
2344 delayacct_freepages_start();
2345
2346 if (global_reclaim(sc))
2347 count_vm_event(ALLOCSTALL);
2348
2349 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2350 sc->nr_scanned = 0;
2351 if (!priority)
2352 disable_swap_token(sc->target_mem_cgroup);
2353 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2354
2355 /*
2356 * Don't shrink slabs when reclaiming memory from
2357 * over limit cgroups
2358 */
2359 if (global_reclaim(sc)) {
2360 unsigned long lru_pages = 0;
2361 for_each_zone_zonelist(zone, z, zonelist,
2362 gfp_zone(sc->gfp_mask)) {
2363 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2364 continue;
2365
2366 lru_pages += zone_reclaimable_pages(zone);
2367 }
2368
2369 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2370 if (reclaim_state) {
2371 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2372 reclaim_state->reclaimed_slab = 0;
2373 }
2374 }
2375 total_scanned += sc->nr_scanned;
2376 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2377 goto out;
2378
2379 /*
2380 * Try to write back as many pages as we just scanned. This
2381 * tends to cause slow streaming writers to write data to the
2382 * disk smoothly, at the dirtying rate, which is nice. But
2383 * that's undesirable in laptop mode, where we *want* lumpy
2384 * writeout. So in laptop mode, write out the whole world.
2385 */
2386 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2387 if (total_scanned > writeback_threshold) {
2388 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2389 WB_REASON_TRY_TO_FREE_PAGES);
2390 sc->may_writepage = 1;
2391 }
2392
2393 /* Take a nap, wait for some writeback to complete */
2394 if (!sc->hibernation_mode && sc->nr_scanned &&
2395 priority < DEF_PRIORITY - 2) {
2396 struct zone *preferred_zone;
2397
2398 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2399 &cpuset_current_mems_allowed,
2400 &preferred_zone);
2401 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2402 }
2403 }
2404
2405 out:
2406 delayacct_freepages_end();
2407 put_mems_allowed();
2408
2409 if (sc->nr_reclaimed)
2410 return sc->nr_reclaimed;
2411
2412 /*
2413 * As hibernation is going on, kswapd is freezed so that it can't mark
2414 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2415 * check.
2416 */
2417 if (oom_killer_disabled)
2418 return 0;
2419
2420 /* Aborted reclaim to try compaction? don't OOM, then */
2421 if (aborted_reclaim)
2422 return 1;
2423
2424 /* top priority shrink_zones still had more to do? don't OOM, then */
2425 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2426 return 1;
2427
2428 return 0;
2429 }
2430
2431 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2432 gfp_t gfp_mask, nodemask_t *nodemask)
2433 {
2434 unsigned long nr_reclaimed;
2435 struct scan_control sc = {
2436 .gfp_mask = gfp_mask,
2437 .may_writepage = !laptop_mode,
2438 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2439 .may_unmap = 1,
2440 .may_swap = 1,
2441 .order = order,
2442 .target_mem_cgroup = NULL,
2443 .nodemask = nodemask,
2444 };
2445 struct shrink_control shrink = {
2446 .gfp_mask = sc.gfp_mask,
2447 };
2448
2449 trace_mm_vmscan_direct_reclaim_begin(order,
2450 sc.may_writepage,
2451 gfp_mask);
2452
2453 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2454
2455 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2456
2457 return nr_reclaimed;
2458 }
2459
2460 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2461
2462 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2463 gfp_t gfp_mask, bool noswap,
2464 struct zone *zone,
2465 unsigned long *nr_scanned)
2466 {
2467 struct scan_control sc = {
2468 .nr_scanned = 0,
2469 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2470 .may_writepage = !laptop_mode,
2471 .may_unmap = 1,
2472 .may_swap = !noswap,
2473 .order = 0,
2474 .target_mem_cgroup = memcg,
2475 };
2476 struct mem_cgroup_zone mz = {
2477 .mem_cgroup = memcg,
2478 .zone = zone,
2479 };
2480
2481 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2482 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2483
2484 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2485 sc.may_writepage,
2486 sc.gfp_mask);
2487
2488 /*
2489 * NOTE: Although we can get the priority field, using it
2490 * here is not a good idea, since it limits the pages we can scan.
2491 * if we don't reclaim here, the shrink_zone from balance_pgdat
2492 * will pick up pages from other mem cgroup's as well. We hack
2493 * the priority and make it zero.
2494 */
2495 shrink_mem_cgroup_zone(0, &mz, &sc);
2496
2497 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2498
2499 *nr_scanned = sc.nr_scanned;
2500 return sc.nr_reclaimed;
2501 }
2502
2503 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2504 gfp_t gfp_mask,
2505 bool noswap)
2506 {
2507 struct zonelist *zonelist;
2508 unsigned long nr_reclaimed;
2509 int nid;
2510 struct scan_control sc = {
2511 .may_writepage = !laptop_mode,
2512 .may_unmap = 1,
2513 .may_swap = !noswap,
2514 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2515 .order = 0,
2516 .target_mem_cgroup = memcg,
2517 .nodemask = NULL, /* we don't care the placement */
2518 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2519 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2520 };
2521 struct shrink_control shrink = {
2522 .gfp_mask = sc.gfp_mask,
2523 };
2524
2525 /*
2526 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2527 * take care of from where we get pages. So the node where we start the
2528 * scan does not need to be the current node.
