memcg: prevent OOM with too many dirty pages
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 unsigned long hibernation_mode;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 int may_writepage;
72
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
75
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
79 int order;
80
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_MEMCG
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 return true;
145 }
146 #endif
147
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 if (!mem_cgroup_disabled())
151 return mem_cgroup_get_lru_size(lruvec, lru);
152
153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155
156 /*
157 * Add a shrinker callback to be called from the vm
158 */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 atomic_long_set(&shrinker->nr_in_batch, 0);
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167
168 /*
169 * Remove one
170 */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182 {
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185 }
186
187 #define SHRINK_BATCH 128
188 /*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
196 * If the vm encountered mapped pages on the LRU it increase the pressure on
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
204 *
205 * Returns the number of slab objects which we shrunk.
206 */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 unsigned long nr_pages_scanned,
209 unsigned long lru_pages)
210 {
211 struct shrinker *shrinker;
212 unsigned long ret = 0;
213
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
216
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 int shrink_ret = 0;
228 long nr;
229 long new_nr;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
232
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
254 }
255
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
278
279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
283 while (total_scan >= batch_size) {
284 int nr_before;
285
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 batch_size);
289 if (shrink_ret == -1)
290 break;
291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
295
296 cond_resched();
297 }
298
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 }
312 up_read(&shrinker_rwsem);
313 out:
314 cond_resched();
315 return ret;
316 }
317
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
325 return page_count(page) - page_has_private(page) == 2;
326 }
327
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
330 {
331 if (current->flags & PF_SWAPWRITE)
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338 }
339
340 /*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352 static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354 {
355 lock_page(page);
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
358 unlock_page(page);
359 }
360
361 /* possible outcome of pageout() */
362 typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371 } pageout_t;
372
373 /*
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
376 */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 struct scan_control *sc)
379 {
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
387 * If this process is currently in __generic_file_aio_write() against
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
403 if (page_has_private(page)) {
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
406 printk("%s: orphaned page\n", __func__);
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
422 .range_start = 0,
423 .range_end = LLONG_MAX,
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
431 if (res == AOP_WRITEPAGE_ACTIVATE) {
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
435
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446 }
447
448 /*
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
451 */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
456
457 spin_lock_irq(&mapping->tree_lock);
458 /*
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
482 */
483 if (!page_freeze_refs(page, 2))
484 goto cannot_free;
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
488 goto cannot_free;
489 }
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
494 spin_unlock_irq(&mapping->tree_lock);
495 swapcache_free(swap, page);
496 } else {
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
501 __delete_from_page_cache(page);
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
504
505 if (freepage != NULL)
506 freepage(page);
507 }
508
509 return 1;
510
511 cannot_free:
512 spin_unlock_irq(&mapping->tree_lock);
513 return 0;
514 }
515
516 /*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534 }
535
536 /**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
545 void putback_lru_page(struct page *page)
546 {
547 int lru;
548 int active = !!TestClearPageActive(page);
549 int was_unevictable = PageUnevictable(page);
550
551 VM_BUG_ON(PageLRU(page));
552
553 redo:
554 ClearPageUnevictable(page);
555
556 if (page_evictable(page, NULL)) {
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
563 lru = active + page_lru_base_type(page);
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
572 /*
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
579 *
580 * The other side is TestClearPageMlocked() or shmem_lock().
581 */
582 smp_mb();
583 }
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
590 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
606 put_page(page); /* drop ref from isolate */
607 }
608
609 enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
614 };
615
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618 {
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
621
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
625
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
654
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
661 return PAGEREF_KEEP;
662 }
663
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
669 }
670
671 /*
672 * shrink_page_list() returns the number of reclaimed pages
673 */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 struct zone *zone,
676 struct scan_control *sc,
677 unsigned long *ret_nr_dirty,
678 unsigned long *ret_nr_writeback)
679 {
680 LIST_HEAD(ret_pages);
681 LIST_HEAD(free_pages);
682 int pgactivate = 0;
683 unsigned long nr_dirty = 0;
684 unsigned long nr_congested = 0;
685 unsigned long nr_reclaimed = 0;
686 unsigned long nr_writeback = 0;
687
688 cond_resched();
689
690 while (!list_empty(page_list)) {
691 enum page_references references;
692 struct address_space *mapping;
693 struct page *page;
694 int may_enter_fs;
695
696 cond_resched();
697
698 page = lru_to_page(page_list);
699 list_del(&page->lru);
700
701 if (!trylock_page(page))
702 goto keep;
703
704 VM_BUG_ON(PageActive(page));
705 VM_BUG_ON(page_zone(page) != zone);
706
707 sc->nr_scanned++;
708
709 if (unlikely(!page_evictable(page, NULL)))
710 goto cull_mlocked;
711
712 if (!sc->may_unmap && page_mapped(page))
713 goto keep_locked;
714
715 /* Double the slab pressure for mapped and swapcache pages */
716 if (page_mapped(page) || PageSwapCache(page))
717 sc->nr_scanned++;
718
719 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
720 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
721
722 if (PageWriteback(page)) {
723 /*
724 * memcg doesn't have any dirty pages throttling so we
725 * could easily OOM just because too many pages are in
726 * writeback from reclaim and there is nothing else to
727 * reclaim.
728 *
729 * Check may_enter_fs, certainly because a loop driver
730 * thread might enter reclaim, and deadlock if it waits
731 * on a page for which it is needed to do the write
732 * (loop masks off __GFP_IO|__GFP_FS for this reason);
733 * but more thought would probably show more reasons.
734 */
735 if (!global_reclaim(sc) && PageReclaim(page) &&
736 may_enter_fs)
737 wait_on_page_writeback(page);
738 else {
739 nr_writeback++;
740 unlock_page(page);
741 goto keep;
742 }
743 }
744
745 references = page_check_references(page, sc);
746 switch (references) {
747 case PAGEREF_ACTIVATE:
748 goto activate_locked;
749 case PAGEREF_KEEP:
750 goto keep_locked;
751 case PAGEREF_RECLAIM:
752 case PAGEREF_RECLAIM_CLEAN:
753 ; /* try to reclaim the page below */
754 }
755
756 /*
757 * Anonymous process memory has backing store?
758 * Try to allocate it some swap space here.
759 */
760 if (PageAnon(page) && !PageSwapCache(page)) {
761 if (!(sc->gfp_mask & __GFP_IO))
762 goto keep_locked;
763 if (!add_to_swap(page))
764 goto activate_locked;
765 may_enter_fs = 1;
766 }
767
768 mapping = page_mapping(page);
769
770 /*
771 * The page is mapped into the page tables of one or more
772 * processes. Try to unmap it here.
773 */
774 if (page_mapped(page) && mapping) {
775 switch (try_to_unmap(page, TTU_UNMAP)) {
776 case SWAP_FAIL:
777 goto activate_locked;
778 case SWAP_AGAIN:
779 goto keep_locked;
780 case SWAP_MLOCK:
781 goto cull_mlocked;
782 case SWAP_SUCCESS:
783 ; /* try to free the page below */
784 }
785 }
786
787 if (PageDirty(page)) {
788 nr_dirty++;
789
790 /*
791 * Only kswapd can writeback filesystem pages to
792 * avoid risk of stack overflow but do not writeback
793 * unless under significant pressure.
794 */
795 if (page_is_file_cache(page) &&
796 (!current_is_kswapd() ||
797 sc->priority >= DEF_PRIORITY - 2)) {
798 /*
799 * Immediately reclaim when written back.
800 * Similar in principal to deactivate_page()
801 * except we already have the page isolated
802 * and know it's dirty
803 */
804 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
805 SetPageReclaim(page);
806
807 goto keep_locked;
808 }
809
810 if (references == PAGEREF_RECLAIM_CLEAN)
811 goto keep_locked;
812 if (!may_enter_fs)
813 goto keep_locked;
814 if (!sc->may_writepage)
815 goto keep_locked;
816
817 /* Page is dirty, try to write it out here */
818 switch (pageout(page, mapping, sc)) {
819 case PAGE_KEEP:
820 nr_congested++;
821 goto keep_locked;
822 case PAGE_ACTIVATE:
823 goto activate_locked;
824 case PAGE_SUCCESS:
825 if (PageWriteback(page))
826 goto keep;
827 if (PageDirty(page))
828 goto keep;
829
830 /*
831 * A synchronous write - probably a ramdisk. Go
832 * ahead and try to reclaim the page.
833 */
834 if (!trylock_page(page))
835 goto keep;
836 if (PageDirty(page) || PageWriteback(page))
837 goto keep_locked;
838 mapping = page_mapping(page);
839 case PAGE_CLEAN:
840 ; /* try to free the page below */
841 }
842 }
843
844 /*
845 * If the page has buffers, try to free the buffer mappings
846 * associated with this page. If we succeed we try to free
847 * the page as well.
848 *
849 * We do this even if the page is PageDirty().
850 * try_to_release_page() does not perform I/O, but it is
851 * possible for a page to have PageDirty set, but it is actually
852 * clean (all its buffers are clean). This happens if the
853 * buffers were written out directly, with submit_bh(). ext3
854 * will do this, as well as the blockdev mapping.
855 * try_to_release_page() will discover that cleanness and will
856 * drop the buffers and mark the page clean - it can be freed.
857 *
858 * Rarely, pages can have buffers and no ->mapping. These are
859 * the pages which were not successfully invalidated in
860 * truncate_complete_page(). We try to drop those buffers here
861 * and if that worked, and the page is no longer mapped into
862 * process address space (page_count == 1) it can be freed.
863 * Otherwise, leave the page on the LRU so it is swappable.
864 */
865 if (page_has_private(page)) {
866 if (!try_to_release_page(page, sc->gfp_mask))
867 goto activate_locked;
868 if (!mapping && page_count(page) == 1) {
869 unlock_page(page);
870 if (put_page_testzero(page))
871 goto free_it;
872 else {
873 /*
874 * rare race with speculative reference.
875 * the speculative reference will free
876 * this page shortly, so we may
877 * increment nr_reclaimed here (and
878 * leave it off the LRU).
879 */
880 nr_reclaimed++;
881 continue;
882 }
883 }
884 }
885
886 if (!mapping || !__remove_mapping(mapping, page))
887 goto keep_locked;
888
889 /*
890 * At this point, we have no other references and there is
891 * no way to pick any more up (removed from LRU, removed
892 * from pagecache). Can use non-atomic bitops now (and
893 * we obviously don't have to worry about waking up a process
894 * waiting on the page lock, because there are no references.
895 */
896 __clear_page_locked(page);
897 free_it:
898 nr_reclaimed++;
899
900 /*
901 * Is there need to periodically free_page_list? It would
902 * appear not as the counts should be low
903 */
904 list_add(&page->lru, &free_pages);
905 continue;
906
907 cull_mlocked:
908 if (PageSwapCache(page))
909 try_to_free_swap(page);
910 unlock_page(page);
911 putback_lru_page(page);
912 continue;
913
914 activate_locked:
915 /* Not a candidate for swapping, so reclaim swap space. */
916 if (PageSwapCache(page) && vm_swap_full())
917 try_to_free_swap(page);
918 VM_BUG_ON(PageActive(page));
919 SetPageActive(page);
920 pgactivate++;
921 keep_locked:
922 unlock_page(page);
923 keep:
924 list_add(&page->lru, &ret_pages);
925 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
926 }
927
928 /*
929 * Tag a zone as congested if all the dirty pages encountered were
930 * backed by a congested BDI. In this case, reclaimers should just
931 * back off and wait for congestion to clear because further reclaim
932 * will encounter the same problem
933 */
934 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
935 zone_set_flag(zone, ZONE_CONGESTED);
936
937 free_hot_cold_page_list(&free_pages, 1);
938
939 list_splice(&ret_pages, page_list);
940 count_vm_events(PGACTIVATE, pgactivate);
941 *ret_nr_dirty += nr_dirty;
942 *ret_nr_writeback += nr_writeback;
943 return nr_reclaimed;
944 }
945
946 /*
947 * Attempt to remove the specified page from its LRU. Only take this page
948 * if it is of the appropriate PageActive status. Pages which are being
949 * freed elsewhere are also ignored.
