Merge branch 'master' of git+ssh://git.samba.org/data/git/sfrench/cifs-2.6
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
67 */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
85 unsigned long hibernation_mode;
86
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
89
90 int may_writepage;
91
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
94
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
98 int order;
99
100 /*
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
103 */
104 reclaim_mode_t reclaim_mode;
105
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
114 };
115
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
131
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
145
146 /*
147 * From 0 .. 100. Higher means more swappy.
148 */
149 int vm_swappiness = 60;
150 long vm_total_pages; /* The total number of pages which the VM controls */
151
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
154
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
160
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163 {
164 if (!scanning_global_lru(sc))
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
167 return &zone->reclaim_stat;
168 }
169
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
172 {
173 if (!scanning_global_lru(sc))
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
176
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182 * Add a shrinker callback to be called from the vm
183 */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186 atomic_long_set(&shrinker->nr_in_batch, 0);
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194 * Remove one
195 */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207 {
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
229 *
230 * Returns the number of slab objects which we shrunk.
231 */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233 unsigned long nr_pages_scanned,
234 unsigned long lru_pages)
235 {
236 struct shrinker *shrinker;
237 unsigned long ret = 0;
238
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
250 long total_scan;
251 long max_pass;
252 int shrink_ret = 0;
253 long nr;
254 long new_nr;
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
257
258 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259 if (max_pass <= 0)
260 continue;
261
262 /*
263 * copy the current shrinker scan count into a local variable
264 * and zero it so that other concurrent shrinker invocations
265 * don't also do this scanning work.
266 */
267 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268
269 total_scan = nr;
270 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271 delta *= max_pass;
272 do_div(delta, lru_pages + 1);
273 total_scan += delta;
274 if (total_scan < 0) {
275 printk(KERN_ERR "shrink_slab: %pF negative objects to "
276 "delete nr=%ld\n",
277 shrinker->shrink, total_scan);
278 total_scan = max_pass;
279 }
280
281 /*
282 * We need to avoid excessive windup on filesystem shrinkers
283 * due to large numbers of GFP_NOFS allocations causing the
284 * shrinkers to return -1 all the time. This results in a large
285 * nr being built up so when a shrink that can do some work
286 * comes along it empties the entire cache due to nr >>>
287 * max_pass. This is bad for sustaining a working set in
288 * memory.
289 *
290 * Hence only allow the shrinker to scan the entire cache when
291 * a large delta change is calculated directly.
292 */
293 if (delta < max_pass / 4)
294 total_scan = min(total_scan, max_pass / 2);
295
296 /*
297 * Avoid risking looping forever due to too large nr value:
298 * never try to free more than twice the estimate number of
299 * freeable entries.
300 */
301 if (total_scan > max_pass * 2)
302 total_scan = max_pass * 2;
303
304 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305 nr_pages_scanned, lru_pages,
306 max_pass, delta, total_scan);
307
308 while (total_scan >= batch_size) {
309 int nr_before;
310
311 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312 shrink_ret = do_shrinker_shrink(shrinker, shrink,
313 batch_size);
314 if (shrink_ret == -1)
315 break;
316 if (shrink_ret < nr_before)
317 ret += nr_before - shrink_ret;
318 count_vm_events(SLABS_SCANNED, batch_size);
319 total_scan -= batch_size;
320
321 cond_resched();
322 }
323
324 /*
325 * move the unused scan count back into the shrinker in a
326 * manner that handles concurrent updates. If we exhausted the
327 * scan, there is no need to do an update.
328 */
329 if (total_scan > 0)
330 new_nr = atomic_long_add_return(total_scan,
331 &shrinker->nr_in_batch);
332 else
333 new_nr = atomic_long_read(&shrinker->nr_in_batch);
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336 }
337 up_read(&shrinker_rwsem);
338 out:
339 cond_resched();
340 return ret;
341 }
342
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344 bool sync)
345 {
346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
347
348 /*
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
352 */
353 if (COMPACTION_BUILD)
354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355 else
356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
357
358 /*
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
362 */
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364 sc->reclaim_mode |= syncmode;
365 else if (sc->order && priority < DEF_PRIORITY - 2)
366 sc->reclaim_mode |= syncmode;
367 else
368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
369 }
370
371 static void reset_reclaim_mode(struct scan_control *sc)
372 {
373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
374 }
375
376 static inline int is_page_cache_freeable(struct page *page)
377 {
378 /*
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
382 */
383 return page_count(page) - page_has_private(page) == 2;
384 }
385
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
388 {
389 if (current->flags & PF_SWAPWRITE)
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
395
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
399 return 0;
400 }
401
402 /*
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414 static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
416 {
417 lock_page(page);
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
420 unlock_page(page);
421 }
422
423 /* possible outcome of pageout() */
424 typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433 } pageout_t;
434
435 /*
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
438 */
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440 struct scan_control *sc)
441 {
442 /*
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
448 *
449 * If this process is currently in __generic_file_aio_write() against
450 * this page's queue, we can perform writeback even if that
451 * will block.
452 *
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
457 */
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
461 /*
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
464 */
465 if (page_has_private(page)) {
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
468 printk("%s: orphaned page\n", __func__);
469 return PAGE_CLEAN;
470 }
471 }
472 return PAGE_KEEP;
473 }
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
477 return PAGE_KEEP;
478
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
484 .range_start = 0,
485 .range_end = LLONG_MAX,
486 .for_reclaim = 1,
487 };
488
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
493 if (res == AOP_WRITEPAGE_ACTIVATE) {
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
496 }
497
498 if (!PageWriteback(page)) {
499 /* synchronous write or broken a_ops? */
500 ClearPageReclaim(page);
501 }
502 trace_mm_vmscan_writepage(page,
503 trace_reclaim_flags(page, sc->reclaim_mode));
504 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505 return PAGE_SUCCESS;
506 }
507
508 return PAGE_CLEAN;
509 }
510
511 /*
512 * Same as remove_mapping, but if the page is removed from the mapping, it
513 * gets returned with a refcount of 0.
514 */
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
516 {
517 BUG_ON(!PageLocked(page));
518 BUG_ON(mapping != page_mapping(page));
519
520 spin_lock_irq(&mapping->tree_lock);
521 /*
522 * The non racy check for a busy page.
523 *
524 * Must be careful with the order of the tests. When someone has
525 * a ref to the page, it may be possible that they dirty it then
526 * drop the reference. So if PageDirty is tested before page_count
527 * here, then the following race may occur:
528 *
529 * get_user_pages(&page);
530 * [user mapping goes away]
531 * write_to(page);
532 * !PageDirty(page) [good]
533 * SetPageDirty(page);
534 * put_page(page);
535 * !page_count(page) [good, discard it]
536 *
537 * [oops, our write_to data is lost]
538 *
539 * Reversing the order of the tests ensures such a situation cannot
540 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541 * load is not satisfied before that of page->_count.
542 *
543 * Note that if SetPageDirty is always performed via set_page_dirty,
544 * and thus under tree_lock, then this ordering is not required.
545 */
546 if (!page_freeze_refs(page, 2))
547 goto cannot_free;
548 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549 if (unlikely(PageDirty(page))) {
550 page_unfreeze_refs(page, 2);
551 goto cannot_free;
552 }
553
554 if (PageSwapCache(page)) {
555 swp_entry_t swap = { .val = page_private(page) };
556 __delete_from_swap_cache(page);
557 spin_unlock_irq(&mapping->tree_lock);
558 swapcache_free(swap, page);
559 } else {
560 void (*freepage)(struct page *);
561
562 freepage = mapping->a_ops->freepage;
563
564 __delete_from_page_cache(page);
565 spin_unlock_irq(&mapping->tree_lock);
566 mem_cgroup_uncharge_cache_page(page);
567
568 if (freepage != NULL)
569 freepage(page);
570 }
571
572 return 1;
573
574 cannot_free:
575 spin_unlock_irq(&mapping->tree_lock);
576 return 0;
577 }
578
579 /*
580 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
581 * someone else has a ref on the page, abort and return 0. If it was
582 * successfully detached, return 1. Assumes the caller has a single ref on
583 * this page.
584 */
585 int remove_mapping(struct address_space *mapping, struct page *page)
586 {
587 if (__remove_mapping(mapping, page)) {
588 /*
589 * Unfreezing the refcount with 1 rather than 2 effectively
590 * drops the pagecache ref for us without requiring another
591 * atomic operation.
592 */
593 page_unfreeze_refs(page, 1);
594 return 1;
595 }
596 return 0;
597 }
598
599 /**
600 * putback_lru_page - put previously isolated page onto appropriate LRU list
601 * @page: page to be put back to appropriate lru list
602 *
603 * Add previously isolated @page to appropriate LRU list.
604 * Page may still be unevictable for other reasons.
605 *
606 * lru_lock must not be held, interrupts must be enabled.
607 */
608 void putback_lru_page(struct page *page)
609 {
610 int lru;
611 int active = !!TestClearPageActive(page);
612 int was_unevictable = PageUnevictable(page);
613
614 VM_BUG_ON(PageLRU(page));
615
616 redo:
617 ClearPageUnevictable(page);
618
619 if (page_evictable(page, NULL)) {
620 /*
621 * For evictable pages, we can use the cache.
622 * In event of a race, worst case is we end up with an
623 * unevictable page on [in]active list.
624 * We know how to handle that.
625 */
626 lru = active + page_lru_base_type(page);
627 lru_cache_add_lru(page, lru);
628 } else {
629 /*
630 * Put unevictable pages directly on zone's unevictable
631 * list.
632 */
633 lru = LRU_UNEVICTABLE;
634 add_page_to_unevictable_list(page);
635 /*
636 * When racing with an mlock or AS_UNEVICTABLE clearing
637 * (page is unlocked) make sure that if the other thread
638 * does not observe our setting of PG_lru and fails
639 * isolation/check_move_unevictable_page,
640 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641 * the page back to the evictable list.
642 *
643 * The other side is TestClearPageMlocked() or shmem_lock().
644 */
645 smp_mb();
646 }
647
648 /*
649 * page's status can change while we move it among lru. If an evictable
650 * page is on unevictable list, it never be freed. To avoid that,
651 * check after we added it to the list, again.
652 */
653 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654 if (!isolate_lru_page(page)) {
655 put_page(page);
656 goto redo;
657 }
658 /* This means someone else dropped this page from LRU
659 * So, it will be freed or putback to LRU again. There is
660 * nothing to do here.
661 */
662 }
663
664 if (was_unevictable && lru != LRU_UNEVICTABLE)
665 count_vm_event(UNEVICTABLE_PGRESCUED);
666 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667 count_vm_event(UNEVICTABLE_PGCULLED);
668
669 put_page(page); /* drop ref from isolate */
670 }
671
672 enum page_references {
673 PAGEREF_RECLAIM,
674 PAGEREF_RECLAIM_CLEAN,
675 PAGEREF_KEEP,
676 PAGEREF_ACTIVATE,
677 };
678
679 static enum page_references page_check_references(struct page *page,
680 struct scan_control *sc)
681 {
682 int referenced_ptes, referenced_page;
683 unsigned long vm_flags;
684
685 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686 referenced_page = TestClearPageReferenced(page);
687
688 /* Lumpy reclaim - ignore references */
689 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690 return PAGEREF_RECLAIM;
691
692 /*
693 * Mlock lost the isolation race with us. Let try_to_unmap()
694 * move the page to the unevictable list.
695 */
696 if (vm_flags & VM_LOCKED)
697 return PAGEREF_RECLAIM;
698
699 if (referenced_ptes) {
700 if (PageAnon(page))
701 return PAGEREF_ACTIVATE;
702 /*
703 * All mapped pages start out with page table
704 * references from the instantiating fault, so we need
705 * to look twice if a mapped file page is used more
706 * than once.
707 *
708 * Mark it and spare it for another trip around the
709 * inactive list. Another page table reference will
710 * lead to its activation.
711 *
712 * Note: the mark is set for activated pages as well
713 * so that recently deactivated but used pages are
714 * quickly recovered.
715 */
716 SetPageReferenced(page);
717
718 if (referenced_page || referenced_ptes > 1)
719 return PAGEREF_ACTIVATE;
720
721 /*
722 * Activate file-backed executable pages after first usage.
