Merge tag 'localmodconfig-v3.6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 unsigned long hibernation_mode;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 int may_writepage;
72
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
75
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
79 int order;
80
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
89
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
95 };
96
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109 #else
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 /*
128 * From 0 .. 100. Higher means more swappy.
129 */
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
132
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
135
136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
137 static bool global_reclaim(struct scan_control *sc)
138 {
139 return !sc->target_mem_cgroup;
140 }
141 #else
142 static bool global_reclaim(struct scan_control *sc)
143 {
144 return true;
145 }
146 #endif
147
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149 {
150 if (!mem_cgroup_disabled())
151 return mem_cgroup_get_lru_size(lruvec, lru);
152
153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 }
155
156 /*
157 * Add a shrinker callback to be called from the vm
158 */
159 void register_shrinker(struct shrinker *shrinker)
160 {
161 atomic_long_set(&shrinker->nr_in_batch, 0);
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
165 }
166 EXPORT_SYMBOL(register_shrinker);
167
168 /*
169 * Remove one
170 */
171 void unregister_shrinker(struct shrinker *shrinker)
172 {
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
176 }
177 EXPORT_SYMBOL(unregister_shrinker);
178
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182 {
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185 }
186
187 #define SHRINK_BATCH 128
188 /*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
196 * If the vm encountered mapped pages on the LRU it increase the pressure on
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
204 *
205 * Returns the number of slab objects which we shrunk.
206 */
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 unsigned long nr_pages_scanned,
209 unsigned long lru_pages)
210 {
211 struct shrinker *shrinker;
212 unsigned long ret = 0;
213
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
216
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
225 long total_scan;
226 long max_pass;
227 int shrink_ret = 0;
228 long nr;
229 long new_nr;
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
232
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243
244 total_scan = nr;
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
246 delta *= max_pass;
247 do_div(delta, lru_pages + 1);
248 total_scan += delta;
249 if (total_scan < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
254 }
255
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
278
279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
283 while (total_scan >= batch_size) {
284 int nr_before;
285
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
288 batch_size);
289 if (shrink_ret == -1)
290 break;
291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
295
296 cond_resched();
297 }
298
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
311 }
312 up_read(&shrinker_rwsem);
313 out:
314 cond_resched();
315 return ret;
316 }
317
318 static inline int is_page_cache_freeable(struct page *page)
319 {
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
325 return page_count(page) - page_has_private(page) == 2;
326 }
327
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
330 {
331 if (current->flags & PF_SWAPWRITE)
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338 }
339
340 /*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352 static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354 {
355 lock_page(page);
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
358 unlock_page(page);
359 }
360
361 /* possible outcome of pageout() */
362 typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371 } pageout_t;
372
373 /*
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
376 */
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 struct scan_control *sc)
379 {
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
387 * If this process is currently in __generic_file_aio_write() against
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
403 if (page_has_private(page)) {
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
406 printk("%s: orphaned page\n", __func__);
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
422 .range_start = 0,
423 .range_end = LLONG_MAX,
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
431 if (res == AOP_WRITEPAGE_ACTIVATE) {
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
435
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446 }
447
448 /*
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
451 */
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
453 {
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
456
457 spin_lock_irq(&mapping->tree_lock);
458 /*
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
482 */
483 if (!page_freeze_refs(page, 2))
484 goto cannot_free;
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
488 goto cannot_free;
489 }
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
494 spin_unlock_irq(&mapping->tree_lock);
495 swapcache_free(swap, page);
496 } else {
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
501 __delete_from_page_cache(page);
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
504
505 if (freepage != NULL)
506 freepage(page);
507 }
508
509 return 1;
510
511 cannot_free:
512 spin_unlock_irq(&mapping->tree_lock);
513 return 0;
514 }
515
516 /*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522 int remove_mapping(struct address_space *mapping, struct page *page)
523 {
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534 }
535
536 /**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
545 void putback_lru_page(struct page *page)
546 {
547 int lru;
548 int active = !!TestClearPageActive(page);
549 int was_unevictable = PageUnevictable(page);
550
551 VM_BUG_ON(PageLRU(page));
552
553 redo:
554 ClearPageUnevictable(page);
555
556 if (page_evictable(page, NULL)) {
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
563 lru = active + page_lru_base_type(page);
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
572 /*
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
579 *
580 * The other side is TestClearPageMlocked() or shmem_lock().
581 */
582 smp_mb();
583 }
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
590 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
606 put_page(page); /* drop ref from isolate */
607 }
608
609 enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
612 PAGEREF_KEEP,
613 PAGEREF_ACTIVATE,
614 };
615
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618 {
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
621
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
624 referenced_page = TestClearPageReferenced(page);
625
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
654
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
661 return PAGEREF_KEEP;
662 }
663
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
669 }
670
671 /*
672 * shrink_page_list() returns the number of reclaimed pages
673 */
674 static unsigned long shrink_page_list(struct list_head *page_list,
675 struct zone *zone,
676 struct scan_control *sc,
677 unsigned long *ret_nr_dirty,
678 unsigned long *ret_nr_writeback)
679 {
680 LIST_HEAD(ret_pages);
681 LIST_HEAD(free_pages);
682 int pgactivate = 0;
683 unsigned long nr_dirty = 0;
684 unsigned long nr_congested = 0;
685 unsigned long nr_reclaimed = 0;
686 unsigned long nr_writeback = 0;
687
688 cond_resched();
689
690 while (!list_empty(page_list)) {
691 enum page_references references;
692 struct address_space *mapping;
693 struct page *page;
694 int may_enter_fs;
695
696 cond_resched();
697
698 page = lru_to_page(page_list);
699 list_del(&page->lru);
700
701 if (!trylock_page(page))
702 goto keep;
703
704 VM_BUG_ON(PageActive(page));
705 VM_BUG_ON(page_zone(page) != zone);
706
707 sc->nr_scanned++;
708
709 if (unlikely(!page_evictable(page, NULL)))
710 goto cull_mlocked;
711
712 if (!sc->may_unmap && page_mapped(page))
713 goto keep_locked;
714
715 /* Double the slab pressure for mapped and swapcache pages */
716 if (page_mapped(page) || PageSwapCache(page))
717 sc->nr_scanned++;
718
719 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
720 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
721
722 if (PageWriteback(page)) {
723 nr_writeback++;
724 unlock_page(page);
725 goto keep;
726 }
727
728 references = page_check_references(page, sc);
729 switch (references) {
730 case PAGEREF_ACTIVATE:
731 goto activate_locked;
732 case PAGEREF_KEEP:
733 goto keep_locked;
734 case PAGEREF_RECLAIM:
735 case PAGEREF_RECLAIM_CLEAN:
736 ; /* try to reclaim the page below */
737 }
738
739 /*
740 * Anonymous process memory has backing store?
741 * Try to allocate it some swap space here.
742 */
743 if (PageAnon(page) && !PageSwapCache(page)) {
744 if (!(sc->gfp_mask & __GFP_IO))
745 goto keep_locked;
746 if (!add_to_swap(page))
747 goto activate_locked;
748 may_enter_fs = 1;
749 }
750
751 mapping = page_mapping(page);
752
753 /*
754 * The page is mapped into the page tables of one or more
755 * processes. Try to unmap it here.
756 */
757 if (page_mapped(page) && mapping) {
758 switch (try_to_unmap(page, TTU_UNMAP)) {
759 case SWAP_FAIL:
760 goto activate_locked;
761 case SWAP_AGAIN:
762 goto keep_locked;
763 case SWAP_MLOCK:
764 goto cull_mlocked;
765 case SWAP_SUCCESS:
766 ; /* try to free the page below */
767 }
768 }
769
770 if (PageDirty(page)) {
771 nr_dirty++;
772
773 /*
774 * Only kswapd can writeback filesystem pages to
775 * avoid risk of stack overflow but do not writeback
776 * unless under significant pressure.
777 */
778 if (page_is_file_cache(page) &&
779 (!current_is_kswapd() ||
780 sc->priority >= DEF_PRIORITY - 2)) {
781 /*
782 * Immediately reclaim when written back.
783 * Similar in principal to deactivate_page()
784 * except we already have the page isolated
785 * and know it's dirty
786 */
787 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
788 SetPageReclaim(page);
789
790 goto keep_locked;
791 }
792
793 if (references == PAGEREF_RECLAIM_CLEAN)
794 goto keep_locked;
795 if (!may_enter_fs)
796 goto keep_locked;
797 if (!sc->may_writepage)
798 goto keep_locked;
799
800 /* Page is dirty, try to write it out here */
801 switch (pageout(page, mapping, sc)) {
802 case PAGE_KEEP:
803 nr_congested++;
804 goto keep_locked;
805 case PAGE_ACTIVATE:
806 goto activate_locked;
807 case PAGE_SUCCESS:
808 if (PageWriteback(page))
809 goto keep;
810 if (PageDirty(page))
811 goto keep;
812
813 /*
814 * A synchronous write - probably a ramdisk. Go
815 * ahead and try to reclaim the page.
816 */
817 if (!trylock_page(page))
818 goto keep;
819 if (PageDirty(page) || PageWriteback(page))
820 goto keep_locked;
821 mapping = page_mapping(page);
822 case PAGE_CLEAN:
823 ; /* try to free the page below */
824 }
825 }
826
827 /*
828 * If the page has buffers, try to free the buffer mappings
829 * associated with this page. If we succeed we try to free
830 * the page as well.
831 *
832 * We do this even if the page is PageDirty().
833 * try_to_release_page() does not perform I/O, but it is
834 * possible for a page to have PageDirty set, but it is actually
835 * clean (all its buffers are clean). This happens if the
836 * buffers were written out directly, with submit_bh(). ext3
837 * will do this, as well as the blockdev mapping.
838 * try_to_release_page() will discover that cleanness and will
839 * drop the buffers and mark the page clean - it can be freed.
840 *
841 * Rarely, pages can have buffers and no ->mapping. These are
842 * the pages which were not successfully invalidated in
843 * truncate_complete_page(). We try to drop those buffers here
844 * and if that worked, and the page is no longer mapped into
845 * process address space (page_count == 1) it can be freed.
846 * Otherwise, leave the page on the LRU so it is swappable.
847 */
848 if (page_has_private(page)) {
849 if (!try_to_release_page(page, sc->gfp_mask))
850 goto activate_locked;
851 if (!mapping && page_count(page) == 1) {
852 unlock_page(page);
853 if (put_page_testzero(page))
854 goto free_it;
855 else {
856 /*
857 * rare race with speculative reference.
858 * the speculative reference will free
859 * this page shortly, so we may
860 * increment nr_reclaimed here (and
861 * leave it off the LRU).
862 */
863 nr_reclaimed++;
864 continue;
865 }
866 }
867 }
868
869 if (!mapping || !__remove_mapping(mapping, page))
870 goto keep_locked;
871
872 /*
873 * At this point, we have no other references and there is
874 * no way to pick any more up (removed from LRU, removed
875 * from pagecache). Can use non-atomic bitops now (and
876 * we obviously don't have to worry about waking up a process
877 * waiting on the page lock, because there are no references.
