synchronous lumpy reclaim: ensure we count pages transitioning inactive via clear_act...
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43
44 #include <linux/swapops.h>
45
46 #include "internal.h"
47
48 struct scan_control {
49 /* Incremented by the number of inactive pages that were scanned */
50 unsigned long nr_scanned;
51
52 /* This context's GFP mask */
53 gfp_t gfp_mask;
54
55 int may_writepage;
56
57 /* Can pages be swapped as part of reclaim? */
58 int may_swap;
59
60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 * In this context, it doesn't matter that we scan the
63 * whole list at once. */
64 int swap_cluster_max;
65
66 int swappiness;
67
68 int all_unreclaimable;
69
70 int order;
71 };
72
73 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
74
75 #ifdef ARCH_HAS_PREFETCH
76 #define prefetch_prev_lru_page(_page, _base, _field) \
77 do { \
78 if ((_page)->lru.prev != _base) { \
79 struct page *prev; \
80 \
81 prev = lru_to_page(&(_page->lru)); \
82 prefetch(&prev->_field); \
83 } \
84 } while (0)
85 #else
86 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
87 #endif
88
89 #ifdef ARCH_HAS_PREFETCHW
90 #define prefetchw_prev_lru_page(_page, _base, _field) \
91 do { \
92 if ((_page)->lru.prev != _base) { \
93 struct page *prev; \
94 \
95 prev = lru_to_page(&(_page->lru)); \
96 prefetchw(&prev->_field); \
97 } \
98 } while (0)
99 #else
100 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
101 #endif
102
103 /*
104 * From 0 .. 100. Higher means more swappy.
105 */
106 int vm_swappiness = 60;
107 long vm_total_pages; /* The total number of pages which the VM controls */
108
109 static LIST_HEAD(shrinker_list);
110 static DECLARE_RWSEM(shrinker_rwsem);
111
112 /*
113 * Add a shrinker callback to be called from the vm
114 */
115 void register_shrinker(struct shrinker *shrinker)
116 {
117 shrinker->nr = 0;
118 down_write(&shrinker_rwsem);
119 list_add_tail(&shrinker->list, &shrinker_list);
120 up_write(&shrinker_rwsem);
121 }
122 EXPORT_SYMBOL(register_shrinker);
123
124 /*
125 * Remove one
126 */
127 void unregister_shrinker(struct shrinker *shrinker)
128 {
129 down_write(&shrinker_rwsem);
130 list_del(&shrinker->list);
131 up_write(&shrinker_rwsem);
132 }
133 EXPORT_SYMBOL(unregister_shrinker);
134
135 #define SHRINK_BATCH 128
136 /*
137 * Call the shrink functions to age shrinkable caches
138 *
139 * Here we assume it costs one seek to replace a lru page and that it also
140 * takes a seek to recreate a cache object. With this in mind we age equal
141 * percentages of the lru and ageable caches. This should balance the seeks
142 * generated by these structures.
143 *
144 * If the vm encounted mapped pages on the LRU it increase the pressure on
145 * slab to avoid swapping.
146 *
147 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
148 *
149 * `lru_pages' represents the number of on-LRU pages in all the zones which
150 * are eligible for the caller's allocation attempt. It is used for balancing
151 * slab reclaim versus page reclaim.
152 *
153 * Returns the number of slab objects which we shrunk.
154 */
155 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
156 unsigned long lru_pages)
157 {
158 struct shrinker *shrinker;
159 unsigned long ret = 0;
160
161 if (scanned == 0)
162 scanned = SWAP_CLUSTER_MAX;
163
164 if (!down_read_trylock(&shrinker_rwsem))
165 return 1; /* Assume we'll be able to shrink next time */
166
167 list_for_each_entry(shrinker, &shrinker_list, list) {
168 unsigned long long delta;
169 unsigned long total_scan;
170 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
171
172 delta = (4 * scanned) / shrinker->seeks;
173 delta *= max_pass;
174 do_div(delta, lru_pages + 1);
175 shrinker->nr += delta;
176 if (shrinker->nr < 0) {
177 printk(KERN_ERR "%s: nr=%ld\n",
178 __FUNCTION__, shrinker->nr);
179 shrinker->nr = max_pass;
180 }
181
182 /*
183 * Avoid risking looping forever due to too large nr value:
184 * never try to free more than twice the estimate number of
185 * freeable entries.
186 */
187 if (shrinker->nr > max_pass * 2)
188 shrinker->nr = max_pass * 2;
189
190 total_scan = shrinker->nr;
191 shrinker->nr = 0;
192
193 while (total_scan >= SHRINK_BATCH) {
194 long this_scan = SHRINK_BATCH;
195 int shrink_ret;
196 int nr_before;
197
198 nr_before = (*shrinker->shrink)(0, gfp_mask);
199 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
200 if (shrink_ret == -1)
201 break;
202 if (shrink_ret < nr_before)
203 ret += nr_before - shrink_ret;
204 count_vm_events(SLABS_SCANNED, this_scan);
205 total_scan -= this_scan;
206
207 cond_resched();
208 }
209
210 shrinker->nr += total_scan;
211 }
212 up_read(&shrinker_rwsem);
213 return ret;
214 }
215
216 /* Called without lock on whether page is mapped, so answer is unstable */
217 static inline int page_mapping_inuse(struct page *page)
218 {
219 struct address_space *mapping;
220
221 /* Page is in somebody's page tables. */
222 if (page_mapped(page))
223 return 1;
224
225 /* Be more reluctant to reclaim swapcache than pagecache */
226 if (PageSwapCache(page))
227 return 1;
228
229 mapping = page_mapping(page);
230 if (!mapping)
231 return 0;
232
233 /* File is mmap'd by somebody? */
234 return mapping_mapped(mapping);
235 }
236
237 static inline int is_page_cache_freeable(struct page *page)
238 {
239 return page_count(page) - !!PagePrivate(page) == 2;
240 }
241
242 static int may_write_to_queue(struct backing_dev_info *bdi)
243 {
244 if (current->flags & PF_SWAPWRITE)
245 return 1;
246 if (!bdi_write_congested(bdi))
247 return 1;
248 if (bdi == current->backing_dev_info)
249 return 1;
250 return 0;
251 }
252
253 /*
254 * We detected a synchronous write error writing a page out. Probably
255 * -ENOSPC. We need to propagate that into the address_space for a subsequent
256 * fsync(), msync() or close().
257 *
258 * The tricky part is that after writepage we cannot touch the mapping: nothing
259 * prevents it from being freed up. But we have a ref on the page and once
260 * that page is locked, the mapping is pinned.
261 *
262 * We're allowed to run sleeping lock_page() here because we know the caller has
263 * __GFP_FS.
264 */
265 static void handle_write_error(struct address_space *mapping,
266 struct page *page, int error)
267 {
268 lock_page(page);
269 if (page_mapping(page) == mapping)
270 mapping_set_error(mapping, error);
271 unlock_page(page);
272 }
273
274 /* possible outcome of pageout() */
275 typedef enum {
276 /* failed to write page out, page is locked */
277 PAGE_KEEP,
278 /* move page to the active list, page is locked */
279 PAGE_ACTIVATE,
280 /* page has been sent to the disk successfully, page is unlocked */
281 PAGE_SUCCESS,
282 /* page is clean and locked */
283 PAGE_CLEAN,
284 } pageout_t;
285
286 /*
287 * pageout is called by shrink_page_list() for each dirty page.