723 */
724 if (vm_flags & VM_EXEC)
725 return PAGEREF_ACTIVATE;
726
727 return PAGEREF_KEEP;
728 }
729
730 /* Reclaim if clean, defer dirty pages to writeback */
731 if (referenced_page && !PageSwapBacked(page))
732 return PAGEREF_RECLAIM_CLEAN;
733
734 return PAGEREF_RECLAIM;
735 }
736
737 /*
738 * shrink_page_list() returns the number of reclaimed pages
739 */
740 static unsigned long shrink_page_list(struct list_head *page_list,
741 struct zone *zone,
742 struct scan_control *sc,
743 int priority,
744 unsigned long *ret_nr_dirty,
745 unsigned long *ret_nr_writeback)
746 {
747 LIST_HEAD(ret_pages);
748 LIST_HEAD(free_pages);
749 int pgactivate = 0;
750 unsigned long nr_dirty = 0;
751 unsigned long nr_congested = 0;
752 unsigned long nr_reclaimed = 0;
753 unsigned long nr_writeback = 0;
754
755 cond_resched();
756
757 while (!list_empty(page_list)) {
758 enum page_references references;
759 struct address_space *mapping;
760 struct page *page;
761 int may_enter_fs;
762
763 cond_resched();
764
765 page = lru_to_page(page_list);
766 list_del(&page->lru);
767
768 if (!trylock_page(page))
769 goto keep;
770
771 VM_BUG_ON(PageActive(page));
772 VM_BUG_ON(page_zone(page) != zone);
773
774 sc->nr_scanned++;
775
776 if (unlikely(!page_evictable(page, NULL)))
777 goto cull_mlocked;
778
779 if (!sc->may_unmap && page_mapped(page))
780 goto keep_locked;
781
782 /* Double the slab pressure for mapped and swapcache pages */
783 if (page_mapped(page) || PageSwapCache(page))
784 sc->nr_scanned++;
785
786 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
787 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
788
789 if (PageWriteback(page)) {
790 nr_writeback++;
791 /*
792 * Synchronous reclaim cannot queue pages for
793 * writeback due to the possibility of stack overflow
794 * but if it encounters a page under writeback, wait
795 * for the IO to complete.
796 */
797 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
798 may_enter_fs)
799 wait_on_page_writeback(page);
800 else {
801 unlock_page(page);
802 goto keep_lumpy;
803 }
804 }
805
806 references = page_check_references(page, sc);
807 switch (references) {
808 case PAGEREF_ACTIVATE:
809 goto activate_locked;
810 case PAGEREF_KEEP:
811 goto keep_locked;
812 case PAGEREF_RECLAIM:
813 case PAGEREF_RECLAIM_CLEAN:
814 ; /* try to reclaim the page below */
815 }
816
817 /*
818 * Anonymous process memory has backing store?
819 * Try to allocate it some swap space here.
820 */
821 if (PageAnon(page) && !PageSwapCache(page)) {
822 if (!(sc->gfp_mask & __GFP_IO))
823 goto keep_locked;
824 if (!add_to_swap(page))
825 goto activate_locked;
826 may_enter_fs = 1;
827 }
828
829 mapping = page_mapping(page);
830
831 /*
832 * The page is mapped into the page tables of one or more
833 * processes. Try to unmap it here.
834 */
835 if (page_mapped(page) && mapping) {
836 switch (try_to_unmap(page, TTU_UNMAP)) {
837 case SWAP_FAIL:
838 goto activate_locked;
839 case SWAP_AGAIN:
840 goto keep_locked;
841 case SWAP_MLOCK:
842 goto cull_mlocked;
843 case SWAP_SUCCESS:
844 ; /* try to free the page below */
845 }
846 }
847
848 if (PageDirty(page)) {
849 nr_dirty++;
850
851 /*
852 * Only kswapd can writeback filesystem pages to
853 * avoid risk of stack overflow but do not writeback
854 * unless under significant pressure.
855 */
856 if (page_is_file_cache(page) &&
857 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
858 /*
859 * Immediately reclaim when written back.
860 * Similar in principal to deactivate_page()
861 * except we already have the page isolated
862 * and know it's dirty
863 */
864 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
865 SetPageReclaim(page);
866
867 goto keep_locked;
868 }
869
870 if (references == PAGEREF_RECLAIM_CLEAN)
871 goto keep_locked;
872 if (!may_enter_fs)
873 goto keep_locked;
874 if (!sc->may_writepage)
875 goto keep_locked;
876
877 /* Page is dirty, try to write it out here */
878 switch (pageout(page, mapping, sc)) {
879 case PAGE_KEEP:
880 nr_congested++;
881 goto keep_locked;
882 case PAGE_ACTIVATE:
883 goto activate_locked;
884 case PAGE_SUCCESS:
885 if (PageWriteback(page))
886 goto keep_lumpy;
887 if (PageDirty(page))
888 goto keep;
889
890 /*
891 * A synchronous write - probably a ramdisk. Go
892 * ahead and try to reclaim the page.
893 */
894 if (!trylock_page(page))
895 goto keep;
896 if (PageDirty(page) || PageWriteback(page))
897 goto keep_locked;
898 mapping = page_mapping(page);
899 case PAGE_CLEAN:
900 ; /* try to free the page below */
901 }
902 }
903
904 /*
905 * If the page has buffers, try to free the buffer mappings
906 * associated with this page. If we succeed we try to free
907 * the page as well.
908 *
909 * We do this even if the page is PageDirty().
910 * try_to_release_page() does not perform I/O, but it is
911 * possible for a page to have PageDirty set, but it is actually
912 * clean (all its buffers are clean). This happens if the
913 * buffers were written out directly, with submit_bh(). ext3
914 * will do this, as well as the blockdev mapping.
915 * try_to_release_page() will discover that cleanness and will
916 * drop the buffers and mark the page clean - it can be freed.
917 *
918 * Rarely, pages can have buffers and no ->mapping. These are
919 * the pages which were not successfully invalidated in
920 * truncate_complete_page(). We try to drop those buffers here
921 * and if that worked, and the page is no longer mapped into
922 * process address space (page_count == 1) it can be freed.
923 * Otherwise, leave the page on the LRU so it is swappable.
924 */
925 if (page_has_private(page)) {
926 if (!try_to_release_page(page, sc->gfp_mask))
927 goto activate_locked;
928 if (!mapping && page_count(page) == 1) {
929 unlock_page(page);
930 if (put_page_testzero(page))
931 goto free_it;
932 else {
933 /*
934 * rare race with speculative reference.
935 * the speculative reference will free
936 * this page shortly, so we may
937 * increment nr_reclaimed here (and
938 * leave it off the LRU).
939 */
940 nr_reclaimed++;
941 continue;
942 }
943 }
944 }
945
946 if (!mapping || !__remove_mapping(mapping, page))
947 goto keep_locked;
948
949 /*
950 * At this point, we have no other references and there is
951 * no way to pick any more up (removed from LRU, removed
952 * from pagecache). Can use non-atomic bitops now (and
953 * we obviously don't have to worry about waking up a process
954 * waiting on the page lock, because there are no references.
955 */
956 __clear_page_locked(page);
957 free_it:
958 nr_reclaimed++;
959
960 /*
961 * Is there need to periodically free_page_list? It would
962 * appear not as the counts should be low
963 */
964 list_add(&page->lru, &free_pages);
965 continue;
966
967 cull_mlocked:
968 if (PageSwapCache(page))
969 try_to_free_swap(page);
970 unlock_page(page);
971 putback_lru_page(page);
972 reset_reclaim_mode(sc);
973 continue;
974
975 activate_locked:
976 /* Not a candidate for swapping, so reclaim swap space. */
977 if (PageSwapCache(page) && vm_swap_full())
978 try_to_free_swap(page);
979 VM_BUG_ON(PageActive(page));
980 SetPageActive(page);
981 pgactivate++;
982 keep_locked:
983 unlock_page(page);
984 keep:
985 reset_reclaim_mode(sc);
986 keep_lumpy:
987 list_add(&page->lru, &ret_pages);
988 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
989 }
990
991 /*
992 * Tag a zone as congested if all the dirty pages encountered were
993 * backed by a congested BDI. In this case, reclaimers should just
994 * back off and wait for congestion to clear because further reclaim
995 * will encounter the same problem
996 */
997 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
998 zone_set_flag(zone, ZONE_CONGESTED);
999
1000 free_hot_cold_page_list(&free_pages, 1);
1001
1002 list_splice(&ret_pages, page_list);
1003 count_vm_events(PGACTIVATE, pgactivate);
1004 *ret_nr_dirty += nr_dirty;
1005 *ret_nr_writeback += nr_writeback;
1006 return nr_reclaimed;
1007 }
1008
1009 /*
1010 * Attempt to remove the specified page from its LRU. Only take this page
1011 * if it is of the appropriate PageActive status. Pages which are being
1012 * freed elsewhere are also ignored.
1013 *
1014 * page: page to consider
1015 * mode: one of the LRU isolation modes defined above
1016 *
1017 * returns 0 on success, -ve errno on failure.
1018 */
1019 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1020 {
1021 bool all_lru_mode;
1022 int ret = -EINVAL;
1023
1024 /* Only take pages on the LRU. */
1025 if (!PageLRU(page))
1026 return ret;
1027
1028 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1029 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1030
1031 /*
1032 * When checking the active state, we need to be sure we are
1033 * dealing with comparible boolean values. Take the logical not
1034 * of each.
1035 */
1036 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1037 return ret;
1038
1039 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1040 return ret;
1041
1042 /*
1043 * When this function is being called for lumpy reclaim, we
1044 * initially look into all LRU pages, active, inactive and
1045 * unevictable; only give shrink_page_list evictable pages.
1046 */
1047 if (PageUnevictable(page))
1048 return ret;
1049
1050 ret = -EBUSY;
1051
1052 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1053 return ret;
1054
1055 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1056 return ret;
1057
1058 if (likely(get_page_unless_zero(page))) {
1059 /*
1060 * Be careful not to clear PageLRU until after we're
1061 * sure the page is not being freed elsewhere -- the
1062 * page release code relies on it.
1063 */
1064 ClearPageLRU(page);
1065 ret = 0;
1066 }
1067
1068 return ret;
1069 }
1070
1071 /*
1072 * zone->lru_lock is heavily contended. Some of the functions that
1073 * shrink the lists perform better by taking out a batch of pages
1074 * and working on them outside the LRU lock.
1075 *
1076 * For pagecache intensive workloads, this function is the hottest
1077 * spot in the kernel (apart from copy_*_user functions).
1078 *
1079 * Appropriate locks must be held before calling this function.
1080 *
1081 * @nr_to_scan: The number of pages to look through on the list.
1082 * @src: The LRU list to pull pages off.
1083 * @dst: The temp list to put pages on to.
1084 * @scanned: The number of pages that were scanned.
1085 * @order: The caller's attempted allocation order
1086 * @mode: One of the LRU isolation modes
1087 * @file: True [1] if isolating file [!anon] pages
1088 *
1089 * returns how many pages were moved onto *@dst.
1090 */
1091 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1092 struct list_head *src, struct list_head *dst,
1093 unsigned long *scanned, int order, isolate_mode_t mode,
1094 int file)
1095 {
1096 unsigned long nr_taken = 0;
1097 unsigned long nr_lumpy_taken = 0;
1098 unsigned long nr_lumpy_dirty = 0;
1099 unsigned long nr_lumpy_failed = 0;
1100 unsigned long scan;
1101
1102 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1103 struct page *page;
1104 unsigned long pfn;
1105 unsigned long end_pfn;
1106 unsigned long page_pfn;
1107 int zone_id;
1108
1109 page = lru_to_page(src);
1110 prefetchw_prev_lru_page(page, src, flags);
1111
1112 VM_BUG_ON(!PageLRU(page));
1113
1114 switch (__isolate_lru_page(page, mode, file)) {
1115 case 0:
1116 list_move(&page->lru, dst);
1117 mem_cgroup_del_lru(page);
1118 nr_taken += hpage_nr_pages(page);
1119 break;
1120
1121 case -EBUSY:
1122 /* else it is being freed elsewhere */
1123 list_move(&page->lru, src);
1124 mem_cgroup_rotate_lru_list(page, page_lru(page));
1125 continue;
1126
1127 default:
1128 BUG();
1129 }
1130
1131 if (!order)
1132 continue;
1133
1134 /*
1135 * Attempt to take all pages in the order aligned region
1136 * surrounding the tag page. Only take those pages of
1137 * the same active state as that tag page. We may safely
1138 * round the target page pfn down to the requested order
1139 * as the mem_map is guaranteed valid out to MAX_ORDER,
1140 * where that page is in a different zone we will detect
1141 * it from its zone id and abort this block scan.