2529 */
2530 nid = mem_cgroup_select_victim_node(memcg);
2531
2532 zonelist = NODE_DATA(nid)->node_zonelists;
2533
2534 trace_mm_vmscan_memcg_reclaim_begin(0,
2535 sc.may_writepage,
2536 sc.gfp_mask);
2537
2538 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2539
2540 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2541
2542 return nr_reclaimed;
2543 }
2544 #endif
2545
2546 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2547 int priority)
2548 {
2549 struct mem_cgroup *memcg;
2550
2551 if (!total_swap_pages)
2552 return;
2553
2554 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2555 do {
2556 struct mem_cgroup_zone mz = {
2557 .mem_cgroup = memcg,
2558 .zone = zone,
2559 };
2560
2561 if (inactive_anon_is_low(&mz))
2562 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2563 sc, priority, 0);
2564
2565 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2566 } while (memcg);
2567 }
2568
2569 /*
2570 * pgdat_balanced is used when checking if a node is balanced for high-order
2571 * allocations. Only zones that meet watermarks and are in a zone allowed
2572 * by the callers classzone_idx are added to balanced_pages. The total of
2573 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2574 * for the node to be considered balanced. Forcing all zones to be balanced
2575 * for high orders can cause excessive reclaim when there are imbalanced zones.
2576 * The choice of 25% is due to
2577 * o a 16M DMA zone that is balanced will not balance a zone on any
2578 * reasonable sized machine
2579 * o On all other machines, the top zone must be at least a reasonable
2580 * percentage of the middle zones. For example, on 32-bit x86, highmem
2581 * would need to be at least 256M for it to be balance a whole node.
2582 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2583 * to balance a node on its own. These seemed like reasonable ratios.
2584 */
2585 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2586 int classzone_idx)
2587 {
2588 unsigned long present_pages = 0;
2589 int i;
2590
2591 for (i = 0; i <= classzone_idx; i++)
2592 present_pages += pgdat->node_zones[i].present_pages;
2593
2594 /* A special case here: if zone has no page, we think it's balanced */
2595 return balanced_pages >= (present_pages >> 2);
2596 }
2597
2598 /* is kswapd sleeping prematurely? */
2599 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2600 int classzone_idx)
2601 {
2602 int i;
2603 unsigned long balanced = 0;
2604 bool all_zones_ok = true;
2605
2606 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2607 if (remaining)
2608 return true;
2609
2610 /* Check the watermark levels */
2611 for (i = 0; i <= classzone_idx; i++) {
2612 struct zone *zone = pgdat->node_zones + i;
2613
2614 if (!populated_zone(zone))
2615 continue;
2616
2617 /*
2618 * balance_pgdat() skips over all_unreclaimable after
2619 * DEF_PRIORITY. Effectively, it considers them balanced so
2620 * they must be considered balanced here as well if kswapd
2621 * is to sleep
2622 */
2623 if (zone->all_unreclaimable) {
2624 balanced += zone->present_pages;
2625 continue;
2626 }
2627
2628 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2629 i, 0))
2630 all_zones_ok = false;
2631 else
2632 balanced += zone->present_pages;
2633 }
2634
2635 /*
2636 * For high-order requests, the balanced zones must contain at least
2637 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2638 * must be balanced
2639 */
2640 if (order)
2641 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2642 else
2643 return !all_zones_ok;
2644 }
2645
2646 /*
2647 * For kswapd, balance_pgdat() will work across all this node's zones until
2648 * they are all at high_wmark_pages(zone).
2649 *
2650 * Returns the final order kswapd was reclaiming at
2651 *
2652 * There is special handling here for zones which are full of pinned pages.
2653 * This can happen if the pages are all mlocked, or if they are all used by
2654 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2655 * What we do is to detect the case where all pages in the zone have been
2656 * scanned twice and there has been zero successful reclaim. Mark the zone as
2657 * dead and from now on, only perform a short scan. Basically we're polling
2658 * the zone for when the problem goes away.
2659 *
2660 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2661 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2662 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2663 * lower zones regardless of the number of free pages in the lower zones. This
2664 * interoperates with the page allocator fallback scheme to ensure that aging
2665 * of pages is balanced across the zones.
2666 */
2667 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2668 int *classzone_idx)
2669 {
2670 int all_zones_ok;
2671 unsigned long balanced;
2672 int priority;
2673 int i;
2674 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2675 unsigned long total_scanned;
2676 struct reclaim_state *reclaim_state = current->reclaim_state;
2677 unsigned long nr_soft_reclaimed;
2678 unsigned long nr_soft_scanned;
2679 struct scan_control sc = {
2680 .gfp_mask = GFP_KERNEL,
2681 .may_unmap = 1,
2682 .may_swap = 1,
2683 /*
2684 * kswapd doesn't want to be bailed out while reclaim. because
2685 * we want to put equal scanning pressure on each zone.