950 *
951 * page: page to consider
952 * mode: one of the LRU isolation modes defined above
953 *
954 * returns 0 on success, -ve errno on failure.
955 */
956 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
957 {
958 int ret = -EINVAL;
959
960 /* Only take pages on the LRU. */
961 if (!PageLRU(page))
962 return ret;
963
964 /* Do not give back unevictable pages for compaction */
965 if (PageUnevictable(page))
966 return ret;
967
968 ret = -EBUSY;
969
970 /*
971 * To minimise LRU disruption, the caller can indicate that it only
972 * wants to isolate pages it will be able to operate on without
973 * blocking - clean pages for the most part.
974 *
975 * ISOLATE_CLEAN means that only clean pages should be isolated. This
976 * is used by reclaim when it is cannot write to backing storage
977 *
978 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
979 * that it is possible to migrate without blocking
980 */
981 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
982 /* All the caller can do on PageWriteback is block */
983 if (PageWriteback(page))
984 return ret;
985
986 if (PageDirty(page)) {
987 struct address_space *mapping;
988
989 /* ISOLATE_CLEAN means only clean pages */
990 if (mode & ISOLATE_CLEAN)
991 return ret;
992
993 /*
994 * Only pages without mappings or that have a
995 * ->migratepage callback are possible to migrate
996 * without blocking
997 */
998 mapping = page_mapping(page);
999 if (mapping && !mapping->a_ops->migratepage)
1000 return ret;
1001 }
1002 }
1003
1004 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1005 return ret;
1006
1007 if (likely(get_page_unless_zero(page))) {
1008 /*
1009 * Be careful not to clear PageLRU until after we're
1010 * sure the page is not being freed elsewhere -- the
1011 * page release code relies on it.
1012 */
1013 ClearPageLRU(page);
1014 ret = 0;
1015 }
1016
1017 return ret;
1018 }
1019
1020 /*
1021 * zone->lru_lock is heavily contended. Some of the functions that
1022 * shrink the lists perform better by taking out a batch of pages
1023 * and working on them outside the LRU lock.
1024 *
1025 * For pagecache intensive workloads, this function is the hottest
1026 * spot in the kernel (apart from copy_*_user functions).
1027 *
1028 * Appropriate locks must be held before calling this function.
1029 *
1030 * @nr_to_scan: The number of pages to look through on the list.
1031 * @lruvec: The LRU vector to pull pages from.
1032 * @dst: The temp list to put pages on to.
1033 * @nr_scanned: The number of pages that were scanned.
1034 * @sc: The scan_control struct for this reclaim session
1035 * @mode: One of the LRU isolation modes
1036 * @lru: LRU list id for isolating
1037 *
1038 * returns how many pages were moved onto *@dst.
1039 */
1040 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1041 struct lruvec *lruvec, struct list_head *dst,
1042 unsigned long *nr_scanned, struct scan_control *sc,
1043 isolate_mode_t mode, enum lru_list lru)
1044 {
1045 struct list_head *src = &lruvec->lists[lru];
1046 unsigned long nr_taken = 0;
1047 unsigned long scan;
1048
1049 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1050 struct page *page;
1051 int nr_pages;
1052
1053 page = lru_to_page(src);
1054 prefetchw_prev_lru_page(page, src, flags);
1055
1056 VM_BUG_ON(!PageLRU(page));
1057
1058 switch (__isolate_lru_page(page, mode)) {
1059 case 0:
1060 nr_pages = hpage_nr_pages(page);
1061 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1062 list_move(&page->lru, dst);
1063 nr_taken += nr_pages;
1064 break;
1065
1066 case -EBUSY:
1067 /* else it is being freed elsewhere */
1068 list_move(&page->lru, src);
1069 continue;
1070
1071 default:
1072 BUG();
1073 }
1074 }
1075
1076 *nr_scanned = scan;
1077 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1078 nr_taken, mode, is_file_lru(lru));
1079 return nr_taken;
1080 }
1081
1082 /**
1083 * isolate_lru_page - tries to isolate a page from its LRU list
1084 * @page: page to isolate from its LRU list
1085 *
1086 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1087 * vmstat statistic corresponding to whatever LRU list the page was on.
1088 *
1089 * Returns 0 if the page was removed from an LRU list.
1090 * Returns -EBUSY if the page was not on an LRU list.
1091 *
1092 * The returned page will have PageLRU() cleared. If it was found on
1093 * the active list, it will have PageActive set. If it was found on
1094 * the unevictable list, it will have the PageUnevictable bit set. That flag
1095 * may need to be cleared by the caller before letting the page go.
1096 *
1097 * The vmstat statistic corresponding to the list on which the page was
1098 * found will be decremented.
1099 *
1100 * Restrictions:
1101 * (1) Must be called with an elevated refcount on the page. This is a
1102 * fundamentnal difference from isolate_lru_pages (which is called
1103 * without a stable reference).
1104 * (2) the lru_lock must not be held.
1105 * (3) interrupts must be enabled.
1106 */
1107 int isolate_lru_page(struct page *page)
1108 {
1109 int ret = -EBUSY;
1110
1111 VM_BUG_ON(!page_count(page));
1112
1113 if (PageLRU(page)) {
1114 struct zone *zone = page_zone(page);
1115 struct lruvec *lruvec;
1116
1117 spin_lock_irq(&zone->lru_lock);
1118 lruvec = mem_cgroup_page_lruvec(page, zone);
1119 if (PageLRU(page)) {
1120 int lru = page_lru(page);
1121 get_page(page);
1122 ClearPageLRU(page);
1123 del_page_from_lru_list(page, lruvec, lru);
1124 ret = 0;
1125 }
1126 spin_unlock_irq(&zone->lru_lock);
1127 }
1128 return ret;
1129 }
1130
1131 /*
1132 * Are there way too many processes in the direct reclaim path already?
1133 */
1134 static int too_many_isolated(struct zone *zone, int file,
1135 struct scan_control *sc)
1136 {
1137 unsigned long inactive, isolated;
1138
1139 if (current_is_kswapd())
1140 return 0;
1141
1142 if (!global_reclaim(sc))
1143 return 0;
1144
1145 if (file) {
1146 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1147 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1148 } else {
1149 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1150 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1151 }
1152
1153 return isolated > inactive;
1154 }
1155
1156 static noinline_for_stack void
1157 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1158 {
1159 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1160 struct zone *zone = lruvec_zone(lruvec);
1161 LIST_HEAD(pages_to_free);
1162
1163 /*
1164 * Put back any unfreeable pages.
1165 */
1166 while (!list_empty(page_list)) {
1167 struct page *page = lru_to_page(page_list);
1168 int lru;
1169
1170 VM_BUG_ON(PageLRU(page));
1171 list_del(&page->lru);
1172 if (unlikely(!page_evictable(page, NULL))) {
1173 spin_unlock_irq(&zone->lru_lock);
1174 putback_lru_page(page);
1175 spin_lock_irq(&zone->lru_lock);
1176 continue;
1177 }
1178
1179 lruvec = mem_cgroup_page_lruvec(page, zone);
1180
1181 SetPageLRU(page);
1182 lru = page_lru(page);
1183 add_page_to_lru_list(page, lruvec, lru);
1184
1185 if (is_active_lru(lru)) {
1186 int file = is_file_lru(lru);
1187 int numpages = hpage_nr_pages(page);
1188 reclaim_stat->recent_rotated[file] += numpages;
1189 }
1190 if (put_page_testzero(page)) {
1191 __ClearPageLRU(page);
1192 __ClearPageActive(page);
1193 del_page_from_lru_list(page, lruvec, lru);
1194
1195 if (unlikely(PageCompound(page))) {
1196 spin_unlock_irq(&zone->lru_lock);
1197 (*get_compound_page_dtor(page))(page);
1198 spin_lock_irq(&zone->lru_lock);
1199 } else
1200 list_add(&page->lru, &pages_to_free);
1201 }
1202 }
1203
1204 /*
1205 * To save our caller's stack, now use input list for pages to free.
1206 */
1207 list_splice(&pages_to_free, page_list);
1208 }
1209
1210 /*
1211 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1212 * of reclaimed pages
1213 */
1214 static noinline_for_stack unsigned long
1215 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1216 struct scan_control *sc, enum lru_list lru)
1217 {
1218 LIST_HEAD(page_list);
1219 unsigned long nr_scanned;
1220 unsigned long nr_reclaimed = 0;
1221 unsigned long nr_taken;
1222 unsigned long nr_dirty = 0;
1223 unsigned long nr_writeback = 0;
1224 isolate_mode_t isolate_mode = 0;
1225 int file = is_file_lru(lru);
1226 struct zone *zone = lruvec_zone(lruvec);
1227 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1228
1229 while (unlikely(too_many_isolated(zone, file, sc))) {
1230 congestion_wait(BLK_RW_ASYNC, HZ/10);
1231
1232 /* We are about to die and free our memory. Return now. */
1233 if (fatal_signal_pending(current))
1234 return SWAP_CLUSTER_MAX;
1235 }
1236
1237 lru_add_drain();
1238
1239 if (!sc->may_unmap)
1240 isolate_mode |= ISOLATE_UNMAPPED;
1241 if (!sc->may_writepage)
1242 isolate_mode |= ISOLATE_CLEAN;
1243
1244 spin_lock_irq(&zone->lru_lock);
1245
1246 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1247 &nr_scanned, sc, isolate_mode, lru);
1248
1249 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1250 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1251
1252 if (global_reclaim(sc)) {
1253 zone->pages_scanned += nr_scanned;
1254 if (current_is_kswapd())
1255 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1256 else
1257 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1258 }
1259 spin_unlock_irq(&zone->lru_lock);
1260
1261 if (nr_taken == 0)
1262 return 0;
1263
1264 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1265 &nr_dirty, &nr_writeback);
1266
1267 spin_lock_irq(&zone->lru_lock);
1268
1269 reclaim_stat->recent_scanned[file] += nr_taken;
1270
1271 if (global_reclaim(sc)) {
1272 if (current_is_kswapd())
1273 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1274 nr_reclaimed);
1275 else
1276 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1277 nr_reclaimed);
1278 }
1279
1280 putback_inactive_pages(lruvec, &page_list);
1281
1282 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1283
1284 spin_unlock_irq(&zone->lru_lock);
1285
1286 free_hot_cold_page_list(&page_list, 1);
1287
1288 /*
1289 * If reclaim is isolating dirty pages under writeback, it implies
1290 * that the long-lived page allocation rate is exceeding the page
1291 * laundering rate. Either the global limits are not being effective
1292 * at throttling processes due to the page distribution throughout
1293 * zones or there is heavy usage of a slow backing device. The
1294 * only option is to throttle from reclaim context which is not ideal
1295 * as there is no guarantee the dirtying process is throttled in the
1296 * same way balance_dirty_pages() manages.