1142 */
1143 zone_id = page_zone_id(page);
1144 page_pfn = page_to_pfn(page);
1145 pfn = page_pfn & ~((1 << order) - 1);
1146 end_pfn = pfn + (1 << order);
1147 for (; pfn < end_pfn; pfn++) {
1148 struct page *cursor_page;
1149
1150 /* The target page is in the block, ignore it. */
1151 if (unlikely(pfn == page_pfn))
1152 continue;
1153
1154 /* Avoid holes within the zone. */
1155 if (unlikely(!pfn_valid_within(pfn)))
1156 break;
1157
1158 cursor_page = pfn_to_page(pfn);
1159
1160 /* Check that we have not crossed a zone boundary. */
1161 if (unlikely(page_zone_id(cursor_page) != zone_id))
1162 break;
1163
1164 /*
1165 * If we don't have enough swap space, reclaiming of
1166 * anon page which don't already have a swap slot is
1167 * pointless.
1168 */
1169 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1170 !PageSwapCache(cursor_page))
1171 break;
1172
1173 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1174 list_move(&cursor_page->lru, dst);
1175 mem_cgroup_del_lru(cursor_page);
1176 nr_taken += hpage_nr_pages(cursor_page);
1177 nr_lumpy_taken++;
1178 if (PageDirty(cursor_page))
1179 nr_lumpy_dirty++;
1180 scan++;
1181 } else {
1182 /*
1183 * Check if the page is freed already.
1184 *
1185 * We can't use page_count() as that
1186 * requires compound_head and we don't
1187 * have a pin on the page here. If a
1188 * page is tail, we may or may not
1189 * have isolated the head, so assume
1190 * it's not free, it'd be tricky to
1191 * track the head status without a
1192 * page pin.
1193 */
1194 if (!PageTail(cursor_page) &&
1195 !atomic_read(&cursor_page->_count))
1196 continue;
1197 break;
1198 }
1199 }
1200
1201 /* If we break out of the loop above, lumpy reclaim failed */
1202 if (pfn < end_pfn)
1203 nr_lumpy_failed++;
1204 }
1205
1206 *scanned = scan;
1207
1208 trace_mm_vmscan_lru_isolate(order,
1209 nr_to_scan, scan,
1210 nr_taken,
1211 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1212 mode);
1213 return nr_taken;
1214 }
1215
1216 static unsigned long isolate_pages_global(unsigned long nr,
1217 struct list_head *dst,
1218 unsigned long *scanned, int order,
1219 isolate_mode_t mode,
1220 struct zone *z, int active, int file)
1221 {
1222 int lru = LRU_BASE;
1223 if (active)
1224 lru += LRU_ACTIVE;
1225 if (file)
1226 lru += LRU_FILE;
1227 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1228 mode, file);
1229 }
1230
1231 /*
1232 * clear_active_flags() is a helper for shrink_active_list(), clearing
1233 * any active bits from the pages in the list.
1234 */
1235 static unsigned long clear_active_flags(struct list_head *page_list,
1236 unsigned int *count)
1237 {
1238 int nr_active = 0;
1239 int lru;
1240 struct page *page;
1241
1242 list_for_each_entry(page, page_list, lru) {
1243 int numpages = hpage_nr_pages(page);
1244 lru = page_lru_base_type(page);
1245 if (PageActive(page)) {
1246 lru += LRU_ACTIVE;
1247 ClearPageActive(page);
1248 nr_active += numpages;
1249 }
1250 if (count)
1251 count[lru] += numpages;
1252 }
1253
1254 return nr_active;
1255 }
1256
1257 /**
1258 * isolate_lru_page - tries to isolate a page from its LRU list
1259 * @page: page to isolate from its LRU list
1260 *
1261 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1262 * vmstat statistic corresponding to whatever LRU list the page was on.
1263 *
1264 * Returns 0 if the page was removed from an LRU list.
1265 * Returns -EBUSY if the page was not on an LRU list.
1266 *
1267 * The returned page will have PageLRU() cleared. If it was found on
1268 * the active list, it will have PageActive set. If it was found on
1269 * the unevictable list, it will have the PageUnevictable bit set. That flag
1270 * may need to be cleared by the caller before letting the page go.
1271 *
1272 * The vmstat statistic corresponding to the list on which the page was
1273 * found will be decremented.
1274 *
1275 * Restrictions:
1276 * (1) Must be called with an elevated refcount on the page. This is a
1277 * fundamentnal difference from isolate_lru_pages (which is called
1278 * without a stable reference).
1279 * (2) the lru_lock must not be held.
1280 * (3) interrupts must be enabled.
1281 */
1282 int isolate_lru_page(struct page *page)
1283 {
1284 int ret = -EBUSY;
1285
1286 VM_BUG_ON(!page_count(page));
1287
1288 if (PageLRU(page)) {
1289 struct zone *zone = page_zone(page);
1290
1291 spin_lock_irq(&zone->lru_lock);
1292 if (PageLRU(page)) {
1293 int lru = page_lru(page);
1294 ret = 0;
1295 get_page(page);
1296 ClearPageLRU(page);
1297
1298 del_page_from_lru_list(zone, page, lru);
1299 }
1300 spin_unlock_irq(&zone->lru_lock);
1301 }
1302 return ret;
1303 }
1304
1305 /*
1306 * Are there way too many processes in the direct reclaim path already?
1307 */
1308 static int too_many_isolated(struct zone *zone, int file,
1309 struct scan_control *sc)
1310 {
1311 unsigned long inactive, isolated;
1312
1313 if (current_is_kswapd())
1314 return 0;
1315
1316 if (!scanning_global_lru(sc))
1317 return 0;
1318
1319 if (file) {
1320 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1321 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1322 } else {
1323 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1324 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1325 }
1326
1327 return isolated > inactive;
1328 }
1329
1330 /*
1331 * TODO: Try merging with migrations version of putback_lru_pages
1332 */
1333 static noinline_for_stack void
1334 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1335 unsigned long nr_anon, unsigned long nr_file,
1336 struct list_head *page_list)
1337 {
1338 struct page *page;
1339 struct pagevec pvec;
1340 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1341
1342 pagevec_init(&pvec, 1);
1343
1344 /*
1345 * Put back any unfreeable pages.
1346 */
1347 spin_lock(&zone->lru_lock);
1348 while (!list_empty(page_list)) {
1349 int lru;
1350 page = lru_to_page(page_list);
1351 VM_BUG_ON(PageLRU(page));
1352 list_del(&page->lru);
1353 if (unlikely(!page_evictable(page, NULL))) {
1354 spin_unlock_irq(&zone->lru_lock);
1355 putback_lru_page(page);
1356 spin_lock_irq(&zone->lru_lock);
1357 continue;
1358 }
1359 SetPageLRU(page);
1360 lru = page_lru(page);
1361 add_page_to_lru_list(zone, page, lru);
1362 if (is_active_lru(lru)) {
1363 int file = is_file_lru(lru);
1364 int numpages = hpage_nr_pages(page);
1365 reclaim_stat->recent_rotated[file] += numpages;
1366 }
1367 if (!pagevec_add(&pvec, page)) {
1368 spin_unlock_irq(&zone->lru_lock);
1369 __pagevec_release(&pvec);
1370 spin_lock_irq(&zone->lru_lock);
1371 }
1372 }
1373 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1374 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1375
1376 spin_unlock_irq(&zone->lru_lock);
1377 pagevec_release(&pvec);
1378 }
1379
1380 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1381 struct scan_control *sc,
1382 unsigned long *nr_anon,
1383 unsigned long *nr_file,
1384 struct list_head *isolated_list)
1385 {
1386 unsigned long nr_active;
1387 unsigned int count[NR_LRU_LISTS] = { 0, };
1388 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1389
1390 nr_active = clear_active_flags(isolated_list, count);
1391 __count_vm_events(PGDEACTIVATE, nr_active);
1392
1393 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1394 -count[LRU_ACTIVE_FILE]);
1395 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1396 -count[LRU_INACTIVE_FILE]);
1397 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1398 -count[LRU_ACTIVE_ANON]);
1399 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1400 -count[LRU_INACTIVE_ANON]);
1401
1402 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1403 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1404 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1405 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1406
1407 reclaim_stat->recent_scanned[0] += *nr_anon;
1408 reclaim_stat->recent_scanned[1] += *nr_file;
1409 }
1410
1411 /*
1412 * Returns true if a direct reclaim should wait on pages under writeback.
1413 *
1414 * If we are direct reclaiming for contiguous pages and we do not reclaim
1415 * everything in the list, try again and wait for writeback IO to complete.
1416 * This will stall high-order allocations noticeably. Only do that when really
1417 * need to free the pages under high memory pressure.
1418 */
1419 static inline bool should_reclaim_stall(unsigned long nr_taken,
1420 unsigned long nr_freed,
1421 int priority,
1422 struct scan_control *sc)
1423 {
1424 int lumpy_stall_priority;
1425
1426 /* kswapd should not stall on sync IO */
1427 if (current_is_kswapd())
1428 return false;
1429
1430 /* Only stall on lumpy reclaim */
1431 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1432 return false;
1433
1434 /* If we have reclaimed everything on the isolated list, no stall */
1435 if (nr_freed == nr_taken)
1436 return false;
1437
1438 /*
1439 * For high-order allocations, there are two stall thresholds.
1440 * High-cost allocations stall immediately where as lower
1441 * order allocations such as stacks require the scanning
1442 * priority to be much higher before stalling.
1443 */
1444 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1445 lumpy_stall_priority = DEF_PRIORITY;
1446 else
1447 lumpy_stall_priority = DEF_PRIORITY / 3;
1448
1449 return priority <= lumpy_stall_priority;
1450 }
1451
1452 /*
1453 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1454 * of reclaimed pages
1455 */
1456 static noinline_for_stack unsigned long
1457 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1458 struct scan_control *sc, int priority, int file)
1459 {
1460 LIST_HEAD(page_list);
1461 unsigned long nr_scanned;
1462 unsigned long nr_reclaimed = 0;
1463 unsigned long nr_taken;
1464 unsigned long nr_anon;
1465 unsigned long nr_file;
1466 unsigned long nr_dirty = 0;
1467 unsigned long nr_writeback = 0;
1468 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1469
1470 while (unlikely(too_many_isolated(zone, file, sc))) {
1471 congestion_wait(BLK_RW_ASYNC, HZ/10);
1472
1473 /* We are about to die and free our memory. Return now. */
1474 if (fatal_signal_pending(current))
1475 return SWAP_CLUSTER_MAX;
1476 }
1477
1478 set_reclaim_mode(priority, sc, false);
1479 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1480 reclaim_mode |= ISOLATE_ACTIVE;
1481
1482 lru_add_drain();
1483
1484 if (!sc->may_unmap)
1485 reclaim_mode |= ISOLATE_UNMAPPED;
1486 if (!sc->may_writepage)
1487 reclaim_mode |= ISOLATE_CLEAN;
1488
1489 spin_lock_irq(&zone->lru_lock);
1490
1491 if (scanning_global_lru(sc)) {
1492 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1493 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1494 zone->pages_scanned += nr_scanned;
1495 if (current_is_kswapd())
1496 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1497 nr_scanned);
1498 else
1499 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1500 nr_scanned);
1501 } else {
1502 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1503 &nr_scanned, sc->order, reclaim_mode, zone,
1504 sc->mem_cgroup, 0, file);
1505 /*
1506 * mem_cgroup_isolate_pages() keeps track of
1507 * scanned pages on its own.