2686 */
2687 .nr_to_reclaim = ULONG_MAX,
2688 .order = order,
2689 .target_mem_cgroup = NULL,
2690 };
2691 struct shrink_control shrink = {
2692 .gfp_mask = sc.gfp_mask,
2693 };
2694 loop_again:
2695 total_scanned = 0;
2696 sc.nr_reclaimed = 0;
2697 sc.may_writepage = !laptop_mode;
2698 count_vm_event(PAGEOUTRUN);
2699
2700 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2701 unsigned long lru_pages = 0;
2702 int has_under_min_watermark_zone = 0;
2703
2704 /* The swap token gets in the way of swapout... */
2705 if (!priority)
2706 disable_swap_token(NULL);
2707
2708 all_zones_ok = 1;
2709 balanced = 0;
2710
2711 /*
2712 * Scan in the highmem->dma direction for the highest
2713 * zone which needs scanning
2714 */
2715 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2716 struct zone *zone = pgdat->node_zones + i;
2717
2718 if (!populated_zone(zone))
2719 continue;
2720
2721 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2722 continue;
2723
2724 /*
2725 * Do some background aging of the anon list, to give
2726 * pages a chance to be referenced before reclaiming.
2727 */
2728 age_active_anon(zone, &sc, priority);
2729
2730 if (!zone_watermark_ok_safe(zone, order,
2731 high_wmark_pages(zone), 0, 0)) {
2732 end_zone = i;
2733 break;
2734 } else {
2735 /* If balanced, clear the congested flag */
2736 zone_clear_flag(zone, ZONE_CONGESTED);
2737 }
2738 }
2739 if (i < 0)
2740 goto out;
2741
2742 for (i = 0; i <= end_zone; i++) {
2743 struct zone *zone = pgdat->node_zones + i;
2744
2745 lru_pages += zone_reclaimable_pages(zone);
2746 }
2747
2748 /*
2749 * Now scan the zone in the dma->highmem direction, stopping
2750 * at the last zone which needs scanning.
2751 *
2752 * We do this because the page allocator works in the opposite
2753 * direction. This prevents the page allocator from allocating
2754 * pages behind kswapd's direction of progress, which would
2755 * cause too much scanning of the lower zones.
2756 */
2757 for (i = 0; i <= end_zone; i++) {
2758 struct zone *zone = pgdat->node_zones + i;
2759 int nr_slab, testorder;
2760 unsigned long balance_gap;
2761
2762 if (!populated_zone(zone))
2763 continue;
2764
2765 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2766 continue;
2767
2768 sc.nr_scanned = 0;
2769
2770 nr_soft_scanned = 0;
2771 /*
2772 * Call soft limit reclaim before calling shrink_zone.
2773 */
2774 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2775 order, sc.gfp_mask,
2776 &nr_soft_scanned);
2777 sc.nr_reclaimed += nr_soft_reclaimed;
2778 total_scanned += nr_soft_scanned;
2779
2780 /*
2781 * We put equal pressure on every zone, unless
2782 * one zone has way too many pages free
2783 * already. The "too many pages" is defined
2784 * as the high wmark plus a "gap" where the
2785 * gap is either the low watermark or 1%
2786 * of the zone, whichever is smaller.
2787 */
2788 balance_gap = min(low_wmark_pages(zone),
2789 (zone->present_pages +
2790 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2791 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2792 /*
2793 * Kswapd reclaims only single pages with compaction
2794 * enabled. Trying too hard to reclaim until contiguous
2795 * free pages have become available can hurt performance
2796 * by evicting too much useful data from memory.
2797 * Do not reclaim more than needed for compaction.
2798 */
2799 testorder = order;
2800 if (COMPACTION_BUILD && order &&
2801 compaction_suitable(zone, order) !=
2802 COMPACT_SKIPPED)
2803 testorder = 0;
2804
2805 if (!zone_watermark_ok_safe(zone, testorder,
2806 high_wmark_pages(zone) + balance_gap,
2807 end_zone, 0)) {
2808 shrink_zone(priority, zone, &sc);
2809
2810 reclaim_state->reclaimed_slab = 0;
2811 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2812 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2813 total_scanned += sc.nr_scanned;
2814
2815 if (nr_slab == 0 && !zone_reclaimable(zone))
2816 zone->all_unreclaimable = 1;
2817 }
2818
2819 /*
2820 * If we've done a decent amount of scanning and
2821 * the reclaim ratio is low, start doing writepage
2822 * even in laptop mode
2823 */
2824 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2825 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2826 sc.may_writepage = 1;
2827
2828 if (zone->all_unreclaimable) {
2829 if (end_zone && end_zone == i)
2830 end_zone--;
2831 continue;
2832 }
2833
2834 if (!zone_watermark_ok_safe(zone, testorder,
2835 high_wmark_pages(zone), end_zone, 0)) {
2836 all_zones_ok = 0;
2837 /*
2838 * We are still under min water mark. This
2839 * means that we have a GFP_ATOMIC allocation
2840 * failure risk. Hurry up!
