vmscan: factor out page reference checks
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
46
47 #include <linux/swapops.h>
48
49 #include "internal.h"
50
51 struct scan_control {
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim;
60
61 unsigned long hibernation_mode;
62
63 /* This context's GFP mask */
64 gfp_t gfp_mask;
65
66 int may_writepage;
67
68 /* Can mapped pages be reclaimed? */
69 int may_unmap;
70
71 /* Can pages be swapped as part of reclaim? */
72 int may_swap;
73
74 int swappiness;
75
76 int all_unreclaimable;
77
78 int order;
79
80 /* Which cgroup do we reclaim from */
81 struct mem_cgroup *mem_cgroup;
82
83 /*
84 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 * are scanned.
86 */
87 nodemask_t *nodemask;
88
89 /* Pluggable isolate pages callback */
90 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
91 unsigned long *scanned, int order, int mode,
92 struct zone *z, struct mem_cgroup *mem_cont,
93 int active, int file);
94 };
95
96 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97
98 #ifdef ARCH_HAS_PREFETCH
99 #define prefetch_prev_lru_page(_page, _base, _field) \
100 do { \
101 if ((_page)->lru.prev != _base) { \
102 struct page *prev; \
103 \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetch(&prev->_field); \
106 } \
107 } while (0)
108 #else
109 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110 #endif
111
112 #ifdef ARCH_HAS_PREFETCHW
113 #define prefetchw_prev_lru_page(_page, _base, _field) \
114 do { \
115 if ((_page)->lru.prev != _base) { \
116 struct page *prev; \
117 \
118 prev = lru_to_page(&(_page->lru)); \
119 prefetchw(&prev->_field); \
120 } \
121 } while (0)
122 #else
123 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
124 #endif
125
126 /*
127 * From 0 .. 100. Higher means more swappy.
128 */
129 int vm_swappiness = 60;
130 long vm_total_pages; /* The total number of pages which the VM controls */
131
132 static LIST_HEAD(shrinker_list);
133 static DECLARE_RWSEM(shrinker_rwsem);
134
135 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
136 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
137 #else
138 #define scanning_global_lru(sc) (1)
139 #endif
140
141 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
142 struct scan_control *sc)
143 {
144 if (!scanning_global_lru(sc))
145 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
146
147 return &zone->reclaim_stat;
148 }
149
150 static unsigned long zone_nr_lru_pages(struct zone *zone,
151 struct scan_control *sc, enum lru_list lru)
152 {
153 if (!scanning_global_lru(sc))
154 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
155
156 return zone_page_state(zone, NR_LRU_BASE + lru);
157 }
158
159
160 /*
161 * Add a shrinker callback to be called from the vm
162 */
163 void register_shrinker(struct shrinker *shrinker)
164 {
165 shrinker->nr = 0;
166 down_write(&shrinker_rwsem);
167 list_add_tail(&shrinker->list, &shrinker_list);
168 up_write(&shrinker_rwsem);
169 }
170 EXPORT_SYMBOL(register_shrinker);
171
172 /*
173 * Remove one
174 */
175 void unregister_shrinker(struct shrinker *shrinker)
176 {
177 down_write(&shrinker_rwsem);
178 list_del(&shrinker->list);
179 up_write(&shrinker_rwsem);
180 }
181 EXPORT_SYMBOL(unregister_shrinker);
182
183 #define SHRINK_BATCH 128
184 /*
185 * Call the shrink functions to age shrinkable caches
186 *
187 * Here we assume it costs one seek to replace a lru page and that it also
188 * takes a seek to recreate a cache object. With this in mind we age equal
189 * percentages of the lru and ageable caches. This should balance the seeks
190 * generated by these structures.
191 *
192 * If the vm encountered mapped pages on the LRU it increase the pressure on
193 * slab to avoid swapping.
194 *
195 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
196 *
197 * `lru_pages' represents the number of on-LRU pages in all the zones which
198 * are eligible for the caller's allocation attempt. It is used for balancing
199 * slab reclaim versus page reclaim.
200 *
201 * Returns the number of slab objects which we shrunk.
202 */
203 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
204 unsigned long lru_pages)
205 {
206 struct shrinker *shrinker;
207 unsigned long ret = 0;
208
209 if (scanned == 0)
210 scanned = SWAP_CLUSTER_MAX;
211
212 if (!down_read_trylock(&shrinker_rwsem))
213 return 1; /* Assume we'll be able to shrink next time */
214
215 list_for_each_entry(shrinker, &shrinker_list, list) {
216 unsigned long long delta;
217 unsigned long total_scan;
218 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
219
220 delta = (4 * scanned) / shrinker->seeks;
221 delta *= max_pass;
222 do_div(delta, lru_pages + 1);
223 shrinker->nr += delta;
224 if (shrinker->nr < 0) {
225 printk(KERN_ERR "shrink_slab: %pF negative objects to "
226 "delete nr=%ld\n",
227 shrinker->shrink, shrinker->nr);
228 shrinker->nr = max_pass;
229 }
230
231 /*
232 * Avoid risking looping forever due to too large nr value:
233 * never try to free more than twice the estimate number of
234 * freeable entries.
235 */
236 if (shrinker->nr > max_pass * 2)
237 shrinker->nr = max_pass * 2;
238
239 total_scan = shrinker->nr;
240 shrinker->nr = 0;
241
242 while (total_scan >= SHRINK_BATCH) {
243 long this_scan = SHRINK_BATCH;
244 int shrink_ret;
245 int nr_before;
246
247 nr_before = (*shrinker->shrink)(0, gfp_mask);
248 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
249 if (shrink_ret == -1)
250 break;
251 if (shrink_ret < nr_before)
252 ret += nr_before - shrink_ret;
253 count_vm_events(SLABS_SCANNED, this_scan);
254 total_scan -= this_scan;
255
256 cond_resched();
257 }
258
259 shrinker->nr += total_scan;
260 }
261 up_read(&shrinker_rwsem);
262 return ret;
263 }
264
265 /* Called without lock on whether page is mapped, so answer is unstable */
266 static inline int page_mapping_inuse(struct page *page)
267 {
268 struct address_space *mapping;
269
270 /* Page is in somebody's page tables. */
271 if (page_mapped(page))
272 return 1;
273
274 /* Be more reluctant to reclaim swapcache than pagecache */
275 if (PageSwapCache(page))
276 return 1;
277
278 mapping = page_mapping(page);
279 if (!mapping)
280 return 0;
281
282 /* File is mmap'd by somebody? */
283 return mapping_mapped(mapping);
284 }
285
286 static inline int is_page_cache_freeable(struct page *page)
287 {
288 /*
289 * A freeable page cache page is referenced only by the caller
290 * that isolated the page, the page cache radix tree and
291 * optional buffer heads at page->private.
292 */
293 return page_count(page) - page_has_private(page) == 2;
294 }
295
296 static int may_write_to_queue(struct backing_dev_info *bdi)
297 {
298 if (current->flags & PF_SWAPWRITE)
299 return 1;
300 if (!bdi_write_congested(bdi))
301 return 1;
302 if (bdi == current->backing_dev_info)
303 return 1;
304 return 0;
305 }
306
307 /*
308 * We detected a synchronous write error writing a page out. Probably
309 * -ENOSPC. We need to propagate that into the address_space for a subsequent
310 * fsync(), msync() or close().
311 *
312 * The tricky part is that after writepage we cannot touch the mapping: nothing
313 * prevents it from being freed up. But we have a ref on the page and once
314 * that page is locked, the mapping is pinned.
315 *
316 * We're allowed to run sleeping lock_page() here because we know the caller has
317 * __GFP_FS.
318 */
319 static void handle_write_error(struct address_space *mapping,
320 struct page *page, int error)
321 {
322 lock_page(page);
323 if (page_mapping(page) == mapping)
324 mapping_set_error(mapping, error);
325 unlock_page(page);
326 }
327
328 /* Request for sync pageout. */
329 enum pageout_io {
330 PAGEOUT_IO_ASYNC,
331 PAGEOUT_IO_SYNC,
332 };
333
334 /* possible outcome of pageout() */
335 typedef enum {
336 /* failed to write page out, page is locked */
337 PAGE_KEEP,
338 /* move page to the active list, page is locked */
339 PAGE_ACTIVATE,
340 /* page has been sent to the disk successfully, page is unlocked */
341 PAGE_SUCCESS,
342 /* page is clean and locked */
343 PAGE_CLEAN,
344 } pageout_t;
345
346 /*
347 * pageout is called by shrink_page_list() for each dirty page.
348 * Calls ->writepage().
349 */
350 static pageout_t pageout(struct page *page, struct address_space *mapping,
351 enum pageout_io sync_writeback)
352 {
353 /*
354 * If the page is dirty, only perform writeback if that write
355 * will be non-blocking. To prevent this allocation from being
356 * stalled by pagecache activity. But note that there may be
357 * stalls if we need to run get_block(). We could test
358 * PagePrivate for that.
359 *
360 * If this process is currently in __generic_file_aio_write() against
361 * this page's queue, we can perform writeback even if that
362 * will block.
363 *
364 * If the page is swapcache, write it back even if that would
365 * block, for some throttling. This happens by accident, because
366 * swap_backing_dev_info is bust: it doesn't reflect the
367 * congestion state of the swapdevs. Easy to fix, if needed.
368 */
369 if (!is_page_cache_freeable(page))
370 return PAGE_KEEP;
371 if (!mapping) {
372 /*
373 * Some data journaling orphaned pages can have
374 * page->mapping == NULL while being dirty with clean buffers.
375 */
376 if (page_has_private(page)) {
377 if (try_to_free_buffers(page)) {
378 ClearPageDirty(page);
379 printk("%s: orphaned page\n", __func__);
380 return PAGE_CLEAN;
381 }
382 }
383 return PAGE_KEEP;
384 }
385 if (mapping->a_ops->writepage == NULL)
386 return PAGE_ACTIVATE;
387 if (!may_write_to_queue(mapping->backing_dev_info))
388 return PAGE_KEEP;
389
390 if (clear_page_dirty_for_io(page)) {
391 int res;
392 struct writeback_control wbc = {
393 .sync_mode = WB_SYNC_NONE,
394 .nr_to_write = SWAP_CLUSTER_MAX,
395 .range_start = 0,
396 .range_end = LLONG_MAX,
397 .nonblocking = 1,
398 .for_reclaim = 1,
399 };
400
401 SetPageReclaim(page);
402 res = mapping->a_ops->writepage(page, &wbc);
403 if (res < 0)
404 handle_write_error(mapping, page, res);
405 if (res == AOP_WRITEPAGE_ACTIVATE) {
406 ClearPageReclaim(page);
407 return PAGE_ACTIVATE;
408 }
409
410 /*
411 * Wait on writeback if requested to. This happens when
412 * direct reclaiming a large contiguous area and the
413 * first attempt to free a range of pages fails.