1508 */
1509 }
1510
1511 if (nr_taken == 0) {
1512 spin_unlock_irq(&zone->lru_lock);
1513 return 0;
1514 }
1515
1516 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1517
1518 spin_unlock_irq(&zone->lru_lock);
1519
1520 nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1521 &nr_dirty, &nr_writeback);
1522
1523 /* Check if we should syncronously wait for writeback */
1524 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1525 set_reclaim_mode(priority, sc, true);
1526 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1527 priority, &nr_dirty, &nr_writeback);
1528 }
1529
1530 local_irq_disable();
1531 if (current_is_kswapd())
1532 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1533 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1534
1535 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1536
1537 /*
1538 * If reclaim is isolating dirty pages under writeback, it implies
1539 * that the long-lived page allocation rate is exceeding the page
1540 * laundering rate. Either the global limits are not being effective
1541 * at throttling processes due to the page distribution throughout
1542 * zones or there is heavy usage of a slow backing device. The
1543 * only option is to throttle from reclaim context which is not ideal
1544 * as there is no guarantee the dirtying process is throttled in the
1545 * same way balance_dirty_pages() manages.
1546 *
1547 * This scales the number of dirty pages that must be under writeback
1548 * before throttling depending on priority. It is a simple backoff
1549 * function that has the most effect in the range DEF_PRIORITY to
1550 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1551 * in trouble and reclaim is considered to be in trouble.
1552 *
1553 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1554 * DEF_PRIORITY-1 50% must be PageWriteback
1555 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1556 * ...
1557 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1558 * isolated page is PageWriteback
1559 */
1560 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1561 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1562
1563 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1564 zone_idx(zone),
1565 nr_scanned, nr_reclaimed,
1566 priority,
1567 trace_shrink_flags(file, sc->reclaim_mode));
1568 return nr_reclaimed;
1569 }
1570
1571 /*
1572 * This moves pages from the active list to the inactive list.
1573 *
1574 * We move them the other way if the page is referenced by one or more
1575 * processes, from rmap.
1576 *
1577 * If the pages are mostly unmapped, the processing is fast and it is
1578 * appropriate to hold zone->lru_lock across the whole operation. But if
1579 * the pages are mapped, the processing is slow (page_referenced()) so we
1580 * should drop zone->lru_lock around each page. It's impossible to balance
1581 * this, so instead we remove the pages from the LRU while processing them.
1582 * It is safe to rely on PG_active against the non-LRU pages in here because
1583 * nobody will play with that bit on a non-LRU page.
1584 *
1585 * The downside is that we have to touch page->_count against each page.
1586 * But we had to alter page->flags anyway.
1587 */
1588
1589 static void move_active_pages_to_lru(struct zone *zone,
1590 struct list_head *list,
1591 enum lru_list lru)
1592 {
1593 unsigned long pgmoved = 0;
1594 struct pagevec pvec;
1595 struct page *page;
1596
1597 pagevec_init(&pvec, 1);
1598
1599 while (!list_empty(list)) {
1600 page = lru_to_page(list);
1601
1602 VM_BUG_ON(PageLRU(page));
1603 SetPageLRU(page);
1604
1605 list_move(&page->lru, &zone->lru[lru].list);
1606 mem_cgroup_add_lru_list(page, lru);
1607 pgmoved += hpage_nr_pages(page);
1608
1609 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1610 spin_unlock_irq(&zone->lru_lock);
1611 if (buffer_heads_over_limit)
1612 pagevec_strip(&pvec);
1613 __pagevec_release(&pvec);
1614 spin_lock_irq(&zone->lru_lock);
1615 }
1616 }
1617 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1618 if (!is_active_lru(lru))
1619 __count_vm_events(PGDEACTIVATE, pgmoved);
1620 }
1621
1622 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1623 struct scan_control *sc, int priority, int file)
1624 {
1625 unsigned long nr_taken;
1626 unsigned long pgscanned;
1627 unsigned long vm_flags;
1628 LIST_HEAD(l_hold); /* The pages which were snipped off */
1629 LIST_HEAD(l_active);
1630 LIST_HEAD(l_inactive);
1631 struct page *page;
1632 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1633 unsigned long nr_rotated = 0;
1634 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1635
1636 lru_add_drain();
1637
1638 if (!sc->may_unmap)
1639 reclaim_mode |= ISOLATE_UNMAPPED;
1640 if (!sc->may_writepage)
1641 reclaim_mode |= ISOLATE_CLEAN;
1642
1643 spin_lock_irq(&zone->lru_lock);
1644 if (scanning_global_lru(sc)) {
1645 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1646 &pgscanned, sc->order,
1647 reclaim_mode, zone,
1648 1, file);
1649 zone->pages_scanned += pgscanned;
1650 } else {
1651 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1652 &pgscanned, sc->order,
1653 reclaim_mode, zone,
1654 sc->mem_cgroup, 1, file);
1655 /*
1656 * mem_cgroup_isolate_pages() keeps track of
1657 * scanned pages on its own.
1658 */
1659 }
1660
1661 reclaim_stat->recent_scanned[file] += nr_taken;
1662
1663 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1664 if (file)
1665 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1666 else
1667 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1668 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1669 spin_unlock_irq(&zone->lru_lock);
1670
1671 while (!list_empty(&l_hold)) {
1672 cond_resched();
1673 page = lru_to_page(&l_hold);
1674 list_del(&page->lru);
1675
1676 if (unlikely(!page_evictable(page, NULL))) {
1677 putback_lru_page(page);
1678 continue;
1679 }
1680
1681 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1682 nr_rotated += hpage_nr_pages(page);
1683 /*
1684 * Identify referenced, file-backed active pages and
1685 * give them one more trip around the active list. So
1686 * that executable code get better chances to stay in
1687 * memory under moderate memory pressure. Anon pages
1688 * are not likely to be evicted by use-once streaming
1689 * IO, plus JVM can create lots of anon VM_EXEC pages,
1690 * so we ignore them here.
1691 */
1692 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1693 list_add(&page->lru, &l_active);
1694 continue;
1695 }
1696 }
1697
1698 ClearPageActive(page); /* we are de-activating */
1699 list_add(&page->lru, &l_inactive);
1700 }
1701
1702 /*
1703 * Move pages back to the lru list.
1704 */
1705 spin_lock_irq(&zone->lru_lock);
1706 /*
1707 * Count referenced pages from currently used mappings as rotated,
1708 * even though only some of them are actually re-activated. This
1709 * helps balance scan pressure between file and anonymous pages in
1710 * get_scan_ratio.
1711 */
1712 reclaim_stat->recent_rotated[file] += nr_rotated;
1713
1714 move_active_pages_to_lru(zone, &l_active,
1715 LRU_ACTIVE + file * LRU_FILE);
1716 move_active_pages_to_lru(zone, &l_inactive,
1717 LRU_BASE + file * LRU_FILE);
1718 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1719 spin_unlock_irq(&zone->lru_lock);
1720 }
1721
1722 #ifdef CONFIG_SWAP
1723 static int inactive_anon_is_low_global(struct zone *zone)
1724 {
1725 unsigned long active, inactive;
1726
1727 active = zone_page_state(zone, NR_ACTIVE_ANON);
1728 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1729
1730 if (inactive * zone->inactive_ratio < active)
1731 return 1;
1732
1733 return 0;
1734 }
1735
1736 /**
1737 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1738 * @zone: zone to check
1739 * @sc: scan control of this context
1740 *
1741 * Returns true if the zone does not have enough inactive anon pages,
1742 * meaning some active anon pages need to be deactivated.
1743 */
1744 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1745 {
1746 int low;
1747
1748 /*
1749 * If we don't have swap space, anonymous page deactivation
1750 * is pointless.
1751 */
1752 if (!total_swap_pages)
1753 return 0;
1754
1755 if (scanning_global_lru(sc))
1756 low = inactive_anon_is_low_global(zone);
1757 else
1758 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1759 return low;
1760 }
1761 #else
1762 static inline int inactive_anon_is_low(struct zone *zone,
1763 struct scan_control *sc)
1764 {
1765 return 0;
1766 }
1767 #endif
1768
1769 static int inactive_file_is_low_global(struct zone *zone)
1770 {
1771 unsigned long active, inactive;
1772
1773 active = zone_page_state(zone, NR_ACTIVE_FILE);
1774 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1775
1776 return (active > inactive);
1777 }
1778
1779 /**
1780 * inactive_file_is_low - check if file pages need to be deactivated
1781 * @zone: zone to check
1782 * @sc: scan control of this context
1783 *
1784 * When the system is doing streaming IO, memory pressure here
1785 * ensures that active file pages get deactivated, until more
1786 * than half of the file pages are on the inactive list.
1787 *
1788 * Once we get to that situation, protect the system's working
1789 * set from being evicted by disabling active file page aging.
1790 *
1791 * This uses a different ratio than the anonymous pages, because
1792 * the page cache uses a use-once replacement algorithm.
1793 */
1794 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1795 {
1796 int low;
1797
1798 if (scanning_global_lru(sc))
1799 low = inactive_file_is_low_global(zone);
1800 else
1801 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1802 return low;
1803 }
1804
1805 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1806 int file)
1807 {
1808 if (file)
1809 return inactive_file_is_low(zone, sc);
1810 else
1811 return inactive_anon_is_low(zone, sc);
1812 }
1813
1814 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1815 struct zone *zone, struct scan_control *sc, int priority)
1816 {
1817 int file = is_file_lru(lru);
1818
1819 if (is_active_lru(lru)) {
1820 if (inactive_list_is_low(zone, sc, file))
1821 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1822 return 0;
1823 }
1824
1825 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1826 }
1827
1828 static int vmscan_swappiness(struct scan_control *sc)
1829 {
1830 if (scanning_global_lru(sc))
1831 return vm_swappiness;
1832 return mem_cgroup_swappiness(sc->mem_cgroup);
1833 }
1834
1835 /*
1836 * Determine how aggressively the anon and file LRU lists should be
1837 * scanned. The relative value of each set of LRU lists is determined
1838 * by looking at the fraction of the pages scanned we did rotate back
1839 * onto the active list instead of evict.
1840 *
1841 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1842 */
1843 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1844 unsigned long *nr, int priority)
1845 {
1846 unsigned long anon, file, free;
1847 unsigned long anon_prio, file_prio;
1848 unsigned long ap, fp;
1849 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1850 u64 fraction[2], denominator;
1851 enum lru_list l;
1852 int noswap = 0;
1853 bool force_scan = false;
1854
1855 /*
1856 * If the zone or memcg is small, nr[l] can be 0. This
1857 * results in no scanning on this priority and a potential
1858 * priority drop. Global direct reclaim can go to the next
1859 * zone and tends to have no problems. Global kswapd is for
1860 * zone balancing and it needs to scan a minimum amount. When
1861 * reclaiming for a memcg, a priority drop can cause high
1862 * latencies, so it's better to scan a minimum amount there as
1863 * well.
1864 */
1865 if (scanning_global_lru(sc) && current_is_kswapd())
1866 force_scan = true;
1867 if (!scanning_global_lru(sc))
1868 force_scan = true;
1869
1870 /* If we have no swap space, do not bother scanning anon pages. */
1871 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1872 noswap = 1;
1873 fraction[0] = 0;
1874 fraction[1] = 1;
1875 denominator = 1;
1876 goto out;
1877 }
1878
1879 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1880 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1881 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1882 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1883
1884 if (scanning_global_lru(sc)) {
1885 free = zone_page_state(zone, NR_FREE_PAGES);
1886 /* If we have very few page cache pages,
1887 force-scan anon pages. */
1888 if (unlikely(file + free <= high_wmark_pages(zone))) {
1889 fraction[0] = 1;
1890 fraction[1] = 0;
1891 denominator = 1;
1892 goto out;
1893 }
1894 }
1895
1896 /*
1897 * With swappiness at 100, anonymous and file have the same priority.
1898 * This scanning priority is essentially the inverse of IO cost.
1899 */
1900 anon_prio = vmscan_swappiness(sc);
1901 file_prio = 200 - vmscan_swappiness(sc);
1902
1903 /*
1904 * OK, so we have swap space and a fair amount of page cache
1905 * pages. We use the recently rotated / recently scanned
1906 * ratios to determine how valuable each cache is.
1907 *
1908 * Because workloads change over time (and to avoid overflow)
1909 * we keep these statistics as a floating average, which ends
1910 * up weighing recent references more than old ones.