288 * Calls ->writepage().
289 */
290 static pageout_t pageout(struct page *page, struct address_space *mapping)
291 {
292 /*
293 * If the page is dirty, only perform writeback if that write
294 * will be non-blocking. To prevent this allocation from being
295 * stalled by pagecache activity. But note that there may be
296 * stalls if we need to run get_block(). We could test
297 * PagePrivate for that.
298 *
299 * If this process is currently in generic_file_write() against
300 * this page's queue, we can perform writeback even if that
301 * will block.
302 *
303 * If the page is swapcache, write it back even if that would
304 * block, for some throttling. This happens by accident, because
305 * swap_backing_dev_info is bust: it doesn't reflect the
306 * congestion state of the swapdevs. Easy to fix, if needed.
307 * See swapfile.c:page_queue_congested().
308 */
309 if (!is_page_cache_freeable(page))
310 return PAGE_KEEP;
311 if (!mapping) {
312 /*
313 * Some data journaling orphaned pages can have
314 * page->mapping == NULL while being dirty with clean buffers.
315 */
316 if (PagePrivate(page)) {
317 if (try_to_free_buffers(page)) {
318 ClearPageDirty(page);
319 printk("%s: orphaned page\n", __FUNCTION__);
320 return PAGE_CLEAN;
321 }
322 }
323 return PAGE_KEEP;
324 }
325 if (mapping->a_ops->writepage == NULL)
326 return PAGE_ACTIVATE;
327 if (!may_write_to_queue(mapping->backing_dev_info))
328 return PAGE_KEEP;
329
330 if (clear_page_dirty_for_io(page)) {
331 int res;
332 struct writeback_control wbc = {
333 .sync_mode = WB_SYNC_NONE,
334 .nr_to_write = SWAP_CLUSTER_MAX,
335 .range_start = 0,
336 .range_end = LLONG_MAX,
337 .nonblocking = 1,
338 .for_reclaim = 1,
339 };
340
341 SetPageReclaim(page);
342 res = mapping->a_ops->writepage(page, &wbc);
343 if (res < 0)
344 handle_write_error(mapping, page, res);
345 if (res == AOP_WRITEPAGE_ACTIVATE) {
346 ClearPageReclaim(page);
347 return PAGE_ACTIVATE;
348 }
349 if (!PageWriteback(page)) {
350 /* synchronous write or broken a_ops? */
351 ClearPageReclaim(page);
352 }
353 inc_zone_page_state(page, NR_VMSCAN_WRITE);
354 return PAGE_SUCCESS;
355 }
356
357 return PAGE_CLEAN;
358 }
359
360 /*
361 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
362 * someone else has a ref on the page, abort and return 0. If it was
363 * successfully detached, return 1. Assumes the caller has a single ref on
364 * this page.
365 */
366 int remove_mapping(struct address_space *mapping, struct page *page)
367 {
368 BUG_ON(!PageLocked(page));
369 BUG_ON(mapping != page_mapping(page));
370
371 write_lock_irq(&mapping->tree_lock);
372 /*
373 * The non racy check for a busy page.
374 *
375 * Must be careful with the order of the tests. When someone has
376 * a ref to the page, it may be possible that they dirty it then
377 * drop the reference. So if PageDirty is tested before page_count
378 * here, then the following race may occur:
379 *
380 * get_user_pages(&page);
381 * [user mapping goes away]
382 * write_to(page);
383 * !PageDirty(page) [good]
384 * SetPageDirty(page);
385 * put_page(page);
386 * !page_count(page) [good, discard it]
387 *
388 * [oops, our write_to data is lost]
389 *
390 * Reversing the order of the tests ensures such a situation cannot
391 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
392 * load is not satisfied before that of page->_count.
393 *
394 * Note that if SetPageDirty is always performed via set_page_dirty,
395 * and thus under tree_lock, then this ordering is not required.
396 */
397 if (unlikely(page_count(page) != 2))
398 goto cannot_free;
399 smp_rmb();
400 if (unlikely(PageDirty(page)))
401 goto cannot_free;
402
403 if (PageSwapCache(page)) {
404 swp_entry_t swap = { .val = page_private(page) };
405 __delete_from_swap_cache(page);
406 write_unlock_irq(&mapping->tree_lock);
407 swap_free(swap);
408 __put_page(page); /* The pagecache ref */
409 return 1;
410 }
411
412 __remove_from_page_cache(page);
413 write_unlock_irq(&mapping->tree_lock);
414 __put_page(page);
415 return 1;
416
417 cannot_free:
418 write_unlock_irq(&mapping->tree_lock);
419 return 0;
420 }
421
422 /*
423 * shrink_page_list() returns the number of reclaimed pages
424 */
425 static unsigned long shrink_page_list(struct list_head *page_list,
426 struct scan_control *sc)
427 {
428 LIST_HEAD(ret_pages);
429 struct pagevec freed_pvec;
430 int pgactivate = 0;
431 unsigned long nr_reclaimed = 0;
432
433 cond_resched();
434
435 pagevec_init(&freed_pvec, 1);
436 while (!list_empty(page_list)) {
437 struct address_space *mapping;
438 struct page *page;
439 int may_enter_fs;
440 int referenced;
441
442 cond_resched();
443
444 page = lru_to_page(page_list);
445 list_del(&page->lru);
446
447 if (TestSetPageLocked(page))
448 goto keep;
449
450 VM_BUG_ON(PageActive(page));
451
452 sc->nr_scanned++;
453
454 if (!sc->may_swap && page_mapped(page))
455 goto keep_locked;
456
457 /* Double the slab pressure for mapped and swapcache pages */
458 if (page_mapped(page) || PageSwapCache(page))
459 sc->nr_scanned++;
460
461 if (PageWriteback(page))
462 goto keep_locked;
463
464 referenced = page_referenced(page, 1);
465 /* In active use or really unfreeable? Activate it. */
466 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
467 referenced && page_mapping_inuse(page))
468 goto activate_locked;
469
470 #ifdef CONFIG_SWAP
471 /*
472 * Anonymous process memory has backing store?
473 * Try to allocate it some swap space here.
474 */
475 if (PageAnon(page) && !PageSwapCache(page))
476 if (!add_to_swap(page, GFP_ATOMIC))
477 goto activate_locked;
478 #endif /* CONFIG_SWAP */
479
480 mapping = page_mapping(page);
481 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
482 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
483
484 /*
485 * The page is mapped into the page tables of one or more
486 * processes. Try to unmap it here.