1297 *
1298 * This scales the number of dirty pages that must be under writeback
1299 * before throttling depending on priority. It is a simple backoff
1300 * function that has the most effect in the range DEF_PRIORITY to
1301 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1302 * in trouble and reclaim is considered to be in trouble.
1303 *
1304 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1305 * DEF_PRIORITY-1 50% must be PageWriteback
1306 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1307 * ...
1308 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1309 * isolated page is PageWriteback
1310 */
1311 if (nr_writeback && nr_writeback >=
1312 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1313 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1314
1315 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1316 zone_idx(zone),
1317 nr_scanned, nr_reclaimed,
1318 sc->priority,
1319 trace_shrink_flags(file));
1320 return nr_reclaimed;
1321 }
1322
1323 /*
1324 * This moves pages from the active list to the inactive list.
1325 *
1326 * We move them the other way if the page is referenced by one or more
1327 * processes, from rmap.
1328 *
1329 * If the pages are mostly unmapped, the processing is fast and it is
1330 * appropriate to hold zone->lru_lock across the whole operation. But if
1331 * the pages are mapped, the processing is slow (page_referenced()) so we
1332 * should drop zone->lru_lock around each page. It's impossible to balance
1333 * this, so instead we remove the pages from the LRU while processing them.
1334 * It is safe to rely on PG_active against the non-LRU pages in here because
1335 * nobody will play with that bit on a non-LRU page.
1336 *
1337 * The downside is that we have to touch page->_count against each page.
1338 * But we had to alter page->flags anyway.
1339 */
1340
1341 static void move_active_pages_to_lru(struct lruvec *lruvec,
1342 struct list_head *list,
1343 struct list_head *pages_to_free,
1344 enum lru_list lru)
1345 {
1346 struct zone *zone = lruvec_zone(lruvec);
1347 unsigned long pgmoved = 0;
1348 struct page *page;
1349 int nr_pages;
1350
1351 while (!list_empty(list)) {
1352 page = lru_to_page(list);
1353 lruvec = mem_cgroup_page_lruvec(page, zone);
1354
1355 VM_BUG_ON(PageLRU(page));
1356 SetPageLRU(page);
1357
1358 nr_pages = hpage_nr_pages(page);
1359 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1360 list_move(&page->lru, &lruvec->lists[lru]);
1361 pgmoved += nr_pages;
1362
1363 if (put_page_testzero(page)) {
1364 __ClearPageLRU(page);
1365 __ClearPageActive(page);
1366 del_page_from_lru_list(page, lruvec, lru);
1367
1368 if (unlikely(PageCompound(page))) {
1369 spin_unlock_irq(&zone->lru_lock);
1370 (*get_compound_page_dtor(page))(page);
1371 spin_lock_irq(&zone->lru_lock);
1372 } else
1373 list_add(&page->lru, pages_to_free);
1374 }
1375 }
1376 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1377 if (!is_active_lru(lru))
1378 __count_vm_events(PGDEACTIVATE, pgmoved);
1379 }
1380
1381 static void shrink_active_list(unsigned long nr_to_scan,
1382 struct lruvec *lruvec,
1383 struct scan_control *sc,
1384 enum lru_list lru)
1385 {
1386 unsigned long nr_taken;
1387 unsigned long nr_scanned;
1388 unsigned long vm_flags;
1389 LIST_HEAD(l_hold); /* The pages which were snipped off */
1390 LIST_HEAD(l_active);
1391 LIST_HEAD(l_inactive);
1392 struct page *page;
1393 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1394 unsigned long nr_rotated = 0;
1395 isolate_mode_t isolate_mode = 0;
1396 int file = is_file_lru(lru);
1397 struct zone *zone = lruvec_zone(lruvec);
1398
1399 lru_add_drain();
1400
1401 if (!sc->may_unmap)
1402 isolate_mode |= ISOLATE_UNMAPPED;
1403 if (!sc->may_writepage)
1404 isolate_mode |= ISOLATE_CLEAN;
1405
1406 spin_lock_irq(&zone->lru_lock);
1407
1408 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1409 &nr_scanned, sc, isolate_mode, lru);
1410 if (global_reclaim(sc))
1411 zone->pages_scanned += nr_scanned;
1412
1413 reclaim_stat->recent_scanned[file] += nr_taken;
1414
1415 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1416 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1417 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1418 spin_unlock_irq(&zone->lru_lock);
1419
1420 while (!list_empty(&l_hold)) {
1421 cond_resched();
1422 page = lru_to_page(&l_hold);
1423 list_del(&page->lru);
1424
1425 if (unlikely(!page_evictable(page, NULL))) {
1426 putback_lru_page(page);
1427 continue;
1428 }
1429
1430 if (unlikely(buffer_heads_over_limit)) {
1431 if (page_has_private(page) && trylock_page(page)) {
1432 if (page_has_private(page))
1433 try_to_release_page(page, 0);
1434 unlock_page(page);
1435 }
1436 }
1437
1438 if (page_referenced(page, 0, sc->target_mem_cgroup,
1439 &vm_flags)) {
1440 nr_rotated += hpage_nr_pages(page);
1441 /*
1442 * Identify referenced, file-backed active pages and
1443 * give them one more trip around the active list. So
1444 * that executable code get better chances to stay in
1445 * memory under moderate memory pressure. Anon pages
1446 * are not likely to be evicted by use-once streaming
1447 * IO, plus JVM can create lots of anon VM_EXEC pages,
1448 * so we ignore them here.
1449 */
1450 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1451 list_add(&page->lru, &l_active);
1452 continue;
1453 }
1454 }
1455
1456 ClearPageActive(page); /* we are de-activating */
1457 list_add(&page->lru, &l_inactive);
1458 }
1459
1460 /*
1461 * Move pages back to the lru list.
1462 */
1463 spin_lock_irq(&zone->lru_lock);
1464 /*
1465 * Count referenced pages from currently used mappings as rotated,
1466 * even though only some of them are actually re-activated. This
1467 * helps balance scan pressure between file and anonymous pages in
1468 * get_scan_ratio.
1469 */
1470 reclaim_stat->recent_rotated[file] += nr_rotated;
1471
1472 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1473 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1474 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1475 spin_unlock_irq(&zone->lru_lock);
1476
1477 free_hot_cold_page_list(&l_hold, 1);
1478 }
1479
1480 #ifdef CONFIG_SWAP
1481 static int inactive_anon_is_low_global(struct zone *zone)
1482 {
1483 unsigned long active, inactive;
1484
1485 active = zone_page_state(zone, NR_ACTIVE_ANON);
1486 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1487
1488 if (inactive * zone->inactive_ratio < active)
1489 return 1;
1490
1491 return 0;
1492 }
1493
1494 /**
1495 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1496 * @lruvec: LRU vector to check
1497 *
1498 * Returns true if the zone does not have enough inactive anon pages,
1499 * meaning some active anon pages need to be deactivated.
1500 */
1501 static int inactive_anon_is_low(struct lruvec *lruvec)
1502 {
1503 /*
1504 * If we don't have swap space, anonymous page deactivation
1505 * is pointless.
1506 */
1507 if (!total_swap_pages)
1508 return 0;
1509
1510 if (!mem_cgroup_disabled())
1511 return mem_cgroup_inactive_anon_is_low(lruvec);
1512
1513 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1514 }
1515 #else
1516 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1517 {
1518 return 0;
1519 }
1520 #endif
1521
1522 static int inactive_file_is_low_global(struct zone *zone)
1523 {
1524 unsigned long active, inactive;
1525
1526 active = zone_page_state(zone, NR_ACTIVE_FILE);
1527 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1528
1529 return (active > inactive);
1530 }
1531
1532 /**
1533 * inactive_file_is_low - check if file pages need to be deactivated
1534 * @lruvec: LRU vector to check
1535 *
1536 * When the system is doing streaming IO, memory pressure here
1537 * ensures that active file pages get deactivated, until more
1538 * than half of the file pages are on the inactive list.
1539 *
1540 * Once we get to that situation, protect the system's working
1541 * set from being evicted by disabling active file page aging.
1542 *
1543 * This uses a different ratio than the anonymous pages, because
1544 * the page cache uses a use-once replacement algorithm.
1545 */
1546 static int inactive_file_is_low(struct lruvec *lruvec)
1547 {
1548 if (!mem_cgroup_disabled())
1549 return mem_cgroup_inactive_file_is_low(lruvec);
1550
1551 return inactive_file_is_low_global(lruvec_zone(lruvec));
1552 }
1553
1554 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1555 {
1556 if (is_file_lru(lru))
1557 return inactive_file_is_low(lruvec);
1558 else
1559 return inactive_anon_is_low(lruvec);
1560 }
1561
1562 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1563 struct lruvec *lruvec, struct scan_control *sc)
1564 {
1565 if (is_active_lru(lru)) {
1566 if (inactive_list_is_low(lruvec, lru))
1567 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1568 return 0;
1569 }
1570
1571 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1572 }
1573
1574 static int vmscan_swappiness(struct scan_control *sc)
1575 {
1576 if (global_reclaim(sc))
1577 return vm_swappiness;
1578 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1579 }
1580
1581 /*
1582 * Determine how aggressively the anon and file LRU lists should be
1583 * scanned. The relative value of each set of LRU lists is determined
1584 * by looking at the fraction of the pages scanned we did rotate back
1585 * onto the active list instead of evict.
1586 *
1587 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1588 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1589 */
1590 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1591 unsigned long *nr)
1592 {
1593 unsigned long anon, file, free;
1594 unsigned long anon_prio, file_prio;
1595 unsigned long ap, fp;
1596 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1597 u64 fraction[2], denominator;
1598 enum lru_list lru;
1599 int noswap = 0;
1600 bool force_scan = false;
1601 struct zone *zone = lruvec_zone(lruvec);
1602
1603 /*
1604 * If the zone or memcg is small, nr[l] can be 0. This
1605 * results in no scanning on this priority and a potential
1606 * priority drop. Global direct reclaim can go to the next
1607 * zone and tends to have no problems. Global kswapd is for
1608 * zone balancing and it needs to scan a minimum amount. When
1609 * reclaiming for a memcg, a priority drop can cause high
1610 * latencies, so it's better to scan a minimum amount there as
1611 * well.
1612 */
1613 if (current_is_kswapd() && zone->all_unreclaimable)
1614 force_scan = true;
1615 if (!global_reclaim(sc))
1616 force_scan = true;
1617
1618 /* If we have no swap space, do not bother scanning anon pages. */
1619 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1620 noswap = 1;
1621 fraction[0] = 0;
1622 fraction[1] = 1;
1623 denominator = 1;
1624 goto out;
1625 }
1626
1627 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1628 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1629 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1630 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1631
1632 if (global_reclaim(sc)) {
1633 free = zone_page_state(zone, NR_FREE_PAGES);
1634 /* If we have very few page cache pages,
1635 force-scan anon pages. */
1636 if (unlikely(file + free <= high_wmark_pages(zone))) {
1637 fraction[0] = 1;
1638 fraction[1] = 0;
1639 denominator = 1;
1640 goto out;
1641 }
1642 }
1643
1644 /*
1645 * With swappiness at 100, anonymous and file have the same priority.