878 */
879 __clear_page_locked(page);
880 free_it:
881 nr_reclaimed++;
882
883 /*
884 * Is there need to periodically free_page_list? It would
885 * appear not as the counts should be low
886 */
887 list_add(&page->lru, &free_pages);
888 continue;
889
890 cull_mlocked:
891 if (PageSwapCache(page))
892 try_to_free_swap(page);
893 unlock_page(page);
894 putback_lru_page(page);
895 continue;
896
897 activate_locked:
898 /* Not a candidate for swapping, so reclaim swap space. */
899 if (PageSwapCache(page) && vm_swap_full())
900 try_to_free_swap(page);
901 VM_BUG_ON(PageActive(page));
902 SetPageActive(page);
903 pgactivate++;
904 keep_locked:
905 unlock_page(page);
906 keep:
907 list_add(&page->lru, &ret_pages);
908 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
909 }
910
911 /*
912 * Tag a zone as congested if all the dirty pages encountered were
913 * backed by a congested BDI. In this case, reclaimers should just
914 * back off and wait for congestion to clear because further reclaim
915 * will encounter the same problem
916 */
917 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
918 zone_set_flag(zone, ZONE_CONGESTED);
919
920 free_hot_cold_page_list(&free_pages, 1);
921
922 list_splice(&ret_pages, page_list);
923 count_vm_events(PGACTIVATE, pgactivate);
924 *ret_nr_dirty += nr_dirty;
925 *ret_nr_writeback += nr_writeback;
926 return nr_reclaimed;
927 }
928
929 /*
930 * Attempt to remove the specified page from its LRU. Only take this page
931 * if it is of the appropriate PageActive status. Pages which are being
932 * freed elsewhere are also ignored.
933 *
934 * page: page to consider
935 * mode: one of the LRU isolation modes defined above
936 *
937 * returns 0 on success, -ve errno on failure.
938 */
939 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
940 {
941 int ret = -EINVAL;
942
943 /* Only take pages on the LRU. */
944 if (!PageLRU(page))
945 return ret;
946
947 /* Do not give back unevictable pages for compaction */
948 if (PageUnevictable(page))
949 return ret;
950
951 ret = -EBUSY;
952
953 /*
954 * To minimise LRU disruption, the caller can indicate that it only
955 * wants to isolate pages it will be able to operate on without
956 * blocking - clean pages for the most part.
957 *
958 * ISOLATE_CLEAN means that only clean pages should be isolated. This
959 * is used by reclaim when it is cannot write to backing storage
960 *
961 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
962 * that it is possible to migrate without blocking
963 */
964 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
965 /* All the caller can do on PageWriteback is block */
966 if (PageWriteback(page))
967 return ret;
968
969 if (PageDirty(page)) {
970 struct address_space *mapping;
971
972 /* ISOLATE_CLEAN means only clean pages */
973 if (mode & ISOLATE_CLEAN)
974 return ret;
975
976 /*
977 * Only pages without mappings or that have a
978 * ->migratepage callback are possible to migrate
979 * without blocking
980 */
981 mapping = page_mapping(page);
982 if (mapping && !mapping->a_ops->migratepage)
983 return ret;
984 }
985 }
986
987 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
988 return ret;
989
990 if (likely(get_page_unless_zero(page))) {
991 /*
992 * Be careful not to clear PageLRU until after we're
993 * sure the page is not being freed elsewhere -- the
994 * page release code relies on it.
995 */
996 ClearPageLRU(page);
997 ret = 0;
998 }
999
1000 return ret;
1001 }
1002
1003 /*
1004 * zone->lru_lock is heavily contended. Some of the functions that
1005 * shrink the lists perform better by taking out a batch of pages
1006 * and working on them outside the LRU lock.
1007 *
1008 * For pagecache intensive workloads, this function is the hottest
1009 * spot in the kernel (apart from copy_*_user functions).
1010 *
1011 * Appropriate locks must be held before calling this function.
1012 *
1013 * @nr_to_scan: The number of pages to look through on the list.
1014 * @lruvec: The LRU vector to pull pages from.
1015 * @dst: The temp list to put pages on to.
1016 * @nr_scanned: The number of pages that were scanned.
1017 * @sc: The scan_control struct for this reclaim session
1018 * @mode: One of the LRU isolation modes
1019 * @lru: LRU list id for isolating
1020 *
1021 * returns how many pages were moved onto *@dst.
1022 */
1023 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1024 struct lruvec *lruvec, struct list_head *dst,
1025 unsigned long *nr_scanned, struct scan_control *sc,
1026 isolate_mode_t mode, enum lru_list lru)
1027 {
1028 struct list_head *src = &lruvec->lists[lru];
1029 unsigned long nr_taken = 0;
1030 unsigned long scan;
1031
1032 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1033 struct page *page;
1034 int nr_pages;
1035
1036 page = lru_to_page(src);
1037 prefetchw_prev_lru_page(page, src, flags);
1038
1039 VM_BUG_ON(!PageLRU(page));
1040
1041 switch (__isolate_lru_page(page, mode)) {
1042 case 0:
1043 nr_pages = hpage_nr_pages(page);
1044 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1045 list_move(&page->lru, dst);
1046 nr_taken += nr_pages;
1047 break;
1048
1049 case -EBUSY:
1050 /* else it is being freed elsewhere */
1051 list_move(&page->lru, src);
1052 continue;
1053
1054 default:
1055 BUG();
1056 }
1057 }
1058
1059 *nr_scanned = scan;
1060 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1061 nr_taken, mode, is_file_lru(lru));
1062 return nr_taken;
1063 }
1064
1065 /**
1066 * isolate_lru_page - tries to isolate a page from its LRU list
1067 * @page: page to isolate from its LRU list
1068 *
1069 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1070 * vmstat statistic corresponding to whatever LRU list the page was on.
1071 *
1072 * Returns 0 if the page was removed from an LRU list.
1073 * Returns -EBUSY if the page was not on an LRU list.
1074 *
1075 * The returned page will have PageLRU() cleared. If it was found on
1076 * the active list, it will have PageActive set. If it was found on
1077 * the unevictable list, it will have the PageUnevictable bit set. That flag
1078 * may need to be cleared by the caller before letting the page go.
1079 *
1080 * The vmstat statistic corresponding to the list on which the page was
1081 * found will be decremented.
1082 *
1083 * Restrictions:
1084 * (1) Must be called with an elevated refcount on the page. This is a
1085 * fundamentnal difference from isolate_lru_pages (which is called
1086 * without a stable reference).
1087 * (2) the lru_lock must not be held.
1088 * (3) interrupts must be enabled.
1089 */
1090 int isolate_lru_page(struct page *page)
1091 {
1092 int ret = -EBUSY;
1093
1094 VM_BUG_ON(!page_count(page));
1095
1096 if (PageLRU(page)) {
1097 struct zone *zone = page_zone(page);
1098 struct lruvec *lruvec;
1099
1100 spin_lock_irq(&zone->lru_lock);
1101 lruvec = mem_cgroup_page_lruvec(page, zone);
1102 if (PageLRU(page)) {
1103 int lru = page_lru(page);
1104 get_page(page);
1105 ClearPageLRU(page);
1106 del_page_from_lru_list(page, lruvec, lru);
1107 ret = 0;
1108 }
1109 spin_unlock_irq(&zone->lru_lock);
1110 }
1111 return ret;
1112 }
1113
1114 /*
1115 * Are there way too many processes in the direct reclaim path already?
1116 */
1117 static int too_many_isolated(struct zone *zone, int file,
1118 struct scan_control *sc)
1119 {
1120 unsigned long inactive, isolated;
1121
1122 if (current_is_kswapd())
1123 return 0;
1124
1125 if (!global_reclaim(sc))
1126 return 0;
1127
1128 if (file) {
1129 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1130 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1131 } else {
1132 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1133 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1134 }
1135
1136 return isolated > inactive;
1137 }
1138
1139 static noinline_for_stack void
1140 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1141 {
1142 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1143 struct zone *zone = lruvec_zone(lruvec);
1144 LIST_HEAD(pages_to_free);
1145
1146 /*
1147 * Put back any unfreeable pages.
1148 */
1149 while (!list_empty(page_list)) {
1150 struct page *page = lru_to_page(page_list);
1151 int lru;
1152
1153 VM_BUG_ON(PageLRU(page));
1154 list_del(&page->lru);
1155 if (unlikely(!page_evictable(page, NULL))) {
1156 spin_unlock_irq(&zone->lru_lock);
1157 putback_lru_page(page);
1158 spin_lock_irq(&zone->lru_lock);
1159 continue;
1160 }
1161
1162 lruvec = mem_cgroup_page_lruvec(page, zone);
1163
1164 SetPageLRU(page);
1165 lru = page_lru(page);
1166 add_page_to_lru_list(page, lruvec, lru);
1167
1168 if (is_active_lru(lru)) {
1169 int file = is_file_lru(lru);
1170 int numpages = hpage_nr_pages(page);
1171 reclaim_stat->recent_rotated[file] += numpages;
1172 }
1173 if (put_page_testzero(page)) {
1174 __ClearPageLRU(page);
1175 __ClearPageActive(page);
1176 del_page_from_lru_list(page, lruvec, lru);
1177
1178 if (unlikely(PageCompound(page))) {
1179 spin_unlock_irq(&zone->lru_lock);
1180 (*get_compound_page_dtor(page))(page);
1181 spin_lock_irq(&zone->lru_lock);
1182 } else
1183 list_add(&page->lru, &pages_to_free);
1184 }
1185 }
1186
1187 /*
1188 * To save our caller's stack, now use input list for pages to free.