487 */
488 if (page_mapped(page) && mapping) {
489 switch (try_to_unmap(page, 0)) {
490 case SWAP_FAIL:
491 goto activate_locked;
492 case SWAP_AGAIN:
493 goto keep_locked;
494 case SWAP_SUCCESS:
495 ; /* try to free the page below */
496 }
497 }
498
499 if (PageDirty(page)) {
500 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
501 goto keep_locked;
502 if (!may_enter_fs)
503 goto keep_locked;
504 if (!sc->may_writepage)
505 goto keep_locked;
506
507 /* Page is dirty, try to write it out here */
508 switch(pageout(page, mapping)) {
509 case PAGE_KEEP:
510 goto keep_locked;
511 case PAGE_ACTIVATE:
512 goto activate_locked;
513 case PAGE_SUCCESS:
514 if (PageWriteback(page) || PageDirty(page))
515 goto keep;
516 /*
517 * A synchronous write - probably a ramdisk. Go
518 * ahead and try to reclaim the page.
519 */
520 if (TestSetPageLocked(page))
521 goto keep;
522 if (PageDirty(page) || PageWriteback(page))
523 goto keep_locked;
524 mapping = page_mapping(page);
525 case PAGE_CLEAN:
526 ; /* try to free the page below */
527 }
528 }
529
530 /*
531 * If the page has buffers, try to free the buffer mappings
532 * associated with this page. If we succeed we try to free
533 * the page as well.
534 *
535 * We do this even if the page is PageDirty().
536 * try_to_release_page() does not perform I/O, but it is
537 * possible for a page to have PageDirty set, but it is actually
538 * clean (all its buffers are clean). This happens if the
539 * buffers were written out directly, with submit_bh(). ext3
540 * will do this, as well as the blockdev mapping.
541 * try_to_release_page() will discover that cleanness and will
542 * drop the buffers and mark the page clean - it can be freed.
543 *
544 * Rarely, pages can have buffers and no ->mapping. These are
545 * the pages which were not successfully invalidated in
546 * truncate_complete_page(). We try to drop those buffers here
547 * and if that worked, and the page is no longer mapped into
548 * process address space (page_count == 1) it can be freed.
549 * Otherwise, leave the page on the LRU so it is swappable.
550 */
551 if (PagePrivate(page)) {
552 if (!try_to_release_page(page, sc->gfp_mask))
553 goto activate_locked;
554 if (!mapping && page_count(page) == 1)
555 goto free_it;
556 }
557
558 if (!mapping || !remove_mapping(mapping, page))
559 goto keep_locked;
560
561 free_it:
562 unlock_page(page);
563 nr_reclaimed++;
564 if (!pagevec_add(&freed_pvec, page))
565 __pagevec_release_nonlru(&freed_pvec);
566 continue;
567
568 activate_locked:
569 SetPageActive(page);
570 pgactivate++;
571 keep_locked:
572 unlock_page(page);
573 keep:
574 list_add(&page->lru, &ret_pages);
575 VM_BUG_ON(PageLRU(page));
576 }
577 list_splice(&ret_pages, page_list);
578 if (pagevec_count(&freed_pvec))
579 __pagevec_release_nonlru(&freed_pvec);
580 count_vm_events(PGACTIVATE, pgactivate);
581 return nr_reclaimed;
582 }
583
584 /* LRU Isolation modes. */
585 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
586 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
587 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
588
589 /*
590 * Attempt to remove the specified page from its LRU. Only take this page
591 * if it is of the appropriate PageActive status. Pages which are being
592 * freed elsewhere are also ignored.
593 *
594 * page: page to consider
595 * mode: one of the LRU isolation modes defined above
596 *
597 * returns 0 on success, -ve errno on failure.
598 */
599 static int __isolate_lru_page(struct page *page, int mode)
600 {
601 int ret = -EINVAL;
602
603 /* Only take pages on the LRU. */
604 if (!PageLRU(page))
605 return ret;
606
607 /*
608 * When checking the active state, we need to be sure we are
609 * dealing with comparible boolean values. Take the logical not
610 * of each.
611 */
612 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
613 return ret;
614
615 ret = -EBUSY;
616 if (likely(get_page_unless_zero(page))) {
617 /*
618 * Be careful not to clear PageLRU until after we're
619 * sure the page is not being freed elsewhere -- the
620 * page release code relies on it.
621 */
622 ClearPageLRU(page);
623 ret = 0;
624 }
625
626 return ret;
627 }
628
629 /*
630 * zone->lru_lock is heavily contended. Some of the functions that
631 * shrink the lists perform better by taking out a batch of pages
632 * and working on them outside the LRU lock.
633 *
634 * For pagecache intensive workloads, this function is the hottest
635 * spot in the kernel (apart from copy_*_user functions).
636 *
637 * Appropriate locks must be held before calling this function.
638 *
639 * @nr_to_scan: The number of pages to look through on the list.
640 * @src: The LRU list to pull pages off.
641 * @dst: The temp list to put pages on to.
642 * @scanned: The number of pages that were scanned.
643 * @order: The caller's attempted allocation order
644 * @mode: One of the LRU isolation modes
645 *
646 * returns how many pages were moved onto *@dst.
647 */
648 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
649 struct list_head *src, struct list_head *dst,
650 unsigned long *scanned, int order, int mode)
651 {
652 unsigned long nr_taken = 0;
653 unsigned long scan;
654
655 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
656 struct page *page;
657 unsigned long pfn;
658 unsigned long end_pfn;
659 unsigned long page_pfn;
660 int zone_id;
661
662 page = lru_to_page(src);
663 prefetchw_prev_lru_page(page, src, flags);
664
665 VM_BUG_ON(!PageLRU(page));
666
667 switch (__isolate_lru_page(page, mode)) {
668 case 0:
669 list_move(&page->lru, dst);
670 nr_taken++;
671 break;
672
673 case -EBUSY:
674 /* else it is being freed elsewhere */
675 list_move(&page->lru, src);
676 continue;
677
678 default:
679 BUG();
680 }
681
682 if (!order)
683 continue;
684
685 /*
686 * Attempt to take all pages in the order aligned region
687 * surrounding the tag page. Only take those pages of
688 * the same active state as that tag page. We may safely
689 * round the target page pfn down to the requested order
690 * as the mem_map is guarenteed valid out to MAX_ORDER,
691 * where that page is in a different zone we will detect
692 * it from its zone id and abort this block scan.
693 */
694 zone_id = page_zone_id(page);
695 page_pfn = page_to_pfn(page);
696 pfn = page_pfn & ~((1 << order) - 1);
697 end_pfn = pfn + (1 << order);
698 for (; pfn < end_pfn; pfn++) {
699 struct page *cursor_page;
700
701 /* The target page is in the block, ignore it. */
702 if (unlikely(pfn == page_pfn))
703 continue;
704
705 /* Avoid holes within the zone. */
706 if (unlikely(!pfn_valid_within(pfn)))
707 break;
708
709 cursor_page = pfn_to_page(pfn);
710 /* Check that we have not crossed a zone boundary. */
711 if (unlikely(page_zone_id(cursor_page) != zone_id))
712 continue;
713 switch (__isolate_lru_page(cursor_page, mode)) {
714 case 0:
715 list_move(&cursor_page->lru, dst);
716 nr_taken++;
717 scan++;
718 break;
719
720 case -EBUSY:
721 /* else it is being freed elsewhere */
722 list_move(&cursor_page->lru, src);
723 default:
724 break;
725 }
726 }
727 }
728
729 *scanned = scan;
730 return nr_taken;
731 }
732
733 /*
734 * clear_active_flags() is a helper for shrink_active_list(), clearing
735 * any active bits from the pages in the list.