1646 * This scanning priority is essentially the inverse of IO cost.
1647 */
1648 anon_prio = vmscan_swappiness(sc);
1649 file_prio = 200 - anon_prio;
1650
1651 /*
1652 * OK, so we have swap space and a fair amount of page cache
1653 * pages. We use the recently rotated / recently scanned
1654 * ratios to determine how valuable each cache is.
1655 *
1656 * Because workloads change over time (and to avoid overflow)
1657 * we keep these statistics as a floating average, which ends
1658 * up weighing recent references more than old ones.
1659 *
1660 * anon in [0], file in [1]
1661 */
1662 spin_lock_irq(&zone->lru_lock);
1663 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1664 reclaim_stat->recent_scanned[0] /= 2;
1665 reclaim_stat->recent_rotated[0] /= 2;
1666 }
1667
1668 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1669 reclaim_stat->recent_scanned[1] /= 2;
1670 reclaim_stat->recent_rotated[1] /= 2;
1671 }
1672
1673 /*
1674 * The amount of pressure on anon vs file pages is inversely
1675 * proportional to the fraction of recently scanned pages on
1676 * each list that were recently referenced and in active use.
1677 */
1678 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1679 ap /= reclaim_stat->recent_rotated[0] + 1;
1680
1681 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1682 fp /= reclaim_stat->recent_rotated[1] + 1;
1683 spin_unlock_irq(&zone->lru_lock);
1684
1685 fraction[0] = ap;
1686 fraction[1] = fp;
1687 denominator = ap + fp + 1;
1688 out:
1689 for_each_evictable_lru(lru) {
1690 int file = is_file_lru(lru);
1691 unsigned long scan;
1692
1693 scan = get_lru_size(lruvec, lru);
1694 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1695 scan >>= sc->priority;
1696 if (!scan && force_scan)
1697 scan = SWAP_CLUSTER_MAX;
1698 scan = div64_u64(scan * fraction[file], denominator);
1699 }
1700 nr[lru] = scan;
1701 }
1702 }
1703
1704 /* Use reclaim/compaction for costly allocs or under memory pressure */
1705 static bool in_reclaim_compaction(struct scan_control *sc)
1706 {
1707 if (COMPACTION_BUILD && sc->order &&
1708 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1709 sc->priority < DEF_PRIORITY - 2))
1710 return true;
1711
1712 return false;
1713 }
1714
1715 /*
1716 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1717 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1718 * true if more pages should be reclaimed such that when the page allocator
1719 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1720 * It will give up earlier than that if there is difficulty reclaiming pages.
1721 */
1722 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1723 unsigned long nr_reclaimed,
1724 unsigned long nr_scanned,
1725 struct scan_control *sc)
1726 {
1727 unsigned long pages_for_compaction;
1728 unsigned long inactive_lru_pages;
1729
1730 /* If not in reclaim/compaction mode, stop */
1731 if (!in_reclaim_compaction(sc))
1732 return false;
1733
1734 /* Consider stopping depending on scan and reclaim activity */
1735 if (sc->gfp_mask & __GFP_REPEAT) {
1736 /*
1737 * For __GFP_REPEAT allocations, stop reclaiming if the
1738 * full LRU list has been scanned and we are still failing
1739 * to reclaim pages. This full LRU scan is potentially
1740 * expensive but a __GFP_REPEAT caller really wants to succeed
1741 */
1742 if (!nr_reclaimed && !nr_scanned)
1743 return false;
1744 } else {
1745 /*
1746 * For non-__GFP_REPEAT allocations which can presumably
1747 * fail without consequence, stop if we failed to reclaim
1748 * any pages from the last SWAP_CLUSTER_MAX number of
1749 * pages that were scanned. This will return to the
1750 * caller faster at the risk reclaim/compaction and
1751 * the resulting allocation attempt fails
1752 */
1753 if (!nr_reclaimed)
1754 return false;
1755 }
1756
1757 /*
1758 * If we have not reclaimed enough pages for compaction and the
1759 * inactive lists are large enough, continue reclaiming
1760 */
1761 pages_for_compaction = (2UL << sc->order);
1762 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1763 if (nr_swap_pages > 0)
1764 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1765 if (sc->nr_reclaimed < pages_for_compaction &&
1766 inactive_lru_pages > pages_for_compaction)
1767 return true;
1768
1769 /* If compaction would go ahead or the allocation would succeed, stop */
1770 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1771 case COMPACT_PARTIAL:
1772 case COMPACT_CONTINUE:
1773 return false;
1774 default:
1775 return true;
1776 }
1777 }
1778
1779 /*
1780 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1781 */
1782 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1783 {
1784 unsigned long nr[NR_LRU_LISTS];
1785 unsigned long nr_to_scan;
1786 enum lru_list lru;
1787 unsigned long nr_reclaimed, nr_scanned;
1788 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1789 struct blk_plug plug;
1790
1791 restart:
1792 nr_reclaimed = 0;
1793 nr_scanned = sc->nr_scanned;
1794 get_scan_count(lruvec, sc, nr);
1795
1796 blk_start_plug(&plug);
1797 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1798 nr[LRU_INACTIVE_FILE]) {
1799 for_each_evictable_lru(lru) {
1800 if (nr[lru]) {
1801 nr_to_scan = min_t(unsigned long,
1802 nr[lru], SWAP_CLUSTER_MAX);
1803 nr[lru] -= nr_to_scan;
1804
1805 nr_reclaimed += shrink_list(lru, nr_to_scan,
1806 lruvec, sc);
1807 }
1808 }
1809 /*
1810 * On large memory systems, scan >> priority can become
1811 * really large. This is fine for the starting priority;
1812 * we want to put equal scanning pressure on each zone.
1813 * However, if the VM has a harder time of freeing pages,
1814 * with multiple processes reclaiming pages, the total
1815 * freeing target can get unreasonably large.
1816 */
1817 if (nr_reclaimed >= nr_to_reclaim &&
1818 sc->priority < DEF_PRIORITY)
1819 break;
1820 }
1821 blk_finish_plug(&plug);
1822 sc->nr_reclaimed += nr_reclaimed;
1823
1824 /*
1825 * Even if we did not try to evict anon pages at all, we want to
1826 * rebalance the anon lru active/inactive ratio.
1827 */
1828 if (inactive_anon_is_low(lruvec))
1829 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1830 sc, LRU_ACTIVE_ANON);
1831
1832 /* reclaim/compaction might need reclaim to continue */
1833 if (should_continue_reclaim(lruvec, nr_reclaimed,
1834 sc->nr_scanned - nr_scanned, sc))
1835 goto restart;
1836
1837 throttle_vm_writeout(sc->gfp_mask);
1838 }
1839
1840 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1841 {
1842 struct mem_cgroup *root = sc->target_mem_cgroup;
1843 struct mem_cgroup_reclaim_cookie reclaim = {
1844 .zone = zone,
1845 .priority = sc->priority,
1846 };
1847 struct mem_cgroup *memcg;
1848
1849 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1850 do {
1851 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1852
1853 shrink_lruvec(lruvec, sc);
1854
1855 /*
1856 * Limit reclaim has historically picked one memcg and
1857 * scanned it with decreasing priority levels until
1858 * nr_to_reclaim had been reclaimed. This priority
1859 * cycle is thus over after a single memcg.
1860 *
1861 * Direct reclaim and kswapd, on the other hand, have
1862 * to scan all memory cgroups to fulfill the overall
1863 * scan target for the zone.
1864 */
1865 if (!global_reclaim(sc)) {
1866 mem_cgroup_iter_break(root, memcg);
1867 break;
1868 }
1869 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1870 } while (memcg);
1871 }
1872
1873 /* Returns true if compaction should go ahead for a high-order request */
1874 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1875 {
1876 unsigned long balance_gap, watermark;
1877 bool watermark_ok;
1878
1879 /* Do not consider compaction for orders reclaim is meant to satisfy */
1880 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1881 return false;
1882
1883 /*
1884 * Compaction takes time to run and there are potentially other
1885 * callers using the pages just freed. Continue reclaiming until
1886 * there is a buffer of free pages available to give compaction
1887 * a reasonable chance of completing and allocating the page
1888 */
1889 balance_gap = min(low_wmark_pages(zone),
1890 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1891 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1892 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1893 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1894
1895 /*
1896 * If compaction is deferred, reclaim up to a point where
1897 * compaction will have a chance of success when re-enabled
1898 */
1899 if (compaction_deferred(zone, sc->order))
1900 return watermark_ok;
1901
1902 /* If compaction is not ready to start, keep reclaiming */
1903 if (!compaction_suitable(zone, sc->order))
1904 return false;
1905
1906 return watermark_ok;
1907 }
1908
1909 /*
1910 * This is the direct reclaim path, for page-allocating processes. We only
1911 * try to reclaim pages from zones which will satisfy the caller's allocation
1912 * request.
1913 *
1914 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1915 * Because:
1916 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1917 * allocation or
1918 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1919 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1920 * zone defense algorithm.
1921 *
1922 * If a zone is deemed to be full of pinned pages then just give it a light
1923 * scan then give up on it.
1924 *
1925 * This function returns true if a zone is being reclaimed for a costly
1926 * high-order allocation and compaction is ready to begin. This indicates to
1927 * the caller that it should consider retrying the allocation instead of
1928 * further reclaim.
1929 */
1930 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1931 {
1932 struct zoneref *z;
1933 struct zone *zone;
1934 unsigned long nr_soft_reclaimed;
1935 unsigned long nr_soft_scanned;
1936 bool aborted_reclaim = false;
1937
1938 /*
1939 * If the number of buffer_heads in the machine exceeds the maximum
1940 * allowed level, force direct reclaim to scan the highmem zone as
1941 * highmem pages could be pinning lowmem pages storing buffer_heads
1942 */
1943 if (buffer_heads_over_limit)
1944 sc->gfp_mask |= __GFP_HIGHMEM;
1945
1946 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1947 gfp_zone(sc->gfp_mask), sc->nodemask) {
1948 if (!populated_zone(zone))
1949 continue;
1950 /*
1951 * Take care memory controller reclaiming has small influence
1952 * to global LRU.
1953 */
1954 if (global_reclaim(sc)) {
1955 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1956 continue;
1957 if (zone->all_unreclaimable &&
1958 sc->priority != DEF_PRIORITY)
1959 continue; /* Let kswapd poll it */
1960 if (COMPACTION_BUILD) {
1961 /*
1962 * If we already have plenty of memory free for
1963 * compaction in this zone, don't free any more.
1964 * Even though compaction is invoked for any
1965 * non-zero order, only frequent costly order
1966 * reclamation is disruptive enough to become a
1967 * noticeable problem, like transparent huge
1968 * page allocations.
1969 */
1970 if (compaction_ready(zone, sc)) {
1971 aborted_reclaim = true;
1972 continue;
1973 }
1974 }
1975 /*
1976 * This steals pages from memory cgroups over softlimit
1977 * and returns the number of reclaimed pages and
1978 * scanned pages. This works for global memory pressure
1979 * and balancing, not for a memcg's limit.