1189 */
1190 list_splice(&pages_to_free, page_list);
1191 }
1192
1193 /*
1194 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1195 * of reclaimed pages
1196 */
1197 static noinline_for_stack unsigned long
1198 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1199 struct scan_control *sc, enum lru_list lru)
1200 {
1201 LIST_HEAD(page_list);
1202 unsigned long nr_scanned;
1203 unsigned long nr_reclaimed = 0;
1204 unsigned long nr_taken;
1205 unsigned long nr_dirty = 0;
1206 unsigned long nr_writeback = 0;
1207 isolate_mode_t isolate_mode = 0;
1208 int file = is_file_lru(lru);
1209 struct zone *zone = lruvec_zone(lruvec);
1210 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1211
1212 while (unlikely(too_many_isolated(zone, file, sc))) {
1213 congestion_wait(BLK_RW_ASYNC, HZ/10);
1214
1215 /* We are about to die and free our memory. Return now. */
1216 if (fatal_signal_pending(current))
1217 return SWAP_CLUSTER_MAX;
1218 }
1219
1220 lru_add_drain();
1221
1222 if (!sc->may_unmap)
1223 isolate_mode |= ISOLATE_UNMAPPED;
1224 if (!sc->may_writepage)
1225 isolate_mode |= ISOLATE_CLEAN;
1226
1227 spin_lock_irq(&zone->lru_lock);
1228
1229 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1230 &nr_scanned, sc, isolate_mode, lru);
1231
1232 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1233 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1234
1235 if (global_reclaim(sc)) {
1236 zone->pages_scanned += nr_scanned;
1237 if (current_is_kswapd())
1238 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1239 else
1240 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1241 }
1242 spin_unlock_irq(&zone->lru_lock);
1243
1244 if (nr_taken == 0)
1245 return 0;
1246
1247 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1248 &nr_dirty, &nr_writeback);
1249
1250 spin_lock_irq(&zone->lru_lock);
1251
1252 reclaim_stat->recent_scanned[file] += nr_taken;
1253
1254 if (global_reclaim(sc)) {
1255 if (current_is_kswapd())
1256 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1257 nr_reclaimed);
1258 else
1259 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1260 nr_reclaimed);
1261 }
1262
1263 putback_inactive_pages(lruvec, &page_list);
1264
1265 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1266
1267 spin_unlock_irq(&zone->lru_lock);
1268
1269 free_hot_cold_page_list(&page_list, 1);
1270
1271 /*
1272 * If reclaim is isolating dirty pages under writeback, it implies
1273 * that the long-lived page allocation rate is exceeding the page
1274 * laundering rate. Either the global limits are not being effective
1275 * at throttling processes due to the page distribution throughout
1276 * zones or there is heavy usage of a slow backing device. The
1277 * only option is to throttle from reclaim context which is not ideal
1278 * as there is no guarantee the dirtying process is throttled in the
1279 * same way balance_dirty_pages() manages.
1280 *
1281 * This scales the number of dirty pages that must be under writeback
1282 * before throttling depending on priority. It is a simple backoff
1283 * function that has the most effect in the range DEF_PRIORITY to
1284 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1285 * in trouble and reclaim is considered to be in trouble.
1286 *
1287 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1288 * DEF_PRIORITY-1 50% must be PageWriteback
1289 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1290 * ...
1291 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1292 * isolated page is PageWriteback
1293 */
1294 if (nr_writeback && nr_writeback >=
1295 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1296 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1297
1298 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1299 zone_idx(zone),
1300 nr_scanned, nr_reclaimed,
1301 sc->priority,
1302 trace_shrink_flags(file));
1303 return nr_reclaimed;
1304 }
1305
1306 /*
1307 * This moves pages from the active list to the inactive list.
1308 *
1309 * We move them the other way if the page is referenced by one or more
1310 * processes, from rmap.
1311 *
1312 * If the pages are mostly unmapped, the processing is fast and it is
1313 * appropriate to hold zone->lru_lock across the whole operation. But if
1314 * the pages are mapped, the processing is slow (page_referenced()) so we
1315 * should drop zone->lru_lock around each page. It's impossible to balance
1316 * this, so instead we remove the pages from the LRU while processing them.
1317 * It is safe to rely on PG_active against the non-LRU pages in here because
1318 * nobody will play with that bit on a non-LRU page.
1319 *
1320 * The downside is that we have to touch page->_count against each page.
1321 * But we had to alter page->flags anyway.
1322 */
1323
1324 static void move_active_pages_to_lru(struct lruvec *lruvec,
1325 struct list_head *list,
1326 struct list_head *pages_to_free,
1327 enum lru_list lru)
1328 {
1329 struct zone *zone = lruvec_zone(lruvec);
1330 unsigned long pgmoved = 0;
1331 struct page *page;
1332 int nr_pages;
1333
1334 while (!list_empty(list)) {
1335 page = lru_to_page(list);
1336 lruvec = mem_cgroup_page_lruvec(page, zone);
1337
1338 VM_BUG_ON(PageLRU(page));
1339 SetPageLRU(page);
1340
1341 nr_pages = hpage_nr_pages(page);
1342 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1343 list_move(&page->lru, &lruvec->lists[lru]);
1344 pgmoved += nr_pages;
1345
1346 if (put_page_testzero(page)) {
1347 __ClearPageLRU(page);
1348 __ClearPageActive(page);
1349 del_page_from_lru_list(page, lruvec, lru);
1350
1351 if (unlikely(PageCompound(page))) {
1352 spin_unlock_irq(&zone->lru_lock);
1353 (*get_compound_page_dtor(page))(page);
1354 spin_lock_irq(&zone->lru_lock);
1355 } else
1356 list_add(&page->lru, pages_to_free);
1357 }
1358 }
1359 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1360 if (!is_active_lru(lru))
1361 __count_vm_events(PGDEACTIVATE, pgmoved);
1362 }
1363
1364 static void shrink_active_list(unsigned long nr_to_scan,
1365 struct lruvec *lruvec,
1366 struct scan_control *sc,
1367 enum lru_list lru)
1368 {
1369 unsigned long nr_taken;
1370 unsigned long nr_scanned;
1371 unsigned long vm_flags;
1372 LIST_HEAD(l_hold); /* The pages which were snipped off */
1373 LIST_HEAD(l_active);
1374 LIST_HEAD(l_inactive);
1375 struct page *page;
1376 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1377 unsigned long nr_rotated = 0;
1378 isolate_mode_t isolate_mode = 0;
1379 int file = is_file_lru(lru);
1380 struct zone *zone = lruvec_zone(lruvec);
1381
1382 lru_add_drain();
1383
1384 if (!sc->may_unmap)
1385 isolate_mode |= ISOLATE_UNMAPPED;
1386 if (!sc->may_writepage)
1387 isolate_mode |= ISOLATE_CLEAN;
1388
1389 spin_lock_irq(&zone->lru_lock);
1390
1391 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1392 &nr_scanned, sc, isolate_mode, lru);
1393 if (global_reclaim(sc))
1394 zone->pages_scanned += nr_scanned;
1395
1396 reclaim_stat->recent_scanned[file] += nr_taken;
1397
1398 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1399 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1400 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1401 spin_unlock_irq(&zone->lru_lock);
1402
1403 while (!list_empty(&l_hold)) {
1404 cond_resched();
1405 page = lru_to_page(&l_hold);
1406 list_del(&page->lru);
1407
1408 if (unlikely(!page_evictable(page, NULL))) {
1409 putback_lru_page(page);
1410 continue;
1411 }
1412
1413 if (unlikely(buffer_heads_over_limit)) {
1414 if (page_has_private(page) && trylock_page(page)) {
1415 if (page_has_private(page))
1416 try_to_release_page(page, 0);
1417 unlock_page(page);
1418 }
1419 }
1420
1421 if (page_referenced(page, 0, sc->target_mem_cgroup,
1422 &vm_flags)) {
1423 nr_rotated += hpage_nr_pages(page);
1424 /*
1425 * Identify referenced, file-backed active pages and
1426 * give them one more trip around the active list. So
1427 * that executable code get better chances to stay in
1428 * memory under moderate memory pressure. Anon pages
1429 * are not likely to be evicted by use-once streaming
1430 * IO, plus JVM can create lots of anon VM_EXEC pages,
1431 * so we ignore them here.
1432 */
1433 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1434 list_add(&page->lru, &l_active);
1435 continue;
1436 }
1437 }
1438
1439 ClearPageActive(page); /* we are de-activating */
1440 list_add(&page->lru, &l_inactive);
1441 }
1442
1443 /*
1444 * Move pages back to the lru list.
1445 */
1446 spin_lock_irq(&zone->lru_lock);
1447 /*
1448 * Count referenced pages from currently used mappings as rotated,
1449 * even though only some of them are actually re-activated. This
1450 * helps balance scan pressure between file and anonymous pages in
1451 * get_scan_ratio.
1452 */
1453 reclaim_stat->recent_rotated[file] += nr_rotated;
1454
1455 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1456 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1457 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1458 spin_unlock_irq(&zone->lru_lock);
1459
1460 free_hot_cold_page_list(&l_hold, 1);
1461 }
1462
1463 #ifdef CONFIG_SWAP
1464 static int inactive_anon_is_low_global(struct zone *zone)
1465 {
1466 unsigned long active, inactive;
1467
1468 active = zone_page_state(zone, NR_ACTIVE_ANON);
1469 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1470
1471 if (inactive * zone->inactive_ratio < active)
1472 return 1;
1473
1474 return 0;
1475 }
1476
1477 /**
1478 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1479 * @lruvec: LRU vector to check
1480 *
1481 * Returns true if the zone does not have enough inactive anon pages,
1482 * meaning some active anon pages need to be deactivated.
1483 */
1484 static int inactive_anon_is_low(struct lruvec *lruvec)
1485 {
1486 /*
1487 * If we don't have swap space, anonymous page deactivation
1488 * is pointless.
1489 */
1490 if (!total_swap_pages)
1491 return 0;
1492
1493 if (!mem_cgroup_disabled())
1494 return mem_cgroup_inactive_anon_is_low(lruvec);
1495
1496 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1497 }
1498 #else
1499 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1500 {
1501 return 0;
1502 }
1503 #endif
1504
1505 static int inactive_file_is_low_global(struct zone *zone)
1506 {
1507 unsigned long active, inactive;
1508
1509 active = zone_page_state(zone, NR_ACTIVE_FILE);
1510 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1511
1512 return (active > inactive);
1513 }
1514
1515 /**
1516 * inactive_file_is_low - check if file pages need to be deactivated
1517 * @lruvec: LRU vector to check
1518 *
1519 * When the system is doing streaming IO, memory pressure here
1520 * ensures that active file pages get deactivated, until more
1521 * than half of the file pages are on the inactive list.
1522 *
1523 * Once we get to that situation, protect the system's working
1524 * set from being evicted by disabling active file page aging.
1525 *
1526 * This uses a different ratio than the anonymous pages, because
1527 * the page cache uses a use-once replacement algorithm.
1528 */
1529 static int inactive_file_is_low(struct lruvec *lruvec)
1530 {
1531 if (!mem_cgroup_disabled())
1532 return mem_cgroup_inactive_file_is_low(lruvec);
1533
1534 return inactive_file_is_low_global(lruvec_zone(lruvec));
1535 }
1536
1537 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1538 {
1539 if (is_file_lru(lru))
1540 return inactive_file_is_low(lruvec);
1541 else
1542 return inactive_anon_is_low(lruvec);
1543 }
1544
1545 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1546 struct lruvec *lruvec, struct scan_control *sc)
1547 {
1548 if (is_active_lru(lru)) {
1549 if (inactive_list_is_low(lruvec, lru))
1550 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1551 return 0;
1552 }
1553
1554 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1555 }
1556
1557 static int vmscan_swappiness(struct scan_control *sc)
1558 {
1559 if (global_reclaim(sc))
1560 return vm_swappiness;
1561 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1562 }
1563
1564 /*
1565 * Determine how aggressively the anon and file LRU lists should be
1566 * scanned. The relative value of each set of LRU lists is determined
1567 * by looking at the fraction of the pages scanned we did rotate back
1568 * onto the active list instead of evict.