736 */
737 static unsigned long clear_active_flags(struct list_head *page_list)
738 {
739 int nr_active = 0;
740 struct page *page;
741
742 list_for_each_entry(page, page_list, lru)
743 if (PageActive(page)) {
744 ClearPageActive(page);
745 nr_active++;
746 }
747
748 return nr_active;
749 }
750
751 /*
752 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
753 * of reclaimed pages
754 */
755 static unsigned long shrink_inactive_list(unsigned long max_scan,
756 struct zone *zone, struct scan_control *sc)
757 {
758 LIST_HEAD(page_list);
759 struct pagevec pvec;
760 unsigned long nr_scanned = 0;
761 unsigned long nr_reclaimed = 0;
762
763 pagevec_init(&pvec, 1);
764
765 lru_add_drain();
766 spin_lock_irq(&zone->lru_lock);
767 do {
768 struct page *page;
769 unsigned long nr_taken;
770 unsigned long nr_scan;
771 unsigned long nr_freed;
772 unsigned long nr_active;
773
774 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
775 &zone->inactive_list,
776 &page_list, &nr_scan, sc->order,
777 (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
778 ISOLATE_BOTH : ISOLATE_INACTIVE);
779 nr_active = clear_active_flags(&page_list);
780 __count_vm_events(PGDEACTIVATE, nr_active);
781
782 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
783 __mod_zone_page_state(zone, NR_INACTIVE,
784 -(nr_taken - nr_active));
785 zone->pages_scanned += nr_scan;
786 spin_unlock_irq(&zone->lru_lock);
787
788 nr_scanned += nr_scan;
789 nr_freed = shrink_page_list(&page_list, sc);
790 nr_reclaimed += nr_freed;
791 local_irq_disable();
792 if (current_is_kswapd()) {
793 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
794 __count_vm_events(KSWAPD_STEAL, nr_freed);
795 } else
796 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
797 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
798
799 if (nr_taken == 0)
800 goto done;
801
802 spin_lock(&zone->lru_lock);
803 /*
804 * Put back any unfreeable pages.
805 */
806 while (!list_empty(&page_list)) {
807 page = lru_to_page(&page_list);
808 VM_BUG_ON(PageLRU(page));
809 SetPageLRU(page);
810 list_del(&page->lru);
811 if (PageActive(page))
812 add_page_to_active_list(zone, page);
813 else
814 add_page_to_inactive_list(zone, page);
815 if (!pagevec_add(&pvec, page)) {
816 spin_unlock_irq(&zone->lru_lock);
817 __pagevec_release(&pvec);
818 spin_lock_irq(&zone->lru_lock);
819 }
820 }
821 } while (nr_scanned < max_scan);
822 spin_unlock(&zone->lru_lock);
823 done:
824 local_irq_enable();
825 pagevec_release(&pvec);
826 return nr_reclaimed;
827 }
828
829 /*
830 * We are about to scan this zone at a certain priority level. If that priority
831 * level is smaller (ie: more urgent) than the previous priority, then note
832 * that priority level within the zone. This is done so that when the next
833 * process comes in to scan this zone, it will immediately start out at this
834 * priority level rather than having to build up its own scanning priority.
835 * Here, this priority affects only the reclaim-mapped threshold.
836 */
837 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
838 {
839 if (priority < zone->prev_priority)
840 zone->prev_priority = priority;
841 }
842
843 static inline int zone_is_near_oom(struct zone *zone)
844 {
845 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
846 + zone_page_state(zone, NR_INACTIVE))*3;
847 }
848
849 /*
850 * This moves pages from the active list to the inactive list.
851 *
852 * We move them the other way if the page is referenced by one or more
853 * processes, from rmap.
854 *
855 * If the pages are mostly unmapped, the processing is fast and it is
856 * appropriate to hold zone->lru_lock across the whole operation. But if
857 * the pages are mapped, the processing is slow (page_referenced()) so we
858 * should drop zone->lru_lock around each page. It's impossible to balance
859 * this, so instead we remove the pages from the LRU while processing them.
860 * It is safe to rely on PG_active against the non-LRU pages in here because
861 * nobody will play with that bit on a non-LRU page.
862 *
863 * The downside is that we have to touch page->_count against each page.
864 * But we had to alter page->flags anyway.
865 */
866 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
867 struct scan_control *sc, int priority)
868 {
869 unsigned long pgmoved;
870 int pgdeactivate = 0;
871 unsigned long pgscanned;
872 LIST_HEAD(l_hold); /* The pages which were snipped off */
873 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
874 LIST_HEAD(l_active); /* Pages to go onto the active_list */
875 struct page *page;
876 struct pagevec pvec;
877 int reclaim_mapped = 0;
878
879 if (sc->may_swap) {
880 long mapped_ratio;
881 long distress;
882 long swap_tendency;
883
884 if (zone_is_near_oom(zone))
885 goto force_reclaim_mapped;
886
887 /*
888 * `distress' is a measure of how much trouble we're having
889 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
890 */
891 distress = 100 >> min(zone->prev_priority, priority);
892
893 /*
894 * The point of this algorithm is to decide when to start
895 * reclaiming mapped memory instead of just pagecache. Work out
896 * how much memory
897 * is mapped.
898 */
899 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
900 global_page_state(NR_ANON_PAGES)) * 100) /
901 vm_total_pages;
902
903 /*
904 * Now decide how much we really want to unmap some pages. The
905 * mapped ratio is downgraded - just because there's a lot of
906 * mapped memory doesn't necessarily mean that page reclaim
907 * isn't succeeding.
908 *
909 * The distress ratio is important - we don't want to start
910 * going oom.
911 *
912 * A 100% value of vm_swappiness overrides this algorithm
913 * altogether.
914 */
915 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
916
917 /*
918 * Now use this metric to decide whether to start moving mapped
919 * memory onto the inactive list.