1911 *
1912 * anon in [0], file in [1]
1913 */
1914 spin_lock_irq(&zone->lru_lock);
1915 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1916 reclaim_stat->recent_scanned[0] /= 2;
1917 reclaim_stat->recent_rotated[0] /= 2;
1918 }
1919
1920 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1921 reclaim_stat->recent_scanned[1] /= 2;
1922 reclaim_stat->recent_rotated[1] /= 2;
1923 }
1924
1925 /*
1926 * The amount of pressure on anon vs file pages is inversely
1927 * proportional to the fraction of recently scanned pages on
1928 * each list that were recently referenced and in active use.
1929 */
1930 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1931 ap /= reclaim_stat->recent_rotated[0] + 1;
1932
1933 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1934 fp /= reclaim_stat->recent_rotated[1] + 1;
1935 spin_unlock_irq(&zone->lru_lock);
1936
1937 fraction[0] = ap;
1938 fraction[1] = fp;
1939 denominator = ap + fp + 1;
1940 out:
1941 for_each_evictable_lru(l) {
1942 int file = is_file_lru(l);
1943 unsigned long scan;
1944
1945 scan = zone_nr_lru_pages(zone, sc, l);
1946 if (priority || noswap) {
1947 scan >>= priority;
1948 if (!scan && force_scan)
1949 scan = SWAP_CLUSTER_MAX;
1950 scan = div64_u64(scan * fraction[file], denominator);
1951 }
1952 nr[l] = scan;
1953 }
1954 }
1955
1956 /*
1957 * Reclaim/compaction depends on a number of pages being freed. To avoid
1958 * disruption to the system, a small number of order-0 pages continue to be
1959 * rotated and reclaimed in the normal fashion. However, by the time we get
1960 * back to the allocator and call try_to_compact_zone(), we ensure that
1961 * there are enough free pages for it to be likely successful
1962 */
1963 static inline bool should_continue_reclaim(struct zone *zone,
1964 unsigned long nr_reclaimed,
1965 unsigned long nr_scanned,
1966 struct scan_control *sc)
1967 {
1968 unsigned long pages_for_compaction;
1969 unsigned long inactive_lru_pages;
1970
1971 /* If not in reclaim/compaction mode, stop */
1972 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1973 return false;
1974
1975 /* Consider stopping depending on scan and reclaim activity */
1976 if (sc->gfp_mask & __GFP_REPEAT) {
1977 /*
1978 * For __GFP_REPEAT allocations, stop reclaiming if the
1979 * full LRU list has been scanned and we are still failing
1980 * to reclaim pages. This full LRU scan is potentially
1981 * expensive but a __GFP_REPEAT caller really wants to succeed
1982 */
1983 if (!nr_reclaimed && !nr_scanned)
1984 return false;
1985 } else {
1986 /*
1987 * For non-__GFP_REPEAT allocations which can presumably
1988 * fail without consequence, stop if we failed to reclaim
1989 * any pages from the last SWAP_CLUSTER_MAX number of
1990 * pages that were scanned. This will return to the
1991 * caller faster at the risk reclaim/compaction and
1992 * the resulting allocation attempt fails
1993 */
1994 if (!nr_reclaimed)
1995 return false;
1996 }
1997
1998 /*
1999 * If we have not reclaimed enough pages for compaction and the
2000 * inactive lists are large enough, continue reclaiming
2001 */
2002 pages_for_compaction = (2UL << sc->order);
2003 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2004 if (nr_swap_pages > 0)
2005 inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
2006 if (sc->nr_reclaimed < pages_for_compaction &&
2007 inactive_lru_pages > pages_for_compaction)
2008 return true;
2009
2010 /* If compaction would go ahead or the allocation would succeed, stop */
2011 switch (compaction_suitable(zone, sc->order)) {
2012 case COMPACT_PARTIAL:
2013 case COMPACT_CONTINUE:
2014 return false;
2015 default:
2016 return true;
2017 }
2018 }
2019
2020 /*
2021 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2022 */
2023 static void shrink_zone(int priority, struct zone *zone,
2024 struct scan_control *sc)
2025 {
2026 unsigned long nr[NR_LRU_LISTS];
2027 unsigned long nr_to_scan;
2028 enum lru_list l;
2029 unsigned long nr_reclaimed, nr_scanned;
2030 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2031 struct blk_plug plug;
2032
2033 restart:
2034 nr_reclaimed = 0;
2035 nr_scanned = sc->nr_scanned;
2036 get_scan_count(zone, sc, nr, priority);
2037
2038 blk_start_plug(&plug);
2039 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2040 nr[LRU_INACTIVE_FILE]) {
2041 for_each_evictable_lru(l) {
2042 if (nr[l]) {
2043 nr_to_scan = min_t(unsigned long,
2044 nr[l], SWAP_CLUSTER_MAX);
2045 nr[l] -= nr_to_scan;
2046
2047 nr_reclaimed += shrink_list(l, nr_to_scan,
2048 zone, sc, priority);
2049 }
2050 }
2051 /*
2052 * On large memory systems, scan >> priority can become
2053 * really large. This is fine for the starting priority;
2054 * we want to put equal scanning pressure on each zone.
2055 * However, if the VM has a harder time of freeing pages,
2056 * with multiple processes reclaiming pages, the total
2057 * freeing target can get unreasonably large.
2058 */
2059 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2060 break;
2061 }
2062 blk_finish_plug(&plug);
2063 sc->nr_reclaimed += nr_reclaimed;
2064
2065 /*
2066 * Even if we did not try to evict anon pages at all, we want to
2067 * rebalance the anon lru active/inactive ratio.
2068 */
2069 if (inactive_anon_is_low(zone, sc))
2070 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2071
2072 /* reclaim/compaction might need reclaim to continue */
2073 if (should_continue_reclaim(zone, nr_reclaimed,
2074 sc->nr_scanned - nr_scanned, sc))
2075 goto restart;
2076
2077 throttle_vm_writeout(sc->gfp_mask);
2078 }
2079
2080 /*
2081 * This is the direct reclaim path, for page-allocating processes. We only
2082 * try to reclaim pages from zones which will satisfy the caller's allocation
2083 * request.
2084 *
2085 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2086 * Because:
2087 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2088 * allocation or
2089 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2090 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2091 * zone defense algorithm.
2092 *
2093 * If a zone is deemed to be full of pinned pages then just give it a light
2094 * scan then give up on it.
2095 *
2096 * This function returns true if a zone is being reclaimed for a costly
2097 * high-order allocation and compaction is either ready to begin or deferred.
2098 * This indicates to the caller that it should retry the allocation or fail.
2099 */
2100 static bool shrink_zones(int priority, struct zonelist *zonelist,
2101 struct scan_control *sc)
2102 {
2103 struct zoneref *z;
2104 struct zone *zone;
2105 unsigned long nr_soft_reclaimed;
2106 unsigned long nr_soft_scanned;
2107 bool should_abort_reclaim = false;
2108
2109 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2110 gfp_zone(sc->gfp_mask), sc->nodemask) {
2111 if (!populated_zone(zone))
2112 continue;
2113 /*
2114 * Take care memory controller reclaiming has small influence
2115 * to global LRU.
2116 */
2117 if (scanning_global_lru(sc)) {
2118 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2119 continue;
2120 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2121 continue; /* Let kswapd poll it */
2122 if (COMPACTION_BUILD) {
2123 /*
2124 * If we already have plenty of memory free for
2125 * compaction in this zone, don't free any more.
2126 * Even though compaction is invoked for any
2127 * non-zero order, only frequent costly order
2128 * reclamation is disruptive enough to become a
2129 * noticable problem, like transparent huge page
2130 * allocations.
2131 */
2132 if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2133 (compaction_suitable(zone, sc->order) ||
2134 compaction_deferred(zone))) {
2135 should_abort_reclaim = true;
2136 continue;
2137 }
2138 }
2139 /*
2140 * This steals pages from memory cgroups over softlimit
2141 * and returns the number of reclaimed pages and
2142 * scanned pages. This works for global memory pressure
2143 * and balancing, not for a memcg's limit.
2144 */
2145 nr_soft_scanned = 0;
2146 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2147 sc->order, sc->gfp_mask,
2148 &nr_soft_scanned);
2149 sc->nr_reclaimed += nr_soft_reclaimed;
2150 sc->nr_scanned += nr_soft_scanned;
2151 /* need some check for avoid more shrink_zone() */
2152 }
2153
2154 shrink_zone(priority, zone, sc);
2155 }
2156
2157 return should_abort_reclaim;
2158 }
2159
2160 static bool zone_reclaimable(struct zone *zone)
2161 {
2162 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2163 }
2164
2165 /* All zones in zonelist are unreclaimable? */
2166 static bool all_unreclaimable(struct zonelist *zonelist,
2167 struct scan_control *sc)
2168 {
2169 struct zoneref *z;
2170 struct zone *zone;
2171
2172 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2173 gfp_zone(sc->gfp_mask), sc->nodemask) {
2174 if (!populated_zone(zone))
2175 continue;
2176 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2177 continue;
2178 if (!zone->all_unreclaimable)
2179 return false;
2180 }
2181
2182 return true;
2183 }
2184
2185 /*
2186 * This is the main entry point to direct page reclaim.
2187 *
2188 * If a full scan of the inactive list fails to free enough memory then we
2189 * are "out of memory" and something needs to be killed.
2190 *
2191 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2192 * high - the zone may be full of dirty or under-writeback pages, which this
2193 * caller can't do much about. We kick the writeback threads and take explicit
2194 * naps in the hope that some of these pages can be written. But if the
2195 * allocating task holds filesystem locks which prevent writeout this might not
2196 * work, and the allocation attempt will fail.
2197 *
2198 * returns: 0, if no pages reclaimed
2199 * else, the number of pages reclaimed
2200 */
2201 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2202 struct scan_control *sc,
2203 struct shrink_control *shrink)
2204 {
2205 int priority;
2206 unsigned long total_scanned = 0;
2207 struct reclaim_state *reclaim_state = current->reclaim_state;
2208 struct zoneref *z;
2209 struct zone *zone;
2210 unsigned long writeback_threshold;
2211
2212 get_mems_allowed();
2213 delayacct_freepages_start();
2214
2215 if (scanning_global_lru(sc))
2216 count_vm_event(ALLOCSTALL);
2217
2218 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2219 sc->nr_scanned = 0;
2220 if (!priority)
2221 disable_swap_token(sc->mem_cgroup);
2222 if (shrink_zones(priority, zonelist, sc))
2223 break;
2224
2225 /*
2226 * Don't shrink slabs when reclaiming memory from
2227 * over limit cgroups
2228 */
2229 if (scanning_global_lru(sc)) {
2230 unsigned long lru_pages = 0;
2231 for_each_zone_zonelist(zone, z, zonelist,
2232 gfp_zone(sc->gfp_mask)) {
2233 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2234 continue;
2235
2236 lru_pages += zone_reclaimable_pages(zone);
2237 }
2238
2239 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2240 if (reclaim_state) {
2241 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2242 reclaim_state->reclaimed_slab = 0;
2243 }
2244 }
2245 total_scanned += sc->nr_scanned;
2246 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2247 goto out;
2248
2249 /*
2250 * Try to write back as many pages as we just scanned. This
2251 * tends to cause slow streaming writers to write data to the
2252 * disk smoothly, at the dirtying rate, which is nice. But
2253 * that's undesirable in laptop mode, where we *want* lumpy
2254 * writeout. So in laptop mode, write out the whole world.
2255 */
2256 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2257 if (total_scanned > writeback_threshold) {
2258 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2259 WB_REASON_TRY_TO_FREE_PAGES);
2260 sc->may_writepage = 1;
2261 }
2262
2263 /* Take a nap, wait for some writeback to complete */
2264 if (!sc->hibernation_mode && sc->nr_scanned &&
2265 priority < DEF_PRIORITY - 2) {
2266 struct zone *preferred_zone;
2267
2268 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2269 &cpuset_current_mems_allowed,
2270 &preferred_zone);
2271 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2272 }
2273 }
2274
2275 out:
2276 delayacct_freepages_end();
2277 put_mems_allowed();
2278
2279 if (sc->nr_reclaimed)
2280 return sc->nr_reclaimed;
2281
2282 /*
2283 * As hibernation is going on, kswapd is freezed so that it can't mark
2284 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2285 * check.