2841 */
2842 if (!zone_watermark_ok_safe(zone, order,
2843 min_wmark_pages(zone), end_zone, 0))
2844 has_under_min_watermark_zone = 1;
2845 } else {
2846 /*
2847 * If a zone reaches its high watermark,
2848 * consider it to be no longer congested. It's
2849 * possible there are dirty pages backed by
2850 * congested BDIs but as pressure is relieved,
2851 * spectulatively avoid congestion waits
2852 */
2853 zone_clear_flag(zone, ZONE_CONGESTED);
2854 if (i <= *classzone_idx)
2855 balanced += zone->present_pages;
2856 }
2857
2858 }
2859 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2860 break; /* kswapd: all done */
2861 /*
2862 * OK, kswapd is getting into trouble. Take a nap, then take
2863 * another pass across the zones.
2864 */
2865 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2866 if (has_under_min_watermark_zone)
2867 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2868 else
2869 congestion_wait(BLK_RW_ASYNC, HZ/10);
2870 }
2871
2872 /*
2873 * We do this so kswapd doesn't build up large priorities for
2874 * example when it is freeing in parallel with allocators. It
2875 * matches the direct reclaim path behaviour in terms of impact
2876 * on zone->*_priority.
2877 */
2878 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2879 break;
2880 }
2881 out:
2882
2883 /*
2884 * order-0: All zones must meet high watermark for a balanced node
2885 * high-order: Balanced zones must make up at least 25% of the node
2886 * for the node to be balanced
2887 */
2888 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2889 cond_resched();
2890
2891 try_to_freeze();
2892
2893 /*
2894 * Fragmentation may mean that the system cannot be
2895 * rebalanced for high-order allocations in all zones.
2896 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2897 * it means the zones have been fully scanned and are still
2898 * not balanced. For high-order allocations, there is
2899 * little point trying all over again as kswapd may
2900 * infinite loop.
2901 *
2902 * Instead, recheck all watermarks at order-0 as they
2903 * are the most important. If watermarks are ok, kswapd will go
2904 * back to sleep. High-order users can still perform direct
2905 * reclaim if they wish.
2906 */
2907 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2908 order = sc.order = 0;
2909
2910 goto loop_again;
2911 }
2912
2913 /*
2914 * If kswapd was reclaiming at a higher order, it has the option of
2915 * sleeping without all zones being balanced. Before it does, it must
2916 * ensure that the watermarks for order-0 on *all* zones are met and
2917 * that the congestion flags are cleared. The congestion flag must
2918 * be cleared as kswapd is the only mechanism that clears the flag
2919 * and it is potentially going to sleep here.
2920 */
2921 if (order) {
2922 int zones_need_compaction = 1;
2923
2924 for (i = 0; i <= end_zone; i++) {
2925 struct zone *zone = pgdat->node_zones + i;
2926
2927 if (!populated_zone(zone))
2928 continue;
2929
2930 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2931 continue;
2932
2933 /* Would compaction fail due to lack of free memory? */
2934 if (compaction_suitable(zone, order) == COMPACT_SKIPPED)
2935 goto loop_again;
2936
2937 /* Confirm the zone is balanced for order-0 */
2938 if (!zone_watermark_ok(zone, 0,
2939 high_wmark_pages(zone), 0, 0)) {
2940 order = sc.order = 0;
2941 goto loop_again;
2942 }
2943
2944 /* Check if the memory needs to be defragmented. */
2945 if (zone_watermark_ok(zone, order,
2946 low_wmark_pages(zone), *classzone_idx, 0))
2947 zones_need_compaction = 0;
2948
2949 /* If balanced, clear the congested flag */
2950 zone_clear_flag(zone, ZONE_CONGESTED);
2951 }
2952
2953 if (zones_need_compaction)
2954 compact_pgdat(pgdat, order);
2955 }
2956
2957 /*
2958 * Return the order we were reclaiming at so sleeping_prematurely()
2959 * makes a decision on the order we were last reclaiming at. However,
2960 * if another caller entered the allocator slow path while kswapd
2961 * was awake, order will remain at the higher level
2962 */
2963 *classzone_idx = end_zone;
2964 return order;
2965 }
2966
2967 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2968 {
2969 long remaining = 0;
2970 DEFINE_WAIT(wait);
2971
2972 if (freezing(current) || kthread_should_stop())
2973 return;
2974
2975 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2976
2977 /* Try to sleep for a short interval */
2978 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2979 remaining = schedule_timeout(HZ/10);
2980 finish_wait(&pgdat->kswapd_wait, &wait);
2981 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2982 }
2983
2984 /*
2985 * After a short sleep, check if it was a premature sleep. If not, then
2986 * go fully to sleep until explicitly woken up.
2987 */
2988 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2989 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2990
2991 /*
2992 * vmstat counters are not perfectly accurate and the estimated
2993 * value for counters such as NR_FREE_PAGES can deviate from the
2994 * true value by nr_online_cpus * threshold. To avoid the zone
2995 * watermarks being breached while under pressure, we reduce the
2996 * per-cpu vmstat threshold while kswapd is awake and restore
2997 * them before going back to sleep.