414 */
415 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
416 wait_on_page_writeback(page);
417
418 if (!PageWriteback(page)) {
419 /* synchronous write or broken a_ops? */
420 ClearPageReclaim(page);
421 }
422 inc_zone_page_state(page, NR_VMSCAN_WRITE);
423 return PAGE_SUCCESS;
424 }
425
426 return PAGE_CLEAN;
427 }
428
429 /*
430 * Same as remove_mapping, but if the page is removed from the mapping, it
431 * gets returned with a refcount of 0.
432 */
433 static int __remove_mapping(struct address_space *mapping, struct page *page)
434 {
435 BUG_ON(!PageLocked(page));
436 BUG_ON(mapping != page_mapping(page));
437
438 spin_lock_irq(&mapping->tree_lock);
439 /*
440 * The non racy check for a busy page.
441 *
442 * Must be careful with the order of the tests. When someone has
443 * a ref to the page, it may be possible that they dirty it then
444 * drop the reference. So if PageDirty is tested before page_count
445 * here, then the following race may occur:
446 *
447 * get_user_pages(&page);
448 * [user mapping goes away]
449 * write_to(page);
450 * !PageDirty(page) [good]
451 * SetPageDirty(page);
452 * put_page(page);
453 * !page_count(page) [good, discard it]
454 *
455 * [oops, our write_to data is lost]
456 *
457 * Reversing the order of the tests ensures such a situation cannot
458 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
459 * load is not satisfied before that of page->_count.
460 *
461 * Note that if SetPageDirty is always performed via set_page_dirty,
462 * and thus under tree_lock, then this ordering is not required.
463 */
464 if (!page_freeze_refs(page, 2))
465 goto cannot_free;
466 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
467 if (unlikely(PageDirty(page))) {
468 page_unfreeze_refs(page, 2);
469 goto cannot_free;
470 }
471
472 if (PageSwapCache(page)) {
473 swp_entry_t swap = { .val = page_private(page) };
474 __delete_from_swap_cache(page);
475 spin_unlock_irq(&mapping->tree_lock);
476 swapcache_free(swap, page);
477 } else {
478 __remove_from_page_cache(page);
479 spin_unlock_irq(&mapping->tree_lock);
480 mem_cgroup_uncharge_cache_page(page);
481 }
482
483 return 1;
484
485 cannot_free:
486 spin_unlock_irq(&mapping->tree_lock);
487 return 0;
488 }
489
490 /*
491 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
492 * someone else has a ref on the page, abort and return 0. If it was
493 * successfully detached, return 1. Assumes the caller has a single ref on
494 * this page.
495 */
496 int remove_mapping(struct address_space *mapping, struct page *page)
497 {
498 if (__remove_mapping(mapping, page)) {
499 /*
500 * Unfreezing the refcount with 1 rather than 2 effectively
501 * drops the pagecache ref for us without requiring another
502 * atomic operation.
503 */
504 page_unfreeze_refs(page, 1);
505 return 1;
506 }
507 return 0;
508 }
509
510 /**
511 * putback_lru_page - put previously isolated page onto appropriate LRU list
512 * @page: page to be put back to appropriate lru list
513 *
514 * Add previously isolated @page to appropriate LRU list.
515 * Page may still be unevictable for other reasons.
516 *
517 * lru_lock must not be held, interrupts must be enabled.
518 */
519 void putback_lru_page(struct page *page)
520 {
521 int lru;
522 int active = !!TestClearPageActive(page);
523 int was_unevictable = PageUnevictable(page);
524
525 VM_BUG_ON(PageLRU(page));
526
527 redo:
528 ClearPageUnevictable(page);
529
530 if (page_evictable(page, NULL)) {
531 /*
532 * For evictable pages, we can use the cache.
533 * In event of a race, worst case is we end up with an
534 * unevictable page on [in]active list.
535 * We know how to handle that.
536 */
537 lru = active + page_lru_base_type(page);
538 lru_cache_add_lru(page, lru);
539 } else {
540 /*
541 * Put unevictable pages directly on zone's unevictable
542 * list.
543 */
544 lru = LRU_UNEVICTABLE;
545 add_page_to_unevictable_list(page);
546 /*
547 * When racing with an mlock clearing (page is
548 * unlocked), make sure that if the other thread does
549 * not observe our setting of PG_lru and fails
550 * isolation, we see PG_mlocked cleared below and move
551 * the page back to the evictable list.
552 *
553 * The other side is TestClearPageMlocked().
554 */
555 smp_mb();
556 }
557
558 /*
559 * page's status can change while we move it among lru. If an evictable
560 * page is on unevictable list, it never be freed. To avoid that,
561 * check after we added it to the list, again.
562 */
563 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
564 if (!isolate_lru_page(page)) {
565 put_page(page);
566 goto redo;
567 }
568 /* This means someone else dropped this page from LRU
569 * So, it will be freed or putback to LRU again. There is
570 * nothing to do here.
571 */
572 }
573
574 if (was_unevictable && lru != LRU_UNEVICTABLE)
575 count_vm_event(UNEVICTABLE_PGRESCUED);
576 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
577 count_vm_event(UNEVICTABLE_PGCULLED);
578
579 put_page(page); /* drop ref from isolate */
580 }
581
582 enum page_references {
583 PAGEREF_RECLAIM,
584 PAGEREF_RECLAIM_CLEAN,
585 PAGEREF_ACTIVATE,
586 };
587
588 static enum page_references page_check_references(struct page *page,
589 struct scan_control *sc)
590 {
591 unsigned long vm_flags;
592 int referenced;
593
594 referenced = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
595 if (!referenced)
596 return PAGEREF_RECLAIM;
597
598 /* Lumpy reclaim - ignore references */
599 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
600 return PAGEREF_RECLAIM;
601
602 /*
603 * Mlock lost the isolation race with us. Let try_to_unmap()
604 * move the page to the unevictable list.
605 */
606 if (vm_flags & VM_LOCKED)
607 return PAGEREF_RECLAIM;
608
609 if (page_mapping_inuse(page))
610 return PAGEREF_ACTIVATE;
611
612 /* Reclaim if clean, defer dirty pages to writeback */
613 return PAGEREF_RECLAIM_CLEAN;
614 }
615
616 /*
617 * shrink_page_list() returns the number of reclaimed pages
618 */
619 static unsigned long shrink_page_list(struct list_head *page_list,
620 struct scan_control *sc,
621 enum pageout_io sync_writeback)
622 {
623 LIST_HEAD(ret_pages);
624 struct pagevec freed_pvec;
625 int pgactivate = 0;
626 unsigned long nr_reclaimed = 0;
627
628 cond_resched();
629
630 pagevec_init(&freed_pvec, 1);
631 while (!list_empty(page_list)) {
632 enum page_references references;
633 struct address_space *mapping;
634 struct page *page;
635 int may_enter_fs;
636
637 cond_resched();
638
639 page = lru_to_page(page_list);
640 list_del(&page->lru);
641
642 if (!trylock_page(page))
643 goto keep;
644
645 VM_BUG_ON(PageActive(page));
646
647 sc->nr_scanned++;
648
649 if (unlikely(!page_evictable(page, NULL)))
650 goto cull_mlocked;
651
652 if (!sc->may_unmap && page_mapped(page))
653 goto keep_locked;
654
655 /* Double the slab pressure for mapped and swapcache pages */
656 if (page_mapped(page) || PageSwapCache(page))
657 sc->nr_scanned++;
658
659 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
660 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
661
662 if (PageWriteback(page)) {
663 /*
664 * Synchronous reclaim is performed in two passes,
665 * first an asynchronous pass over the list to
666 * start parallel writeback, and a second synchronous
667 * pass to wait for the IO to complete. Wait here
668 * for any page for which writeback has already
669 * started.
670 */
671 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
672 wait_on_page_writeback(page);
673 else
674 goto keep_locked;
675 }
676
677 references = page_check_references(page, sc);
678 switch (references) {
679 case PAGEREF_ACTIVATE:
680 goto activate_locked;
681 case PAGEREF_RECLAIM:
682 case PAGEREF_RECLAIM_CLEAN:
683 ; /* try to reclaim the page below */
684 }
685
686 /*
687 * Anonymous process memory has backing store?
688 * Try to allocate it some swap space here.
689 */
690 if (PageAnon(page) && !PageSwapCache(page)) {
691 if (!(sc->gfp_mask & __GFP_IO))
692 goto keep_locked;
693 if (!add_to_swap(page))
694 goto activate_locked;
695 may_enter_fs = 1;
696 }
697
698 mapping = page_mapping(page);
699
700 /*
701 * The page is mapped into the page tables of one or more
702 * processes. Try to unmap it here.
703 */
704 if (page_mapped(page) && mapping) {
705 switch (try_to_unmap(page, TTU_UNMAP)) {
706 case SWAP_FAIL:
707 goto activate_locked;
708 case SWAP_AGAIN:
709 goto keep_locked;
710 case SWAP_MLOCK:
711 goto cull_mlocked;
712 case SWAP_SUCCESS:
713 ; /* try to free the page below */
714 }
715 }
716
717 if (PageDirty(page)) {
718 if (references == PAGEREF_RECLAIM_CLEAN)
719 goto keep_locked;
720 if (!may_enter_fs)
721 goto keep_locked;
722 if (!sc->may_writepage)
723 goto keep_locked;
724
725 /* Page is dirty, try to write it out here */
726 switch (pageout(page, mapping, sync_writeback)) {
727 case PAGE_KEEP:
728 goto keep_locked;
729 case PAGE_ACTIVATE:
730 goto activate_locked;
731 case PAGE_SUCCESS:
732 if (PageWriteback(page) || PageDirty(page))
733 goto keep;
734 /*
735 * A synchronous write - probably a ramdisk. Go
736 * ahead and try to reclaim the page.
737 */
738 if (!trylock_page(page))
739 goto keep;
740 if (PageDirty(page) || PageWriteback(page))
741 goto keep_locked;
742 mapping = page_mapping(page);
743 case PAGE_CLEAN:
744 ; /* try to free the page below */
745 }
746 }
747
748 /*
749 * If the page has buffers, try to free the buffer mappings
750 * associated with this page. If we succeed we try to free
751 * the page as well.
752 *
753 * We do this even if the page is PageDirty().
754 * try_to_release_page() does not perform I/O, but it is
755 * possible for a page to have PageDirty set, but it is actually
756 * clean (all its buffers are clean). This happens if the
757 * buffers were written out directly, with submit_bh(). ext3
758 * will do this, as well as the blockdev mapping.
759 * try_to_release_page() will discover that cleanness and will
760 * drop the buffers and mark the page clean - it can be freed.
761 *
762 * Rarely, pages can have buffers and no ->mapping. These are
763 * the pages which were not successfully invalidated in
764 * truncate_complete_page(). We try to drop those buffers here
765 * and if that worked, and the page is no longer mapped into
766 * process address space (page_count == 1) it can be freed.
767 * Otherwise, leave the page on the LRU so it is swappable.