2286 */
2287 if (oom_killer_disabled)
2288 return 0;
2289
2290 /* top priority shrink_zones still had more to do? don't OOM, then */
2291 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2292 return 1;
2293
2294 return 0;
2295 }
2296
2297 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2298 gfp_t gfp_mask, nodemask_t *nodemask)
2299 {
2300 unsigned long nr_reclaimed;
2301 struct scan_control sc = {
2302 .gfp_mask = gfp_mask,
2303 .may_writepage = !laptop_mode,
2304 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2305 .may_unmap = 1,
2306 .may_swap = 1,
2307 .order = order,
2308 .mem_cgroup = NULL,
2309 .nodemask = nodemask,
2310 };
2311 struct shrink_control shrink = {
2312 .gfp_mask = sc.gfp_mask,
2313 };
2314
2315 trace_mm_vmscan_direct_reclaim_begin(order,
2316 sc.may_writepage,
2317 gfp_mask);
2318
2319 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2320
2321 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2322
2323 return nr_reclaimed;
2324 }
2325
2326 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2327
2328 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2329 gfp_t gfp_mask, bool noswap,
2330 struct zone *zone,
2331 unsigned long *nr_scanned)
2332 {
2333 struct scan_control sc = {
2334 .nr_scanned = 0,
2335 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2336 .may_writepage = !laptop_mode,
2337 .may_unmap = 1,
2338 .may_swap = !noswap,
2339 .order = 0,
2340 .mem_cgroup = mem,
2341 };
2342
2343 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2344 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2345
2346 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2347 sc.may_writepage,
2348 sc.gfp_mask);
2349
2350 /*
2351 * NOTE: Although we can get the priority field, using it
2352 * here is not a good idea, since it limits the pages we can scan.
2353 * if we don't reclaim here, the shrink_zone from balance_pgdat
2354 * will pick up pages from other mem cgroup's as well. We hack
2355 * the priority and make it zero.
2356 */
2357 shrink_zone(0, zone, &sc);
2358
2359 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2360
2361 *nr_scanned = sc.nr_scanned;
2362 return sc.nr_reclaimed;
2363 }
2364
2365 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2366 gfp_t gfp_mask,
2367 bool noswap)
2368 {
2369 struct zonelist *zonelist;
2370 unsigned long nr_reclaimed;
2371 int nid;
2372 struct scan_control sc = {
2373 .may_writepage = !laptop_mode,
2374 .may_unmap = 1,
2375 .may_swap = !noswap,
2376 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2377 .order = 0,
2378 .mem_cgroup = mem_cont,
2379 .nodemask = NULL, /* we don't care the placement */
2380 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2381 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2382 };
2383 struct shrink_control shrink = {
2384 .gfp_mask = sc.gfp_mask,
2385 };
2386
2387 /*
2388 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2389 * take care of from where we get pages. So the node where we start the
2390 * scan does not need to be the current node.
2391 */
2392 nid = mem_cgroup_select_victim_node(mem_cont);
2393
2394 zonelist = NODE_DATA(nid)->node_zonelists;
2395
2396 trace_mm_vmscan_memcg_reclaim_begin(0,
2397 sc.may_writepage,
2398 sc.gfp_mask);
2399
2400 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2401
2402 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2403
2404 return nr_reclaimed;
2405 }
2406 #endif
2407
2408 /*
2409 * pgdat_balanced is used when checking if a node is balanced for high-order
2410 * allocations. Only zones that meet watermarks and are in a zone allowed
2411 * by the callers classzone_idx are added to balanced_pages. The total of
2412 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2413 * for the node to be considered balanced. Forcing all zones to be balanced
2414 * for high orders can cause excessive reclaim when there are imbalanced zones.
2415 * The choice of 25% is due to
2416 * o a 16M DMA zone that is balanced will not balance a zone on any
2417 * reasonable sized machine
2418 * o On all other machines, the top zone must be at least a reasonable
2419 * percentage of the middle zones. For example, on 32-bit x86, highmem
2420 * would need to be at least 256M for it to be balance a whole node.
2421 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2422 * to balance a node on its own. These seemed like reasonable ratios.
2423 */
2424 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2425 int classzone_idx)
2426 {
2427 unsigned long present_pages = 0;
2428 int i;
2429
2430 for (i = 0; i <= classzone_idx; i++)
2431 present_pages += pgdat->node_zones[i].present_pages;
2432
2433 /* A special case here: if zone has no page, we think it's balanced */
2434 return balanced_pages >= (present_pages >> 2);
2435 }
2436
2437 /* is kswapd sleeping prematurely? */
2438 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2439 int classzone_idx)
2440 {
2441 int i;
2442 unsigned long balanced = 0;
2443 bool all_zones_ok = true;
2444
2445 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2446 if (remaining)
2447 return true;
2448
2449 /* Check the watermark levels */
2450 for (i = 0; i <= classzone_idx; i++) {
2451 struct zone *zone = pgdat->node_zones + i;
2452
2453 if (!populated_zone(zone))
2454 continue;
2455
2456 /*
2457 * balance_pgdat() skips over all_unreclaimable after
2458 * DEF_PRIORITY. Effectively, it considers them balanced so
2459 * they must be considered balanced here as well if kswapd
2460 * is to sleep
2461 */
2462 if (zone->all_unreclaimable) {
2463 balanced += zone->present_pages;
2464 continue;
2465 }
2466
2467 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2468 i, 0))
2469 all_zones_ok = false;
2470 else
2471 balanced += zone->present_pages;
2472 }
2473
2474 /*
2475 * For high-order requests, the balanced zones must contain at least
2476 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2477 * must be balanced
2478 */
2479 if (order)
2480 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2481 else
2482 return !all_zones_ok;
2483 }
2484
2485 /*
2486 * For kswapd, balance_pgdat() will work across all this node's zones until
2487 * they are all at high_wmark_pages(zone).
2488 *
2489 * Returns the final order kswapd was reclaiming at
2490 *
2491 * There is special handling here for zones which are full of pinned pages.
2492 * This can happen if the pages are all mlocked, or if they are all used by
2493 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2494 * What we do is to detect the case where all pages in the zone have been
2495 * scanned twice and there has been zero successful reclaim. Mark the zone as
2496 * dead and from now on, only perform a short scan. Basically we're polling
2497 * the zone for when the problem goes away.
2498 *
2499 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2500 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2501 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2502 * lower zones regardless of the number of free pages in the lower zones. This
2503 * interoperates with the page allocator fallback scheme to ensure that aging
2504 * of pages is balanced across the zones.
2505 */
2506 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2507 int *classzone_idx)
2508 {
2509 int all_zones_ok;
2510 unsigned long balanced;
2511 int priority;
2512 int i;
2513 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2514 unsigned long total_scanned;
2515 struct reclaim_state *reclaim_state = current->reclaim_state;
2516 unsigned long nr_soft_reclaimed;
2517 unsigned long nr_soft_scanned;
2518 struct scan_control sc = {
2519 .gfp_mask = GFP_KERNEL,
2520 .may_unmap = 1,
2521 .may_swap = 1,
2522 /*
2523 * kswapd doesn't want to be bailed out while reclaim. because
2524 * we want to put equal scanning pressure on each zone.
2525 */
2526 .nr_to_reclaim = ULONG_MAX,
2527 .order = order,
2528 .mem_cgroup = NULL,
2529 };
2530 struct shrink_control shrink = {
2531 .gfp_mask = sc.gfp_mask,
2532 };
2533 loop_again:
2534 total_scanned = 0;
2535 sc.nr_reclaimed = 0;
2536 sc.may_writepage = !laptop_mode;
2537 count_vm_event(PAGEOUTRUN);
2538
2539 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2540 unsigned long lru_pages = 0;
2541 int has_under_min_watermark_zone = 0;
2542
2543 /* The swap token gets in the way of swapout... */
2544 if (!priority)
2545 disable_swap_token(NULL);
2546
2547 all_zones_ok = 1;
2548 balanced = 0;
2549
2550 /*
2551 * Scan in the highmem->dma direction for the highest
2552 * zone which needs scanning
2553 */
2554 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2555 struct zone *zone = pgdat->node_zones + i;
2556
2557 if (!populated_zone(zone))
2558 continue;
2559
2560 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2561 continue;
2562
2563 /*
2564 * Do some background aging of the anon list, to give
2565 * pages a chance to be referenced before reclaiming.
2566 */
2567 if (inactive_anon_is_low(zone, &sc))
2568 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2569 &sc, priority, 0);
2570
2571 if (!zone_watermark_ok_safe(zone, order,
2572 high_wmark_pages(zone), 0, 0)) {
2573 end_zone = i;
2574 break;
2575 } else {
2576 /* If balanced, clear the congested flag */
2577 zone_clear_flag(zone, ZONE_CONGESTED);
2578 }
2579 }
2580 if (i < 0)
2581 goto out;
2582
2583 for (i = 0; i <= end_zone; i++) {
2584 struct zone *zone = pgdat->node_zones + i;
2585
2586 lru_pages += zone_reclaimable_pages(zone);
2587 }
2588
2589 /*
2590 * Now scan the zone in the dma->highmem direction, stopping
2591 * at the last zone which needs scanning.
2592 *
2593 * We do this because the page allocator works in the opposite
2594 * direction. This prevents the page allocator from allocating
2595 * pages behind kswapd's direction of progress, which would
2596 * cause too much scanning of the lower zones.
2597 */
2598 for (i = 0; i <= end_zone; i++) {
2599 struct zone *zone = pgdat->node_zones + i;
2600 int nr_slab;
2601 unsigned long balance_gap;
2602
2603 if (!populated_zone(zone))
2604 continue;
2605
2606 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2607 continue;
2608
2609 sc.nr_scanned = 0;
2610
2611 nr_soft_scanned = 0;
2612 /*
2613 * Call soft limit reclaim before calling shrink_zone.
2614 */
2615 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2616 order, sc.gfp_mask,
2617 &nr_soft_scanned);
2618 sc.nr_reclaimed += nr_soft_reclaimed;
2619 total_scanned += nr_soft_scanned;
2620
2621 /*
2622 * We put equal pressure on every zone, unless
2623 * one zone has way too many pages free
2624 * already. The "too many pages" is defined
2625 * as the high wmark plus a "gap" where the
2626 * gap is either the low watermark or 1%
2627 * of the zone, whichever is smaller.
2628 */
2629 balance_gap = min(low_wmark_pages(zone),
2630 (zone->present_pages +
2631 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2632 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2633 if (!zone_watermark_ok_safe(zone, order,
2634 high_wmark_pages(zone) + balance_gap,
2635 end_zone, 0)) {
2636 shrink_zone(priority, zone, &sc);
2637
2638 reclaim_state->reclaimed_slab = 0;
2639 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2640 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2641 total_scanned += sc.nr_scanned;
2642
2643 if (nr_slab == 0 && !zone_reclaimable(zone))
2644 zone->all_unreclaimable = 1;
2645 }
2646
2647 /*
2648 * If we've done a decent amount of scanning and
2649 * the reclaim ratio is low, start doing writepage
2650 * even in laptop mode
2651 */
2652 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2653 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2654 sc.may_writepage = 1;
2655
2656 if (zone->all_unreclaimable) {
2657 if (end_zone && end_zone == i)
2658 end_zone--;
2659 continue;
2660 }
2661
2662 if (!zone_watermark_ok_safe(zone, order,
2663 high_wmark_pages(zone), end_zone, 0)) {
2664 all_zones_ok = 0;
2665 /*
2666 * We are still under min water mark. This
2667 * means that we have a GFP_ATOMIC allocation
2668 * failure risk. Hurry up!
2669 */
2670 if (!zone_watermark_ok_safe(zone, order,
2671 min_wmark_pages(zone), end_zone, 0))
2672 has_under_min_watermark_zone = 1;
2673 } else {
2674 /*
2675 * If a zone reaches its high watermark,
2676 * consider it to be no longer congested. It's
2677 * possible there are dirty pages backed by
2678 * congested BDIs but as pressure is relieved,
2679 * spectulatively avoid congestion waits
2680 */
2681 zone_clear_flag(zone, ZONE_CONGESTED);
2682 if (i <= *classzone_idx)
2683 balanced += zone->present_pages;
2684 }
2685
2686 }
2687 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2688 break; /* kswapd: all done */
2689 /*
2690 * OK, kswapd is getting into trouble. Take a nap, then take
2691 * another pass across the zones.