2998 */
2999 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3000 schedule();
3001 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3002 } else {
3003 if (remaining)
3004 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3005 else
3006 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3007 }
3008 finish_wait(&pgdat->kswapd_wait, &wait);
3009 }
3010
3011 /*
3012 * The background pageout daemon, started as a kernel thread
3013 * from the init process.
3014 *
3015 * This basically trickles out pages so that we have _some_
3016 * free memory available even if there is no other activity
3017 * that frees anything up. This is needed for things like routing
3018 * etc, where we otherwise might have all activity going on in
3019 * asynchronous contexts that cannot page things out.
3020 *
3021 * If there are applications that are active memory-allocators
3022 * (most normal use), this basically shouldn't matter.
3023 */
3024 static int kswapd(void *p)
3025 {
3026 unsigned long order, new_order;
3027 unsigned balanced_order;
3028 int classzone_idx, new_classzone_idx;
3029 int balanced_classzone_idx;
3030 pg_data_t *pgdat = (pg_data_t*)p;
3031 struct task_struct *tsk = current;
3032
3033 struct reclaim_state reclaim_state = {
3034 .reclaimed_slab = 0,
3035 };
3036 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3037
3038 lockdep_set_current_reclaim_state(GFP_KERNEL);
3039
3040 if (!cpumask_empty(cpumask))
3041 set_cpus_allowed_ptr(tsk, cpumask);
3042 current->reclaim_state = &reclaim_state;
3043
3044 /*
3045 * Tell the memory management that we're a "memory allocator",
3046 * and that if we need more memory we should get access to it
3047 * regardless (see "__alloc_pages()"). "kswapd" should
3048 * never get caught in the normal page freeing logic.
3049 *
3050 * (Kswapd normally doesn't need memory anyway, but sometimes
3051 * you need a small amount of memory in order to be able to
3052 * page out something else, and this flag essentially protects
3053 * us from recursively trying to free more memory as we're
3054 * trying to free the first piece of memory in the first place).
3055 */
3056 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3057 set_freezable();
3058
3059 order = new_order = 0;
3060 balanced_order = 0;
3061 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3062 balanced_classzone_idx = classzone_idx;
3063 for ( ; ; ) {
3064 int ret;
3065
3066 /*
3067 * If the last balance_pgdat was unsuccessful it's unlikely a
3068 * new request of a similar or harder type will succeed soon
3069 * so consider going to sleep on the basis we reclaimed at
3070 */
3071 if (balanced_classzone_idx >= new_classzone_idx &&
3072 balanced_order == new_order) {
3073 new_order = pgdat->kswapd_max_order;
3074 new_classzone_idx = pgdat->classzone_idx;
3075 pgdat->kswapd_max_order = 0;
3076 pgdat->classzone_idx = pgdat->nr_zones - 1;
3077 }
3078
3079 if (order < new_order || classzone_idx > new_classzone_idx) {
3080 /*
3081 * Don't sleep if someone wants a larger 'order'
3082 * allocation or has tigher zone constraints
3083 */
3084 order = new_order;
3085 classzone_idx = new_classzone_idx;
3086 } else {
3087 kswapd_try_to_sleep(pgdat, balanced_order,
3088 balanced_classzone_idx);
3089 order = pgdat->kswapd_max_order;
3090 classzone_idx = pgdat->classzone_idx;
3091 new_order = order;
3092 new_classzone_idx = classzone_idx;
3093 pgdat->kswapd_max_order = 0;
3094 pgdat->classzone_idx = pgdat->nr_zones - 1;
3095 }
3096
3097 ret = try_to_freeze();
3098 if (kthread_should_stop())
3099 break;
3100
3101 /*
3102 * We can speed up thawing tasks if we don't call balance_pgdat
3103 * after returning from the refrigerator
3104 */
3105 if (!ret) {
3106 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3107 balanced_classzone_idx = classzone_idx;
3108 balanced_order = balance_pgdat(pgdat, order,
3109 &balanced_classzone_idx);
3110 }
3111 }
3112 return 0;
3113 }
3114
3115 /*
3116 * A zone is low on free memory, so wake its kswapd task to service it.
3117 */
3118 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3119 {
3120 pg_data_t *pgdat;
3121
3122 if (!populated_zone(zone))
3123 return;
3124
3125 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3126 return;
3127 pgdat = zone->zone_pgdat;
3128 if (pgdat->kswapd_max_order < order) {
3129 pgdat->kswapd_max_order = order;
3130 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3131 }
3132 if (!waitqueue_active(&pgdat->kswapd_wait))
3133 return;
3134 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3135 return;
3136
3137 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3138 wake_up_interruptible(&pgdat->kswapd_wait);
3139 }
3140
3141 /*
3142 * The reclaimable count would be mostly accurate.