920 */
921 if (swap_tendency >= 100)
922 force_reclaim_mapped:
923 reclaim_mapped = 1;
924 }
925
926 lru_add_drain();
927 spin_lock_irq(&zone->lru_lock);
928 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
929 &l_hold, &pgscanned, sc->order, ISOLATE_ACTIVE);
930 zone->pages_scanned += pgscanned;
931 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
932 spin_unlock_irq(&zone->lru_lock);
933
934 while (!list_empty(&l_hold)) {
935 cond_resched();
936 page = lru_to_page(&l_hold);
937 list_del(&page->lru);
938 if (page_mapped(page)) {
939 if (!reclaim_mapped ||
940 (total_swap_pages == 0 && PageAnon(page)) ||
941 page_referenced(page, 0)) {
942 list_add(&page->lru, &l_active);
943 continue;
944 }
945 }
946 list_add(&page->lru, &l_inactive);
947 }
948
949 pagevec_init(&pvec, 1);
950 pgmoved = 0;
951 spin_lock_irq(&zone->lru_lock);
952 while (!list_empty(&l_inactive)) {
953 page = lru_to_page(&l_inactive);
954 prefetchw_prev_lru_page(page, &l_inactive, flags);
955 VM_BUG_ON(PageLRU(page));
956 SetPageLRU(page);
957 VM_BUG_ON(!PageActive(page));
958 ClearPageActive(page);
959
960 list_move(&page->lru, &zone->inactive_list);
961 pgmoved++;
962 if (!pagevec_add(&pvec, page)) {
963 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
964 spin_unlock_irq(&zone->lru_lock);
965 pgdeactivate += pgmoved;
966 pgmoved = 0;
967 if (buffer_heads_over_limit)
968 pagevec_strip(&pvec);
969 __pagevec_release(&pvec);
970 spin_lock_irq(&zone->lru_lock);
971 }
972 }
973 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
974 pgdeactivate += pgmoved;
975 if (buffer_heads_over_limit) {
976 spin_unlock_irq(&zone->lru_lock);
977 pagevec_strip(&pvec);
978 spin_lock_irq(&zone->lru_lock);
979 }
980
981 pgmoved = 0;
982 while (!list_empty(&l_active)) {
983 page = lru_to_page(&l_active);
984 prefetchw_prev_lru_page(page, &l_active, flags);
985 VM_BUG_ON(PageLRU(page));
986 SetPageLRU(page);
987 VM_BUG_ON(!PageActive(page));
988 list_move(&page->lru, &zone->active_list);
989 pgmoved++;
990 if (!pagevec_add(&pvec, page)) {
991 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
992 pgmoved = 0;
993 spin_unlock_irq(&zone->lru_lock);
994 __pagevec_release(&pvec);
995 spin_lock_irq(&zone->lru_lock);
996 }
997 }
998 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
999
1000 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1001 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1002 spin_unlock_irq(&zone->lru_lock);
1003
1004 pagevec_release(&pvec);
1005 }
1006
1007 /*
1008 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1009 */
1010 static unsigned long shrink_zone(int priority, struct zone *zone,
1011 struct scan_control *sc)
1012 {
1013 unsigned long nr_active;
1014 unsigned long nr_inactive;
1015 unsigned long nr_to_scan;
1016 unsigned long nr_reclaimed = 0;
1017
1018 atomic_inc(&zone->reclaim_in_progress);
1019
1020 /*
1021 * Add one to `nr_to_scan' just to make sure that the kernel will
1022 * slowly sift through the active list.
1023 */
1024 zone->nr_scan_active +=
1025 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1026 nr_active = zone->nr_scan_active;
1027 if (nr_active >= sc->swap_cluster_max)
1028 zone->nr_scan_active = 0;
1029 else
1030 nr_active = 0;
1031
1032 zone->nr_scan_inactive +=
1033 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1034 nr_inactive = zone->nr_scan_inactive;
1035 if (nr_inactive >= sc->swap_cluster_max)
1036 zone->nr_scan_inactive = 0;
1037 else
1038 nr_inactive = 0;
1039
1040 while (nr_active || nr_inactive) {
1041 if (nr_active) {
1042 nr_to_scan = min(nr_active,
1043 (unsigned long)sc->swap_cluster_max);
1044 nr_active -= nr_to_scan;
1045 shrink_active_list(nr_to_scan, zone, sc, priority);
1046 }
1047
1048 if (nr_inactive) {
1049 nr_to_scan = min(nr_inactive,
1050 (unsigned long)sc->swap_cluster_max);
1051 nr_inactive -= nr_to_scan;
1052 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1053 sc);
1054 }
1055 }
1056
1057 throttle_vm_writeout(sc->gfp_mask);
1058
1059 atomic_dec(&zone->reclaim_in_progress);
1060 return nr_reclaimed;
1061 }
1062
1063 /*
1064 * This is the direct reclaim path, for page-allocating processes. We only
1065 * try to reclaim pages from zones which will satisfy the caller's allocation
1066 * request.
1067 *
1068 * We reclaim from a zone even if that zone is over pages_high. Because:
1069 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1070 * allocation or
1071 * b) The zones may be over pages_high but they must go *over* pages_high to
1072 * satisfy the `incremental min' zone defense algorithm.
1073 *
1074 * Returns the number of reclaimed pages.
1075 *
1076 * If a zone is deemed to be full of pinned pages then just give it a light
1077 * scan then give up on it.
1078 */
1079 static unsigned long shrink_zones(int priority, struct zone **zones,
1080 struct scan_control *sc)
1081 {
1082 unsigned long nr_reclaimed = 0;
1083 int i;
1084
1085 sc->all_unreclaimable = 1;
1086 for (i = 0; zones[i] != NULL; i++) {
1087 struct zone *zone = zones[i];
1088
1089 if (!populated_zone(zone))
1090 continue;
1091
1092 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1093 continue;
1094
1095 note_zone_scanning_priority(zone, priority);
1096
1097 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1098 continue; /* Let kswapd poll it */
1099
1100 sc->all_unreclaimable = 0;
1101
1102 nr_reclaimed += shrink_zone(priority, zone, sc);
1103 }
1104 return nr_reclaimed;
1105 }
1106
1107 /*
1108 * This is the main entry point to direct page reclaim.
1109 *
1110 * If a full scan of the inactive list fails to free enough memory then we
1111 * are "out of memory" and something needs to be killed.
1112 *
1113 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1114 * high - the zone may be full of dirty or under-writeback pages, which this
1115 * caller can't do much about. We kick pdflush and take explicit naps in the
1116 * hope that some of these pages can be written. But if the allocating task
1117 * holds filesystem locks which prevent writeout this might not work, and the
1118 * allocation attempt will fail.
1119 */
1120 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1121 {
1122 int priority;
1123 int ret = 0;
1124 unsigned long total_scanned = 0;
1125 unsigned long nr_reclaimed = 0;
1126 struct reclaim_state *reclaim_state = current->reclaim_state;
1127 unsigned long lru_pages = 0;
1128 int i;
1129 struct scan_control sc = {
1130 .gfp_mask = gfp_mask,
1131 .may_writepage = !laptop_mode,
1132 .swap_cluster_max = SWAP_CLUSTER_MAX,
1133 .may_swap = 1,
1134 .swappiness = vm_swappiness,
1135 .order = order,
1136 };
1137
1138 count_vm_event(ALLOCSTALL);
1139
1140 for (i = 0; zones[i] != NULL; i++) {
1141 struct zone *zone = zones[i];
1142
1143 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1144 continue;
1145
1146 lru_pages += zone_page_state(zone, NR_ACTIVE)
1147 + zone_page_state(zone, NR_INACTIVE);
1148 }
1149
1150 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1151 sc.nr_scanned = 0;
1152 if (!priority)
1153 disable_swap_token();
1154 nr_reclaimed += shrink_zones(priority, zones, &sc);
1155 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1156 if (reclaim_state) {
1157 nr_reclaimed += reclaim_state->reclaimed_slab;
1158 reclaim_state->reclaimed_slab = 0;
1159 }
1160 total_scanned += sc.nr_scanned;
1161 if (nr_reclaimed >= sc.swap_cluster_max) {
1162 ret = 1;
1163 goto out;
1164 }
1165
1166 /*
1167 * Try to write back as many pages as we just scanned. This
1168 * tends to cause slow streaming writers to write data to the
1169 * disk smoothly, at the dirtying rate, which is nice. But
1170 * that's undesirable in laptop mode, where we *want* lumpy
1171 * writeout. So in laptop mode, write out the whole world.