1569 *
1570 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1571 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1572 */
1573 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1574 unsigned long *nr)
1575 {
1576 unsigned long anon, file, free;
1577 unsigned long anon_prio, file_prio;
1578 unsigned long ap, fp;
1579 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1580 u64 fraction[2], denominator;
1581 enum lru_list lru;
1582 int noswap = 0;
1583 bool force_scan = false;
1584 struct zone *zone = lruvec_zone(lruvec);
1585
1586 /*
1587 * If the zone or memcg is small, nr[l] can be 0. This
1588 * results in no scanning on this priority and a potential
1589 * priority drop. Global direct reclaim can go to the next
1590 * zone and tends to have no problems. Global kswapd is for
1591 * zone balancing and it needs to scan a minimum amount. When
1592 * reclaiming for a memcg, a priority drop can cause high
1593 * latencies, so it's better to scan a minimum amount there as
1594 * well.
1595 */
1596 if (current_is_kswapd() && zone->all_unreclaimable)
1597 force_scan = true;
1598 if (!global_reclaim(sc))
1599 force_scan = true;
1600
1601 /* If we have no swap space, do not bother scanning anon pages. */
1602 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1603 noswap = 1;
1604 fraction[0] = 0;
1605 fraction[1] = 1;
1606 denominator = 1;
1607 goto out;
1608 }
1609
1610 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1611 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1612 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1613 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1614
1615 if (global_reclaim(sc)) {
1616 free = zone_page_state(zone, NR_FREE_PAGES);
1617 /* If we have very few page cache pages,
1618 force-scan anon pages. */
1619 if (unlikely(file + free <= high_wmark_pages(zone))) {
1620 fraction[0] = 1;
1621 fraction[1] = 0;
1622 denominator = 1;
1623 goto out;
1624 }
1625 }
1626
1627 /*
1628 * With swappiness at 100, anonymous and file have the same priority.
1629 * This scanning priority is essentially the inverse of IO cost.
1630 */
1631 anon_prio = vmscan_swappiness(sc);
1632 file_prio = 200 - anon_prio;
1633
1634 /*
1635 * OK, so we have swap space and a fair amount of page cache
1636 * pages. We use the recently rotated / recently scanned
1637 * ratios to determine how valuable each cache is.
1638 *
1639 * Because workloads change over time (and to avoid overflow)
1640 * we keep these statistics as a floating average, which ends
1641 * up weighing recent references more than old ones.
1642 *
1643 * anon in [0], file in [1]
1644 */
1645 spin_lock_irq(&zone->lru_lock);
1646 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1647 reclaim_stat->recent_scanned[0] /= 2;
1648 reclaim_stat->recent_rotated[0] /= 2;
1649 }
1650
1651 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1652 reclaim_stat->recent_scanned[1] /= 2;
1653 reclaim_stat->recent_rotated[1] /= 2;
1654 }
1655
1656 /*
1657 * The amount of pressure on anon vs file pages is inversely
1658 * proportional to the fraction of recently scanned pages on
1659 * each list that were recently referenced and in active use.
1660 */
1661 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1662 ap /= reclaim_stat->recent_rotated[0] + 1;
1663
1664 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1665 fp /= reclaim_stat->recent_rotated[1] + 1;
1666 spin_unlock_irq(&zone->lru_lock);
1667
1668 fraction[0] = ap;
1669 fraction[1] = fp;
1670 denominator = ap + fp + 1;
1671 out:
1672 for_each_evictable_lru(lru) {
1673 int file = is_file_lru(lru);
1674 unsigned long scan;
1675
1676 scan = get_lru_size(lruvec, lru);
1677 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1678 scan >>= sc->priority;
1679 if (!scan && force_scan)
1680 scan = SWAP_CLUSTER_MAX;
1681 scan = div64_u64(scan * fraction[file], denominator);
1682 }
1683 nr[lru] = scan;
1684 }
1685 }
1686
1687 /* Use reclaim/compaction for costly allocs or under memory pressure */
1688 static bool in_reclaim_compaction(struct scan_control *sc)
1689 {
1690 if (COMPACTION_BUILD && sc->order &&
1691 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1692 sc->priority < DEF_PRIORITY - 2))
1693 return true;
1694
1695 return false;
1696 }
1697
1698 /*
1699 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1700 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1701 * true if more pages should be reclaimed such that when the page allocator
1702 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1703 * It will give up earlier than that if there is difficulty reclaiming pages.
1704 */
1705 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1706 unsigned long nr_reclaimed,
1707 unsigned long nr_scanned,
1708 struct scan_control *sc)
1709 {
1710 unsigned long pages_for_compaction;
1711 unsigned long inactive_lru_pages;
1712
1713 /* If not in reclaim/compaction mode, stop */
1714 if (!in_reclaim_compaction(sc))
1715 return false;
1716
1717 /* Consider stopping depending on scan and reclaim activity */
1718 if (sc->gfp_mask & __GFP_REPEAT) {
1719 /*
1720 * For __GFP_REPEAT allocations, stop reclaiming if the
1721 * full LRU list has been scanned and we are still failing
1722 * to reclaim pages. This full LRU scan is potentially
1723 * expensive but a __GFP_REPEAT caller really wants to succeed
1724 */
1725 if (!nr_reclaimed && !nr_scanned)
1726 return false;
1727 } else {
1728 /*
1729 * For non-__GFP_REPEAT allocations which can presumably
1730 * fail without consequence, stop if we failed to reclaim
1731 * any pages from the last SWAP_CLUSTER_MAX number of
1732 * pages that were scanned. This will return to the
1733 * caller faster at the risk reclaim/compaction and
1734 * the resulting allocation attempt fails
1735 */
1736 if (!nr_reclaimed)
1737 return false;
1738 }
1739
1740 /*
1741 * If we have not reclaimed enough pages for compaction and the
1742 * inactive lists are large enough, continue reclaiming
1743 */
1744 pages_for_compaction = (2UL << sc->order);
1745 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1746 if (nr_swap_pages > 0)
1747 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1748 if (sc->nr_reclaimed < pages_for_compaction &&
1749 inactive_lru_pages > pages_for_compaction)
1750 return true;
1751
1752 /* If compaction would go ahead or the allocation would succeed, stop */
1753 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1754 case COMPACT_PARTIAL:
1755 case COMPACT_CONTINUE:
1756 return false;
1757 default:
1758 return true;
1759 }
1760 }
1761
1762 /*
1763 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1764 */
1765 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1766 {
1767 unsigned long nr[NR_LRU_LISTS];
1768 unsigned long nr_to_scan;
1769 enum lru_list lru;
1770 unsigned long nr_reclaimed, nr_scanned;
1771 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1772 struct blk_plug plug;
1773
1774 restart:
1775 nr_reclaimed = 0;
1776 nr_scanned = sc->nr_scanned;
1777 get_scan_count(lruvec, sc, nr);
1778
1779 blk_start_plug(&plug);
1780 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1781 nr[LRU_INACTIVE_FILE]) {
1782 for_each_evictable_lru(lru) {
1783 if (nr[lru]) {
1784 nr_to_scan = min_t(unsigned long,
1785 nr[lru], SWAP_CLUSTER_MAX);
1786 nr[lru] -= nr_to_scan;
1787
1788 nr_reclaimed += shrink_list(lru, nr_to_scan,
1789 lruvec, sc);
1790 }
1791 }
1792 /*
1793 * On large memory systems, scan >> priority can become
1794 * really large. This is fine for the starting priority;
1795 * we want to put equal scanning pressure on each zone.
1796 * However, if the VM has a harder time of freeing pages,
1797 * with multiple processes reclaiming pages, the total
1798 * freeing target can get unreasonably large.
1799 */
1800 if (nr_reclaimed >= nr_to_reclaim &&
1801 sc->priority < DEF_PRIORITY)
1802 break;
1803 }
1804 blk_finish_plug(&plug);
1805 sc->nr_reclaimed += nr_reclaimed;
1806
1807 /*
1808 * Even if we did not try to evict anon pages at all, we want to
1809 * rebalance the anon lru active/inactive ratio.
1810 */
1811 if (inactive_anon_is_low(lruvec))
1812 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1813 sc, LRU_ACTIVE_ANON);
1814
1815 /* reclaim/compaction might need reclaim to continue */
1816 if (should_continue_reclaim(lruvec, nr_reclaimed,
1817 sc->nr_scanned - nr_scanned, sc))
1818 goto restart;
1819
1820 throttle_vm_writeout(sc->gfp_mask);
1821 }
1822
1823 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1824 {
1825 struct mem_cgroup *root = sc->target_mem_cgroup;
1826 struct mem_cgroup_reclaim_cookie reclaim = {
1827 .zone = zone,
1828 .priority = sc->priority,
1829 };
1830 struct mem_cgroup *memcg;
1831
1832 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1833 do {
1834 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1835
1836 shrink_lruvec(lruvec, sc);
1837
1838 /*
1839 * Limit reclaim has historically picked one memcg and
1840 * scanned it with decreasing priority levels until
1841 * nr_to_reclaim had been reclaimed. This priority
1842 * cycle is thus over after a single memcg.
1843 *
1844 * Direct reclaim and kswapd, on the other hand, have
1845 * to scan all memory cgroups to fulfill the overall
1846 * scan target for the zone.
1847 */
1848 if (!global_reclaim(sc)) {
1849 mem_cgroup_iter_break(root, memcg);
1850 break;
1851 }
1852 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1853 } while (memcg);
1854 }
1855
1856 /* Returns true if compaction should go ahead for a high-order request */
1857 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1858 {
1859 unsigned long balance_gap, watermark;
1860 bool watermark_ok;
1861
1862 /* Do not consider compaction for orders reclaim is meant to satisfy */
1863 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1864 return false;
1865
1866 /*
1867 * Compaction takes time to run and there are potentially other
1868 * callers using the pages just freed. Continue reclaiming until
1869 * there is a buffer of free pages available to give compaction
1870 * a reasonable chance of completing and allocating the page
1871 */
1872 balance_gap = min(low_wmark_pages(zone),
1873 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1874 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1875 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1876 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1877
1878 /*
1879 * If compaction is deferred, reclaim up to a point where
1880 * compaction will have a chance of success when re-enabled
1881 */
1882 if (compaction_deferred(zone, sc->order))
1883 return watermark_ok;
1884
1885 /* If compaction is not ready to start, keep reclaiming */
1886 if (!compaction_suitable(zone, sc->order))
1887 return false;
1888
1889 return watermark_ok;
1890 }
1891
1892 /*
1893 * This is the direct reclaim path, for page-allocating processes. We only
1894 * try to reclaim pages from zones which will satisfy the caller's allocation
1895 * request.
1896 *
1897 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1898 * Because:
1899 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1900 * allocation or
1901 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1902 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1903 * zone defense algorithm.
1904 *
1905 * If a zone is deemed to be full of pinned pages then just give it a light
1906 * scan then give up on it.
1907 *
1908 * This function returns true if a zone is being reclaimed for a costly
1909 * high-order allocation and compaction is ready to begin. This indicates to
1910 * the caller that it should consider retrying the allocation instead of
1911 * further reclaim.