1980 */
1981 nr_soft_scanned = 0;
1982 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1983 sc->order, sc->gfp_mask,
1984 &nr_soft_scanned);
1985 sc->nr_reclaimed += nr_soft_reclaimed;
1986 sc->nr_scanned += nr_soft_scanned;
1987 /* need some check for avoid more shrink_zone() */
1988 }
1989
1990 shrink_zone(zone, sc);
1991 }
1992
1993 return aborted_reclaim;
1994 }
1995
1996 static bool zone_reclaimable(struct zone *zone)
1997 {
1998 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1999 }
2000
2001 /* All zones in zonelist are unreclaimable? */
2002 static bool all_unreclaimable(struct zonelist *zonelist,
2003 struct scan_control *sc)
2004 {
2005 struct zoneref *z;
2006 struct zone *zone;
2007
2008 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2009 gfp_zone(sc->gfp_mask), sc->nodemask) {
2010 if (!populated_zone(zone))
2011 continue;
2012 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2013 continue;
2014 if (!zone->all_unreclaimable)
2015 return false;
2016 }
2017
2018 return true;
2019 }
2020
2021 /*
2022 * This is the main entry point to direct page reclaim.
2023 *
2024 * If a full scan of the inactive list fails to free enough memory then we
2025 * are "out of memory" and something needs to be killed.
2026 *
2027 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2028 * high - the zone may be full of dirty or under-writeback pages, which this
2029 * caller can't do much about. We kick the writeback threads and take explicit
2030 * naps in the hope that some of these pages can be written. But if the
2031 * allocating task holds filesystem locks which prevent writeout this might not
2032 * work, and the allocation attempt will fail.
2033 *
2034 * returns: 0, if no pages reclaimed
2035 * else, the number of pages reclaimed
2036 */
2037 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2038 struct scan_control *sc,
2039 struct shrink_control *shrink)
2040 {
2041 unsigned long total_scanned = 0;
2042 struct reclaim_state *reclaim_state = current->reclaim_state;
2043 struct zoneref *z;
2044 struct zone *zone;
2045 unsigned long writeback_threshold;
2046 bool aborted_reclaim;
2047
2048 delayacct_freepages_start();
2049
2050 if (global_reclaim(sc))
2051 count_vm_event(ALLOCSTALL);
2052
2053 do {
2054 sc->nr_scanned = 0;
2055 aborted_reclaim = shrink_zones(zonelist, sc);
2056
2057 /*
2058 * Don't shrink slabs when reclaiming memory from
2059 * over limit cgroups
2060 */
2061 if (global_reclaim(sc)) {
2062 unsigned long lru_pages = 0;
2063 for_each_zone_zonelist(zone, z, zonelist,
2064 gfp_zone(sc->gfp_mask)) {
2065 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2066 continue;
2067
2068 lru_pages += zone_reclaimable_pages(zone);
2069 }
2070
2071 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2072 if (reclaim_state) {
2073 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2074 reclaim_state->reclaimed_slab = 0;
2075 }
2076 }
2077 total_scanned += sc->nr_scanned;
2078 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2079 goto out;
2080
2081 /*
2082 * Try to write back as many pages as we just scanned. This
2083 * tends to cause slow streaming writers to write data to the
2084 * disk smoothly, at the dirtying rate, which is nice. But
2085 * that's undesirable in laptop mode, where we *want* lumpy
2086 * writeout. So in laptop mode, write out the whole world.
2087 */
2088 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2089 if (total_scanned > writeback_threshold) {
2090 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2091 WB_REASON_TRY_TO_FREE_PAGES);
2092 sc->may_writepage = 1;
2093 }
2094
2095 /* Take a nap, wait for some writeback to complete */
2096 if (!sc->hibernation_mode && sc->nr_scanned &&
2097 sc->priority < DEF_PRIORITY - 2) {
2098 struct zone *preferred_zone;
2099
2100 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2101 &cpuset_current_mems_allowed,
2102 &preferred_zone);
2103 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2104 }
2105 } while (--sc->priority >= 0);
2106
2107 out:
2108 delayacct_freepages_end();
2109
2110 if (sc->nr_reclaimed)
2111 return sc->nr_reclaimed;
2112
2113 /*
2114 * As hibernation is going on, kswapd is freezed so that it can't mark
2115 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2116 * check.
2117 */
2118 if (oom_killer_disabled)
2119 return 0;
2120
2121 /* Aborted reclaim to try compaction? don't OOM, then */
2122 if (aborted_reclaim)
2123 return 1;
2124
2125 /* top priority shrink_zones still had more to do? don't OOM, then */
2126 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2127 return 1;
2128
2129 return 0;
2130 }
2131
2132 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2133 {
2134 struct zone *zone;
2135 unsigned long pfmemalloc_reserve = 0;
2136 unsigned long free_pages = 0;
2137 int i;
2138 bool wmark_ok;
2139
2140 for (i = 0; i <= ZONE_NORMAL; i++) {
2141 zone = &pgdat->node_zones[i];
2142 pfmemalloc_reserve += min_wmark_pages(zone);
2143 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2144 }
2145
2146 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2147
2148 /* kswapd must be awake if processes are being throttled */
2149 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2150 pgdat->classzone_idx = min(pgdat->classzone_idx,
2151 (enum zone_type)ZONE_NORMAL);
2152 wake_up_interruptible(&pgdat->kswapd_wait);
2153 }
2154
2155 return wmark_ok;
2156 }
2157
2158 /*
2159 * Throttle direct reclaimers if backing storage is backed by the network
2160 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2161 * depleted. kswapd will continue to make progress and wake the processes
2162 * when the low watermark is reached
2163 */
2164 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2165 nodemask_t *nodemask)
2166 {
2167 struct zone *zone;
2168 int high_zoneidx = gfp_zone(gfp_mask);
2169 pg_data_t *pgdat;
2170
2171 /*
2172 * Kernel threads should not be throttled as they may be indirectly
2173 * responsible for cleaning pages necessary for reclaim to make forward
2174 * progress. kjournald for example may enter direct reclaim while
2175 * committing a transaction where throttling it could forcing other
2176 * processes to block on log_wait_commit().
2177 */
2178 if (current->flags & PF_KTHREAD)
2179 return;
2180
2181 /* Check if the pfmemalloc reserves are ok */
2182 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2183 pgdat = zone->zone_pgdat;
2184 if (pfmemalloc_watermark_ok(pgdat))
2185 return;
2186
2187 /* Account for the throttling */
2188 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2189
2190 /*
2191 * If the caller cannot enter the filesystem, it's possible that it
2192 * is due to the caller holding an FS lock or performing a journal
2193 * transaction in the case of a filesystem like ext[3|4]. In this case,
2194 * it is not safe to block on pfmemalloc_wait as kswapd could be
2195 * blocked waiting on the same lock. Instead, throttle for up to a
2196 * second before continuing.
2197 */
2198 if (!(gfp_mask & __GFP_FS)) {
2199 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2200 pfmemalloc_watermark_ok(pgdat), HZ);
2201 return;
2202 }
2203
2204 /* Throttle until kswapd wakes the process */
2205 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2206 pfmemalloc_watermark_ok(pgdat));
2207 }
2208
2209 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2210 gfp_t gfp_mask, nodemask_t *nodemask)
2211 {
2212 unsigned long nr_reclaimed;
2213 struct scan_control sc = {
2214 .gfp_mask = gfp_mask,
2215 .may_writepage = !laptop_mode,
2216 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2217 .may_unmap = 1,
2218 .may_swap = 1,
2219 .order = order,
2220 .priority = DEF_PRIORITY,
2221 .target_mem_cgroup = NULL,
2222 .nodemask = nodemask,
2223 };
2224 struct shrink_control shrink = {
2225 .gfp_mask = sc.gfp_mask,
2226 };
2227
2228 throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2229
2230 /*
2231 * Do not enter reclaim if fatal signal is pending. 1 is returned so
2232 * that the page allocator does not consider triggering OOM
2233 */
2234 if (fatal_signal_pending(current))
2235 return 1;
2236
2237 trace_mm_vmscan_direct_reclaim_begin(order,
2238 sc.may_writepage,
2239 gfp_mask);
2240
2241 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2242
2243 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2244
2245 return nr_reclaimed;
2246 }
2247
2248 #ifdef CONFIG_MEMCG
2249
2250 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2251 gfp_t gfp_mask, bool noswap,
2252 struct zone *zone,
2253 unsigned long *nr_scanned)
2254 {
2255 struct scan_control sc = {
2256 .nr_scanned = 0,
2257 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2258 .may_writepage = !laptop_mode,
2259 .may_unmap = 1,
2260 .may_swap = !noswap,
2261 .order = 0,
2262 .priority = 0,
2263 .target_mem_cgroup = memcg,
2264 };
2265 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2266
2267 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2268 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2269
2270 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2271 sc.may_writepage,
2272 sc.gfp_mask);
2273
2274 /*
2275 * NOTE: Although we can get the priority field, using it
2276 * here is not a good idea, since it limits the pages we can scan.
2277 * if we don't reclaim here, the shrink_zone from balance_pgdat
2278 * will pick up pages from other mem cgroup's as well. We hack
2279 * the priority and make it zero.
2280 */
2281 shrink_lruvec(lruvec, &sc);
2282
2283 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2284
2285 *nr_scanned = sc.nr_scanned;
2286 return sc.nr_reclaimed;
2287 }
2288
2289 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2290 gfp_t gfp_mask,
2291 bool noswap)
2292 {
2293 struct zonelist *zonelist;
2294 unsigned long nr_reclaimed;
2295 int nid;
2296 struct scan_control sc = {
2297 .may_writepage = !laptop_mode,
2298 .may_unmap = 1,
2299 .may_swap = !noswap,
2300 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2301 .order = 0,
2302 .priority = DEF_PRIORITY,
2303 .target_mem_cgroup = memcg,
2304 .nodemask = NULL, /* we don't care the placement */
2305 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2306 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2307 };
2308 struct shrink_control shrink = {
2309 .gfp_mask = sc.gfp_mask,
2310 };
2311
2312 /*
2313 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2314 * take care of from where we get pages. So the node where we start the
2315 * scan does not need to be the current node.
2316 */
2317 nid = mem_cgroup_select_victim_node(memcg);
2318
2319 zonelist = NODE_DATA(nid)->node_zonelists;
2320
2321 trace_mm_vmscan_memcg_reclaim_begin(0,
2322 sc.may_writepage,
2323 sc.gfp_mask);
2324
2325 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2326
2327 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2328
2329 return nr_reclaimed;
2330 }
2331 #endif
2332
2333 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2334 {
2335 struct mem_cgroup *memcg;
2336
2337 if (!total_swap_pages)
2338 return;
2339
2340 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2341 do {
2342 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2343
2344 if (inactive_anon_is_low(lruvec))
2345 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2346 sc, LRU_ACTIVE_ANON);
2347
2348 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2349 } while (memcg);
2350 }
2351
2352 /*
2353 * pgdat_balanced is used when checking if a node is balanced for high-order
2354 * allocations. Only zones that meet watermarks and are in a zone allowed
2355 * by the callers classzone_idx are added to balanced_pages. The total of
2356 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2357 * for the node to be considered balanced. Forcing all zones to be balanced
2358 * for high orders can cause excessive reclaim when there are imbalanced zones.
2359 * The choice of 25% is due to
2360 * o a 16M DMA zone that is balanced will not balance a zone on any
2361 * reasonable sized machine
2362 * o On all other machines, the top zone must be at least a reasonable
2363 * percentage of the middle zones. For example, on 32-bit x86, highmem
2364 * would need to be at least 256M for it to be balance a whole node.
2365 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2366 * to balance a node on its own. These seemed like reasonable ratios.