2692 */
2693 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2694 if (has_under_min_watermark_zone)
2695 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2696 else
2697 congestion_wait(BLK_RW_ASYNC, HZ/10);
2698 }
2699
2700 /*
2701 * We do this so kswapd doesn't build up large priorities for
2702 * example when it is freeing in parallel with allocators. It
2703 * matches the direct reclaim path behaviour in terms of impact
2704 * on zone->*_priority.
2705 */
2706 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2707 break;
2708 }
2709 out:
2710
2711 /*
2712 * order-0: All zones must meet high watermark for a balanced node
2713 * high-order: Balanced zones must make up at least 25% of the node
2714 * for the node to be balanced
2715 */
2716 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2717 cond_resched();
2718
2719 try_to_freeze();
2720
2721 /*
2722 * Fragmentation may mean that the system cannot be
2723 * rebalanced for high-order allocations in all zones.
2724 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2725 * it means the zones have been fully scanned and are still
2726 * not balanced. For high-order allocations, there is
2727 * little point trying all over again as kswapd may
2728 * infinite loop.
2729 *
2730 * Instead, recheck all watermarks at order-0 as they
2731 * are the most important. If watermarks are ok, kswapd will go
2732 * back to sleep. High-order users can still perform direct
2733 * reclaim if they wish.
2734 */
2735 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2736 order = sc.order = 0;
2737
2738 goto loop_again;
2739 }
2740
2741 /*
2742 * If kswapd was reclaiming at a higher order, it has the option of
2743 * sleeping without all zones being balanced. Before it does, it must
2744 * ensure that the watermarks for order-0 on *all* zones are met and
2745 * that the congestion flags are cleared. The congestion flag must
2746 * be cleared as kswapd is the only mechanism that clears the flag
2747 * and it is potentially going to sleep here.
2748 */
2749 if (order) {
2750 for (i = 0; i <= end_zone; i++) {
2751 struct zone *zone = pgdat->node_zones + i;
2752
2753 if (!populated_zone(zone))
2754 continue;
2755
2756 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2757 continue;
2758
2759 /* Confirm the zone is balanced for order-0 */
2760 if (!zone_watermark_ok(zone, 0,
2761 high_wmark_pages(zone), 0, 0)) {
2762 order = sc.order = 0;
2763 goto loop_again;
2764 }
2765
2766 /* If balanced, clear the congested flag */
2767 zone_clear_flag(zone, ZONE_CONGESTED);
2768 if (i <= *classzone_idx)
2769 balanced += zone->present_pages;
2770 }
2771 }
2772
2773 /*
2774 * Return the order we were reclaiming at so sleeping_prematurely()
2775 * makes a decision on the order we were last reclaiming at. However,
2776 * if another caller entered the allocator slow path while kswapd
2777 * was awake, order will remain at the higher level
2778 */
2779 *classzone_idx = end_zone;
2780 return order;
2781 }
2782
2783 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2784 {
2785 long remaining = 0;
2786 DEFINE_WAIT(wait);
2787
2788 if (freezing(current) || kthread_should_stop())
2789 return;
2790
2791 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2792
2793 /* Try to sleep for a short interval */
2794 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2795 remaining = schedule_timeout(HZ/10);
2796 finish_wait(&pgdat->kswapd_wait, &wait);
2797 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2798 }
2799
2800 /*
2801 * After a short sleep, check if it was a premature sleep. If not, then
2802 * go fully to sleep until explicitly woken up.
2803 */
2804 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2805 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2806
2807 /*
2808 * vmstat counters are not perfectly accurate and the estimated
2809 * value for counters such as NR_FREE_PAGES can deviate from the
2810 * true value by nr_online_cpus * threshold. To avoid the zone
2811 * watermarks being breached while under pressure, we reduce the
2812 * per-cpu vmstat threshold while kswapd is awake and restore
2813 * them before going back to sleep.
2814 */
2815 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2816 schedule();
2817 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2818 } else {
2819 if (remaining)
2820 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2821 else
2822 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2823 }
2824 finish_wait(&pgdat->kswapd_wait, &wait);
2825 }
2826
2827 /*
2828 * The background pageout daemon, started as a kernel thread
2829 * from the init process.
2830 *
2831 * This basically trickles out pages so that we have _some_
2832 * free memory available even if there is no other activity
2833 * that frees anything up. This is needed for things like routing
2834 * etc, where we otherwise might have all activity going on in
2835 * asynchronous contexts that cannot page things out.
2836 *
2837 * If there are applications that are active memory-allocators
2838 * (most normal use), this basically shouldn't matter.
2839 */
2840 static int kswapd(void *p)
2841 {
2842 unsigned long order, new_order;
2843 unsigned balanced_order;
2844 int classzone_idx, new_classzone_idx;
2845 int balanced_classzone_idx;
2846 pg_data_t *pgdat = (pg_data_t*)p;
2847 struct task_struct *tsk = current;
2848
2849 struct reclaim_state reclaim_state = {
2850 .reclaimed_slab = 0,
2851 };
2852 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2853
2854 lockdep_set_current_reclaim_state(GFP_KERNEL);
2855
2856 if (!cpumask_empty(cpumask))
2857 set_cpus_allowed_ptr(tsk, cpumask);
2858 current->reclaim_state = &reclaim_state;
2859
2860 /*
2861 * Tell the memory management that we're a "memory allocator",
2862 * and that if we need more memory we should get access to it
2863 * regardless (see "__alloc_pages()"). "kswapd" should
2864 * never get caught in the normal page freeing logic.
2865 *
2866 * (Kswapd normally doesn't need memory anyway, but sometimes
2867 * you need a small amount of memory in order to be able to
2868 * page out something else, and this flag essentially protects
2869 * us from recursively trying to free more memory as we're
2870 * trying to free the first piece of memory in the first place).
2871 */
2872 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2873 set_freezable();
2874
2875 order = new_order = 0;
2876 balanced_order = 0;
2877 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2878 balanced_classzone_idx = classzone_idx;
2879 for ( ; ; ) {
2880 int ret;
2881
2882 /*
2883 * If the last balance_pgdat was unsuccessful it's unlikely a
2884 * new request of a similar or harder type will succeed soon
2885 * so consider going to sleep on the basis we reclaimed at
2886 */
2887 if (balanced_classzone_idx >= new_classzone_idx &&
2888 balanced_order == new_order) {
2889 new_order = pgdat->kswapd_max_order;
2890 new_classzone_idx = pgdat->classzone_idx;
2891 pgdat->kswapd_max_order = 0;
2892 pgdat->classzone_idx = pgdat->nr_zones - 1;
2893 }
2894
2895 if (order < new_order || classzone_idx > new_classzone_idx) {
2896 /*
2897 * Don't sleep if someone wants a larger 'order'
2898 * allocation or has tigher zone constraints
2899 */
2900 order = new_order;
2901 classzone_idx = new_classzone_idx;
2902 } else {
2903 kswapd_try_to_sleep(pgdat, balanced_order,
2904 balanced_classzone_idx);
2905 order = pgdat->kswapd_max_order;
2906 classzone_idx = pgdat->classzone_idx;
2907 new_order = order;
2908 new_classzone_idx = classzone_idx;
2909 pgdat->kswapd_max_order = 0;
2910 pgdat->classzone_idx = pgdat->nr_zones - 1;
2911 }
2912
2913 ret = try_to_freeze();
2914 if (kthread_should_stop())
2915 break;
2916
2917 /*
2918 * We can speed up thawing tasks if we don't call balance_pgdat
2919 * after returning from the refrigerator
2920 */
2921 if (!ret) {
2922 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2923 balanced_classzone_idx = classzone_idx;
2924 balanced_order = balance_pgdat(pgdat, order,
2925 &balanced_classzone_idx);
2926 }
2927 }
2928 return 0;
2929 }
2930
2931 /*
2932 * A zone is low on free memory, so wake its kswapd task to service it.
2933 */
2934 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2935 {
2936 pg_data_t *pgdat;
2937
2938 if (!populated_zone(zone))
2939 return;
2940
2941 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2942 return;
2943 pgdat = zone->zone_pgdat;
2944 if (pgdat->kswapd_max_order < order) {
2945 pgdat->kswapd_max_order = order;
2946 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2947 }
2948 if (!waitqueue_active(&pgdat->kswapd_wait))
2949 return;
2950 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2951 return;
2952
2953 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2954 wake_up_interruptible(&pgdat->kswapd_wait);
2955 }
2956
2957 /*
2958 * The reclaimable count would be mostly accurate.
2959 * The less reclaimable pages may be
2960 * - mlocked pages, which will be moved to unevictable list when encountered
2961 * - mapped pages, which may require several travels to be reclaimed
2962 * - dirty pages, which is not "instantly" reclaimable
2963 */
2964 unsigned long global_reclaimable_pages(void)
2965 {
2966 int nr;
2967
2968 nr = global_page_state(NR_ACTIVE_FILE) +
2969 global_page_state(NR_INACTIVE_FILE);
2970
2971 if (nr_swap_pages > 0)
2972 nr += global_page_state(NR_ACTIVE_ANON) +
2973 global_page_state(NR_INACTIVE_ANON);
2974
2975 return nr;
2976 }
2977
2978 unsigned long zone_reclaimable_pages(struct zone *zone)
2979 {
2980 int nr;
2981
2982 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2983 zone_page_state(zone, NR_INACTIVE_FILE);
2984
2985 if (nr_swap_pages > 0)
2986 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2987 zone_page_state(zone, NR_INACTIVE_ANON);
2988
2989 return nr;
2990 }
2991
2992 #ifdef CONFIG_HIBERNATION
2993 /*
2994 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2995 * freed pages.
2996 *
2997 * Rather than trying to age LRUs the aim is to preserve the overall
2998 * LRU order by reclaiming preferentially
2999 * inactive > active > active referenced > active mapped
3000 */
3001 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3002 {
3003 struct reclaim_state reclaim_state;
3004 struct scan_control sc = {
3005 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3006 .may_swap = 1,
3007 .may_unmap = 1,
3008 .may_writepage = 1,
3009 .nr_to_reclaim = nr_to_reclaim,
3010 .hibernation_mode = 1,
3011 .order = 0,
3012 };
3013 struct shrink_control shrink = {
3014 .gfp_mask = sc.gfp_mask,
3015 };
3016 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3017 struct task_struct *p = current;
3018 unsigned long nr_reclaimed;
3019
3020 p->flags |= PF_MEMALLOC;
3021 lockdep_set_current_reclaim_state(sc.gfp_mask);
3022 reclaim_state.reclaimed_slab = 0;
3023 p->reclaim_state = &reclaim_state;
3024
3025 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3026
3027 p->reclaim_state = NULL;
3028 lockdep_clear_current_reclaim_state();
3029 p->flags &= ~PF_MEMALLOC;
3030
3031 return nr_reclaimed;
3032 }
3033 #endif /* CONFIG_HIBERNATION */
3034
3035 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3036 not required for correctness. So if the last cpu in a node goes
3037 away, we get changed to run anywhere: as the first one comes back,
3038 restore their cpu bindings. */
3039 static int __devinit cpu_callback(struct notifier_block *nfb,
3040 unsigned long action, void *hcpu)
3041 {
3042 int nid;
3043
3044 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3045 for_each_node_state(nid, N_HIGH_MEMORY) {
3046 pg_data_t *pgdat = NODE_DATA(nid);
3047 const struct cpumask *mask;
3048
3049 mask = cpumask_of_node(pgdat->node_id);
3050
3051 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3052 /* One of our CPUs online: restore mask */
3053 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3054 }
3055 }
3056 return NOTIFY_OK;
3057 }
3058
3059 /*
3060 * This kswapd start function will be called by init and node-hot-add.