1912 */
1913 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1914 {
1915 struct zoneref *z;
1916 struct zone *zone;
1917 unsigned long nr_soft_reclaimed;
1918 unsigned long nr_soft_scanned;
1919 bool aborted_reclaim = false;
1920
1921 /*
1922 * If the number of buffer_heads in the machine exceeds the maximum
1923 * allowed level, force direct reclaim to scan the highmem zone as
1924 * highmem pages could be pinning lowmem pages storing buffer_heads
1925 */
1926 if (buffer_heads_over_limit)
1927 sc->gfp_mask |= __GFP_HIGHMEM;
1928
1929 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1930 gfp_zone(sc->gfp_mask), sc->nodemask) {
1931 if (!populated_zone(zone))
1932 continue;
1933 /*
1934 * Take care memory controller reclaiming has small influence
1935 * to global LRU.
1936 */
1937 if (global_reclaim(sc)) {
1938 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1939 continue;
1940 if (zone->all_unreclaimable &&
1941 sc->priority != DEF_PRIORITY)
1942 continue; /* Let kswapd poll it */
1943 if (COMPACTION_BUILD) {
1944 /*
1945 * If we already have plenty of memory free for
1946 * compaction in this zone, don't free any more.
1947 * Even though compaction is invoked for any
1948 * non-zero order, only frequent costly order
1949 * reclamation is disruptive enough to become a
1950 * noticeable problem, like transparent huge
1951 * page allocations.
1952 */
1953 if (compaction_ready(zone, sc)) {
1954 aborted_reclaim = true;
1955 continue;
1956 }
1957 }
1958 /*
1959 * This steals pages from memory cgroups over softlimit
1960 * and returns the number of reclaimed pages and
1961 * scanned pages. This works for global memory pressure
1962 * and balancing, not for a memcg's limit.
1963 */
1964 nr_soft_scanned = 0;
1965 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1966 sc->order, sc->gfp_mask,
1967 &nr_soft_scanned);
1968 sc->nr_reclaimed += nr_soft_reclaimed;
1969 sc->nr_scanned += nr_soft_scanned;
1970 /* need some check for avoid more shrink_zone() */
1971 }
1972
1973 shrink_zone(zone, sc);
1974 }
1975
1976 return aborted_reclaim;
1977 }
1978
1979 static bool zone_reclaimable(struct zone *zone)
1980 {
1981 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1982 }
1983
1984 /* All zones in zonelist are unreclaimable? */
1985 static bool all_unreclaimable(struct zonelist *zonelist,
1986 struct scan_control *sc)
1987 {
1988 struct zoneref *z;
1989 struct zone *zone;
1990
1991 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1992 gfp_zone(sc->gfp_mask), sc->nodemask) {
1993 if (!populated_zone(zone))
1994 continue;
1995 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1996 continue;
1997 if (!zone->all_unreclaimable)
1998 return false;
1999 }
2000
2001 return true;
2002 }
2003
2004 /*
2005 * This is the main entry point to direct page reclaim.
2006 *
2007 * If a full scan of the inactive list fails to free enough memory then we
2008 * are "out of memory" and something needs to be killed.
2009 *
2010 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2011 * high - the zone may be full of dirty or under-writeback pages, which this
2012 * caller can't do much about. We kick the writeback threads and take explicit
2013 * naps in the hope that some of these pages can be written. But if the
2014 * allocating task holds filesystem locks which prevent writeout this might not
2015 * work, and the allocation attempt will fail.
2016 *
2017 * returns: 0, if no pages reclaimed
2018 * else, the number of pages reclaimed
2019 */
2020 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2021 struct scan_control *sc,
2022 struct shrink_control *shrink)
2023 {
2024 unsigned long total_scanned = 0;
2025 struct reclaim_state *reclaim_state = current->reclaim_state;
2026 struct zoneref *z;
2027 struct zone *zone;
2028 unsigned long writeback_threshold;
2029 bool aborted_reclaim;
2030
2031 delayacct_freepages_start();
2032
2033 if (global_reclaim(sc))
2034 count_vm_event(ALLOCSTALL);
2035
2036 do {
2037 sc->nr_scanned = 0;
2038 aborted_reclaim = shrink_zones(zonelist, sc);
2039
2040 /*
2041 * Don't shrink slabs when reclaiming memory from
2042 * over limit cgroups
2043 */
2044 if (global_reclaim(sc)) {
2045 unsigned long lru_pages = 0;
2046 for_each_zone_zonelist(zone, z, zonelist,
2047 gfp_zone(sc->gfp_mask)) {
2048 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2049 continue;
2050
2051 lru_pages += zone_reclaimable_pages(zone);
2052 }
2053
2054 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2055 if (reclaim_state) {
2056 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2057 reclaim_state->reclaimed_slab = 0;
2058 }
2059 }
2060 total_scanned += sc->nr_scanned;
2061 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2062 goto out;
2063
2064 /*
2065 * Try to write back as many pages as we just scanned. This
2066 * tends to cause slow streaming writers to write data to the
2067 * disk smoothly, at the dirtying rate, which is nice. But
2068 * that's undesirable in laptop mode, where we *want* lumpy
2069 * writeout. So in laptop mode, write out the whole world.
2070 */
2071 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2072 if (total_scanned > writeback_threshold) {
2073 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2074 WB_REASON_TRY_TO_FREE_PAGES);
2075 sc->may_writepage = 1;
2076 }
2077
2078 /* Take a nap, wait for some writeback to complete */
2079 if (!sc->hibernation_mode && sc->nr_scanned &&
2080 sc->priority < DEF_PRIORITY - 2) {
2081 struct zone *preferred_zone;
2082
2083 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2084 &cpuset_current_mems_allowed,
2085 &preferred_zone);
2086 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2087 }
2088 } while (--sc->priority >= 0);
2089
2090 out:
2091 delayacct_freepages_end();
2092
2093 if (sc->nr_reclaimed)
2094 return sc->nr_reclaimed;
2095
2096 /*
2097 * As hibernation is going on, kswapd is freezed so that it can't mark
2098 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2099 * check.
2100 */
2101 if (oom_killer_disabled)
2102 return 0;
2103
2104 /* Aborted reclaim to try compaction? don't OOM, then */
2105 if (aborted_reclaim)
2106 return 1;
2107
2108 /* top priority shrink_zones still had more to do? don't OOM, then */
2109 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2110 return 1;
2111
2112 return 0;
2113 }
2114
2115 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2116 gfp_t gfp_mask, nodemask_t *nodemask)
2117 {
2118 unsigned long nr_reclaimed;
2119 struct scan_control sc = {
2120 .gfp_mask = gfp_mask,
2121 .may_writepage = !laptop_mode,
2122 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2123 .may_unmap = 1,
2124 .may_swap = 1,
2125 .order = order,
2126 .priority = DEF_PRIORITY,
2127 .target_mem_cgroup = NULL,
2128 .nodemask = nodemask,
2129 };
2130 struct shrink_control shrink = {
2131 .gfp_mask = sc.gfp_mask,
2132 };
2133
2134 trace_mm_vmscan_direct_reclaim_begin(order,
2135 sc.may_writepage,
2136 gfp_mask);
2137
2138 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2139
2140 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2141
2142 return nr_reclaimed;
2143 }
2144
2145 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2146
2147 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2148 gfp_t gfp_mask, bool noswap,
2149 struct zone *zone,
2150 unsigned long *nr_scanned)
2151 {
2152 struct scan_control sc = {
2153 .nr_scanned = 0,
2154 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2155 .may_writepage = !laptop_mode,
2156 .may_unmap = 1,
2157 .may_swap = !noswap,
2158 .order = 0,
2159 .priority = 0,
2160 .target_mem_cgroup = memcg,
2161 };
2162 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2163
2164 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2165 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2166
2167 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2168 sc.may_writepage,
2169 sc.gfp_mask);
2170
2171 /*
2172 * NOTE: Although we can get the priority field, using it
2173 * here is not a good idea, since it limits the pages we can scan.
2174 * if we don't reclaim here, the shrink_zone from balance_pgdat
2175 * will pick up pages from other mem cgroup's as well. We hack
2176 * the priority and make it zero.
2177 */
2178 shrink_lruvec(lruvec, &sc);
2179
2180 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2181
2182 *nr_scanned = sc.nr_scanned;
2183 return sc.nr_reclaimed;
2184 }
2185
2186 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2187 gfp_t gfp_mask,
2188 bool noswap)
2189 {
2190 struct zonelist *zonelist;
2191 unsigned long nr_reclaimed;
2192 int nid;
2193 struct scan_control sc = {
2194 .may_writepage = !laptop_mode,
2195 .may_unmap = 1,
2196 .may_swap = !noswap,
2197 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2198 .order = 0,
2199 .priority = DEF_PRIORITY,
2200 .target_mem_cgroup = memcg,
2201 .nodemask = NULL, /* we don't care the placement */
2202 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2203 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2204 };
2205 struct shrink_control shrink = {
2206 .gfp_mask = sc.gfp_mask,
2207 };
2208
2209 /*
2210 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2211 * take care of from where we get pages. So the node where we start the
2212 * scan does not need to be the current node.
2213 */
2214 nid = mem_cgroup_select_victim_node(memcg);
2215
2216 zonelist = NODE_DATA(nid)->node_zonelists;
2217
2218 trace_mm_vmscan_memcg_reclaim_begin(0,
2219 sc.may_writepage,
2220 sc.gfp_mask);
2221
2222 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2223
2224 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2225
2226 return nr_reclaimed;
2227 }
2228 #endif
2229
2230 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2231 {
2232 struct mem_cgroup *memcg;
2233
2234 if (!total_swap_pages)
2235 return;
2236
2237 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2238 do {
2239 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2240
2241 if (inactive_anon_is_low(lruvec))
2242 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2243 sc, LRU_ACTIVE_ANON);
2244
2245 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2246 } while (memcg);
2247 }
2248
2249 /*
2250 * pgdat_balanced is used when checking if a node is balanced for high-order
2251 * allocations. Only zones that meet watermarks and are in a zone allowed
2252 * by the callers classzone_idx are added to balanced_pages. The total of
2253 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2254 * for the node to be considered balanced. Forcing all zones to be balanced
2255 * for high orders can cause excessive reclaim when there are imbalanced zones.
2256 * The choice of 25% is due to
2257 * o a 16M DMA zone that is balanced will not balance a zone on any
2258 * reasonable sized machine
2259 * o On all other machines, the top zone must be at least a reasonable
2260 * percentage of the middle zones. For example, on 32-bit x86, highmem
2261 * would need to be at least 256M for it to be balance a whole node.
2262 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2263 * to balance a node on its own. These seemed like reasonable ratios.