2367 */
2368 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2369 int classzone_idx)
2370 {
2371 unsigned long present_pages = 0;
2372 int i;
2373
2374 for (i = 0; i <= classzone_idx; i++)
2375 present_pages += pgdat->node_zones[i].present_pages;
2376
2377 /* A special case here: if zone has no page, we think it's balanced */
2378 return balanced_pages >= (present_pages >> 2);
2379 }
2380
2381 /*
2382 * Prepare kswapd for sleeping. This verifies that there are no processes
2383 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2384 *
2385 * Returns true if kswapd is ready to sleep
2386 */
2387 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2388 int classzone_idx)
2389 {
2390 int i;
2391 unsigned long balanced = 0;
2392 bool all_zones_ok = true;
2393
2394 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2395 if (remaining)
2396 return false;
2397
2398 /*
2399 * There is a potential race between when kswapd checks its watermarks
2400 * and a process gets throttled. There is also a potential race if
2401 * processes get throttled, kswapd wakes, a large process exits therby
2402 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2403 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2404 * so wake them now if necessary. If necessary, processes will wake
2405 * kswapd and get throttled again
2406 */
2407 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2408 wake_up(&pgdat->pfmemalloc_wait);
2409 return false;
2410 }
2411
2412 /* Check the watermark levels */
2413 for (i = 0; i <= classzone_idx; i++) {
2414 struct zone *zone = pgdat->node_zones + i;
2415
2416 if (!populated_zone(zone))
2417 continue;
2418
2419 /*
2420 * balance_pgdat() skips over all_unreclaimable after
2421 * DEF_PRIORITY. Effectively, it considers them balanced so
2422 * they must be considered balanced here as well if kswapd
2423 * is to sleep
2424 */
2425 if (zone->all_unreclaimable) {
2426 balanced += zone->present_pages;
2427 continue;
2428 }
2429
2430 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2431 i, 0))
2432 all_zones_ok = false;
2433 else
2434 balanced += zone->present_pages;
2435 }
2436
2437 /*
2438 * For high-order requests, the balanced zones must contain at least
2439 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2440 * must be balanced
2441 */
2442 if (order)
2443 return pgdat_balanced(pgdat, balanced, classzone_idx);
2444 else
2445 return all_zones_ok;
2446 }
2447
2448 /*
2449 * For kswapd, balance_pgdat() will work across all this node's zones until
2450 * they are all at high_wmark_pages(zone).
2451 *
2452 * Returns the final order kswapd was reclaiming at
2453 *
2454 * There is special handling here for zones which are full of pinned pages.
2455 * This can happen if the pages are all mlocked, or if they are all used by
2456 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2457 * What we do is to detect the case where all pages in the zone have been
2458 * scanned twice and there has been zero successful reclaim. Mark the zone as
2459 * dead and from now on, only perform a short scan. Basically we're polling
2460 * the zone for when the problem goes away.
2461 *
2462 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2463 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2464 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2465 * lower zones regardless of the number of free pages in the lower zones. This
2466 * interoperates with the page allocator fallback scheme to ensure that aging
2467 * of pages is balanced across the zones.
2468 */
2469 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2470 int *classzone_idx)
2471 {
2472 int all_zones_ok;
2473 unsigned long balanced;
2474 int i;
2475 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2476 unsigned long total_scanned;
2477 struct reclaim_state *reclaim_state = current->reclaim_state;
2478 unsigned long nr_soft_reclaimed;
2479 unsigned long nr_soft_scanned;
2480 struct scan_control sc = {
2481 .gfp_mask = GFP_KERNEL,
2482 .may_unmap = 1,
2483 .may_swap = 1,
2484 /*
2485 * kswapd doesn't want to be bailed out while reclaim. because
2486 * we want to put equal scanning pressure on each zone.
2487 */
2488 .nr_to_reclaim = ULONG_MAX,
2489 .order = order,
2490 .target_mem_cgroup = NULL,
2491 };
2492 struct shrink_control shrink = {
2493 .gfp_mask = sc.gfp_mask,
2494 };
2495 loop_again:
2496 total_scanned = 0;
2497 sc.priority = DEF_PRIORITY;
2498 sc.nr_reclaimed = 0;
2499 sc.may_writepage = !laptop_mode;
2500 count_vm_event(PAGEOUTRUN);
2501
2502 do {
2503 unsigned long lru_pages = 0;
2504 int has_under_min_watermark_zone = 0;
2505
2506 all_zones_ok = 1;
2507 balanced = 0;
2508
2509 /*
2510 * Scan in the highmem->dma direction for the highest
2511 * zone which needs scanning
2512 */
2513 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2514 struct zone *zone = pgdat->node_zones + i;
2515
2516 if (!populated_zone(zone))
2517 continue;
2518
2519 if (zone->all_unreclaimable &&
2520 sc.priority != DEF_PRIORITY)
2521 continue;
2522
2523 /*
2524 * Do some background aging of the anon list, to give
2525 * pages a chance to be referenced before reclaiming.
2526 */
2527 age_active_anon(zone, &sc);
2528
2529 /*
2530 * If the number of buffer_heads in the machine
2531 * exceeds the maximum allowed level and this node
2532 * has a highmem zone, force kswapd to reclaim from
2533 * it to relieve lowmem pressure.
2534 */
2535 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2536 end_zone = i;
2537 break;
2538 }
2539
2540 if (!zone_watermark_ok_safe(zone, order,
2541 high_wmark_pages(zone), 0, 0)) {
2542 end_zone = i;
2543 break;
2544 } else {
2545 /* If balanced, clear the congested flag */
2546 zone_clear_flag(zone, ZONE_CONGESTED);
2547 }
2548 }
2549 if (i < 0)
2550 goto out;
2551
2552 for (i = 0; i <= end_zone; i++) {
2553 struct zone *zone = pgdat->node_zones + i;
2554
2555 lru_pages += zone_reclaimable_pages(zone);
2556 }
2557
2558 /*
2559 * Now scan the zone in the dma->highmem direction, stopping
2560 * at the last zone which needs scanning.
2561 *
2562 * We do this because the page allocator works in the opposite
2563 * direction. This prevents the page allocator from allocating
2564 * pages behind kswapd's direction of progress, which would
2565 * cause too much scanning of the lower zones.
2566 */
2567 for (i = 0; i <= end_zone; i++) {
2568 struct zone *zone = pgdat->node_zones + i;
2569 int nr_slab, testorder;
2570 unsigned long balance_gap;
2571
2572 if (!populated_zone(zone))
2573 continue;
2574
2575 if (zone->all_unreclaimable &&
2576 sc.priority != DEF_PRIORITY)
2577 continue;
2578
2579 sc.nr_scanned = 0;
2580
2581 nr_soft_scanned = 0;
2582 /*
2583 * Call soft limit reclaim before calling shrink_zone.
2584 */
2585 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2586 order, sc.gfp_mask,
2587 &nr_soft_scanned);
2588 sc.nr_reclaimed += nr_soft_reclaimed;
2589 total_scanned += nr_soft_scanned;
2590
2591 /*
2592 * We put equal pressure on every zone, unless
2593 * one zone has way too many pages free
2594 * already. The "too many pages" is defined
2595 * as the high wmark plus a "gap" where the
2596 * gap is either the low watermark or 1%
2597 * of the zone, whichever is smaller.
2598 */
2599 balance_gap = min(low_wmark_pages(zone),
2600 (zone->present_pages +
2601 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2602 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2603 /*
2604 * Kswapd reclaims only single pages with compaction
2605 * enabled. Trying too hard to reclaim until contiguous
2606 * free pages have become available can hurt performance
2607 * by evicting too much useful data from memory.
2608 * Do not reclaim more than needed for compaction.
2609 */
2610 testorder = order;
2611 if (COMPACTION_BUILD && order &&
2612 compaction_suitable(zone, order) !=
2613 COMPACT_SKIPPED)
2614 testorder = 0;
2615
2616 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2617 !zone_watermark_ok_safe(zone, testorder,
2618 high_wmark_pages(zone) + balance_gap,
2619 end_zone, 0)) {
2620 shrink_zone(zone, &sc);
2621
2622 reclaim_state->reclaimed_slab = 0;
2623 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2624 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2625 total_scanned += sc.nr_scanned;
2626
2627 if (nr_slab == 0 && !zone_reclaimable(zone))
2628 zone->all_unreclaimable = 1;
2629 }
2630
2631 /*
2632 * If we've done a decent amount of scanning and
2633 * the reclaim ratio is low, start doing writepage
2634 * even in laptop mode
2635 */
2636 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2637 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2638 sc.may_writepage = 1;
2639
2640 if (zone->all_unreclaimable) {
2641 if (end_zone && end_zone == i)
2642 end_zone--;
2643 continue;
2644 }
2645
2646 if (!zone_watermark_ok_safe(zone, testorder,
2647 high_wmark_pages(zone), end_zone, 0)) {
2648 all_zones_ok = 0;
2649 /*
2650 * We are still under min water mark. This
2651 * means that we have a GFP_ATOMIC allocation
2652 * failure risk. Hurry up!
2653 */
2654 if (!zone_watermark_ok_safe(zone, order,
2655 min_wmark_pages(zone), end_zone, 0))
2656 has_under_min_watermark_zone = 1;
2657 } else {
2658 /*
2659 * If a zone reaches its high watermark,
2660 * consider it to be no longer congested. It's
2661 * possible there are dirty pages backed by
2662 * congested BDIs but as pressure is relieved,
2663 * speculatively avoid congestion waits
2664 */
2665 zone_clear_flag(zone, ZONE_CONGESTED);
2666 if (i <= *classzone_idx)
2667 balanced += zone->present_pages;
2668 }
2669
2670 }
2671
2672 /*
2673 * If the low watermark is met there is no need for processes
2674 * to be throttled on pfmemalloc_wait as they should not be
2675 * able to safely make forward progress. Wake them
2676 */
2677 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2678 pfmemalloc_watermark_ok(pgdat))
2679 wake_up(&pgdat->pfmemalloc_wait);
2680
2681 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2682 break; /* kswapd: all done */
2683 /*
2684 * OK, kswapd is getting into trouble. Take a nap, then take
2685 * another pass across the zones.
2686 */
2687 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2688 if (has_under_min_watermark_zone)
2689 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2690 else
2691 congestion_wait(BLK_RW_ASYNC, HZ/10);
2692 }
2693
2694 /*
2695 * We do this so kswapd doesn't build up large priorities for
2696 * example when it is freeing in parallel with allocators. It
2697 * matches the direct reclaim path behaviour in terms of impact
2698 * on zone->*_priority.
2699 */
2700 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2701 break;
2702 } while (--sc.priority >= 0);
2703 out:
2704
2705 /*
2706 * order-0: All zones must meet high watermark for a balanced node
2707 * high-order: Balanced zones must make up at least 25% of the node
2708 * for the node to be balanced
2709 */
2710 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2711 cond_resched();
2712
2713 try_to_freeze();
2714
2715 /*
2716 * Fragmentation may mean that the system cannot be
2717 * rebalanced for high-order allocations in all zones.
2718 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2719 * it means the zones have been fully scanned and are still
2720 * not balanced. For high-order allocations, there is
2721 * little point trying all over again as kswapd may
2722 * infinite loop.
2723 *
2724 * Instead, recheck all watermarks at order-0 as they
2725 * are the most important. If watermarks are ok, kswapd will go
2726 * back to sleep. High-order users can still perform direct
2727 * reclaim if they wish.