1172 */
1173 if (total_scanned > sc.swap_cluster_max +
1174 sc.swap_cluster_max / 2) {
1175 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1176 sc.may_writepage = 1;
1177 }
1178
1179 /* Take a nap, wait for some writeback to complete */
1180 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1181 congestion_wait(WRITE, HZ/10);
1182 }
1183 /* top priority shrink_caches still had more to do? don't OOM, then */
1184 if (!sc.all_unreclaimable)
1185 ret = 1;
1186 out:
1187 /*
1188 * Now that we've scanned all the zones at this priority level, note
1189 * that level within the zone so that the next thread which performs
1190 * scanning of this zone will immediately start out at this priority
1191 * level. This affects only the decision whether or not to bring
1192 * mapped pages onto the inactive list.
1193 */
1194 if (priority < 0)
1195 priority = 0;
1196 for (i = 0; zones[i] != 0; i++) {
1197 struct zone *zone = zones[i];
1198
1199 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1200 continue;
1201
1202 zone->prev_priority = priority;
1203 }
1204 return ret;
1205 }
1206
1207 /*
1208 * For kswapd, balance_pgdat() will work across all this node's zones until
1209 * they are all at pages_high.
1210 *
1211 * Returns the number of pages which were actually freed.
1212 *
1213 * There is special handling here for zones which are full of pinned pages.
1214 * This can happen if the pages are all mlocked, or if they are all used by
1215 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1216 * What we do is to detect the case where all pages in the zone have been
1217 * scanned twice and there has been zero successful reclaim. Mark the zone as
1218 * dead and from now on, only perform a short scan. Basically we're polling
1219 * the zone for when the problem goes away.
1220 *
1221 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1222 * zones which have free_pages > pages_high, but once a zone is found to have
1223 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1224 * of the number of free pages in the lower zones. This interoperates with
1225 * the page allocator fallback scheme to ensure that aging of pages is balanced
1226 * across the zones.
1227 */
1228 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1229 {
1230 int all_zones_ok;
1231 int priority;
1232 int i;
1233 unsigned long total_scanned;
1234 unsigned long nr_reclaimed;
1235 struct reclaim_state *reclaim_state = current->reclaim_state;
1236 struct scan_control sc = {
1237 .gfp_mask = GFP_KERNEL,
1238 .may_swap = 1,
1239 .swap_cluster_max = SWAP_CLUSTER_MAX,
1240 .swappiness = vm_swappiness,
1241 .order = order,
1242 };
1243 /*
1244 * temp_priority is used to remember the scanning priority at which
1245 * this zone was successfully refilled to free_pages == pages_high.
1246 */
1247 int temp_priority[MAX_NR_ZONES];
1248
1249 loop_again:
1250 total_scanned = 0;
1251 nr_reclaimed = 0;
1252 sc.may_writepage = !laptop_mode;
1253 count_vm_event(PAGEOUTRUN);
1254
1255 for (i = 0; i < pgdat->nr_zones; i++)
1256 temp_priority[i] = DEF_PRIORITY;
1257
1258 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1259 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1260 unsigned long lru_pages = 0;
1261
1262 /* The swap token gets in the way of swapout... */
1263 if (!priority)
1264 disable_swap_token();
1265
1266 all_zones_ok = 1;
1267
1268 /*
1269 * Scan in the highmem->dma direction for the highest
1270 * zone which needs scanning
1271 */
1272 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1273 struct zone *zone = pgdat->node_zones + i;
1274
1275 if (!populated_zone(zone))
1276 continue;
1277
1278 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1279 continue;
1280
1281 if (!zone_watermark_ok(zone, order, zone->pages_high,
1282 0, 0)) {
1283 end_zone = i;
1284 break;
1285 }
1286 }
1287 if (i < 0)
1288 goto out;
1289
1290 for (i = 0; i <= end_zone; i++) {
1291 struct zone *zone = pgdat->node_zones + i;
1292
1293 lru_pages += zone_page_state(zone, NR_ACTIVE)
1294 + zone_page_state(zone, NR_INACTIVE);
1295 }
1296
1297 /*
1298 * Now scan the zone in the dma->highmem direction, stopping
1299 * at the last zone which needs scanning.
1300 *
1301 * We do this because the page allocator works in the opposite
1302 * direction. This prevents the page allocator from allocating
1303 * pages behind kswapd's direction of progress, which would
1304 * cause too much scanning of the lower zones.
1305 */
1306 for (i = 0; i <= end_zone; i++) {
1307 struct zone *zone = pgdat->node_zones + i;
1308 int nr_slab;
1309
1310 if (!populated_zone(zone))
1311 continue;
1312
1313 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1314 continue;
1315
1316 if (!zone_watermark_ok(zone, order, zone->pages_high,
1317 end_zone, 0))
1318 all_zones_ok = 0;
1319 temp_priority[i] = priority;
1320 sc.nr_scanned = 0;
1321 note_zone_scanning_priority(zone, priority);
1322 nr_reclaimed += shrink_zone(priority, zone, &sc);
1323 reclaim_state->reclaimed_slab = 0;
1324 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1325 lru_pages);
1326 nr_reclaimed += reclaim_state->reclaimed_slab;
1327 total_scanned += sc.nr_scanned;
1328 if (zone->all_unreclaimable)
1329 continue;
1330 if (nr_slab == 0 && zone->pages_scanned >=
1331 (zone_page_state(zone, NR_ACTIVE)
1332 + zone_page_state(zone, NR_INACTIVE)) * 6)
1333 zone->all_unreclaimable = 1;
1334 /*
1335 * If we've done a decent amount of scanning and
1336 * the reclaim ratio is low, start doing writepage
1337 * even in laptop mode
1338 */
1339 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1340 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1341 sc.may_writepage = 1;
1342 }
1343 if (all_zones_ok)
1344 break; /* kswapd: all done */
1345 /*
1346 * OK, kswapd is getting into trouble. Take a nap, then take
1347 * another pass across the zones.
1348 */
1349 if (total_scanned && priority < DEF_PRIORITY - 2)
1350 congestion_wait(WRITE, HZ/10);
1351
1352 /*
1353 * We do this so kswapd doesn't build up large priorities for
1354 * example when it is freeing in parallel with allocators. It
1355 * matches the direct reclaim path behaviour in terms of impact
1356 * on zone->*_priority.
1357 */
1358 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1359 break;
1360 }
1361 out:
1362 /*
1363 * Note within each zone the priority level at which this zone was
1364 * brought into a happy state. So that the next thread which scans this
1365 * zone will start out at that priority level.
1366 */
1367 for (i = 0; i < pgdat->nr_zones; i++) {
1368 struct zone *zone = pgdat->node_zones + i;
1369
1370 zone->prev_priority = temp_priority[i];
1371 }
1372 if (!all_zones_ok) {
1373 cond_resched();
1374
1375 try_to_freeze();
1376
1377 goto loop_again;
1378 }
1379
1380 return nr_reclaimed;
1381 }
1382
1383 /*
1384 * The background pageout daemon, started as a kernel thread
1385 * from the init process.