2264 */
2265 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2266 int classzone_idx)
2267 {
2268 unsigned long present_pages = 0;
2269 int i;
2270
2271 for (i = 0; i <= classzone_idx; i++)
2272 present_pages += pgdat->node_zones[i].present_pages;
2273
2274 /* A special case here: if zone has no page, we think it's balanced */
2275 return balanced_pages >= (present_pages >> 2);
2276 }
2277
2278 /* is kswapd sleeping prematurely? */
2279 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2280 int classzone_idx)
2281 {
2282 int i;
2283 unsigned long balanced = 0;
2284 bool all_zones_ok = true;
2285
2286 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2287 if (remaining)
2288 return true;
2289
2290 /* Check the watermark levels */
2291 for (i = 0; i <= classzone_idx; i++) {
2292 struct zone *zone = pgdat->node_zones + i;
2293
2294 if (!populated_zone(zone))
2295 continue;
2296
2297 /*
2298 * balance_pgdat() skips over all_unreclaimable after
2299 * DEF_PRIORITY. Effectively, it considers them balanced so
2300 * they must be considered balanced here as well if kswapd
2301 * is to sleep
2302 */
2303 if (zone->all_unreclaimable) {
2304 balanced += zone->present_pages;
2305 continue;
2306 }
2307
2308 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2309 i, 0))
2310 all_zones_ok = false;
2311 else
2312 balanced += zone->present_pages;
2313 }
2314
2315 /*
2316 * For high-order requests, the balanced zones must contain at least
2317 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2318 * must be balanced
2319 */
2320 if (order)
2321 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2322 else
2323 return !all_zones_ok;
2324 }
2325
2326 /*
2327 * For kswapd, balance_pgdat() will work across all this node's zones until
2328 * they are all at high_wmark_pages(zone).
2329 *
2330 * Returns the final order kswapd was reclaiming at
2331 *
2332 * There is special handling here for zones which are full of pinned pages.
2333 * This can happen if the pages are all mlocked, or if they are all used by
2334 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2335 * What we do is to detect the case where all pages in the zone have been
2336 * scanned twice and there has been zero successful reclaim. Mark the zone as
2337 * dead and from now on, only perform a short scan. Basically we're polling
2338 * the zone for when the problem goes away.
2339 *
2340 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2341 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2342 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2343 * lower zones regardless of the number of free pages in the lower zones. This
2344 * interoperates with the page allocator fallback scheme to ensure that aging
2345 * of pages is balanced across the zones.
2346 */
2347 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2348 int *classzone_idx)
2349 {
2350 int all_zones_ok;
2351 unsigned long balanced;
2352 int i;
2353 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2354 unsigned long total_scanned;
2355 struct reclaim_state *reclaim_state = current->reclaim_state;
2356 unsigned long nr_soft_reclaimed;
2357 unsigned long nr_soft_scanned;
2358 struct scan_control sc = {
2359 .gfp_mask = GFP_KERNEL,
2360 .may_unmap = 1,
2361 .may_swap = 1,
2362 /*
2363 * kswapd doesn't want to be bailed out while reclaim. because
2364 * we want to put equal scanning pressure on each zone.
2365 */
2366 .nr_to_reclaim = ULONG_MAX,
2367 .order = order,
2368 .target_mem_cgroup = NULL,
2369 };
2370 struct shrink_control shrink = {
2371 .gfp_mask = sc.gfp_mask,
2372 };
2373 loop_again:
2374 total_scanned = 0;
2375 sc.priority = DEF_PRIORITY;
2376 sc.nr_reclaimed = 0;
2377 sc.may_writepage = !laptop_mode;
2378 count_vm_event(PAGEOUTRUN);
2379
2380 do {
2381 unsigned long lru_pages = 0;
2382 int has_under_min_watermark_zone = 0;
2383
2384 all_zones_ok = 1;
2385 balanced = 0;
2386
2387 /*
2388 * Scan in the highmem->dma direction for the highest
2389 * zone which needs scanning
2390 */
2391 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2392 struct zone *zone = pgdat->node_zones + i;
2393
2394 if (!populated_zone(zone))
2395 continue;
2396
2397 if (zone->all_unreclaimable &&
2398 sc.priority != DEF_PRIORITY)
2399 continue;
2400
2401 /*
2402 * Do some background aging of the anon list, to give
2403 * pages a chance to be referenced before reclaiming.
2404 */
2405 age_active_anon(zone, &sc);
2406
2407 /*
2408 * If the number of buffer_heads in the machine
2409 * exceeds the maximum allowed level and this node
2410 * has a highmem zone, force kswapd to reclaim from
2411 * it to relieve lowmem pressure.
2412 */
2413 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2414 end_zone = i;
2415 break;
2416 }
2417
2418 if (!zone_watermark_ok_safe(zone, order,
2419 high_wmark_pages(zone), 0, 0)) {
2420 end_zone = i;
2421 break;
2422 } else {
2423 /* If balanced, clear the congested flag */
2424 zone_clear_flag(zone, ZONE_CONGESTED);
2425 }
2426 }
2427 if (i < 0)
2428 goto out;
2429
2430 for (i = 0; i <= end_zone; i++) {
2431 struct zone *zone = pgdat->node_zones + i;
2432
2433 lru_pages += zone_reclaimable_pages(zone);
2434 }
2435
2436 /*
2437 * Now scan the zone in the dma->highmem direction, stopping
2438 * at the last zone which needs scanning.
2439 *
2440 * We do this because the page allocator works in the opposite
2441 * direction. This prevents the page allocator from allocating
2442 * pages behind kswapd's direction of progress, which would
2443 * cause too much scanning of the lower zones.
2444 */
2445 for (i = 0; i <= end_zone; i++) {
2446 struct zone *zone = pgdat->node_zones + i;
2447 int nr_slab, testorder;
2448 unsigned long balance_gap;
2449
2450 if (!populated_zone(zone))
2451 continue;
2452
2453 if (zone->all_unreclaimable &&
2454 sc.priority != DEF_PRIORITY)
2455 continue;
2456
2457 sc.nr_scanned = 0;
2458
2459 nr_soft_scanned = 0;
2460 /*
2461 * Call soft limit reclaim before calling shrink_zone.
2462 */
2463 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2464 order, sc.gfp_mask,
2465 &nr_soft_scanned);
2466 sc.nr_reclaimed += nr_soft_reclaimed;
2467 total_scanned += nr_soft_scanned;
2468
2469 /*
2470 * We put equal pressure on every zone, unless
2471 * one zone has way too many pages free
2472 * already. The "too many pages" is defined
2473 * as the high wmark plus a "gap" where the
2474 * gap is either the low watermark or 1%
2475 * of the zone, whichever is smaller.
2476 */
2477 balance_gap = min(low_wmark_pages(zone),
2478 (zone->present_pages +
2479 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2480 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2481 /*
2482 * Kswapd reclaims only single pages with compaction
2483 * enabled. Trying too hard to reclaim until contiguous
2484 * free pages have become available can hurt performance
2485 * by evicting too much useful data from memory.
2486 * Do not reclaim more than needed for compaction.
2487 */
2488 testorder = order;
2489 if (COMPACTION_BUILD && order &&
2490 compaction_suitable(zone, order) !=
2491 COMPACT_SKIPPED)
2492 testorder = 0;
2493
2494 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2495 !zone_watermark_ok_safe(zone, testorder,
2496 high_wmark_pages(zone) + balance_gap,
2497 end_zone, 0)) {
2498 shrink_zone(zone, &sc);
2499
2500 reclaim_state->reclaimed_slab = 0;
2501 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2502 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2503 total_scanned += sc.nr_scanned;
2504
2505 if (nr_slab == 0 && !zone_reclaimable(zone))
2506 zone->all_unreclaimable = 1;
2507 }
2508
2509 /*
2510 * If we've done a decent amount of scanning and
2511 * the reclaim ratio is low, start doing writepage
2512 * even in laptop mode
2513 */
2514 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2515 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2516 sc.may_writepage = 1;
2517
2518 if (zone->all_unreclaimable) {
2519 if (end_zone && end_zone == i)
2520 end_zone--;
2521 continue;
2522 }
2523
2524 if (!zone_watermark_ok_safe(zone, testorder,
2525 high_wmark_pages(zone), end_zone, 0)) {
2526 all_zones_ok = 0;
2527 /*
2528 * We are still under min water mark. This
2529 * means that we have a GFP_ATOMIC allocation
2530 * failure risk. Hurry up!
2531 */
2532 if (!zone_watermark_ok_safe(zone, order,
2533 min_wmark_pages(zone), end_zone, 0))
2534 has_under_min_watermark_zone = 1;
2535 } else {
2536 /*
2537 * If a zone reaches its high watermark,
2538 * consider it to be no longer congested. It's
2539 * possible there are dirty pages backed by
2540 * congested BDIs but as pressure is relieved,
2541 * speculatively avoid congestion waits
2542 */
2543 zone_clear_flag(zone, ZONE_CONGESTED);
2544 if (i <= *classzone_idx)
2545 balanced += zone->present_pages;
2546 }
2547
2548 }
2549 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2550 break; /* kswapd: all done */
2551 /*
2552 * OK, kswapd is getting into trouble. Take a nap, then take
2553 * another pass across the zones.
2554 */
2555 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2556 if (has_under_min_watermark_zone)
2557 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2558 else
2559 congestion_wait(BLK_RW_ASYNC, HZ/10);
2560 }
2561
2562 /*
2563 * We do this so kswapd doesn't build up large priorities for
2564 * example when it is freeing in parallel with allocators. It
2565 * matches the direct reclaim path behaviour in terms of impact
2566 * on zone->*_priority.
2567 */
2568 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2569 break;
2570 } while (--sc.priority >= 0);
2571 out:
2572
2573 /*
2574 * order-0: All zones must meet high watermark for a balanced node
2575 * high-order: Balanced zones must make up at least 25% of the node
2576 * for the node to be balanced
2577 */
2578 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2579 cond_resched();
2580
2581 try_to_freeze();
2582
2583 /*
2584 * Fragmentation may mean that the system cannot be
2585 * rebalanced for high-order allocations in all zones.
2586 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2587 * it means the zones have been fully scanned and are still
2588 * not balanced. For high-order allocations, there is
2589 * little point trying all over again as kswapd may
2590 * infinite loop.
2591 *
2592 * Instead, recheck all watermarks at order-0 as they
2593 * are the most important. If watermarks are ok, kswapd will go
2594 * back to sleep. High-order users can still perform direct
2595 * reclaim if they wish.
2596 */
2597 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2598 order = sc.order = 0;
2599
2600 goto loop_again;
2601 }
2602
2603 /*
2604 * If kswapd was reclaiming at a higher order, it has the option of
2605 * sleeping without all zones being balanced. Before it does, it must
2606 * ensure that the watermarks for order-0 on *all* zones are met and
2607 * that the congestion flags are cleared. The congestion flag must
2608 * be cleared as kswapd is the only mechanism that clears the flag
2609 * and it is potentially going to sleep here.