768 */
769 if (page_has_private(page)) {
770 if (!try_to_release_page(page, sc->gfp_mask))
771 goto activate_locked;
772 if (!mapping && page_count(page) == 1) {
773 unlock_page(page);
774 if (put_page_testzero(page))
775 goto free_it;
776 else {
777 /*
778 * rare race with speculative reference.
779 * the speculative reference will free
780 * this page shortly, so we may
781 * increment nr_reclaimed here (and
782 * leave it off the LRU).
783 */
784 nr_reclaimed++;
785 continue;
786 }
787 }
788 }
789
790 if (!mapping || !__remove_mapping(mapping, page))
791 goto keep_locked;
792
793 /*
794 * At this point, we have no other references and there is
795 * no way to pick any more up (removed from LRU, removed
796 * from pagecache). Can use non-atomic bitops now (and
797 * we obviously don't have to worry about waking up a process
798 * waiting on the page lock, because there are no references.
799 */
800 __clear_page_locked(page);
801 free_it:
802 nr_reclaimed++;
803 if (!pagevec_add(&freed_pvec, page)) {
804 __pagevec_free(&freed_pvec);
805 pagevec_reinit(&freed_pvec);
806 }
807 continue;
808
809 cull_mlocked:
810 if (PageSwapCache(page))
811 try_to_free_swap(page);
812 unlock_page(page);
813 putback_lru_page(page);
814 continue;
815
816 activate_locked:
817 /* Not a candidate for swapping, so reclaim swap space. */
818 if (PageSwapCache(page) && vm_swap_full())
819 try_to_free_swap(page);
820 VM_BUG_ON(PageActive(page));
821 SetPageActive(page);
822 pgactivate++;
823 keep_locked:
824 unlock_page(page);
825 keep:
826 list_add(&page->lru, &ret_pages);
827 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
828 }
829 list_splice(&ret_pages, page_list);
830 if (pagevec_count(&freed_pvec))
831 __pagevec_free(&freed_pvec);
832 count_vm_events(PGACTIVATE, pgactivate);
833 return nr_reclaimed;
834 }
835
836 /* LRU Isolation modes. */
837 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
838 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
839 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
840
841 /*
842 * Attempt to remove the specified page from its LRU. Only take this page
843 * if it is of the appropriate PageActive status. Pages which are being
844 * freed elsewhere are also ignored.
845 *
846 * page: page to consider
847 * mode: one of the LRU isolation modes defined above
848 *
849 * returns 0 on success, -ve errno on failure.
850 */
851 int __isolate_lru_page(struct page *page, int mode, int file)
852 {
853 int ret = -EINVAL;
854
855 /* Only take pages on the LRU. */
856 if (!PageLRU(page))
857 return ret;
858
859 /*
860 * When checking the active state, we need to be sure we are
861 * dealing with comparible boolean values. Take the logical not
862 * of each.
863 */
864 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
865 return ret;
866
867 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
868 return ret;
869
870 /*
871 * When this function is being called for lumpy reclaim, we
872 * initially look into all LRU pages, active, inactive and
873 * unevictable; only give shrink_page_list evictable pages.
874 */
875 if (PageUnevictable(page))
876 return ret;
877
878 ret = -EBUSY;
879
880 if (likely(get_page_unless_zero(page))) {
881 /*
882 * Be careful not to clear PageLRU until after we're
883 * sure the page is not being freed elsewhere -- the
884 * page release code relies on it.
885 */
886 ClearPageLRU(page);
887 ret = 0;
888 }
889
890 return ret;
891 }
892
893 /*
894 * zone->lru_lock is heavily contended. Some of the functions that
895 * shrink the lists perform better by taking out a batch of pages
896 * and working on them outside the LRU lock.
897 *
898 * For pagecache intensive workloads, this function is the hottest
899 * spot in the kernel (apart from copy_*_user functions).
900 *
901 * Appropriate locks must be held before calling this function.
902 *
903 * @nr_to_scan: The number of pages to look through on the list.
904 * @src: The LRU list to pull pages off.
905 * @dst: The temp list to put pages on to.
906 * @scanned: The number of pages that were scanned.
907 * @order: The caller's attempted allocation order
908 * @mode: One of the LRU isolation modes
909 * @file: True [1] if isolating file [!anon] pages
910 *
911 * returns how many pages were moved onto *@dst.
912 */
913 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
914 struct list_head *src, struct list_head *dst,
915 unsigned long *scanned, int order, int mode, int file)
916 {
917 unsigned long nr_taken = 0;
918 unsigned long scan;
919
920 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
921 struct page *page;
922 unsigned long pfn;
923 unsigned long end_pfn;
924 unsigned long page_pfn;
925 int zone_id;
926
927 page = lru_to_page(src);
928 prefetchw_prev_lru_page(page, src, flags);
929
930 VM_BUG_ON(!PageLRU(page));
931
932 switch (__isolate_lru_page(page, mode, file)) {
933 case 0:
934 list_move(&page->lru, dst);
935 mem_cgroup_del_lru(page);
936 nr_taken++;
937 break;
938
939 case -EBUSY:
940 /* else it is being freed elsewhere */
941 list_move(&page->lru, src);
942 mem_cgroup_rotate_lru_list(page, page_lru(page));
943 continue;
944
945 default:
946 BUG();
947 }
948
949 if (!order)
950 continue;
951
952 /*
953 * Attempt to take all pages in the order aligned region
954 * surrounding the tag page. Only take those pages of
955 * the same active state as that tag page. We may safely
956 * round the target page pfn down to the requested order
957 * as the mem_map is guarenteed valid out to MAX_ORDER,
958 * where that page is in a different zone we will detect
959 * it from its zone id and abort this block scan.
960 */
961 zone_id = page_zone_id(page);
962 page_pfn = page_to_pfn(page);
963 pfn = page_pfn & ~((1 << order) - 1);
964 end_pfn = pfn + (1 << order);
965 for (; pfn < end_pfn; pfn++) {
966 struct page *cursor_page;
967
968 /* The target page is in the block, ignore it. */
969 if (unlikely(pfn == page_pfn))
970 continue;
971
972 /* Avoid holes within the zone. */
973 if (unlikely(!pfn_valid_within(pfn)))
974 break;
975
976 cursor_page = pfn_to_page(pfn);
977
978 /* Check that we have not crossed a zone boundary. */
979 if (unlikely(page_zone_id(cursor_page) != zone_id))
980 continue;
981
982 /*
983 * If we don't have enough swap space, reclaiming of
984 * anon page which don't already have a swap slot is
985 * pointless.
986 */
987 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
988 !PageSwapCache(cursor_page))
989 continue;
990
991 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
992 list_move(&cursor_page->lru, dst);
993 mem_cgroup_del_lru(cursor_page);
994 nr_taken++;
995 scan++;
996 }
997 }
998 }
999
1000 *scanned = scan;
1001 return nr_taken;
1002 }
1003
1004 static unsigned long isolate_pages_global(unsigned long nr,
1005 struct list_head *dst,
1006 unsigned long *scanned, int order,
1007 int mode, struct zone *z,
1008 struct mem_cgroup *mem_cont,
1009 int active, int file)
1010 {
1011 int lru = LRU_BASE;
1012 if (active)
1013 lru += LRU_ACTIVE;
1014 if (file)
1015 lru += LRU_FILE;
1016 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1017 mode, file);
1018 }
1019
1020 /*
1021 * clear_active_flags() is a helper for shrink_active_list(), clearing
1022 * any active bits from the pages in the list.
1023 */
1024 static unsigned long clear_active_flags(struct list_head *page_list,
1025 unsigned int *count)
1026 {
1027 int nr_active = 0;
1028 int lru;
1029 struct page *page;
1030
1031 list_for_each_entry(page, page_list, lru) {
1032 lru = page_lru_base_type(page);
1033 if (PageActive(page)) {
1034 lru += LRU_ACTIVE;
1035 ClearPageActive(page);
1036 nr_active++;
1037 }
1038 count[lru]++;
1039 }
1040
1041 return nr_active;
1042 }
1043
1044 /**
1045 * isolate_lru_page - tries to isolate a page from its LRU list
1046 * @page: page to isolate from its LRU list
1047 *
1048 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1049 * vmstat statistic corresponding to whatever LRU list the page was on.
1050 *
1051 * Returns 0 if the page was removed from an LRU list.
1052 * Returns -EBUSY if the page was not on an LRU list.
1053 *
1054 * The returned page will have PageLRU() cleared. If it was found on
1055 * the active list, it will have PageActive set. If it was found on
1056 * the unevictable list, it will have the PageUnevictable bit set. That flag
1057 * may need to be cleared by the caller before letting the page go.
1058 *
1059 * The vmstat statistic corresponding to the list on which the page was
1060 * found will be decremented.
1061 *
1062 * Restrictions:
1063 * (1) Must be called with an elevated refcount on the page. This is a
1064 * fundamentnal difference from isolate_lru_pages (which is called
1065 * without a stable reference).
1066 * (2) the lru_lock must not be held.
1067 * (3) interrupts must be enabled.
1068 */
1069 int isolate_lru_page(struct page *page)
1070 {
1071 int ret = -EBUSY;
1072
1073 if (PageLRU(page)) {
1074 struct zone *zone = page_zone(page);
1075
1076 spin_lock_irq(&zone->lru_lock);
1077 if (PageLRU(page) && get_page_unless_zero(page)) {
1078 int lru = page_lru(page);
1079 ret = 0;
1080 ClearPageLRU(page);
1081
1082 del_page_from_lru_list(zone, page, lru);
1083 }
1084 spin_unlock_irq(&zone->lru_lock);
1085 }
1086 return ret;
1087 }
1088
1089 /*
1090 * Are there way too many processes in the direct reclaim path already?
1091 */
1092 static int too_many_isolated(struct zone *zone, int file,
1093 struct scan_control *sc)
1094 {
1095 unsigned long inactive, isolated;
1096
1097 if (current_is_kswapd())
1098 return 0;
1099
1100 if (!scanning_global_lru(sc))
1101 return 0;
1102
1103 if (file) {
1104 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1105 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1106 } else {
1107 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1108 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1109 }
1110
1111 return isolated > inactive;
1112 }
1113
1114 /*
1115 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1116 * of reclaimed pages
1117 */
1118 static unsigned long shrink_inactive_list(unsigned long max_scan,
1119 struct zone *zone, struct scan_control *sc,
1120 int priority, int file)
1121 {
1122 LIST_HEAD(page_list);
1123 struct pagevec pvec;
1124 unsigned long nr_scanned = 0;
1125 unsigned long nr_reclaimed = 0;
1126 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1127 int lumpy_reclaim = 0;
1128
1129 while (unlikely(too_many_isolated(zone, file, sc))) {
1130 congestion_wait(BLK_RW_ASYNC, HZ/10);
1131
1132 /* We are about to die and free our memory. Return now. */
1133 if (fatal_signal_pending(current))
1134 return SWAP_CLUSTER_MAX;
1135 }
1136
1137 /*
1138 * If we need a large contiguous chunk of memory, or have
1139 * trouble getting a small set of contiguous pages, we
1140 * will reclaim both active and inactive pages.