1386 *
1387 * This basically trickles out pages so that we have _some_
1388 * free memory available even if there is no other activity
1389 * that frees anything up. This is needed for things like routing
1390 * etc, where we otherwise might have all activity going on in
1391 * asynchronous contexts that cannot page things out.
1392 *
1393 * If there are applications that are active memory-allocators
1394 * (most normal use), this basically shouldn't matter.
1395 */
1396 static int kswapd(void *p)
1397 {
1398 unsigned long order;
1399 pg_data_t *pgdat = (pg_data_t*)p;
1400 struct task_struct *tsk = current;
1401 DEFINE_WAIT(wait);
1402 struct reclaim_state reclaim_state = {
1403 .reclaimed_slab = 0,
1404 };
1405 cpumask_t cpumask;
1406
1407 cpumask = node_to_cpumask(pgdat->node_id);
1408 if (!cpus_empty(cpumask))
1409 set_cpus_allowed(tsk, cpumask);
1410 current->reclaim_state = &reclaim_state;
1411
1412 /*
1413 * Tell the memory management that we're a "memory allocator",
1414 * and that if we need more memory we should get access to it
1415 * regardless (see "__alloc_pages()"). "kswapd" should
1416 * never get caught in the normal page freeing logic.
1417 *
1418 * (Kswapd normally doesn't need memory anyway, but sometimes
1419 * you need a small amount of memory in order to be able to
1420 * page out something else, and this flag essentially protects
1421 * us from recursively trying to free more memory as we're
1422 * trying to free the first piece of memory in the first place).
1423 */
1424 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1425 set_freezable();
1426
1427 order = 0;
1428 for ( ; ; ) {
1429 unsigned long new_order;
1430
1431 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1432 new_order = pgdat->kswapd_max_order;
1433 pgdat->kswapd_max_order = 0;
1434 if (order < new_order) {
1435 /*
1436 * Don't sleep if someone wants a larger 'order'
1437 * allocation
1438 */
1439 order = new_order;
1440 } else {
1441 if (!freezing(current))
1442 schedule();
1443
1444 order = pgdat->kswapd_max_order;
1445 }
1446 finish_wait(&pgdat->kswapd_wait, &wait);
1447
1448 if (!try_to_freeze()) {
1449 /* We can speed up thawing tasks if we don't call
1450 * balance_pgdat after returning from the refrigerator
1451 */
1452 balance_pgdat(pgdat, order);
1453 }
1454 }
1455 return 0;
1456 }
1457
1458 /*
1459 * A zone is low on free memory, so wake its kswapd task to service it.
1460 */
1461 void wakeup_kswapd(struct zone *zone, int order)
1462 {
1463 pg_data_t *pgdat;
1464
1465 if (!populated_zone(zone))
1466 return;
1467
1468 pgdat = zone->zone_pgdat;
1469 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1470 return;
1471 if (pgdat->kswapd_max_order < order)
1472 pgdat->kswapd_max_order = order;
1473 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1474 return;
1475 if (!waitqueue_active(&pgdat->kswapd_wait))
1476 return;
1477 wake_up_interruptible(&pgdat->kswapd_wait);
1478 }
1479
1480 #ifdef CONFIG_PM
1481 /*
1482 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1483 * from LRU lists system-wide, for given pass and priority, and returns the
1484 * number of reclaimed pages
1485 *
1486 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1487 */
1488 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1489 int pass, struct scan_control *sc)
1490 {
1491 struct zone *zone;
1492 unsigned long nr_to_scan, ret = 0;
1493
1494 for_each_zone(zone) {
1495
1496 if (!populated_zone(zone))
1497 continue;
1498
1499 if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1500 continue;
1501
1502 /* For pass = 0 we don't shrink the active list */
1503 if (pass > 0) {
1504 zone->nr_scan_active +=
1505 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1506 if (zone->nr_scan_active >= nr_pages || pass > 3) {
1507 zone->nr_scan_active = 0;
1508 nr_to_scan = min(nr_pages,
1509 zone_page_state(zone, NR_ACTIVE));
1510 shrink_active_list(nr_to_scan, zone, sc, prio);
1511 }
1512 }
1513
1514 zone->nr_scan_inactive +=
1515 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1516 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1517 zone->nr_scan_inactive = 0;
1518 nr_to_scan = min(nr_pages,
1519 zone_page_state(zone, NR_INACTIVE));
1520 ret += shrink_inactive_list(nr_to_scan, zone, sc);
1521 if (ret >= nr_pages)
1522 return ret;
1523 }
1524 }
1525
1526 return ret;
1527 }
1528
1529 static unsigned long count_lru_pages(void)
1530 {
1531 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1532 }
1533
1534 /*
1535 * Try to free `nr_pages' of memory, system-wide, and return the number of
1536 * freed pages.
1537 *
1538 * Rather than trying to age LRUs the aim is to preserve the overall
1539 * LRU order by reclaiming preferentially
1540 * inactive > active > active referenced > active mapped
1541 */
1542 unsigned long shrink_all_memory(unsigned long nr_pages)
1543 {
1544 unsigned long lru_pages, nr_slab;
1545 unsigned long ret = 0;
1546 int pass;
1547 struct reclaim_state reclaim_state;
1548 struct scan_control sc = {
1549 .gfp_mask = GFP_KERNEL,
1550 .may_swap = 0,
1551 .swap_cluster_max = nr_pages,
1552 .may_writepage = 1,
1553 .swappiness = vm_swappiness,
1554 };
1555
1556 current->reclaim_state = &reclaim_state;
1557
1558 lru_pages = count_lru_pages();
1559 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1560 /* If slab caches are huge, it's better to hit them first */
1561 while (nr_slab >= lru_pages) {
1562 reclaim_state.reclaimed_slab = 0;
1563 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1564 if (!reclaim_state.reclaimed_slab)
1565 break;
1566
1567 ret += reclaim_state.reclaimed_slab;
1568 if (ret >= nr_pages)
1569 goto out;
1570
1571 nr_slab -= reclaim_state.reclaimed_slab;
1572 }
1573
1574 /*
1575 * We try to shrink LRUs in 5 passes:
1576 * 0 = Reclaim from inactive_list only
1577 * 1 = Reclaim from active list but don't reclaim mapped
1578 * 2 = 2nd pass of type 1
1579 * 3 = Reclaim mapped (normal reclaim)
1580 * 4 = 2nd pass of type 3
1581 */
1582 for (pass = 0; pass < 5; pass++) {
1583 int prio;
1584
1585 /* Force reclaiming mapped pages in the passes #3 and #4 */
1586 if (pass > 2) {
1587 sc.may_swap = 1;
1588 sc.swappiness = 100;
1589 }
1590
1591 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1592 unsigned long nr_to_scan = nr_pages - ret;
1593
1594 sc.nr_scanned = 0;
1595 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1596 if (ret >= nr_pages)
1597 goto out;
1598
1599 reclaim_state.reclaimed_slab = 0;
1600 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1601 count_lru_pages());
1602 ret += reclaim_state.reclaimed_slab;
1603 if (ret >= nr_pages)
1604 goto out;
1605
1606 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1607 congestion_wait(WRITE, HZ / 10);
1608 }
1609 }
1610
1611 /*
1612 * If ret = 0, we could not shrink LRUs, but there may be something
1613 * in slab caches
1614 */
1615 if (!ret) {
1616 do {
1617 reclaim_state.reclaimed_slab = 0;
1618 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1619 ret += reclaim_state.reclaimed_slab;
1620 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1621 }
1622
1623 out:
1624 current->reclaim_state = NULL;
1625
1626 return ret;
1627 }
1628 #endif
1629
1630 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1631 not required for correctness. So if the last cpu in a node goes
1632 away, we get changed to run anywhere: as the first one comes back,
1633 restore their cpu bindings. */
1634 static int __devinit cpu_callback(struct notifier_block *nfb,
1635 unsigned long action, void *hcpu)
1636 {
1637 pg_data_t *pgdat;
1638 cpumask_t mask;
1639
1640 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1641 for_each_online_pgdat(pgdat) {
1642 mask = node_to_cpumask(pgdat->node_id);
1643 if (any_online_cpu(mask) != NR_CPUS)
1644 /* One of our CPUs online: restore mask */
1645 set_cpus_allowed(pgdat->kswapd, mask);
1646 }
1647 }
1648 return NOTIFY_OK;
1649 }
1650
1651 /*
1652 * This kswapd start function will be called by init and node-hot-add.