2610 */
2611 if (order) {
2612 int zones_need_compaction = 1;
2613
2614 for (i = 0; i <= end_zone; i++) {
2615 struct zone *zone = pgdat->node_zones + i;
2616
2617 if (!populated_zone(zone))
2618 continue;
2619
2620 if (zone->all_unreclaimable &&
2621 sc.priority != DEF_PRIORITY)
2622 continue;
2623
2624 /* Would compaction fail due to lack of free memory? */
2625 if (COMPACTION_BUILD &&
2626 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2627 goto loop_again;
2628
2629 /* Confirm the zone is balanced for order-0 */
2630 if (!zone_watermark_ok(zone, 0,
2631 high_wmark_pages(zone), 0, 0)) {
2632 order = sc.order = 0;
2633 goto loop_again;
2634 }
2635
2636 /* Check if the memory needs to be defragmented. */
2637 if (zone_watermark_ok(zone, order,
2638 low_wmark_pages(zone), *classzone_idx, 0))
2639 zones_need_compaction = 0;
2640
2641 /* If balanced, clear the congested flag */
2642 zone_clear_flag(zone, ZONE_CONGESTED);
2643 }
2644
2645 if (zones_need_compaction)
2646 compact_pgdat(pgdat, order);
2647 }
2648
2649 /*
2650 * Return the order we were reclaiming at so sleeping_prematurely()
2651 * makes a decision on the order we were last reclaiming at. However,
2652 * if another caller entered the allocator slow path while kswapd
2653 * was awake, order will remain at the higher level
2654 */
2655 *classzone_idx = end_zone;
2656 return order;
2657 }
2658
2659 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2660 {
2661 long remaining = 0;
2662 DEFINE_WAIT(wait);
2663
2664 if (freezing(current) || kthread_should_stop())
2665 return;
2666
2667 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2668
2669 /* Try to sleep for a short interval */
2670 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2671 remaining = schedule_timeout(HZ/10);
2672 finish_wait(&pgdat->kswapd_wait, &wait);
2673 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2674 }
2675
2676 /*
2677 * After a short sleep, check if it was a premature sleep. If not, then
2678 * go fully to sleep until explicitly woken up.
2679 */
2680 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2681 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2682
2683 /*
2684 * vmstat counters are not perfectly accurate and the estimated
2685 * value for counters such as NR_FREE_PAGES can deviate from the
2686 * true value by nr_online_cpus * threshold. To avoid the zone
2687 * watermarks being breached while under pressure, we reduce the
2688 * per-cpu vmstat threshold while kswapd is awake and restore
2689 * them before going back to sleep.
2690 */
2691 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2692
2693 if (!kthread_should_stop())
2694 schedule();
2695
2696 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2697 } else {
2698 if (remaining)
2699 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2700 else
2701 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2702 }
2703 finish_wait(&pgdat->kswapd_wait, &wait);
2704 }
2705
2706 /*
2707 * The background pageout daemon, started as a kernel thread
2708 * from the init process.
2709 *
2710 * This basically trickles out pages so that we have _some_
2711 * free memory available even if there is no other activity
2712 * that frees anything up. This is needed for things like routing
2713 * etc, where we otherwise might have all activity going on in
2714 * asynchronous contexts that cannot page things out.
2715 *
2716 * If there are applications that are active memory-allocators
2717 * (most normal use), this basically shouldn't matter.
2718 */
2719 static int kswapd(void *p)
2720 {
2721 unsigned long order, new_order;
2722 unsigned balanced_order;
2723 int classzone_idx, new_classzone_idx;
2724 int balanced_classzone_idx;
2725 pg_data_t *pgdat = (pg_data_t*)p;
2726 struct task_struct *tsk = current;
2727
2728 struct reclaim_state reclaim_state = {
2729 .reclaimed_slab = 0,
2730 };
2731 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2732
2733 lockdep_set_current_reclaim_state(GFP_KERNEL);
2734
2735 if (!cpumask_empty(cpumask))
2736 set_cpus_allowed_ptr(tsk, cpumask);
2737 current->reclaim_state = &reclaim_state;
2738
2739 /*
2740 * Tell the memory management that we're a "memory allocator",
2741 * and that if we need more memory we should get access to it
2742 * regardless (see "__alloc_pages()"). "kswapd" should
2743 * never get caught in the normal page freeing logic.
2744 *
2745 * (Kswapd normally doesn't need memory anyway, but sometimes
2746 * you need a small amount of memory in order to be able to
2747 * page out something else, and this flag essentially protects
2748 * us from recursively trying to free more memory as we're
2749 * trying to free the first piece of memory in the first place).
2750 */
2751 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2752 set_freezable();
2753
2754 order = new_order = 0;
2755 balanced_order = 0;
2756 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2757 balanced_classzone_idx = classzone_idx;
2758 for ( ; ; ) {
2759 int ret;
2760
2761 /*
2762 * If the last balance_pgdat was unsuccessful it's unlikely a
2763 * new request of a similar or harder type will succeed soon
2764 * so consider going to sleep on the basis we reclaimed at
2765 */
2766 if (balanced_classzone_idx >= new_classzone_idx &&
2767 balanced_order == new_order) {
2768 new_order = pgdat->kswapd_max_order;
2769 new_classzone_idx = pgdat->classzone_idx;
2770 pgdat->kswapd_max_order = 0;
2771 pgdat->classzone_idx = pgdat->nr_zones - 1;
2772 }
2773
2774 if (order < new_order || classzone_idx > new_classzone_idx) {
2775 /*
2776 * Don't sleep if someone wants a larger 'order'
2777 * allocation or has tigher zone constraints
2778 */
2779 order = new_order;
2780 classzone_idx = new_classzone_idx;
2781 } else {
2782 kswapd_try_to_sleep(pgdat, balanced_order,
2783 balanced_classzone_idx);
2784 order = pgdat->kswapd_max_order;
2785 classzone_idx = pgdat->classzone_idx;
2786 new_order = order;
2787 new_classzone_idx = classzone_idx;
2788 pgdat->kswapd_max_order = 0;
2789 pgdat->classzone_idx = pgdat->nr_zones - 1;
2790 }
2791
2792 ret = try_to_freeze();
2793 if (kthread_should_stop())
2794 break;
2795
2796 /*
2797 * We can speed up thawing tasks if we don't call balance_pgdat
2798 * after returning from the refrigerator
2799 */
2800 if (!ret) {
2801 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2802 balanced_classzone_idx = classzone_idx;
2803 balanced_order = balance_pgdat(pgdat, order,
2804 &balanced_classzone_idx);
2805 }
2806 }
2807 return 0;
2808 }
2809
2810 /*
2811 * A zone is low on free memory, so wake its kswapd task to service it.
2812 */
2813 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2814 {
2815 pg_data_t *pgdat;
2816
2817 if (!populated_zone(zone))
2818 return;
2819
2820 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2821 return;
2822 pgdat = zone->zone_pgdat;
2823 if (pgdat->kswapd_max_order < order) {
2824 pgdat->kswapd_max_order = order;
2825 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2826 }
2827 if (!waitqueue_active(&pgdat->kswapd_wait))
2828 return;
2829 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2830 return;
2831
2832 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2833 wake_up_interruptible(&pgdat->kswapd_wait);
2834 }
2835
2836 /*
2837 * The reclaimable count would be mostly accurate.
2838 * The less reclaimable pages may be
2839 * - mlocked pages, which will be moved to unevictable list when encountered
2840 * - mapped pages, which may require several travels to be reclaimed
2841 * - dirty pages, which is not "instantly" reclaimable
2842 */
2843 unsigned long global_reclaimable_pages(void)
2844 {
2845 int nr;
2846
2847 nr = global_page_state(NR_ACTIVE_FILE) +
2848 global_page_state(NR_INACTIVE_FILE);
2849
2850 if (nr_swap_pages > 0)
2851 nr += global_page_state(NR_ACTIVE_ANON) +
2852 global_page_state(NR_INACTIVE_ANON);
2853
2854 return nr;
2855 }
2856
2857 unsigned long zone_reclaimable_pages(struct zone *zone)
2858 {
2859 int nr;
2860
2861 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2862 zone_page_state(zone, NR_INACTIVE_FILE);
2863
2864 if (nr_swap_pages > 0)
2865 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2866 zone_page_state(zone, NR_INACTIVE_ANON);
2867
2868 return nr;
2869 }
2870
2871 #ifdef CONFIG_HIBERNATION
2872 /*
2873 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2874 * freed pages.
2875 *
2876 * Rather than trying to age LRUs the aim is to preserve the overall
2877 * LRU order by reclaiming preferentially
2878 * inactive > active > active referenced > active mapped
2879 */
2880 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2881 {
2882 struct reclaim_state reclaim_state;
2883 struct scan_control sc = {
2884 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2885 .may_swap = 1,
2886 .may_unmap = 1,
2887 .may_writepage = 1,
2888 .nr_to_reclaim = nr_to_reclaim,
2889 .hibernation_mode = 1,
2890 .order = 0,
2891 .priority = DEF_PRIORITY,
2892 };
2893 struct shrink_control shrink = {
2894 .gfp_mask = sc.gfp_mask,
2895 };
2896 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2897 struct task_struct *p = current;
2898 unsigned long nr_reclaimed;
2899
2900 p->flags |= PF_MEMALLOC;
2901 lockdep_set_current_reclaim_state(sc.gfp_mask);
2902 reclaim_state.reclaimed_slab = 0;
2903 p->reclaim_state = &reclaim_state;
2904
2905 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2906
2907 p->reclaim_state = NULL;
2908 lockdep_clear_current_reclaim_state();
2909 p->flags &= ~PF_MEMALLOC;
2910
2911 return nr_reclaimed;
2912 }
2913 #endif /* CONFIG_HIBERNATION */
2914
2915 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2916 not required for correctness. So if the last cpu in a node goes
2917 away, we get changed to run anywhere: as the first one comes back,
2918 restore their cpu bindings. */
2919 static int __devinit cpu_callback(struct notifier_block *nfb,
2920 unsigned long action, void *hcpu)
2921 {
2922 int nid;
2923
2924 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2925 for_each_node_state(nid, N_HIGH_MEMORY) {
2926 pg_data_t *pgdat = NODE_DATA(nid);
2927 const struct cpumask *mask;
2928
2929 mask = cpumask_of_node(pgdat->node_id);
2930
2931 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2932 /* One of our CPUs online: restore mask */
2933 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2934 }
2935 }
2936 return NOTIFY_OK;
2937 }
2938
2939 /*
2940 * This kswapd start function will be called by init and node-hot-add.
2941 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2942 */
2943 int kswapd_run(int nid)
2944 {
2945 pg_data_t *pgdat = NODE_DATA(nid);
2946 int ret = 0;
2947
2948 if (pgdat->kswapd)
2949 return 0;
2950
2951 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2952 if (IS_ERR(pgdat->kswapd)) {
2953 /* failure at boot is fatal */
2954 BUG_ON(system_state == SYSTEM_BOOTING);
2955 printk("Failed to start kswapd on node %d\n",nid);
2956 ret = -1;
2957 }
2958 return ret;
2959 }
2960
2961 /*
2962 * Called by memory hotplug when all memory in a node is offlined. Caller must
2963 * hold lock_memory_hotplug().