3143 * The less reclaimable pages may be
3144 * - mlocked pages, which will be moved to unevictable list when encountered
3145 * - mapped pages, which may require several travels to be reclaimed
3146 * - dirty pages, which is not "instantly" reclaimable
3147 */
3148 unsigned long global_reclaimable_pages(void)
3149 {
3150 int nr;
3151
3152 nr = global_page_state(NR_ACTIVE_FILE) +
3153 global_page_state(NR_INACTIVE_FILE);
3154
3155 if (nr_swap_pages > 0)
3156 nr += global_page_state(NR_ACTIVE_ANON) +
3157 global_page_state(NR_INACTIVE_ANON);
3158
3159 return nr;
3160 }
3161
3162 unsigned long zone_reclaimable_pages(struct zone *zone)
3163 {
3164 int nr;
3165
3166 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3167 zone_page_state(zone, NR_INACTIVE_FILE);
3168
3169 if (nr_swap_pages > 0)
3170 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3171 zone_page_state(zone, NR_INACTIVE_ANON);
3172
3173 return nr;
3174 }
3175
3176 #ifdef CONFIG_HIBERNATION
3177 /*
3178 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3179 * freed pages.
3180 *
3181 * Rather than trying to age LRUs the aim is to preserve the overall
3182 * LRU order by reclaiming preferentially
3183 * inactive > active > active referenced > active mapped
3184 */
3185 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3186 {
3187 struct reclaim_state reclaim_state;
3188 struct scan_control sc = {
3189 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3190 .may_swap = 1,
3191 .may_unmap = 1,
3192 .may_writepage = 1,
3193 .nr_to_reclaim = nr_to_reclaim,
3194 .hibernation_mode = 1,
3195 .order = 0,
3196 };
3197 struct shrink_control shrink = {
3198 .gfp_mask = sc.gfp_mask,
3199 };
3200 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3201 struct task_struct *p = current;
3202 unsigned long nr_reclaimed;
3203
3204 p->flags |= PF_MEMALLOC;
3205 lockdep_set_current_reclaim_state(sc.gfp_mask);
3206 reclaim_state.reclaimed_slab = 0;
3207 p->reclaim_state = &reclaim_state;
3208
3209 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3210
3211 p->reclaim_state = NULL;
3212 lockdep_clear_current_reclaim_state();
3213 p->flags &= ~PF_MEMALLOC;
3214
3215 return nr_reclaimed;
3216 }
3217 #endif /* CONFIG_HIBERNATION */
3218
3219 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3220 not required for correctness. So if the last cpu in a node goes
3221 away, we get changed to run anywhere: as the first one comes back,
3222 restore their cpu bindings. */
3223 static int __devinit cpu_callback(struct notifier_block *nfb,
3224 unsigned long action, void *hcpu)
3225 {
3226 int nid;
3227
3228 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3229 for_each_node_state(nid, N_HIGH_MEMORY) {
3230 pg_data_t *pgdat = NODE_DATA(nid);
3231 const struct cpumask *mask;
3232
3233 mask = cpumask_of_node(pgdat->node_id);
3234
3235 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3236 /* One of our CPUs online: restore mask */
3237 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3238 }
3239 }
3240 return NOTIFY_OK;
3241 }
3242
3243 /*
3244 * This kswapd start function will be called by init and node-hot-add.
3245 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3246 */
3247 int kswapd_run(int nid)
3248 {
3249 pg_data_t *pgdat = NODE_DATA(nid);
3250 int ret = 0;
3251
3252 if (pgdat->kswapd)
3253 return 0;
3254
3255 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3256 if (IS_ERR(pgdat->kswapd)) {
3257 /* failure at boot is fatal */
3258 BUG_ON(system_state == SYSTEM_BOOTING);
3259 printk("Failed to start kswapd on node %d\n",nid);
3260 ret = -1;
3261 }
3262 return ret;
3263 }
3264
3265 /*
3266 * Called by memory hotplug when all memory in a node is offlined.
3267 */
3268 void kswapd_stop(int nid)
3269 {
3270 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3271
3272 if (kswapd)
3273 kthread_stop(kswapd);
3274 }
3275
3276 static int __init kswapd_init(void)
3277 {
3278 int nid;
3279
3280 swap_setup();
3281 for_each_node_state(nid, N_HIGH_MEMORY)
3282 kswapd_run(nid);
3283 hotcpu_notifier(cpu_callback, 0);
3284 return 0;
3285 }
3286
3287 module_init(kswapd_init)
3288
3289 #ifdef CONFIG_NUMA
3290 /*
3291 * Zone reclaim mode
3292 *
3293 * If non-zero call zone_reclaim when the number of free pages falls below
3294 * the watermarks.
3295 */
3296 int zone_reclaim_mode __read_mostly;
3297
3298 #define RECLAIM_OFF 0
3299 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3300 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3301 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3302
3303 /*
3304 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3305 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3306 * a zone.
3307 */
3308 #define ZONE_RECLAIM_PRIORITY 4
3309
3310 /*
3311 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3312 * occur.