1653 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1654 */
1655 int kswapd_run(int nid)
1656 {
1657 pg_data_t *pgdat = NODE_DATA(nid);
1658 int ret = 0;
1659
1660 if (pgdat->kswapd)
1661 return 0;
1662
1663 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1664 if (IS_ERR(pgdat->kswapd)) {
1665 /* failure at boot is fatal */
1666 BUG_ON(system_state == SYSTEM_BOOTING);
1667 printk("Failed to start kswapd on node %d\n",nid);
1668 ret = -1;
1669 }
1670 return ret;
1671 }
1672
1673 static int __init kswapd_init(void)
1674 {
1675 int nid;
1676
1677 swap_setup();
1678 for_each_online_node(nid)
1679 kswapd_run(nid);
1680 hotcpu_notifier(cpu_callback, 0);
1681 return 0;
1682 }
1683
1684 module_init(kswapd_init)
1685
1686 #ifdef CONFIG_NUMA
1687 /*
1688 * Zone reclaim mode
1689 *
1690 * If non-zero call zone_reclaim when the number of free pages falls below
1691 * the watermarks.
1692 */
1693 int zone_reclaim_mode __read_mostly;
1694
1695 #define RECLAIM_OFF 0
1696 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1697 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1698 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1699
1700 /*
1701 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1702 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1703 * a zone.
1704 */
1705 #define ZONE_RECLAIM_PRIORITY 4
1706
1707 /*
1708 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1709 * occur.
1710 */
1711 int sysctl_min_unmapped_ratio = 1;
1712
1713 /*
1714 * If the number of slab pages in a zone grows beyond this percentage then
1715 * slab reclaim needs to occur.
1716 */
1717 int sysctl_min_slab_ratio = 5;
1718
1719 /*
1720 * Try to free up some pages from this zone through reclaim.
1721 */
1722 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1723 {
1724 /* Minimum pages needed in order to stay on node */
1725 const unsigned long nr_pages = 1 << order;
1726 struct task_struct *p = current;
1727 struct reclaim_state reclaim_state;
1728 int priority;
1729 unsigned long nr_reclaimed = 0;
1730 struct scan_control sc = {
1731 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1732 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1733 .swap_cluster_max = max_t(unsigned long, nr_pages,
1734 SWAP_CLUSTER_MAX),
1735 .gfp_mask = gfp_mask,
1736 .swappiness = vm_swappiness,
1737 };
1738 unsigned long slab_reclaimable;
1739
1740 disable_swap_token();
1741 cond_resched();
1742 /*
1743 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1744 * and we also need to be able to write out pages for RECLAIM_WRITE
1745 * and RECLAIM_SWAP.
1746 */
1747 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1748 reclaim_state.reclaimed_slab = 0;
1749 p->reclaim_state = &reclaim_state;
1750
1751 if (zone_page_state(zone, NR_FILE_PAGES) -
1752 zone_page_state(zone, NR_FILE_MAPPED) >
1753 zone->min_unmapped_pages) {
1754 /*
1755 * Free memory by calling shrink zone with increasing
1756 * priorities until we have enough memory freed.
1757 */
1758 priority = ZONE_RECLAIM_PRIORITY;
1759 do {
1760 note_zone_scanning_priority(zone, priority);
1761 nr_reclaimed += shrink_zone(priority, zone, &sc);
1762 priority--;
1763 } while (priority >= 0 && nr_reclaimed < nr_pages);
1764 }
1765
1766 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1767 if (slab_reclaimable > zone->min_slab_pages) {
1768 /*
1769 * shrink_slab() does not currently allow us to determine how
1770 * many pages were freed in this zone. So we take the current
1771 * number of slab pages and shake the slab until it is reduced
1772 * by the same nr_pages that we used for reclaiming unmapped
1773 * pages.
1774 *
1775 * Note that shrink_slab will free memory on all zones and may
1776 * take a long time.
1777 */
1778 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1779 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1780 slab_reclaimable - nr_pages)
1781 ;
1782
1783 /*
1784 * Update nr_reclaimed by the number of slab pages we
1785 * reclaimed from this zone.
1786 */
1787 nr_reclaimed += slab_reclaimable -
1788 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1789 }
1790
1791 p->reclaim_state = NULL;
1792 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1793 return nr_reclaimed >= nr_pages;
1794 }
1795
1796 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1797 {
1798 cpumask_t mask;
1799 int node_id;
1800
1801 /*
1802 * Zone reclaim reclaims unmapped file backed pages and
1803 * slab pages if we are over the defined limits.
1804 *
1805 * A small portion of unmapped file backed pages is needed for
1806 * file I/O otherwise pages read by file I/O will be immediately
1807 * thrown out if the zone is overallocated. So we do not reclaim
1808 * if less than a specified percentage of the zone is used by
1809 * unmapped file backed pages.
1810 */
1811 if (zone_page_state(zone, NR_FILE_PAGES) -
1812 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1813 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1814 <= zone->min_slab_pages)
1815 return 0;
1816
1817 /*
1818 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1819 * not have reclaimable pages and if we should not delay the allocation
1820 * then do not scan.
1821 */
1822 if (!(gfp_mask & __GFP_WAIT) ||
1823 zone->all_unreclaimable ||
1824 atomic_read(&zone->reclaim_in_progress) > 0 ||
1825 (current->flags & PF_MEMALLOC))
1826 return 0;
1827
1828 /*
1829 * Only run zone reclaim on the local zone or on zones that do not
1830 * have associated processors. This will favor the local processor
1831 * over remote processors and spread off node memory allocations
1832 * as wide as possible.
1833 */
1834 node_id = zone_to_nid(zone);
1835 mask = node_to_cpumask(node_id);
1836 if (!cpus_empty(mask) && node_id != numa_node_id())
1837 return 0;
1838 return __zone_reclaim(zone, gfp_mask, order);
1839 }
1840 #endif
This page took 0.093281 seconds and 6 git commands to generate.