1141 *
1142 * We use the same threshold as pageout congestion_wait below.
1143 */
1144 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1145 lumpy_reclaim = 1;
1146 else if (sc->order && priority < DEF_PRIORITY - 2)
1147 lumpy_reclaim = 1;
1148
1149 pagevec_init(&pvec, 1);
1150
1151 lru_add_drain();
1152 spin_lock_irq(&zone->lru_lock);
1153 do {
1154 struct page *page;
1155 unsigned long nr_taken;
1156 unsigned long nr_scan;
1157 unsigned long nr_freed;
1158 unsigned long nr_active;
1159 unsigned int count[NR_LRU_LISTS] = { 0, };
1160 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1161 unsigned long nr_anon;
1162 unsigned long nr_file;
1163
1164 nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
1165 &page_list, &nr_scan, sc->order, mode,
1166 zone, sc->mem_cgroup, 0, file);
1167
1168 if (scanning_global_lru(sc)) {
1169 zone->pages_scanned += nr_scan;
1170 if (current_is_kswapd())
1171 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1172 nr_scan);
1173 else
1174 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1175 nr_scan);
1176 }
1177
1178 if (nr_taken == 0)
1179 goto done;
1180
1181 nr_active = clear_active_flags(&page_list, count);
1182 __count_vm_events(PGDEACTIVATE, nr_active);
1183
1184 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1185 -count[LRU_ACTIVE_FILE]);
1186 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1187 -count[LRU_INACTIVE_FILE]);
1188 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1189 -count[LRU_ACTIVE_ANON]);
1190 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1191 -count[LRU_INACTIVE_ANON]);
1192
1193 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1194 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1195 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1196 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1197
1198 reclaim_stat->recent_scanned[0] += nr_anon;
1199 reclaim_stat->recent_scanned[1] += nr_file;
1200
1201 spin_unlock_irq(&zone->lru_lock);
1202
1203 nr_scanned += nr_scan;
1204 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1205
1206 /*
1207 * If we are direct reclaiming for contiguous pages and we do
1208 * not reclaim everything in the list, try again and wait
1209 * for IO to complete. This will stall high-order allocations
1210 * but that should be acceptable to the caller
1211 */
1212 if (nr_freed < nr_taken && !current_is_kswapd() &&
1213 lumpy_reclaim) {
1214 congestion_wait(BLK_RW_ASYNC, HZ/10);
1215
1216 /*
1217 * The attempt at page out may have made some
1218 * of the pages active, mark them inactive again.
1219 */
1220 nr_active = clear_active_flags(&page_list, count);
1221 count_vm_events(PGDEACTIVATE, nr_active);
1222
1223 nr_freed += shrink_page_list(&page_list, sc,
1224 PAGEOUT_IO_SYNC);
1225 }
1226
1227 nr_reclaimed += nr_freed;
1228
1229 local_irq_disable();
1230 if (current_is_kswapd())
1231 __count_vm_events(KSWAPD_STEAL, nr_freed);
1232 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
1233
1234 spin_lock(&zone->lru_lock);
1235 /*
1236 * Put back any unfreeable pages.
1237 */
1238 while (!list_empty(&page_list)) {
1239 int lru;
1240 page = lru_to_page(&page_list);
1241 VM_BUG_ON(PageLRU(page));
1242 list_del(&page->lru);
1243 if (unlikely(!page_evictable(page, NULL))) {
1244 spin_unlock_irq(&zone->lru_lock);
1245 putback_lru_page(page);
1246 spin_lock_irq(&zone->lru_lock);
1247 continue;
1248 }
1249 SetPageLRU(page);
1250 lru = page_lru(page);
1251 add_page_to_lru_list(zone, page, lru);
1252 if (is_active_lru(lru)) {
1253 int file = is_file_lru(lru);
1254 reclaim_stat->recent_rotated[file]++;
1255 }
1256 if (!pagevec_add(&pvec, page)) {
1257 spin_unlock_irq(&zone->lru_lock);
1258 __pagevec_release(&pvec);
1259 spin_lock_irq(&zone->lru_lock);
1260 }
1261 }
1262 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1263 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1264
1265 } while (nr_scanned < max_scan);
1266
1267 done:
1268 spin_unlock_irq(&zone->lru_lock);
1269 pagevec_release(&pvec);
1270 return nr_reclaimed;
1271 }
1272
1273 /*
1274 * We are about to scan this zone at a certain priority level. If that priority
1275 * level is smaller (ie: more urgent) than the previous priority, then note
1276 * that priority level within the zone. This is done so that when the next
1277 * process comes in to scan this zone, it will immediately start out at this
1278 * priority level rather than having to build up its own scanning priority.
1279 * Here, this priority affects only the reclaim-mapped threshold.
1280 */
1281 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1282 {
1283 if (priority < zone->prev_priority)
1284 zone->prev_priority = priority;
1285 }
1286
1287 /*
1288 * This moves pages from the active list to the inactive list.
1289 *
1290 * We move them the other way if the page is referenced by one or more
1291 * processes, from rmap.
1292 *
1293 * If the pages are mostly unmapped, the processing is fast and it is
1294 * appropriate to hold zone->lru_lock across the whole operation. But if
1295 * the pages are mapped, the processing is slow (page_referenced()) so we
1296 * should drop zone->lru_lock around each page. It's impossible to balance
1297 * this, so instead we remove the pages from the LRU while processing them.
1298 * It is safe to rely on PG_active against the non-LRU pages in here because
1299 * nobody will play with that bit on a non-LRU page.
1300 *
1301 * The downside is that we have to touch page->_count against each page.
1302 * But we had to alter page->flags anyway.
1303 */
1304
1305 static void move_active_pages_to_lru(struct zone *zone,
1306 struct list_head *list,
1307 enum lru_list lru)
1308 {
1309 unsigned long pgmoved = 0;
1310 struct pagevec pvec;
1311 struct page *page;
1312
1313 pagevec_init(&pvec, 1);
1314
1315 while (!list_empty(list)) {
1316 page = lru_to_page(list);
1317
1318 VM_BUG_ON(PageLRU(page));
1319 SetPageLRU(page);
1320
1321 list_move(&page->lru, &zone->lru[lru].list);
1322 mem_cgroup_add_lru_list(page, lru);
1323 pgmoved++;
1324
1325 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1326 spin_unlock_irq(&zone->lru_lock);
1327 if (buffer_heads_over_limit)
1328 pagevec_strip(&pvec);
1329 __pagevec_release(&pvec);
1330 spin_lock_irq(&zone->lru_lock);
1331 }
1332 }
1333 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1334 if (!is_active_lru(lru))
1335 __count_vm_events(PGDEACTIVATE, pgmoved);
1336 }
1337
1338 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1339 struct scan_control *sc, int priority, int file)
1340 {
1341 unsigned long nr_taken;
1342 unsigned long pgscanned;
1343 unsigned long vm_flags;
1344 LIST_HEAD(l_hold); /* The pages which were snipped off */
1345 LIST_HEAD(l_active);
1346 LIST_HEAD(l_inactive);
1347 struct page *page;
1348 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1349 unsigned long nr_rotated = 0;
1350
1351 lru_add_drain();
1352 spin_lock_irq(&zone->lru_lock);
1353 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1354 ISOLATE_ACTIVE, zone,
1355 sc->mem_cgroup, 1, file);
1356 /*
1357 * zone->pages_scanned is used for detect zone's oom
1358 * mem_cgroup remembers nr_scan by itself.
1359 */
1360 if (scanning_global_lru(sc)) {
1361 zone->pages_scanned += pgscanned;
1362 }
1363 reclaim_stat->recent_scanned[file] += nr_taken;
1364
1365 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1366 if (file)
1367 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1368 else
1369 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1370 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1371 spin_unlock_irq(&zone->lru_lock);
1372
1373 while (!list_empty(&l_hold)) {
1374 cond_resched();
1375 page = lru_to_page(&l_hold);
1376 list_del(&page->lru);
1377
1378 if (unlikely(!page_evictable(page, NULL))) {
1379 putback_lru_page(page);
1380 continue;
1381 }
1382
1383 /* page_referenced clears PageReferenced */
1384 if (page_mapping_inuse(page) &&
1385 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1386 nr_rotated++;
1387 /*
1388 * Identify referenced, file-backed active pages and
1389 * give them one more trip around the active list. So
1390 * that executable code get better chances to stay in
1391 * memory under moderate memory pressure. Anon pages
1392 * are not likely to be evicted by use-once streaming
1393 * IO, plus JVM can create lots of anon VM_EXEC pages,
1394 * so we ignore them here.
1395 */
1396 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1397 list_add(&page->lru, &l_active);
1398 continue;
1399 }
1400 }
1401
1402 ClearPageActive(page); /* we are de-activating */
1403 list_add(&page->lru, &l_inactive);
1404 }
1405
1406 /*
1407 * Move pages back to the lru list.
1408 */
1409 spin_lock_irq(&zone->lru_lock);
1410 /*
1411 * Count referenced pages from currently used mappings as rotated,
1412 * even though only some of them are actually re-activated. This
1413 * helps balance scan pressure between file and anonymous pages in
1414 * get_scan_ratio.
1415 */
1416 reclaim_stat->recent_rotated[file] += nr_rotated;
1417
1418 move_active_pages_to_lru(zone, &l_active,
1419 LRU_ACTIVE + file * LRU_FILE);
1420 move_active_pages_to_lru(zone, &l_inactive,
1421 LRU_BASE + file * LRU_FILE);
1422 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1423 spin_unlock_irq(&zone->lru_lock);
1424 }
1425
1426 static int inactive_anon_is_low_global(struct zone *zone)
1427 {
1428 unsigned long active, inactive;
1429
1430 active = zone_page_state(zone, NR_ACTIVE_ANON);
1431 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1432
1433 if (inactive * zone->inactive_ratio < active)
1434 return 1;
1435
1436 return 0;
1437 }
1438
1439 /**
1440 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1441 * @zone: zone to check
1442 * @sc: scan control of this context
1443 *
1444 * Returns true if the zone does not have enough inactive anon pages,
1445 * meaning some active anon pages need to be deactivated.
1446 */
1447 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1448 {
1449 int low;
1450
1451 if (scanning_global_lru(sc))
1452 low = inactive_anon_is_low_global(zone);
1453 else
1454 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1455 return low;
1456 }
1457
1458 static int inactive_file_is_low_global(struct zone *zone)
1459 {
1460 unsigned long active, inactive;
1461
1462 active = zone_page_state(zone, NR_ACTIVE_FILE);
1463 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1464
1465 return (active > inactive);
1466 }
1467
1468 /**
1469 * inactive_file_is_low - check if file pages need to be deactivated
1470 * @zone: zone to check
1471 * @sc: scan control of this context
1472 *
1473 * When the system is doing streaming IO, memory pressure here
1474 * ensures that active file pages get deactivated, until more
1475 * than half of the file pages are on the inactive list.