3061 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3062 */
3063 int kswapd_run(int nid)
3064 {
3065 pg_data_t *pgdat = NODE_DATA(nid);
3066 int ret = 0;
3067
3068 if (pgdat->kswapd)
3069 return 0;
3070
3071 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3072 if (IS_ERR(pgdat->kswapd)) {
3073 /* failure at boot is fatal */
3074 BUG_ON(system_state == SYSTEM_BOOTING);
3075 printk("Failed to start kswapd on node %d\n",nid);
3076 ret = -1;
3077 }
3078 return ret;
3079 }
3080
3081 /*
3082 * Called by memory hotplug when all memory in a node is offlined.
3083 */
3084 void kswapd_stop(int nid)
3085 {
3086 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3087
3088 if (kswapd)
3089 kthread_stop(kswapd);
3090 }
3091
3092 static int __init kswapd_init(void)
3093 {
3094 int nid;
3095
3096 swap_setup();
3097 for_each_node_state(nid, N_HIGH_MEMORY)
3098 kswapd_run(nid);
3099 hotcpu_notifier(cpu_callback, 0);
3100 return 0;
3101 }
3102
3103 module_init(kswapd_init)
3104
3105 #ifdef CONFIG_NUMA
3106 /*
3107 * Zone reclaim mode
3108 *
3109 * If non-zero call zone_reclaim when the number of free pages falls below
3110 * the watermarks.
3111 */
3112 int zone_reclaim_mode __read_mostly;
3113
3114 #define RECLAIM_OFF 0
3115 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3116 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3117 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3118
3119 /*
3120 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3121 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3122 * a zone.
3123 */
3124 #define ZONE_RECLAIM_PRIORITY 4
3125
3126 /*
3127 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3128 * occur.
3129 */
3130 int sysctl_min_unmapped_ratio = 1;
3131
3132 /*
3133 * If the number of slab pages in a zone grows beyond this percentage then
3134 * slab reclaim needs to occur.
3135 */
3136 int sysctl_min_slab_ratio = 5;
3137
3138 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3139 {
3140 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3141 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3142 zone_page_state(zone, NR_ACTIVE_FILE);
3143
3144 /*
3145 * It's possible for there to be more file mapped pages than
3146 * accounted for by the pages on the file LRU lists because
3147 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3148 */
3149 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3150 }
3151
3152 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3153 static long zone_pagecache_reclaimable(struct zone *zone)
3154 {
3155 long nr_pagecache_reclaimable;
3156 long delta = 0;
3157
3158 /*
3159 * If RECLAIM_SWAP is set, then all file pages are considered
3160 * potentially reclaimable. Otherwise, we have to worry about
3161 * pages like swapcache and zone_unmapped_file_pages() provides
3162 * a better estimate
3163 */
3164 if (zone_reclaim_mode & RECLAIM_SWAP)
3165 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3166 else
3167 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3168
3169 /* If we can't clean pages, remove dirty pages from consideration */
3170 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3171 delta += zone_page_state(zone, NR_FILE_DIRTY);
3172
3173 /* Watch for any possible underflows due to delta */
3174 if (unlikely(delta > nr_pagecache_reclaimable))
3175 delta = nr_pagecache_reclaimable;
3176
3177 return nr_pagecache_reclaimable - delta;
3178 }
3179
3180 /*
3181 * Try to free up some pages from this zone through reclaim.
3182 */
3183 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3184 {
3185 /* Minimum pages needed in order to stay on node */
3186 const unsigned long nr_pages = 1 << order;
3187 struct task_struct *p = current;
3188 struct reclaim_state reclaim_state;
3189 int priority;
3190 struct scan_control sc = {
3191 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3192 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3193 .may_swap = 1,
3194 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3195 SWAP_CLUSTER_MAX),
3196 .gfp_mask = gfp_mask,
3197 .order = order,
3198 };
3199 struct shrink_control shrink = {
3200 .gfp_mask = sc.gfp_mask,
3201 };
3202 unsigned long nr_slab_pages0, nr_slab_pages1;
3203
3204 cond_resched();
3205 /*
3206 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3207 * and we also need to be able to write out pages for RECLAIM_WRITE
3208 * and RECLAIM_SWAP.
3209 */
3210 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3211 lockdep_set_current_reclaim_state(gfp_mask);
3212 reclaim_state.reclaimed_slab = 0;
3213 p->reclaim_state = &reclaim_state;
3214
3215 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3216 /*
3217 * Free memory by calling shrink zone with increasing
3218 * priorities until we have enough memory freed.
3219 */
3220 priority = ZONE_RECLAIM_PRIORITY;
3221 do {
3222 shrink_zone(priority, zone, &sc);
3223 priority--;
3224 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3225 }
3226
3227 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3228 if (nr_slab_pages0 > zone->min_slab_pages) {
3229 /*
3230 * shrink_slab() does not currently allow us to determine how
3231 * many pages were freed in this zone. So we take the current
3232 * number of slab pages and shake the slab until it is reduced
3233 * by the same nr_pages that we used for reclaiming unmapped
3234 * pages.
3235 *
3236 * Note that shrink_slab will free memory on all zones and may
3237 * take a long time.
3238 */
3239 for (;;) {
3240 unsigned long lru_pages = zone_reclaimable_pages(zone);
3241
3242 /* No reclaimable slab or very low memory pressure */
3243 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3244 break;
3245
3246 /* Freed enough memory */
3247 nr_slab_pages1 = zone_page_state(zone,
3248 NR_SLAB_RECLAIMABLE);
3249 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3250 break;
3251 }
3252
3253 /*
3254 * Update nr_reclaimed by the number of slab pages we
3255 * reclaimed from this zone.
3256 */
3257 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3258 if (nr_slab_pages1 < nr_slab_pages0)
3259 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3260 }
3261
3262 p->reclaim_state = NULL;
3263 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3264 lockdep_clear_current_reclaim_state();
3265 return sc.nr_reclaimed >= nr_pages;
3266 }
3267
3268 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3269 {
3270 int node_id;
3271 int ret;
3272
3273 /*
3274 * Zone reclaim reclaims unmapped file backed pages and
3275 * slab pages if we are over the defined limits.
3276 *
3277 * A small portion of unmapped file backed pages is needed for
3278 * file I/O otherwise pages read by file I/O will be immediately
3279 * thrown out if the zone is overallocated. So we do not reclaim
3280 * if less than a specified percentage of the zone is used by
3281 * unmapped file backed pages.
3282 */
3283 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3284 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3285 return ZONE_RECLAIM_FULL;
3286
3287 if (zone->all_unreclaimable)
3288 return ZONE_RECLAIM_FULL;
3289
3290 /*
3291 * Do not scan if the allocation should not be delayed.
3292 */
3293 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3294 return ZONE_RECLAIM_NOSCAN;
3295
3296 /*
3297 * Only run zone reclaim on the local zone or on zones that do not
3298 * have associated processors. This will favor the local processor
3299 * over remote processors and spread off node memory allocations
3300 * as wide as possible.
3301 */
3302 node_id = zone_to_nid(zone);
3303 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3304 return ZONE_RECLAIM_NOSCAN;
3305
3306 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3307 return ZONE_RECLAIM_NOSCAN;
3308
3309 ret = __zone_reclaim(zone, gfp_mask, order);
3310 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3311
3312 if (!ret)
3313 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3314
3315 return ret;
3316 }
3317 #endif
3318
3319 /*
3320 * page_evictable - test whether a page is evictable
3321 * @page: the page to test
3322 * @vma: the VMA in which the page is or will be mapped, may be NULL
3323 *
3324 * Test whether page is evictable--i.e., should be placed on active/inactive
3325 * lists vs unevictable list. The vma argument is !NULL when called from the
3326 * fault path to determine how to instantate a new page.
3327 *
3328 * Reasons page might not be evictable:
3329 * (1) page's mapping marked unevictable
3330 * (2) page is part of an mlocked VMA
3331 *
3332 */
3333 int page_evictable(struct page *page, struct vm_area_struct *vma)
3334 {
3335
3336 if (mapping_unevictable(page_mapping(page)))
3337 return 0;
3338
3339 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3340 return 0;
3341
3342 return 1;
3343 }
3344
3345 /**
3346 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3347 * @page: page to check evictability and move to appropriate lru list
3348 * @zone: zone page is in
3349 *
3350 * Checks a page for evictability and moves the page to the appropriate
3351 * zone lru list.
3352 *
3353 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3354 * have PageUnevictable set.
3355 */
3356 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3357 {
3358 VM_BUG_ON(PageActive(page));
3359
3360 retry:
3361 ClearPageUnevictable(page);
3362 if (page_evictable(page, NULL)) {
3363 enum lru_list l = page_lru_base_type(page);
3364
3365 __dec_zone_state(zone, NR_UNEVICTABLE);
3366 list_move(&page->lru, &zone->lru[l].list);
3367 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3368 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3369 __count_vm_event(UNEVICTABLE_PGRESCUED);
3370 } else {
3371 /*
3372 * rotate unevictable list
3373 */
3374 SetPageUnevictable(page);
3375 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3376 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3377 if (page_evictable(page, NULL))
3378 goto retry;
3379 }
3380 }
3381
3382 /**
3383 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3384 * @mapping: struct address_space to scan for evictable pages
3385 *
3386 * Scan all pages in mapping. Check unevictable pages for
3387 * evictability and move them to the appropriate zone lru list.
3388 */
3389 void scan_mapping_unevictable_pages(struct address_space *mapping)
3390 {
3391 pgoff_t next = 0;
3392 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3393 PAGE_CACHE_SHIFT;
3394 struct zone *zone;
3395 struct pagevec pvec;
3396
3397 if (mapping->nrpages == 0)
3398 return;
3399
3400 pagevec_init(&pvec, 0);
3401 while (next < end &&
3402 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3403 int i;
3404 int pg_scanned = 0;
3405
3406 zone = NULL;
3407
3408 for (i = 0; i < pagevec_count(&pvec); i++) {
3409 struct page *page = pvec.pages[i];
3410 pgoff_t page_index = page->index;
3411 struct zone *pagezone = page_zone(page);
3412
3413 pg_scanned++;
3414 if (page_index > next)
3415 next = page_index;
3416 next++;
3417
3418 if (pagezone != zone) {
3419 if (zone)
3420 spin_unlock_irq(&zone->lru_lock);
3421 zone = pagezone;
3422 spin_lock_irq(&zone->lru_lock);
3423 }
3424
3425 if (PageLRU(page) && PageUnevictable(page))
3426 check_move_unevictable_page(page, zone);
3427 }
3428 if (zone)
3429 spin_unlock_irq(&zone->lru_lock);
3430 pagevec_release(&pvec);
3431
3432 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3433 }
3434
3435 }
3436
3437 static void warn_scan_unevictable_pages(void)
3438 {
3439 printk_once(KERN_WARNING
3440 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3441 "disabled for lack of a legitimate use case. If you have "
3442 "one, please send an email to linux-mm@kvack.org.\n",
3443 current->comm);
3444 }
3445
3446 /*
3447 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3448 * all nodes' unevictable lists for evictable pages
3449 */
3450 unsigned long scan_unevictable_pages;
3451
3452 int scan_unevictable_handler(struct ctl_table *table, int write,
3453 void __user *buffer,
3454 size_t *length, loff_t *ppos)
3455 {
3456 warn_scan_unevictable_pages();
3457 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3458 scan_unevictable_pages = 0;
3459 return 0;
3460 }
3461
3462 #ifdef CONFIG_NUMA
3463 /*
3464 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3465 * a specified node's per zone unevictable lists for evictable pages.
3466 */
3467
3468 static ssize_t read_scan_unevictable_node(struct device *dev,
3469 struct device_attribute *attr,
3470 char *buf)
3471 {
3472 warn_scan_unevictable_pages();
3473 return sprintf(buf, "0\n"); /* always zero; should fit... */
3474 }
3475
3476 static ssize_t write_scan_unevictable_node(struct device *dev,
3477 struct device_attribute *attr,
3478 const char *buf, size_t count)
3479 {
3480 warn_scan_unevictable_pages();
3481 return 1;
3482 }
3483
3484
3485 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3486 read_scan_unevictable_node,
3487 write_scan_unevictable_node);
3488
3489 int scan_unevictable_register_node(struct node *node)
3490 {
3491 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3492 }
3493
3494 void scan_unevictable_unregister_node(struct node *node)
3495 {
3496 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3497 }
3498 #endif
This page took 0.103079 seconds and 6 git commands to generate.