2728 */
2729 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2730 order = sc.order = 0;
2731
2732 goto loop_again;
2733 }
2734
2735 /*
2736 * If kswapd was reclaiming at a higher order, it has the option of
2737 * sleeping without all zones being balanced. Before it does, it must
2738 * ensure that the watermarks for order-0 on *all* zones are met and
2739 * that the congestion flags are cleared. The congestion flag must
2740 * be cleared as kswapd is the only mechanism that clears the flag
2741 * and it is potentially going to sleep here.
2742 */
2743 if (order) {
2744 int zones_need_compaction = 1;
2745
2746 for (i = 0; i <= end_zone; i++) {
2747 struct zone *zone = pgdat->node_zones + i;
2748
2749 if (!populated_zone(zone))
2750 continue;
2751
2752 if (zone->all_unreclaimable &&
2753 sc.priority != DEF_PRIORITY)
2754 continue;
2755
2756 /* Would compaction fail due to lack of free memory? */
2757 if (COMPACTION_BUILD &&
2758 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2759 goto loop_again;
2760
2761 /* Confirm the zone is balanced for order-0 */
2762 if (!zone_watermark_ok(zone, 0,
2763 high_wmark_pages(zone), 0, 0)) {
2764 order = sc.order = 0;
2765 goto loop_again;
2766 }
2767
2768 /* Check if the memory needs to be defragmented. */
2769 if (zone_watermark_ok(zone, order,
2770 low_wmark_pages(zone), *classzone_idx, 0))
2771 zones_need_compaction = 0;
2772
2773 /* If balanced, clear the congested flag */
2774 zone_clear_flag(zone, ZONE_CONGESTED);
2775 }
2776
2777 if (zones_need_compaction)
2778 compact_pgdat(pgdat, order);
2779 }
2780
2781 /*
2782 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2783 * makes a decision on the order we were last reclaiming at. However,
2784 * if another caller entered the allocator slow path while kswapd
2785 * was awake, order will remain at the higher level
2786 */
2787 *classzone_idx = end_zone;
2788 return order;
2789 }
2790
2791 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2792 {
2793 long remaining = 0;
2794 DEFINE_WAIT(wait);
2795
2796 if (freezing(current) || kthread_should_stop())
2797 return;
2798
2799 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2800
2801 /* Try to sleep for a short interval */
2802 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2803 remaining = schedule_timeout(HZ/10);
2804 finish_wait(&pgdat->kswapd_wait, &wait);
2805 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2806 }
2807
2808 /*
2809 * After a short sleep, check if it was a premature sleep. If not, then
2810 * go fully to sleep until explicitly woken up.
2811 */
2812 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2813 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2814
2815 /*
2816 * vmstat counters are not perfectly accurate and the estimated
2817 * value for counters such as NR_FREE_PAGES can deviate from the
2818 * true value by nr_online_cpus * threshold. To avoid the zone
2819 * watermarks being breached while under pressure, we reduce the
2820 * per-cpu vmstat threshold while kswapd is awake and restore
2821 * them before going back to sleep.
2822 */
2823 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2824
2825 if (!kthread_should_stop())
2826 schedule();
2827
2828 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2829 } else {
2830 if (remaining)
2831 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2832 else
2833 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2834 }
2835 finish_wait(&pgdat->kswapd_wait, &wait);
2836 }
2837
2838 /*
2839 * The background pageout daemon, started as a kernel thread
2840 * from the init process.
2841 *
2842 * This basically trickles out pages so that we have _some_
2843 * free memory available even if there is no other activity
2844 * that frees anything up. This is needed for things like routing
2845 * etc, where we otherwise might have all activity going on in
2846 * asynchronous contexts that cannot page things out.
2847 *
2848 * If there are applications that are active memory-allocators
2849 * (most normal use), this basically shouldn't matter.
2850 */
2851 static int kswapd(void *p)
2852 {
2853 unsigned long order, new_order;
2854 unsigned balanced_order;
2855 int classzone_idx, new_classzone_idx;
2856 int balanced_classzone_idx;
2857 pg_data_t *pgdat = (pg_data_t*)p;
2858 struct task_struct *tsk = current;
2859
2860 struct reclaim_state reclaim_state = {
2861 .reclaimed_slab = 0,
2862 };
2863 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2864
2865 lockdep_set_current_reclaim_state(GFP_KERNEL);
2866
2867 if (!cpumask_empty(cpumask))
2868 set_cpus_allowed_ptr(tsk, cpumask);
2869 current->reclaim_state = &reclaim_state;
2870
2871 /*
2872 * Tell the memory management that we're a "memory allocator",
2873 * and that if we need more memory we should get access to it
2874 * regardless (see "__alloc_pages()"). "kswapd" should
2875 * never get caught in the normal page freeing logic.
2876 *
2877 * (Kswapd normally doesn't need memory anyway, but sometimes
2878 * you need a small amount of memory in order to be able to
2879 * page out something else, and this flag essentially protects
2880 * us from recursively trying to free more memory as we're
2881 * trying to free the first piece of memory in the first place).
2882 */
2883 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2884 set_freezable();
2885
2886 order = new_order = 0;
2887 balanced_order = 0;
2888 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2889 balanced_classzone_idx = classzone_idx;
2890 for ( ; ; ) {
2891 int ret;
2892
2893 /*
2894 * If the last balance_pgdat was unsuccessful it's unlikely a
2895 * new request of a similar or harder type will succeed soon
2896 * so consider going to sleep on the basis we reclaimed at
2897 */
2898 if (balanced_classzone_idx >= new_classzone_idx &&
2899 balanced_order == new_order) {
2900 new_order = pgdat->kswapd_max_order;
2901 new_classzone_idx = pgdat->classzone_idx;
2902 pgdat->kswapd_max_order = 0;
2903 pgdat->classzone_idx = pgdat->nr_zones - 1;
2904 }
2905
2906 if (order < new_order || classzone_idx > new_classzone_idx) {
2907 /*
2908 * Don't sleep if someone wants a larger 'order'
2909 * allocation or has tigher zone constraints
2910 */
2911 order = new_order;
2912 classzone_idx = new_classzone_idx;
2913 } else {
2914 kswapd_try_to_sleep(pgdat, balanced_order,
2915 balanced_classzone_idx);
2916 order = pgdat->kswapd_max_order;
2917 classzone_idx = pgdat->classzone_idx;
2918 new_order = order;
2919 new_classzone_idx = classzone_idx;
2920 pgdat->kswapd_max_order = 0;
2921 pgdat->classzone_idx = pgdat->nr_zones - 1;
2922 }
2923
2924 ret = try_to_freeze();
2925 if (kthread_should_stop())
2926 break;
2927
2928 /*
2929 * We can speed up thawing tasks if we don't call balance_pgdat
2930 * after returning from the refrigerator
2931 */
2932 if (!ret) {
2933 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2934 balanced_classzone_idx = classzone_idx;
2935 balanced_order = balance_pgdat(pgdat, order,
2936 &balanced_classzone_idx);
2937 }
2938 }
2939 return 0;
2940 }
2941
2942 /*
2943 * A zone is low on free memory, so wake its kswapd task to service it.
2944 */
2945 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2946 {
2947 pg_data_t *pgdat;
2948
2949 if (!populated_zone(zone))
2950 return;
2951
2952 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2953 return;
2954 pgdat = zone->zone_pgdat;
2955 if (pgdat->kswapd_max_order < order) {
2956 pgdat->kswapd_max_order = order;
2957 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2958 }
2959 if (!waitqueue_active(&pgdat->kswapd_wait))
2960 return;
2961 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2962 return;
2963
2964 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2965 wake_up_interruptible(&pgdat->kswapd_wait);
2966 }
2967
2968 /*
2969 * The reclaimable count would be mostly accurate.
2970 * The less reclaimable pages may be
2971 * - mlocked pages, which will be moved to unevictable list when encountered
2972 * - mapped pages, which may require several travels to be reclaimed
2973 * - dirty pages, which is not "instantly" reclaimable
2974 */
2975 unsigned long global_reclaimable_pages(void)
2976 {
2977 int nr;
2978
2979 nr = global_page_state(NR_ACTIVE_FILE) +
2980 global_page_state(NR_INACTIVE_FILE);
2981
2982 if (nr_swap_pages > 0)
2983 nr += global_page_state(NR_ACTIVE_ANON) +
2984 global_page_state(NR_INACTIVE_ANON);
2985
2986 return nr;
2987 }
2988
2989 unsigned long zone_reclaimable_pages(struct zone *zone)
2990 {
2991 int nr;
2992
2993 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2994 zone_page_state(zone, NR_INACTIVE_FILE);
2995
2996 if (nr_swap_pages > 0)
2997 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2998 zone_page_state(zone, NR_INACTIVE_ANON);
2999
3000 return nr;
3001 }
3002
3003 #ifdef CONFIG_HIBERNATION
3004 /*
3005 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3006 * freed pages.
3007 *
3008 * Rather than trying to age LRUs the aim is to preserve the overall
3009 * LRU order by reclaiming preferentially
3010 * inactive > active > active referenced > active mapped
3011 */
3012 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3013 {
3014 struct reclaim_state reclaim_state;
3015 struct scan_control sc = {
3016 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3017 .may_swap = 1,
3018 .may_unmap = 1,
3019 .may_writepage = 1,
3020 .nr_to_reclaim = nr_to_reclaim,
3021 .hibernation_mode = 1,
3022 .order = 0,
3023 .priority = DEF_PRIORITY,
3024 };
3025 struct shrink_control shrink = {
3026 .gfp_mask = sc.gfp_mask,
3027 };
3028 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3029 struct task_struct *p = current;
3030 unsigned long nr_reclaimed;
3031
3032 p->flags |= PF_MEMALLOC;
3033 lockdep_set_current_reclaim_state(sc.gfp_mask);
3034 reclaim_state.reclaimed_slab = 0;
3035 p->reclaim_state = &reclaim_state;
3036
3037 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3038
3039 p->reclaim_state = NULL;
3040 lockdep_clear_current_reclaim_state();
3041 p->flags &= ~PF_MEMALLOC;
3042
3043 return nr_reclaimed;
3044 }
3045 #endif /* CONFIG_HIBERNATION */
3046
3047 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3048 not required for correctness. So if the last cpu in a node goes
3049 away, we get changed to run anywhere: as the first one comes back,
3050 restore their cpu bindings. */
3051 static int __devinit cpu_callback(struct notifier_block *nfb,
3052 unsigned long action, void *hcpu)
3053 {
3054 int nid;
3055
3056 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3057 for_each_node_state(nid, N_HIGH_MEMORY) {
3058 pg_data_t *pgdat = NODE_DATA(nid);
3059 const struct cpumask *mask;
3060
3061 mask = cpumask_of_node(pgdat->node_id);
3062
3063 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3064 /* One of our CPUs online: restore mask */
3065 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3066 }
3067 }
3068 return NOTIFY_OK;
3069 }
3070
3071 /*
3072 * This kswapd start function will be called by init and node-hot-add.