1476 *
1477 * Once we get to that situation, protect the system's working
1478 * set from being evicted by disabling active file page aging.
1479 *
1480 * This uses a different ratio than the anonymous pages, because
1481 * the page cache uses a use-once replacement algorithm.
1482 */
1483 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1484 {
1485 int low;
1486
1487 if (scanning_global_lru(sc))
1488 low = inactive_file_is_low_global(zone);
1489 else
1490 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1491 return low;
1492 }
1493
1494 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1495 int file)
1496 {
1497 if (file)
1498 return inactive_file_is_low(zone, sc);
1499 else
1500 return inactive_anon_is_low(zone, sc);
1501 }
1502
1503 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1504 struct zone *zone, struct scan_control *sc, int priority)
1505 {
1506 int file = is_file_lru(lru);
1507
1508 if (is_active_lru(lru)) {
1509 if (inactive_list_is_low(zone, sc, file))
1510 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1511 return 0;
1512 }
1513
1514 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1515 }
1516
1517 /*
1518 * Determine how aggressively the anon and file LRU lists should be
1519 * scanned. The relative value of each set of LRU lists is determined
1520 * by looking at the fraction of the pages scanned we did rotate back
1521 * onto the active list instead of evict.
1522 *
1523 * percent[0] specifies how much pressure to put on ram/swap backed
1524 * memory, while percent[1] determines pressure on the file LRUs.
1525 */
1526 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1527 unsigned long *percent)
1528 {
1529 unsigned long anon, file, free;
1530 unsigned long anon_prio, file_prio;
1531 unsigned long ap, fp;
1532 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1533
1534 /* If we have no swap space, do not bother scanning anon pages. */
1535 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1536 percent[0] = 0;
1537 percent[1] = 100;
1538 return;
1539 }
1540
1541 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1542 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1543 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1544 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1545
1546 if (scanning_global_lru(sc)) {
1547 free = zone_page_state(zone, NR_FREE_PAGES);
1548 /* If we have very few page cache pages,
1549 force-scan anon pages. */
1550 if (unlikely(file + free <= high_wmark_pages(zone))) {
1551 percent[0] = 100;
1552 percent[1] = 0;
1553 return;
1554 }
1555 }
1556
1557 /*
1558 * OK, so we have swap space and a fair amount of page cache
1559 * pages. We use the recently rotated / recently scanned
1560 * ratios to determine how valuable each cache is.
1561 *
1562 * Because workloads change over time (and to avoid overflow)
1563 * we keep these statistics as a floating average, which ends
1564 * up weighing recent references more than old ones.
1565 *
1566 * anon in [0], file in [1]
1567 */
1568 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1569 spin_lock_irq(&zone->lru_lock);
1570 reclaim_stat->recent_scanned[0] /= 2;
1571 reclaim_stat->recent_rotated[0] /= 2;
1572 spin_unlock_irq(&zone->lru_lock);
1573 }
1574
1575 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1576 spin_lock_irq(&zone->lru_lock);
1577 reclaim_stat->recent_scanned[1] /= 2;
1578 reclaim_stat->recent_rotated[1] /= 2;
1579 spin_unlock_irq(&zone->lru_lock);
1580 }
1581
1582 /*
1583 * With swappiness at 100, anonymous and file have the same priority.
1584 * This scanning priority is essentially the inverse of IO cost.
1585 */
1586 anon_prio = sc->swappiness;
1587 file_prio = 200 - sc->swappiness;
1588
1589 /*
1590 * The amount of pressure on anon vs file pages is inversely
1591 * proportional to the fraction of recently scanned pages on
1592 * each list that were recently referenced and in active use.
1593 */
1594 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1595 ap /= reclaim_stat->recent_rotated[0] + 1;
1596
1597 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1598 fp /= reclaim_stat->recent_rotated[1] + 1;
1599
1600 /* Normalize to percentages */
1601 percent[0] = 100 * ap / (ap + fp + 1);
1602 percent[1] = 100 - percent[0];
1603 }
1604
1605 /*
1606 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1607 * until we collected @swap_cluster_max pages to scan.
1608 */
1609 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1610 unsigned long *nr_saved_scan)
1611 {
1612 unsigned long nr;
1613
1614 *nr_saved_scan += nr_to_scan;
1615 nr = *nr_saved_scan;
1616
1617 if (nr >= SWAP_CLUSTER_MAX)
1618 *nr_saved_scan = 0;
1619 else
1620 nr = 0;
1621
1622 return nr;
1623 }
1624
1625 /*
1626 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1627 */
1628 static void shrink_zone(int priority, struct zone *zone,
1629 struct scan_control *sc)
1630 {
1631 unsigned long nr[NR_LRU_LISTS];
1632 unsigned long nr_to_scan;
1633 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1634 enum lru_list l;
1635 unsigned long nr_reclaimed = sc->nr_reclaimed;
1636 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1637 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1638
1639 get_scan_ratio(zone, sc, percent);
1640
1641 for_each_evictable_lru(l) {
1642 int file = is_file_lru(l);
1643 unsigned long scan;
1644
1645 if (percent[file] == 0) {
1646 nr[l] = 0;
1647 continue;
1648 }
1649
1650 scan = zone_nr_lru_pages(zone, sc, l);
1651 if (priority) {
1652 scan >>= priority;
1653 scan = (scan * percent[file]) / 100;
1654 }
1655 nr[l] = nr_scan_try_batch(scan,
1656 &reclaim_stat->nr_saved_scan[l]);
1657 }
1658
1659 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1660 nr[LRU_INACTIVE_FILE]) {
1661 for_each_evictable_lru(l) {
1662 if (nr[l]) {
1663 nr_to_scan = min_t(unsigned long,
1664 nr[l], SWAP_CLUSTER_MAX);
1665 nr[l] -= nr_to_scan;
1666
1667 nr_reclaimed += shrink_list(l, nr_to_scan,
1668 zone, sc, priority);
1669 }
1670 }
1671 /*
1672 * On large memory systems, scan >> priority can become
1673 * really large. This is fine for the starting priority;
1674 * we want to put equal scanning pressure on each zone.
1675 * However, if the VM has a harder time of freeing pages,
1676 * with multiple processes reclaiming pages, the total
1677 * freeing target can get unreasonably large.
1678 */
1679 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1680 break;
1681 }
1682
1683 sc->nr_reclaimed = nr_reclaimed;
1684
1685 /*
1686 * Even if we did not try to evict anon pages at all, we want to
1687 * rebalance the anon lru active/inactive ratio.
1688 */
1689 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1690 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1691
1692 throttle_vm_writeout(sc->gfp_mask);
1693 }
1694
1695 /*
1696 * This is the direct reclaim path, for page-allocating processes. We only
1697 * try to reclaim pages from zones which will satisfy the caller's allocation
1698 * request.
1699 *
1700 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1701 * Because:
1702 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1703 * allocation or
1704 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1705 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1706 * zone defense algorithm.
1707 *
1708 * If a zone is deemed to be full of pinned pages then just give it a light
1709 * scan then give up on it.
1710 */
1711 static void shrink_zones(int priority, struct zonelist *zonelist,
1712 struct scan_control *sc)
1713 {
1714 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1715 struct zoneref *z;
1716 struct zone *zone;
1717
1718 sc->all_unreclaimable = 1;
1719 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1720 sc->nodemask) {
1721 if (!populated_zone(zone))
1722 continue;
1723 /*
1724 * Take care memory controller reclaiming has small influence
1725 * to global LRU.
1726 */
1727 if (scanning_global_lru(sc)) {
1728 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1729 continue;
1730 note_zone_scanning_priority(zone, priority);
1731
1732 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1733 continue; /* Let kswapd poll it */
1734 sc->all_unreclaimable = 0;
1735 } else {
1736 /*
1737 * Ignore cpuset limitation here. We just want to reduce
1738 * # of used pages by us regardless of memory shortage.
1739 */
1740 sc->all_unreclaimable = 0;
1741 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1742 priority);
1743 }
1744
1745 shrink_zone(priority, zone, sc);
1746 }
1747 }
1748
1749 /*
1750 * This is the main entry point to direct page reclaim.
1751 *
1752 * If a full scan of the inactive list fails to free enough memory then we
1753 * are "out of memory" and something needs to be killed.
1754 *
1755 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1756 * high - the zone may be full of dirty or under-writeback pages, which this
1757 * caller can't do much about. We kick the writeback threads and take explicit
1758 * naps in the hope that some of these pages can be written. But if the
1759 * allocating task holds filesystem locks which prevent writeout this might not
1760 * work, and the allocation attempt will fail.
1761 *
1762 * returns: 0, if no pages reclaimed
1763 * else, the number of pages reclaimed
1764 */
1765 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1766 struct scan_control *sc)
1767 {
1768 int priority;
1769 unsigned long ret = 0;
1770 unsigned long total_scanned = 0;
1771 struct reclaim_state *reclaim_state = current->reclaim_state;
1772 unsigned long lru_pages = 0;
1773 struct zoneref *z;
1774 struct zone *zone;
1775 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1776 unsigned long writeback_threshold;
1777
1778 delayacct_freepages_start();
1779
1780 if (scanning_global_lru(sc))
1781 count_vm_event(ALLOCSTALL);
1782 /*
1783 * mem_cgroup will not do shrink_slab.
1784 */
1785 if (scanning_global_lru(sc)) {
1786 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1787
1788 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1789 continue;
1790
1791 lru_pages += zone_reclaimable_pages(zone);
1792 }
1793 }
1794
1795 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1796 sc->nr_scanned = 0;
1797 if (!priority)
1798 disable_swap_token();
1799 shrink_zones(priority, zonelist, sc);
1800 /*
1801 * Don't shrink slabs when reclaiming memory from
1802 * over limit cgroups
1803 */
1804 if (scanning_global_lru(sc)) {
1805 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1806 if (reclaim_state) {
1807 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1808 reclaim_state->reclaimed_slab = 0;
1809 }
1810 }
1811 total_scanned += sc->nr_scanned;
1812 if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
1813 ret = sc->nr_reclaimed;
1814 goto out;
1815 }
1816
1817 /*
1818 * Try to write back as many pages as we just scanned. This
1819 * tends to cause slow streaming writers to write data to the
1820 * disk smoothly, at the dirtying rate, which is nice. But
1821 * that's undesirable in laptop mode, where we *want* lumpy
1822 * writeout. So in laptop mode, write out the whole world.
1823 */
1824 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1825 if (total_scanned > writeback_threshold) {
1826 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1827 sc->may_writepage = 1;
1828 }
1829
1830 /* Take a nap, wait for some writeback to complete */
1831 if (!sc->hibernation_mode && sc->nr_scanned &&
1832 priority < DEF_PRIORITY - 2)
1833 congestion_wait(BLK_RW_ASYNC, HZ/10);
1834 }
1835 /* top priority shrink_zones still had more to do? don't OOM, then */
1836 if (!sc->all_unreclaimable && scanning_global_lru(sc))
1837 ret = sc->nr_reclaimed;
1838 out:
1839 /*
1840 * Now that we've scanned all the zones at this priority level, note
1841 * that level within the zone so that the next thread which performs
1842 * scanning of this zone will immediately start out at this priority
1843 * level. This affects only the decision whether or not to bring
1844 * mapped pages onto the inactive list.