3313 */
3314 int sysctl_min_unmapped_ratio = 1;
3315
3316 /*
3317 * If the number of slab pages in a zone grows beyond this percentage then
3318 * slab reclaim needs to occur.
3319 */
3320 int sysctl_min_slab_ratio = 5;
3321
3322 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3323 {
3324 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3325 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3326 zone_page_state(zone, NR_ACTIVE_FILE);
3327
3328 /*
3329 * It's possible for there to be more file mapped pages than
3330 * accounted for by the pages on the file LRU lists because
3331 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3332 */
3333 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3334 }
3335
3336 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3337 static long zone_pagecache_reclaimable(struct zone *zone)
3338 {
3339 long nr_pagecache_reclaimable;
3340 long delta = 0;
3341
3342 /*
3343 * If RECLAIM_SWAP is set, then all file pages are considered
3344 * potentially reclaimable. Otherwise, we have to worry about
3345 * pages like swapcache and zone_unmapped_file_pages() provides
3346 * a better estimate
3347 */
3348 if (zone_reclaim_mode & RECLAIM_SWAP)
3349 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3350 else
3351 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3352
3353 /* If we can't clean pages, remove dirty pages from consideration */
3354 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3355 delta += zone_page_state(zone, NR_FILE_DIRTY);
3356
3357 /* Watch for any possible underflows due to delta */
3358 if (unlikely(delta > nr_pagecache_reclaimable))
3359 delta = nr_pagecache_reclaimable;
3360
3361 return nr_pagecache_reclaimable - delta;
3362 }
3363
3364 /*
3365 * Try to free up some pages from this zone through reclaim.
3366 */
3367 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3368 {
3369 /* Minimum pages needed in order to stay on node */
3370 const unsigned long nr_pages = 1 << order;
3371 struct task_struct *p = current;
3372 struct reclaim_state reclaim_state;
3373 int priority;
3374 struct scan_control sc = {
3375 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3376 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3377 .may_swap = 1,
3378 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3379 SWAP_CLUSTER_MAX),
3380 .gfp_mask = gfp_mask,
3381 .order = order,
3382 };
3383 struct shrink_control shrink = {
3384 .gfp_mask = sc.gfp_mask,
3385 };
3386 unsigned long nr_slab_pages0, nr_slab_pages1;
3387
3388 cond_resched();
3389 /*
3390 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3391 * and we also need to be able to write out pages for RECLAIM_WRITE
3392 * and RECLAIM_SWAP.
3393 */
3394 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3395 lockdep_set_current_reclaim_state(gfp_mask);
3396 reclaim_state.reclaimed_slab = 0;
3397 p->reclaim_state = &reclaim_state;
3398
3399 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3400 /*
3401 * Free memory by calling shrink zone with increasing
3402 * priorities until we have enough memory freed.
3403 */
3404 priority = ZONE_RECLAIM_PRIORITY;
3405 do {
3406 shrink_zone(priority, zone, &sc);
3407 priority--;
3408 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3409 }
3410
3411 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3412 if (nr_slab_pages0 > zone->min_slab_pages) {
3413 /*
3414 * shrink_slab() does not currently allow us to determine how
3415 * many pages were freed in this zone. So we take the current
3416 * number of slab pages and shake the slab until it is reduced
3417 * by the same nr_pages that we used for reclaiming unmapped
3418 * pages.
3419 *
3420 * Note that shrink_slab will free memory on all zones and may
3421 * take a long time.
3422 */
3423 for (;;) {
3424 unsigned long lru_pages = zone_reclaimable_pages(zone);
3425
3426 /* No reclaimable slab or very low memory pressure */
3427 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3428 break;
3429
3430 /* Freed enough memory */
3431 nr_slab_pages1 = zone_page_state(zone,
3432 NR_SLAB_RECLAIMABLE);
3433 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3434 break;
3435 }
3436
3437 /*
3438 * Update nr_reclaimed by the number of slab pages we
3439 * reclaimed from this zone.
3440 */
3441 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3442 if (nr_slab_pages1 < nr_slab_pages0)
3443 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3444 }
3445
3446 p->reclaim_state = NULL;
3447 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3448 lockdep_clear_current_reclaim_state();
3449 return sc.nr_reclaimed >= nr_pages;
3450 }
3451
3452 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3453 {
3454 int node_id;
3455 int ret;
3456
3457 /*
3458 * Zone reclaim reclaims unmapped file backed pages and
3459 * slab pages if we are over the defined limits.
3460 *
3461 * A small portion of unmapped file backed pages is needed for
3462 * file I/O otherwise pages read by file I/O will be immediately
3463 * thrown out if the zone is overallocated. So we do not reclaim
3464 * if less than a specified percentage of the zone is used by
3465 * unmapped file backed pages.
3466 */
3467 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3468 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3469 return ZONE_RECLAIM_FULL;
3470
3471 if (zone->all_unreclaimable)
3472 return ZONE_RECLAIM_FULL;
3473
3474 /*
3475 * Do not scan if the allocation should not be delayed.