2964 */
2965 void kswapd_stop(int nid)
2966 {
2967 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2968
2969 if (kswapd) {
2970 kthread_stop(kswapd);
2971 NODE_DATA(nid)->kswapd = NULL;
2972 }
2973 }
2974
2975 static int __init kswapd_init(void)
2976 {
2977 int nid;
2978
2979 swap_setup();
2980 for_each_node_state(nid, N_HIGH_MEMORY)
2981 kswapd_run(nid);
2982 hotcpu_notifier(cpu_callback, 0);
2983 return 0;
2984 }
2985
2986 module_init(kswapd_init)
2987
2988 #ifdef CONFIG_NUMA
2989 /*
2990 * Zone reclaim mode
2991 *
2992 * If non-zero call zone_reclaim when the number of free pages falls below
2993 * the watermarks.
2994 */
2995 int zone_reclaim_mode __read_mostly;
2996
2997 #define RECLAIM_OFF 0
2998 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2999 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3000 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3001
3002 /*
3003 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3004 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3005 * a zone.
3006 */
3007 #define ZONE_RECLAIM_PRIORITY 4
3008
3009 /*
3010 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3011 * occur.
3012 */
3013 int sysctl_min_unmapped_ratio = 1;
3014
3015 /*
3016 * If the number of slab pages in a zone grows beyond this percentage then
3017 * slab reclaim needs to occur.
3018 */
3019 int sysctl_min_slab_ratio = 5;
3020
3021 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3022 {
3023 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3024 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3025 zone_page_state(zone, NR_ACTIVE_FILE);
3026
3027 /*
3028 * It's possible for there to be more file mapped pages than
3029 * accounted for by the pages on the file LRU lists because
3030 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3031 */
3032 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3033 }
3034
3035 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3036 static long zone_pagecache_reclaimable(struct zone *zone)
3037 {
3038 long nr_pagecache_reclaimable;
3039 long delta = 0;
3040
3041 /*
3042 * If RECLAIM_SWAP is set, then all file pages are considered
3043 * potentially reclaimable. Otherwise, we have to worry about
3044 * pages like swapcache and zone_unmapped_file_pages() provides
3045 * a better estimate
3046 */
3047 if (zone_reclaim_mode & RECLAIM_SWAP)
3048 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3049 else
3050 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3051
3052 /* If we can't clean pages, remove dirty pages from consideration */
3053 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3054 delta += zone_page_state(zone, NR_FILE_DIRTY);
3055
3056 /* Watch for any possible underflows due to delta */
3057 if (unlikely(delta > nr_pagecache_reclaimable))
3058 delta = nr_pagecache_reclaimable;
3059
3060 return nr_pagecache_reclaimable - delta;
3061 }
3062
3063 /*
3064 * Try to free up some pages from this zone through reclaim.
3065 */
3066 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3067 {
3068 /* Minimum pages needed in order to stay on node */
3069 const unsigned long nr_pages = 1 << order;
3070 struct task_struct *p = current;
3071 struct reclaim_state reclaim_state;
3072 struct scan_control sc = {
3073 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3074 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3075 .may_swap = 1,
3076 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3077 SWAP_CLUSTER_MAX),
3078 .gfp_mask = gfp_mask,
3079 .order = order,
3080 .priority = ZONE_RECLAIM_PRIORITY,
3081 };
3082 struct shrink_control shrink = {
3083 .gfp_mask = sc.gfp_mask,
3084 };
3085 unsigned long nr_slab_pages0, nr_slab_pages1;
3086
3087 cond_resched();
3088 /*
3089 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3090 * and we also need to be able to write out pages for RECLAIM_WRITE
3091 * and RECLAIM_SWAP.
3092 */
3093 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3094 lockdep_set_current_reclaim_state(gfp_mask);
3095 reclaim_state.reclaimed_slab = 0;
3096 p->reclaim_state = &reclaim_state;
3097
3098 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3099 /*
3100 * Free memory by calling shrink zone with increasing
3101 * priorities until we have enough memory freed.
3102 */
3103 do {
3104 shrink_zone(zone, &sc);
3105 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3106 }
3107
3108 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3109 if (nr_slab_pages0 > zone->min_slab_pages) {
3110 /*
3111 * shrink_slab() does not currently allow us to determine how
3112 * many pages were freed in this zone. So we take the current
3113 * number of slab pages and shake the slab until it is reduced
3114 * by the same nr_pages that we used for reclaiming unmapped
3115 * pages.
3116 *
3117 * Note that shrink_slab will free memory on all zones and may
3118 * take a long time.
3119 */
3120 for (;;) {
3121 unsigned long lru_pages = zone_reclaimable_pages(zone);
3122
3123 /* No reclaimable slab or very low memory pressure */
3124 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3125 break;
3126
3127 /* Freed enough memory */
3128 nr_slab_pages1 = zone_page_state(zone,
3129 NR_SLAB_RECLAIMABLE);
3130 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3131 break;
3132 }
3133
3134 /*
3135 * Update nr_reclaimed by the number of slab pages we
3136 * reclaimed from this zone.
3137 */
3138 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3139 if (nr_slab_pages1 < nr_slab_pages0)
3140 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3141 }
3142
3143 p->reclaim_state = NULL;
3144 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3145 lockdep_clear_current_reclaim_state();
3146 return sc.nr_reclaimed >= nr_pages;
3147 }
3148
3149 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3150 {
3151 int node_id;
3152 int ret;
3153
3154 /*
3155 * Zone reclaim reclaims unmapped file backed pages and
3156 * slab pages if we are over the defined limits.
3157 *
3158 * A small portion of unmapped file backed pages is needed for
3159 * file I/O otherwise pages read by file I/O will be immediately
3160 * thrown out if the zone is overallocated. So we do not reclaim
3161 * if less than a specified percentage of the zone is used by
3162 * unmapped file backed pages.
3163 */
3164 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3165 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3166 return ZONE_RECLAIM_FULL;
3167
3168 if (zone->all_unreclaimable)
3169 return ZONE_RECLAIM_FULL;
3170
3171 /*
3172 * Do not scan if the allocation should not be delayed.
3173 */
3174 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3175 return ZONE_RECLAIM_NOSCAN;
3176
3177 /*
3178 * Only run zone reclaim on the local zone or on zones that do not
3179 * have associated processors. This will favor the local processor
3180 * over remote processors and spread off node memory allocations
3181 * as wide as possible.
3182 */
3183 node_id = zone_to_nid(zone);
3184 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3185 return ZONE_RECLAIM_NOSCAN;
3186
3187 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3188 return ZONE_RECLAIM_NOSCAN;
3189
3190 ret = __zone_reclaim(zone, gfp_mask, order);
3191 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3192
3193 if (!ret)
3194 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3195
3196 return ret;
3197 }
3198 #endif
3199
3200 /*
3201 * page_evictable - test whether a page is evictable
3202 * @page: the page to test
3203 * @vma: the VMA in which the page is or will be mapped, may be NULL
3204 *
3205 * Test whether page is evictable--i.e., should be placed on active/inactive
3206 * lists vs unevictable list. The vma argument is !NULL when called from the
3207 * fault path to determine how to instantate a new page.
3208 *
3209 * Reasons page might not be evictable:
3210 * (1) page's mapping marked unevictable
3211 * (2) page is part of an mlocked VMA
3212 *
3213 */
3214 int page_evictable(struct page *page, struct vm_area_struct *vma)
3215 {
3216
3217 if (mapping_unevictable(page_mapping(page)))
3218 return 0;
3219
3220 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3221 return 0;
3222
3223 return 1;
3224 }
3225
3226 #ifdef CONFIG_SHMEM
3227 /**
3228 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3229 * @pages: array of pages to check
3230 * @nr_pages: number of pages to check
3231 *
3232 * Checks pages for evictability and moves them to the appropriate lru list.
3233 *
3234 * This function is only used for SysV IPC SHM_UNLOCK.
3235 */
3236 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3237 {
3238 struct lruvec *lruvec;
3239 struct zone *zone = NULL;
3240 int pgscanned = 0;
3241 int pgrescued = 0;
3242 int i;
3243
3244 for (i = 0; i < nr_pages; i++) {
3245 struct page *page = pages[i];
3246 struct zone *pagezone;
3247
3248 pgscanned++;
3249 pagezone = page_zone(page);
3250 if (pagezone != zone) {
3251 if (zone)
3252 spin_unlock_irq(&zone->lru_lock);
3253 zone = pagezone;
3254 spin_lock_irq(&zone->lru_lock);
3255 }
3256 lruvec = mem_cgroup_page_lruvec(page, zone);
3257
3258 if (!PageLRU(page) || !PageUnevictable(page))
3259 continue;
3260
3261 if (page_evictable(page, NULL)) {
3262 enum lru_list lru = page_lru_base_type(page);
3263
3264 VM_BUG_ON(PageActive(page));
3265 ClearPageUnevictable(page);
3266 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3267 add_page_to_lru_list(page, lruvec, lru);
3268 pgrescued++;
3269 }
3270 }
3271
3272 if (zone) {
3273 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3274 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3275 spin_unlock_irq(&zone->lru_lock);
3276 }
3277 }
3278 #endif /* CONFIG_SHMEM */
3279
3280 static void warn_scan_unevictable_pages(void)
3281 {
3282 printk_once(KERN_WARNING
3283 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3284 "disabled for lack of a legitimate use case. If you have "
3285 "one, please send an email to linux-mm@kvack.org.\n",
3286 current->comm);
3287 }
3288
3289 /*
3290 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3291 * all nodes' unevictable lists for evictable pages
3292 */
3293 unsigned long scan_unevictable_pages;
3294
3295 int scan_unevictable_handler(struct ctl_table *table, int write,
3296 void __user *buffer,
3297 size_t *length, loff_t *ppos)
3298 {
3299 warn_scan_unevictable_pages();
3300 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3301 scan_unevictable_pages = 0;
3302 return 0;
3303 }
3304
3305 #ifdef CONFIG_NUMA
3306 /*
3307 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3308 * a specified node's per zone unevictable lists for evictable pages.
3309 */
3310
3311 static ssize_t read_scan_unevictable_node(struct device *dev,
3312 struct device_attribute *attr,
3313 char *buf)
3314 {
3315 warn_scan_unevictable_pages();
3316 return sprintf(buf, "0\n"); /* always zero; should fit... */
3317 }
3318
3319 static ssize_t write_scan_unevictable_node(struct device *dev,
3320 struct device_attribute *attr,
3321 const char *buf, size_t count)
3322 {
3323 warn_scan_unevictable_pages();
3324 return 1;
3325 }
3326
3327
3328 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3329 read_scan_unevictable_node,
3330 write_scan_unevictable_node);
3331
3332 int scan_unevictable_register_node(struct node *node)
3333 {
3334 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3335 }
3336
3337 void scan_unevictable_unregister_node(struct node *node)
3338 {
3339 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3340 }
3341 #endif
This page took 0.164974 seconds and 6 git commands to generate.