1845 */
1846 if (priority < 0)
1847 priority = 0;
1848
1849 if (scanning_global_lru(sc)) {
1850 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1851
1852 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1853 continue;
1854
1855 zone->prev_priority = priority;
1856 }
1857 } else
1858 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1859
1860 delayacct_freepages_end();
1861
1862 return ret;
1863 }
1864
1865 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1866 gfp_t gfp_mask, nodemask_t *nodemask)
1867 {
1868 struct scan_control sc = {
1869 .gfp_mask = gfp_mask,
1870 .may_writepage = !laptop_mode,
1871 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1872 .may_unmap = 1,
1873 .may_swap = 1,
1874 .swappiness = vm_swappiness,
1875 .order = order,
1876 .mem_cgroup = NULL,
1877 .isolate_pages = isolate_pages_global,
1878 .nodemask = nodemask,
1879 };
1880
1881 return do_try_to_free_pages(zonelist, &sc);
1882 }
1883
1884 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1885
1886 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1887 gfp_t gfp_mask, bool noswap,
1888 unsigned int swappiness,
1889 struct zone *zone, int nid)
1890 {
1891 struct scan_control sc = {
1892 .may_writepage = !laptop_mode,
1893 .may_unmap = 1,
1894 .may_swap = !noswap,
1895 .swappiness = swappiness,
1896 .order = 0,
1897 .mem_cgroup = mem,
1898 .isolate_pages = mem_cgroup_isolate_pages,
1899 };
1900 nodemask_t nm = nodemask_of_node(nid);
1901
1902 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1903 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1904 sc.nodemask = &nm;
1905 sc.nr_reclaimed = 0;
1906 sc.nr_scanned = 0;
1907 /*
1908 * NOTE: Although we can get the priority field, using it
1909 * here is not a good idea, since it limits the pages we can scan.
1910 * if we don't reclaim here, the shrink_zone from balance_pgdat
1911 * will pick up pages from other mem cgroup's as well. We hack
1912 * the priority and make it zero.
1913 */
1914 shrink_zone(0, zone, &sc);
1915 return sc.nr_reclaimed;
1916 }
1917
1918 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1919 gfp_t gfp_mask,
1920 bool noswap,
1921 unsigned int swappiness)
1922 {
1923 struct zonelist *zonelist;
1924 struct scan_control sc = {
1925 .may_writepage = !laptop_mode,
1926 .may_unmap = 1,
1927 .may_swap = !noswap,
1928 .nr_to_reclaim = SWAP_CLUSTER_MAX,
1929 .swappiness = swappiness,
1930 .order = 0,
1931 .mem_cgroup = mem_cont,
1932 .isolate_pages = mem_cgroup_isolate_pages,
1933 .nodemask = NULL, /* we don't care the placement */
1934 };
1935
1936 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1937 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1938 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1939 return do_try_to_free_pages(zonelist, &sc);
1940 }
1941 #endif
1942
1943 /* is kswapd sleeping prematurely? */
1944 static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1945 {
1946 int i;
1947
1948 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1949 if (remaining)
1950 return 1;
1951
1952 /* If after HZ/10, a zone is below the high mark, it's premature */
1953 for (i = 0; i < pgdat->nr_zones; i++) {
1954 struct zone *zone = pgdat->node_zones + i;
1955
1956 if (!populated_zone(zone))
1957 continue;
1958
1959 if (zone->all_unreclaimable)
1960 continue;
1961
1962 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1963 0, 0))
1964 return 1;
1965 }
1966
1967 return 0;
1968 }
1969
1970 /*
1971 * For kswapd, balance_pgdat() will work across all this node's zones until
1972 * they are all at high_wmark_pages(zone).
1973 *
1974 * Returns the number of pages which were actually freed.
1975 *
1976 * There is special handling here for zones which are full of pinned pages.
1977 * This can happen if the pages are all mlocked, or if they are all used by
1978 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1979 * What we do is to detect the case where all pages in the zone have been
1980 * scanned twice and there has been zero successful reclaim. Mark the zone as
1981 * dead and from now on, only perform a short scan. Basically we're polling
1982 * the zone for when the problem goes away.
1983 *
1984 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1985 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1986 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1987 * lower zones regardless of the number of free pages in the lower zones. This
1988 * interoperates with the page allocator fallback scheme to ensure that aging
1989 * of pages is balanced across the zones.
1990 */
1991 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1992 {
1993 int all_zones_ok;
1994 int priority;
1995 int i;
1996 unsigned long total_scanned;
1997 struct reclaim_state *reclaim_state = current->reclaim_state;
1998 struct scan_control sc = {
1999 .gfp_mask = GFP_KERNEL,
2000 .may_unmap = 1,
2001 .may_swap = 1,
2002 /*
2003 * kswapd doesn't want to be bailed out while reclaim. because
2004 * we want to put equal scanning pressure on each zone.
2005 */
2006 .nr_to_reclaim = ULONG_MAX,
2007 .swappiness = vm_swappiness,
2008 .order = order,
2009 .mem_cgroup = NULL,
2010 .isolate_pages = isolate_pages_global,
2011 };
2012 /*
2013 * temp_priority is used to remember the scanning priority at which
2014 * this zone was successfully refilled to
2015 * free_pages == high_wmark_pages(zone).
2016 */
2017 int temp_priority[MAX_NR_ZONES];
2018
2019 loop_again:
2020 total_scanned = 0;
2021 sc.nr_reclaimed = 0;
2022 sc.may_writepage = !laptop_mode;
2023 count_vm_event(PAGEOUTRUN);
2024
2025 for (i = 0; i < pgdat->nr_zones; i++)
2026 temp_priority[i] = DEF_PRIORITY;
2027
2028 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2029 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2030 unsigned long lru_pages = 0;
2031 int has_under_min_watermark_zone = 0;
2032
2033 /* The swap token gets in the way of swapout... */
2034 if (!priority)
2035 disable_swap_token();
2036
2037 all_zones_ok = 1;
2038
2039 /*
2040 * Scan in the highmem->dma direction for the highest
2041 * zone which needs scanning
2042 */
2043 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2044 struct zone *zone = pgdat->node_zones + i;
2045
2046 if (!populated_zone(zone))
2047 continue;
2048
2049 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2050 continue;
2051
2052 /*
2053 * Do some background aging of the anon list, to give
2054 * pages a chance to be referenced before reclaiming.
2055 */
2056 if (inactive_anon_is_low(zone, &sc))
2057 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2058 &sc, priority, 0);
2059
2060 if (!zone_watermark_ok(zone, order,
2061 high_wmark_pages(zone), 0, 0)) {
2062 end_zone = i;
2063 break;
2064 }
2065 }
2066 if (i < 0)
2067 goto out;
2068
2069 for (i = 0; i <= end_zone; i++) {
2070 struct zone *zone = pgdat->node_zones + i;
2071
2072 lru_pages += zone_reclaimable_pages(zone);
2073 }
2074
2075 /*
2076 * Now scan the zone in the dma->highmem direction, stopping
2077 * at the last zone which needs scanning.
2078 *
2079 * We do this because the page allocator works in the opposite
2080 * direction. This prevents the page allocator from allocating
2081 * pages behind kswapd's direction of progress, which would
2082 * cause too much scanning of the lower zones.
2083 */
2084 for (i = 0; i <= end_zone; i++) {
2085 struct zone *zone = pgdat->node_zones + i;
2086 int nr_slab;
2087 int nid, zid;
2088
2089 if (!populated_zone(zone))
2090 continue;
2091
2092 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2093 continue;
2094
2095 temp_priority[i] = priority;
2096 sc.nr_scanned = 0;
2097 note_zone_scanning_priority(zone, priority);
2098
2099 nid = pgdat->node_id;
2100 zid = zone_idx(zone);
2101 /*
2102 * Call soft limit reclaim before calling shrink_zone.
2103 * For now we ignore the return value
2104 */
2105 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2106 nid, zid);
2107 /*
2108 * We put equal pressure on every zone, unless one
2109 * zone has way too many pages free already.
2110 */
2111 if (!zone_watermark_ok(zone, order,
2112 8*high_wmark_pages(zone), end_zone, 0))
2113 shrink_zone(priority, zone, &sc);
2114 reclaim_state->reclaimed_slab = 0;
2115 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2116 lru_pages);
2117 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2118 total_scanned += sc.nr_scanned;
2119 if (zone->all_unreclaimable)
2120 continue;
2121 if (nr_slab == 0 &&
2122 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2123 zone->all_unreclaimable = 1;
2124 /*
2125 * If we've done a decent amount of scanning and
2126 * the reclaim ratio is low, start doing writepage
2127 * even in laptop mode
2128 */
2129 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2130 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2131 sc.may_writepage = 1;
2132
2133 if (!zone_watermark_ok(zone, order,
2134 high_wmark_pages(zone), end_zone, 0)) {
2135 all_zones_ok = 0;
2136 /*
2137 * We are still under min water mark. This
2138 * means that we have a GFP_ATOMIC allocation
2139 * failure risk. Hurry up!
2140 */
2141 if (!zone_watermark_ok(zone, order,
2142 min_wmark_pages(zone), end_zone, 0))
2143 has_under_min_watermark_zone = 1;
2144 }
2145
2146 }
2147 if (all_zones_ok)
2148 break; /* kswapd: all done */
2149 /*
2150 * OK, kswapd is getting into trouble. Take a nap, then take
2151 * another pass across the zones.
2152 */
2153 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2154 if (has_under_min_watermark_zone)
2155 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2156 else
2157 congestion_wait(BLK_RW_ASYNC, HZ/10);
2158 }
2159
2160 /*
2161 * We do this so kswapd doesn't build up large priorities for
2162 * example when it is freeing in parallel with allocators. It
2163 * matches the direct reclaim path behaviour in terms of impact
2164 * on zone->*_priority.
2165 */
2166 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2167 break;
2168 }
2169 out:
2170 /*
2171 * Note within each zone the priority level at which this zone was
2172 * brought into a happy state. So that the next thread which scans this
2173 * zone will start out at that priority level.
2174 */
2175 for (i = 0; i < pgdat->nr_zones; i++) {
2176 struct zone *zone = pgdat->node_zones + i;
2177
2178 zone->prev_priority = temp_priority[i];
2179 }
2180 if (!all_zones_ok) {
2181 cond_resched();
2182
2183 try_to_freeze();
2184
2185 /*
2186 * Fragmentation may mean that the system cannot be
2187 * rebalanced for high-order allocations in all zones.
2188 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2189 * it means the zones have been fully scanned and are still
2190 * not balanced. For high-order allocations, there is
2191 * little point trying all over again as kswapd may
2192 * infinite loop.