3476 */
3477 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3478 return ZONE_RECLAIM_NOSCAN;
3479
3480 /*
3481 * Only run zone reclaim on the local zone or on zones that do not
3482 * have associated processors. This will favor the local processor
3483 * over remote processors and spread off node memory allocations
3484 * as wide as possible.
3485 */
3486 node_id = zone_to_nid(zone);
3487 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3488 return ZONE_RECLAIM_NOSCAN;
3489
3490 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3491 return ZONE_RECLAIM_NOSCAN;
3492
3493 ret = __zone_reclaim(zone, gfp_mask, order);
3494 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3495
3496 if (!ret)
3497 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3498
3499 return ret;
3500 }
3501 #endif
3502
3503 /*
3504 * page_evictable - test whether a page is evictable
3505 * @page: the page to test
3506 * @vma: the VMA in which the page is or will be mapped, may be NULL
3507 *
3508 * Test whether page is evictable--i.e., should be placed on active/inactive
3509 * lists vs unevictable list. The vma argument is !NULL when called from the
3510 * fault path to determine how to instantate a new page.
3511 *
3512 * Reasons page might not be evictable:
3513 * (1) page's mapping marked unevictable
3514 * (2) page is part of an mlocked VMA
3515 *
3516 */
3517 int page_evictable(struct page *page, struct vm_area_struct *vma)
3518 {
3519
3520 if (mapping_unevictable(page_mapping(page)))
3521 return 0;
3522
3523 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3524 return 0;
3525
3526 return 1;
3527 }
3528
3529 #ifdef CONFIG_SHMEM
3530 /**
3531 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3532 * @pages: array of pages to check
3533 * @nr_pages: number of pages to check
3534 *
3535 * Checks pages for evictability and moves them to the appropriate lru list.
3536 *
3537 * This function is only used for SysV IPC SHM_UNLOCK.
3538 */
3539 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3540 {
3541 struct lruvec *lruvec;
3542 struct zone *zone = NULL;
3543 int pgscanned = 0;
3544 int pgrescued = 0;
3545 int i;
3546
3547 for (i = 0; i < nr_pages; i++) {
3548 struct page *page = pages[i];
3549 struct zone *pagezone;
3550
3551 pgscanned++;
3552 pagezone = page_zone(page);
3553 if (pagezone != zone) {
3554 if (zone)
3555 spin_unlock_irq(&zone->lru_lock);
3556 zone = pagezone;
3557 spin_lock_irq(&zone->lru_lock);
3558 }
3559
3560 if (!PageLRU(page) || !PageUnevictable(page))
3561 continue;
3562
3563 if (page_evictable(page, NULL)) {
3564 enum lru_list lru = page_lru_base_type(page);
3565
3566 VM_BUG_ON(PageActive(page));
3567 ClearPageUnevictable(page);
3568 __dec_zone_state(zone, NR_UNEVICTABLE);
3569 lruvec = mem_cgroup_lru_move_lists(zone, page,
3570 LRU_UNEVICTABLE, lru);
3571 list_move(&page->lru, &lruvec->lists[lru]);
3572 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3573 pgrescued++;
3574 }
3575 }
3576
3577 if (zone) {
3578 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3579 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3580 spin_unlock_irq(&zone->lru_lock);
3581 }
3582 }
3583 #endif /* CONFIG_SHMEM */
3584
3585 static void warn_scan_unevictable_pages(void)
3586 {
3587 printk_once(KERN_WARNING
3588 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3589 "disabled for lack of a legitimate use case. If you have "
3590 "one, please send an email to linux-mm@kvack.org.\n",
3591 current->comm);
3592 }
3593
3594 /*
3595 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3596 * all nodes' unevictable lists for evictable pages
3597 */
3598 unsigned long scan_unevictable_pages;
3599
3600 int scan_unevictable_handler(struct ctl_table *table, int write,
3601 void __user *buffer,
3602 size_t *length, loff_t *ppos)
3603 {
3604 warn_scan_unevictable_pages();
3605 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3606 scan_unevictable_pages = 0;
3607 return 0;
3608 }
3609
3610 #ifdef CONFIG_NUMA
3611 /*
3612 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3613 * a specified node's per zone unevictable lists for evictable pages.
3614 */
3615
3616 static ssize_t read_scan_unevictable_node(struct device *dev,
3617 struct device_attribute *attr,
3618 char *buf)
3619 {
3620 warn_scan_unevictable_pages();
3621 return sprintf(buf, "0\n"); /* always zero; should fit... */
3622 }
3623
3624 static ssize_t write_scan_unevictable_node(struct device *dev,
3625 struct device_attribute *attr,
3626 const char *buf, size_t count)
3627 {
3628 warn_scan_unevictable_pages();
3629 return 1;
3630 }
3631
3632
3633 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3634 read_scan_unevictable_node,
3635 write_scan_unevictable_node);
3636
3637 int scan_unevictable_register_node(struct node *node)
3638 {
3639 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3640 }
3641
3642 void scan_unevictable_unregister_node(struct node *node)
3643 {
3644 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3645 }
3646 #endif
This page took 0.102625 seconds and 6 git commands to generate.