3073 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3074 */
3075 int kswapd_run(int nid)
3076 {
3077 pg_data_t *pgdat = NODE_DATA(nid);
3078 int ret = 0;
3079
3080 if (pgdat->kswapd)
3081 return 0;
3082
3083 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3084 if (IS_ERR(pgdat->kswapd)) {
3085 /* failure at boot is fatal */
3086 BUG_ON(system_state == SYSTEM_BOOTING);
3087 printk("Failed to start kswapd on node %d\n",nid);
3088 ret = -1;
3089 }
3090 return ret;
3091 }
3092
3093 /*
3094 * Called by memory hotplug when all memory in a node is offlined. Caller must
3095 * hold lock_memory_hotplug().
3096 */
3097 void kswapd_stop(int nid)
3098 {
3099 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3100
3101 if (kswapd) {
3102 kthread_stop(kswapd);
3103 NODE_DATA(nid)->kswapd = NULL;
3104 }
3105 }
3106
3107 static int __init kswapd_init(void)
3108 {
3109 int nid;
3110
3111 swap_setup();
3112 for_each_node_state(nid, N_HIGH_MEMORY)
3113 kswapd_run(nid);
3114 hotcpu_notifier(cpu_callback, 0);
3115 return 0;
3116 }
3117
3118 module_init(kswapd_init)
3119
3120 #ifdef CONFIG_NUMA
3121 /*
3122 * Zone reclaim mode
3123 *
3124 * If non-zero call zone_reclaim when the number of free pages falls below
3125 * the watermarks.
3126 */
3127 int zone_reclaim_mode __read_mostly;
3128
3129 #define RECLAIM_OFF 0
3130 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3131 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3132 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3133
3134 /*
3135 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3136 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3137 * a zone.
3138 */
3139 #define ZONE_RECLAIM_PRIORITY 4
3140
3141 /*
3142 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3143 * occur.
3144 */
3145 int sysctl_min_unmapped_ratio = 1;
3146
3147 /*
3148 * If the number of slab pages in a zone grows beyond this percentage then
3149 * slab reclaim needs to occur.
3150 */
3151 int sysctl_min_slab_ratio = 5;
3152
3153 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3154 {
3155 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3156 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3157 zone_page_state(zone, NR_ACTIVE_FILE);
3158
3159 /*
3160 * It's possible for there to be more file mapped pages than
3161 * accounted for by the pages on the file LRU lists because
3162 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3163 */
3164 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3165 }
3166
3167 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3168 static long zone_pagecache_reclaimable(struct zone *zone)
3169 {
3170 long nr_pagecache_reclaimable;
3171 long delta = 0;
3172
3173 /*
3174 * If RECLAIM_SWAP is set, then all file pages are considered
3175 * potentially reclaimable. Otherwise, we have to worry about
3176 * pages like swapcache and zone_unmapped_file_pages() provides
3177 * a better estimate
3178 */
3179 if (zone_reclaim_mode & RECLAIM_SWAP)
3180 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3181 else
3182 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3183
3184 /* If we can't clean pages, remove dirty pages from consideration */
3185 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3186 delta += zone_page_state(zone, NR_FILE_DIRTY);
3187
3188 /* Watch for any possible underflows due to delta */
3189 if (unlikely(delta > nr_pagecache_reclaimable))
3190 delta = nr_pagecache_reclaimable;
3191
3192 return nr_pagecache_reclaimable - delta;
3193 }
3194
3195 /*
3196 * Try to free up some pages from this zone through reclaim.
3197 */
3198 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3199 {
3200 /* Minimum pages needed in order to stay on node */
3201 const unsigned long nr_pages = 1 << order;
3202 struct task_struct *p = current;
3203 struct reclaim_state reclaim_state;
3204 struct scan_control sc = {
3205 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3206 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3207 .may_swap = 1,
3208 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3209 SWAP_CLUSTER_MAX),
3210 .gfp_mask = gfp_mask,
3211 .order = order,
3212 .priority = ZONE_RECLAIM_PRIORITY,
3213 };
3214 struct shrink_control shrink = {
3215 .gfp_mask = sc.gfp_mask,
3216 };
3217 unsigned long nr_slab_pages0, nr_slab_pages1;
3218
3219 cond_resched();
3220 /*
3221 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3222 * and we also need to be able to write out pages for RECLAIM_WRITE
3223 * and RECLAIM_SWAP.
3224 */
3225 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3226 lockdep_set_current_reclaim_state(gfp_mask);
3227 reclaim_state.reclaimed_slab = 0;
3228 p->reclaim_state = &reclaim_state;
3229
3230 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3231 /*
3232 * Free memory by calling shrink zone with increasing
3233 * priorities until we have enough memory freed.
3234 */
3235 do {
3236 shrink_zone(zone, &sc);
3237 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3238 }
3239
3240 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3241 if (nr_slab_pages0 > zone->min_slab_pages) {
3242 /*
3243 * shrink_slab() does not currently allow us to determine how
3244 * many pages were freed in this zone. So we take the current
3245 * number of slab pages and shake the slab until it is reduced
3246 * by the same nr_pages that we used for reclaiming unmapped
3247 * pages.
3248 *
3249 * Note that shrink_slab will free memory on all zones and may
3250 * take a long time.
3251 */
3252 for (;;) {
3253 unsigned long lru_pages = zone_reclaimable_pages(zone);
3254
3255 /* No reclaimable slab or very low memory pressure */
3256 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3257 break;
3258
3259 /* Freed enough memory */
3260 nr_slab_pages1 = zone_page_state(zone,
3261 NR_SLAB_RECLAIMABLE);
3262 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3263 break;
3264 }
3265
3266 /*
3267 * Update nr_reclaimed by the number of slab pages we
3268 * reclaimed from this zone.
3269 */
3270 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3271 if (nr_slab_pages1 < nr_slab_pages0)
3272 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3273 }
3274
3275 p->reclaim_state = NULL;
3276 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3277 lockdep_clear_current_reclaim_state();
3278 return sc.nr_reclaimed >= nr_pages;
3279 }
3280
3281 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3282 {
3283 int node_id;
3284 int ret;
3285
3286 /*
3287 * Zone reclaim reclaims unmapped file backed pages and
3288 * slab pages if we are over the defined limits.
3289 *
3290 * A small portion of unmapped file backed pages is needed for
3291 * file I/O otherwise pages read by file I/O will be immediately
3292 * thrown out if the zone is overallocated. So we do not reclaim
3293 * if less than a specified percentage of the zone is used by
3294 * unmapped file backed pages.
3295 */
3296 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3297 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3298 return ZONE_RECLAIM_FULL;
3299
3300 if (zone->all_unreclaimable)
3301 return ZONE_RECLAIM_FULL;
3302
3303 /*
3304 * Do not scan if the allocation should not be delayed.
3305 */
3306 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3307 return ZONE_RECLAIM_NOSCAN;
3308
3309 /*
3310 * Only run zone reclaim on the local zone or on zones that do not
3311 * have associated processors. This will favor the local processor
3312 * over remote processors and spread off node memory allocations
3313 * as wide as possible.
3314 */
3315 node_id = zone_to_nid(zone);
3316 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3317 return ZONE_RECLAIM_NOSCAN;
3318
3319 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3320 return ZONE_RECLAIM_NOSCAN;
3321
3322 ret = __zone_reclaim(zone, gfp_mask, order);
3323 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3324
3325 if (!ret)
3326 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3327
3328 return ret;
3329 }
3330 #endif
3331
3332 /*
3333 * page_evictable - test whether a page is evictable
3334 * @page: the page to test
3335 * @vma: the VMA in which the page is or will be mapped, may be NULL
3336 *
3337 * Test whether page is evictable--i.e., should be placed on active/inactive
3338 * lists vs unevictable list. The vma argument is !NULL when called from the
3339 * fault path to determine how to instantate a new page.
3340 *
3341 * Reasons page might not be evictable:
3342 * (1) page's mapping marked unevictable
3343 * (2) page is part of an mlocked VMA
3344 *
3345 */
3346 int page_evictable(struct page *page, struct vm_area_struct *vma)
3347 {
3348
3349 if (mapping_unevictable(page_mapping(page)))
3350 return 0;
3351
3352 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3353 return 0;
3354
3355 return 1;
3356 }
3357
3358 #ifdef CONFIG_SHMEM
3359 /**
3360 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3361 * @pages: array of pages to check
3362 * @nr_pages: number of pages to check
3363 *
3364 * Checks pages for evictability and moves them to the appropriate lru list.
3365 *
3366 * This function is only used for SysV IPC SHM_UNLOCK.
3367 */
3368 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3369 {
3370 struct lruvec *lruvec;
3371 struct zone *zone = NULL;
3372 int pgscanned = 0;
3373 int pgrescued = 0;
3374 int i;
3375
3376 for (i = 0; i < nr_pages; i++) {
3377 struct page *page = pages[i];
3378 struct zone *pagezone;
3379
3380 pgscanned++;
3381 pagezone = page_zone(page);
3382 if (pagezone != zone) {
3383 if (zone)
3384 spin_unlock_irq(&zone->lru_lock);
3385 zone = pagezone;
3386 spin_lock_irq(&zone->lru_lock);
3387 }
3388 lruvec = mem_cgroup_page_lruvec(page, zone);
3389
3390 if (!PageLRU(page) || !PageUnevictable(page))
3391 continue;
3392
3393 if (page_evictable(page, NULL)) {
3394 enum lru_list lru = page_lru_base_type(page);
3395
3396 VM_BUG_ON(PageActive(page));
3397 ClearPageUnevictable(page);
3398 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3399 add_page_to_lru_list(page, lruvec, lru);
3400 pgrescued++;
3401 }
3402 }
3403
3404 if (zone) {
3405 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3406 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3407 spin_unlock_irq(&zone->lru_lock);
3408 }
3409 }
3410 #endif /* CONFIG_SHMEM */
3411
3412 static void warn_scan_unevictable_pages(void)
3413 {
3414 printk_once(KERN_WARNING
3415 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3416 "disabled for lack of a legitimate use case. If you have "
3417 "one, please send an email to linux-mm@kvack.org.\n",
3418 current->comm);
3419 }
3420
3421 /*
3422 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3423 * all nodes' unevictable lists for evictable pages
3424 */
3425 unsigned long scan_unevictable_pages;
3426
3427 int scan_unevictable_handler(struct ctl_table *table, int write,
3428 void __user *buffer,
3429 size_t *length, loff_t *ppos)
3430 {
3431 warn_scan_unevictable_pages();
3432 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3433 scan_unevictable_pages = 0;
3434 return 0;
3435 }
3436
3437 #ifdef CONFIG_NUMA
3438 /*
3439 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3440 * a specified node's per zone unevictable lists for evictable pages.
3441 */
3442
3443 static ssize_t read_scan_unevictable_node(struct device *dev,
3444 struct device_attribute *attr,
3445 char *buf)
3446 {
3447 warn_scan_unevictable_pages();
3448 return sprintf(buf, "0\n"); /* always zero; should fit... */
3449 }
3450
3451 static ssize_t write_scan_unevictable_node(struct device *dev,
3452 struct device_attribute *attr,
3453 const char *buf, size_t count)
3454 {
3455 warn_scan_unevictable_pages();
3456 return 1;
3457 }
3458
3459
3460 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3461 read_scan_unevictable_node,
3462 write_scan_unevictable_node);
3463
3464 int scan_unevictable_register_node(struct node *node)
3465 {
3466 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3467 }
3468
3469 void scan_unevictable_unregister_node(struct node *node)
3470 {
3471 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3472 }
3473 #endif
This page took 0.148772 seconds and 6 git commands to generate.