2193 *
2194 * Instead, recheck all watermarks at order-0 as they
2195 * are the most important. If watermarks are ok, kswapd will go
2196 * back to sleep. High-order users can still perform direct
2197 * reclaim if they wish.
2198 */
2199 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2200 order = sc.order = 0;
2201
2202 goto loop_again;
2203 }
2204
2205 return sc.nr_reclaimed;
2206 }
2207
2208 /*
2209 * The background pageout daemon, started as a kernel thread
2210 * from the init process.
2211 *
2212 * This basically trickles out pages so that we have _some_
2213 * free memory available even if there is no other activity
2214 * that frees anything up. This is needed for things like routing
2215 * etc, where we otherwise might have all activity going on in
2216 * asynchronous contexts that cannot page things out.
2217 *
2218 * If there are applications that are active memory-allocators
2219 * (most normal use), this basically shouldn't matter.
2220 */
2221 static int kswapd(void *p)
2222 {
2223 unsigned long order;
2224 pg_data_t *pgdat = (pg_data_t*)p;
2225 struct task_struct *tsk = current;
2226 DEFINE_WAIT(wait);
2227 struct reclaim_state reclaim_state = {
2228 .reclaimed_slab = 0,
2229 };
2230 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2231
2232 lockdep_set_current_reclaim_state(GFP_KERNEL);
2233
2234 if (!cpumask_empty(cpumask))
2235 set_cpus_allowed_ptr(tsk, cpumask);
2236 current->reclaim_state = &reclaim_state;
2237
2238 /*
2239 * Tell the memory management that we're a "memory allocator",
2240 * and that if we need more memory we should get access to it
2241 * regardless (see "__alloc_pages()"). "kswapd" should
2242 * never get caught in the normal page freeing logic.
2243 *
2244 * (Kswapd normally doesn't need memory anyway, but sometimes
2245 * you need a small amount of memory in order to be able to
2246 * page out something else, and this flag essentially protects
2247 * us from recursively trying to free more memory as we're
2248 * trying to free the first piece of memory in the first place).
2249 */
2250 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2251 set_freezable();
2252
2253 order = 0;
2254 for ( ; ; ) {
2255 unsigned long new_order;
2256 int ret;
2257
2258 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2259 new_order = pgdat->kswapd_max_order;
2260 pgdat->kswapd_max_order = 0;
2261 if (order < new_order) {
2262 /*
2263 * Don't sleep if someone wants a larger 'order'
2264 * allocation
2265 */
2266 order = new_order;
2267 } else {
2268 if (!freezing(current) && !kthread_should_stop()) {
2269 long remaining = 0;
2270
2271 /* Try to sleep for a short interval */
2272 if (!sleeping_prematurely(pgdat, order, remaining)) {
2273 remaining = schedule_timeout(HZ/10);
2274 finish_wait(&pgdat->kswapd_wait, &wait);
2275 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2276 }
2277
2278 /*
2279 * After a short sleep, check if it was a
2280 * premature sleep. If not, then go fully
2281 * to sleep until explicitly woken up
2282 */
2283 if (!sleeping_prematurely(pgdat, order, remaining))
2284 schedule();
2285 else {
2286 if (remaining)
2287 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2288 else
2289 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2290 }
2291 }
2292
2293 order = pgdat->kswapd_max_order;
2294 }
2295 finish_wait(&pgdat->kswapd_wait, &wait);
2296
2297 ret = try_to_freeze();
2298 if (kthread_should_stop())
2299 break;
2300
2301 /*
2302 * We can speed up thawing tasks if we don't call balance_pgdat
2303 * after returning from the refrigerator
2304 */
2305 if (!ret)
2306 balance_pgdat(pgdat, order);
2307 }
2308 return 0;
2309 }
2310
2311 /*
2312 * A zone is low on free memory, so wake its kswapd task to service it.
2313 */
2314 void wakeup_kswapd(struct zone *zone, int order)
2315 {
2316 pg_data_t *pgdat;
2317
2318 if (!populated_zone(zone))
2319 return;
2320
2321 pgdat = zone->zone_pgdat;
2322 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
2323 return;
2324 if (pgdat->kswapd_max_order < order)
2325 pgdat->kswapd_max_order = order;
2326 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2327 return;
2328 if (!waitqueue_active(&pgdat->kswapd_wait))
2329 return;
2330 wake_up_interruptible(&pgdat->kswapd_wait);
2331 }
2332
2333 /*
2334 * The reclaimable count would be mostly accurate.
2335 * The less reclaimable pages may be
2336 * - mlocked pages, which will be moved to unevictable list when encountered
2337 * - mapped pages, which may require several travels to be reclaimed
2338 * - dirty pages, which is not "instantly" reclaimable
2339 */
2340 unsigned long global_reclaimable_pages(void)
2341 {
2342 int nr;
2343
2344 nr = global_page_state(NR_ACTIVE_FILE) +
2345 global_page_state(NR_INACTIVE_FILE);
2346
2347 if (nr_swap_pages > 0)
2348 nr += global_page_state(NR_ACTIVE_ANON) +
2349 global_page_state(NR_INACTIVE_ANON);
2350
2351 return nr;
2352 }
2353
2354 unsigned long zone_reclaimable_pages(struct zone *zone)
2355 {
2356 int nr;
2357
2358 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2359 zone_page_state(zone, NR_INACTIVE_FILE);
2360
2361 if (nr_swap_pages > 0)
2362 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2363 zone_page_state(zone, NR_INACTIVE_ANON);
2364
2365 return nr;
2366 }
2367
2368 #ifdef CONFIG_HIBERNATION
2369 /*
2370 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2371 * freed pages.
2372 *
2373 * Rather than trying to age LRUs the aim is to preserve the overall
2374 * LRU order by reclaiming preferentially
2375 * inactive > active > active referenced > active mapped
2376 */
2377 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2378 {
2379 struct reclaim_state reclaim_state;
2380 struct scan_control sc = {
2381 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2382 .may_swap = 1,
2383 .may_unmap = 1,
2384 .may_writepage = 1,
2385 .nr_to_reclaim = nr_to_reclaim,
2386 .hibernation_mode = 1,
2387 .swappiness = vm_swappiness,
2388 .order = 0,
2389 .isolate_pages = isolate_pages_global,
2390 };
2391 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2392 struct task_struct *p = current;
2393 unsigned long nr_reclaimed;
2394
2395 p->flags |= PF_MEMALLOC;
2396 lockdep_set_current_reclaim_state(sc.gfp_mask);
2397 reclaim_state.reclaimed_slab = 0;
2398 p->reclaim_state = &reclaim_state;
2399
2400 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2401
2402 p->reclaim_state = NULL;
2403 lockdep_clear_current_reclaim_state();
2404 p->flags &= ~PF_MEMALLOC;
2405
2406 return nr_reclaimed;
2407 }
2408 #endif /* CONFIG_HIBERNATION */
2409
2410 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2411 not required for correctness. So if the last cpu in a node goes
2412 away, we get changed to run anywhere: as the first one comes back,
2413 restore their cpu bindings. */
2414 static int __devinit cpu_callback(struct notifier_block *nfb,
2415 unsigned long action, void *hcpu)
2416 {
2417 int nid;
2418
2419 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2420 for_each_node_state(nid, N_HIGH_MEMORY) {
2421 pg_data_t *pgdat = NODE_DATA(nid);
2422 const struct cpumask *mask;
2423
2424 mask = cpumask_of_node(pgdat->node_id);
2425
2426 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2427 /* One of our CPUs online: restore mask */
2428 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2429 }
2430 }
2431 return NOTIFY_OK;
2432 }
2433
2434 /*
2435 * This kswapd start function will be called by init and node-hot-add.
2436 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2437 */
2438 int kswapd_run(int nid)
2439 {
2440 pg_data_t *pgdat = NODE_DATA(nid);
2441 int ret = 0;
2442
2443 if (pgdat->kswapd)
2444 return 0;
2445
2446 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2447 if (IS_ERR(pgdat->kswapd)) {
2448 /* failure at boot is fatal */
2449 BUG_ON(system_state == SYSTEM_BOOTING);
2450 printk("Failed to start kswapd on node %d\n",nid);
2451 ret = -1;
2452 }
2453 return ret;
2454 }
2455
2456 /*
2457 * Called by memory hotplug when all memory in a node is offlined.
2458 */
2459 void kswapd_stop(int nid)
2460 {
2461 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2462
2463 if (kswapd)
2464 kthread_stop(kswapd);
2465 }
2466
2467 static int __init kswapd_init(void)
2468 {
2469 int nid;
2470
2471 swap_setup();
2472 for_each_node_state(nid, N_HIGH_MEMORY)
2473 kswapd_run(nid);
2474 hotcpu_notifier(cpu_callback, 0);
2475 return 0;
2476 }
2477
2478 module_init(kswapd_init)
2479
2480 #ifdef CONFIG_NUMA
2481 /*
2482 * Zone reclaim mode
2483 *
2484 * If non-zero call zone_reclaim when the number of free pages falls below
2485 * the watermarks.
2486 */
2487 int zone_reclaim_mode __read_mostly;
2488
2489 #define RECLAIM_OFF 0
2490 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2491 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2492 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2493
2494 /*
2495 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2496 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2497 * a zone.
2498 */
2499 #define ZONE_RECLAIM_PRIORITY 4
2500
2501 /*
2502 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2503 * occur.
2504 */
2505 int sysctl_min_unmapped_ratio = 1;
2506
2507 /*
2508 * If the number of slab pages in a zone grows beyond this percentage then
2509 * slab reclaim needs to occur.
2510 */
2511 int sysctl_min_slab_ratio = 5;
2512
2513 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2514 {
2515 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2516 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2517 zone_page_state(zone, NR_ACTIVE_FILE);
2518
2519 /*
2520 * It's possible for there to be more file mapped pages than
2521 * accounted for by the pages on the file LRU lists because
2522 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2523 */
2524 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2525 }
2526
2527 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2528 static long zone_pagecache_reclaimable(struct zone *zone)
2529 {
2530 long nr_pagecache_reclaimable;
2531 long delta = 0;
2532
2533 /*
2534 * If RECLAIM_SWAP is set, then all file pages are considered
2535 * potentially reclaimable. Otherwise, we have to worry about
2536 * pages like swapcache and zone_unmapped_file_pages() provides
2537 * a better estimate
2538 */
2539 if (zone_reclaim_mode & RECLAIM_SWAP)
2540 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2541 else
2542 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2543
2544 /* If we can't clean pages, remove dirty pages from consideration */
2545 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2546 delta += zone_page_state(zone, NR_FILE_DIRTY);
2547
2548 /* Watch for any possible underflows due to delta */
2549 if (unlikely(delta > nr_pagecache_reclaimable))
2550 delta = nr_pagecache_reclaimable;
2551
2552 return nr_pagecache_reclaimable - delta;
2553 }
2554
2555 /*
2556 * Try to free up some pages from this zone through reclaim.
2557 */
2558 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2559 {
2560 /* Minimum pages needed in order to stay on node */
2561 const unsigned long nr_pages = 1 << order;
2562 struct task_struct *p = current;
2563 struct reclaim_state reclaim_state;
2564 int priority;
2565 struct scan_control sc = {
2566 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2567 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2568 .may_swap = 1,
2569 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2570 SWAP_CLUSTER_MAX),
2571 .gfp_mask = gfp_mask,
2572 .swappiness = vm_swappiness,
2573 .order = order,
2574 .isolate_pages = isolate_pages_global,
2575 };
2576 unsigned long slab_reclaimable;
2577
2578 disable_swap_token();
2579 cond_resched();
2580 /*
2581 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2582 * and we also need to be able to write out pages for RECLAIM_WRITE
2583 * and RECLAIM_SWAP.
2584 */
2585 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2586 lockdep_set_current_reclaim_state(gfp_mask);
2587 reclaim_state.reclaimed_slab = 0;
2588 p->reclaim_state = &reclaim_state;
2589
2590 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2591 /*
2592 * Free memory by calling shrink zone with increasing
2593 * priorities until we have enough memory freed.
2594 */
2595 priority = ZONE_RECLAIM_PRIORITY;
2596 do {
2597 note_zone_scanning_priority(zone, priority);
2598 shrink_zone(priority, zone, &sc);
2599 priority--;
2600 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2601 }
2602
2603 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2604 if (slab_reclaimable > zone->min_slab_pages) {
2605 /*
2606 * shrink_slab() does not currently allow us to determine how
2607 * many pages were freed in this zone. So we take the current
2608 * number of slab pages and shake the slab until it is reduced
2609 * by the same nr_pages that we used for reclaiming unmapped
2610 * pages.
2611 *
2612 * Note that shrink_slab will free memory on all zones and may
2613 * take a long time.
2614 */
2615 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2616 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2617 slab_reclaimable - nr_pages)
2618 ;
2619
2620 /*
2621 * Update nr_reclaimed by the number of slab pages we
2622 * reclaimed from this zone.
2623 */
2624 sc.nr_reclaimed += slab_reclaimable -
2625 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2626 }
2627
2628 p->reclaim_state = NULL;
2629 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2630 lockdep_clear_current_reclaim_state();
2631 return sc.nr_reclaimed >= nr_pages;
2632 }
2633
2634 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2635 {
2636 int node_id;
2637 int ret;
2638
2639 /*
2640 * Zone reclaim reclaims unmapped file backed pages and
2641 * slab pages if we are over the defined limits.
2642 *
2643 * A small portion of unmapped file backed pages is needed for
2644 * file I/O otherwise pages read by file I/O will be immediately
2645 * thrown out if the zone is overallocated. So we do not reclaim
2646 * if less than a specified percentage of the zone is used by
2647 * unmapped file backed pages.
2648 */
2649 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2650 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2651 return ZONE_RECLAIM_FULL;
2652
2653 if (zone->all_unreclaimable)
2654 return ZONE_RECLAIM_FULL;
2655
2656 /*
2657 * Do not scan if the allocation should not be delayed.
2658 */
2659 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2660 return ZONE_RECLAIM_NOSCAN;
2661
2662 /*
2663 * Only run zone reclaim on the local zone or on zones that do not
2664 * have associated processors. This will favor the local processor
2665 * over remote processors and spread off node memory allocations
2666 * as wide as possible.
2667 */
2668 node_id = zone_to_nid(zone);
2669 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2670 return ZONE_RECLAIM_NOSCAN;
2671
2672 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2673 return ZONE_RECLAIM_NOSCAN;
2674
2675 ret = __zone_reclaim(zone, gfp_mask, order);
2676 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2677
2678 if (!ret)
2679 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2680
2681 return ret;
2682 }
2683 #endif
2684
2685 /*
2686 * page_evictable - test whether a page is evictable
2687 * @page: the page to test
2688 * @vma: the VMA in which the page is or will be mapped, may be NULL
2689 *
2690 * Test whether page is evictable--i.e., should be placed on active/inactive
2691 * lists vs unevictable list. The vma argument is !NULL when called from the
2692 * fault path to determine how to instantate a new page.
2693 *
2694 * Reasons page might not be evictable:
2695 * (1) page's mapping marked unevictable
2696 * (2) page is part of an mlocked VMA
2697 *
2698 */
2699 int page_evictable(struct page *page, struct vm_area_struct *vma)
2700 {
2701
2702 if (mapping_unevictable(page_mapping(page)))
2703 return 0;
2704
2705 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2706 return 0;
2707
2708 return 1;
2709 }
2710
2711 /**
2712 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2713 * @page: page to check evictability and move to appropriate lru list
2714 * @zone: zone page is in
2715 *
2716 * Checks a page for evictability and moves the page to the appropriate
2717 * zone lru list.
2718 *
2719 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2720 * have PageUnevictable set.
2721 */
2722 static void check_move_unevictable_page(struct page *page, struct zone *zone)
2723 {
2724 VM_BUG_ON(PageActive(page));
2725
2726 retry:
2727 ClearPageUnevictable(page);
2728 if (page_evictable(page, NULL)) {
2729 enum lru_list l = page_lru_base_type(page);
2730
2731 __dec_zone_state(zone, NR_UNEVICTABLE);
2732 list_move(&page->lru, &zone->lru[l].list);
2733 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2734 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2735 __count_vm_event(UNEVICTABLE_PGRESCUED);
2736 } else {
2737 /*
2738 * rotate unevictable list
2739 */
2740 SetPageUnevictable(page);
2741 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
2742 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2743 if (page_evictable(page, NULL))
2744 goto retry;
2745 }
2746 }
2747
2748 /**
2749 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2750 * @mapping: struct address_space to scan for evictable pages
2751 *
2752 * Scan all pages in mapping. Check unevictable pages for
2753 * evictability and move them to the appropriate zone lru list.
2754 */
2755 void scan_mapping_unevictable_pages(struct address_space *mapping)
2756 {
2757 pgoff_t next = 0;
2758 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2759 PAGE_CACHE_SHIFT;
2760 struct zone *zone;
2761 struct pagevec pvec;
2762
2763 if (mapping->nrpages == 0)
2764 return;
2765
2766 pagevec_init(&pvec, 0);
2767 while (next < end &&
2768 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2769 int i;
2770 int pg_scanned = 0;
2771
2772 zone = NULL;
2773
2774 for (i = 0; i < pagevec_count(&pvec); i++) {
2775 struct page *page = pvec.pages[i];
2776 pgoff_t page_index = page->index;
2777 struct zone *pagezone = page_zone(page);
2778
2779 pg_scanned++;
2780 if (page_index > next)
2781 next = page_index;
2782 next++;
2783
2784 if (pagezone != zone) {
2785 if (zone)
2786 spin_unlock_irq(&zone->lru_lock);
2787 zone = pagezone;
2788 spin_lock_irq(&zone->lru_lock);
2789 }
2790
2791 if (PageLRU(page) && PageUnevictable(page))
2792 check_move_unevictable_page(page, zone);
2793 }
2794 if (zone)
2795 spin_unlock_irq(&zone->lru_lock);
2796 pagevec_release(&pvec);
2797
2798 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2799 }
2800
2801 }
2802
2803 /**
2804 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2805 * @zone - zone of which to scan the unevictable list
2806 *
2807 * Scan @zone's unevictable LRU lists to check for pages that have become
2808 * evictable. Move those that have to @zone's inactive list where they
2809 * become candidates for reclaim, unless shrink_inactive_zone() decides
2810 * to reactivate them. Pages that are still unevictable are rotated
2811 * back onto @zone's unevictable list.
2812 */
2813 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2814 static void scan_zone_unevictable_pages(struct zone *zone)
2815 {
2816 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2817 unsigned long scan;
2818 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2819
2820 while (nr_to_scan > 0) {
2821 unsigned long batch_size = min(nr_to_scan,
2822 SCAN_UNEVICTABLE_BATCH_SIZE);
2823
2824 spin_lock_irq(&zone->lru_lock);
2825 for (scan = 0; scan < batch_size; scan++) {
2826 struct page *page = lru_to_page(l_unevictable);
2827
2828 if (!trylock_page(page))
2829 continue;
2830
2831 prefetchw_prev_lru_page(page, l_unevictable, flags);
2832
2833 if (likely(PageLRU(page) && PageUnevictable(page)))
2834 check_move_unevictable_page(page, zone);
2835
2836 unlock_page(page);
2837 }
2838 spin_unlock_irq(&zone->lru_lock);
2839
2840 nr_to_scan -= batch_size;
2841 }
2842 }
2843
2844
2845 /**
2846 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2847 *
2848 * A really big hammer: scan all zones' unevictable LRU lists to check for
2849 * pages that have become evictable. Move those back to the zones'
2850 * inactive list where they become candidates for reclaim.
2851 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2852 * and we add swap to the system. As such, it runs in the context of a task
2853 * that has possibly/probably made some previously unevictable pages
2854 * evictable.
2855 */
2856 static void scan_all_zones_unevictable_pages(void)
2857 {
2858 struct zone *zone;
2859
2860 for_each_zone(zone) {
2861 scan_zone_unevictable_pages(zone);
2862 }
2863 }
2864
2865 /*
2866 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2867 * all nodes' unevictable lists for evictable pages
2868 */
2869 unsigned long scan_unevictable_pages;
2870
2871 int scan_unevictable_handler(struct ctl_table *table, int write,
2872 void __user *buffer,
2873 size_t *length, loff_t *ppos)
2874 {
2875 proc_doulongvec_minmax(table, write, buffer, length, ppos);
2876
2877 if (write && *(unsigned long *)table->data)
2878 scan_all_zones_unevictable_pages();
2879
2880 scan_unevictable_pages = 0;
2881 return 0;
2882 }
2883
2884 /*
2885 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2886 * a specified node's per zone unevictable lists for evictable pages.
2887 */
2888
2889 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2890 struct sysdev_attribute *attr,
2891 char *buf)
2892 {
2893 return sprintf(buf, "0\n"); /* always zero; should fit... */
2894 }
2895
2896 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2897 struct sysdev_attribute *attr,
2898 const char *buf, size_t count)
2899 {
2900 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2901 struct zone *zone;
2902 unsigned long res;
2903 unsigned long req = strict_strtoul(buf, 10, &res);
2904
2905 if (!req)
2906 return 1; /* zero is no-op */
2907
2908 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2909 if (!populated_zone(zone))
2910 continue;
2911 scan_zone_unevictable_pages(zone);
2912 }
2913 return 1;
2914 }
2915
2916
2917 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2918 read_scan_unevictable_node,
2919 write_scan_unevictable_node);
2920
2921 int scan_unevictable_register_node(struct node *node)
2922 {
2923 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2924 }
2925
2926 void scan_unevictable_unregister_node(struct node *node)
2927 {
2928 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2929 }
2930
This page took 0.124792 seconds and 6 git commands to generate.